03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Proceed<strong>in</strong>gs</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Physics</strong> <strong>in</strong> Intense Fields<br />

PIF2010<br />

24-26 November 2010, <strong>KEK</strong>, Tsukuba, Japan<br />

Edited by K. Itakura, S. Iso and T. Takahashi<br />

High Energy Accelerator Research Organizati<strong>on</strong><br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceed<strong>in</strong>gs</str<strong>on</strong>g> 2010-13<br />

February 2011<br />

A/H


High Energy Accelerator Research Organizati<strong>on</strong> (<strong>KEK</strong>), 2011<br />

<strong>KEK</strong> Reports are available from:<br />

High Energy Accelerator Research Organizati<strong>on</strong> (<strong>KEK</strong>)<br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki-ken, 305-0801<br />

JAPAN<br />

Ph<strong>on</strong>e: +81-29-864-5137<br />

Fax: +81-29-864-4604<br />

E-mail: irdpub@mail.kek.jp<br />

Internet: http://www.kek.jp


<str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> poster<br />

i


iii<br />

Group photo taken <strong>in</strong> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> Kenkyu H<strong>on</strong>kan <strong>on</strong> 25 th November 2010


Preface<br />

The <strong>in</strong>ternati<strong>on</strong>al c<strong>on</strong>ference <strong>on</strong> <strong>Physics</strong> <strong>in</strong> Intense Fields (PIF 2010) was<br />

held from November 24 to 26, 2010, <strong>in</strong> <strong>KEK</strong> (High Energy Accelerator Research<br />

Organizati<strong>on</strong>), Tsukuba, Japan. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ference was to discuss<br />

prospects <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental physics <strong>in</strong> str<strong>on</strong>g electromagnetic fields, and the<br />

emphasis was particularly put <strong>on</strong> its <strong>in</strong>terdiscipl<strong>in</strong>ary aspects.<br />

Recent developments <str<strong>on</strong>g>of</str<strong>on</strong>g> the high-<strong>in</strong>tensity lasers open a new w<strong>in</strong>dow to fundamental<br />

physics as well as applied researches. In particular, the ultra-high<br />

<strong>in</strong>tensity realm <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum electrodynamics (QED) is with<strong>in</strong> reach, and its<br />

n<strong>on</strong>-perturbative nature will be experimentally studied <strong>in</strong> near future. Investigati<strong>on</strong>s<br />

us<strong>in</strong>g the high-<strong>in</strong>tensity lasers are <strong>in</strong>timately tied up with the str<strong>on</strong>gfield<br />

dynamics <strong>in</strong> other areas <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, such as the quark-glu<strong>on</strong> plasma <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quantum chromodynamics (QCD), astrophysical phenomena <strong>in</strong> magnetars with<br />

critically str<strong>on</strong>g magnetic fields or dielectric breakdown <strong>in</strong> str<strong>on</strong>gly correlated<br />

systems. In such circumstances, collaborati<strong>on</strong>s and discussi<strong>on</strong>s over a wide range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> physicists are extremely important and necessary towards understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

str<strong>on</strong>g-field dynamics.<br />

In the c<strong>on</strong>ference, more than a hundred participants gathered from various<br />

countries and from various areas <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, <strong>in</strong>clud<strong>in</strong>g laser physics, plasma<br />

physics, particle physics, nuclear physics, c<strong>on</strong>densed matter physics, astrophysics<br />

and accelerator physics. In order to share <strong>in</strong>terests am<strong>on</strong>g the participants <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

such wide varieties, several tutorial talks <strong>on</strong> the basics <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>tense fields were<br />

given, as well as many c<strong>on</strong>tributi<strong>on</strong>s <strong>on</strong> the recent hot topics. Thanks to big<br />

efforts <str<strong>on</strong>g>of</str<strong>on</strong>g> the participants, most <str<strong>on</strong>g>of</str<strong>on</strong>g> them could be <strong>in</strong>cluded <strong>in</strong> this proceed<strong>in</strong>gs.<br />

On behalf <str<strong>on</strong>g>of</str<strong>on</strong>g> the organiz<strong>in</strong>g committee, we would like to thank all the lectures,<br />

speakers and poster presenters for their c<strong>on</strong>tributi<strong>on</strong>s, participants from<br />

various countries, and the secretaries who worked very hard for the c<strong>on</strong>ference.<br />

The c<strong>on</strong>ference was f<strong>in</strong>ancially supported by <strong>KEK</strong> (directly by the director) and<br />

Sokendai (the Center for the Promoti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Integrated Sciences). We especially<br />

acknowledge the director <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>KEK</strong>, Atsuto Suzuki, who str<strong>on</strong>gly supported the<br />

c<strong>on</strong>ference.<br />

Satoshi Iso <strong>KEK</strong>, Japan<br />

Tohru Takahashi Hiroshima University, Japan<br />

v


C<strong>on</strong>tents<br />

Overview and Tutorial talks<br />

A Recent Development <strong>in</strong> High Field Science (T. Tajima and G. Mourou) 1<br />

The Heisenberg-Schw<strong>in</strong>ger Effect: N<strong>on</strong>perturbative Vacuum Pair Producti<strong>on</strong> (G. Dunne) 7<br />

N<strong>on</strong>l<strong>in</strong>ear QED<br />

QED <strong>in</strong> Ultra-Intense Laser Fields (T. He<strong>in</strong>zl) 14<br />

Str<strong>on</strong>g-Field Effects <strong>in</strong> Beam-Beam Interacti<strong>on</strong> <strong>in</strong> L<strong>in</strong>ear Colliders (K. Yokoya) 19<br />

Sec<strong>on</strong>d Order QED Processes and Their Radiative Correcti<strong>on</strong>s (A. Hart<strong>in</strong>) 23<br />

Heavy-i<strong>on</strong> collisi<strong>on</strong>s and Quark-Glu<strong>on</strong> Plasma<br />

Str<strong>on</strong>g Field Dynamics <strong>in</strong> Heavy I<strong>on</strong> Collisi<strong>on</strong>s (K. Itakura) 26<br />

Yoctosec<strong>on</strong>d phot<strong>on</strong> pulse generati<strong>on</strong> <strong>in</strong> heavy i<strong>on</strong> collisi<strong>on</strong>s (A. Ipp) 32<br />

Fields, Instant<strong>on</strong>s, and Currents (K. Fukushima) 36<br />

Critical Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Charm<strong>on</strong>ium: QCD Sec<strong>on</strong>d Order Stark Effect (K. Morita and S.H. Lee) 40<br />

Unruh radia <strong>on</strong><br />

On the Unruh Effect (R. Schützhold) 44<br />

Can We Detect ″Unruh Radiati<strong>on</strong>″ <strong>in</strong> the High Intensity Lasers? (S. Zhang, et al.) 46<br />

Quantum Fields <strong>in</strong> Accelerated Frames (F. Lenz) 50<br />

Axi<strong>on</strong>-like par cle searches<br />

Sh<strong>in</strong><strong>in</strong>g Light through Walls: en Route towards a New Particle <strong>Physics</strong> Fr<strong>on</strong>tier (A. L<strong>in</strong>dner) 54<br />

Prob<strong>in</strong>g Extremely Light Fields via Res<strong>on</strong>ance Scatter<strong>in</strong>g by Focus<strong>in</strong>g Intense Laser (K. Homma) 59<br />

Schw<strong>in</strong>ger mechanism <strong>in</strong> QGP and c<strong>on</strong>densed ma er<br />

Dynamical View <str<strong>on</strong>g>of</str<strong>on</strong>g> Pair Creati<strong>on</strong> via the Schw<strong>in</strong>ger Mechanism (N. Tanji) 63<br />

Exact Soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Pair Producti<strong>on</strong>s <strong>in</strong> Str<strong>on</strong>g Electric Field with F<strong>in</strong>ite Width (A. Iwazaki) 67<br />

Str<strong>on</strong>g Field <strong>Physics</strong> <strong>in</strong> C<strong>on</strong>densed Matter (T. Oka) 70<br />

N<strong>on</strong>-L<strong>in</strong>ear Charge Transport <strong>in</strong> Plasma under Str<strong>on</strong>g Field (S. Nakamura) 74<br />

Recent developments <strong>in</strong> Schw<strong>in</strong>ger mechanism<br />

Brilliant Hard γ-Producti<strong>on</strong> and e + e – -Creati<strong>on</strong> <strong>in</strong> Vacuum with Ultra-High Laser Fields:<br />

Test<strong>in</strong>g Theoretical Predicti<strong>on</strong>s at ELI-NP (D. Habs, et al.) 78<br />

Numerical Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QED Cascades <strong>in</strong> Intense Laser Fields (N. Elk<strong>in</strong>a and H. Ruhl) 83<br />

Schw<strong>in</strong>ger Limit Atta<strong>in</strong>ability with Extreme Light (S.V. Bulanov, et al.) 88<br />

Pair Creati<strong>on</strong> <strong>in</strong> QED-Str<strong>on</strong>g Pulsed Laser Fields (N. Naumova, et al.) 93<br />

Laser Accelerati<strong>on</strong> up to Black Holes and B-mes<strong>on</strong> Decay (H. Hora, et al.) 97<br />

vii


Recent progress <str<strong>on</strong>g>of</str<strong>on</strong>g> ultra-<strong>in</strong>tense lasers<br />

Present Status <str<strong>on</strong>g>of</str<strong>on</strong>g> Ultra-Intense Lasers and High-Field <strong>Physics</strong> <strong>in</strong> the World (H. Takabe) 101<br />

Reach<strong>in</strong>g the Schw<strong>in</strong>ger Limit with X-Rays (C. K. Rhodes, et al.) 107<br />

Magnetars<br />

N<strong>on</strong>l<strong>in</strong>ear QED Effects by Str<strong>on</strong>g Magnetic Field <strong>in</strong> Astrophysics (K. Kohri) 111<br />

Wide-Band X-ray Observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Magnetars (K. Makishima) 116<br />

QCD Orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Str<strong>on</strong>g Magnetic Fields <strong>in</strong> Compact Stars (T. Tatsumi) 121<br />

New technologies<br />

Recent Progress and Prospects <strong>on</strong> Laser-Plasma Accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Charged Particles (K. Nakajima) 125<br />

Fly<strong>in</strong>g Mirror as a Tool to Access Ultra-High Fields (M. Kando, et al.) 130<br />

Poster presenta <strong>on</strong>s<br />

4-Mirror Laser Stack<strong>in</strong>g Cavity for High Intensity Polarized Phot<strong>on</strong> Generati<strong>on</strong> (T. Akagi, et al.)<br />

Current Status <str<strong>on</strong>g>of</str<strong>on</strong>g> LFEX Laser and Exa-watt Laser C<strong>on</strong>cept at ILE/Osaka (J. Kawanaka, LFEX-Team,<br />

134<br />

EXA-Team, and H. Azechi) 137<br />

X-ray Emissi<strong>on</strong> from Magnetars and Its Physical Interpretati<strong>on</strong> (T. Enoto) 141<br />

The Nielsen-Olesen Instabilities <strong>in</strong> the Glasma (H. Fujii, et al.) 144<br />

First Order Quantum Correcti<strong>on</strong> to the Larmor Radiati<strong>on</strong> (G. Nakamura) 147<br />

Fast Vacuum Decay <strong>in</strong>to Particle Pairs <strong>in</strong> Str<strong>on</strong>g Electric and Magnetic Fields (Y. Hidaka, et al.) 150<br />

N<strong>on</strong>can<strong>on</strong>ical Lie Perturbati<strong>on</strong> Analysis for the Relativistic P<strong>on</strong>deromotive Force (N. Iwata, et al.) 153<br />

Particle Based Integrated Code EPIC3D for Laser-Matter Interacti<strong>on</strong> (Y. Kishimoto) 156<br />

X-Ray Generati<strong>on</strong> via Laser Compt<strong>on</strong> Scatter<strong>in</strong>g by Laser-Accelerated Electr<strong>on</strong> Beam (E.Miura, et al.) 159<br />

Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanometer Scale Beam Size by the Sh<strong>in</strong>take M<strong>on</strong>itor (M. Oroku, et al.) 162<br />

Investigat<strong>in</strong>g the One-Phot<strong>on</strong> Annihilati<strong>on</strong> Channel <strong>in</strong> an e – e + Plasma Created from Vacuum <strong>in</strong><br />

Str<strong>on</strong>g Laser Fields (A.V. Tarakanov, et al.) 165<br />

Accelerator Test Facility (ATF) and Future Prospect (T. Tauchi) 168<br />

Unruh radiati<strong>on</strong> and Interference effect (Y. Yamamoto et al.) 171<br />

Program <str<strong>on</strong>g>of</str<strong>on</strong>g> PIF2010 174<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> participants 178<br />

viii


energy and Ip the i<strong>on</strong>izati<strong>on</strong> potential. A fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

harm<strong>on</strong>ic spectrum is selected to produce pulse durati<strong>on</strong>s<br />

down to 100 as [17, 18] pulses, the shortest be<strong>in</strong>g at 80 as<br />

[19].<br />

If we want to go even shorter, we need to resort to even<br />

higher <strong>in</strong>tensities and leave the n<strong>on</strong>l<strong>in</strong>ear bound electr<strong>on</strong><br />

regime to go <strong>in</strong>to the relativistic regime, which is, for 1 µm<br />

wavelength, greater than 10 18 W/cm 2 . Such <strong>in</strong>tensitesy is<br />

are, today, comm<strong>on</strong>ly available us<strong>in</strong>g Chirped Pulse Amplificati<strong>on</strong><br />

[20] and Optical Parametric Chirped Pulse Amplificati<strong>on</strong><br />

[21] systems.<br />

In the relativistic regime, electr<strong>on</strong>s oscillat<strong>in</strong>g <strong>in</strong> the<br />

laser field become relativistic and change their “mass” dur<strong>in</strong>g<br />

their oscillati<strong>on</strong>s by a factor proporti<strong>on</strong>al to the Lorentz<br />

factor γ, which <strong>in</strong> turn is also proporti<strong>on</strong>al to the normalized<br />

vector potential a0. If a laser pulse can produce this<br />

<strong>in</strong>tensity at a target’s surface, the enormous p<strong>on</strong>deromotive<br />

laser pressure makes the electr<strong>on</strong> critical surface oscillate<br />

<strong>in</strong> and out at relativistic velocity. As a c<strong>on</strong>sequence, the<br />

light imp<strong>in</strong>g<strong>in</strong>g <strong>on</strong> this oscillat<strong>in</strong>g mirror is modulated periodically,<br />

result<strong>in</strong>g <strong>in</strong> high harm<strong>on</strong>ics [22, 23]. Relativistic<br />

High Harm<strong>on</strong>ic Generati<strong>on</strong> gives the prospect <str<strong>on</strong>g>of</str<strong>on</strong>g> a much<br />

broader harm<strong>on</strong>ic spectrum, higher efficiency with no cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

def<strong>in</strong>ed by the plasma frequency [22, 24]. This has been<br />

experimentally verified [25] us<strong>in</strong>g the l<strong>on</strong>g pulse durati<strong>on</strong><br />

(300 fs) <str<strong>on</strong>g>of</str<strong>on</strong>g> the Vulcan laser and observ<strong>in</strong>g the 3200th harm<strong>on</strong>ic<br />

order.<br />

A related scheme was shown based <strong>on</strong> a few-cycle pulse,<br />

focused <strong>on</strong> <strong>on</strong>e λ 2 –this is the so called λ 3 -regime [26]–<br />

the relativistic mirror ceases to be planar and deforms due<br />

to the <strong>in</strong>dentati<strong>on</strong> created by the focused gaussian beam.<br />

As it moves, PIC simulati<strong>on</strong> shows, it simultaneously compresses<br />

the sub-cycle pulses and broadcasts them <strong>in</strong> specific<br />

directi<strong>on</strong>s. This technique provides an elegant possibility<br />

to both compress but also isolate <strong>in</strong>dividual attosec<strong>on</strong>d<br />

pulses. The predicted pulse durati<strong>on</strong> scales like<br />

T = 600(attosec<strong>on</strong>d)/a0. Here a0 is aga<strong>in</strong> the normalized<br />

vector potential, which is about unity at 10 18 W/cm 2<br />

and scales as the square root <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>tensity. For <strong>in</strong>tensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 22 W/cm 2 the compressed pulse could<br />

be <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly a few attosec<strong>on</strong>ds. The same authors<br />

have simulated the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> th<strong>in</strong> sheets <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s<br />

with γ <str<strong>on</strong>g>of</str<strong>on</strong>g> few tens and with attosec<strong>on</strong>d durati<strong>on</strong> [27].<br />

These electr<strong>on</strong> bunches could provide a way to produce,<br />

by coherent Thoms<strong>on</strong> scatter<strong>in</strong>g, efficient beams <str<strong>on</strong>g>of</str<strong>on</strong>g> X-rays<br />

or even γ-rays. A similar c<strong>on</strong>cept called ‘relativistic fly<strong>in</strong>g<br />

mirror’ has been advocated and dem<strong>on</strong>strated [28], us<strong>in</strong>g<br />

a th<strong>in</strong> sheet <str<strong>on</strong>g>of</str<strong>on</strong>g> accelerated electr<strong>on</strong>s. Reflecti<strong>on</strong> from this<br />

relativistic mirror is highly efficient and <strong>in</strong>stills pulse compressi<strong>on</strong>.<br />

COMPRESSION IN THE ULTRA<br />

RELATIVISTIC REGIME<br />

Can we go further <strong>in</strong> time compressi<strong>on</strong>? When <strong>on</strong>e<br />

wishes to go bey<strong>on</strong>d coherent X-rays to gamma rays, the<br />

‘mirror’ that compresses the laser <strong>in</strong>to gamma rays has to<br />

be <str<strong>on</strong>g>of</str<strong>on</strong>g> extremely high density (∼ 10 27 cm −3 ) so that the<br />

laser may be coherently reflected <strong>in</strong>to gamma phot<strong>on</strong>s. We<br />

suggest here that this may be achieved by a comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the relativistically fly<strong>in</strong>g mirror just menti<strong>on</strong>ed above with<br />

the implosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this fly<strong>in</strong>g mirror so that its density may be<br />

enhanced by ten times <strong>in</strong> each dimensi<strong>on</strong> (thus thousandfold<br />

<strong>in</strong> its density). We surmise that this may be achieved<br />

by a large energy pulse (∼ MJ) at the ultra-relativistic (even<br />

i<strong>on</strong>s become relativistically mov<strong>in</strong>g <strong>in</strong> the optical fields) <strong>in</strong>tensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 10 24 W/cm 2 <strong>on</strong> a partial shell <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>cave spherical<br />

target. This ultra-relativistic fly<strong>in</strong>g mirror [29] with<br />

the implod<strong>in</strong>g shell is c<strong>on</strong>ceptually capable <str<strong>on</strong>g>of</str<strong>on</strong>g> coherently<br />

backscatter<strong>in</strong>g an <strong>in</strong>jected 10 keV coherent X-ray pulse like<br />

the <strong>on</strong>e menti<strong>on</strong>ed above [26], produc<strong>in</strong>g a possibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coherent gamma rays <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 ys durati<strong>on</strong>.<br />

In relativistic compressi<strong>on</strong>, the c<strong>on</strong>cept described above<br />

relies <strong>on</strong>ly <strong>on</strong> electr<strong>on</strong>s <strong>in</strong> a th<strong>in</strong> fly<strong>in</strong>g sheet. Unfortunately,<br />

when we try further compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pulse<br />

length, the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s enters the doma<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gamma rays. C<strong>on</strong>sequently, such a fly<strong>in</strong>g or oscillat<strong>in</strong>g<br />

electr<strong>on</strong> mirror at the solid density cannot <strong>in</strong>teract<br />

with gamma rays. However, at or near the <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

10 24 W/cm 2 , i<strong>on</strong>s <strong>in</strong> the laser field can become relativistic.<br />

This characterizes the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> the ultra-relativistic regime.<br />

Below this regime i<strong>on</strong>s resp<strong>on</strong>d to the laser transverse electric<br />

field with harm<strong>on</strong>ic moti<strong>on</strong>. Thus the i<strong>on</strong> moti<strong>on</strong> is<br />

l<strong>in</strong>ear and it cannot directly extract the laser energy. However,<br />

near or above this threshold, i<strong>on</strong>s beg<strong>in</strong> to resp<strong>on</strong>d to<br />

the v × B force, which produces the n<strong>on</strong>l<strong>in</strong>ear thrust force<br />

forward, the ultra-relativistic n<strong>on</strong>l<strong>in</strong>earity. Here new opportunities<br />

for pulse shorten<strong>in</strong>g arise, based <strong>on</strong> the ability<br />

to accelerate real matter (both electr<strong>on</strong>s and i<strong>on</strong>s) to approach<br />

the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light. In turn, it takes significant energy<br />

to move and compress matter <strong>in</strong>to this regime.<br />

We have devised a c<strong>on</strong>figurati<strong>on</strong> <strong>in</strong> which the laser at<br />

the <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 23 − 10 24 W/cm 2 irradiates a th<strong>in</strong> c<strong>on</strong>cave<br />

shell target (30 micr<strong>on</strong> × 30 micr<strong>on</strong> × 100 nm). This<br />

causes a relativistic matter flow (not <strong>on</strong>ly electr<strong>on</strong>s but i<strong>on</strong>s<br />

as well). In this regime electr<strong>on</strong>s are held to the same speed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>s. The relativistically mov<strong>in</strong>g matter driven by a MJ<br />

laser pulse (red) rapidly c<strong>on</strong>verges due to the geometry <strong>in</strong><br />

its transverse dimensi<strong>on</strong>s. The l<strong>on</strong>gitud<strong>in</strong>al compressi<strong>on</strong><br />

occurs typically <strong>in</strong> this ultra-relativistic drive (Esirkepov,<br />

2004). Thus we can achieve typically 10×10×10 compressi<strong>on</strong>.<br />

This is the ‘ultra-relativistic implod<strong>in</strong>g mirror’. The<br />

relativistic Lorentz factor is estimated to be γi ∼ γe ∼ 30.<br />

Simultaneously, the relativistic mirror (<strong>in</strong> the usual relativistic<br />

regime, menti<strong>on</strong>ed earlier) driven by a 10 kJ laser<br />

pulse generates coherent X-rays. We let these X-rays collide<br />

<strong>in</strong>to the collaps<strong>in</strong>g shell. The collaps<strong>in</strong>g shell with a<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s <strong>on</strong> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 27 /cm 3 backscatters<br />

X-rays <strong>in</strong>to gamma rays coherently. If the X-ray energy<br />

is 10 4 eV, we obta<strong>in</strong> coherent gamma rays <strong>on</strong> the order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

4 × 10 7 eV. Such a high energy gamma beam pulse is may<br />

be <strong>on</strong> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> several times 10 ys to 100 ys. In Fig. 1<br />

we plot all these data po<strong>in</strong>ts, start<strong>in</strong>g from the world first<br />

laser by Maiman [3] to what we c<strong>on</strong>sider <strong>in</strong> this secti<strong>on</strong>.


Figure 1: The Pulse Intensity-Durati<strong>on</strong> C<strong>on</strong>jecture is shown. An <strong>in</strong>verse l<strong>in</strong>ear dependence exists between the pulse durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> coherent light emissi<strong>on</strong> and its <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser driver <strong>in</strong> the generati<strong>on</strong> volume over 18 orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude.<br />

These entries encompass different underly<strong>in</strong>g physical regimes, whose n<strong>on</strong>l<strong>in</strong>earities are aris<strong>in</strong>g from molecular, bound<br />

atomic electr<strong>on</strong>, relativistic plasma, and ultra-relativistic, and further eventually from vacuum nature. The blue patches<br />

are from the experiments, while the red from the simulati<strong>on</strong> or theory. This figure is an excerpt from [30].<br />

Remarkably, all these po<strong>in</strong>ts l<strong>in</strong>e up <strong>in</strong> a s<strong>in</strong>gle l<strong>in</strong>e over<br />

some 18 orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude.[30]<br />

As the pulse is compressed to this extremely short durati<strong>on</strong><br />

<strong>in</strong> the forego<strong>in</strong>g scenario, a modest efficiency could<br />

produce sizable n<strong>on</strong>l<strong>in</strong>earities <strong>in</strong> vacuum, although its n<strong>on</strong>l<strong>in</strong>ear<br />

coefficient, n2, is 18 orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude smaller<br />

than that <str<strong>on</strong>g>of</str<strong>on</strong>g> a typical optical transparent medium like glass.<br />

If the critical power <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum is 10 24 W at 1.0 µm, it<br />

will be 6 orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude less for a zeptosec<strong>on</strong>d pulse,<br />

or 10 18 W. Under this c<strong>on</strong>diti<strong>on</strong> the vacuum critical power<br />

could be atta<strong>in</strong>ed with a mere millijoule. It is quite fasc<strong>in</strong>at<strong>in</strong>g<br />

to imag<strong>in</strong>e that a filament <strong>in</strong> vacuum analogous to<br />

those produced <strong>in</strong> air could be produced with an appropriate<br />

setup (such as counter stream<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong>). As <strong>in</strong><br />

air, the filament size would be limited by “vacuum breakdown”<br />

or pair creati<strong>on</strong>, when the <strong>in</strong>tensity would reach<br />

10 29 W/cm 2 corresp<strong>on</strong>d<strong>in</strong>g to a filament <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 −5 cm diameter.<br />

Further compressi<strong>on</strong> could be obta<strong>in</strong>ed with zeptosec<strong>on</strong>d<br />

pulses by self phase modulati<strong>on</strong> <strong>in</strong> vacuum. If we c<strong>on</strong>sider<br />

that the self phase modulati<strong>on</strong> scales like<br />

∆ω<br />

ω<br />

≃ Ln2<br />

c<br />

dI<br />

dt<br />

En<br />

∝ n2<br />

T 2<br />

where ω is the carrier frequency, ∆ω is the self-phase modulati<strong>on</strong><br />

broaden<strong>in</strong>g, n2 the n<strong>on</strong>l<strong>in</strong>ear <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g> refracti<strong>on</strong>, L<br />

the propagati<strong>on</strong> length and En the pulse energy and T the<br />

<strong>in</strong>put pulse durati<strong>on</strong>. It is clear that <strong>in</strong> spite <str<strong>on</strong>g>of</str<strong>on</strong>g> a very small<br />

n2 coefficient, extremely short pulse can produce a sizable<br />

n<strong>on</strong>l<strong>in</strong>ear effect. This c<strong>on</strong>firms what we know already <strong>in</strong><br />

the visible range where we had to wait for picosec<strong>on</strong>d- femtosec<strong>on</strong>d<br />

pulses to produce sizable n<strong>on</strong>l<strong>in</strong>ear effects <strong>in</strong> the<br />

visible like self-phase modulati<strong>on</strong> or Kerr lens mode lock<strong>in</strong>g.<br />

VACUUM NONLINEARITIES<br />

We have learned that: matter exhibits n<strong>on</strong>l<strong>in</strong>earities<br />

when exposed to str<strong>on</strong>g enough laser radiati<strong>on</strong>; manifestly<br />

n<strong>on</strong>l<strong>in</strong>earities vary depend<strong>in</strong>g <strong>on</strong> the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the ‘bend<strong>in</strong>g’<br />

field (and thus the <strong>in</strong>tensity). The str<strong>on</strong>ger we ‘bend’<br />

the c<strong>on</strong>stituent matter, the more rigid the ‘bend<strong>in</strong>g’ force<br />

we need to exert; the more rigid the force is, the higher the<br />

(1)


estor<strong>in</strong>g frequency (or the shorter the time scale) is. The<br />

n<strong>on</strong>l<strong>in</strong>earities <str<strong>on</strong>g>of</str<strong>on</strong>g> matter may vary, but this resp<strong>on</strong>se is universal,<br />

rang<strong>in</strong>g over molecular, atomic, plasma electr<strong>on</strong>ic<br />

and i<strong>on</strong>ic, and even the stiffest <str<strong>on</strong>g>of</str<strong>on</strong>g> all vacuum, n<strong>on</strong>l<strong>in</strong>earities.<br />

Thus, we have traversed nature’s display <str<strong>on</strong>g>of</str<strong>on</strong>g> the universal<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the direct correlati<strong>on</strong> between the brevity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pulse be<strong>in</strong>g generated and the <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> its driv<strong>in</strong>g laser<br />

over the widest <strong>in</strong>tensity range our laboratory has to ever to<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fer.<br />

For example, we know that the laser self-focuses above<br />

the critical power with:<br />

χ3 n<strong>on</strong>l<strong>in</strong>earity<br />

Pcr = λ2/(2πn0n2) ∼ GW (2)<br />

relativistic plasma n<strong>on</strong>l<strong>in</strong>earity<br />

Pcr = mc 5 /e 2 (ω/ωp) 2 ∼ 17(ω/ωp) 2 GW, (3)<br />

vacuum n<strong>on</strong>l<strong>in</strong>earity [2]<br />

Pcr = (90/28)cE 2 Sλ 2 /α ∼ 10 15 (λ/λ1µ) 2 GW, (4)<br />

e.g. X-ray <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 keV, Pcr ∼ 10 PW,<br />

where ES is the Schw<strong>in</strong>ger field, above which the vacuum<br />

becomes sufficiently str<strong>on</strong>gly polarized and divulges electr<strong>on</strong><br />

and positr<strong>on</strong> pairs [31, 32, 33, 34, 35]. If we compare<br />

the critical power <str<strong>on</strong>g>of</str<strong>on</strong>g> self-focus<strong>in</strong>g <strong>in</strong> a gas with the χ3<br />

n<strong>on</strong>l<strong>in</strong>earity with that <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum, we f<strong>in</strong>d that the ratio is<br />

nearly α 6 with no other parameters <strong>in</strong>volved. On the other<br />

hand, the rati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Keldysh power to the Schw<strong>in</strong>ger<br />

power is aga<strong>in</strong> α 6 (i.e. EK/ES = α 3 ). We know that the<br />

Keldysh field is the field to create the potential energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Rydberg energy WB over the Bohr radius aB. On the other<br />

hand, the Schw<strong>in</strong>ger field is to create the potential energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2mc 2 = α −2 WB over the distance <str<strong>on</strong>g>of</str<strong>on</strong>g> the Compt<strong>on</strong> length<br />

αaB. See Fig. 2.<br />

Figure 2: The explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum may be learned from<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> an atom. While the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the atom is <str<strong>on</strong>g>of</str<strong>on</strong>g> aB (the<br />

Bohr radius) and the potential depth is <str<strong>on</strong>g>of</str<strong>on</strong>g> the Rydberg energy<br />

WB, the size and the potential depth that we wish to<br />

explore <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum is <strong>in</strong>dicated here <strong>in</strong> this figure, <strong>on</strong>ly by<br />

a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> the f<strong>in</strong>e structure c<strong>on</strong>stant α to its some power.<br />

We also know that <strong>in</strong> atomic physics, there is the Keldysh<br />

parameter [36] γK whereas the equivalent <strong>in</strong> vacuum is<br />

γV σ = mσωc/eE = 1/a0.(σ = e, or q, electr<strong>on</strong> or quark)<br />

(5)<br />

When the Keldysh parameter is smaller than unity, the<br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong> is n<strong>on</strong>-perturbative;, while greater<br />

than 1, it is multi-phot<strong>on</strong> process [36]. Similarly when<br />

γV σ <strong>in</strong> vacuum is smaller than 1, the vacuum breakdown<br />

is n<strong>on</strong>-pertubative QED, while greater than 1, it is perturbative<br />

[32, 33, 34]. When we <strong>in</strong>ject an XUV phot<strong>on</strong><br />

to an atom to i<strong>on</strong>ize it and we apply a sufficiently <strong>in</strong>tense<br />

CEP-locked laser to accelerate the ejected electr<strong>on</strong>,<br />

we can make attosec<strong>on</strong>d resoluti<strong>on</strong> streak<strong>in</strong>g by the time<str<strong>on</strong>g>of</str<strong>on</strong>g>-flight<br />

detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> [19, 37]. An equivalent<br />

process <strong>in</strong> vacuum is the above menti<strong>on</strong>ed Nikishov/Ritus<br />

process [32], <strong>in</strong> which a gamma phot<strong>on</strong> is <strong>in</strong>jected <strong>in</strong>to vacuum<br />

while a sufficiently str<strong>on</strong>g enough laser (or XUV) EM<br />

fields are applied. Nikishov et al.[32, 33, 34] showed that<br />

the Schw<strong>in</strong>ger vacuum breakdown is many orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude<br />

reduced.<br />

If we take advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> this process, it is c<strong>on</strong>ceivable<br />

to accomplish electr<strong>on</strong>-positr<strong>on</strong> pair creati<strong>on</strong> from vacuum<br />

with a very str<strong>on</strong>g laser field, but still <strong>on</strong>e that is <strong>in</strong> a realistically<br />

achievable <strong>in</strong>tensity regime. With the adopti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this process, we see the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> streak<strong>in</strong>g vacuum<br />

with laser (or XUV coherent phot<strong>on</strong>s) with zeptosec<strong>on</strong>d<br />

time resoluti<strong>on</strong>. This should open up a possibility to start<br />

the explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the time-dependent dynamics (<strong>in</strong> c<strong>on</strong>trast<br />

to the spectroscopy) <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum <strong>in</strong> that regime. If we<br />

become more ambitious, perhaps with higher <strong>in</strong>tensity and<br />

shorter time-scale, we might even be able to resolve the<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks and glu<strong>on</strong>s out <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum.<br />

PROBING THE TEXTURE OF QUANTUM<br />

VACUUM WITH ATTOSECOND<br />

METROLOGY IN THE PEV ENERGY<br />

FRONTIER<br />

As discussed above, we can take advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> the process<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum breakdown with the assistance <str<strong>on</strong>g>of</str<strong>on</strong>g> a highenergy<br />

phot<strong>on</strong> under str<strong>on</strong>g coherent fields, as <strong>in</strong>vestigated<br />

by Nikishov and Ritus some 40 years ago [32]. This is<br />

to use the process that an ultrahigh energy gamma-particle<br />

can assist to break down the vacuum with a substantially<br />

suppressed electric-field threshold compared with the wellknown<br />

Schw<strong>in</strong>ger value. This is the n<strong>on</strong>l<strong>in</strong>ear QED effect.<br />

The probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum breakdown is derived as<br />

[<br />

P (E) ∝ exp − 8<br />

3<br />

ES<br />

E<br />

· mc2<br />

ω<br />

where ES the Schw<strong>in</strong>ger field, ω is the gamma energy,<br />

E is the applied electric field <strong>in</strong> vacuum such as a laser.<br />

With a PeV gamma-ray particle, the exp<strong>on</strong>ent factor <str<strong>on</strong>g>of</str<strong>on</strong>g> (6)<br />

is reduced by the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> MeV to PeV (mc 2 /ω) over<br />

the expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Schw<strong>in</strong>ger’s without the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

]<br />

(6)


Figure 3: The attosec<strong>on</strong>d metrology to detect the arrival<br />

time <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma phot<strong>on</strong>s with<strong>in</strong> such a time scale is suggested.<br />

It utilizes the property <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum explored by the<br />

pi<strong>on</strong>eer<strong>in</strong>g works by Schw<strong>in</strong>ger, Nikishov et al. This approach<br />

closely parallels with that <str<strong>on</strong>g>of</str<strong>on</strong>g> the atom streak<strong>in</strong>g with<br />

a CEP laser with an XUV phot<strong>on</strong> i<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong><br />

from the atom. Here <strong>in</strong>stead <str<strong>on</strong>g>of</str<strong>on</strong>g> an atom, we simply use the<br />

vacuum electr<strong>on</strong>-positr<strong>on</strong> pair.<br />

gamma particle. This means that the vacuum breakdown<br />

field plummets from the value <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 16 V/cm to 10 10 V/cm.<br />

We suggest that by employ<strong>in</strong>g time-synchr<strong>on</strong>ized somewhat<br />

<strong>in</strong>tense laser field (at 10 10 W/cm 2 ) at the “goal l<strong>in</strong>e”<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the gamma-phot<strong>on</strong> arrival (see Fig. 3), we cause sudden<br />

breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum and its avalanched particles <str<strong>on</strong>g>of</str<strong>on</strong>g> e − e +<br />

as so<strong>on</strong> as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the high- energy gamma particles arrives.<br />

The PeV gamma particle triggers the vacuum breakdown.<br />

The time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> breakdown is far faster than fs. The<br />

exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this phenomen<strong>on</strong> should allow an ultrafast<br />

signal <str<strong>on</strong>g>of</str<strong>on</strong>g> the PeV gamma-phot<strong>on</strong> arrival. S<strong>in</strong>ce the trigger<br />

phenomen<strong>on</strong> is exp<strong>on</strong>entially sensitive, we could play<br />

a game <str<strong>on</strong>g>of</str<strong>on</strong>g> adjust<strong>in</strong>g the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser field to see and<br />

differentiate different types <str<strong>on</strong>g>of</str<strong>on</strong>g> trigger phenomenology and<br />

parameters, depend<strong>in</strong>g up<strong>on</strong> the gamma particle energies.<br />

The creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PeV energy gamma particles is a tremendous<br />

challenge. For example, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Suzuki [38] has challenged<br />

us if this may be accomplished with<strong>in</strong> our life time.<br />

Tajima et al. (2011) has ventured and showed to use the<br />

Laser Wakefield Accelerati<strong>on</strong> (LWFA) based <strong>on</strong> a MJ class<br />

laser to reach PeV energy electr<strong>on</strong>s. For the prob<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

quantum vacuum texture such as Ellis has been spearhead<strong>in</strong>g<br />

can be d<strong>on</strong>e with a small number <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s generated<br />

gamma particles. Thus we are relieved from the tough lum<strong>in</strong>osity<br />

requirements. However, we need to test a precise<br />

arrival <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma phot<strong>on</strong>s at the ’goal l<strong>in</strong>e’ [39]. Here we<br />

suggested the exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schw<strong>in</strong>ger-Nikishov process<br />

to see this time resoluti<strong>on</strong>.<br />

CONCLUSIONS<br />

In c<strong>on</strong>clusi<strong>on</strong>, evidences over more than 18 orders <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the Pulse Intensity-Durati<strong>on</strong> C<strong>on</strong>jecture has<br />

been accumulated experimentally and through simulati<strong>on</strong>.<br />

It shows that the pulse durati<strong>on</strong> goes <strong>in</strong>versely with the<br />

<strong>in</strong>tensity from the millisec<strong>on</strong>d to the attosec<strong>on</strong>d and zeptosec<strong>on</strong>d<br />

regimes. Most notably it predicts that the short-<br />

est coherent pulse <strong>in</strong> the zeptosec<strong>on</strong>d-yoctosec<strong>on</strong>d regime<br />

should be produced by the largest laser, like ELI or NIF<br />

and the Megajoule, if they are rec<strong>on</strong>figurated [40] <strong>in</strong>to femtosec<strong>on</strong>d<br />

pulse systems.<br />

This C<strong>on</strong>jecture may prove to be an <strong>in</strong>valuable guide<br />

for future ultra-<strong>in</strong>tense and ultrashort pulse experiments. It<br />

fosters the hope that zeptosec<strong>on</strong>d and perhaps yocto sec<strong>on</strong>d<br />

pulses could be produced us<strong>in</strong>g kJ-MJ systems. It opens up<br />

the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> tak<strong>in</strong>g snap shots <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear reacti<strong>on</strong>s and<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> peek<strong>in</strong>g <strong>in</strong>to the nuclear <strong>in</strong>terior <strong>in</strong> the same way that<br />

Zewail [41] exam<strong>in</strong>ed chemical reacti<strong>on</strong>s or Corkum and<br />

Krausz [42] probed atoms. The other excit<strong>in</strong>g prospect is<br />

the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> study<strong>in</strong>g the n<strong>on</strong>l<strong>in</strong>ear optical properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum. This C<strong>on</strong>jecture <strong>in</strong> short implies:<br />

1. that the shortest coherent pulse will be produced by<br />

the largest laser, like the ELI or NIF and The Megajoule<br />

pump<strong>in</strong>g a femtosec<strong>on</strong>d Ti: Sapphire or an<br />

OPCPA system.<br />

2. that pulses <strong>in</strong> the zeptosec<strong>on</strong>d-yoctosec<strong>on</strong>d may be<br />

produced.<br />

3. that even with modest efficiency, extremely high<br />

power rival<strong>in</strong>g the critical power <strong>in</strong> vacuum may be<br />

produced. It opens up the regime <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum n<strong>on</strong>l<strong>in</strong>earity.<br />

It ties the three dist<strong>in</strong>ct discipl<strong>in</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> science, i.e. ultrafast<br />

science, high- field science, and large-energy laser science<br />

together with a s<strong>in</strong>gle stroke.<br />

We have also discussed an example <str<strong>on</strong>g>of</str<strong>on</strong>g> the PeV energy<br />

fr<strong>on</strong>tier us<strong>in</strong>g the largest energy laser (e.g. NIF) relax<strong>in</strong>g<br />

the requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> lum<strong>in</strong>osity. In this example, LWFA enables<br />

us to reach PeV <strong>in</strong> a manageable, albeit still large<br />

scale, experimental realizati<strong>on</strong> [39]. Here aga<strong>in</strong> we are utiliz<strong>in</strong>g<br />

the str<strong>on</strong>g- field vacuum n<strong>on</strong>l<strong>in</strong>earity to help achieve<br />

ultrafast metrology.<br />

ACKNOWLEDGMENTS<br />

We would like to acknowledge the fruitful discussi<strong>on</strong>s<br />

with S. Bulanov, E. Goulielmakis, T. Esirkepov, M. Kando,<br />

F. Krausz, A. Suzuki, J. Nees, N. Naumova, E. Moses, S.<br />

Iso, K. Itakura and N. Artemiev. T. Tajima was supported<br />

<strong>in</strong> part by the Blaise Pascal Foundati<strong>on</strong> and by DFG Cluster<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Excellence MAP (Munich Centre for Advanced Phot<strong>on</strong>ics).<br />

REFERENCES<br />

[1] http://www.extreme-light-<strong>in</strong>frastructure.eu<br />

[2] G. A. Mourou, T. Tajima, S. V. Bulanov, Optics <strong>in</strong> the relativistic<br />

regime. Rev. Mod. Phys. 78, 309-371 (2006).<br />

[3] T. H. Maiman, Stimulated Optical Radiati<strong>on</strong> <strong>in</strong> Ruby. Nature<br />

187, 493-494 (1960).<br />

[4] R. W. Hellwarth, Advances <strong>in</strong> Quantum Electr<strong>on</strong>ics<br />

(Columbia University Press, New York, 1961).


The Heisenberg-Schw<strong>in</strong>ger effect: N<strong>on</strong>perturbative Vacuum Pair Producti<strong>on</strong><br />

Abstract<br />

Gerald V. Dunne<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, University <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>necticut, Storrs, CT 06269, USA<br />

The Heisenberg-Schw<strong>in</strong>ger effect is the n<strong>on</strong>-perturbative<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-positr<strong>on</strong> pairs when an external<br />

electric field is applied to the quantum electrodynamical<br />

(QED) vacuum. The <strong>in</strong>herent <strong>in</strong>stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum<br />

<strong>in</strong> an electric field was <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the first n<strong>on</strong>-trivial predicti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> QED, but the effect is so weak that it has not<br />

yet been directly observed. However, there are excit<strong>in</strong>g<br />

new developments <strong>in</strong> ultra-high <strong>in</strong>tensity lasers, which may<br />

so<strong>on</strong> br<strong>in</strong>g us to the verge <str<strong>on</strong>g>of</str<strong>on</strong>g> this extreme ultra-relativistic<br />

regime. This necessitates a fresh look at both experimental<br />

and theoretical aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> the Heisenberg-Schw<strong>in</strong>ger effect.<br />

I describe some new theoretical ideas aimed at mak<strong>in</strong>g this<br />

elusive effect observable, by careful shap<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser<br />

pulses.<br />

INTRODUCTION<br />

The experimental observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Heisenberg-<br />

Schw<strong>in</strong>ger effect, the n<strong>on</strong>-perturbative producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electr<strong>on</strong>-positr<strong>on</strong> pairs from vacuum subjected to an electric<br />

field, would open a new w<strong>in</strong>dow <strong>in</strong>to the largely unexplored<br />

regime <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>perturbative quantum field theory, a<br />

regime <strong>in</strong> which we can study matter <strong>in</strong> extreme envir<strong>on</strong>ments<br />

<strong>in</strong> a c<strong>on</strong>trollable way. This has significant implicati<strong>on</strong>s<br />

bey<strong>on</strong>d QED, for example <strong>in</strong> particle physics, plasma<br />

physics and gravitati<strong>on</strong>al physics, as is discussed <strong>in</strong> various<br />

talks at this c<strong>on</strong>ference. It is well known that quantum<br />

vacuum fluctuati<strong>on</strong>s mean that the QED vacuum behaves<br />

like a polarizable medium that modifies classical behavior,<br />

lead<strong>in</strong>g to novel quantum effects [1, 2, 3, 4, 5, 6, 7, 10, 11,<br />

12, 8, 9]. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> these effects, such as the Casimir effect<br />

or the vacuum birefr<strong>in</strong>gence effect, are perturbative and<br />

can be well described by perturbative quantum field theory.<br />

The Heisenberg-Schw<strong>in</strong>ger effect is a n<strong>on</strong>-perturbative effect<br />

that cannot be described by any s<strong>in</strong>gle Feynman diagram;<br />

its essence is a truly n<strong>on</strong>-perturbative process, which<br />

makes it both fasc<strong>in</strong>at<strong>in</strong>g and difficult. The process can be<br />

viewed pictorially as <strong>in</strong> Figure 1: a virtual electr<strong>on</strong>-positr<strong>on</strong><br />

pair <strong>in</strong> vacuum is accelerated apart by an external electric<br />

field, becom<strong>in</strong>g a real asymptotic e + e − pair if they ga<strong>in</strong><br />

the b<strong>in</strong>d<strong>in</strong>g energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 2mc 2 from the external field. This<br />

sets the basic scale at which we might expect this process<br />

to become significant: when the work d<strong>on</strong>e separat<strong>in</strong>g the<br />

pair by a Compt<strong>on</strong> wavelength matches 2mc 2 :<br />

Ec = m2 c 3<br />

e ¯h ≈ 1016 V/cm<br />

Figure 1: Pair producti<strong>on</strong> as the separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a virtual vacuum<br />

dipole pair under the <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> an external electric<br />

field.<br />

Ic = c<br />

8π E 2 c ≈ 4 × 10 29 W/cm 2<br />

Corresp<strong>on</strong>d<strong>in</strong>gly, the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> pair producti<strong>on</strong> is exp<strong>on</strong>entially<br />

suppressed by the Heisenberg-Euler factor<br />

[<br />

PHE ∼ exp − π m2 c3 ]<br />

, (2)<br />

e E ¯h<br />

An analogous estimate for atomic i<strong>on</strong>izati<strong>on</strong> [e.g., for H],<br />

aga<strong>in</strong> us<strong>in</strong>g the approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>stant electric field,<br />

leads to<br />

P hydrogen [<br />

∼ exp − 2<br />

3<br />

m 2 e 5<br />

E ¯h 4<br />

]<br />

(1)<br />

, (3)<br />

sett<strong>in</strong>g the basic scale <str<strong>on</strong>g>of</str<strong>on</strong>g> field strength and <strong>in</strong>tensity near<br />

which we expect to observe n<strong>on</strong>perturbative i<strong>on</strong>izati<strong>on</strong> effects<br />

<strong>in</strong> atomic systems:<br />

E i<strong>on</strong>izati<strong>on</strong><br />

c = m2 e 5<br />

¯h 4<br />

= α3 Ec ≈ 4 × 10 9 V/cm<br />

I i<strong>on</strong>izati<strong>on</strong><br />

c = α 6 Ic ≈ 6 × 10 16 W/cm 2<br />

Indeed, this is close to the scale <str<strong>on</strong>g>of</str<strong>on</strong>g> atomic i<strong>on</strong>izati<strong>on</strong> experiments,<br />

but <strong>in</strong> fact <strong>in</strong>tensities three orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude<br />

lower are rout<strong>in</strong>ely used. This is because the electric<br />

field <strong>in</strong> a laser is not c<strong>on</strong>stant, and careful shap<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the laser pulses makes i<strong>on</strong>izati<strong>on</strong> experiments possible at<br />

much lower <strong>in</strong>tensities. This simple observati<strong>on</strong>, together<br />

with the fact [see, for example, the talks by G. Mourou<br />

and T. Tajima at this c<strong>on</strong>ference] that there are plans at<br />

large laser facilities such as ELI [13], HiPER at Rutherford<br />

Laboratory, the NIF at Livermore, and the XFEL projects<br />

at SLAC and DESY, to approach the 10 25 − 10 26 W/cm 2<br />

<strong>in</strong>tensity regime, motivates us to ask: how critical is the<br />

Schw<strong>in</strong>ger critical field (1)? To answer this questi<strong>on</strong>, we<br />

need to review briefly some QFT formalism.<br />

(4)


THE QED EFFECTIVE ACTION<br />

In quantum field theory, the quantum correcti<strong>on</strong>s to classical<br />

Maxwell electrodynamics are encoded <strong>in</strong> the ”effective<br />

acti<strong>on</strong>” Γ[A] [14, 15]. For example, the polarizati<strong>on</strong><br />

tensor Πµν = δ2Γ c<strong>on</strong>ta<strong>in</strong>s the electric permittivity ϵij<br />

δAµδAν<br />

and the magnetic permeability µij <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum vacuum,<br />

and is obta<strong>in</strong>ed by vary<strong>in</strong>g the effective acti<strong>on</strong> Γ[A] with respect<br />

to the external probe Aµ(x). Γ[A] is def<strong>in</strong>ed <strong>in</strong> terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum-vacuum persistence amplitude<br />

[ ]<br />

i<br />

⟨0out | 0<strong>in</strong>⟩ = exp {Re(Γ) + i Im(Γ)} (5)<br />

¯h<br />

Re(Γ[A]) describes dispersive effects, such as vacuum birefr<strong>in</strong>gence,<br />

while Im(Γ[A]) describes absorptive effects,<br />

such as vacuum pair producti<strong>on</strong>. The imag<strong>in</strong>ary part encodes<br />

the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum par producti<strong>on</strong> as [14]<br />

Pproducti<strong>on</strong> = 1 − |⟨0out | 0<strong>in</strong>⟩| 2<br />

[<br />

= 1 − exp − 2<br />

]<br />

Im Γ<br />

¯h<br />

≈ 2<br />

Im Γ (6)<br />

¯h<br />

From a computati<strong>on</strong>al perspective, the effective acti<strong>on</strong> is<br />

def<strong>in</strong>ed as [14, 15]<br />

Γ[A] = ¯h ln det [iD/ − m] = ¯h tr ln [iD/ − m] . (7)<br />

Here, D/ ≡ γ µ Dµ, where the covariant derivative operator,<br />

Dµ = ∂µ − i e<br />

¯hc Aµ, def<strong>in</strong>es the coupl<strong>in</strong>g between electr<strong>on</strong>s<br />

and the electromagnetic field Aµ. When the gauge field<br />

Aµ is such that the field strength, Fµν = ∂µAν − ∂νAµ, is<br />

c<strong>on</strong>stant, this effective acti<strong>on</strong> was computed exactly [and<br />

n<strong>on</strong>-perturbatively] by Heisenberg and Euler [1]. For ex-<br />

ample, for a c<strong>on</strong>stant electric field E:<br />

Γ HE [E]<br />

Vol4<br />

= −¯h e2 E 2<br />

8π 2<br />

∫ ∞<br />

0<br />

ds m2<br />

e− eE<br />

s2 s<br />

(<br />

cot(s) − 1 s<br />

+<br />

s 3<br />

(8)<br />

The lead<strong>in</strong>g imag<strong>in</strong>ary part comes from the first pole <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cot(s) functi<strong>on</strong>:<br />

Im Γ HE<br />

Vol4<br />

∼ ¯h e2 E 2 [ ]<br />

π m2<br />

exp −<br />

8π3 e E<br />

THE EFFECTIVE ACTION IN<br />

INHOMOGENEOUS BACKGROUND<br />

FIELDS<br />

It is essential to understand how this c<strong>on</strong>stant field result<br />

(9) is modified for more realistic <strong>in</strong>homogeneous fields,<br />

such as those describ<strong>in</strong>g ultra-short pulse focussed lasers.<br />

This is a difficult task, as standard perturbative effective<br />

field theory techniques do not apply. The first step <strong>in</strong><br />

this directi<strong>on</strong> is motivated by a sem<strong>in</strong>al result <str<strong>on</strong>g>of</str<strong>on</strong>g> Keldysh<br />

[16, 17] for the i<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms <strong>in</strong> a m<strong>on</strong>ochromatic<br />

time dependent electric field E(t) = E cos(ωt). This <strong>in</strong>troduces<br />

a new scale to the problem, and Keldysh was able<br />

to compute the i<strong>on</strong>izati<strong>on</strong> probability as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

)<br />

(9)<br />

dimensi<strong>on</strong>less adiabaticity parameter γK, that characterized<br />

the fast [γK ≫ 1] and slow [γK ≪ 1] regimes.<br />

[The Keldysh parameter is related to the standard laser<br />

field strength parameter a0 as a0 = 1/γK.] Remarkably,<br />

Keldysh’s WKB result <strong>in</strong>terpolates smoothly between the<br />

n<strong>on</strong>-perturbative tunnel-i<strong>on</strong>izati<strong>on</strong> regime where γK ≪ 1,<br />

and the perturbative multi-phot<strong>on</strong> regime where γK ≫<br />

1. This formalism was generalized to the Heisenberg-<br />

Schw<strong>in</strong>ger effect <strong>in</strong> QED [18, 19, 20], with an analogous<br />

”adiabaticity parameter”<br />

Ppair prod. ∼<br />

γK ≡ mcω<br />

. (10)<br />

eE<br />

⎧ [<br />

⎨ exp −<br />

⎩<br />

πm2c 3<br />

]<br />

eE¯h , γK ≪ 1<br />

) 2 (11)<br />

2mc /¯hω<br />

, γK ≫ 1<br />

( eE<br />

mω<br />

The γK ≪ 1 regime corresp<strong>on</strong>ds to n<strong>on</strong>perturbative tunnel<strong>in</strong>g,<br />

while γK ≫ 1 is the perturbative multiphot<strong>on</strong><br />

regime. In the perturbative multi-phot<strong>on</strong> regime, this QED<br />

pair producti<strong>on</strong> effect has been observed <strong>in</strong> a beautiful experiment<br />

(E-144) at SLAC [21], <strong>in</strong> which a laser pulse collided<br />

with the (highly relativistic) SLAC electr<strong>on</strong> beam,<br />

lead<strong>in</strong>g to n<strong>on</strong>l<strong>in</strong>ear Compt<strong>on</strong> scatter<strong>in</strong>g <strong>in</strong>volv<strong>in</strong>g 4-5 phot<strong>on</strong>s,<br />

produc<strong>in</strong>g a high energy gamma phot<strong>on</strong> that decays<br />

<strong>in</strong>to an electr<strong>on</strong>-positr<strong>on</strong> pair. By c<strong>on</strong>trast, it is hoped that<br />

<strong>in</strong> future laser facilities it will be possible to probe deep<br />

<strong>in</strong>to the n<strong>on</strong>perturbative regime where γK ≪ 1, to see the<br />

truly n<strong>on</strong>perturbative Heisenberg-Schw<strong>in</strong>ger effect <str<strong>on</strong>g>of</str<strong>on</strong>g> pair<br />

producti<strong>on</strong> directly from vacuum.<br />

The Keldysh approach captures an enormous amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> important physical <strong>in</strong>formati<strong>on</strong>. Various methods have<br />

been developed which can be used to compute the pair producti<strong>on</strong><br />

probability when the background electric field depends<br />

<strong>on</strong> just <strong>on</strong>e coord<strong>in</strong>ate. The problem can be understood<br />

as a <strong>on</strong>e-dimensi<strong>on</strong>al scatter<strong>in</strong>g problem, based <strong>on</strong><br />

Feynman’s <strong>in</strong>terpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong>s as electr<strong>on</strong>s propagat<strong>in</strong>g<br />

backwards <strong>in</strong> time [22]. Then the probability<br />

can be extracted from the reflecti<strong>on</strong> coefficient for<br />

a ”Schröd<strong>in</strong>ger” problem <str<strong>on</strong>g>of</str<strong>on</strong>g> scatter<strong>in</strong>g <strong>in</strong> the time doma<strong>in</strong>.<br />

The reflecti<strong>on</strong> probability can be computed exactly<br />

[numerically], as <strong>in</strong> the quantum k<strong>in</strong>etic approach<br />

[23, 24, 25, 26], or estimated us<strong>in</strong>g semiclassical WKB<br />

arguments [18, 19, 20, 27]. A natural ”<strong>in</strong>verse questi<strong>on</strong>”<br />

arises: can we shape the laser pulses <strong>in</strong> order to enhance<br />

the pair producti<strong>on</strong> effect, or to make it more dist<strong>in</strong>ctive?<br />

PULSE SHAPING EFFECTS FOR<br />

TIME-DEPENDENT FIELDS<br />

C<strong>on</strong>t<strong>in</strong>u<strong>in</strong>g the approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sider<strong>in</strong>g a timedependent<br />

electric field, several recent results suggest that<br />

the peak laser <strong>in</strong>tensity at which appreciable vacuum pair<br />

producti<strong>on</strong> could be observe is <strong>in</strong> the 10 25 − 10 26 W/cm 2<br />

<strong>in</strong>tensity range, which is significant s<strong>in</strong>ce this is the targeted<br />

goal <str<strong>on</strong>g>of</str<strong>on</strong>g> the ELI project, and with<strong>in</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

HiPER facility. An important set <str<strong>on</strong>g>of</str<strong>on</strong>g> ideas [28, 29] is to<br />

comb<strong>in</strong>e multiple pulses, each <str<strong>on</strong>g>of</str<strong>on</strong>g> a lower <strong>in</strong>tensity, and to


take <strong>in</strong>to account the fact that the spatial focuss<strong>in</strong>g regi<strong>on</strong> is<br />

much larger than the scale <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> Compt<strong>on</strong> wavelength.<br />

Quantitative analyses then suggest a critical <strong>in</strong>tensity<br />

3 or 4 orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude below the Schw<strong>in</strong>ger limit<br />

(1). It has also been shown recently [30] that plane wave<br />

fields <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>ite extent, and therefore hav<strong>in</strong>g n<strong>on</strong>trivial shape<br />

dependence, produce <strong>in</strong>terest<strong>in</strong>g and novel effects for vacuum<br />

pair producti<strong>on</strong>.<br />

Dynamically Assisted Schw<strong>in</strong>ger Mechanism<br />

Another related but dist<strong>in</strong>ct idea is the ”dynamically assisted<br />

Schw<strong>in</strong>ger mechanism” [31], <strong>in</strong> which a simple superpositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two time-dependent pulses, <strong>on</strong>e str<strong>on</strong>g but<br />

slow, and the other weak but fast, can lead to a significant<br />

enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> the tunnel<strong>in</strong>g process associated with the<br />

Heisenberg-Schw<strong>in</strong>ger effect. This ”dynamically assisted<br />

Schw<strong>in</strong>ger mechanism” was <strong>in</strong>troduced <strong>in</strong> [31] with fields:<br />

Eslow(t) = E sech 2 (Ωt) ; Efast(t) = ϵ sech 2 (ωt) (12)<br />

with parametric hierarchies: 0 < ϵ ≪ E ≪ Ec, 0 <<br />

Ω ≪ ω ≪ m. Surpris<strong>in</strong>gly, even though both field amplitudes,<br />

E and ϵ, are below the critical field Ec <strong>in</strong> (1), there is<br />

significant enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> the pair producti<strong>on</strong> rate when<br />

the frequencies follow this hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g> scales. The n<strong>on</strong>perturbative<br />

pair producti<strong>on</strong> process that we would associate<br />

with the slow str<strong>on</strong>g field <strong>in</strong>teracts with the perturbative<br />

multiphot<strong>on</strong> pair producti<strong>on</strong> process that we would<br />

associate with the fast weaker field to produce a str<strong>on</strong>ger<br />

impact than each process separately. A specific realizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this idea was proposed recently [32], <strong>in</strong>volv<strong>in</strong>g a<br />

str<strong>on</strong>g, slow optical laser pulse and a weak, fast X-ray<br />

pulse. Particles <strong>in</strong> the Dirac sea can perturbatively absorb<br />

a high-frequency phot<strong>on</strong> from the weak, fast field,<br />

thereby lower<strong>in</strong>g the effective tunnel barrier for the n<strong>on</strong>perturbative<br />

process. This leads to predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> observable<br />

pair-producti<strong>on</strong> yields based <strong>on</strong> current technology.<br />

This dynamically assisted Schw<strong>in</strong>ger mechanism is<br />

closely related to a catalysis mechanism [33], <strong>in</strong> which <strong>on</strong>e<br />

can view the problem as the propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

X-ray probe pulse <strong>in</strong> an <strong>in</strong>tense and effectively c<strong>on</strong>stant<br />

electric field provided by the str<strong>on</strong>ger and slower optical<br />

laser pulse. There is a n<strong>on</strong>-zero absorpti<strong>on</strong> coefficient for<br />

phot<strong>on</strong> propagati<strong>on</strong> <strong>in</strong> such a str<strong>on</strong>g field, and from this <strong>on</strong>e<br />

can deduce the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> pair producti<strong>on</strong>. Technically, this requires<br />

the computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the imag<strong>in</strong>ary part <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong><br />

polarizati<strong>on</strong> tensor <strong>in</strong> an electric field. As the X-ray frequency<br />

approaches the threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> 2m there is a dramatic<br />

exp<strong>on</strong>ential enhancement<br />

{<br />

α<br />

Im(Π) ≈ √ eE exp −<br />

π(π − 2) m2<br />

}<br />

(π − 2) (13)<br />

eE<br />

This exp<strong>on</strong>ential enhancement leads to a w<strong>in</strong>dow <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

opportunity [33] <strong>in</strong> the range <str<strong>on</strong>g>of</str<strong>on</strong>g> laser <strong>in</strong>tensity up to<br />

I ≈ 9 × 10 25 W/cm 2 <strong>in</strong> which this catalyzed Schw<strong>in</strong>ger<br />

mechanism is dramatically enhanced relative to the pure<br />

Heisenberg-Schw<strong>in</strong>ger effect with just the str<strong>on</strong>g optical<br />

laser pulse, without the catalyz<strong>in</strong>g X-ray pulse. This catalysis<br />

mechanism can also be viewed as phot<strong>on</strong>-stimulated<br />

pair-producti<strong>on</strong> [34], realiz<strong>in</strong>g the more general mechanism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>in</strong>duced metastable decay process [35].<br />

Interference effects from sub-cycle temporal<br />

pulse structure<br />

Recently it has become clear that the WKB analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

[18, 19, 20] must be extended to <strong>in</strong>corporate <strong>in</strong>terference<br />

effects when the temporal pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser pulse has subcycle<br />

structure. This <strong>in</strong>terference phenomen<strong>on</strong> is extremely<br />

sensitive to the temporal pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser pulse; for example,<br />

to the carrier phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser pulse, and also to the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> “chirp” <strong>in</strong> the pulse [see below]. The technical<br />

reas<strong>on</strong> is that for such fields, the over-the-barrier scatter<strong>in</strong>g<br />

problem typically has multiple semiclassical saddle po<strong>in</strong>ts<br />

[i.e., sets <str<strong>on</strong>g>of</str<strong>on</strong>g> turn<strong>in</strong>g po<strong>in</strong>ts], and the <strong>in</strong>terference between<br />

different saddle po<strong>in</strong>ts leads directly to oscillatory res<strong>on</strong>ance<br />

behavior <strong>in</strong> the l<strong>on</strong>gitud<strong>in</strong>al momentum spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the produced particles. Such phenomena are familiar from<br />

str<strong>on</strong>g-field atomic and molecular physics, discussed l<strong>on</strong>g<br />

ago <strong>in</strong> the theory <str<strong>on</strong>g>of</str<strong>on</strong>g> atomic i<strong>on</strong>izati<strong>on</strong> [36, 37, 17], and observed<br />

experimentally <strong>in</strong> photoi<strong>on</strong>izati<strong>on</strong> spectra [38, 39].<br />

In the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> QED vacuum pair producti<strong>on</strong>, these <strong>in</strong>terferences<br />

effects were first studied numerically <strong>in</strong> [40],<br />

and given a simple quantitative semiclassical explanati<strong>on</strong><br />

<strong>in</strong> [41] <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the Stokes phenomen<strong>on</strong>: the <strong>in</strong>terference<br />

produced by the patch<strong>in</strong>g together <str<strong>on</strong>g>of</str<strong>on</strong>g> semiclassical approximati<strong>on</strong>s<br />

<strong>in</strong> different regi<strong>on</strong>s. Specifically, for an electric<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> the form<br />

E(t) = E0 cos(ωt + ϕ) exp<br />

(<br />

− t2<br />

2τ 2<br />

)<br />

(14)<br />

<strong>on</strong>e f<strong>in</strong>ds oscillatory behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>on</strong>gitud<strong>in</strong>al electr<strong>on</strong>positr<strong>on</strong><br />

momentum spectrum, which becomes pr<strong>on</strong>ounced<br />

when ωτ ∼ 4 [i.e., when the number <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillati<strong>on</strong>s under<br />

the envelope exceeds 4], and <strong>in</strong> particular when the<br />

carrier phase ϕ approaches π/2. Most dramatically, when<br />

ϕ = π/2 there are values <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>-positr<strong>on</strong> momentum<br />

at which the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> vanishes. The<br />

analytic explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these numerical results lies <strong>in</strong> the<br />

<strong>in</strong>terference between different semiclassical saddle po<strong>in</strong>ts.<br />

With just <strong>on</strong>e dom<strong>in</strong>ant saddle po<strong>in</strong>t [as occurs for a c<strong>on</strong>stant<br />

electric field E(t) = E0, or for an electric field with a<br />

simple s<strong>in</strong>gle-bump structure like E(t) = E0 sech 2 (ωt), or<br />

E(t) = E0/(1 + (ωt) 2 ) 2 ] we have the familiar probability<br />

expressi<strong>on</strong> with exp<strong>on</strong>ential factor <str<strong>on</strong>g>of</str<strong>on</strong>g> the form e −Sc , where<br />

Sc is the classical (Euclidean) acti<strong>on</strong> [27]. With two saddle<br />

po<strong>in</strong>ts <str<strong>on</strong>g>of</str<strong>on</strong>g> comparable amplitude, the expressi<strong>on</strong> generalizes<br />

to [41]<br />

P ≈ e −S(1)<br />

c + e −S(2)<br />

1<br />

c −<br />

± 2 cos(2α) e 2 S(1)<br />

1<br />

c − 2 S(2)<br />

c (15)<br />

where α is an <strong>in</strong>tegral c<strong>on</strong>nect<strong>in</strong>g different saddle po<strong>in</strong>ts,<br />

and characterizes the <strong>in</strong>terference. The ± <strong>in</strong> (15) refers


Figure 2: Turn<strong>in</strong>g po<strong>in</strong>ts <strong>in</strong> the complex t plane for the ”cos<strong>in</strong>e” [left frame] electric field with carrier phase ϕ = 0,<br />

E(t) = E0 cos(ωt) exp ( −t 2 /(2τ 2 ) ) , and for the ”s<strong>in</strong>e” [right frame] electric field with carrier phase ϕ = π/2, E(t) =<br />

E0 s<strong>in</strong>(ωt) exp ( −t 2 /(2τ 2 ) ) . Turn<strong>in</strong>g po<strong>in</strong>ts closest to the real axis tend to dom<strong>in</strong>ate. In the first case there is <strong>on</strong>e dom<strong>in</strong>ant<br />

saddle po<strong>in</strong>t, while <strong>in</strong> the sec<strong>on</strong>d case there are two, and the <strong>in</strong>terference between them leads to oscillatory behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the momentum spectra for electr<strong>on</strong>s and positr<strong>on</strong>s produced by such a laser pulse [41, 42].<br />

to scalar/sp<strong>in</strong>or QED, reflect<strong>in</strong>g the expected opposite sign<br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terference effects <strong>on</strong> quantum statistics,<br />

and expla<strong>in</strong><strong>in</strong>g both qualitatively and quantitatively the numerical<br />

observati<strong>on</strong> <strong>in</strong> [43]. Includ<strong>in</strong>g also a chirp parameter<br />

b, by replac<strong>in</strong>g the cos<strong>in</strong>e factor by cos(b t 2 + ωt + ϕ)<br />

<strong>on</strong>e f<strong>in</strong>ds a dramatic effect <strong>on</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> the momentum<br />

spectrum [44]. Besides their theoretical <strong>in</strong>terest, the<br />

acute sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the momentum spectra to the laser<br />

pulse shape may provide dist<strong>in</strong>ctive experimental signatures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Heisenberg-Schw<strong>in</strong>ger effect, and eventually<br />

could provide sub-cycle pulse resoluti<strong>on</strong> at extremely short<br />

time scales, us<strong>in</strong>g the quantum vacuum fluctuati<strong>on</strong>s. Another<br />

suggesti<strong>on</strong> [40] to use these vacuum <strong>in</strong>terference effects<br />

is an all-optical time-doma<strong>in</strong> analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> the doubleslit<br />

experiment, a detailed experimental proposal for which<br />

is <strong>in</strong> [45].<br />

SPATIAL AND TEMPORAL PULSE<br />

SHAPE EFFECTS<br />

Ideally we would like to be able to compute the imag<strong>in</strong>ary<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> the effective acti<strong>on</strong> Γ[A] for gauge fields<br />

Aµ(⃗x, t) that represent the full spatial and temporal structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a realistic laser pulse c<strong>on</strong>figurati<strong>on</strong>. This is a n<strong>on</strong>trivial<br />

questi<strong>on</strong>, s<strong>in</strong>ce temporal <strong>in</strong>homogeneities tend to enhance<br />

the rate [because it is easier to tunnel through an<br />

oscillat<strong>in</strong>g barrier], while spatial <strong>in</strong>homogeneities tend to<br />

suppress the rate [because the field falls <str<strong>on</strong>g>of</str<strong>on</strong>g>f as the particles<br />

accelerate away from the nucleati<strong>on</strong> po<strong>in</strong>t]. This<br />

raises an <strong>in</strong>terest<strong>in</strong>g questi<strong>on</strong>: how do these compet<strong>in</strong>g effects<br />

play out <strong>in</strong> an ultra-short laser pulse that is tightly<br />

spatially focussed? This is a technically difficult questi<strong>on</strong><br />

to answer, because the c<strong>on</strong>venti<strong>on</strong>al WKB and QKE approaches<br />

have not yet been generalized to higher dimensi<strong>on</strong>s<br />

<strong>in</strong> any computati<strong>on</strong>ally efficient manner. Nevertheless,<br />

several promis<strong>in</strong>g approaches have recently been developed.<br />

Worldl<strong>in</strong>e <strong>in</strong>stant<strong>on</strong> formalism<br />

A natural multi-dimensi<strong>on</strong>al semiclassical approach is<br />

provided by Feynman’s worldl<strong>in</strong>e formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the QED<br />

effective acti<strong>on</strong> [46, 47]. Feynman formulated a firstquantized<br />

form <str<strong>on</strong>g>of</str<strong>on</strong>g> QED, which amounts to represent<strong>in</strong>g<br />

the effective acti<strong>on</strong> as a quantum mechanical path <strong>in</strong>tegral<br />

over closed loops xµ(τ) <strong>in</strong> four dimensi<strong>on</strong>al spacetime,<br />

with the closed loops be<strong>in</strong>g parametrized by the proper<br />

time τ. The propertime parametrizati<strong>on</strong> had been developed<br />

earlier by Fock and Nambu [48], and was also used<br />

by Schw<strong>in</strong>ger, <strong>in</strong> operator form rather than <strong>in</strong> path <strong>in</strong>tegral<br />

form, <strong>in</strong> his landmark QED computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum<br />

pair producti<strong>on</strong> [14]. Feynman’s worldl<strong>in</strong>e path <strong>in</strong>tegral<br />

formalism has s<strong>in</strong>ce been extended significantly, primarily<br />

for applicati<strong>on</strong>s <strong>in</strong> perturbative quantum field theory [47],<br />

build<strong>in</strong>g <strong>on</strong> analogies and motivati<strong>on</strong> from the Polyakov<br />

formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>in</strong>g theory. This rebirth has led to many<br />

beautiful advances <strong>in</strong> our understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> perturbative<br />

scatter<strong>in</strong>g amplitudes, but here I describe an applicati<strong>on</strong> to<br />

n<strong>on</strong>-perturbative processes. For simplicity, c<strong>on</strong>sider scalar<br />

QED. The effective acti<strong>on</strong> for a scalar charged particle<br />

(charge e, mass m) <strong>in</strong> a Euclidean classical gauge background<br />

Aµ(x) is the functi<strong>on</strong>al:<br />

Γ[A] =<br />

∫ ∞<br />

0<br />

× exp<br />

dT<br />

T e−m2 ∫<br />

T<br />

[<br />

−<br />

∫ T<br />

0<br />

dτ<br />

d 4 x (0)<br />

∫<br />

Dx<br />

x(T )=x(0)=x (0)<br />

(<br />

2 ˙x µ<br />

4 + e Aµ<br />

)]<br />

˙xµ<br />

The ma<strong>in</strong> technical difficulty is to compute the quantum<br />

mechanical path <strong>in</strong>tegral, a sum over closed trajectories<br />

<strong>in</strong> four-dimensi<strong>on</strong>al Euclidean space. One approach is a<br />

direct M<strong>on</strong>te Carlo analysis, as has been d<strong>on</strong>e for <strong>on</strong>edimensi<strong>on</strong>al<br />

<strong>in</strong>homogeneities [49]; this is a powerful approach<br />

s<strong>in</strong>ce it does not rely <strong>on</strong> any particular symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the background field, although it is computati<strong>on</strong>ally diffi-


cult to extract the exp<strong>on</strong>entially small pair producti<strong>on</strong> rate.<br />

A more analytic approach is to make a semiclassical approximati<strong>on</strong><br />

to the path <strong>in</strong>tegral, by solv<strong>in</strong>g the classical<br />

equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> [we set 2e = 1 to simplify notati<strong>on</strong>]:<br />

¨xµ = Fµν(x) ˙xν , (µ, ν = 1 . . . 4) . (16)<br />

In this semiclassical approximati<strong>on</strong>, the path <strong>in</strong>tegral<br />

is dom<strong>in</strong>ated by a classical loop called a ”worldl<strong>in</strong>e <strong>in</strong>stant<strong>on</strong>”<br />

[a closed-loop soluti<strong>on</strong> to the classical Euclidean<br />

equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>], together with quantum fluctuati<strong>on</strong>s<br />

about this loop. The dom<strong>in</strong>ant exp<strong>on</strong>ential factor <strong>in</strong> the<br />

imag<strong>in</strong>ary part <str<strong>on</strong>g>of</str<strong>on</strong>g> the effective acti<strong>on</strong> is just<br />

exp (−S[xclassical]) (17)<br />

with the acti<strong>on</strong> evaluated <strong>on</strong> the worldl<strong>in</strong>e <strong>in</strong>stant<strong>on</strong> trajectory.<br />

This idea was first applied to the vacuum pair producti<strong>on</strong><br />

problem for a c<strong>on</strong>stant electric field <strong>in</strong> [50], and<br />

later extended to <strong>in</strong>homogeneous background field c<strong>on</strong>figurati<strong>on</strong>s<br />

[51]. The prefactor c<strong>on</strong>tributi<strong>on</strong>s, which can be<br />

physically significant, are most efficiently computed us<strong>in</strong>g<br />

an analogy [52] to the Gutzwiller trace formula <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>relativistic<br />

quantum mechanics, view<strong>in</strong>g the closed loop as<br />

a closed trajectory <strong>in</strong> phase space. This worldl<strong>in</strong>e <strong>in</strong>stant<strong>on</strong><br />

method is very general; the ma<strong>in</strong> technical challenge<br />

is f<strong>in</strong>d<strong>in</strong>g the closed classical trajectories <strong>in</strong> a given (Euclidean)<br />

background field.<br />

Wigner functi<strong>on</strong> formalism<br />

Given the str<strong>on</strong>g analogies between the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum<br />

pair producti<strong>on</strong> and atomic physics <strong>in</strong> str<strong>on</strong>g laser<br />

fields, and also to various well-known c<strong>on</strong>densed matter<br />

problems such as Landau-Zener tunnel<strong>in</strong>g [53], it is quite<br />

natural to adapt the standard quantum optics approach <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Wigner functi<strong>on</strong> [54] to the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum pair<br />

producti<strong>on</strong>. This method has been developed recently <strong>in</strong><br />

both the real time and light-c<strong>on</strong>e formalisms [55, 56]. The<br />

essential idea is that the Wigner transform <str<strong>on</strong>g>of</str<strong>on</strong>g> the field twopo<strong>in</strong>t<br />

functi<strong>on</strong> c<strong>on</strong>ta<strong>in</strong>s <strong>in</strong>formati<strong>on</strong> about the pair producti<strong>on</strong><br />

process, and the Wigner functi<strong>on</strong> satisfies an equati<strong>on</strong><br />

that generalizes the quantum k<strong>in</strong>etic equati<strong>on</strong> bey<strong>on</strong>d the<br />

<strong>on</strong>e-dimensi<strong>on</strong>al evoluti<strong>on</strong>. For vacuum pair producti<strong>on</strong>,<br />

c<strong>on</strong>sider the vacuum matrix element <str<strong>on</strong>g>of</str<strong>on</strong>g> the equal time density<br />

[<strong>in</strong>clud<strong>in</strong>g the gauge field parallel transport operator<br />

for gauge <strong>in</strong>variance]<br />

C(⃗x, ⃗s, t) = ⟨0|e −ie<br />

∫ 1/2<br />

⃗A(⃗x+λ⃗s,t)·⃗s dλ<br />

−1/2<br />

×[Ψ(⃗x + ⃗s<br />

2 , t), ¯ Ψ(⃗x − ⃗s<br />

, t)] |0⟩ (18)<br />

2<br />

and its Wigner transform<br />

W(⃗x, ⃗p, t) = − 1<br />

∫<br />

2<br />

d 3 s e −i⃗p·⃗s C(⃗x, ⃗s, t) (19)<br />

This Wigner functi<strong>on</strong> approach maps the problem to phase<br />

space, and leads to coupled equati<strong>on</strong>s for the Wigner functi<strong>on</strong>,<br />

provid<strong>in</strong>g a formalism <strong>in</strong> which various semiclassical<br />

approximati<strong>on</strong>s can be explored. It also opens the possibility<br />

for study<strong>in</strong>g n<strong>on</strong>-equilibrium aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> the pair producti<strong>on</strong><br />

process.<br />

CONCLUSIONS<br />

The observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Heisenberg-Schw<strong>in</strong>ger effect<br />

presents a fundamental challenge both theoretically and experimentally.<br />

Theoretically we need new n<strong>on</strong>-perturbative<br />

techniques to provide efficient and precise calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the expected pair producti<strong>on</strong> rate <strong>in</strong> realistic short-pulse focussed<br />

laser fields. The approach must be sufficiently flexible<br />

and powerful to be able to optimize the pulse shape<br />

to maximize the pair producti<strong>on</strong> rate. Other important<br />

theoretical techniques <strong>in</strong>volve <strong>in</strong>tense numerical model<strong>in</strong>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s and trajectories for particles <strong>in</strong> laser fields<br />

[57, 58]. An important recent idea c<strong>on</strong>cerns the possibility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> QED cascade effects, and the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> an upper<br />

limit <strong>on</strong> an atta<strong>in</strong>able electric field. This is a fasc<strong>in</strong>at<strong>in</strong>g,<br />

difficult and fundamental questi<strong>on</strong> that has not yet<br />

been resolved [58, 59, 60, 61]. On the experimental side,<br />

the ma<strong>in</strong> challenges are to obta<strong>in</strong> higher laser <strong>in</strong>tensity, as<br />

close as possible to the critical field limit (1), and to be<br />

able to focus and shape the laser pulse(s) <strong>in</strong> both the space<br />

and time doma<strong>in</strong>. Recent progress at ELI, HiPER and with<br />

XFEL lasers suggests that we may be very close to enter<strong>in</strong>g<br />

this new physical regime <str<strong>on</strong>g>of</str<strong>on</strong>g> ultra-relativistic physics. Bey<strong>on</strong>d<br />

QED, there are fundamental questi<strong>on</strong>s to be answered<br />

c<strong>on</strong>cern<strong>in</strong>g back-reacti<strong>on</strong> effects, the physics bey<strong>on</strong>d the<br />

Schw<strong>in</strong>ger critical field, and c<strong>on</strong>cern<strong>in</strong>g the possible simulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>al effects such as Unruh and Hawk<strong>in</strong>g<br />

radiati<strong>on</strong>, us<strong>in</strong>g the very large electric field accelerati<strong>on</strong> to<br />

mimic str<strong>on</strong>g gravitati<strong>on</strong>al fields. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> these questi<strong>on</strong>s<br />

are directly addressed <strong>in</strong> talks at this c<strong>on</strong>ference.<br />

Acknowledgements: I thank the organizers <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

PIF2010 c<strong>on</strong>ference, especially Satoshi Iso, for organiz<strong>in</strong>g<br />

an excellent meet<strong>in</strong>g. I also thank R. Alk<str<strong>on</strong>g>of</str<strong>on</strong>g>er, C.<br />

Dumlu, H. Gies, F. Hebenstreit, G. Mourou, C. Schubert,<br />

R. Schützhold and T. Tajima for collaborati<strong>on</strong>s and discussi<strong>on</strong>s,<br />

and I acknowledge support from the DOE through<br />

the grant DE-FG02-92ER40716.<br />

REFERENCES<br />

[1] W. Heisenberg and H. Euler, “C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> Dirac’s Theory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Positr<strong>on</strong>s”, Z. Phys. 98, 714 (1936).<br />

[2] G. V. Dunne, “Heisenberg-Euler effective Lagrangians: Basics<br />

and extensi<strong>on</strong>s,” Ian Kogan Memorial Collecti<strong>on</strong>, ’From<br />

Fields to Str<strong>in</strong>gs: Circumnavigat<strong>in</strong>g Theoretical <strong>Physics</strong>’,<br />

M. Shifman et al (ed.), vol. 1, pp 445-522, arXiv:hepth/0406216.<br />

[3] W. Gre<strong>in</strong>er, B. Müller and J. Rafelski, Quantum Electrodynamics<br />

Of Str<strong>on</strong>g Fields, (Spr<strong>in</strong>ger, Berl<strong>in</strong>, 1985).<br />

[4] W. Dittrich and H. Gies, Prob<strong>in</strong>g the quantum vacuum. Perturbative<br />

effective acti<strong>on</strong> approach <strong>in</strong> quantum electrodynamics<br />

and its applicati<strong>on</strong>, Spr<strong>in</strong>ger Tracts Mod. Phys. 166, 1<br />

(2000).


[5] A. R<strong>in</strong>gwald, “Pair producti<strong>on</strong> from vacuum at the focus <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an X-ray free electr<strong>on</strong> laser,” Phys. Lett. B510, 107-116 (2001)<br />

arXiv:hep-ph/0103185; A. R<strong>in</strong>gwald, “Fundamental physics<br />

at an x-ray free electr<strong>on</strong> laser,” talk at Workshop <strong>on</strong> Electromagnetic<br />

Probes <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental <strong>Physics</strong> ”Ettore Majorana”,<br />

Erice, Oct 2001 arXiv:hep-ph/0112254.<br />

[6] Y. I. Salam<strong>in</strong>, S. X. Hu, K. Z. Hatsagortsyan et al., “Relativistic<br />

high-power laser-matter <strong>in</strong>teracti<strong>on</strong>s,” Phys. Rept. 427,<br />

41-155 (2006).<br />

[7] M. Marklund, P. K. Shukla, “N<strong>on</strong>l<strong>in</strong>ear collective effects <strong>in</strong><br />

phot<strong>on</strong>-phot<strong>on</strong> and phot<strong>on</strong>-plasma <strong>in</strong>teracti<strong>on</strong>s,” Rev. Mod.<br />

Phys. 78, 591-640 (2006) arXiv:hep-ph/0602123.<br />

[8] V. G. Bagrov, D. M. Gitman, S. P. Gavrilov and S. M. Shvartsman,<br />

“Creati<strong>on</strong> Of Bos<strong>on</strong> Pairs In A Vacuum,” Izv. Vuz.<br />

Fiz. 3, 71 (1975); D. Gitman and S. Gavrilov, “Quantum<br />

Processes In A Str<strong>on</strong>g Electromagnetic Field. Creat<strong>in</strong>g<br />

Pairs”, Izv. Vuz. Fiz. 1, 94 (1977); S. P. Gavrilov and<br />

D. M. Gitman, “Vacuum <strong>in</strong>stability <strong>in</strong> external fields,” Phys.<br />

Rev. D53, 7162 (1996) arXiv:hep-th/9603152; S. P. Gavrilov<br />

and D. M. Gitman, “One-loop energy-momentum tensor <strong>in</strong><br />

QED with electric-like background,” Phys. Rev. D 78, 045017<br />

(2008) arXiv:0709.1828.<br />

[9] G. Mahajan and T. Padmanabhan, “Particle creati<strong>on</strong>, classicality<br />

and related issues <strong>in</strong> quantum field theory: I. Formalism<br />

and toy models,” Gen. Rel. Grav. 40, 661 (2008)<br />

arXiv:0708.1233; “Particle creati<strong>on</strong>, classicality and related issues<br />

<strong>in</strong> quantum field theory: II. Examples from field theory,”<br />

Gen. Rel. Grav. 40, 709 (2008) arXiv:0708.1237.<br />

[10] G. V. Dunne, “New Str<strong>on</strong>g-Field QED Effects at ELI: N<strong>on</strong>perturbative<br />

Vacuum Pair Producti<strong>on</strong>,” Eur. Phys. J. D55, 327-<br />

340 (2009) arXiv:0812.3163.<br />

[11] R. Ruff<strong>in</strong>i, G. Vereshchag<strong>in</strong>, S. -S. Xue, “Electr<strong>on</strong>-positr<strong>on</strong><br />

pairs <strong>in</strong> physics and astrophysics: from heavy nuclei to black<br />

holes,” Phys. Rept. 487, 1-140 (2010) arXiv:0910.0974.<br />

[12] G. Gregori et al., “A proposal for test<strong>in</strong>g subcritical vacuum<br />

pair producti<strong>on</strong> with high power lasers,” High Energy Dens.<br />

Phys. 6, 166 (2010) arXiv:1005.3280.<br />

[13] The Extreme Light Infrastructure (ELI) project:<br />

http://www.extreme-light-<strong>in</strong>frastructure.eu/eli-home.php<br />

[14] J. Schw<strong>in</strong>ger, “On gauge <strong>in</strong>variance and vacuum polarizati<strong>on</strong>”,<br />

Phys. Rev. 82 (1951) 664.<br />

[15] W. Dittrich and M. Reuter, Effective Lagrangians In Quantum<br />

Electrodynamics, Lect. Notes Phys. 220, 1 (Spr<strong>in</strong>ger,<br />

Berl<strong>in</strong>, 1985).<br />

[16] L. V. Keldysh, “I<strong>on</strong>izati<strong>on</strong> <strong>in</strong> the field <str<strong>on</strong>g>of</str<strong>on</strong>g> a str<strong>on</strong>g electromagnetic<br />

wave”, Sov. Phys. JETP 20, 1307 (1965).<br />

[17] V. S. Popov, “Tunnel and multiphot<strong>on</strong> i<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms<br />

and i<strong>on</strong>s <strong>in</strong> a str<strong>on</strong>g laser field (Keldysh theory)”, Usp. Fiz.<br />

Nauk 174, 921 (2004) [Phys. Usp. 47, 855 (2004)].<br />

[18] E. Bréz<strong>in</strong> and C. Itzyks<strong>on</strong>, “Pair Producti<strong>on</strong> In Vacuum By<br />

An Alternat<strong>in</strong>g Field,” Phys. Rev. D 2, 1191 (1970).<br />

[19] V. S. Popov, “Pair Producti<strong>on</strong> <strong>in</strong> a Variable External Field<br />

(Quasiclassical approximati<strong>on</strong>)”, Sov. Phys. JETP 34, 709<br />

(1972); V. S. Popov, “Imag<strong>in</strong>ary-time method <strong>in</strong> quantum<br />

mechanics and field theory,” Phys. Atom. Nucl. 68, 686-708<br />

(2005).<br />

[20] M. S. Mar<strong>in</strong>ov, V. S. Popov, “Electr<strong>on</strong>-Positr<strong>on</strong> Pair Creati<strong>on</strong><br />

from Vacuum Induced by Variable Electric Field,”<br />

Fortsch. Phys. 25, 373-400 (1977).<br />

[21] D. L. Burke et al., “Positr<strong>on</strong> producti<strong>on</strong> <strong>in</strong> multiphot<strong>on</strong><br />

light-by-light scatter<strong>in</strong>g,” Phys. Rev. Lett. 79, 1626 (1997).<br />

[22] R. P. Feynman, “The theory <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong>s,” Phys. Rev. 76,<br />

749 (1949).<br />

[23] Y. Kluger, J. M. Eisenberg, B. Svetitsky, F. Cooper and<br />

E. Mottola, “Pair producti<strong>on</strong> <strong>in</strong> a str<strong>on</strong>g electric field,” Phys.<br />

Rev. Lett. 67, 2427 (1991); “Fermi<strong>on</strong> Pair Producti<strong>on</strong> In<br />

A Str<strong>on</strong>g Electric Field,” Phys. Rev. D 45, 4659 (1992).<br />

Y. Kluger, E. Mottola and J. M. Eisenberg, “The quantum<br />

Vlasov equati<strong>on</strong> and its Markov limit,” Phys. Rev. D 58,<br />

125015 (1998) arXiv:hep-ph/9803372.<br />

[24] J. Rau, B. Muller, “From reversible quantum microdynamics<br />

to irreversible quantum transport,” Phys. Rept. 272, 1-59<br />

(1996) arXiv:nucl-th/9505009.<br />

[25] S. A. Smolyansky, G. Ropke, S. M. Schmidt et al., “Dynamical<br />

derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a quantum k<strong>in</strong>etic equati<strong>on</strong> for particle producti<strong>on</strong><br />

<strong>in</strong> the Schw<strong>in</strong>ger mechanism,” arXiv:hep-ph/9712377;<br />

S. M. Schmidt, D. Blaschke, G. Ropke et al., “A Quantum k<strong>in</strong>etic<br />

equati<strong>on</strong> for particle producti<strong>on</strong> <strong>in</strong> the Schw<strong>in</strong>ger mechanism,”<br />

Int. J. Mod. Phys. E7, 709-722 (1998). arXiv:hepph/9809227.<br />

[26] C. K. Dumlu, “On the Quantum K<strong>in</strong>etic Approach and the<br />

Scatter<strong>in</strong>g Approach to Vacuum Pair Producti<strong>on</strong>,” Phys. Rev.<br />

D 79, 065027 (2009) arXiv:0901.2972.<br />

[27] S. P. Kim and D. N. Page, “Schw<strong>in</strong>ger pair producti<strong>on</strong> via<br />

<strong>in</strong>stant<strong>on</strong>s <strong>in</strong> a str<strong>on</strong>g electric field,” Phys. Rev. D 65, 105002<br />

(2002) arXiv:hep-th/0005078, “Schw<strong>in</strong>ger pair producti<strong>on</strong> <strong>in</strong><br />

electric and magnetic fields,” Phys. Rev. D 73, 065020 (2006)<br />

arXiv:hep-th/0301132, “Improved approximati<strong>on</strong>s for fermi<strong>on</strong><br />

pair producti<strong>on</strong> <strong>in</strong> <strong>in</strong>homogeneous electric fields,” Phys. Rev.<br />

D 75, 045013 (2007) arXiv:hep-th/0701047.<br />

[28] S. S. Bulanov, N. B. Narozhny, V. D. Mur et al., “On e+<br />

e- pair producti<strong>on</strong> by a focused laser pulse <strong>in</strong> vacuum,” Phys.<br />

Lett. A330, 1-6 (2004) arXiv:hep-ph/0403163.<br />

[29] S. S. Bulanov, V. D. Mur, N. B. Narozhny et al., “Multiple<br />

collid<strong>in</strong>g electromagnetic pulses: a way to lower the threshold<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> e + e − pair producti<strong>on</strong> from vacuum,” Phys. Rev. Lett. 104,<br />

220404 (2010) arXiv:1003.2623.<br />

[30] T. He<strong>in</strong>zl, A. Ildert<strong>on</strong>, M. Marklund, “F<strong>in</strong>ite size effects <strong>in</strong><br />

stimulated laser pair producti<strong>on</strong>,” Phys. Lett. B692, 250-256<br />

(2010) arXiv:1002.4018; “Pair producti<strong>on</strong> <strong>in</strong> laser fields: f<strong>in</strong>ite<br />

size effects,” PoS LC2010, 007 (2010) arXiv:1010.5505.<br />

[31] R. Schutzhold, H. Gies and G. Dunne, “Dynamically assisted<br />

Schw<strong>in</strong>ger mechanism,” Phys. Rev. Lett. 101, 130404<br />

(2008) arXiv:0807.0754.<br />

[32] A. Di Piazza, E. Lotstedt, A. I. Milste<strong>in</strong> et al., “Barrier c<strong>on</strong>trol<br />

<strong>in</strong> tunnel<strong>in</strong>g e+ - e- photoproducti<strong>on</strong>,” Phys. Rev. Lett. 103,<br />

170403 (2009) arXiv:0906.0726<br />

[33] G. V. Dunne, H. Gies, R. Schutzhold, “Catalysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Schw<strong>in</strong>ger Vacuum Pair Producti<strong>on</strong>,” Phys. Rev. D80, 111301<br />

(2009) arXiv:0908.0948.<br />

[34] A. M<strong>on</strong><strong>in</strong>, M. B. Volosh<strong>in</strong>, “Phot<strong>on</strong>-stimulated producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-positr<strong>on</strong> pairs <strong>in</strong> electric field,” Phys. Rev. D81,<br />

025001 (2010) arXiv:0910.4762; “Semiclassical Calculati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Phot<strong>on</strong>-Stimulated Schw<strong>in</strong>ger Pair Creati<strong>on</strong>,” Phys. Rev.<br />

D81, 085014 (2010) arXiv:1001.3354.


[35] M. B. Volosh<strong>in</strong> and K. G. Selivanov, “On Particle Induced<br />

Decay Of Metastable Vacuum,” Sov. J. Nucl. Phys. 44, 868<br />

(1986).<br />

[36] A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “I<strong>on</strong>izati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> atoms <strong>in</strong> an alternat<strong>in</strong>g electric field”, Sov. Phys. JETP<br />

23, 924 (1966).<br />

[37] V. D. Mur, S. V. Popruzhenko and V. S. Popov, “Energy<br />

and momentum spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectr<strong>on</strong>s under c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

i<strong>on</strong>izati<strong>on</strong> by str<strong>on</strong>g laser radiati<strong>on</strong> (The case <str<strong>on</strong>g>of</str<strong>on</strong>g> elliptic polarizati<strong>on</strong>)”,<br />

JETP 92, 777 (2001).<br />

[38] P. Szriftgiser, D. Guéry-Odel<strong>in</strong>, M. Arndt, and J. Dalibard,<br />

“Atomic Wave Diffracti<strong>on</strong> and Interference Us<strong>in</strong>g Temporal<br />

Slits”, Phys. Rev. Lett. 77, 4 (1996).<br />

[39] F. L<strong>in</strong>dner, M. G. Schätzel, H. Walther, A. Baltuska, E.<br />

Goulielmakis, F. Krausz, D. B. Milosevic, D. Bauer, W.<br />

Becker, and G. G. Paulus, “Attosec<strong>on</strong>d Double-Slit Experiment”,<br />

Phys. Rev. Lett. 95, 040401 (2005).<br />

[40] F. Hebenstreit, R. Alk<str<strong>on</strong>g>of</str<strong>on</strong>g>er, G. V. Dunne and H. Gies, “Momentum<br />

signatures for Schw<strong>in</strong>ger pair producti<strong>on</strong> <strong>in</strong> short laser<br />

pulses with sub-cycle structure,” Phys. Rev. Lett. 102, 150404<br />

(2009) arXiv:0901.2631.<br />

[41] C. K. Dumlu and G. V. Dunne, “The Stokes Phenomen<strong>on</strong><br />

and Schw<strong>in</strong>ger Vacuum Pair Producti<strong>on</strong> <strong>in</strong> Time-<br />

Dependent Laser Pulses,” Phys. Rev. Lett. 104, 250402 (2010)<br />

arXiv:1004.2509.<br />

[42] C. K. Dumlu and G. V. Dunne, “Interference Effects <strong>in</strong><br />

Schw<strong>in</strong>ger Vacuum Pair Producti<strong>on</strong> for Time-Dependent Laser<br />

Pulses,” <strong>in</strong> preparati<strong>on</strong>.<br />

[43] F. Hebenstreit, R. Alk<str<strong>on</strong>g>of</str<strong>on</strong>g>er, G. V. Dunne and H. Gies, “Quantum<br />

statistics effect <strong>in</strong> Schw<strong>in</strong>ger pair producti<strong>on</strong> <strong>in</strong> short laser<br />

pulses,” Int. J. Mod. Phys. A 25, 2171 (2010) arXiv:0910.4457.<br />

[44] C. K. Dumlu, “Schw<strong>in</strong>ger Vacuum Pair Producti<strong>on</strong> <strong>in</strong><br />

Chirped Laser Pulses,” Phys. Rev. D 82, 045007 (2010)<br />

arXiv:1006.3882.<br />

[45] B. K<strong>in</strong>g, A. Di Piazza, C. H. Keitel, “A matterless double<br />

slit”, Nature Phot<strong>on</strong>ics 4, 92 (2010); M. Marklund, “Fundamental<br />

optical physics: Prob<strong>in</strong>g the quantum vacuum”, Nature<br />

Phot<strong>on</strong>ics 4, 72 (2010).<br />

[46] R. P. Feynman, “Mathematical formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum<br />

theory <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetic <strong>in</strong>teracti<strong>on</strong>”, Phys. Rev. 80 440,<br />

(1950).<br />

[47] C. Schubert, “Perturbative quantum field theory <strong>in</strong> the<br />

str<strong>in</strong>g-<strong>in</strong>spired formalism,” Phys. Rept. 355, 73 (2001)<br />

arXiv:hep-th/0101036.<br />

[48] V. Fock, “Proper Time In Classical And Quantum Mechanics,”<br />

Phys. Z. Sow. 12, 404 (1937); Y. Nambu, “The Use Of<br />

The Proper Time In Quantum Electrodynamics,” Prog. Theor.<br />

Phys. 5, 82 (1950).<br />

[49] H. Gies, K. Kl<strong>in</strong>gmuller, “Pair producti<strong>on</strong> <strong>in</strong> <strong>in</strong>homogeneous<br />

fields,” Phys. Rev. D72, 065001 (2005). arXiv:hepph/0505099.<br />

[50] I. K. Affleck, O. Alvarez and N. S. Mant<strong>on</strong>, “Pair Producti<strong>on</strong><br />

At Str<strong>on</strong>g Coupl<strong>in</strong>g In Weak External Fields,” Nucl. Phys. B<br />

197, 509 (1982).<br />

[51] G. V. Dunne and C. Schubert, “Worldl<strong>in</strong>e <strong>in</strong>stant<strong>on</strong>s and pair<br />

producti<strong>on</strong> <strong>in</strong> <strong>in</strong>homogeneous fields,” Phys. Rev. D 72, 105004<br />

(2005) arXiv:hep-th/0507174; G. V. Dunne, Q.-h. Wang,<br />

H. Gies and C. Schubert, “Worldl<strong>in</strong>e <strong>in</strong>stant<strong>on</strong>s. II: The fluctuati<strong>on</strong><br />

prefactor,” Phys. Rev. D 73, 065028 (2006) arXiv:hepth/0602176;<br />

G. V. Dunne and Q. h. Wang, “Multidimensi<strong>on</strong>al<br />

Worldl<strong>in</strong>e Instant<strong>on</strong>s,” Phys. Rev. D74, 065015 (2006)<br />

arXiv:hep-th/0608020 .<br />

[52] D. D. Dietrich and G. V. Dunne, “Gutzwiller’s Trace Formula<br />

and Vacuum Pair Producti<strong>on</strong>,” J. Phys. A: Math. Theor.<br />

40, F825-F830, (2007), arXiv:0706.4006.<br />

[53] T. Oka and H. Aoki, “N<strong>on</strong>equilibrium Quantum<br />

Breakdown <strong>in</strong> a Str<strong>on</strong>gly Correlated Electr<strong>on</strong> System”,<br />

arXiv:0803.0422v1, <strong>in</strong> Quantum and Semi-classical Percolati<strong>on</strong><br />

and Breakdown <strong>in</strong> Disordered Solids, Lecture Notes<br />

<strong>in</strong> <strong>Physics</strong>, Vol. 762, A. K. Sen , K. K. Bardhan and B. K.<br />

Chakrabarti (Eds), (Spr<strong>in</strong>ger, 2009).<br />

[54] M. Scully and M. S. Zubairy, Quantum Optics, (Cambridge<br />

University Press, 1997).<br />

[55] F. Hebenstreit, R. Alk<str<strong>on</strong>g>of</str<strong>on</strong>g>er, H. Gies, “Schw<strong>in</strong>ger pair producti<strong>on</strong><br />

<strong>in</strong> space and time-dependent electric fields: Relat<strong>in</strong>g<br />

the Wigner formalism to quantum k<strong>in</strong>etic theory,” Phys. Rev.<br />

D82, 105026 (2010). arXiv:1007.1099.<br />

[56] F. Hebenstreit, A. Ildert<strong>on</strong>, M. Marklund, and J. Zamanian,<br />

“Str<strong>on</strong>g field effects <strong>in</strong> laser pulses: the Wigner formalism,”<br />

arXiv:1011.1923.<br />

[57] M. Ruf, G. R. Mocken, C. Müller, K. Z. Hatsagortsyan,<br />

and C. H. Keitel, “Pair Producti<strong>on</strong> <strong>in</strong> Laser Fields Oscillat<strong>in</strong>g<br />

<strong>in</strong> Space and Time”, Phys. Rev. Lett. 102, 080402 (2009)<br />

arXiv:0810.4047v1.<br />

[58] N. V. Elk<strong>in</strong>a, A. M. Fedotov, I. Y. .Kostyukov, M.V. Legkov,<br />

N.B. Narozhny, E.N. Nerush, and H. Ruhl, “QED cascades<br />

<strong>in</strong>duced by circularly polarized laser fields,” arXiv:1010.4528.<br />

[59] A. R. Bell, J. G. Kirk, “Possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Prolific Pair Producti<strong>on</strong><br />

with High-Power Lasers,” Phys. Rev. Lett. 101, 200403<br />

(2008).<br />

[60] A. M. Fedotov, N. B. Narozhny, G. Mourou and G. Korn,<br />

“Limitati<strong>on</strong>s <strong>on</strong> the atta<strong>in</strong>able <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> high power lasers,”<br />

Phys. Rev. Lett. 105, 080402 (2010) arXiv:1004.5398.<br />

[61] S. S. Bulanov, T. Z. .Esirkepov, A. G. R. Thomas, J. K.<br />

Koga, and S. V. Bulanov, “On the Schw<strong>in</strong>ger limit atta<strong>in</strong>ability<br />

with extreme power lasers,” Phys. Rev. Lett. 105, 220407<br />

(2010) arXiv:1007.4306.


QED IN ULTRA-INTENSE LASER FIELDS ∗<br />

T. He<strong>in</strong>zl † , School <str<strong>on</strong>g>of</str<strong>on</strong>g> Comput<strong>in</strong>g & Mathematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Plymouth, UK<br />

C. Harvey, A. Ildert<strong>on</strong> and M. Marklund, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, Ume˚a University, Sweden<br />

Abstract<br />

We present an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> basic QED processes <strong>in</strong> the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an ultra-<strong>in</strong>tense laser background.<br />

INTRODUCTION<br />

The year 2010 has seen the 50th anniversary <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser.<br />

S<strong>in</strong>ce its <strong>in</strong>cepti<strong>on</strong> it has underg<strong>on</strong>e a very dynamic development<br />

culm<strong>in</strong>at<strong>in</strong>g <strong>in</strong> a multitude <str<strong>on</strong>g>of</str<strong>on</strong>g> everyday applicati<strong>on</strong>s.<br />

From the physics po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> view specificati<strong>on</strong> parameters<br />

have evolved <strong>in</strong> many directi<strong>on</strong>s, for <strong>in</strong>stance towards<br />

the X-ray regime <str<strong>on</strong>g>of</str<strong>on</strong>g> frequency. For the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this c<strong>on</strong>ference<br />

and this talk we are particularly <strong>in</strong>terested <strong>in</strong> ultrahigh<br />

<strong>in</strong>tensities. The historical development <str<strong>on</strong>g>of</str<strong>on</strong>g> these is pictured<br />

<strong>in</strong> Fig. 1 (adapted from [1]) with a notable breakthrough<br />

<strong>in</strong> 1985 due to the implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chirped pulse<br />

amplificati<strong>on</strong> (CPA) [2].<br />

Figure 1: Time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> laser <strong>in</strong>tensity.<br />

The vertical axis <strong>on</strong> the right-hand side measures <strong>in</strong>tensity<br />

I <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the dimensi<strong>on</strong>less laser amplitude<br />

a0 = eEλ<br />

mc 2 ∼ I1/2 , (1)<br />

which is the energy ga<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> (charge e, mass m)<br />

across a laser wavelength λ <strong>in</strong> the r.m.s. field E, <strong>in</strong> units<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its rest energy, mc 2 . Hence, when a0 exceeds unity an<br />

∗ Work supported <strong>in</strong> part by ERC, C<strong>on</strong>tract No. 204059-QPQV.<br />

† the<strong>in</strong>zl@plymouth.ac.uk<br />

electr<strong>on</strong> prob<strong>in</strong>g the laser field will beg<strong>in</strong> to move relativistically.<br />

It is worth po<strong>in</strong>t<strong>in</strong>g out that ultra-<strong>in</strong>tense lasers produce<br />

the largest electromagnetic fields that are currently available<br />

<strong>in</strong> the lab. Of course, the downside is that the fields<br />

are pulsed (i.e. “short-lived”) and alternat<strong>in</strong>g. An overview<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the current magnitudes is given <strong>in</strong> Table 1.<br />

Table 1: Some typical current magnitudes.<br />

Quantity Magnitude<br />

Power P 10 15 W ≡ 1 PW<br />

Intensity I 10 15 W/cm 2<br />

Electric Field E 10 14 V/m<br />

Magnetic Field B 10 10 G<br />

Planned facilities where these magnitudes will be <strong>in</strong>creased<br />

further <strong>in</strong>clude the Vulcan 10 PW project at the<br />

Central Laser Facility <str<strong>on</strong>g>of</str<strong>on</strong>g> Rutherford Lab, UK and the European<br />

Extreme Light Infrastructure where up to 100 PW<br />

are envisaged.<br />

STRONG FIELDS: THEORY<br />

We are <strong>in</strong>terested <strong>in</strong> elementary processes occurr<strong>in</strong>g <strong>in</strong><br />

the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an ultra-<strong>in</strong>tense laser. The appropriate theory<br />

is (a variant <str<strong>on</strong>g>of</str<strong>on</strong>g>) str<strong>on</strong>g-field quantum electrodynamics<br />

(QED) with the laser field be<strong>in</strong>g <strong>in</strong>cluded as an external<br />

background field. The extent to which this theory is under<br />

analytical c<strong>on</strong>trol depends sensitively <strong>on</strong> the model chosen<br />

for the laser beam. The simplest model is an <strong>in</strong>f<strong>in</strong>ite,<br />

m<strong>on</strong>ochromatic plane wave for which transiti<strong>on</strong> amplitudes<br />

can be calculated <strong>in</strong>clud<strong>in</strong>g an analytic evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

appear<strong>in</strong>g oscillatory <strong>in</strong>tegrals [5]. The latter becomes difficult<br />

for pulsed plane waves such that this case presents<br />

more challeng<strong>in</strong>g technical difficulties. While pulsed plane<br />

waves have f<strong>in</strong>ite extent <strong>in</strong> time and l<strong>on</strong>gitud<strong>in</strong>al distance<br />

they are still <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>f<strong>in</strong>ite transverse size. Introduc<strong>in</strong>g a transverse<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile such as for a Gaussian beam certa<strong>in</strong>ly represents<br />

a more realistic model but turns out to be difficult to<br />

implement <strong>in</strong> str<strong>on</strong>g-field QED, the ma<strong>in</strong> reas<strong>on</strong> be<strong>in</strong>g the<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> too many c<strong>on</strong>servati<strong>on</strong> laws al<strong>on</strong>g with translati<strong>on</strong>al<br />

<strong>in</strong>variance. So, for the purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> this talk we will exclusively<br />

be deal<strong>in</strong>g with (<strong>in</strong>f<strong>in</strong>ite or pulsed) plane waves.<br />

From a relativistic field theory po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> view, which we<br />

have to adopt for a0 > 1, plane electromagnetic waves are<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a quite peculiar nature. They are described by a wave<br />

4-vector k that is lightlike or null, i.e. k 2 = 0. The electromagnetic<br />

field strength, F = (E, B), <strong>on</strong>ly depends <strong>on</strong> the<br />

<strong>in</strong>variant phase, k·x = ωt/c−k·x, where ω is the laser fre-


quency measured <strong>in</strong> the lab. By Maxwell’s equati<strong>on</strong>s, fields<br />

are transverse, k ·F = 0, and, most importantly, <strong>in</strong>herits the<br />

null properties from k, E 2 − B 2 = E · B = F 3 = 0. This<br />

implies that there is no <strong>in</strong>tr<strong>in</strong>sic <strong>in</strong>variant scale characteris<strong>in</strong>g<br />

an electromagnetic plane wave field. For this reas<strong>on</strong><br />

<strong>on</strong>e needs an external probe momentum, p, to build <strong>in</strong>variants<br />

such that, for <strong>in</strong>stance, a 2 0 ∼ (p · F) 2 [6].<br />

The ma<strong>in</strong> effect <strong>on</strong> such a probe, say an electr<strong>on</strong>, may<br />

actually be understood <strong>in</strong> classical language. Due to the<br />

Lorentz force the electr<strong>on</strong> will undergo rapid quiver moti<strong>on</strong><br />

as may be seen by solv<strong>in</strong>g for its momentum p(τ) as a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> proper time τ. Averag<strong>in</strong>g over the latter the electr<strong>on</strong><br />

acquires a quasi-momentum, q ≡ 〈p(τ)〉 = p<strong>in</strong> + κ(a 2 0) k,<br />

which displays a l<strong>on</strong>gitud<strong>in</strong>al additi<strong>on</strong> to the <strong>in</strong>itial momentum<br />

weighted with an a0 dependent prefactor. Squar<strong>in</strong>g<br />

this expressi<strong>on</strong> and us<strong>in</strong>g k 2 = 0 <strong>on</strong>e f<strong>in</strong>ds that the electr<strong>on</strong><br />

has become heavier with an effective mass given by<br />

m 2 ∗ = m 2 (1 + a 2 0) . (2)<br />

This fundamental <strong>in</strong>tensity effect has been predicted l<strong>on</strong>g<br />

ago [7, 8], but has apparently never been measured. While<br />

the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass shift may be understood quantum<br />

mechanically it nevertheless has c<strong>on</strong>sequences for the<br />

quantum theory. These are best analysed <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g<br />

field QED. Its <strong>in</strong>gredients are the usual particle c<strong>on</strong>tent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> QED namely phot<strong>on</strong>s and electr<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> arbitrary energy<br />

serv<strong>in</strong>g e.g. as probes for “quantum diagnostics” when they<br />

are coupled to the external laser field. The basic quantum<br />

effect is then a dress<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s via c<strong>on</strong>t<strong>in</strong>uous<br />

emissi<strong>on</strong> and absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> laser phot<strong>on</strong>s. For plane waves<br />

this can be taken <strong>in</strong>to account exactly employ<strong>in</strong>g the celebrated<br />

Volkov soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong> [9]. In terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Feynman diagrams the situati<strong>on</strong> is depicted <strong>in</strong> Fig. 2.<br />

Figure 2: The dressed (Volkov) propagator <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>.<br />

Transiti<strong>on</strong> amplitudes are then c<strong>on</strong>structed <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Volkov electr<strong>on</strong> l<strong>in</strong>es coupled to probe phot<strong>on</strong>s. Laser phot<strong>on</strong>s<br />

are no l<strong>on</strong>ger explicit but hidden <strong>in</strong> the dressed propagator<br />

given by the left-hand side Fig. 2. The ma<strong>in</strong> issues<br />

to be discussed below will be the dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> these amplitudes<br />

<strong>on</strong> <strong>in</strong>tensity (a0) and f<strong>in</strong>ite pulse durati<strong>on</strong>, all <strong>in</strong><br />

a plane wave c<strong>on</strong>text. To give an idea <str<strong>on</strong>g>of</str<strong>on</strong>g> the parameter<br />

range <strong>in</strong>volved we present <strong>in</strong> Fig. 3 a bird’s eye view <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

probe energy vs. <strong>in</strong>tensity regimes. C<strong>on</strong>venti<strong>on</strong>al high energy<br />

physics takes place close to the vertical axis, above the<br />

electr<strong>on</strong> pair creati<strong>on</strong> threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> 2mc 2 . In this regime, a<br />

first excursi<strong>on</strong> <strong>in</strong>to high-field physics has been made by the<br />

SLAC experiment E-144 which utilised 30 GeV phot<strong>on</strong>s<br />

(obta<strong>in</strong>ed via backscatter<strong>in</strong>g from the 50 GeV SLAC electr<strong>on</strong><br />

beam) to produce electr<strong>on</strong> positr<strong>on</strong> pairs <strong>in</strong> collisi<strong>on</strong>s<br />

with a 10 TW (a0 0.4) laser beam [10]. New facilities<br />

such as Vulcan 10 PW or ELI would venture deeply <strong>in</strong> the<br />

high-<strong>in</strong>tensity regi<strong>on</strong> (a0 ≫ 1) and may also come close to<br />

the pair threshold us<strong>in</strong>g Compt<strong>on</strong> backscatter<strong>in</strong>g from sufficiently<br />

energetic electr<strong>on</strong>s. The latter could <strong>in</strong> pr<strong>in</strong>ciple<br />

be the result <str<strong>on</strong>g>of</str<strong>on</strong>g> laser wake field accelerati<strong>on</strong>.<br />

Figure 3: Parameter range <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g field QED.<br />

A basic example <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>ite pulse durati<strong>on</strong> effects is displayed<br />

<strong>in</strong> Fig. 4 which shows the mass shift, ∆m 2 ≡<br />

m 2 ∗ − m 2 , <strong>in</strong> a pulse [11] as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the number N <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cycles per pulse. There is obviously a “switch<strong>in</strong>g <strong>on</strong>” effect<br />

with a sudden <strong>in</strong>crease up<strong>on</strong> c<strong>on</strong>clud<strong>in</strong>g the first cycle after<br />

which the <strong>in</strong>f<strong>in</strong>ite plane wave result (2) is approached. It<br />

should be emphasised that for current ultra-short pulses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a few fs durati<strong>on</strong> the number n is <strong>in</strong>deed <str<strong>on</strong>g>of</str<strong>on</strong>g> order unity.<br />

Figure 4: The mass shift <strong>in</strong> a pulsed plane wave.<br />

STRONG FIELDS: EXAMPLES<br />

N<strong>on</strong>l<strong>in</strong>ear Compt<strong>on</strong> Scatter<strong>in</strong>g (NLC)<br />

The Feynman diagrams for NLC are shown <strong>in</strong> Fig. 5.<br />

Expand<strong>in</strong>g the Volkov l<strong>in</strong>es accord<strong>in</strong>g to Fig. 2 we f<strong>in</strong>d<br />

that <strong>on</strong>e is essentially summ<strong>in</strong>g over all processes <str<strong>on</strong>g>of</str<strong>on</strong>g> the


form e + nγL → e ′ + γ where a phot<strong>on</strong> γ is emitted up<strong>on</strong><br />

absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n laser phot<strong>on</strong>s γL by the <strong>in</strong>com<strong>in</strong>g electr<strong>on</strong>.<br />

Figure 5: Feynman diagrams for NLC.<br />

The process has been analysed <strong>in</strong> [5, 8] where formulae<br />

for cross secti<strong>on</strong>s or emissi<strong>on</strong> rates can be found. The ma<strong>in</strong><br />

features <str<strong>on</strong>g>of</str<strong>on</strong>g> NLC may be summarised as follows. There is<br />

no threshold to overcome which implies that there is a classical<br />

limit (n<strong>on</strong>l<strong>in</strong>ear Thoms<strong>on</strong> scatter<strong>in</strong>g) corresp<strong>on</strong>d<strong>in</strong>g to<br />

ω ≪ mc2 . In the l<strong>in</strong>ear regime (a0 ≪ 1) <strong>on</strong>e f<strong>in</strong>ds the<br />

usual Compt<strong>on</strong> upshift for the emitted phot<strong>on</strong> frequency,<br />

ω ′ 4γ2 eω where γe is the electr<strong>on</strong> gamma factor. This is<br />

nowadays be<strong>in</strong>g exploited for the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>oenergetic<br />

gamma rays <str<strong>on</strong>g>of</str<strong>on</strong>g> high peak brillance [12]. The n<strong>on</strong>l<strong>in</strong>ear<br />

regime (a0 > 1) is characterised by an <strong>in</strong>tensity dependent<br />

cross secti<strong>on</strong>, σ(a0), determ<strong>in</strong><strong>in</strong>g the number <str<strong>on</strong>g>of</str<strong>on</strong>g> produced<br />

phot<strong>on</strong>s, Nγ ∼ σ(a0)NeNγL . This very fact alters<br />

the Compt<strong>on</strong> upshift the maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> which now becomes<br />

ω ′ n,max 4γ 2 enω/(1 + a 2 0) , n = 1, 2, . . . . (3)<br />

In particular, we note the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> higher harm<strong>on</strong>ics<br />

(n > 1) and the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> a 2 0 <strong>in</strong> the denom<strong>in</strong>ator. Thus,<br />

there is a reducti<strong>on</strong> (red-shift) <str<strong>on</strong>g>of</str<strong>on</strong>g> the k<strong>in</strong>ematic Compt<strong>on</strong><br />

edge which for the first harm<strong>on</strong>ic amounts to<br />

ω ′ max 4γ 2 eω −→ 4γ 2 eω/a 2 0 , (a0 ≫ 1) . (4)<br />

Figure 6: Emissi<strong>on</strong> spectrum for NLC.<br />

This redshift w.r.t. l<strong>in</strong>ear Compt<strong>on</strong> scatter<strong>in</strong>g should be a<br />

clear experimental signal and is highlighted <strong>in</strong> Fig. 6 (dis-<br />

play<strong>in</strong>g the γ emissi<strong>on</strong> spectrum) by a red arrow. The<br />

higher harm<strong>on</strong>ics are visible as side bands to the right <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the ma<strong>in</strong> (n = 1) spectral peak [13].<br />

Effects due to f<strong>in</strong>ite transverse pulse extensi<strong>on</strong> are easily<br />

understood qualitatively. The previous situati<strong>on</strong> is typical<br />

for laser beams that are not too str<strong>on</strong>gly focussed such that<br />

the electr<strong>on</strong> beam (radius rb) does not feel the decrease<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tensity <strong>in</strong> transverse directi<strong>on</strong>. Clearly, this requires<br />

rb ≪ w0 with w0 denot<strong>in</strong>g the laser beam waist size (see<br />

Fig. 7, right panel). On the other hand, when the laser beam<br />

is tightly focussed (w0 < rb, Fig. 7, left panel) the electr<strong>on</strong>s<br />

will also probe the boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> the beam which <strong>in</strong><br />

turn will modify the spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 6. It is somewhat unfortunate<br />

that the highly n<strong>on</strong>l<strong>in</strong>ear situati<strong>on</strong> (a0 ≫ 1) corresp<strong>on</strong>ds<br />

to a tight focus. This suggests that the experimental<br />

detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the redshift will require a f<strong>in</strong>e tun<strong>in</strong>g compromise<br />

and <strong>in</strong> particular a very narrow electr<strong>on</strong> beam. For a<br />

detailed study the reader is referred to [14].<br />

Figure 7: Left: Tight laser focus. Right: Wide laser focus.<br />

Laser pair producti<strong>on</strong> (PP)<br />

The str<strong>on</strong>g-field QED Feynman diagram for laser <strong>in</strong>duced<br />

PP is obta<strong>in</strong>ed from the NLC diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 5 via<br />

cross<strong>in</strong>g, i.e. by swapp<strong>in</strong>g the outgo<strong>in</strong>g gamma with the<br />

<strong>in</strong>com<strong>in</strong>g electr<strong>on</strong> which turns <strong>in</strong>to an outgo<strong>in</strong>g positr<strong>on</strong><br />

(Fig. 8).<br />

Figure 8: Feynman diagram for laser PP obta<strong>in</strong>ed from<br />

NLC via cross<strong>in</strong>g.<br />

Expand<strong>in</strong>g the diagram <strong>on</strong> the right-hand side corresp<strong>on</strong>ds<br />

to pair creati<strong>on</strong> stimulated by n laser phot<strong>on</strong>s,<br />

γ + nγL → e + e − . Both processes <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 8 have been<br />

employed <strong>in</strong> the experiment SLAC E-144. First, high energy<br />

gammas (30 GeV) have been obta<strong>in</strong>ed through n<strong>on</strong>l<strong>in</strong>ear<br />

Compt<strong>on</strong> upshift<strong>in</strong>g whereup<strong>on</strong> these were brought<br />

<strong>in</strong>to collisi<strong>on</strong> with the laser aga<strong>in</strong>. The centre-<str<strong>on</strong>g>of</str<strong>on</strong>g>-mass energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the collid<strong>in</strong>g phot<strong>on</strong>s (for the sec<strong>on</strong>d harm<strong>on</strong>ic)<br />

was just about enough to produce pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and


positr<strong>on</strong>s, each <str<strong>on</strong>g>of</str<strong>on</strong>g> effective mass m∗ 1.2 m. A number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> about 10 2 positr<strong>on</strong>s has been reported <strong>in</strong> [15] (see [10]<br />

for a comprehensive overview). In a new theoretical development<br />

this two-step process (NLC + laser PP) has been<br />

reanalysed and led to the predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pair cascades where<br />

the produced charged particles are c<strong>on</strong>t<strong>in</strong>uously be<strong>in</strong>g reaccelerated<br />

emitt<strong>in</strong>g bremsstrahlung that <strong>in</strong> turn produces<br />

more pairs [16].<br />

Figure 9: Laser PP rates for a f<strong>in</strong>ite wave tra<strong>in</strong> (N = 1, 4, 8<br />

from top to bottom).<br />

Pursu<strong>in</strong>g a slightly complementary directi<strong>on</strong> we have recently<br />

<strong>in</strong>vestigated the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>ite pulse durati<strong>on</strong> <strong>on</strong><br />

laser PP us<strong>in</strong>g light-c<strong>on</strong>e field theory [17]. In an <strong>in</strong>f<strong>in</strong>ite<br />

plane wave the triple differential PP rate (w.r.t. l<strong>on</strong>gitud<strong>in</strong>al<br />

and transverse positr<strong>on</strong> momentum, say) is a delta comb<br />

above threshold, with sharp res<strong>on</strong>ance peaks ak<strong>in</strong> to an<br />

ideal <strong>in</strong>terference pattern. One expects this to get washed<br />

out as so<strong>on</strong> as f<strong>in</strong>ite pulse durati<strong>on</strong> becomes noticeable, i.e.<br />

when the number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycle per pulse N = O(1). This is<br />

<strong>in</strong>deed what <strong>on</strong>e f<strong>in</strong>ds as is shown <strong>in</strong> Fig.s 9 and 10. For a<br />

f<strong>in</strong>ite wave tra<strong>in</strong> (sharply cut <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>in</strong> k·x) the maxima rema<strong>in</strong><br />

at the delta comb positi<strong>on</strong>s (vertical l<strong>in</strong>es <strong>in</strong> Fig. 9) while<br />

for a more realistic pulse (smoothly decay<strong>in</strong>g envelope) this<br />

is no l<strong>on</strong>ger true (Fig. 10). Notably, <strong>in</strong> both cases, there is a<br />

signal below the n<strong>on</strong>l<strong>in</strong>ear (m∗) threshold which seems to<br />

be c<strong>on</strong>sistent with Fig. 4 as is the fact that the <strong>in</strong>f<strong>in</strong>ite plane<br />

wave results are recovered when N → ∞. The important<br />

bottom l<strong>in</strong>e here is that the spectra are f<strong>in</strong>gerpr<strong>in</strong>ts <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

pulse shapes which might even be turned <strong>in</strong>to a diagnostic<br />

tool.<br />

Figure 10: Laser PP rates for a smooth pulse (N = 1, 4, 8<br />

from top to bottom).<br />

Vacuum birefr<strong>in</strong>gence<br />

Our f<strong>in</strong>al example addresses an <strong>in</strong>terest<strong>in</strong>g effect due to<br />

external fields below the PP threshold. This possibility<br />

has already been po<strong>in</strong>ted out <strong>in</strong> the early days <str<strong>on</strong>g>of</str<strong>on</strong>g> QED by<br />

Heisenberg and Euler [18]: “...even <strong>in</strong> situati<strong>on</strong>s where the<br />

[phot<strong>on</strong>] energy is not sufficient for matter producti<strong>on</strong>, its<br />

virtual possibility will result <strong>in</strong> a ‘polarisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum’<br />

and hence <strong>in</strong> an alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Maxwells equati<strong>on</strong>s”<br />

(our translati<strong>on</strong>).<br />

In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g-field QED Feynman diagrams the<br />

physics <strong>in</strong>volved may be understood via the optical theorem<br />

(Fig. 11). For the case at hand this states that the total<br />

PP rate is given by the imag<strong>in</strong>ary part <str<strong>on</strong>g>of</str<strong>on</strong>g> the polarisati<strong>on</strong><br />

tensor which, <str<strong>on</strong>g>of</str<strong>on</strong>g> course, is <strong>on</strong>ly n<strong>on</strong>vanish<strong>in</strong>g above threshold.<br />

This appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> an imag<strong>in</strong>ary part corresp<strong>on</strong>ds to<br />

an absorptive process (phot<strong>on</strong>s ‘decay’). Effects below<br />

threshold, <strong>on</strong> the other hand, are dispersive, they modify,<br />

<strong>in</strong> particular, the propagati<strong>on</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s prob<strong>in</strong>g<br />

the external field. One natural expectati<strong>on</strong> is that the probe<br />

phot<strong>on</strong> polarisati<strong>on</strong> might be affected by the preferred di-


ecti<strong>on</strong>(s) associated with the external field. This is <strong>in</strong>deed<br />

what happens.<br />

Figure 11: The optical theorem for laser PP.<br />

Obviously, to study these effects <strong>on</strong>e needs to calculate<br />

the vacuum polarisati<strong>on</strong> tensor <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the relevant<br />

external field (Fig. 11, right-hand side). For slowly<br />

vary<strong>in</strong>g fields this has been achieved l<strong>on</strong>g ago <strong>in</strong> Toll’s thesis<br />

[19] based <strong>on</strong> the Heisenberg-Euler lagrangian [18]. He<br />

has found that there is birefr<strong>in</strong>gence <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum due to<br />

a phase retardati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the probe electric field comp<strong>on</strong>ent<br />

parallel to the background magnetic field comp<strong>on</strong>ent. The<br />

effect is t<strong>in</strong>y (as are the Heisenberg-Euler correcti<strong>on</strong>s to<br />

Maxwell’s equati<strong>on</strong>s) and was l<strong>on</strong>g thought to be out <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reach experimentally [20]. This situati<strong>on</strong> has changed with<br />

the <strong>in</strong>crease <strong>in</strong> laser <strong>in</strong>tensity as discussed <strong>in</strong> [21]. Let us<br />

discuss the physics <strong>in</strong>volved <strong>in</strong> some more detail.<br />

The propagati<strong>on</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> probe phot<strong>on</strong>s are determ<strong>in</strong>ed<br />

by the eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> the polarisati<strong>on</strong> tensor. An<br />

explicit calculati<strong>on</strong> shows that two <str<strong>on</strong>g>of</str<strong>on</strong>g> these are n<strong>on</strong>trivial<br />

imply<strong>in</strong>g birefr<strong>in</strong>gence. The eigenvalues translate <strong>in</strong>to two<br />

different <strong>in</strong>dices <str<strong>on</strong>g>of</str<strong>on</strong>g> refracti<strong>on</strong> which, follow<strong>in</strong>g Toll, may<br />

be written as<br />

n± = 1+ αɛ2 2 2 2<br />

11 ± 3 + O(ɛ ν ) 1 + O(αɛ ) . (5)<br />

45π<br />

There are three small dimensi<strong>on</strong>less parameters <strong>in</strong>volved,<br />

namely (i) the field strength, ɛ ≡ E/ES <strong>in</strong> units <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Sauter-Schw<strong>in</strong>ger critical field, ES = m 2 c 3 /e 1.3 ×<br />

10 18 V/m, (ii) the probe frequency, ν = ω/mc 2 and the<br />

f<strong>in</strong>e structure c<strong>on</strong>stant, α = e 2 /4πc 1/137. The experimental<br />

challenge is to measure the ellipticity acquired<br />

by a l<strong>in</strong>early polarised probe beam travers<strong>in</strong>g the focus <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an ultra-<strong>in</strong>tense beam. As shown <strong>in</strong> [21] the ellipticity <strong>in</strong>creases<br />

with focus size d, <strong>in</strong>tensity ɛ 2 and probe frequency<br />

ν, the latter suggest<strong>in</strong>g the use <str<strong>on</strong>g>of</str<strong>on</strong>g> probe X-rays. Recent advances<br />

<strong>in</strong> X-ray polarimetry [22] imply that it may become<br />

possible to observe the effect with <strong>in</strong>tensities <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 23 ...10 24<br />

W/cm 2 which seem <strong>in</strong> reach for the near future [3, 4].<br />

C<strong>on</strong>clusi<strong>on</strong><br />

The examples analysed <strong>in</strong> this secti<strong>on</strong> should have<br />

shown that an experimental programme dedicated to their<br />

study is feasible. NLC is unique <strong>in</strong> that there are no thresholds<br />

<strong>in</strong> energy or <strong>in</strong>tensity to be overcome, so its study is<br />

just a questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hav<strong>in</strong>g the resources (electr<strong>on</strong> and laser<br />

beams) <strong>in</strong> place. Laser PP and vacuum birefr<strong>in</strong>gence are<br />

more demand<strong>in</strong>g <strong>in</strong> <strong>in</strong>tensity but new facilities are under<br />

way. Hence, it seems we are <strong>on</strong> the verge <str<strong>on</strong>g>of</str<strong>on</strong>g> open<strong>in</strong>g up a<br />

new and excit<strong>in</strong>g <strong>in</strong>terdiscipl<strong>in</strong>ary field <str<strong>on</strong>g>of</str<strong>on</strong>g> physics that may<br />

be called laser particle physics.<br />

It is a pleasure to thank the organisers <str<strong>on</strong>g>of</str<strong>on</strong>g> PIF2010 for<br />

the excellent job they did, <strong>in</strong> particular for creat<strong>in</strong>g such an<br />

excit<strong>in</strong>g c<strong>on</strong>ference atmosphere.<br />

REFERENCES<br />

[1] T. Tajima, G. Mourou, Phys. Rev. ST Accel. Beams 5<br />

(2002) 031301.<br />

[2] A. Strickland and G. Mourou, Opt. Commun. 56 (1985) 212.<br />

[3] www.clf.rl.ac.uk/New+Initiatives/14764.aspx<br />

[4] www.extreme-light-<strong>in</strong>frastructure.eu/<br />

[5] N. B. Narozhnyi, A. Nikishov, and V. Ritus, Zh. Eksp. Teor.<br />

Fiz. 47 (1964) 930. [Sov. Phys. JETP 20, 622 (1965)].<br />

[6] T. He<strong>in</strong>zl, A. Ildert<strong>on</strong>, Opt. Commun. 282 (2009) 1879-<br />

1883.<br />

[7] N. Sengupta, Bull. Math. Soc. (Calcutta) 44 (1952) 175–<br />

180.<br />

[8] L. S. Brown and T. W. B. Kibble, Phys. Rev. 133 (1964)<br />

A705–A719.<br />

[9] D. Volkov, Z. Phys. 94 (1935) 250–260.<br />

[10] C. Bamber, S. J. Boege, T. K<str<strong>on</strong>g>of</str<strong>on</strong>g>fas et al., Phys. Rev. D60<br />

(1999) 092004.<br />

[11] T. W. B. Kibble, A. Salam, J. A. Strathdee, Nucl. Phys. B96<br />

(1975) 255-263.<br />

[12] D. J. Gibs<strong>on</strong>, F. Albert, S. G. Anders<strong>on</strong> et al., Phys. Rev. ST<br />

Accel. Beams 13 (2010) 070703.<br />

[13] C. Harvey, T. He<strong>in</strong>zl, A. Ildert<strong>on</strong>, Phys. Rev. A79 (2009)<br />

063407.<br />

[14] T. He<strong>in</strong>zl, D. Seipt, B. Kämpfer, Phys. Rev. A81 (2010)<br />

022125.<br />

[15] D. L. Burke, R. C. Field, G. Hort<strong>on</strong>-Smith et al., Phys. Rev.<br />

Lett. 79 (1997) 1626-1629.<br />

[16] A. R. Bell, J. G. Kirk, Phys. Rev. Lett. 101 (2008) 200403;<br />

A. M. Fedotov, N. B. Narozhny, G. Mourou et al., Phys.<br />

Rev. Lett. 105 (2010) 080402; I. V. Sokolov, N. M. Naumova,<br />

J. A. Nees et al., Phys. Rev. Lett. 105 (2010)<br />

195005; N. V. Elk<strong>in</strong>a, A. M. Fedotov, I. Y. .Kostyukov et<br />

al., [arXiv:1010.4528 [hep-ph]].<br />

[17] T. He<strong>in</strong>zl, A. Ildert<strong>on</strong>, M. Marklund, Phys. Lett. B692<br />

(2010) 250-256.<br />

[18] W. Heisenberg, H. Euler, Z. Phys. 98 (1936) 714-732. [English<br />

translati<strong>on</strong>: physics/0605038].<br />

[19] J. S. Toll, PhD thesis, Pr<strong>in</strong>cet<strong>on</strong>, unpublished.<br />

[20] E. Brez<strong>in</strong>, C. Itzyks<strong>on</strong>, Phys. Rev. D3 (1971) 618-621.<br />

[21] T. He<strong>in</strong>zl, B. Liesfeld, K. -U. Amthor et al., Opt. Commun.<br />

267 (2006) 318-321.<br />

[22] B. Marx, I. Uschmann, S. Höfer et al., Opt. Commun. 284<br />

(2011) 915-918.


Abstract<br />

Str<strong>on</strong>g-Field Effects <strong>in</strong> Beam-Beam Interacti<strong>on</strong> <strong>in</strong> L<strong>in</strong>ear Colliders<br />

Various types <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-positr<strong>on</strong> l<strong>in</strong>ear colliders are be<strong>in</strong>g<br />

studied <strong>in</strong> the world. In all cases the <strong>in</strong>tense field effects<br />

associated with the beam-beam <strong>in</strong>teracti<strong>on</strong> due to the<br />

tightly focused beams are expected. We summarize the results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the studies.<br />

INTRODUCTION<br />

It was obvious s<strong>in</strong>ce l<strong>on</strong>g ago that the electr<strong>on</strong>-positr<strong>on</strong><br />

collider after LEP had to be a l<strong>in</strong>ear collider rather than<br />

a r<strong>in</strong>g collider. Serious design studies <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>in</strong>ear colliders<br />

started <strong>in</strong> mid 1980’s <strong>in</strong> several laboratories <strong>in</strong> the world.<br />

To reach the required lum<strong>in</strong>osity the beam must be much<br />

more tightly focused than <strong>in</strong> r<strong>in</strong>g colliders. It was so<strong>on</strong> recognized<br />

that the electromagnetic field due to the focused<br />

beam causes various phenomena related to quantum electrodynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tense field.<br />

The first obvious fact was that the phot<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

synchrotr<strong>on</strong> radiati<strong>on</strong> (now called ‘beamstrahlung’) from<br />

the beam field can exceed the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the primary electr<strong>on</strong>s<br />

if the classical formula <str<strong>on</strong>g>of</str<strong>on</strong>g> synchrotr<strong>on</strong> radiati<strong>on</strong> is<br />

used. The full formula <str<strong>on</strong>g>of</str<strong>on</strong>g> Sokolov and Ternov[2] must be<br />

used.<br />

It was also po<strong>in</strong>ted out the beamstrahlung phot<strong>on</strong> can<br />

create electr<strong>on</strong>-positr<strong>on</strong> pairs <strong>in</strong> the str<strong>on</strong>g electromagnetic<br />

field. In the l<strong>in</strong>ear collider community this is ‘called coherent<br />

pair creati<strong>on</strong>’.<br />

The str<strong>on</strong>g field can cause depolarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong><br />

(positr<strong>on</strong>) through the process <str<strong>on</strong>g>of</str<strong>on</strong>g> precessi<strong>on</strong> <strong>in</strong> a field and<br />

sp<strong>in</strong>-flip synchrotr<strong>on</strong> radiati<strong>on</strong>.<br />

Moreover, the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vert<strong>in</strong>g an electr<strong>on</strong>-electr<strong>on</strong><br />

collider <strong>in</strong>to a phot<strong>on</strong>-phot<strong>on</strong> (more <str<strong>on</strong>g>of</str<strong>on</strong>g>ten called gammagamma)<br />

collider was proposed. In this scheme a str<strong>on</strong>g<br />

laser beam is irradiated <strong>on</strong> the electr<strong>on</strong>s to create highenergy<br />

back-scattered phot<strong>on</strong>s. This process also requires<br />

a knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> high-field quantum electro-dynamics. It<br />

turned out that the n<strong>on</strong>l<strong>in</strong>ear effects impose str<strong>on</strong>g limitati<strong>on</strong>s<br />

<strong>on</strong> the electr<strong>on</strong>-phot<strong>on</strong> c<strong>on</strong>versi<strong>on</strong>.<br />

All these are unwanted effects for the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>in</strong>ear<br />

colliders. The theory and simulati<strong>on</strong> had almost been<br />

established by around 1995, although experimental verificati<strong>on</strong>s<br />

are very poor still now. In this report we briefly<br />

summarize what we have d<strong>on</strong>e <strong>in</strong> the past.<br />

For numerical examples <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>in</strong>ear colliders <strong>in</strong> this paper<br />

we quote three future colliders, namely, ILC (<str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><br />

L<strong>in</strong>ear Collider), CLIC (Compact L<strong>in</strong>ear Collider)<br />

and plasma collider. The technologies for these colliders<br />

∗ kaoru.yokoya@kek.jp<br />

Kaoru Yokoya ∗ , <strong>KEK</strong>, Japan<br />

are somewhat different but here we <strong>on</strong>ly need the beam parameters<br />

at the collisi<strong>on</strong> po<strong>in</strong>t. Tab.1 shows typical parameters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these colliders (those related to beam-beam <strong>in</strong>teracti<strong>on</strong><br />

<strong>on</strong>ly). Colliders us<strong>in</strong>g the plasma accelerati<strong>on</strong> technology<br />

are be<strong>in</strong>g plannned as far future projects. Their parameters<br />

are still uncerta<strong>in</strong>. In this table two possible parameter<br />

sets ‘Plasma1’ and ‘Plasma2’ are shown[1].<br />

Table 1: Example Parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>in</strong>ear Colliders<br />

ILC ILC CLIC Plasma1 Plasma2<br />

E CM 0.5 1 3 10 10 TeV<br />

N 2 2 0.37 0.1 0.4 ×10 10<br />

σz 300 300 44 1 1 µm<br />

σx 470 550 40 2 2 nm<br />

σy 3.8 2.7 1 2 2 nm<br />

〈Υ〉 0.063 0.109 5.5 2000 9000<br />

δ B 3.9 5 30 25 50 %<br />

nγ 1.71 1.43 2 2.4 2.1<br />

E CM : center-<str<strong>on</strong>g>of</str<strong>on</strong>g>-mass energy, N : number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles per bunch, σz :<br />

rms bunch length, σx : horiz<strong>on</strong>tal rms beam size, σy : vertical rms beam<br />

size, 〈Υ〉 : field strength parameter, δ B : energy loss by beamstrahlung,<br />

nγ : number <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s per electr<strong>on</strong>.<br />

BEAMSTRAHLUNG<br />

The field strength by the electr<strong>on</strong> (positr<strong>on</strong>) beam at the<br />

collisi<strong>on</strong> po<strong>in</strong>t is approximately given by<br />

Ne<br />

≈<br />

σz × max(σx, σy)<br />

where the symbols are def<strong>in</strong>ed <strong>in</strong> Tab.1. The field ranges<br />

from ∼ 500 Tesla <strong>in</strong> ILC, ∼ 10 4 Tesla <strong>in</strong> CLIC to ∼ 10 6<br />

<strong>in</strong> plasma colliders (better to use magnetic field because<br />

electric field is cancelled between electr<strong>on</strong> and positr<strong>on</strong>).<br />

This is still low compared with the Schw<strong>in</strong>ger field<br />

(1)<br />

BSch = ESch/c = 4.4 × 10 9 Tesla (2)<br />

However, another Lorentz <strong>in</strong>variant quantity can be O(1):<br />

Υ ≡ e<br />

m3 <br />

(p µ Fµν) 2 = 2<br />

3<br />

¯hω C<br />

E<br />

= λeγ 2<br />

ρ<br />

B<br />

= γ , (3)<br />

BSch where pµ is the electr<strong>on</strong> 4-momentum, m the electr<strong>on</strong><br />

rest mass, Fµν the electromagnetic tensor, λe the Compt<strong>on</strong><br />

wavelength, ¯hω C the critical energy <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong>, and<br />

E = γmc 2 the electr<strong>on</strong> energy. This parameter varies<br />

al<strong>on</strong>g the bunch. Its average can be approximately expressed<br />

by the beam parameters as<br />

〈Υ〉 = 5 Nr<br />

6<br />

2 eγ<br />

. (4)<br />

ασz(σx + σy)


This is listed <strong>in</strong> Tab.1. The effect is sizable <strong>in</strong> ILC and is<br />

dom<strong>in</strong>ant <strong>in</strong> colliders above a few TeV.<br />

An example <str<strong>on</strong>g>of</str<strong>on</strong>g> the lum<strong>in</strong>osity spectrum under str<strong>on</strong>g<br />

beamstrahlung is shown <strong>in</strong> Fig.1. It shows an extreme<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> a plasma collider. The peak at low energies comes<br />

from the energy loss by multiple beamstrahlung. The spectrum<br />

for ILC is by far clearly dom<strong>in</strong>ated by the high-energy<br />

peak.<br />

Figure 1: An extreme example <str<strong>on</strong>g>of</str<strong>on</strong>g> lum<strong>in</strong>osity spectrum under<br />

beamstrahlung and coherent pair creati<strong>on</strong>. The parameter<br />

Plasma1 is used.<br />

COHERENT PAIR CREATION<br />

When a high-energy phot<strong>on</strong> (beamstrahlung <strong>in</strong> our case)<br />

travels <strong>in</strong> an <strong>in</strong>tense electromagnetic field, it can decay <strong>in</strong>to<br />

electr<strong>on</strong>-positr<strong>on</strong> pairs. The <strong>on</strong>e that has the same sign <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

charge as the <strong>on</strong>com<strong>in</strong>g beam is defected by a large angle<br />

due to the Coulomb field and causes serious backgrounds<br />

to the detector. The relevant Lorentz <strong>in</strong>variant quantity is<br />

χ ≡ e<br />

m3 <br />

(k µ Fµν) 2 = ω<br />

m<br />

B<br />

B Sch<br />

where kµ is the 4-momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong> and ω its energy.<br />

When Υ is O(1), χ can also be O(1). The beamstrahlung<br />

and coherent pair creati<strong>on</strong> come from the same<br />

diagram seen <strong>in</strong> different channels as shown <strong>in</strong> Fig.2.<br />

The spectrum (energy distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pair particles)<br />

is given by[3]<br />

dW CP<br />

dE+<br />

= α m<br />

√<br />

3π<br />

2<br />

ω2 ∞<br />

η<br />

K1/3(η ′ )dη ′ <br />

E−<br />

+<br />

η = 2<br />

3χ<br />

ω 2<br />

E+E−<br />

+<br />

E+<br />

E+<br />

E−<br />

<br />

(5)<br />

K2/3(η)<br />

<br />

, E− = ω − E+, (6)<br />

where α is the f<strong>in</strong>e structure c<strong>on</strong>stant, E+(E−) the f<strong>in</strong>al<br />

positr<strong>on</strong> (electr<strong>on</strong>) energy, Kν the modified Bessel functi<strong>on</strong>.<br />

This spectrum (normalized to unity) is plotted <strong>in</strong> Fig.3<br />

for various values <str<strong>on</strong>g>of</str<strong>on</strong>g> χ.<br />

Figure 2: Beamstrahlung and Coherent Pair Creati<strong>on</strong>. The<br />

double solid l<strong>in</strong>e <strong>in</strong>dicates electr<strong>on</strong> <strong>in</strong> an external field.<br />

Figure 3: Spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the coherent pair creati<strong>on</strong>.<br />

There is another process, sometimes called ‘trident cascade’,<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> creat<strong>in</strong>g pairs. The virtual phot<strong>on</strong> associated with<br />

an electr<strong>on</strong> can create pairs under a str<strong>on</strong>g field. This process<br />

has been studied <strong>in</strong> early 1970’s[4]. When Υ is very<br />

large (e.g., > 1000), the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this process may<br />

be even larger than the comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> beamstrahlung and<br />

coherent pair creati<strong>on</strong>.<br />

Early studies <strong>on</strong> beamstrahlung and coherent pair creati<strong>on</strong><br />

are reviewed <strong>in</strong>[5].<br />

BEAM-BEAM DEPOLARIZATION<br />

It is relatively easy to obta<strong>in</strong> polarized beams <strong>in</strong> l<strong>in</strong>ear<br />

colliders than <strong>in</strong> r<strong>in</strong>g colliders. The most important<br />

source <str<strong>on</strong>g>of</str<strong>on</strong>g> depolarizati<strong>on</strong> comes from beam-beam <strong>in</strong>teracti<strong>on</strong>.<br />

There are two mechanisms that causes depolarizati<strong>on</strong>,<br />

namely the precessi<strong>on</strong> <strong>in</strong> magnetic field and the sp<strong>in</strong>-flip<br />

synchrotr<strong>on</strong> radiati<strong>on</strong>. Both <str<strong>on</strong>g>of</str<strong>on</strong>g> these processes are wellknown<br />

except the correcti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the precessi<strong>on</strong> formula under<br />

str<strong>on</strong>g field.<br />

The relevant terms <strong>in</strong> the Thomas-BMT equati<strong>on</strong> is<br />

dS<br />

dt<br />

= e<br />

mγ (γa + 1)B T × S (7)<br />

where S is the sp<strong>in</strong> vector (<strong>in</strong> the rest frame), B T the transverse<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field and a the coefficient<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the anomalous magnetic moment.


At high field a is nol<strong>on</strong>ger a c<strong>on</strong>stant (a ≈ α/2π) but is<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Υ [6]:<br />

∞<br />

a(Υ) 2 xdx<br />

=<br />

a(0) Υ 0 (1 + x) 3<br />

∞ <br />

x<br />

s<strong>in</strong> t +<br />

0 Υ<br />

t3<br />

<br />

dt (8)<br />

3<br />

= 1+12Υ 2<br />

<br />

log 1 1 37<br />

+ log 3−<br />

Υ 2 12 +γ <br />

, (Υ ≪ 1)<br />

E<br />

This is plotted <strong>in</strong> Fig.4. S<strong>in</strong>ce the depolarizati<strong>on</strong> is propor-<br />

Figure 4: Anomalous magnetic moment <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Υ.<br />

ti<strong>on</strong>al to a 2 , this correcti<strong>on</strong> already gives a sizable (welcome)<br />

effect <strong>in</strong> ILC at 1TeV, and str<strong>on</strong>gly suppresses the<br />

depolarizati<strong>on</strong> by precessi<strong>on</strong> <strong>in</strong> CLIC at 3TeV. The total<br />

depolarizati<strong>on</strong> through beam-beam <strong>in</strong>teracti<strong>on</strong> is a fracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> percent <strong>in</strong> ILC and several percent <strong>in</strong> CLIC.<br />

The equati<strong>on</strong> (8) has not been experimentally c<strong>on</strong>firmed<br />

<strong>in</strong> spite the magnetic moments <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> and mu<strong>on</strong> at low<br />

field are known extremely accurately. It is quite uncerta<strong>in</strong><br />

whether it can be measured <strong>in</strong> the l<strong>in</strong>ear collider envior<strong>on</strong>ment<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> beam-beam <strong>in</strong>teracti<strong>on</strong>.<br />

GAMMA-GAMMA COLLIDER<br />

As is shown <strong>in</strong> Fig.5, An electr<strong>on</strong>-positr<strong>on</strong> collider (<strong>in</strong><br />

electr<strong>on</strong>-electr<strong>on</strong> mode) can be c<strong>on</strong>verted to a gammagamma<br />

collider by irradiat<strong>in</strong>g a laser just before the collisi<strong>on</strong><br />

po<strong>in</strong>t (less than 1cm) to get high energy backscattered<br />

phot<strong>on</strong>s. The comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gitud<strong>in</strong>ally polarized electr<strong>on</strong><br />

and circularly polarized laser can create phot<strong>on</strong>s with<br />

small energy spread.<br />

§¨©<br />

¡ ¢£¤¥¦ ¡ ¢£¤¥¦<br />

<br />

Figure 5: Gamma-Gamma collider scheme<br />

<br />

There are three Lorentz <strong>in</strong>variant quantities made from<br />

the 4-momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> pµ and the field tensor Fµν <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

laser (assume plane wave, wave number kµ): 1<br />

am<strong>on</strong>g which there is a relati<strong>on</strong><br />

Υ = e<br />

m3 <br />

(p µ Fµν) 2 (9)<br />

Λ =<br />

2k · p<br />

m2 ξ =<br />

(10)<br />

e <br />

−A µ<br />

Aµ<br />

m<br />

(11)<br />

2Υ = ξΛ. (12)<br />

(Aµ is the vector potential but ξ can be written <strong>in</strong> gauge<br />

<strong>in</strong>variant form by us<strong>in</strong>g eq(12).)<br />

The 2-dimensi<strong>on</strong>al parameter plane <str<strong>on</strong>g>of</str<strong>on</strong>g> Υ, ξ and Λ is<br />

shown <strong>in</strong> Fig.6. 2 Λ is the parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the center-<str<strong>on</strong>g>of</str<strong>on</strong>g>-mass<br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the Compt<strong>on</strong> scatter<strong>in</strong>g and is a good parameter<br />

<strong>in</strong> the regi<strong>on</strong> ξ ≪ 1, whereas Υ is better <strong>in</strong> the regi<strong>on</strong><br />

ξ ≫ 1 to describe str<strong>on</strong>g fields.<br />

Figure 6: Parameter plane <str<strong>on</strong>g>of</str<strong>on</strong>g> laser-electr<strong>on</strong> <strong>in</strong>teracti<strong>on</strong><br />

For gamma-gamma colliders large values <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ (short<br />

laser wavelength) is preferred for obta<strong>in</strong><strong>in</strong>g higher energy<br />

phot<strong>on</strong>s from the given electr<strong>on</strong> energy. However, if Λ<br />

is too large, the produced phot<strong>on</strong>s decay <strong>in</strong>to e + e − pairs<br />

<strong>in</strong> the same laser field. For this reas<strong>on</strong>, we usually adopt<br />

Λ < 2 + 2 √ 2 = 4.83.<br />

A str<strong>on</strong>ger laser (larger ξ) is preferred for obta<strong>in</strong><strong>in</strong>g more<br />

phot<strong>on</strong>s but, when ξ is too large, n<strong>on</strong>-l<strong>in</strong>ear QED effects<br />

degrades the energy spectrum and polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> produced<br />

phot<strong>on</strong>s. Normally we choose ξ 2 < 0.5. Thus, the regi<strong>on</strong><br />

near the center <str<strong>on</strong>g>of</str<strong>on</strong>g> diagram <strong>in</strong> Fig.6 is chosen.<br />

Fig.7 is an (old) example <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s for a<br />

gamma-gamma collider. The parameters are : the electr<strong>on</strong><br />

energy Ee = 250GeV, laser wavelength 1µm (corresp<strong>on</strong>d<strong>in</strong>g<br />

to Λ = 4.8), ξ 2 = 0.4. The lower (green) curve shows<br />

1 Laser physicists denote ξ by a and accelerator physicists by K. Λ is<br />

more <str<strong>on</strong>g>of</str<strong>on</strong>g>ten denoted by x.<br />

2 Beamstrahlung is not a radiati<strong>on</strong> <strong>in</strong> periodic field but is added<br />

<strong>in</strong> the diagram for comparis<strong>on</strong> by identify<strong>in</strong>g the bunch length as<br />

wavelength/(2π).


the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s from primary electr<strong>on</strong>s and the upper<br />

(red) curve shows all the phot<strong>on</strong>s <strong>in</strong>clud<strong>in</strong>g those from<br />

repeated Compt<strong>on</strong> scatter<strong>in</strong>g. The parameters are chosen<br />

so that the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> scatter<strong>in</strong>g for an electr<strong>on</strong><br />

is about 1 to get high γ-γ lum<strong>in</strong>osity. Hence multiple<br />

scatter<strong>in</strong>g is <strong>in</strong>evitable, produc<strong>in</strong>g low energy electr<strong>on</strong>s<br />

which causes background.<br />

Figure 7: An example <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> spectrum created by laser-<br />

Compt<strong>on</strong> scatter<strong>in</strong>g for a gamma-gamma collider<br />

The simple Compt<strong>on</strong> scatter<strong>in</strong>g would produce the maximum<br />

phot<strong>on</strong> energy ω = ΛEe/(1 + Λ)=207GeV. But<br />

due to the large value <str<strong>on</strong>g>of</str<strong>on</strong>g> ξ, this energy is lowered to<br />

ω = ΛEe/(1+Λ+ξ 2 )=194GeV and higher harm<strong>on</strong>ic phot<strong>on</strong>s<br />

ω = nΛEe/(1 + nΛ + ξ 2 ) are also produced (n =2<br />

and 3 are visible). In the simulati<strong>on</strong> the formulas for <strong>in</strong>f<strong>in</strong>ite<br />

plane wave laser with the local laser <strong>in</strong>tensity (adiabatic approximati<strong>on</strong>)<br />

is used. This means the value <str<strong>on</strong>g>of</str<strong>on</strong>g> ξ is vary<strong>in</strong>g<br />

with<strong>in</strong> the laser beam so that the peaks <strong>in</strong> Fig.7 are blurred.<br />

Another str<strong>on</strong>g field phenomen<strong>on</strong> related to gammagamma<br />

colliders is the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> polarizati<strong>on</strong> <strong>in</strong><br />

a str<strong>on</strong>g laser field. Some gamma-gamma experiments demand<br />

l<strong>in</strong>early polarized phot<strong>on</strong>. Us<strong>in</strong>g l<strong>in</strong>early polarized<br />

laser, however, would produce blurred phot<strong>on</strong> spectrum.<br />

One possible idea is to produce phot<strong>on</strong>s by circularly polarized<br />

laser and to rotate the polarizati<strong>on</strong> by another laser<br />

which is l<strong>in</strong>early polarized.[7]. Circularly polarized laser<br />

rotates the polarizati<strong>on</strong> plane <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>in</strong>early polarized phot<strong>on</strong>,<br />

whereas l<strong>in</strong>early polarized laser <strong>in</strong>terchanges l<strong>in</strong>ear and circular<br />

polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s. This phenomen<strong>on</strong> is effective<br />

near the threshould <str<strong>on</strong>g>of</str<strong>on</strong>g> pair creati<strong>on</strong>. Although this idea<br />

does not seem to be practical for gamma-gamma applicati<strong>on</strong><br />

but it is theoretically <strong>in</strong>terest<strong>in</strong>g.<br />

SIMULATION TOOLS<br />

In early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>in</strong>ear collider study a computer code<br />

CAIN[8] was written to treat the beam deformati<strong>on</strong> by<br />

Coulomb field, beamstrahlung, coherent pair creati<strong>on</strong>, and<br />

polarizati<strong>on</strong> behavior (trident cascade has not been <strong>in</strong>cluded<br />

yet). The code GUINEA-PIG[9] has also been written<br />

for the same purpose. The laser-electr<strong>on</strong> <strong>in</strong>teracti<strong>on</strong> has<br />

been <strong>in</strong>cluded <strong>in</strong> CAIN <strong>in</strong> a later stage. The figures 1 and<br />

7 are produced by CAIN. These codes are still evolv<strong>in</strong>g<br />

accord<strong>in</strong>g to the demands but their essential features have<br />

been established l<strong>on</strong>g ago.<br />

SUMMARY<br />

The Beam-beam <strong>in</strong>teracti<strong>on</strong> <strong>in</strong> l<strong>in</strong>ear colliders is a place<br />

where we expect various phenomena related to the quantum<br />

electro-dynamics <strong>in</strong> <strong>in</strong>tense fields. Its study started <strong>in</strong><br />

mid 1980’s and is thought to be well established theoretically<br />

by now. Necessary simulati<strong>on</strong> tools have also been<br />

developed. N<strong>on</strong>etheless we have to wait for the realizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>in</strong>ear colliders for the experimental verificati<strong>on</strong>s.<br />

Up to now these <strong>in</strong>tese field effects are mostly unwanted<br />

phenomena for the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>in</strong>ear colliders. We<br />

hope we may f<strong>in</strong>d useful applicati<strong>on</strong>s <strong>in</strong> the future such as<br />

the positr<strong>on</strong> producti<strong>on</strong> us<strong>in</strong>g the coherent pair creati<strong>on</strong>.<br />

REFERENCES<br />

[1] ICFA-ICUIL Jo<strong>in</strong>t Task Force <strong>on</strong> Laser Accelerati<strong>on</strong><br />

Meet<strong>in</strong>g, Apr.8-10, 2010 at GSI, Darmstadt, Germany. The<br />

task force report will be published so<strong>on</strong> (as <str<strong>on</strong>g>of</str<strong>on</strong>g> Jan.2011).<br />

[2] A. A. Sokolov and I. M. Ternov, ‘Radiati<strong>on</strong> from<br />

Relativistic Electr<strong>on</strong>s’, American Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>,<br />

Translati<strong>on</strong> Series, New York, 1986.<br />

[3] V. N. Baier and V. M. Katkov, Sov. Phys. JETP<br />

26(1968)854. W. Y. Tsai and T. Erber,<br />

Phys. Rev. D10(1974)492.<br />

[4] V. I. Ritus, Nucl. Phys. B44(1972)236. V. N. Baier,<br />

V. M. Katkov and V. M. Strakhovenko, Soviet<br />

J. Nucl. Phys. 14(1972)572.<br />

[5] ‘Beam-Beam Phenomena <strong>in</strong> L<strong>in</strong>ear Colliders’,<br />

K. Yokoya and P. Chen, <strong>in</strong> Fr<strong>on</strong>tiers <str<strong>on</strong>g>of</str<strong>on</strong>g> Particle Beams:<br />

Intensity Limitati<strong>on</strong>. Lecture Notes <strong>in</strong> <strong>Physics</strong> 400,<br />

Spr<strong>in</strong>ger Verlag, (1991) page 414-445.<br />

[6] V. N. Baier, private communicati<strong>on</strong>.<br />

[7] G. L. Kotk<strong>in</strong> and V. G. Serbo,<br />

Phys. Lett. B413(1997)122-129.<br />

[8] CAIN:C<strong>on</strong>glomérat d’ABEL et d’Interacti<strong>on</strong>s<br />

N<strong>on</strong>-L<strong>in</strong>éaires. P. Chen, G. Hort<strong>on</strong>-Smith, T. Ohgaki,<br />

A. W. Weidemann and K. Yokoya, Workshop <strong>on</strong><br />

Gamma-Gamma Colliders, Berkeley, CA, March 28-31,<br />

1994. SLAC-PUB-6583, July 1994.<br />

Nucl. Instr. Meth. A355(1995)107-110. C<strong>on</strong>tact the present<br />

author for the laset <strong>in</strong>formati<strong>on</strong>.<br />

[9] D. Schulte, c<strong>on</strong>sult the web page<br />

http://www-sldnt.slac.stanford.edu/nlc/programs/<br />

gu<strong>in</strong>ea_pig/Orig<strong>in</strong>al%20GP%20Home.html<br />

and<br />

http://flc-mdi.lal.<strong>in</strong>2p3.fr/spip.php?rubrique40


Abstract<br />

Sec<strong>on</strong>d order QED processes and their radiative correcti<strong>on</strong>s<br />

A. Hart<strong>in</strong>, DESY FLC, Notkestrasse 85, Hamburg, Germany<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tense external fields <strong>on</strong> physics processes<br />

can be taken <strong>in</strong>to account exactly by perform<strong>in</strong>g the usual<br />

S-matrix expansi<strong>on</strong> <strong>in</strong> the bound <strong>in</strong>teracti<strong>on</strong> picture. The<br />

effect so calculated is to predict res<strong>on</strong>ant cross-secti<strong>on</strong>s<br />

<strong>in</strong> sec<strong>on</strong>d order processes. The Compt<strong>on</strong> scatter<strong>in</strong>g <strong>in</strong><br />

such a framework is outl<strong>in</strong>ed. Res<strong>on</strong>ant <strong>in</strong>f<strong>in</strong>ities <strong>in</strong> the<br />

tree level process are mitigated by the electr<strong>on</strong> self energy<br />

and the vertex correcti<strong>on</strong>. The state <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculati<strong>on</strong> and<br />

<strong>in</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these radiative correcti<strong>on</strong>s is discussed.<br />

INTRODUCTION<br />

The Dirac equati<strong>on</strong> for fermi<strong>on</strong>s embedded <strong>in</strong> <strong>in</strong>tense<br />

electromagnetic plane wave fields can be solved exactly.<br />

The wave functi<strong>on</strong> soluti<strong>on</strong>s <strong>in</strong>clude an <strong>in</strong>f<strong>in</strong>ite summati<strong>on</strong><br />

over <strong>in</strong>teracti<strong>on</strong>s with multiple external field phot<strong>on</strong>s and<br />

display a quasi-energy level structure. Res<strong>on</strong>ant transiti<strong>on</strong>s<br />

between these quasi-energy levels is predicted for quantum<br />

electrodynamical processes with a fermi<strong>on</strong> propagator<br />

and which therefore are at least sec<strong>on</strong>d order. Transiti<strong>on</strong><br />

probabilities for these higher order processes can be<br />

calculated <strong>in</strong> the bound <strong>in</strong>teracti<strong>on</strong> picture (BIP) <strong>in</strong> which<br />

the fermi<strong>on</strong>-external field states <strong>in</strong>teract with free phot<strong>on</strong><br />

states.<br />

I review here the BIP Compt<strong>on</strong> scatter<strong>in</strong>g, a sec<strong>on</strong>d order<br />

QED process <strong>in</strong> the Bound Interacti<strong>on</strong> Picture which is<br />

predicted to have multiple res<strong>on</strong>ances <strong>in</strong> its cross-secti<strong>on</strong>.<br />

The BIP Pair Producti<strong>on</strong> also displays similar behaviour<br />

be<strong>in</strong>g related to the BIP Compt<strong>on</strong> scatter<strong>in</strong>g via a cross<strong>in</strong>g<br />

symmetry [1]. The BIP radiative correcti<strong>on</strong>s required to<br />

render these res<strong>on</strong>ances f<strong>in</strong>ite are the BIP electr<strong>on</strong> self<br />

energy and the BIP vertex correcti<strong>on</strong>, the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

which is outl<strong>in</strong>ed <strong>in</strong> this paper.<br />

These sec<strong>on</strong>d order processes and their predicted res<strong>on</strong>ances<br />

could be tested experimentally <strong>in</strong> the <strong>in</strong>teracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two lasers - <strong>on</strong>e at least be<strong>in</strong>g high <strong>in</strong>tensity - and an<br />

electr<strong>on</strong> beam such as that provided by ATF2 at <strong>KEK</strong>.<br />

Indeed the cross-secti<strong>on</strong> at res<strong>on</strong>ance for sec<strong>on</strong>d order<br />

processes <strong>in</strong> the BIP is c<strong>on</strong>siderably larger for the 1st order<br />

processes such as <strong>on</strong>e phot<strong>on</strong> pair producti<strong>on</strong> and phot<strong>on</strong><br />

radiati<strong>on</strong> [2].<br />

QED IN THE BOUND INTERACTION<br />

PICTURE<br />

For quantum electrodynamical physics processes that<br />

take place <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an external potential A e the<br />

Lagrangian density is written<br />

LQED = − 1<br />

4 F µν Fµν + ¯ ψ(i/∂ + eA + eA e − m)ψ (1)<br />

If the external field is sufficiently str<strong>on</strong>g it is desirable<br />

to c<strong>on</strong>sider its effect exactly. This is achieved <strong>in</strong> the<br />

BIP which c<strong>on</strong>siders the <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the bound fermi<strong>on</strong>external<br />

field states with free bos<strong>on</strong> states <strong>in</strong> the usual time<br />

evoluti<strong>on</strong> perturbati<strong>on</strong> theory. The bound fermi<strong>on</strong>-external<br />

field states are obta<strong>in</strong>ed by solv<strong>in</strong>g the Dirac equati<strong>on</strong> with<br />

an external potential,<br />

e ¯ ψ(i/∂ + A e − m)ψ = 0 (2)<br />

Equati<strong>on</strong> 2 can be solved exactly when the external potential<br />

is a plane wave electromagnetic field. The soluti<strong>on</strong>s,<br />

referred to as Volkov soluti<strong>on</strong>s [3] are a product <str<strong>on</strong>g>of</str<strong>on</strong>g> the normal<br />

free fermi<strong>on</strong> soluti<strong>on</strong> with an extra phase S(x) and a<br />

magnetic moment term Ep(x),<br />

Ψ V p (x) = Ep(x)u(p)<br />

where Ep(x) =<br />

<br />

1 − e /Ae <br />

/k<br />

e<br />

2(kp)<br />

iS(x)<br />

(k·x)<br />

and S(x) = −i<br />

0<br />

<br />

e(Aep) (kp) − e2Ae2 <br />

dφ<br />

2(kp)<br />

For sec<strong>on</strong>d order processes <strong>in</strong> the BIP we also need the<br />

fermi<strong>on</strong> propagator <strong>in</strong> the external field, which turns out<br />

to be the normal propagator sandwiched between Volkov<br />

Ep(x) functi<strong>on</strong>s,<br />

(3)<br />

G e (x,x ′ <br />

d4p 1<br />

) = Ep(x) Ēp(x<br />

(2π) 4<br />

/p−m+iǫ<br />

′ ) (4)<br />

These new elements can be <strong>in</strong>cluded <strong>in</strong> Feynman diagrams<br />

<strong>in</strong> the usual way (be<strong>in</strong>g represented by double


pf f<br />

f<br />

pi<br />

p<br />

x2<br />

x1<br />

k<br />

ki<br />

p<br />

pi<br />

Figure 1: The BIP Compt<strong>on</strong> scatter<strong>in</strong>g.<br />

straight l<strong>in</strong>es). In effect, the Volkov Ep(x) functi<strong>on</strong>s can<br />

be grouped together around diagram vertices (with <strong>in</strong>com<strong>in</strong>g<br />

momentum q and outgo<strong>in</strong>g momentum p) <strong>in</strong> order to<br />

”dress” them,<br />

p<br />

kf<br />

ki<br />

γ e µ(p,q) = Ēp(x)γµEq(x) (5)<br />

COMPTON SCATTERING IN THE BOUND<br />

INTERACTION PICTURE<br />

The Volkov soluti<strong>on</strong>s to a fermi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum p embedded<br />

<strong>in</strong> an external periodic field A e reveal an energy<br />

level structure depend<strong>in</strong>g <strong>on</strong> the discrete number s <str<strong>on</strong>g>of</str<strong>on</strong>g> external<br />

field phot<strong>on</strong>s k that <strong>in</strong>teract with the fermi<strong>on</strong> and given<br />

by the dispersi<strong>on</strong> relati<strong>on</strong> [4],<br />

(p ± sk) 2 = m 2 + |eA e | 2<br />

For Compt<strong>on</strong> scatter<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> a phot<strong>on</strong> ki with such a bound<br />

fermi<strong>on</strong> (figure 1) res<strong>on</strong>ant transiti<strong>on</strong>s are possible whenever<br />

the <strong>in</strong>termediate virtual particle reaches the mass shell.<br />

The k<strong>in</strong>ematics for such transiti<strong>on</strong>s are given by the c<strong>on</strong>diti<strong>on</strong><br />

that the propagator denom<strong>in</strong>ator is zero,<br />

(6)<br />

(pi + ki − sk) 2 = 2(pi · ki) − 2sk · (pi + ki) = 0 (7)<br />

If the particles are coll<strong>in</strong>ear then the res<strong>on</strong>ant c<strong>on</strong>diti<strong>on</strong><br />

simplifies to the c<strong>on</strong>diti<strong>on</strong> that the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>com<strong>in</strong>g<br />

phot<strong>on</strong> be an <strong>in</strong>teger multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> the external field phot<strong>on</strong><br />

energy.<br />

RADIATIVE CORRECTIONS<br />

The res<strong>on</strong>ant <strong>in</strong>f<strong>in</strong>ities <strong>in</strong> the tree level process must be<br />

mitigated by <strong>in</strong>clud<strong>in</strong>g radiative correcti<strong>on</strong>s. The schema<br />

is to calculate the same loop diagrams <strong>in</strong> the BIP and to<br />

<strong>in</strong>clude them to all orders <strong>in</strong> a geometric series as <strong>in</strong> the<br />

p<br />

+<br />

k’<br />

p<br />

p<br />

p’<br />

p<br />

k’ p’<br />

+ p + ...<br />

Figure 2: The Corrected Bound fermi<strong>on</strong> Propagator.<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> the normal <strong>in</strong>teracti<strong>on</strong> picture (figure 2).<br />

The fermi<strong>on</strong> self energy Σ e p has been calculated for the<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>stant crossed electromagnetic field [5] and<br />

a circularly polarised field [6]. The sum to all orders is<br />

straightforward and the corrected propagator G e p(rc) is<br />

G e p(rc) = G e p + G e pΣ e pG e p + G e pΣ e pG e pΣ e pG e p + ...<br />

k’<br />

<br />

d4p 1<br />

= Ep(x)<br />

(2π) 4<br />

/p−Σ e Ēp(x<br />

p− m + iǫ<br />

′ ) (8)<br />

There still rema<strong>in</strong>s the questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> UV divergences <strong>in</strong><br />

the BIP self energy. In the literature, a term equivalent<br />

to the normal <strong>in</strong>teracti<strong>on</strong> picture self energy is separated<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f and the usual regularizati<strong>on</strong> and renormalizati<strong>on</strong><br />

procedures are carried out. However it now appears that<br />

the calculati<strong>on</strong> can be carried out without the appearance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> UV divergences 1 .<br />

We need also to <strong>in</strong>clude <strong>in</strong> the BIP Compt<strong>on</strong> scatter<strong>in</strong>g,<br />

all terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the same order <strong>in</strong> the coupl<strong>in</strong>g c<strong>on</strong>stant <strong>in</strong><br />

the S-matrix expansi<strong>on</strong>. One such term required is the<br />

<strong>in</strong>terference term between the BIP vertex correcti<strong>on</strong> and<br />

the BIP phot<strong>on</strong> radiati<strong>on</strong> (figure 3)<br />

The BIP vertex correcti<strong>on</strong> (figure 4) is a rather complicated<br />

expressi<strong>on</strong> <strong>in</strong>clud<strong>in</strong>g three dressed vertices and <strong>in</strong>f<strong>in</strong>ite<br />

<strong>in</strong>tegrati<strong>on</strong>s (c<strong>on</strong>stant crossed external field) or summati<strong>on</strong>s<br />

(periodic external field) over c<strong>on</strong>tributi<strong>on</strong>s l,r,s<br />

from external field phot<strong>on</strong>s at each vertex,<br />

1 This will be the subject <str<strong>on</strong>g>of</str<strong>on</strong>g> a forthcom<strong>in</strong>g paper by the author<br />

2<br />

↔ ×<br />

Figure 3: A S-matrix <strong>in</strong>terference term <str<strong>on</strong>g>of</str<strong>on</strong>g> the same order<br />

as the BIP Compt<strong>on</strong> scatter<strong>in</strong>g.<br />

p<br />

p’<br />

~


p f<br />

p<br />

i<br />

Figure 4: The BIP vertex correcti<strong>on</strong>.<br />

k f<br />

− ieΓ e µ = 2ie 2<br />

∞<br />

d<br />

−∞<br />

4p (2π) 4 dl dr ds δ4 (pi + lk − pf − kf)<br />

• γ eν (pf,p ′ )<br />

1<br />

/p ′ − m γe µ(p ′ 1<br />

,p)<br />

/p−m γe ν(p,pi) 1<br />

k ′2<br />

where p ′ → p − kf + rk , k ′ → pi − p + sk<br />

Equati<strong>on</strong> 9 has been calculated for special k<strong>in</strong>ematics <strong>in</strong><br />

which the radiated phot<strong>on</strong> is parallel to the external field<br />

wave vector. For such a case no UV divergence exists and<br />

the result<strong>in</strong>g expressi<strong>on</strong> c<strong>on</strong>ta<strong>in</strong>s a term c<strong>on</strong>sistent with the<br />

known expressi<strong>on</strong> for the anomalous magnetic moment <strong>in</strong><br />

a c<strong>on</strong>stant crossed field [7]. Work is c<strong>on</strong>t<strong>in</strong>u<strong>in</strong>g to extend<br />

the calculati<strong>on</strong> to the general case.<br />

CONCLUSION<br />

<strong>Physics</strong> with str<strong>on</strong>g external fields such as those present<br />

<strong>in</strong> <strong>in</strong>tense laser-matter <strong>in</strong>teracti<strong>on</strong>s, at the <strong>in</strong>teracti<strong>on</strong><br />

po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> modern colliders or <strong>in</strong> an astrophysical sett<strong>in</strong>g, is<br />

experimentally <strong>in</strong>terest<strong>in</strong>g and theoretically challeng<strong>in</strong>g.<br />

Calculati<strong>on</strong>s which take <strong>in</strong>to account the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

external field exactly, are necessary. Such calculati<strong>on</strong>s are<br />

performed <strong>in</strong> the BIP which, <strong>in</strong> effect, dress the vertices <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the corresp<strong>on</strong>d<strong>in</strong>g Feynman diagram.<br />

The transiti<strong>on</strong> rates for BIP processes c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g propagators<br />

<strong>in</strong>dicate the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> res<strong>on</strong>ances which must be<br />

corrected by the <strong>in</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BIP radiative correcti<strong>on</strong>s. To<br />

date <strong>on</strong>ly the BIP electr<strong>on</strong> self energy (and BIP vacuum<br />

polarizati<strong>on</strong>) have been calculated. In order to correct<br />

higher order tree level processes <strong>in</strong> the BIP, and to prove<br />

that IR divergences cancel assum<strong>in</strong>g a Bloch-Nordiseck<br />

type pro<str<strong>on</strong>g>of</str<strong>on</strong>g>, the BIP vertex correcti<strong>on</strong> is also required.<br />

(9)<br />

These calculati<strong>on</strong>s and their correcti<strong>on</strong>s are underway<br />

and much progress has been made. The ultimate aim is<br />

a realistic calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BIP Compt<strong>on</strong> scatter<strong>in</strong>g crosssecti<strong>on</strong><br />

at res<strong>on</strong>ance and proposals for the experimental<br />

detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such predicted res<strong>on</strong>ances.<br />

REFERENCES<br />

[1] Hart<strong>in</strong> A 2006 PhD thesis University <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>on</strong>d<strong>on</strong><br />

[2] Bamber C et al 1999 Phys Rev D 60(9) 092004<br />

[3] Volkov D M 1935 Z Phys 94 250<br />

[4] Zeldovich Y B 1967 Sov Phys JETP 24 1006<br />

[5] Ritus V I 1972 Ann. Phys. D 69 555-582<br />

[6] Becker W, Mitter H 1976 J Phys A 9(12) 2171<br />

[7] Ritus V I 1970 Sov. Phys. JETP 30(6) 1181


STRONG FIELD DYNAMICS IN HEAVY-ION COLLISIONS<br />

Abstract<br />

In high-energy heavy-i<strong>on</strong> collisi<strong>on</strong>s, there appear two<br />

different k<strong>in</strong>ds <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g fields: Str<strong>on</strong>g electromagnetic<br />

fields and str<strong>on</strong>g Yang-Mills (glu<strong>on</strong>) fields. I expla<strong>in</strong> the<br />

mechanisms how they appear <strong>in</strong> the collisi<strong>on</strong>s, the <strong>in</strong>terest<strong>in</strong>g<br />

<strong>in</strong>terplay between QED and QCD, and f<strong>in</strong>ally the<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g field dynamics <strong>in</strong> understand<strong>in</strong>g<br />

time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the full collisi<strong>on</strong> events.<br />

INTRODUCTION<br />

The ma<strong>in</strong> goal <str<strong>on</strong>g>of</str<strong>on</strong>g> this talk is to c<strong>on</strong>v<strong>in</strong>ce you that the<br />

high-energy heavy-i<strong>on</strong> collisi<strong>on</strong> (HIC) is the ideal place for<br />

the study <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g-field physics. This is primarily because<br />

they provide the “str<strong>on</strong>gest” fields that human be<strong>in</strong>g can<br />

create. Let us first overview how str<strong>on</strong>g they are. Table 1<br />

shows the comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic fields realized <strong>in</strong> various<br />

situati<strong>on</strong>s from weak to str<strong>on</strong>g fields. The str<strong>on</strong>gest steady<br />

magnetic field <strong>on</strong> earth, B = 4.5 × 10 5 Gauss, is achieved<br />

at Nati<strong>on</strong>al High Magnetic Field Laboratory <strong>in</strong> Florida [1],<br />

but there are several situati<strong>on</strong>s <strong>in</strong> Nature which create much<br />

str<strong>on</strong>ger magnetic fields. Typical examples <strong>in</strong>clude a neutr<strong>on</strong><br />

star which is a remnant <str<strong>on</strong>g>of</str<strong>on</strong>g> supernova explosi<strong>on</strong>. The<br />

magnetic field <str<strong>on</strong>g>of</str<strong>on</strong>g> a huge star is squeezed to a small regi<strong>on</strong><br />

after explosi<strong>on</strong> to become str<strong>on</strong>g B ∼ 10 12 Gauss.<br />

However, it is still weaker than the so-called “critical”<br />

magnetic field Bc = m 2 e/e = 4 × 10 13 Gauss, bey<strong>on</strong>d<br />

which the n<strong>on</strong>l<strong>in</strong>ear QED effects must be fully taken <strong>in</strong>to<br />

account. The corresp<strong>on</strong>d<strong>in</strong>g electric field Ec = m 2 e/e is<br />

called the “Schw<strong>in</strong>ger field” bey<strong>on</strong>d which the e + e − pair<br />

creati<strong>on</strong> from the vacuum becomes possible [2]. Recently,<br />

it has been recognized that some <str<strong>on</strong>g>of</str<strong>on</strong>g> the neutr<strong>on</strong> stars, called<br />

“magnetars”, would have much str<strong>on</strong>ger magnetic fields.<br />

The surface magnetic fields are estimated as ∼ 10 15 Gauss,<br />

well bey<strong>on</strong>d the critical value [3, 4]. So far, this is the<br />

str<strong>on</strong>gest static magnetic fields <strong>in</strong> Nature.<br />

Table 1: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic fields (Gauss)<br />

Strength Realized as<br />

0.6 Earth’s magnetic field<br />

100 A typical hand-held magnet<br />

8.3×10 4 Superc<strong>on</strong>duct<strong>in</strong>g magnets <strong>in</strong> LHC<br />

4.5×10 5 Str<strong>on</strong>gest steady magnetic field [1]<br />

∼ 10 12 Surface field <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong> stars<br />

(4×10 13 Critical magnetic field <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s)<br />

∼ 10 15 Surface field <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetars<br />

∼ 10 17 N<strong>on</strong>central heavy-i<strong>on</strong> coll. at RHIC<br />

∼ 10 18 N<strong>on</strong>central heavy-i<strong>on</strong> coll. at LHC<br />

∗ e-mail: kazunori.itakura@kek.jp<br />

K. Itakura ∗<br />

Theory Center, IPNS, <strong>KEK</strong>, Japan<br />

Surpris<strong>in</strong>gly, high-energy HIC’s provide much str<strong>on</strong>ger<br />

magnetic fields. They are created <strong>in</strong> n<strong>on</strong>central collisi<strong>on</strong>s<br />

and the maximum strength amounts to ∼ 10 17 Gauss at<br />

RHIC <strong>in</strong> BNL and ∼ 10 18 Gauss at LHC <strong>in</strong> CERN, far<br />

above the critical value 4 × 10 13 Gauss. S<strong>in</strong>ce the orig<strong>in</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic fields is the fast mov<strong>in</strong>g nuclei with electric<br />

charges, such str<strong>on</strong>g fields last <strong>on</strong>ly for a very short period<br />

(typically <strong>on</strong>ly dur<strong>in</strong>g the passage <str<strong>on</strong>g>of</str<strong>on</strong>g> two collid<strong>in</strong>g nuclei).<br />

However, with the str<strong>on</strong>gest magnetic fields far bey<strong>on</strong>d the<br />

critical value, we expect many <strong>in</strong>terest<strong>in</strong>g phenomena related<br />

to n<strong>on</strong>l<strong>in</strong>ear QED to occur, as I will expla<strong>in</strong> later. In<br />

particular, it is quite <strong>in</strong>terest<strong>in</strong>g to see how the str<strong>on</strong>g magnetic<br />

field affects the Quark Glu<strong>on</strong> Plasma (QGP) which<br />

has also a very short life time.<br />

On the other hand, HIC’s generate another str<strong>on</strong>g<br />

fields: “color” electromagnetic fields described by Quantum<br />

Chromodynamics (QCD). The ma<strong>in</strong> motivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

HIC’s is to create the QGP by liberat<strong>in</strong>g subatomic degrees<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, quarks and glu<strong>on</strong>s, from <strong>in</strong>side <str<strong>on</strong>g>of</str<strong>on</strong>g> nucle<strong>on</strong>s.<br />

QCD is the fundamental theory for the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks<br />

and glu<strong>on</strong>s and is the n<strong>on</strong>-Abelian gauge theory with<br />

“color” SU(3) symmetry. Therefore, there exist “color”<br />

electromagnetic fields which are n<strong>on</strong>-Abela<strong>in</strong> analogs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the ord<strong>in</strong>ary electromagnetic fields. High-energy HIC’s can<br />

create very str<strong>on</strong>g color electromagnetic fields. S<strong>in</strong>ce <strong>on</strong>e<br />

cannot directly compare the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> color fields with<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> ord<strong>in</strong>ary electromagnetic fields, let us compare them<br />

<strong>in</strong> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> energy. Table 2 is the comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ord<strong>in</strong>ary<br />

and color electromagnetic fields. For the electromagnetic<br />

fields we show √ eB <strong>in</strong> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> MeV, and for color electromagnetic<br />

fields √ gB <strong>in</strong> the same energy scale where g<br />

is the coupl<strong>in</strong>g strength and B is the color magnetic fields.<br />

Notice that the critical magnetic field <strong>in</strong> QED is determ<strong>in</strong>ed<br />

by the electr<strong>on</strong> mass √ eBc = me, but the corresp<strong>on</strong>d<strong>in</strong>g<br />

field <strong>in</strong> QCD will be determ<strong>in</strong>ed by quark mass mq. Still,<br />

the strength √ gB ∼ 1 GeV at RHIC is well bey<strong>on</strong>d the<br />

critical value mq ∼ a few MeV, suggest<strong>in</strong>g the importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Schw<strong>in</strong>ger mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> q¯q pairs. Also we expect that<br />

the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> such str<strong>on</strong>g color fields is crucial for the<br />

early time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the created matter to the QGP.<br />

Table 2: √ eB for electromagnetic fields (EM) and √ gB<br />

for Yang-Mills fields (YM) <strong>in</strong> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> energy (MeV)<br />

Strength Realized as<br />

0.5 (= me) Critical mag. field <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s (EM)<br />

∼ 2 − 3 Surface field <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetars (EM)<br />

∼ 10 2 (∼ mπ) N<strong>on</strong>central HIC at RHIC (EM)<br />

∼ 4 × 10 2 N<strong>on</strong>central HIC at LHC (EM)<br />

∼ 10 3 (∼ Qs) Color magnetic fields at RHIC (YM)<br />

(2 − 3)×10 3 Color magnetic fields at LHC (YM)


Figure 1: (Left) Time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the matter created <strong>in</strong> high-energy heavy-i<strong>on</strong> collisi<strong>on</strong>s. (Right) N<strong>on</strong>central collisi<strong>on</strong>s.<br />

HIGH-ENERGY HEAVY-ION<br />

COLLISIONS<br />

As already menti<strong>on</strong>ed, the ma<strong>in</strong> motivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the HIC’s<br />

is to create the QGP, a local equilibrium matter made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quarks and glu<strong>on</strong>s. In order to throw gigantic k<strong>in</strong>etic energies<br />

<strong>in</strong>to a small but f<strong>in</strong>ite volume, we need to collide<br />

‘large’ objects, namely two heavy i<strong>on</strong>s (bare nuclei without<br />

electr<strong>on</strong>s). Thus, the spatial extent <str<strong>on</strong>g>of</str<strong>on</strong>g> the created state<br />

is, <strong>in</strong>itially, <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> that <str<strong>on</strong>g>of</str<strong>on</strong>g> collid<strong>in</strong>g nuclei (e.g., for<br />

Au nuclei, about 10 fm = 10 −14 m). If the energy density<br />

is high enough to reach a very high temperature bey<strong>on</strong>d<br />

the critical value Tc ∼ 170 MeV, <strong>on</strong>e can naively expect<br />

that the QGP will be formed. In reality, however, the created<br />

state with high-energy densities will show quite n<strong>on</strong>trivial<br />

time evoluti<strong>on</strong>: It will quickly change <strong>in</strong>to a hightemperature<br />

QGP through <strong>in</strong>teracti<strong>on</strong>s between quarks and<br />

glu<strong>on</strong>s. Then, the QGP will cool down to hadr<strong>on</strong>ic matter<br />

as it rapidly expands (see Fig. 1, left). All these processes<br />

take place dur<strong>in</strong>g a very short time, and the life time <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

QGP is, at most, <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 fm/c = 10 −22 sec.<br />

In order to study the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> QGP, we need to extract<br />

<strong>in</strong>formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QGP from the huge number <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>al<br />

hadr<strong>on</strong>s. S<strong>in</strong>ce particle producti<strong>on</strong> can, <strong>in</strong> pr<strong>in</strong>ciple, occur<br />

at every stage <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>, it is quite important to understand<br />

the evoluti<strong>on</strong> history <str<strong>on</strong>g>of</str<strong>on</strong>g> the created matter <strong>in</strong> HIC’s.<br />

In particular, the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QGP is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most difficult<br />

problems <strong>in</strong> QCD (or maybe <strong>in</strong> theoretical physics) because<br />

it requires n<strong>on</strong>-perturbative descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-l<strong>in</strong>ear<br />

phenomena <strong>in</strong> n<strong>on</strong>-equilibrium states. However, many people<br />

believe that the str<strong>on</strong>g field dynamics should be relevant<br />

at least for the early time evoluti<strong>on</strong>. In fact, as already menti<strong>on</strong>ed,<br />

there emerge two different k<strong>in</strong>ds <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g fields <strong>in</strong><br />

HIC’s, and the “color” electromagnetic fields are expected<br />

to play important roles for the transiti<strong>on</strong> towards QGP. The<br />

str<strong>on</strong>g color electr<strong>on</strong>ic and magnetic fields give rise to the<br />

quark-antiquark pair producti<strong>on</strong> (Schw<strong>in</strong>ger mechanism)<br />

and Nielsen-Olesen <strong>in</strong>stability, respectively. We expect<br />

both <str<strong>on</strong>g>of</str<strong>on</strong>g> them will c<strong>on</strong>tribute to drive the system towards<br />

thermalizati<strong>on</strong>. On the other hand, ord<strong>in</strong>ary magnetic fields<br />

<strong>in</strong>deed have a significant <strong>in</strong>fluence <strong>on</strong> the created matter,<br />

but would be irrelevant for thermalizati<strong>on</strong>, because it does<br />

not appear <strong>in</strong> the central collisi<strong>on</strong>.<br />

STRONG MAGNETIC FIELDS IN<br />

NONCENTRAL HEAVY-ION COLLISIONS<br />

How do they appear?<br />

Note that the atomic nuclei used <strong>in</strong> HIC’s have large<br />

electric charges 1 Ze and they are mov<strong>in</strong>g at very fast speed<br />

close to the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light. Then, the Coulomb field (electric<br />

field) <str<strong>on</strong>g>of</str<strong>on</strong>g> each nucleus is highly Lorentz c<strong>on</strong>tracted to a<br />

str<strong>on</strong>g spike. Time variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric fields <strong>in</strong>duces<br />

magnetic fields <str<strong>on</strong>g>of</str<strong>on</strong>g> the same strength. For example, c<strong>on</strong>sider<br />

a po<strong>in</strong>t charge mov<strong>in</strong>g <strong>on</strong> the z axis at rapidity (velocity)<br />

Y . Then, the magnetic field at the positi<strong>on</strong> ⃗x is given by<br />

e ⃗ B(⃗x) = Zα EM<br />

−(⃗x⊥ × ⃗ez) s<strong>in</strong>h Y<br />

[(⃗x⊥) 2 + (t s<strong>in</strong>h Y − z cosh Y ) 2 ,<br />

3/2<br />

]<br />

which has a large enhancement factor s<strong>in</strong>h Y . One can<br />

roughly estimate the magnetic field <strong>in</strong> n<strong>on</strong>central HIC’s<br />

(b ̸= 0) by simply summ<strong>in</strong>g the magnetic fields given<br />

above assum<strong>in</strong>g the trajectories <str<strong>on</strong>g>of</str<strong>on</strong>g> two collid<strong>in</strong>g nuclei<br />

shown <strong>in</strong> Fig. 1, right. Then, <strong>on</strong>e f<strong>in</strong>ds the maximum<br />

strength √ eB ∼ 100 MeV <strong>in</strong> n<strong>on</strong>central Au-Au collisi<strong>on</strong>s<br />

at RHIC ( √ sNN = 200 GeV) 2 when the impact parameter<br />

b ∼ 10 fm [5]. In fact, such a crude estimate is numerically<br />

c<strong>on</strong>firmed by the UrQMD simulati<strong>on</strong> [6]. As already<br />

commented, this is quite a str<strong>on</strong>g magnetic field, bey<strong>on</strong>d 3<br />

the “critical” value √ eBc = me = 0.5 MeV. S<strong>in</strong>ce this<br />

magnetic field arises <strong>on</strong>ly from the k<strong>in</strong>ematical c<strong>on</strong>figurati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two charges, it becomes str<strong>on</strong>gest when two charges<br />

come closest, and decays rapidly as they recede from each<br />

other. Typically, it lasts <strong>on</strong>ly for a few fm/c. However, it is<br />

argued that the life time becomes l<strong>on</strong>ger <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the QGP, because the QGP has a large electric c<strong>on</strong>ductivity<br />

[7]. If this is <strong>in</strong>deed the case, life time <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g magnetic<br />

field could be <str<strong>on</strong>g>of</str<strong>on</strong>g> the same order <str<strong>on</strong>g>of</str<strong>on</strong>g> that <str<strong>on</strong>g>of</str<strong>on</strong>g> the QGP,<br />

namely, about 10 fm/c.<br />

1 Z = 79 (Au) at RHIC, 82 (Pb) at LHC and we take e > 0.<br />

2 √ sNN is the center-<str<strong>on</strong>g>of</str<strong>on</strong>g>-mass energy per nucle<strong>on</strong>-nucle<strong>on</strong> collisi<strong>on</strong>.<br />

The total energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the Au-Au collisi<strong>on</strong> is A × √ sNN with A = 197<br />

be<strong>in</strong>g the mass number <str<strong>on</strong>g>of</str<strong>on</strong>g> Au.<br />

3 It makes sense to discuss the magnetic field bey<strong>on</strong>d the critical value,<br />

because, unlike the electric field, the vacuum does not break down. However,<br />

perturbative calculati<strong>on</strong> ‘breaks down’ because the <strong>in</strong>serti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<br />

external magnetic fields <strong>in</strong> Feynman diagrams c<strong>on</strong>tributes as (eB/m 2 e )n<br />

which becomes order 1 for B > Bc = m 2 e/e [3].


Possible effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g magnetic fields<br />

Even if the magnetic field lasts <strong>on</strong>ly for a short period,<br />

it is extraord<strong>in</strong>arily str<strong>on</strong>g and should have a large impact<br />

<strong>on</strong> dynamics. What <strong>on</strong>e would immediately expect<br />

is the n<strong>on</strong>l<strong>in</strong>ear QED effect. This has been discussed for a<br />

l<strong>on</strong>g time <strong>in</strong> “very peripheral” collisi<strong>on</strong>s b > 2RA (RA<br />

is the nuclear radius) [8]. In this case, the impact parameter<br />

b is too large for two nuclei to touch each other,<br />

but multiphot<strong>on</strong> exchange will occur due to large electric<br />

charges <str<strong>on</strong>g>of</str<strong>on</strong>g> the nuclei that compensate the smallness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

α EM = e 2 /4π = 1/137. On the other hand, <strong>in</strong> the “n<strong>on</strong>central”<br />

collisi<strong>on</strong>s 0 < b < 2RA, two nuclei <strong>in</strong>deed touch<br />

each other, and the matter <strong>in</strong> the reacti<strong>on</strong> regi<strong>on</strong> will turn<br />

<strong>in</strong>to a QGP if the collisi<strong>on</strong> energy is large enough. Thus,<br />

<strong>in</strong> this case, we can study properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a QGP <strong>in</strong> a str<strong>on</strong>g<br />

magnetic field as shown <strong>in</strong> Fig. 1, right (the orange ellipsoid<br />

represents a QGP). Below we discuss possible observable<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g magnetic field <strong>on</strong> the QGP.<br />

Glu<strong>on</strong> synchrotr<strong>on</strong> radiati<strong>on</strong><br />

First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, notice that quarks/antiquarks have electric<br />

charges (e.g., eu = (2/3)e and ed = −(1/3)e for up<br />

and down quarks), while glu<strong>on</strong>s d<strong>on</strong>’t. Thus, the str<strong>on</strong>g<br />

magnetic field primarily affects quarks and antiquarks and<br />

<strong>in</strong>duces synchrotr<strong>on</strong> radiati<strong>on</strong>s [7]. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the largeness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the QCD coupl<strong>in</strong>g, αs ≡ g 2 /4π ≫ αEM, radiati<strong>on</strong>s<br />

are predom<strong>in</strong>antly due to glu<strong>on</strong>s, <strong>in</strong>stead <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s<br />

as usual. Therefore, this phenomen<strong>on</strong> is a typical <strong>in</strong>terplay<br />

between QED and QCD. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the observable effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the glu<strong>on</strong> synchrotr<strong>on</strong> radiati<strong>on</strong>s is the energy loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quarks and antiquarks. Usually, energy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fast mov<strong>in</strong>g<br />

quarks/antiquarks is assumed to be due to <strong>in</strong>teracti<strong>on</strong> with a<br />

hot medium. So, the synchrotr<strong>on</strong> radiati<strong>on</strong> is c<strong>on</strong>sidered as<br />

another (less familiar) source <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy loss. However,<br />

this is not just a correcti<strong>on</strong> to the ord<strong>in</strong>ary c<strong>on</strong>tributi<strong>on</strong>: In<br />

fact, it turned out that it is large enough to be comparable<br />

with the experimentally measured value [7]. For example,<br />

the energy loss per unit length due to synchrotr<strong>on</strong><br />

radiati<strong>on</strong> is −∆E/ℓ ∼ 0.2 ÷ 0.35 GeV/fm at RHIC and<br />

−∆E/ℓ ∼ 1.5 ÷ 2 GeV/fm at LHC, both <str<strong>on</strong>g>of</str<strong>on</strong>g> which are for<br />

up quarks with transverse momentum p⊥ = 10 ÷ 20 GeV.<br />

Another possible observable effects is the angular distributi<strong>on</strong><br />

specific to the synchrotr<strong>on</strong> radiati<strong>on</strong>, which is also<br />

discussed <strong>in</strong> Ref. [7].<br />

Phot<strong>on</strong> decay and phot<strong>on</strong> splitt<strong>in</strong>g<br />

Other n<strong>on</strong>l<strong>in</strong>ear QED effects <strong>in</strong>clude phot<strong>on</strong> decay <strong>in</strong>to<br />

fermi<strong>on</strong> pairs and phot<strong>on</strong> splitt<strong>in</strong>g. Note that several different<br />

k<strong>in</strong>ds <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s are produced <strong>in</strong> HIC’s. It is quite<br />

important to identify the orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s to understand<br />

the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> HIC’s: Direct phot<strong>on</strong>s are produced by<br />

hard collisi<strong>on</strong>s at the moment <str<strong>on</strong>g>of</str<strong>on</strong>g> HIC’s and thus carry<br />

the earliest-time <strong>in</strong>formati<strong>on</strong> before the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QGP.<br />

Thermal phot<strong>on</strong>s are produced from the QGP. F<strong>in</strong>ally, decay<br />

phot<strong>on</strong>s are produced by the decay <str<strong>on</strong>g>of</str<strong>on</strong>g>, say, π 0 at the last<br />

stage <str<strong>on</strong>g>of</str<strong>on</strong>g> HIC’s. So far, all the analyses <strong>in</strong> relati<strong>on</strong> to pho-<br />

t<strong>on</strong>s assume that the produced phot<strong>on</strong>s do not <strong>in</strong>teract with<br />

the QGP and simply carry the <strong>in</strong>formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the matter<br />

when they are emitted. However, <strong>in</strong> a str<strong>on</strong>g magnetic field,<br />

this assumpti<strong>on</strong> is no l<strong>on</strong>ger true. In order to correctly extract<br />

the <strong>in</strong>formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the evolv<strong>in</strong>g matter, we have to take<br />

<strong>in</strong>to account the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g magnetic fields which will<br />

be present until the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the QGP.<br />

In the vacuum, a real phot<strong>on</strong> cannot decay <strong>in</strong>to either a<br />

lept<strong>on</strong> pair or two phot<strong>on</strong>s. However, <strong>in</strong> a str<strong>on</strong>g magnetic<br />

field, both become possible because charged fermi<strong>on</strong>s are<br />

‘dressed’ by the magnetic field. In the vacuum, it is known<br />

that a fermi<strong>on</strong> loop with odd number <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s attached<br />

is zero (Furry’s theorem). In the magnetic field, however,<br />

it is not zero because the fermi<strong>on</strong> is ‘dressed’ and <strong>in</strong>cludes<br />

many external l<strong>in</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field. Hence these are<br />

both characteristic phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>l<strong>in</strong>ear QED.<br />

The cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> decay <strong>in</strong>to a fermi<strong>on</strong> pair<br />

is easily obta<strong>in</strong>ed by chang<strong>in</strong>g k<strong>in</strong>ematical variables <strong>in</strong> the<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> the synchrotr<strong>on</strong> radiati<strong>on</strong>, but <strong>in</strong> the present case,<br />

the e + e − pair producti<strong>on</strong> (<strong>in</strong>stead <str<strong>on</strong>g>of</str<strong>on</strong>g> a q¯q pair) is the dom<strong>in</strong>ant<br />

process. Decay rate <str<strong>on</strong>g>of</str<strong>on</strong>g> a real phot<strong>on</strong> <strong>in</strong> HIC’s <strong>in</strong>clud<strong>in</strong>g<br />

several channels (γ → ℓ + ℓ − or q¯q) was computed <strong>in</strong><br />

Ref. [9]. It was also po<strong>in</strong>ted out that such effects would<br />

generate an asymmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> emissi<strong>on</strong> with respect<br />

to the reacti<strong>on</strong> plane (def<strong>in</strong>ed by two collid<strong>in</strong>g nuclei, see<br />

Fig. 1, right). If a phot<strong>on</strong> is produced <strong>in</strong> the directi<strong>on</strong> close<br />

to the vertical axis <str<strong>on</strong>g>of</str<strong>on</strong>g> the reacti<strong>on</strong> plane, the decay rate is<br />

large. Thus, we will see less phot<strong>on</strong>s <strong>in</strong> the vertical directi<strong>on</strong>s,<br />

which generates asymmetry to be measured as elliptic<br />

flow. The calculati<strong>on</strong> was d<strong>on</strong>e <strong>in</strong> a c<strong>on</strong>stant homogeneous<br />

magnetic field, but the asymmetry will be enhanced<br />

if <strong>on</strong>e <strong>in</strong>cludes the <strong>in</strong>homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field as<br />

shown <strong>in</strong> Fig. 1, right. On the other hand, so far, there<br />

is no calculati<strong>on</strong> about the phot<strong>on</strong> splitt<strong>in</strong>g <strong>in</strong> HIC’s. One<br />

naively expects that this can be measured as anomalous enhancement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong> spectrum <strong>in</strong> the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller<br />

energies, because the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the parent phot<strong>on</strong> is shared<br />

by two s<str<strong>on</strong>g>of</str<strong>on</strong>g>ter phot<strong>on</strong>s.<br />

Chiral magnetic effects<br />

The last example is the chiral magnetic effect [5, 10].<br />

This is not the n<strong>on</strong>l<strong>in</strong>ear QED effect, but shows an <strong>in</strong>terest<strong>in</strong>g<br />

<strong>in</strong>terplay between QED and QCD. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, let us<br />

recall that quarks/antiquarks have handedness. For example,<br />

the sp<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a right-handed quark is parallel to its momentum,<br />

while that <str<strong>on</strong>g>of</str<strong>on</strong>g> a left-handed quark is anti-parallel.<br />

The chirality N5 <str<strong>on</strong>g>of</str<strong>on</strong>g> a matter is def<strong>in</strong>ed by the difference<br />

between the numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> right- and left-handed particles:<br />

(<br />

) (<br />

)<br />

N5 ≡ N(qR) + N(¯qR) − N(qL) + N(¯qL) ,<br />

where N(qR) represents the number <str<strong>on</strong>g>of</str<strong>on</strong>g> right-handed<br />

quarks, and similarly for the others. If a str<strong>on</strong>g magnetic<br />

field is present, sp<strong>in</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks po<strong>in</strong>t to the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

magnetic field, irrespectively <str<strong>on</strong>g>of</str<strong>on</strong>g> their handedness. When<br />

the numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> left- and right-handed quarks are the same,<br />

no net current is generated <strong>in</strong> that directi<strong>on</strong> because the


momenta <str<strong>on</strong>g>of</str<strong>on</strong>g> left and right quarks are <strong>in</strong> the opposite directi<strong>on</strong>s.<br />

However, if an excitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Yang-Mills field<br />

with a topological number change occurs, the handedness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quarks, and c<strong>on</strong>sequently the chirality <str<strong>on</strong>g>of</str<strong>on</strong>g> the matter will<br />

change ∆N5 = N5(t = ∞) − N5(t = −∞) = −2Q with<br />

Q be<strong>in</strong>g the topological number change. This means that a<br />

net charge current will flow <strong>in</strong> the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic<br />

field. In HIC’s, as I will discuss <strong>in</strong> the next secti<strong>on</strong>, there<br />

appears a n<strong>on</strong>trivial Yang-Mills c<strong>on</strong>figurati<strong>on</strong> with n<strong>on</strong>zero<br />

topological charge. Therefore, if the str<strong>on</strong>g magnetic field<br />

and the topological number chang<strong>in</strong>g Yang-Mills field are<br />

both present, then an electric charge current will flow perpendicular<br />

to the reacti<strong>on</strong> plane, generat<strong>in</strong>g asymmetry <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

charge distributi<strong>on</strong>. The str<strong>on</strong>g magnetic field works to effectively<br />

align the sp<strong>in</strong>. More details are discussed <strong>in</strong> the<br />

talk by K. Fukushima [10].<br />

STRONG COLOR-ELECTROMAGNETIC<br />

FIELDS: CGC AND GLASMA<br />

Now let us turn to the color electromagnetic field <strong>in</strong> HIC<br />

that orig<strong>in</strong>ates from a huge number <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s <strong>in</strong>herent <strong>in</strong><br />

the nuclei before collisi<strong>on</strong>. Below, I expla<strong>in</strong> first how such<br />

a state with many glu<strong>on</strong>s (called ‘Color Glass C<strong>on</strong>densate’,<br />

CGC) appears at high energies, then how the <strong>in</strong>formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CGC is transferred to the str<strong>on</strong>g color fields created <strong>in</strong><br />

HIC (called ‘glasma’), and f<strong>in</strong>ally how the glasma evolves<br />

towards the QGP.<br />

From CGC to glasma: How do they appear?<br />

What is CGC?<br />

C<strong>on</strong>sider <strong>on</strong>e nucleus that is mov<strong>in</strong>g very fast <strong>in</strong> the z<br />

directi<strong>on</strong>. A nucleus is made <str<strong>on</strong>g>of</str<strong>on</strong>g> nucle<strong>on</strong>s, and they are further<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> three quarks. Such a ‘valence’ picture works<br />

well <strong>on</strong>ly at low energies or when we use ‘low resoluti<strong>on</strong>’<br />

probes. On the other hand, if <strong>on</strong>e <strong>in</strong>creases the scatter<strong>in</strong>g<br />

energy, <strong>on</strong>e will <strong>in</strong>stead see a state with a huge number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glu<strong>on</strong>s. These glu<strong>on</strong>s are emitted either directly by the valence<br />

quarks or successively by (already emitted) glu<strong>on</strong>s<br />

(see Fig. 2). Such a highly dense glu<strong>on</strong>ic state is called the<br />

CGC (see Ref. [11] for a review), and is <strong>in</strong>deed observed<br />

experimentally <strong>in</strong> the electr<strong>on</strong> deep <strong>in</strong>elastic scatter<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

a prot<strong>on</strong>. It is physically important to dist<strong>in</strong>guish the roles<br />

played by large and small x c<strong>on</strong>stituents (x is the fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

momentum carried by a c<strong>on</strong>stituent). Large x c<strong>on</strong>stituents<br />

(valence quarks and glu<strong>on</strong>s hav<strong>in</strong>g large momentum fracti<strong>on</strong>)<br />

are distributed <strong>on</strong> a Lorentz-c<strong>on</strong>tracted nucleus and<br />

their moti<strong>on</strong> is very slow compared to the collisi<strong>on</strong> time<br />

scale. Thus we treat them altogether as a static color source<br />

<strong>on</strong> a transverse disk ρ a (x⊥). We also assume that ρ a can<br />

be taken as random reflect<strong>in</strong>g the unpredictable c<strong>on</strong>figurati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> colored c<strong>on</strong>stituents at the moment <str<strong>on</strong>g>of</str<strong>on</strong>g> collisi<strong>on</strong>. On<br />

the other hand, with <strong>in</strong>creas<strong>in</strong>g energy (corresp<strong>on</strong>d<strong>in</strong>g to<br />

go<strong>in</strong>g to smaller x), glu<strong>on</strong>s with smaller x are successively<br />

created. Then, small x c<strong>on</strong>stituents (mostly glu<strong>on</strong>s) are collectively<br />

described as a coherent radiati<strong>on</strong> field A a µ created<br />

Figure 2: Emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> CGC at high energies. With <strong>in</strong>creas<strong>in</strong>g<br />

energies (from left to right), multi-glu<strong>on</strong> producti<strong>on</strong><br />

occurs, which eventually leads to high-density saturated<br />

glu<strong>on</strong> matter, CGC.<br />

by the color source ρ a . Namely, we treat<br />

(DνF νµ ) a = J µ , J µ = δ µ+ δ(x − )ρ a (x⊥) , (1)<br />

where J µ is the current <strong>in</strong>duced by a fast-mov<strong>in</strong>g color<br />

charge distributi<strong>on</strong> ρ a (x⊥) (its trajectory is taken as x − =<br />

(z −vt)/ √ 2 = 0 when v ≃ c) and F a µν = ∂µA a ν −∂νA a µ −<br />

gf abc A b µA b ν is the field strength. The coherent glu<strong>on</strong> field<br />

A a µ is a n<strong>on</strong>-Abelian analog <str<strong>on</strong>g>of</str<strong>on</strong>g> the Weizsäcker-Williams<br />

field (or the boosted Coulomb field) <str<strong>on</strong>g>of</str<strong>on</strong>g> a mov<strong>in</strong>g electric<br />

charge. Hence, the collid<strong>in</strong>g nuclei at high energies are<br />

necessarily accompanied by str<strong>on</strong>g glu<strong>on</strong> fields.<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s <strong>in</strong> CGC have relatively large transverse<br />

momentum called the saturati<strong>on</strong> momentum, Qs ≫ ΛQCD<br />

which corresp<strong>on</strong>ds to (the <strong>in</strong>verse <str<strong>on</strong>g>of</str<strong>on</strong>g>) a typical transverse<br />

‘size’ <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s when they fill up the transverse nuclear<br />

disk (see Fig. 2). One can compute <strong>in</strong> QCD the energy (or<br />

x) and atomic mass number A dependences <str<strong>on</strong>g>of</str<strong>on</strong>g> Qs as<br />

Q 2 s(x, A) ∝ A 1/3 (1/x) λ , λ ≃ 0.3 , (2)<br />

which is <strong>in</strong>deed c<strong>on</strong>sistent with the x and A dependences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experimentally determ<strong>in</strong>ed Qs. One expects Q 2 s ∼ 1 GeV<br />

at RHIC ( √ sNN = 200 GeV, Au), while it <strong>in</strong>creases by a<br />

factor 3 at LHC ( √ sNN = 5.5 TeV, Pb). Note also that<br />

1/Qs corresp<strong>on</strong>ds to the correlati<strong>on</strong> length <strong>on</strong> the trans-<br />

verse disk with the correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two glu<strong>on</strong>s roughly given<br />

by ∼ e−Q2s r2 ⊥. This means that the color field is regarded<br />

as correlated/ordered with<strong>in</strong> this correlati<strong>on</strong> length.<br />

One can roughly estimate the field strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the CGC.<br />

When the CGC is realized, n<strong>on</strong>l<strong>in</strong>earity <strong>in</strong> the Yang-Mills<br />

theory is crucial. For example, the field strength F a µν c<strong>on</strong>ta<strong>in</strong>s<br />

both ∂A and gAA terms, and these two become <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the same magnitude ∂A ∼ gAA <strong>in</strong> the CGC. S<strong>in</strong>ce the<br />

typical momentum scale <strong>in</strong> CGC is given by Qs, <strong>on</strong>e f<strong>in</strong>ds<br />

A ∼ Qs/g that yields very str<strong>on</strong>g color electric (E) and<br />

magnetic (B) fields: E, B ∼ Q2 s/g.


Figure 3: Flux tube structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the glasma<br />

What is glasma?<br />

It is now obvious that the high-energy HIC should be described<br />

as a collisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two CGC’s. In the center-<str<strong>on</strong>g>of</str<strong>on</strong>g>-mass<br />

frame (see Fig. 1, left), the current <strong>in</strong> eq. (1) is replaced by<br />

J µ = δ µ+ δ(x − )ρ1(x⊥) + δ µ− δ(x + )ρ2(x⊥) with ρ1 (ρ2)<br />

be<strong>in</strong>g a color source <str<strong>on</strong>g>of</str<strong>on</strong>g> the right (left) mov<strong>in</strong>g nucleus 1 (2).<br />

After the collisi<strong>on</strong> at t = z = 0, two nuclei receed from<br />

each other still at very high speed, but there appears a highenergy-density<br />

matter <strong>in</strong> between these two. This matter<br />

is predom<strong>in</strong>antly made <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s reflect<strong>in</strong>g the CGC state<br />

before collisi<strong>on</strong> and we expect it to evolve towards QGP.<br />

This transiti<strong>on</strong>al state is now called the ‘glasma’ (= glass<br />

+ plasma) [12]. We describe the very early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> time<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the glasma by solv<strong>in</strong>g source free Yang-Mills<br />

equati<strong>on</strong>s <strong>in</strong> the forward light c<strong>on</strong>e, with the <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong><br />

specified by the CGC fields <str<strong>on</strong>g>of</str<strong>on</strong>g> each nucleus. In short,<br />

the glasma is a weakly-coupled 4 str<strong>on</strong>g Yang-Mills field<br />

that exhibits quite n<strong>on</strong>trivial time evoluti<strong>on</strong> towards QGP<br />

due to n<strong>on</strong>l<strong>in</strong>ear <strong>in</strong>teracti<strong>on</strong>s.<br />

Flux tube structure <strong>in</strong> glasma<br />

Let us discuss a characteristic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the glasma.<br />

Before the collisi<strong>on</strong>, each CGC has purely transverse 5 E i<br />

and B i that are orthog<strong>on</strong>al to each other E · B = E⊥ · B⊥ =<br />

0. However, just after the collisi<strong>on</strong>, the field strength suddenly<br />

becomes purely l<strong>on</strong>gitud<strong>in</strong>al [12]. Indeed, the zcomp<strong>on</strong>ents<br />

at t = 0 + are given by<br />

E z | τ=0 + = −ig[α i 1, α i 2], B z | τ=0 + = igϵij[α i 1, α j<br />

2 ] , (3)<br />

with α1,2 be<strong>in</strong>g the CGC fields <strong>in</strong> matrix representati<strong>on</strong><br />

αi = α a i T a , while all the transverse comp<strong>on</strong>ents are vanish<strong>in</strong>g.<br />

Notice that the glu<strong>on</strong> field just after the collisi<strong>on</strong> is<br />

completely determ<strong>in</strong>ed by the CGC fields. In other words,<br />

CGC provides the <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> HIC’s. This also<br />

implies that the glasma field is <strong>in</strong>itially very str<strong>on</strong>g and the<br />

l<strong>on</strong>gitud<strong>in</strong>al color electromagnetic fields E z and B z are <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the order <str<strong>on</strong>g>of</str<strong>on</strong>g> Q 2 s/g, the same order as those <str<strong>on</strong>g>of</str<strong>on</strong>g> the CGC<br />

fields. Some comments are <strong>in</strong> order:<br />

4 Recall that most <str<strong>on</strong>g>of</str<strong>on</strong>g> the glu<strong>on</strong>s <strong>in</strong> CGC have momenta around Qs,<br />

and Qs <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g energy. Thus, <strong>on</strong>e can treat the CGC <strong>in</strong><br />

weak-coupl<strong>in</strong>g technique αs(Qs) ≪ 1. This is true for the glasma, too.<br />

5 Only the x and y-comp<strong>on</strong>ents are n<strong>on</strong>zero, i.e., E i = (E x , E y , 0).<br />

Figure 4: Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> color flux tubes.<br />

• In the high-energy limit, there is no z-dependence 6 <strong>in</strong><br />

the l<strong>on</strong>gitud<strong>in</strong>al fields E z and B z , reflect<strong>in</strong>g the fact<br />

that the CGC is c<strong>on</strong>tracted to an <strong>in</strong>f<strong>in</strong>itly th<strong>in</strong> disk.<br />

• The l<strong>on</strong>gitud<strong>in</strong>al fields are correlated <strong>on</strong> the transverse<br />

plane with<strong>in</strong> the length scale 1/Qs, reflect<strong>in</strong>g the random<br />

c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the color source <strong>on</strong> the disk.<br />

• S<strong>in</strong>ce both E z and B z are <strong>in</strong> general n<strong>on</strong>zero, the product<br />

is n<strong>on</strong>vanish<strong>in</strong>g E · B ̸= 0, suggest<strong>in</strong>g the (local)<br />

emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>zero topological charge.<br />

The first two imply that the glasma has a flux tube structure<br />

as shown <strong>in</strong> Fig. 3. Unlike the color flux tube c<strong>on</strong>nect<strong>in</strong>g<br />

a quark and an antiquark, the glasma flux tube can have a<br />

magnetic field <strong>in</strong> it. In fact, even a purely magnetic flux<br />

tube is possible if <strong>on</strong>e takes appropriate color structure <strong>in</strong><br />

eq. (3). Of course, a purely electric flux tube is also possible.<br />

The third comment is related to the chiral magnetic effects<br />

discussed <strong>in</strong> the previous secti<strong>on</strong>. The glasma allows<br />

local fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the topological charge, which could be<br />

measured with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g magnetic fields.<br />

As far as the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the fields at the classical level<br />

is c<strong>on</strong>cerned, both the electric and magnetic flux tubes<br />

show the same behavior because the electric-magnetic duality<br />

holds <strong>in</strong> the forward light-c<strong>on</strong>e where there is no color<br />

charge [13] (see also [14]). The flux tube expands rapidly<br />

towards transverse directi<strong>on</strong>s just like the fields <strong>in</strong> the ord<strong>in</strong>ary<br />

electrodynamics. This is because the glasma is a<br />

perturbative object without the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>f<strong>in</strong>ement. On<br />

the other hand, behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s around the classical<br />

c<strong>on</strong>figurati<strong>on</strong> are drastically different <strong>in</strong> the electric and<br />

magnetic flux tubes, as we will see below.<br />

Towards QGP<br />

If the <strong>in</strong>itial glasma field has no z dependence as ideally<br />

realized <strong>in</strong> the high-energy limit (see the first comment<br />

above), it never acquires n<strong>on</strong>trivial pz dependences<br />

after all. This means that the glasma cannot reach thermal<br />

equilibrium (even isotropizati<strong>on</strong>) which does not have<br />

any preference <strong>on</strong> spatial directi<strong>on</strong>s. This is a serious problem<br />

<strong>in</strong> the CGC-glasma descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the heavy-i<strong>on</strong> collisi<strong>on</strong>.<br />

This problem has not been fully resolved, but recently<br />

6 Precisely, this should be the η dependence where η is the coord<strong>in</strong>ate<br />

rapidity, but physically it is the same as the z dependence.


many <strong>in</strong>terest<strong>in</strong>g phenomena were found <strong>in</strong> the dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the glasma, which we expect relevant for thermalizati<strong>on</strong>.<br />

In particular, it turned out that the behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s<br />

<strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> electric or magnetic flux tubes are very<br />

important. Note that there always appear quantum fluctuati<strong>on</strong>s<br />

even though the glasma field is c<strong>on</strong>stant <strong>in</strong> the zdirecti<strong>on</strong><br />

at the classical level.<br />

Magnetic flux tube: Nielsen-Olesen <strong>in</strong>stability<br />

C<strong>on</strong>sider small fluctuati<strong>on</strong>s <strong>in</strong> a s<strong>in</strong>gle magnetic flux<br />

tube [13, 14, 15]. One can simplify the situati<strong>on</strong> by c<strong>on</strong>sider<strong>in</strong>g<br />

fluctuati<strong>on</strong>s <strong>in</strong> a c<strong>on</strong>stant magnetic field <strong>in</strong> an expand<strong>in</strong>g<br />

coord<strong>in</strong>ate system. This problem has been discussed<br />

<strong>in</strong> the Cartesian coord<strong>in</strong>ates l<strong>on</strong>g time ago, and it is<br />

known that the c<strong>on</strong>stant color magnetic field undergoes the<br />

Nielsen-Olesen <strong>in</strong>stability[16]. This is <strong>in</strong>deed the case even<br />

<strong>in</strong> an expand<strong>in</strong>g coord<strong>in</strong>ate system (see Fig. 4). Fluctuati<strong>on</strong>s<br />

a(x⊥, z) with n<strong>on</strong>trivial z-dependence can grow exp<strong>on</strong>entially<br />

due to n<strong>on</strong>l<strong>in</strong>ear <strong>in</strong>teracti<strong>on</strong>s <strong>in</strong> the Yang-Mills<br />

theory:<br />

√<br />

gBz τ<br />

a(x⊥, z) ∝ e , (4)<br />

where τ is the propertime and B z is the str<strong>on</strong>g color magnetic<br />

field <strong>in</strong> a flux tube B z ∼ Q 2 s/g. S<strong>in</strong>ce Qs is large<br />

at high energy, the time scale for the fluctuati<strong>on</strong> to grow<br />

is very rapid 1/ √ gB z ∼ 1/Qs. Obviously, this k<strong>in</strong>d<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong> must c<strong>on</strong>tribute to drive the system towards<br />

isotropizati<strong>on</strong>. Note that this picture is c<strong>on</strong>sistent with the<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> numerical simulati<strong>on</strong>s [17]. The Nielsen-Olesen<br />

<strong>in</strong>stability has been reexam<strong>in</strong>ed <strong>in</strong> a box (<strong>in</strong> the Cartesian<br />

coord<strong>in</strong>ates) with the <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong> similar to the<br />

CGC [18], where a sec<strong>on</strong>dary <strong>in</strong>stability was found to occur<br />

as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the enhanced fluctuati<strong>on</strong>s.<br />

Electric flux tube: Schw<strong>in</strong>ger mechanism<br />

A completely different phenomen<strong>on</strong> occurs <strong>in</strong> an electric<br />

flux tube. Recall that glu<strong>on</strong>s are massless, and that<br />

light quarks have small masses compared to the strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the color electric field <strong>in</strong> the glasma √ gE z ∼ Qs.<br />

Then, producti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s or q¯q pairs are possible <strong>in</strong> the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a glasma field, which is the QCD versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Schw<strong>in</strong>ger mechanism <strong>in</strong> QED (see Fig. 4). In fact,<br />

Schw<strong>in</strong>ger mechanism <strong>in</strong> QCD has been discussed as <strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the plausible mechanisms for thermalizati<strong>on</strong> <strong>in</strong> HIC’s.<br />

But recently, this problem acquires renewed <strong>in</strong>terests <strong>in</strong><br />

view <str<strong>on</strong>g>of</str<strong>on</strong>g> the glasma. As discussed <strong>in</strong> [19, 20], this effects<br />

could c<strong>on</strong>tribute to thermalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the glasma s<strong>in</strong>ce the<br />

created charged particles will be accelerated <strong>in</strong> the color<br />

electric field to obta<strong>in</strong> n<strong>on</strong>trivial pz dependence. Once<br />

pairs are created, the external color electric field will be<br />

screened. It is possible to <strong>in</strong>clude such k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘backreacti<strong>on</strong>’<br />

<strong>in</strong>to the calculati<strong>on</strong> to see the time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

whole system made <str<strong>on</strong>g>of</str<strong>on</strong>g> particles and the background field<br />

[19]. It is also <strong>in</strong>terest<strong>in</strong>g to evaluate the Schw<strong>in</strong>ger mechanism<br />

<strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic field. In this case, the<br />

lowest Landau level <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks become ‘massless’ and we<br />

expect large enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> quark pair producti<strong>on</strong>s [21].<br />

SUMMARY<br />

In this talk, I discussed the importance and <strong>in</strong>terest<strong>in</strong>g aspects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g field dynamics <strong>in</strong> HIC’s. There are two<br />

different str<strong>on</strong>g fields, i.e., str<strong>on</strong>g electromagnetic fields<br />

and str<strong>on</strong>g Yang-Mills fields, and we can enjoy rich phenomena<br />

caused by them, <strong>in</strong>clud<strong>in</strong>g the <strong>in</strong>terplay between<br />

these two. I hope many people get <strong>in</strong>terested <strong>in</strong> this subject,<br />

and participate <strong>in</strong> the reaseach.<br />

The topics discussed <strong>in</strong> my talk are already broad, but <strong>in</strong><br />

fact there are still many problems left unsolved <strong>in</strong> relati<strong>on</strong><br />

to the physics <str<strong>on</strong>g>of</str<strong>on</strong>g> HIC’s. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the important problems<br />

which I did not touch <strong>in</strong> this talk is the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> ord<strong>in</strong>ary<br />

magnetic fields <strong>on</strong> the phase transiti<strong>on</strong> dynamics <strong>in</strong><br />

QCD. It is discussed that the chiral symmetry break<strong>in</strong>g is<br />

affected by the external magnetic field. Also important is<br />

the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recent development <strong>on</strong> the QED cascade<br />

discussed <strong>in</strong> [22] to QCD. This would be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the ideal<br />

subjects for the collaborati<strong>on</strong> between different fields.<br />

REFERENCES<br />

[1] Follow the l<strong>in</strong>k “45 tesla” <strong>in</strong> the “World Records” page:<br />

http://www.magnet.fsu.edu/mediacenter/factsheets/records.html<br />

[2] G. Dunne, <strong>in</strong> these proceed<strong>in</strong>gs.<br />

[3] K. Kohri, <strong>in</strong> these proceed<strong>in</strong>gs.<br />

[4] K. Makishima, <strong>in</strong> these proceed<strong>in</strong>gs.<br />

[5] D. E. Kharzeev, L. D. McLerran and H. J. Warr<strong>in</strong>ga, Nucl.<br />

Phys. A 803 (2008) 227 [arXiv:0711.0950 [hep-ph]].<br />

[6] V. Skokov, A. Y. Illari<strong>on</strong>ov and V. T<strong>on</strong>eev, Int. J. Mod. Phys.<br />

A 24 (2009) 5925 [arXiv:0907.1396 [nucl-th]].<br />

[7] K. Tuch<strong>in</strong>, Phys. Rev. C 82 (2010) 034904 [arXiv:1006.3051<br />

[nucl-th]].<br />

[8] G. Baur, K. Hencken and D. Trautmann, J. Phys. G 24 (1998)<br />

1657 [arXiv:hep-ph/9804348].<br />

[9] K. Tuch<strong>in</strong>, arXiv:1008.1604 [nucl-th].<br />

[10] K. Fukushima, <strong>in</strong> these proceed<strong>in</strong>gs.<br />

[11] For a recent review, see F. Gelis, E. Iancu, J. Jalilian-<br />

Marian and R. Venugopalan, “The Color Glass C<strong>on</strong>densate,”<br />

arXiv:1002.0333 [hep-ph].<br />

[12] T. Lappi and L. McLerran, Nucl. Phys. A772 (2006) 200.<br />

[13] H. Fujii and K. Itakura, Nucl. Phys. A809 (2008) 88.<br />

[14] H. Fujii, <strong>in</strong> these proceed<strong>in</strong>gs.<br />

[15] A. Iwazaki, Prog. Theor. Phys. 121 (2009) 809<br />

[arXiv:0803.0188 [hep-ph]].<br />

[16] N. K. Nielsen and P. Olesen, Nucl. Phys. B144 (1978) 376,<br />

S. J. Chang and N. Weiss, Phys. Rev. D20 (1979) 869.<br />

[17] P. Romatschke and R. Venugopalan, Phys. Rev. Lett. 96<br />

(2006) 062302; Phys. Rev. D 74 (2006) 045011.<br />

[18] H. Fujii, K. Itakura and A. Iwazaki, Nucl. Phys. A 828<br />

(2009) 178 [arXiv:0903.2930 [hep-ph]].<br />

[19] N. Tanji, <strong>in</strong> these proceed<strong>in</strong>gs.<br />

[20] A. Iwazaki, <strong>in</strong> these proceed<strong>in</strong>gs.<br />

[21] Y. Hidaka, <strong>in</strong> these proceed<strong>in</strong>gs.<br />

[22] H. Ruhl and N. Elk<strong>in</strong>a, <strong>in</strong> these proceed<strong>in</strong>gs.


Abstract<br />

Yoctosec<strong>on</strong>d phot<strong>on</strong> pulse generati<strong>on</strong> <strong>in</strong> heavy i<strong>on</strong> collisi<strong>on</strong>s<br />

Heavy i<strong>on</strong> collisi<strong>on</strong>s at RHIC and at the LHC can create<br />

the quark-glu<strong>on</strong> plasma, a state <str<strong>on</strong>g>of</str<strong>on</strong>g> matter at very high<br />

temperatures. Am<strong>on</strong>g a plethora <str<strong>on</strong>g>of</str<strong>on</strong>g> particles that are produced<br />

<strong>in</strong> these collisi<strong>on</strong>s, also light is emitted throughout<br />

the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma.<br />

In this talk, the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> this light are discussed and<br />

related to recent efforts towards shorter and more energetic<br />

phot<strong>on</strong> pulses <strong>in</strong> laser physics. In particular, the time evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> high-energy phot<strong>on</strong>s is studied. These phot<strong>on</strong>s<br />

orig<strong>in</strong>ate from Compt<strong>on</strong> scatter<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s and quarkantiquark<br />

annihilati<strong>on</strong> <strong>in</strong> the plasma. Due to the <strong>in</strong>ternal<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma, double pulses at the yoctosec<strong>on</strong>d<br />

time scale can be generated under certa<strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s. Such<br />

double pulses may be utilized for novel pump-probe experiments<br />

at nuclear time scales.<br />

INTRODUCTION<br />

The year 2010 marks the fiftieth anniversary <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>venti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the laser. S<strong>in</strong>ce its <strong>in</strong>venti<strong>on</strong>, not <strong>on</strong>ly did the<br />

<strong>in</strong>tensity steadily <strong>in</strong>crease, but also the pulse durati<strong>on</strong> became<br />

shorter and shorter. In fact, pulse durati<strong>on</strong> and <strong>in</strong>tensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> lasers (or derived coherent radiati<strong>on</strong> bursts) turn<br />

out to be correlated over a large range <str<strong>on</strong>g>of</str<strong>on</strong>g> energies and time<br />

scales [1]. This observati<strong>on</strong> provides a good motivati<strong>on</strong> to<br />

present at a c<strong>on</strong>ference <strong>on</strong> <strong>Physics</strong> <strong>in</strong> Intense Fields (PIF<br />

2010) a study <str<strong>on</strong>g>of</str<strong>on</strong>g> the shortest possible light flashes that can<br />

be produced <strong>in</strong> experiments, which is heavy i<strong>on</strong> collisi<strong>on</strong>s<br />

that produce the quark-glu<strong>on</strong> plasma (QGP) [2].<br />

A few selected milest<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> short<br />

laser pulses are depicted <strong>in</strong> Fig. 1. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> the time scales<br />

has enabled to access new systems: At the picosec<strong>on</strong>d<br />

to femtosec<strong>on</strong>d timescale, femtochemistry allows for the<br />

time-resolved study <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical reacti<strong>on</strong>s [3]. For pumpprobe<br />

spectroscopy, it is essential to have two short pulses<br />

<strong>in</strong> close successi<strong>on</strong>: The first laser pulse triggers a chemical<br />

reacti<strong>on</strong>, which may <strong>in</strong>volve an excited state and various<br />

short-lived transiti<strong>on</strong>s, while the sec<strong>on</strong>d pulse takes a<br />

snapshot <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>termediate state. By vary<strong>in</strong>g the <strong>in</strong>terval<br />

between the two pulses, the time-evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a chemical<br />

reacti<strong>on</strong> can be studied.<br />

At shorter timescales, attosec<strong>on</strong>d science is the w<strong>in</strong>dow<br />

to captur<strong>in</strong>g electr<strong>on</strong> moti<strong>on</strong> <strong>in</strong> molecules and atoms [4].<br />

High-order harm<strong>on</strong>ics <str<strong>on</strong>g>of</str<strong>on</strong>g> femtosec<strong>on</strong>d laser radiati<strong>on</strong> have<br />

been shown to be sources <str<strong>on</strong>g>of</str<strong>on</strong>g> tra<strong>in</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> attosec<strong>on</strong>d extremeultraviolet<br />

pulses [5] that can be used to produce s<strong>in</strong>gle<br />

attosec<strong>on</strong>d s<str<strong>on</strong>g>of</str<strong>on</strong>g>t X-ray pulses [6]. For example, such s<strong>in</strong>gle<br />

attosec<strong>on</strong>d X-ray bursts [7] have applicati<strong>on</strong>s <strong>in</strong> molec-<br />

∗ ipp@hep.itp.tuwien.ac.at<br />

A. Ipp ∗ , Vienna University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Austria<br />

Pulse durati<strong>on</strong><br />

ns<br />

ps<br />

fs<br />

as<br />

zs<br />

ys<br />

Nd:glass<br />

CW Dye<br />

CPM<br />

Compressi<strong>on</strong><br />

HHG<br />

Ti:sapphire<br />

QGP<br />

1960 1970 1980 1990 2000 2010 2020<br />

Figure 1: History <str<strong>on</strong>g>of</str<strong>on</strong>g> laser pulse durati<strong>on</strong>. Marked are<br />

selected milest<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> technologies that allowed to decrease<br />

the laser pulse durati<strong>on</strong>, like Neodymium glass laser<br />

(Nd:glass), C<strong>on</strong>t<strong>in</strong>uous Wave Dye laser (CW Dye), Collid<strong>in</strong>g<br />

Pulse-Mode locked dye laser (CPM), Titanium sapphire<br />

laser (Ti:sapphire), or High-Harm<strong>on</strong>ic Generati<strong>on</strong><br />

(HHG). For comparis<strong>on</strong>, also the lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> the Quark<br />

Glu<strong>on</strong> Plasma (QGP) is <strong>in</strong>dicated as it is produced nowadays<br />

<strong>in</strong> heavy i<strong>on</strong> colliders like RHIC or LHC.<br />

ular imag<strong>in</strong>g [8], quantum c<strong>on</strong>trol [9], or Raman spectroscopy<br />

[10]. By <strong>in</strong>troduc<strong>in</strong>g a c<strong>on</strong>trolled delay between<br />

two such peaks, the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> systems could be<br />

studied us<strong>in</strong>g pump-probe techniques [6]. Such techniques<br />

also allow for the direct time resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many-body dynamics,<br />

like the observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dress<strong>in</strong>g process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

charged particles [11]. In the zeptosec<strong>on</strong>d regime, nuclear<br />

processes may become accessible [12]. It has been suggested<br />

that zeptosec<strong>on</strong>d pulses could be created via n<strong>on</strong>l<strong>in</strong>ear<br />

Thoms<strong>on</strong> backscatter<strong>in</strong>g [13, 14], or by employ<strong>in</strong>g relativistic<br />

laser-plasma <strong>in</strong>teracti<strong>on</strong>s [15, 16], A possible detecti<strong>on</strong><br />

scheme for the characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> short γ-ray pulses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> MeV to GeV energy phot<strong>on</strong>s down to the zeptosec<strong>on</strong>d<br />

scale has been proposed <strong>in</strong> Ref. [17].<br />

At even shorter timescales, double pulses <str<strong>on</strong>g>of</str<strong>on</strong>g> yoctosec<strong>on</strong>d<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> GeV phot<strong>on</strong> energy could be created from the<br />

quark-glu<strong>on</strong> plasma <strong>in</strong> n<strong>on</strong>-central heavy i<strong>on</strong> collisi<strong>on</strong>s [2].<br />

It turns out that the emissi<strong>on</strong> envelope can depend str<strong>on</strong>gly<br />

<strong>on</strong> the <strong>in</strong>ternal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the QGP. Under certa<strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s,<br />

a double peak structure <strong>in</strong> the emissi<strong>on</strong> envelope<br />

may be observed. This could be the first source for pumpprobe<br />

experiments at the yoctosec<strong>on</strong>d timescale. The delay<br />

between the peaks is directly related to the isotropizati<strong>on</strong><br />

time, and the relative height between the peaks can be<br />

shaped by vary<strong>in</strong>g phot<strong>on</strong> energy and emissi<strong>on</strong> angle. Such<br />

pulses could be utilized, for example, to resolve dynamics<br />

<strong>on</strong> the nuclear timescale such as that <str<strong>on</strong>g>of</str<strong>on</strong>g> bary<strong>on</strong> res<strong>on</strong>ances<br />

[18]. C<strong>on</strong>versely, a time-resolved study <str<strong>on</strong>g>of</str<strong>on</strong>g> the emit-


ted phot<strong>on</strong>s could provide a w<strong>in</strong>dow to the <strong>in</strong>ternal QGP<br />

dynamics throughout its expansi<strong>on</strong>.<br />

QGP PHOTON PRODUCTION<br />

The Large Hadr<strong>on</strong> Collider (LHC) at CERN has begun<br />

its heavy-i<strong>on</strong> program <strong>in</strong> November 2010 [19], just a<br />

few weeks before the PIF 2010 c<strong>on</strong>ference. With center<str<strong>on</strong>g>of</str<strong>on</strong>g>-mass<br />

energies <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.76 TeV per nucle<strong>on</strong>, the collisi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> lead i<strong>on</strong>s produce hotter and denser plasmas than previously<br />

achievable at the Relativistic Heavy I<strong>on</strong> Collider<br />

(RHIC), where gold i<strong>on</strong>s were used. The temperatures<br />

reached <strong>in</strong> these collisi<strong>on</strong>s are so high that the c<strong>on</strong>stituents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> atomic nuclei, the neutr<strong>on</strong>s and prot<strong>on</strong>s, are split <strong>in</strong>to<br />

their c<strong>on</strong>stituents, the quarks and glu<strong>on</strong>s. The <strong>in</strong>terest <strong>in</strong><br />

the QGP stems not least from the fact that it is believed to<br />

have filled the entire universe dur<strong>in</strong>g the first few microsec<strong>on</strong>ds<br />

after the Big Bang.<br />

In heavy-i<strong>on</strong> collisi<strong>on</strong>s, the QGP is produced up to the<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> a nucleus (∼ 15 fm) for a durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a few tens <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

yoctosec<strong>on</strong>ds (1 ys = 10 −24 s). The plasma is produced<br />

<strong>in</strong>itially <strong>in</strong> a very anisotropic state, and reaches a hydrodynamic<br />

evoluti<strong>on</strong> through <strong>in</strong>ternal <strong>in</strong>teracti<strong>on</strong>s <strong>on</strong>ly after<br />

some isotropizati<strong>on</strong> timeτiso (see Fig. 2). Am<strong>on</strong>g the many<br />

particles that are produced, also phot<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a few GeV energy<br />

are emitted [20, 21].<br />

It was <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the early surprises that the observed particle<br />

spectra turned out to agree well with ideal hydrodynamical<br />

model predicti<strong>on</strong>s [22]. This led to the <strong>in</strong>itial assumpti<strong>on</strong><br />

that isotropizati<strong>on</strong> times may be as low as τiso ≈ 1 ys.<br />

However, it has been po<strong>in</strong>ted out <strong>in</strong> the mean-time that viscous<br />

hydrodynamic models are still c<strong>on</strong>sistent with RHIC<br />

data if isotropizati<strong>on</strong> times as large as τiso ≈ 7 ys are assumed<br />

[23], even if the expansi<strong>on</strong> before isotropizati<strong>on</strong><br />

is assumed to be collisi<strong>on</strong>less (“free stream<strong>in</strong>g”). This<br />

should be compared to the lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> the QGP, which could<br />

amount to 15 ys at RHIC, and which could be as large as<br />

25 ys at LHC.<br />

Figure 2(a-c) shows a schematic view <str<strong>on</strong>g>of</str<strong>on</strong>g> the collisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

two heavy i<strong>on</strong>s. The i<strong>on</strong>s are illustrated as relativistically<br />

c<strong>on</strong>tracted pancakes. In general, two i<strong>on</strong>s will not collide<br />

head-<strong>on</strong>-head, but will be displaced by an impact parameter<br />

b. Direct phot<strong>on</strong>s are emitted from the expand<strong>in</strong>g QGP<br />

throughout its lifetime [24]. The energy spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

emitted phot<strong>on</strong>s extends to the GeV range, and the upper<br />

limit for the temporal durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the GeV phot<strong>on</strong> pulse is<br />

determ<strong>in</strong>ed by the expansi<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the QGP, which<br />

leads to yoctosec<strong>on</strong>d pulses. At the <strong>in</strong>itial stage <str<strong>on</strong>g>of</str<strong>on</strong>g> the collisi<strong>on</strong>,<br />

even before the plasma is created, prompt phot<strong>on</strong>s are<br />

emitted from nucle<strong>on</strong>-nucle<strong>on</strong> collisi<strong>on</strong>s <strong>in</strong> all directi<strong>on</strong>s,<br />

see Figs. 2(a) and (d). For an <strong>in</strong>termediate time after the<br />

collisi<strong>on</strong> shown <strong>in</strong> Fig.2(b), a momentum anisotropy occurs<br />

due to the l<strong>on</strong>gitud<strong>in</strong>al expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma: Those<br />

particles that orig<strong>in</strong>ally had momentum comp<strong>on</strong>ents <strong>in</strong> forward<br />

or backward directi<strong>on</strong> al<strong>on</strong>g the beam axis leave the<br />

central regi<strong>on</strong> quickly, so that ma<strong>in</strong>ly particles with transverse<br />

momenta rema<strong>in</strong> <strong>in</strong> the plasma. High-energy pho-<br />

Figure 2: Early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> a high-energy collisi<strong>on</strong>, <strong>in</strong>volv<strong>in</strong>g<br />

pre-equilibrium (first two columns) and equilibrated<br />

QGP phases (last column). Parts (a)-(c) show three snapshots<br />

<strong>in</strong> time <strong>in</strong> positi<strong>on</strong> space. Shown are the two relativistically<br />

c<strong>on</strong>tracted collid<strong>in</strong>g i<strong>on</strong>s that create the quarkglu<strong>on</strong><br />

plasma <strong>in</strong> the overlap regi<strong>on</strong>. Curly arrows denote<br />

phot<strong>on</strong> emissi<strong>on</strong> and semicircles the detectors. Parts<br />

(d)-(f) are corresp<strong>on</strong>d<strong>in</strong>g pictorial representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

plasma <strong>in</strong> momentum space. In an <strong>in</strong>termediate stage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the pre-equilibrium phase, the momentum distributi<strong>on</strong> is<br />

anisotropic, result<strong>in</strong>g <strong>in</strong> a change <strong>in</strong> the angular phot<strong>on</strong><br />

emissi<strong>on</strong> pattern that can give rise to double-peaked phot<strong>on</strong><br />

pulses [2].<br />

t<strong>on</strong>s that are created <strong>in</strong> the plasma through Compt<strong>on</strong> scatter<strong>in</strong>g<br />

or quark-antiquark annihilati<strong>on</strong> carry preferentially<br />

the momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> the orig<strong>in</strong>al participants <str<strong>on</strong>g>of</str<strong>on</strong>g> the collisi<strong>on</strong>.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the momentum anisotropy <str<strong>on</strong>g>of</str<strong>on</strong>g> the quarks and<br />

glu<strong>on</strong>s with<strong>in</strong> the plasma, also the emitted phot<strong>on</strong>s are preferentially<br />

emitted perpendicular to the beam axis z, as <strong>in</strong>dicated<br />

<strong>in</strong> Fig. 2(e). F<strong>in</strong>ally, <strong>in</strong> Fig. 2(c), the system had<br />

time to isotropize due to collisi<strong>on</strong>s with<strong>in</strong> the plasma. The<br />

phot<strong>on</strong>s will be emitted aga<strong>in</strong> <strong>in</strong> all directi<strong>on</strong>s, as shown<br />

<strong>in</strong> Fig. 2(f), particularly also <strong>in</strong>to the directi<strong>on</strong> <strong>in</strong> which<br />

the phot<strong>on</strong> emissi<strong>on</strong> was suppressed dur<strong>in</strong>g the anisotropic<br />

stage.<br />

A phot<strong>on</strong> detector placed towards the beam axis would<br />

therefore measure a time-dependent phot<strong>on</strong> flux. Ideally, <strong>in</strong><br />

the <strong>in</strong>termediate stage <strong>in</strong> Fig. 2(e), the phot<strong>on</strong> emissi<strong>on</strong> <strong>in</strong><br />

the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the detector is suppressed highly enough, so<br />

that the phot<strong>on</strong>s emitted <strong>in</strong> the stages Fig. 2(d) and Fig. 2(f)<br />

are dist<strong>in</strong>ct enough <strong>in</strong> time to form two separate phot<strong>on</strong><br />

pulses. In order to quantitatively describe the pulse envelope<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the emitted phot<strong>on</strong>s, detailed calculati<strong>on</strong>s are necessary.<br />

Such a calculati<strong>on</strong> has been performed <strong>in</strong> Ref. [2],<br />

which was based <strong>on</strong> a <strong>on</strong>e-dimensi<strong>on</strong>al expansi<strong>on</strong> model<br />

by Bjorken [25]. This model assumes boost-<strong>in</strong>variant evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the quark-glu<strong>on</strong> plasma <strong>in</strong> a central regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

collisi<strong>on</strong>. The detector is placed away from the beam axis<br />

by an angle θ with<strong>in</strong> the reacti<strong>on</strong> plane. Direct phot<strong>on</strong>s <strong>in</strong><br />

the GeV energy range are emitted from the pre-equilibrium<br />

and equilibrated phases <str<strong>on</strong>g>of</str<strong>on</strong>g> the QGP. The lead<strong>in</strong>g c<strong>on</strong>tributi<strong>on</strong><br />

to the phot<strong>on</strong> producti<strong>on</strong> rateR orig<strong>in</strong>ates from quarkglu<strong>on</strong><br />

Compt<strong>on</strong> scatter<strong>in</strong>g and quark-antiquark annihilati<strong>on</strong>.<br />

In pr<strong>in</strong>ciple, higher order s<str<strong>on</strong>g>of</str<strong>on</strong>g>t scatter<strong>in</strong>g processes like


emsstrahlung or <strong>in</strong>elastic pair annihilati<strong>on</strong> would have to<br />

be <strong>in</strong>cluded as well, but their c<strong>on</strong>tributi<strong>on</strong>s become dom<strong>in</strong>ant<br />

<strong>on</strong>ly at lower energies, and are less important at the<br />

higher energies c<strong>on</strong>sidered [26].<br />

For anisotropic momentum distributi<strong>on</strong>s, the phot<strong>on</strong> producti<strong>on</strong><br />

rate R has to be calculated numerically [21]. It<br />

depends <strong>on</strong> the temperature T <str<strong>on</strong>g>of</str<strong>on</strong>g> the medium, the phot<strong>on</strong><br />

energy E and momentum k, the f<strong>in</strong>e structure c<strong>on</strong>stantα,<br />

and the corresp<strong>on</strong>d<strong>in</strong>g quantity for the str<strong>on</strong>g force<br />

αs (with ¯h = c = kB = 1). The rate further depends<br />

<strong>on</strong> the anisotropy, which is described by a parameter<br />

ξ = p2 <br />

2<br />

T / 2 pL − 1 that relates the mean l<strong>on</strong>gitud<strong>in</strong>al<br />

and transverse momenta pL and pT [26, 27]. To <strong>in</strong>tegrate<br />

this rate over time, a time evoluti<strong>on</strong> model for the preequilibrium<br />

and equilibrated QGP has been used [27]. This<br />

model specifies the time evoluti<strong>on</strong> for the energy density<br />

E = E(τ), for the hard scale phard = phard(τ) (which corresp<strong>on</strong>ds<br />

to T <strong>in</strong> the isotropic case), and for the anisotropy<br />

parameter ξ = ξ(τ) as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the proper time τ.<br />

Qualitatively, the model follows the evoluti<strong>on</strong> as outl<strong>in</strong>ed<br />

<strong>in</strong> Fig. 2. For early times, a free stream<strong>in</strong>g phase lets the<br />

anisotropy grow. At late times, the system c<strong>on</strong>verges to<br />

an ideal hydrodynamic phase with vanish<strong>in</strong>g anisotropy.<br />

These two phases are l<strong>in</strong>ked by a smooth transiti<strong>on</strong> which<br />

is c<strong>on</strong>trolled by additi<strong>on</strong>al model parameters. Thermalizati<strong>on</strong><br />

and isotropizati<strong>on</strong> happen c<strong>on</strong>currently <strong>in</strong> this model,<br />

τtherm = τiso. The model is thus able to cover both, the<br />

pre-equilibrium phase and the equilibrated QGP phase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the expand<strong>in</strong>g plasma.<br />

dNdtdΩdas 1 GeV 1 <br />

100 a p2 GeV<br />

80<br />

b0 fm<br />

60 ΘΠ2<br />

40<br />

20<br />

b<br />

p3 GeV<br />

b0 fm<br />

ΘΠ2<br />

20 0 20 20 0 20<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

c Τiso p2 GeV<br />

b9.2 fm<br />

ΘΠ4<br />

4<br />

e p2 GeV<br />

b12.2 fm<br />

ΘΠ8<br />

Τiso 4<br />

d<br />

f<br />

5 p3 GeV<br />

b9.2 fm<br />

Τiso ΘΠ4<br />

20<br />

Τ<br />

p3 GeV<br />

iso<br />

b12.2 fm<br />

ΘΠ8<br />

4<br />

5 0 5 10 155<br />

Τys<br />

0 5 10 15<br />

Figure 3: Phot<strong>on</strong> emissi<strong>on</strong> rate as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> detector<br />

time τ. Solid blue l<strong>in</strong>es show a large isotropizati<strong>on</strong> time<br />

τiso = 6.7 ys while dashed red l<strong>in</strong>es corresp<strong>on</strong>d to a short<br />

isotropizati<strong>on</strong> time τiso = 0.3 ys. Parts (a) and (b) display<br />

emissi<strong>on</strong> at midrapidity (θ = π/2) for a central collisi<strong>on</strong><br />

with impact parameter b = 0. Parts (c)-(f) show<br />

double-peaked phot<strong>on</strong> pulses obta<strong>in</strong>ed for b = 9.2 fm or<br />

12.2 fm, and the vertical dotted l<strong>in</strong>e <strong>in</strong>dicates the positi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the largerτiso = 6.7 ys. In parts (c) and (d), the detector<br />

directi<strong>on</strong> isθ = π/4, <strong>in</strong> (e) and (f), it isθ = π/8 [2].<br />

The numerical parameters suitable for calculat<strong>in</strong>g LHC<br />

parameters are given as follows: The <strong>in</strong>itial temperature<br />

is assumed to be T0 = 845 MeV with a formati<strong>on</strong> time<br />

τ0 = 0.3 ys. The critical temperature, where the QGP<br />

ceases to exist, is taken asTC = 160 MeV. The isotropizati<strong>on</strong><br />

time is varied <strong>in</strong> the range τiso = τ0 to τiso = 6.7 ys,<br />

assum<strong>in</strong>g free-stream<strong>in</strong>g at early times. Both possibilities<br />

are not yet ruled out by RHIC data. In order to ensure<br />

fixed f<strong>in</strong>al multiplicity, the <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong>s are adjusted as<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> τiso such that the same entropy is generated<br />

as forτiso = τ0.<br />

For central collisi<strong>on</strong>s with emissi<strong>on</strong> angle orthog<strong>on</strong>al to<br />

the beam axis (θ = π/2), a typical time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

phot<strong>on</strong> emissi<strong>on</strong> rate is depicted <strong>in</strong> Figs. 3(a) and 3(b). At 2<br />

GeV energy, the phot<strong>on</strong> producti<strong>on</strong> from the QGP at midrapidity<br />

is 3 to 4 times as large as the producti<strong>on</strong> from the<br />

<strong>in</strong>itial collisi<strong>on</strong>s. It is roughly 6 times as large as the producti<strong>on</strong><br />

from the hadr<strong>on</strong> gas [24]. At 3 GeV energy, QGP<br />

phot<strong>on</strong> producti<strong>on</strong> is even 50 times larger than the producti<strong>on</strong><br />

from the hadr<strong>on</strong> gas. In the Figs. 3, the orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

abscissa is the time when a phot<strong>on</strong> emitted from the center<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the collisi<strong>on</strong> arrives at the detector. Phot<strong>on</strong>s arriv<strong>in</strong>g<br />

earlier orig<strong>in</strong>ate from a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the QGP that is closer to the<br />

detector. The pulse shape is ma<strong>in</strong>ly determ<strong>in</strong>ed by the geometry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the lead i<strong>on</strong> with radius7.1 fm. Any structure <strong>on</strong><br />

the yoctosec<strong>on</strong>d timescale is blurred simply by the time for<br />

light to traverse the QGP.<br />

This limit can be overcome <strong>in</strong> the follow<strong>in</strong>g ways: By<br />

c<strong>on</strong>sider<strong>in</strong>g n<strong>on</strong>-central collisi<strong>on</strong>s with impact parameter<br />

b, the physical extent <str<strong>on</strong>g>of</str<strong>on</strong>g> the QGP is reduced. Also, an optimizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the detecti<strong>on</strong> angle can m<strong>in</strong>imize the travel<strong>in</strong>g<br />

time through the plasma. In forward directi<strong>on</strong>, the <strong>in</strong>itial<br />

shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the QGP is Lorentz-c<strong>on</strong>tracted, and light leaves<br />

this <strong>in</strong>itial regi<strong>on</strong> quickly. This is partially spoiled due to<br />

the QGP expansi<strong>on</strong> <strong>in</strong> the same directi<strong>on</strong>. Thus <strong>in</strong>termediate<br />

emissi<strong>on</strong> angles are most promis<strong>in</strong>g for which the QGP<br />

appears partly Lorentz c<strong>on</strong>tracted but does not expand towards<br />

the detector.<br />

Figures 3(c)-3(f) show the phot<strong>on</strong> emissi<strong>on</strong> <strong>in</strong> the directi<strong>on</strong>s<br />

θ = π/4 and θ = π/8. For large impact parameters<br />

b = 9.2 fm and b = 12.2 fm, a strik<strong>in</strong>g double-peak structure<br />

appears. The m<strong>in</strong>imum between the two peaks corresp<strong>on</strong>ds<br />

roughly to maximum anisotropy with<strong>in</strong> the plasma.<br />

This follows from the fact that the phot<strong>on</strong> emissi<strong>on</strong> rate<br />

is suppressed for larger values <str<strong>on</strong>g>of</str<strong>on</strong>g> ξ and smaller values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

θ [26]. The distance between the two peaks is approximately<br />

governed by the isotropizati<strong>on</strong> time τiso, <strong>in</strong>dicated<br />

by the dotted l<strong>in</strong>e <strong>in</strong> Figs. 3(c)-3(f). The first peak corresp<strong>on</strong>ds<br />

to phot<strong>on</strong>s emitted from the blue-shifted approach<strong>in</strong>g<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> the QGP, while the sec<strong>on</strong>d peak corresp<strong>on</strong>ds to<br />

a slightly red-shifted and time-dilated reced<strong>in</strong>g tail <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

plasma. For a short isotropizati<strong>on</strong> time τiso = τ0 (dashed<br />

l<strong>in</strong>es) the separati<strong>on</strong> <strong>in</strong>to two peaks does not occur. Therefore,<br />

this effect depends delicately <strong>on</strong> the QGP dynamics.<br />

There are a couple <str<strong>on</strong>g>of</str<strong>on</strong>g> caveats to this model calculati<strong>on</strong>:<br />

Apart from the phot<strong>on</strong>s orig<strong>in</strong>at<strong>in</strong>g from the QGP, <strong>in</strong> an<br />

actual experiment there is a background <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s from


various sources [28]. These <strong>in</strong>clude phot<strong>on</strong>s produced by a<br />

jet pass<strong>in</strong>g through the QGP [20], and could dom<strong>in</strong>ate the<br />

effect that is expected from the QGP al<strong>on</strong>e. S<strong>in</strong>ce these<br />

phot<strong>on</strong>s are produced <strong>on</strong> a similar yoctosec<strong>on</strong>d timescale,<br />

they would modify the pulse shape <strong>on</strong> this timescale. Phot<strong>on</strong>s<br />

produced from the <strong>in</strong>itial collisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the two i<strong>on</strong>s<br />

can be <str<strong>on</strong>g>of</str<strong>on</strong>g> comparable size <strong>in</strong> <strong>in</strong>tensity, but they would<br />

<strong>on</strong>ly enhance the first peak <str<strong>on</strong>g>of</str<strong>on</strong>g> the double peaks depicted<br />

<strong>in</strong> Fig. 3(c)-3(f). Other background phot<strong>on</strong>s are produced<br />

<strong>in</strong> the decay <str<strong>on</strong>g>of</str<strong>on</strong>g> pi<strong>on</strong>s at later stages <str<strong>on</strong>g>of</str<strong>on</strong>g> the collisi<strong>on</strong>. S<strong>in</strong>ce<br />

these are produced at much later time scales, they would<br />

not modify a time structure <strong>on</strong> the yoctosec<strong>on</strong>d timescale.<br />

It would be necessary to take these various phot<strong>on</strong> sources<br />

<strong>in</strong>to account <strong>in</strong> order to obta<strong>in</strong> a quantitative predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the expected pulse structure.<br />

What k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> properties should the detector have <strong>in</strong> order<br />

to resolve the double pulses? The time-<strong>in</strong>tegrated highenergetic<br />

phot<strong>on</strong>s are already rout<strong>in</strong>ely detected <strong>in</strong> experiments<br />

[29]. In the GeV energy range, the phot<strong>on</strong> producti<strong>on</strong><br />

rate is <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> a few phot<strong>on</strong>s per collisi<strong>on</strong> [28].<br />

Note that a s<strong>in</strong>gle GeV phot<strong>on</strong> pulse <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 ys durati<strong>on</strong> corresp<strong>on</strong>ds<br />

to a pulse energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly about 100 pJ, but to a<br />

power <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 TW. The phot<strong>on</strong> yield could be enhanced by<br />

c<strong>on</strong>sider<strong>in</strong>g lower energy phot<strong>on</strong>s, but this would also <strong>in</strong>crease<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> unwanted background phot<strong>on</strong>s. Alternatively,<br />

the phot<strong>on</strong> yield could be enhanced by <strong>in</strong>creas<strong>in</strong>g<br />

the collisi<strong>on</strong> energy. This may have the additi<strong>on</strong>al benefit<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>creas<strong>in</strong>g the relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

thermal phot<strong>on</strong>s compared to other k<strong>in</strong>ds <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s [28].<br />

The emissi<strong>on</strong> envelope is <strong>in</strong>fluenced by the geometry, emissi<strong>on</strong><br />

angle, and <strong>in</strong>ternal dynamics like the isotropizati<strong>on</strong><br />

time <str<strong>on</strong>g>of</str<strong>on</strong>g> the expand<strong>in</strong>g QGP. The double-peak structure described<br />

may emerge <strong>in</strong> n<strong>on</strong>-central collisi<strong>on</strong>s at an emissi<strong>on</strong><br />

angle close to forward directi<strong>on</strong>, assum<strong>in</strong>g that the<br />

isotropizati<strong>on</strong> time is large. In order to detect such short<br />

pulses, new detecti<strong>on</strong> schemes would be required. Exist<strong>in</strong>g<br />

tools and ideas from attosec<strong>on</strong>d metrology, like pumpprobe<br />

experiments or spectroscopy techniques, may turn<br />

out to be appropriate candidates to be scaled to zepto- or<br />

yoctosec<strong>on</strong>d durati<strong>on</strong> [4, 17]. Also, an experimental determ<strong>in</strong>ati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong> emissi<strong>on</strong> envelope would serve as<br />

an additi<strong>on</strong>al probe <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>ternal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the QGP,<br />

for example by measur<strong>in</strong>g its isotropizati<strong>on</strong> time.<br />

CONCLUSIONS<br />

The steady progress <strong>in</strong> laser physics over the last decades<br />

towards higher <strong>in</strong>tensities and shorter pulse lengths provides<br />

str<strong>on</strong>g motivati<strong>on</strong> to study systems that produce extremely<br />

short flashes <str<strong>on</strong>g>of</str<strong>on</strong>g> light. The QGP is an ideal candidate<br />

because it exhibits n<strong>on</strong>-trivial dynamics <strong>on</strong> the yoctosec<strong>on</strong>d<br />

timescale, dur<strong>in</strong>g which GeV phot<strong>on</strong>s are emitted.<br />

Under certa<strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s, a double-peak structure may<br />

be produced. This could eventually lead to novel pumpprobe<br />

experiments at the GeV energy scale. Alternatively,<br />

measur<strong>in</strong>g the temporal shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong> emissi<strong>on</strong> envelope,<br />

dynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the QGP, like its isotropizati<strong>on</strong><br />

time, could be probed experimentally.<br />

ACKNOWLEDGMENT<br />

I would like to thank my collaborators J. Evers,<br />

K. Z. Hatsagortsyan, and C. H. Keitel for guidance and<br />

fruitful discussi<strong>on</strong>s that led to the work that has been presented<br />

[2, 17]. I would further like to thank the organizers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the PIF 2010 for their k<strong>in</strong>d hospitality.<br />

REFERENCES<br />

[1] G. Mourou and T. Tajima. Science, 331, 41 (2011).<br />

[2] A. Ipp, C. H. Keitel, and J. Evers. Phys. Rev. Lett., 103,<br />

152301 (2009).<br />

[3] A. H. Zewail. Femtochemistry: Ultrafast Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Chemical B<strong>on</strong>d, World Scientific (1994).<br />

[4] M. Drescher, et al. Science, 291, 1923 (2001).<br />

[5] P. Paul et al. Science, 292, 1689 (2001).<br />

[6] Y. Silberberg. Nature, 414, 494 (2001).<br />

[7] T. Baeva, S. Gordienko, and A. Pukhov. Laser Part. Beams,<br />

25, 339 (2007).<br />

[8] M. Le<strong>in</strong>. Physical review letters, 94, 053004 (2005).<br />

[9] H. Rabitz, et al. Science, 288, 824 (2000).<br />

[10] N. Dudovich, D. Or<strong>on</strong>, and Y. Silberberg. Nature, 418, 512<br />

(2002).<br />

[11] R. Huber, et al. Nature, 414, 286 (2001).<br />

[12] C. Golabek and C. Simenel. Phys. Rev. Lett., 103, 042701<br />

(2009).<br />

[13] P. Lan et al. Phys. Rev. E, 72, 066501 (2005).<br />

[14] D. Kim et al. New J. Phys., 11, 063050 (2009).<br />

[15] S. V. Bulanov, T. Zh. Esirkepov, and T. Tajima. Phys. Rev.<br />

Lett., 91, 085001 (2003).<br />

[16] Y. Nomura et al. Nature Phys., 5, 124 (2009).<br />

[17] A. Ipp, et al. (2010). [arXiv:1008.0355].<br />

[18] M. Dugger et al. Phys. Rev., C76, 025211 (2007).<br />

[19] K. Aamodt et al. (2010).<br />

[20] R. J. Fries, B. Müller, and D. K. Srivastava. Phys. Rev. Lett.,<br />

90, 132301 (2003).<br />

[21] A. Ipp, et al. Phys. Lett., B666, 315 (2008).<br />

[22] P. Huov<strong>in</strong>en et al. Phys. Lett., B503, 58 (2001).<br />

[23] M. Luzum and P. Romatschke. Phys. Rev., C78, 034915<br />

(2008).<br />

[24] S. Turbide, R. Rapp, and C. Gale. Phys. Rev., C69, 014903<br />

(2004).<br />

[25] J. D. Bjorken. Phys. Rev., D27, 140 (1983).<br />

[26] B. Schenke and M. Strickland. Phys. Rev., D76, 025023<br />

(2007).<br />

[27] M. Mart<strong>in</strong>ez and M. Strickland. Phys. Rev. Lett., 100,<br />

102301 (2008).<br />

[28] S. Turbide, et al. Phys. Rev., C72, 014906 (2005).<br />

[29] S. S. Adler et al. Phys. Rev. Lett., 94, 232301 (2005).


Abstract<br />

Fields, Instant<strong>on</strong>s, and Currents<br />

Kenji Fukushima<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, Keio University<br />

3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan<br />

A review <strong>on</strong> the chiral magnetic effect is given with special<br />

emphasis put <strong>on</strong> the pseudo <strong>on</strong>e-dimensi<strong>on</strong>al property<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the system under str<strong>on</strong>g magnetic fields. In such a (1+1)dimensi<strong>on</strong>al<br />

descripti<strong>on</strong> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the dimensi<strong>on</strong>al reducti<strong>on</strong>,<br />

electric fields can be identified as the topological<br />

charge associated with <strong>in</strong>stant<strong>on</strong>-like gauge c<strong>on</strong>figurati<strong>on</strong>s.<br />

The chiral magnetic current is, <strong>in</strong> this picture, noth<strong>in</strong>g but<br />

a current accord<strong>in</strong>g to familiar Ohm’s law. The currentcurrent<br />

susceptibility is found to be a product <str<strong>on</strong>g>of</str<strong>on</strong>g> the bos<strong>on</strong><br />

mass <strong>in</strong> the Schw<strong>in</strong>ger model and the Landau level density.<br />

CHIRAL MAGNETIC EFFECT<br />

It is well-known that special gauge c<strong>on</strong>figurati<strong>on</strong>s with<br />

n<strong>on</strong>-zero w<strong>in</strong>d<strong>in</strong>g number play an important role <strong>in</strong> the understand<strong>in</strong>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum structure <strong>in</strong> the str<strong>on</strong>g <strong>in</strong>teracti<strong>on</strong>s.<br />

The sp<strong>on</strong>taneous break<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> chiral symmetry is attributed<br />

to the QCD <strong>in</strong>stant<strong>on</strong>, which is the orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamical<br />

mass generati<strong>on</strong>. The c<strong>on</strong>f<strong>in</strong>ement nature is also<br />

expla<strong>in</strong>ed <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic m<strong>on</strong>opole c<strong>on</strong>densati<strong>on</strong> <strong>in</strong><br />

a special class <str<strong>on</strong>g>of</str<strong>on</strong>g> the gauge choice.<br />

There is no doubt about the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> topological c<strong>on</strong>figurati<strong>on</strong>s<br />

<strong>in</strong> QCD physics, but it is a highly n<strong>on</strong>-trivial<br />

questi<strong>on</strong> how to “see” such topological effects <strong>in</strong> real experiments.<br />

The chiral magnetic effect is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the promis<strong>in</strong>g<br />

candidates [1, 2, 3]. Let us imag<strong>in</strong>e the follow<strong>in</strong>g situati<strong>on</strong>;<br />

the QCD vacuum accommodates <strong>on</strong>e <strong>in</strong>stant<strong>on</strong> that<br />

has a topological charge QW and a (QED) magnetic field<br />

B that is as str<strong>on</strong>g as the QCD energy scale ΛQCD is applied<br />

<strong>on</strong> the <strong>in</strong>stant<strong>on</strong>.<br />

Then, the axial anomaly relati<strong>on</strong> (for the s<strong>in</strong>gle-flavor<br />

case),<br />

implies that<br />

∂µj µ<br />

5<br />

g2<br />

= −<br />

8π2 ∫<br />

d 3 x trFµν F µν , (1)<br />

∆N5 = N5(t = ∞) − N5(t = −∞) = −2QW . (2)<br />

This means that, if we start with the chirally neutral situati<strong>on</strong><br />

(i.e. N5(t = −∞) = 0), a f<strong>in</strong>ite amount <str<strong>on</strong>g>of</str<strong>on</strong>g> chirality is<br />

generated by the topological charge. In the chiral limit <strong>in</strong><br />

which Dirac fermi<strong>on</strong>s are all massless, the momentum and<br />

the sp<strong>in</strong> are parallel to each other if the chirality is righthanded,<br />

while they are anti-parallel if the chirality is lefthanded.<br />

Therefore, the sp<strong>in</strong> is aligned by the str<strong>on</strong>g B effect,<br />

which makes the momentum also aligned al<strong>on</strong>g the B<br />

directi<strong>on</strong>, lead<strong>in</strong>g to a n<strong>on</strong>-vanish<strong>in</strong>g value <str<strong>on</strong>g>of</str<strong>on</strong>g> the total momentum<br />

if ∆N5 ̸= 0. In other words, s<strong>in</strong>ce Dirac fermi<strong>on</strong>s<br />

are charged, an electric or bary<strong>on</strong>ic current is produced for<br />

B ̸= 0 and ∆N5 ̸= 0. Such an effect can be expressed<br />

simply as [1]<br />

B<br />

J V = −2QW , (3)<br />

|B|<br />

<strong>in</strong> the str<strong>on</strong>g B limit, where J V represents the vector current<br />

⟨ ¯ ψγ µ ψ⟩ <strong>in</strong>tegrated over the volume.<br />

For the general strength <str<strong>on</strong>g>of</str<strong>on</strong>g> B it is more appropriate<br />

to work <strong>in</strong> the grand can<strong>on</strong>ical ensemble us<strong>in</strong>g the chiral<br />

chemical potential µ5 <strong>in</strong>stead <str<strong>on</strong>g>of</str<strong>on</strong>g> N5. One can actually<br />

prove that [2, 4]<br />

jV = eµ5<br />

B (4)<br />

2π2 holds for any B and µ5. For free Dirac particles under<br />

B ̸= 0 and µ5 ̸= 0, it is possible to c<strong>on</strong>firm that Eq. (4)<br />

is reduced to Eq. (3) <strong>in</strong> the str<strong>on</strong>g B limit us<strong>in</strong>g the relati<strong>on</strong><br />

(2).<br />

What is detectable <strong>in</strong> experiments should not be the current<br />

jV itself because the QCD vacuum has both <strong>in</strong>stant<strong>on</strong>s<br />

and anti-<strong>in</strong>stant<strong>on</strong>s and they always fluctuate. In other<br />

words, the parity (P) and the charge-parity (CP) symmetries<br />

are broken <strong>on</strong>ly locally at the <strong>in</strong>stant<strong>on</strong> or anti<strong>in</strong>stant<strong>on</strong>,<br />

but those symmetries are restored <strong>on</strong> average<br />

over all fluctuati<strong>on</strong>s <strong>in</strong> space and time. Thus, the chiral<br />

magnetic current jV is also a local object and its (ensemble<br />

or spatial) average is vanish<strong>in</strong>g. This is the reas<strong>on</strong> why the<br />

chiral magnetic effect is sometimes referred to as the “local<br />

parity violati<strong>on</strong>” <strong>in</strong> the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> the relativistic heavy-i<strong>on</strong><br />

collisi<strong>on</strong>s.<br />

In this sense the most relevant quantity to the experimental<br />

data [5] is the fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the chiral magnetic current,<br />

i.e. the electric-current susceptibility χj [6]. One-loop<br />

computati<strong>on</strong> results <strong>in</strong>,<br />

χj = e2 |eB|<br />

, (5)<br />

2π2 which does not depend <strong>on</strong> µ5 and comes from the Landau<br />

zero-mode al<strong>on</strong>e, <strong>in</strong>terest<strong>in</strong>gly. The derivati<strong>on</strong> from<br />

explicit calculati<strong>on</strong>s is lengthy but there is an argument to<br />

take a short-cut to the above expressi<strong>on</strong> [6]. For this purpose<br />

let us c<strong>on</strong>sider the electric current generati<strong>on</strong> rate,<br />

d(eJV )<br />

dt = V e2 |eB|E<br />

2π2 , (6)<br />

which orig<strong>in</strong>ates from the corresp<strong>on</strong>dence between the chirality<br />

generati<strong>on</strong> and the particle producti<strong>on</strong> when fields are<br />

str<strong>on</strong>g enough [7]. The same quantity can be expressed <strong>in</strong><br />

the framework <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>in</strong>ear resp<strong>on</strong>se theory as<br />

∫<br />

d(eJV )<br />

= −<br />

dt<br />

d 3 x d 4 x ′ ⟨ d(ejV )(x)<br />

jV (x<br />

dt<br />

′ ⟩<br />

) eA(x ′ ∫<br />

),<br />

= d 3 x d 4 x ′ e 2 ⟨jV (x)jV (x ′ )⟩ E, (7)


where A(x) denotes a vector potential comp<strong>on</strong>ent parallel<br />

to B and thus J V . From the first l<strong>in</strong>e to the sec<strong>on</strong>d l<strong>in</strong>e<br />

above, we used E = ˙ A. By equat<strong>in</strong>g Eqs. (6) and (7), we<br />

can f<strong>in</strong>d chij given by Eq. (5) immediately.<br />

What is addressed <strong>in</strong> this article is that we can quickly<br />

derive these expressi<strong>on</strong>s related to the chiral magnetic effect<br />

<strong>on</strong>ce we take the str<strong>on</strong>g B limit and the associated<br />

dimensi<strong>on</strong>al reducti<strong>on</strong>.<br />

DIMENSIONAL REDUCTION<br />

Under a str<strong>on</strong>g magnetic field, <strong>in</strong> general, the transverse<br />

moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles is equivalent to the <strong>on</strong>e <strong>in</strong> the<br />

harm<strong>on</strong>ic oscillator. The energy level is then discrete due<br />

to the Landau quantizati<strong>on</strong>. Sp<strong>in</strong>-1/2 particles have the<br />

Landau zero-mode which would dom<strong>in</strong>ate <strong>in</strong> the dynamics<br />

at energies below the scale ∼ √ |eB|. Such a str<strong>on</strong>g B<br />

enables us to use the so-called lowest Landau-level (LLL)<br />

approximati<strong>on</strong> and to drop the transverse moti<strong>on</strong> at all. In<br />

this limit, thus, we can reduce the (3+1)-dimensi<strong>on</strong>al theory<br />

<strong>in</strong>to a form <str<strong>on</strong>g>of</str<strong>on</strong>g> the (1+1)-dimensi<strong>on</strong>al <strong>on</strong>e multiplied by<br />

the Landau level density.<br />

In M<strong>in</strong>kowskian space-time we use the metric g 00 =<br />

−g 11 = 1, g 01 = g 10 = 0, and the 2 × 2 γ-matrices<br />

which satisfy {γ µ , γ ν } = 2g µν . Chirality is characterized<br />

by γ 5 = γ 0 γ 1 = diag(1, −1) <strong>in</strong> the chiral representati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the γ-matrices. Therefore the upper (lower) element<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two-comp<strong>on</strong>ent sp<strong>in</strong>or ψ = (ψR, ψL) t represents the<br />

right-handed (left-handed) particle. In (1+1) dimensi<strong>on</strong>s<br />

the particle–anti-particle difference is correlated with the<br />

chirality. That is, <strong>in</strong> momentum space, the right-handed<br />

comp<strong>on</strong>ent corresp<strong>on</strong>ds to a right-mov<strong>in</strong>g (p > 0) particle<br />

and a left-mov<strong>in</strong>g (p < 0) anti-particle. One can understand<br />

the left-handed comp<strong>on</strong>ent <strong>in</strong> the same way, i.e. a<br />

left-mov<strong>in</strong>g (p < 0) particle and a right-mov<strong>in</strong>g (p > 0)<br />

anti-particle.<br />

In (1+1) dimensi<strong>on</strong>s the follow<strong>in</strong>g relati<strong>on</strong> am<strong>on</strong>g the<br />

γ-matrices plays an <strong>in</strong>terest<strong>in</strong>g role for the topological currents;<br />

γ µ γ 5 = −ϵ µν γν, (8)<br />

where ϵ 01 = −ϵ 10 = −ϵ01 = ϵ10 = 1, which relates the<br />

vector and the axial-vector currents. As usual, we can write<br />

the vector and the axial-vector currents as<br />

j µ<br />

V = ¯ ψγ µ ψ, j µ<br />

5 = ¯ ψγ µ γ 5 ψ. (9)<br />

Us<strong>in</strong>g the relati<strong>on</strong> (8), we have a relati<strong>on</strong>, j µ<br />

5 = −ϵµν jν,<br />

that is explicitly written as [8]<br />

j 1 V = j 0 5, j 1 5 = j 0 . (10)<br />

TOPOLOGICAL CURRENTS<br />

The relati<strong>on</strong> between the vector and axial-vector currents<br />

is very useful because, as we will see <strong>in</strong> this secti<strong>on</strong>, it captures<br />

the essential feature <str<strong>on</strong>g>of</str<strong>on</strong>g> the topologically <strong>in</strong>duced currents<br />

<strong>in</strong> (3+1) dimensi<strong>on</strong>s.<br />

Let us c<strong>on</strong>sider the anomaly relati<strong>on</strong> <strong>in</strong> (1+1) dimensi<strong>on</strong>s.<br />

It is well-known that the axial anomaly leads to<br />

∂µj µ<br />

5<br />

= e<br />

2π ϵµν Fµν = e<br />

π E = −2qW , (11)<br />

where the electric field is E = F 10 <strong>in</strong> our c<strong>on</strong>venti<strong>on</strong>. Note<br />

that there is no magnetic field but <strong>on</strong>ly the electric field E <strong>in</strong><br />

(1+1) dimensi<strong>on</strong>s. We here def<strong>in</strong>ed the (1+1)-dimensi<strong>on</strong>al<br />

topological charge density as qW = −(e/2π)E <strong>in</strong> accord<br />

to the c<strong>on</strong>venti<strong>on</strong>. By <strong>in</strong>tegrat<strong>in</strong>g Eq. (11) over space-time<br />

and assum<strong>in</strong>g that the current falls sufficiently fast at spatial<br />

<strong>in</strong>f<strong>in</strong>ity, we can recover Eq. (2) easily. We can also prove<br />

that the topological charge, QW = ∫ d 2 x qW (x), takes an<br />

<strong>in</strong>teger number so that the boundary c<strong>on</strong>diti<strong>on</strong> <strong>in</strong> the xdirecti<strong>on</strong><br />

can be ma<strong>in</strong>ta<strong>in</strong>ed.<br />

We also note that we can express Eq. (11) <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

∂µj µ e<br />

5 (x) = −<br />

π (∂0A 1 − ∂ 1 A 0 ) = −2∂µK µ (x) (12)<br />

with the (1+1)-dimensi<strong>on</strong>al Chern-Sim<strong>on</strong>s current density<br />

def<strong>in</strong>ed by K µ = −(e/2π)ϵ µνAν. From this identificati<strong>on</strong>,<br />

the Chern-Sim<strong>on</strong>s number <strong>in</strong> this system is deduced as<br />

∫<br />

ν(t) =<br />

dx K 0 (t, x) = e<br />

2π<br />

∫<br />

dx A 1 (t, x). (13)<br />

Comb<strong>in</strong><strong>in</strong>g these expressi<strong>on</strong>s with the relati<strong>on</strong> j1 V = j0 5<br />

(where N5 is the volume <strong>in</strong>tegral <str<strong>on</strong>g>of</str<strong>on</strong>g> j0 5), we can immediately<br />

write the vector current <strong>in</strong>tegrated over space;<br />

J 1 ∫<br />

V (t) = N5(t) = −2 dt dx qW (t, x), (14)<br />

assum<strong>in</strong>g that N5 was zero at the <strong>in</strong>itial time (i.e. N5(t =<br />

−∞) = 0). This simple relati<strong>on</strong> leads to the current at late<br />

time as given by<br />

J 1 V = −2QW . (15)<br />

This is a result expected when the sp<strong>in</strong> is fully polarized <strong>in</strong><br />

the (3+1)-dimensi<strong>on</strong>al chiral magnetic effect under a str<strong>on</strong>g<br />

magnetic field (see Eq. (3)). Note that, <strong>in</strong> (1+1) dimensi<strong>on</strong>s<br />

the sp<strong>in</strong> is always fully polarized because there is <strong>on</strong>ly <strong>on</strong>e<br />

spatial directi<strong>on</strong> and thus the mov<strong>in</strong>g directi<strong>on</strong> (either p ><br />

0 or p < 0) and the chirality <str<strong>on</strong>g>of</str<strong>on</strong>g> particles have <strong>on</strong>e-to-<strong>on</strong>e<br />

corresp<strong>on</strong>dence. Here Eq. (14) is noth<strong>in</strong>g but Ohm’s law<br />

because the (1+1)-dimensi<strong>on</strong>al topological charge density<br />

is proporti<strong>on</strong>al to the electric field as <strong>in</strong> Eq. (11).<br />

If the spatial comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the Chern-Sim<strong>on</strong>s current<br />

falls sufficiently fast, the topological charge is written as<br />

QW = ν(t = ∞) − ν(t = −∞). Therefore, (the spatial<br />

average <str<strong>on</strong>g>of</str<strong>on</strong>g>) A1 is the Chern-Sim<strong>on</strong>s number and the boundary<br />

c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A1 <strong>in</strong> the t-directi<strong>on</strong> gives the topological<br />

w<strong>in</strong>d<strong>in</strong>g number. Supposed that ν(t = −∞) = N5(t =<br />

−∞) = 0, the topologically <strong>in</strong>duced current is<br />

J 1 V (t) = − e<br />

π<br />

∫<br />

dx A 1 (t, x). (16)<br />

If we identify −eA 0 as the chemical potential µ (regard<strong>in</strong>g<br />

the sign, remember the covariant derivative p 0 − eA 0 and


the dispersi<strong>on</strong> relati<strong>on</strong> p0 = Ep − µ for particles). Equati<strong>on</strong><br />

(8) implies that eA1γ1 = eA1γ0γ 5 and thus −eA1 can<br />

be identified as the axial (or chiral) chemical potential µ5.<br />

Therefore, we can c<strong>on</strong>clude;<br />

J 1 V = 1<br />

π<br />

∫<br />

dx µ5, (17)<br />

which correctly recovers the (3+1)-dimensi<strong>on</strong>al chiral<br />

magnetic current (4) <strong>on</strong>ce we multiply this by the Landau<br />

level density, eB/(2π). That is,<br />

jV = µ5<br />

π<br />

−→ jV = |eB|<br />

2π<br />

(<strong>in</strong> (1+1) dimensi<strong>on</strong>s)<br />

· µ5<br />

π<br />

(<strong>in</strong> (3+1) dimensi<strong>on</strong>s), (18)<br />

which co<strong>in</strong>cides with Eq. (4).<br />

Here, it is clear that the l<strong>on</strong>gitud<strong>in</strong>al gauge field A 1 ,<br />

which is the Chern-Sim<strong>on</strong>s number <strong>in</strong> (1+1) dimensi<strong>on</strong>s,<br />

plays the role <str<strong>on</strong>g>of</str<strong>on</strong>g> the chiral chemical potential µ5 <strong>in</strong> (3+1)<br />

dimensi<strong>on</strong>s. We note, however, that there is an important<br />

difference; usually µ5 is <strong>in</strong>troduced by hand as a c<strong>on</strong>stant,<br />

but <strong>in</strong> (1+1) dimensi<strong>on</strong>s A 1 must have t-dependence to allow<br />

for n<strong>on</strong>zero QW . We can th<strong>in</strong>k <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>crete “<strong>in</strong>stant<strong>on</strong>”<br />

c<strong>on</strong>figurati<strong>on</strong> <strong>in</strong> (1+1) dimensi<strong>on</strong>s simply as<br />

A 1 (t, x) = 2πQW t<br />

= −Et, (19)<br />

eL T<br />

where we limit ourselves to the spatially homogeneous case<br />

and denote the spatial and temporal extents as L and T ,<br />

respectively, and then we have<br />

j 1 V (t) = J 1 V (t) eE<br />

= t. (20)<br />

L π<br />

From this, aga<strong>in</strong>, if multiplied by the Landau-level degeneracy<br />

we can correctly recover the current generati<strong>on</strong> rate<br />

given by Eq. (6), i.e.<br />

d(ejV )<br />

dt = e2E (<strong>in</strong> (1+1) dimensi<strong>on</strong>s)<br />

π<br />

−→ d(ejV ) |eB|<br />

=<br />

dt 2π · e2E (<strong>in</strong> (3+1) dimensi<strong>on</strong>s), (21)<br />

π<br />

which co<strong>in</strong>cides with Eq. (6).<br />

In the same way we can get a f<strong>in</strong>ite axial-vector current<br />

at f<strong>in</strong>ite quark chemical potential µ. To see the anomalous<br />

nature the important fact is that the relati<strong>on</strong> between the<br />

density and the chemical potential is given by the quantum<br />

anomaly <strong>in</strong> (1+1) dimensi<strong>on</strong>s, i.e.<br />

n = − eA0<br />

, (22)<br />

π<br />

which results from the anomaly. One can derive this expressi<strong>on</strong><br />

directly from n = ⟨ψ † (x)ψ(x)⟩ by <strong>in</strong>sert<strong>in</strong>g<br />

the gauge field as lim y 0 →x 0 ψ † (y) exp[−ie ∫ dtA 0 ]ψ(x).<br />

From this we can immediately reach,<br />

J 1 ∫<br />

5 = dx n = 1<br />

∫<br />

dx µ, (23)<br />

π<br />

which represents the chiral separati<strong>on</strong> effect. This is aga<strong>in</strong><br />

the anomaly relati<strong>on</strong> exactly same as that <strong>in</strong> (3+1) dimensi<strong>on</strong>s<br />

<strong>on</strong>ce multiplied by the Landau level density eB/2π.<br />

SCHWINGER MODEL<br />

So far the arguments and the result<strong>in</strong>g expressi<strong>on</strong>s are<br />

quite general. From now <strong>on</strong> we shall go <strong>in</strong>to the dynamical<br />

properties calculat<strong>in</strong>g microscopic quantities <strong>in</strong> a solvable<br />

(1+1)-dimensi<strong>on</strong>al model, i.e. the massless Schw<strong>in</strong>ger<br />

model. The easiest way to accomplish a calculati<strong>on</strong> <strong>in</strong> the<br />

Schw<strong>in</strong>ger model is to use mapp<strong>in</strong>g <strong>on</strong>to a free bos<strong>on</strong>ic<br />

theory. In our case, however, the bos<strong>on</strong>izati<strong>on</strong> rule is a<br />

bit more complicated than usual because we deal with not<br />

<strong>on</strong>ly fermi<strong>on</strong>ic fields (such as the chiral c<strong>on</strong>densate) but<br />

also gauge fields (such as the electric field). So, the Lagrangian<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>d<strong>in</strong>g theory should be<br />

L = 1<br />

2 (∂µ θ)(∂µθ) − mγ(∂ µ θ)(∂µϕ) − 1<br />

2 (∂µ ϕ)∂ 2 (∂µϕ)<br />

(24)<br />

with the bos<strong>on</strong> mass,<br />

m 2 γ = e2<br />

. (25)<br />

π<br />

If the ϕ-field is <strong>in</strong>tegrated out, we get a theory <strong>on</strong>ly <strong>in</strong> terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the θ-field that is free and has a mass by mγ. Such a<br />

scalar theory is usually used with the bos<strong>on</strong>izati<strong>on</strong> rule;<br />

j µ<br />

V = ¯ ψγ µ ψ = 1<br />

√ π ϵ µν ∂νθ, (26)<br />

j µ<br />

5 = ¯ ψγ µ γ 5 ψ = − 1<br />

√ π ∂ µ θ, (27)<br />

¯ψψ = −c mγ : cos(2 √ πθ) : (28)<br />

with the normal order<strong>in</strong>g : :. Now we remark that ϕ <strong>in</strong><br />

the Lagrangian density (24) comes from the gauge field,<br />

A µ = −ϵ µν∂νϕ (where ϕ <strong>in</strong>cludes an <strong>in</strong>stant<strong>on</strong>-like c<strong>on</strong>figurati<strong>on</strong><br />

∼ 1<br />

2Et2 which does not satisfy the periodic<br />

boundary c<strong>on</strong>diti<strong>on</strong> <strong>in</strong> the t-directi<strong>on</strong>). Then the electric<br />

field takes a form E = ∂2ϕ. Once we <strong>in</strong>tegrate the θ-field<br />

out from the theory, after the Gaussian <strong>in</strong>tegrati<strong>on</strong> <strong>in</strong> the<br />

functi<strong>on</strong>al formalism, Eq. (27) is replaced by<br />

j µ<br />

5<br />

= − 1<br />

√ π ∂ µ θ → − mγ<br />

√π ∂ µ ϕ = − e<br />

π ∂µ ϕ. (29)<br />

The anomaly relati<strong>on</strong> is then derived as<br />

∂µj µ<br />

5<br />

= − e<br />

π ∂2 ϕ = − e<br />

π E = −2qW , (30)<br />

which is fully c<strong>on</strong>sistent with the anomaly relati<strong>on</strong> (11).<br />

In the same manner we can express the vector current <strong>in</strong><br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> ϕ, and then we f<strong>in</strong>d,<br />

j µ<br />

V<br />

e<br />

=<br />

π ϵµν µν ∂ν<br />

∂νϕ = 2ϵ<br />

∂2 qW . (31)<br />

It is easy to c<strong>on</strong>firm that this result is fully c<strong>on</strong>sistent with<br />

the previous relati<strong>on</strong>. That is, after the spatial <strong>in</strong>tegrati<strong>on</strong><br />

for the µ = 1 comp<strong>on</strong>ent (or ϕ and qW ), the spatial derivative<br />

∂1 drops and the right-hand side simplifies as −2/∂0,<br />

that is just a t-<strong>in</strong>tegrati<strong>on</strong>. Therefore the right-hand side f<strong>in</strong>ally<br />

becomes −2QW together with the spatial <strong>in</strong>tegrati<strong>on</strong>,<br />

and hence we obta<strong>in</strong> J 1 V = −2QW .


The above equati<strong>on</strong> gives a microscopic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

current <strong>in</strong> more general cases with spatial modulati<strong>on</strong>. In<br />

momentum space we can re-express this as follows;<br />

j 1 V (ω, k) = −2iω<br />

ω 2 − k 2 qW (ω, k). (32)<br />

This is an <strong>in</strong>terest<strong>in</strong>g relati<strong>on</strong>. If ω → 0 is taken first, we<br />

see that j1 V (0, k) is vanish<strong>in</strong>g. To get the chiral magnetic<br />

current or a f<strong>in</strong>ite chiral magnetic c<strong>on</strong>ductivity, it is necessary<br />

to take the zero-momentum limit <strong>in</strong> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> k → 0<br />

first and then ω → 0. This observati<strong>on</strong> is <strong>in</strong> fact c<strong>on</strong>sistent<br />

with the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong>e-loop calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the chiral<br />

magnetic c<strong>on</strong>ductivity [9].<br />

We po<strong>in</strong>t out that the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (32) naturally appears<br />

from the transverse projecti<strong>on</strong>. That is, after the <strong>on</strong>eloop<br />

<strong>in</strong>tegrati<strong>on</strong> with the gauge potential source, <strong>in</strong> momentum<br />

space <strong>on</strong>e can f<strong>in</strong>d,<br />

j µ<br />

(<br />

V (ω, k) = −<br />

g µν − qµ q ν<br />

q 2<br />

) e<br />

π Aν(ω, k) (33)<br />

with q = (ω, k) and q 2 = ω − k 2 , from which <strong>on</strong>e can<br />

easily f<strong>in</strong>d that<br />

j 1 V (ω, k) = − ω2<br />

ω2 − k2 e<br />

π A1 (ω, k). (34)<br />

Because qW = (e/π)∂ 0 A 1 , <strong>on</strong>e can substitute A 1 =<br />

i(2π/e)qW /ω for A 1 above, from which we can immediately<br />

c<strong>on</strong>firm that the above expressi<strong>on</strong> is equivalent to<br />

Eq. (32).<br />

From the equivalence to the bos<strong>on</strong>ized theory it is very<br />

easy to read the electric current-current fluctuati<strong>on</strong> too. To<br />

this end we <strong>in</strong>tegrate the ϕ-field first, and then what we<br />

have is a free massive scalar theory <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> θ al<strong>on</strong>e.<br />

Then we trivially get,<br />

χj(x − y) = e 2 ⟨j 1 (x)j 1 (y)⟩ = m 2 γ ∂ x 0 ∂ y<br />

0 ⟨θ(x)θ(y)⟩,<br />

(35)<br />

or <strong>in</strong> momentum space we can express this as<br />

m 2 γ ω 2<br />

χj(ω, k) =<br />

ω2 − k2 − m2 . (36)<br />

γ + iϵ<br />

At a first glance this expressi<strong>on</strong> looks different from<br />

Eq. (5). This is because the above expressi<strong>on</strong> (36) is a result<br />

after resummati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the bubble-type diagrams, while<br />

Eq. (5) is the <strong>on</strong>e-loop result. Roughly speak<strong>in</strong>g m 2 γ appears<br />

<strong>in</strong> the denom<strong>in</strong>ator <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (36) as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>f<strong>in</strong>ite<br />

<strong>in</strong>serti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the polarizati<strong>on</strong> diagram. This <strong>in</strong>dicates that<br />

we can extract the <strong>on</strong>e-loop result from the lead<strong>in</strong>g-order<br />

Taylor expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (36) <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> m 2 γ. That actually<br />

leads to<br />

χ <strong>on</strong>e-loop<br />

j (ω, k) = m2γ ω2 ω2 − k2 → m 2 γ = e2<br />

π<br />

(k → 0). (37)<br />

Therefore,<br />

χ <strong>on</strong>e-loop<br />

j<br />

= e2<br />

π<br />

−→ χ <strong>on</strong>e-loop<br />

j<br />

(<strong>in</strong> (1+1) dimensi<strong>on</strong>s)<br />

= |eB|<br />

2π<br />

· e2<br />

π<br />

(<strong>in</strong> (3+1) dimensi<strong>on</strong>s), (38)<br />

which aga<strong>in</strong> co<strong>in</strong>cides with the previous result (5).<br />

SUMMARY<br />

The chiral magnetic effect is <str<strong>on</strong>g>of</str<strong>on</strong>g> theoretical and experimental<br />

<strong>in</strong>terest <strong>in</strong> the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> the relativistic heavy-i<strong>on</strong><br />

collisi<strong>on</strong>s where the str<strong>on</strong>g fields and the topological excitati<strong>on</strong>s<br />

(<strong>in</strong>stant<strong>on</strong>s and sphaler<strong>on</strong>s) exist, which leads to<br />

the (electric) current. Such an effect could be observed as<br />

charge asymmetry <strong>in</strong> experiments.<br />

There are a number <str<strong>on</strong>g>of</str<strong>on</strong>g> works that aim to clarify the<br />

microscopic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> QCD matter related to the chiral<br />

magnetic effect. The explicit computati<strong>on</strong> is usually<br />

lengthy and cumbersome due to the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the external<br />

magnetic field. We here discussed the dimensi<strong>on</strong>al reducti<strong>on</strong><br />

and dem<strong>on</strong>strated that many <str<strong>on</strong>g>of</str<strong>on</strong>g> known results can<br />

be reproduced without tedious calculati<strong>on</strong>s. As a model<br />

study we picked up the Schw<strong>in</strong>ger model, which is useful<br />

but drops the (3+1)-dimensi<strong>on</strong>al gauge dynamics. It is<br />

highly demanded to c<strong>on</strong>struct a full effective descripti<strong>on</strong><br />

valid for genu<strong>in</strong>e (3+1) dimensi<strong>on</strong>al gauge dynamics <strong>in</strong> the<br />

str<strong>on</strong>g magnetic field limit.<br />

The author thanks D.E. Kharzeev and H.J. Warr<strong>in</strong>ga for<br />

fruitful discussi<strong>on</strong>s and also he is grateful to G.V. Dunne<br />

for giv<strong>in</strong>g useful comments dur<strong>in</strong>g the workshop.<br />

REFERENCES<br />

[1] D. E. Kharzeev, L. D. McLerran and H. J. Warr<strong>in</strong>ga, Nucl.<br />

Phys. A 803, 227 (2008).<br />

[2] K. Fukushima, D. E. Kharzeev and H. J. Warr<strong>in</strong>ga, Phys. Rev.<br />

D 78, 074033 (2008).<br />

[3] D. E. Kharzeev, Annals Phys. 325, 205 (2010);<br />

arXiv:1010.0943 [hep-ph].<br />

[4] M. A. Metlitski and A. R. Zhitnitsky, Phys. Rev. D 72,<br />

045011 (2005).<br />

[5] B. I. Abelev et al. [STAR Collaborati<strong>on</strong>], Phys. Rev. Lett.<br />

103, 251601 (2009). N. N. Ajitanand, R. A. Lacey, A. Taranenko<br />

and J. M. Alexander, arXiv:1009.5624 [nucl-ex].<br />

[6] K. Fukushima, D. E. Kharzeev and H. J. Warr<strong>in</strong>ga, Nucl.<br />

Phys. A 836, 311 (2010).<br />

[7] K. Fukushima, D. E. Kharzeev and H. J. Warr<strong>in</strong>ga, Phys. Rev.<br />

Lett. 104, 212001 (2010).<br />

[8] G. Basar, G. V. Dunne, D. E. Kharzeev, Phys. Rev. Lett. 104,<br />

232301 (2010).<br />

[9] D. E. Kharzeev and H. J. Warr<strong>in</strong>ga, Phys. Rev. D 80, 034028<br />

(2009).


CRITICAL BEHAVIOR OF CHARMONIUM: QCD SECOND ORDER<br />

STARK EFFECT ∗<br />

Abstract<br />

Kenji Morita, GSI, Helmholzzentrum für Schweri<strong>on</strong>enforschung, Darmstadt, Germany †<br />

Su Houng Lee ‡ , Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong> and Applied <strong>Physics</strong>, Y<strong>on</strong>sei University, Seoul, Korea<br />

We study a mass shift <str<strong>on</strong>g>of</str<strong>on</strong>g> charm<strong>on</strong>ia <strong>in</strong> hot QCD medium<br />

near and below the critical temperature. We <strong>in</strong>troduce<br />

a formula for the mass shift by the QCD sec<strong>on</strong>d order<br />

Stark effect based <strong>on</strong> the operator producti<strong>on</strong> expansi<strong>on</strong>.<br />

Then we discuss the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field square<br />

<strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> results from lattice QCD. We dem<strong>on</strong>strate<br />

the mass shift <str<strong>on</strong>g>of</str<strong>on</strong>g> J/ψ serves as a good <strong>in</strong>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

c<strong>on</strong>f<strong>in</strong>ement-dec<strong>on</strong>f<strong>in</strong>ement transiti<strong>on</strong>. We propose a res<strong>on</strong>ance<br />

gas model for the c<strong>on</strong>densate to describe the medium<br />

with n<strong>on</strong>zero bary<strong>on</strong>ic chemical potential. We discuss the<br />

mass shift at hadr<strong>on</strong>izati<strong>on</strong> temperature and chemical potential<br />

and possible implicati<strong>on</strong> for heavy i<strong>on</strong> experiments.<br />

INTRODUCTION<br />

Understand<strong>in</strong>g the c<strong>on</strong>f<strong>in</strong>ement phenomen<strong>on</strong> <strong>in</strong> QCD is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental subject <strong>in</strong> modern physics. Despite the difficulty<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> solv<strong>in</strong>g QCD ow<strong>in</strong>g to the str<strong>on</strong>gly coupled nature,<br />

recent development <strong>in</strong> high-performance comput<strong>in</strong>g<br />

enables us to calculate bulk property <str<strong>on</strong>g>of</str<strong>on</strong>g> the hot QCD matter<br />

at T ∼ 200 MeV ∼ 10 12 K by M<strong>on</strong>te-Carlo simulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> QCD <strong>on</strong> the lattice. The result at physical quark masses<br />

reveals that the matter at high temperature c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> dec<strong>on</strong>f<strong>in</strong>ed<br />

quarks and glu<strong>on</strong>s, called quark-glu<strong>on</strong> plasma,<br />

and that it undergoes a transiti<strong>on</strong> <strong>in</strong>to a hadr<strong>on</strong>ic gas at<br />

T ∼ 170 MeV. Currently relativistic heavy i<strong>on</strong> collisi<strong>on</strong>s<br />

provide unique opportunity to produce the matter <strong>on</strong> earth.<br />

However, the matter is far from ideal situati<strong>on</strong> because the<br />

created matter has <strong>on</strong>ly short lifetime ∼ 10 −22 sec and we<br />

can detect <strong>on</strong>ly f<strong>in</strong>ally produced particles such as pi<strong>on</strong>s and<br />

nucle<strong>on</strong>s. Therefore it is important to f<strong>in</strong>d an observable<br />

which carries <strong>in</strong>formati<strong>on</strong> <strong>on</strong> the transiti<strong>on</strong> from QGP to<br />

hadr<strong>on</strong> gas that would happen <strong>in</strong> the collisi<strong>on</strong> process. In<br />

this work, we focus <strong>on</strong> charm<strong>on</strong>ium and how it reacts with<br />

the change <str<strong>on</strong>g>of</str<strong>on</strong>g> the matter property. Indeed such an idea was<br />

proposed many years ago [1, 2] based <strong>on</strong> facts that the charm<strong>on</strong>ium<br />

spectrum can be well expla<strong>in</strong>ed by c<strong>on</strong>f<strong>in</strong>ement<br />

force [3] and that the force could be modified by decrease<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>in</strong>g tensi<strong>on</strong> and Debye screen<strong>in</strong>g <strong>in</strong> medium. We<br />

have been elaborat<strong>in</strong>g a method <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the operator<br />

product expansi<strong>on</strong> (OPE) and <strong>in</strong>-medium change <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the glu<strong>on</strong> c<strong>on</strong>densates which gives lead<strong>in</strong>g c<strong>on</strong>tributi<strong>on</strong> to<br />

the OPE. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this talk is to give an explanati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the role <str<strong>on</strong>g>of</str<strong>on</strong>g> the temperature dependent glu<strong>on</strong> c<strong>on</strong>den-<br />

∗ Work supported by FIAS and Korea M<strong>in</strong>istry <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong><br />

† k.morita@gsi.de<br />

‡ suhoug@phya.y<strong>on</strong>sei.ac.kr<br />

sates as an effective order parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>f<strong>in</strong>ementdec<strong>on</strong>f<strong>in</strong>ement<br />

transiti<strong>on</strong> <strong>in</strong> QCD and to discuss its c<strong>on</strong>sequence<br />

<strong>on</strong> the <strong>in</strong>-medium modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charm<strong>on</strong>ium.<br />

QCD SECOND ORDER STARK EFFECT<br />

Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a heavy quark<strong>on</strong>ium with glu<strong>on</strong>s based <strong>on</strong><br />

the OPE was formulated by Pesk<strong>in</strong> [4, 5]. The primary<br />

po<strong>in</strong>t is to <strong>in</strong>troduce the separati<strong>on</strong> scale k, which is set<br />

to the b<strong>in</strong>d<strong>in</strong>g energy k ∼ ϵ <str<strong>on</strong>g>of</str<strong>on</strong>g> the quark<strong>on</strong>ium. S<strong>in</strong>ce<br />

the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the Coulombic bound state with heavy quark<br />

mass m is a0 = 4/(Ncαsm) and the b<strong>in</strong>d<strong>in</strong>g energy is<br />

ϵ = 1/(ma 2 0), the separati<strong>on</strong> scale for sufficiently heavy<br />

quark can be large enough for perturbative treatment. Then<br />

the matrix element is calculated through the OPE <strong>in</strong> which<br />

the short distance process is implemented <strong>in</strong>to the Wils<strong>on</strong><br />

coefficients and the s<str<strong>on</strong>g>of</str<strong>on</strong>g>t <strong>on</strong>e is accounted for gauge <strong>in</strong>variant<br />

local operators. While the formulati<strong>on</strong> can be applied to<br />

scatter<strong>in</strong>g cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the quark<strong>on</strong>ium-hadr<strong>on</strong> <strong>in</strong>teracti<strong>on</strong>s<br />

[5, 6], it reduces to the formula for a mass shift <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

quark<strong>on</strong>ium at rest by change <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field squared<br />

[7]. The formula with a normalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong><br />

∫ d 3 k<br />

(2π) 3 |ψ(k)| 2 = 1 reads<br />

∆m ¯ QQ = − 1<br />

18<br />

= − 7π2<br />

18<br />

∫∞<br />

dk 2<br />

<br />

<br />

<br />

∂ψ(k) <br />

<br />

∂k <br />

0<br />

a 2 0<br />

ϵ<br />

2<br />

k<br />

k2 ⟨<br />

αs<br />

/m + ϵ π ∆E2⟩<br />

med<br />

(1)<br />

⟨<br />

αs<br />

π ∆E2⟩ , (2)<br />

med<br />

where the sec<strong>on</strong>d l<strong>in</strong>e holds for the Coulombic wave functi<strong>on</strong>.<br />

As we will see below, the electric c<strong>on</strong>densate <strong>in</strong>creases<br />

as temperature rises up. This implies a downward<br />

mass shift <str<strong>on</strong>g>of</str<strong>on</strong>g> 1S quark<strong>on</strong>ium irrespective to the detail <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

wave functi<strong>on</strong>. In the formula with Coulomb wave functi<strong>on</strong>,<br />

<strong>on</strong>e sees that a dipole nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>teracti<strong>on</strong> explicitly<br />

appears as a 2 0 scal<strong>in</strong>g. This implies the mass shift does<br />

not depend <strong>on</strong> the detail <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong> but <strong>on</strong> the size<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the quark<strong>on</strong>ium. We fix the parameters as mc = 1704<br />

MeV and a0 = 0.271 fm by fitt<strong>in</strong>g with J/ψ mass, 3097<br />

MeV and the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong> <strong>in</strong> the Cornell potential<br />

model, ⟨r 2 ⟩ 1/2 = 0.47 fm, imply<strong>in</strong>g αs = 0.57.<br />

In the next secti<strong>on</strong>, we discuss the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric<br />

c<strong>on</strong>densate <strong>in</strong> the pure glu<strong>on</strong>ic system.<br />

PURE GLUONIC CASE<br />

We start with the pure glu<strong>on</strong>ic system as a vivid example<br />

for the relati<strong>on</strong> between the electric c<strong>on</strong>densate E 2 and


c<strong>on</strong>f<strong>in</strong>ement-dec<strong>on</strong>f<strong>in</strong>ement transiti<strong>on</strong>. It is c<strong>on</strong>venient to<br />

<strong>in</strong>troduce the follow<strong>in</strong>g quantities [8];<br />

⟨<br />

β(g)<br />

M0(T ) =<br />

2g Ga µνG aµν<br />

⟩<br />

, (3)<br />

T<br />

(<br />

uαuβ − 1<br />

4 gαβ<br />

) ⟨<br />

M2(T ) = −ST G a αµG aµ<br />

⟩<br />

β . (4)<br />

T<br />

These denote the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the glu<strong>on</strong>ic operator<br />

<strong>in</strong>to the trace anomaly part and traceless and symmetric<br />

<strong>on</strong>e, i.e., the scalar glu<strong>on</strong> c<strong>on</strong>densate and the twist-2 operator<br />

which stand for the lead<strong>in</strong>g c<strong>on</strong>tributi<strong>on</strong> to the OPE.<br />

Note that the twist-2 operator must be taken <strong>in</strong>to account<br />

for c<strong>on</strong>sistency <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> medium <strong>in</strong> which Lorentz<br />

<strong>in</strong>variance is absent. The M0 and M2 <strong>in</strong> the pure gauge<br />

theory are related to the energy density ε(T ) and pressure<br />

p(T ) which were obta<strong>in</strong>ed <strong>in</strong> lattice calculati<strong>on</strong>s as<br />

M0 = ε − 3p and M2 = ϵ + p. Then tak<strong>in</strong>g the <strong>on</strong>e-loop<br />

expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the beta functi<strong>on</strong> leads to the electric c<strong>on</strong>densate<br />

⟨<br />

αs<br />

π ∆E2⟩ =<br />

T<br />

2<br />

11 − 2<br />

3 Nf<br />

M0(T ) + 3<br />

4<br />

α eff<br />

s<br />

π M2(T ). (5)<br />

The equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state is adopted from Ref. [9]. As for α eff<br />

s ,<br />

we use the effective coupl<strong>in</strong>g c<strong>on</strong>stant αqq(T ) which was<br />

measured by heavy quark free energy [10]. Putt<strong>in</strong>g Nf =<br />

0 <strong>in</strong>to Eq. (5), we plot the temperature dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electric c<strong>on</strong>densate near Tc = 264 MeV <strong>in</strong> Fig. 1. One<br />

sees a rapid rise <strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> the transiti<strong>on</strong> temperature<br />

which reflects the first order phase transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pure SU(3)<br />

theory. Indeed this behavior could be related with that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the space-time Wils<strong>on</strong> loop which shows change from the<br />

area law to the perimeter law across Tc [11] through OPE<br />

for the Wils<strong>on</strong> loop calculated by Shifman [12].<br />

Putt<strong>in</strong>g Eq. (5) <strong>in</strong>to Eq. (2), we obta<strong>in</strong>ed the mass shift<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> J/ψ shown <strong>in</strong> Fig. 2. The downward mass shift occurs<br />

abruptly <strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> Tc, signal<strong>in</strong>g the phase transiti<strong>on</strong>.<br />

It reaches 40 MeV at Tc and 100 MeV at 1.05Tc.<br />

We note, however, that applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> this method for the<br />

charm<strong>on</strong>ium is questi<strong>on</strong>able bey<strong>on</strong>d this temperature [8].<br />

RESONANCE GAS MODEL<br />

Now we turn to the realistic case <strong>in</strong>clud<strong>in</strong>g light quarks.<br />

It is known that QCD with physical quark mass exhibits<br />

a crossover transiti<strong>on</strong> such that the change <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermodynamic<br />

quantity becomes smoother <strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> Tc.<br />

From an experimental po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> view, the system produced<br />

<strong>in</strong> heavy i<strong>on</strong> collisi<strong>on</strong>s will be QGP, which undergoes a<br />

transiti<strong>on</strong> <strong>in</strong>to a hadr<strong>on</strong>ic gas. The temperature and chemical<br />

potential at the hadr<strong>on</strong>izati<strong>on</strong> can be extracted from statistical<br />

model analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> particle ratios [13]. We c<strong>on</strong>sider<br />

the electric c<strong>on</strong>densate at these po<strong>in</strong>ts which are just below<br />

Tc.<br />

There are two difficulties to extract the c<strong>on</strong>densate from<br />

the lattice data as d<strong>on</strong>e <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the pure gauge theory.<br />

One is the so-called sign problem. Namely, lattice QCD<br />

(α s /π)E 2 [GeV 4 ]<br />

0.004<br />

0.002<br />

0<br />

-0.002<br />

-0.004<br />

(αs /π)E<br />

0.8 0.9 1<br />

T/Tc 1.1 1.2<br />

2<br />

Figure 1: Electric c<strong>on</strong>densates <str<strong>on</strong>g>of</str<strong>on</strong>g> pure glu<strong>on</strong>ic case near<br />

Tc. The value at low temperature limit is obta<strong>in</strong>ed from<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> the glu<strong>on</strong> c<strong>on</strong>densate <strong>in</strong> vacuum, ⟨(αs/π)G 2 ⟩ =<br />

(0.35GeV) 4 .<br />

∆m [MeV]<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

-250<br />

J/ψ<br />

0.9 0.95 1 1.05<br />

T/Tc 1.1 1.15 1.2<br />

Figure 2: Mass shift <str<strong>on</strong>g>of</str<strong>on</strong>g> J/ψ from the sec<strong>on</strong>d order Stark<br />

effect with the electric c<strong>on</strong>densate shown <strong>in</strong> Fig. 1.<br />

cannot perform a simulati<strong>on</strong> at f<strong>in</strong>ite chemical potential.<br />

The other is that <strong>on</strong>e has to separate glu<strong>on</strong>ic c<strong>on</strong>tributi<strong>on</strong> to<br />

the thermodynamic quantities from those <strong>in</strong>clud<strong>in</strong>g quarks.<br />

Therefore, we use a res<strong>on</strong>ance gas model based <strong>on</strong> the l<strong>in</strong>ear<br />

density approximati<strong>on</strong> which has been used to estimate<br />

the glu<strong>on</strong> c<strong>on</strong>densate <strong>in</strong> the nuclear matter. We def<strong>in</strong>e M0<br />

and M2 for a res<strong>on</strong>ance gas, <strong>in</strong>troduced <strong>in</strong> previous secti<strong>on</strong>,<br />

as<br />

M had<br />

0 (T, µ) = ∑<br />

ρi(T, µ)m<br />

i=hadr<strong>on</strong>s<br />

0 i (6)<br />

M had<br />

2 (T, µ) = ∑<br />

ρi(T, µ)miA<br />

i=hadr<strong>on</strong>s<br />

i G. (7)<br />

One sees this expressi<strong>on</strong> is l<strong>in</strong>ear <strong>in</strong> the number density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

i−th hadr<strong>on</strong>s, ρi. If we put ρi as normal nuclear density<br />

ρ0 = 0.17 fm −3 and pick up <strong>on</strong>ly nucle<strong>on</strong> c<strong>on</strong>tributi<strong>on</strong><br />

<strong>in</strong> the summati<strong>on</strong>, this formula reduces to the glu<strong>on</strong> c<strong>on</strong>densates<br />

<strong>in</strong> the nuclear matter [14]. In Eq. (6), the chiral<br />

limit is taken for the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> hadr<strong>on</strong>s m 0 i to isolate<br />

the glu<strong>on</strong>ic c<strong>on</strong>tributi<strong>on</strong> to the trace anomaly. The sec<strong>on</strong>d<br />

moment <str<strong>on</strong>g>of</str<strong>on</strong>g> the glu<strong>on</strong> distributi<strong>on</strong> functi<strong>on</strong> A i G plays<br />

a similar role that picks up the glu<strong>on</strong>ic part <str<strong>on</strong>g>of</str<strong>on</strong>g> the twist-2<br />

term. Here we take the all res<strong>on</strong>ances given <strong>in</strong> the Particle<br />

Data Group [15] <strong>in</strong>to account. Masses <strong>in</strong> the chiral<br />

limit, however, are not known for most hadr<strong>on</strong>s. We use


different masses m 0 i ̸= mi <strong>on</strong>ly for the Nambu-Goldst<strong>on</strong>e<br />

bos<strong>on</strong>s and ground state octet and decouplet bary<strong>on</strong>s. We<br />

put m0 π = m0 K = 0 and m0N = 750 MeV [16]; these are<br />

the most important <strong>in</strong>puts as the c<strong>on</strong>tributi<strong>on</strong>s to the thermodynamic<br />

quantities are dom<strong>in</strong>ated by these hadr<strong>on</strong>s. For<br />

the vector and axial vector mes<strong>on</strong>s, we assume m0 ρ = mρ<br />

and m0 a1 = ma1. We also assume m0 ∆ = m∆. Furthermore,<br />

tak<strong>in</strong>g the flavor SU(3) limit, we also put m0 f0 = m0σ, m0 ϕ = m0ω = m0 K∗ = m0ρ. m0 Λ = m0Ξ = m0Σ = m0N ,<br />

m0 Σ∗ = m0Ξ ∗ = m0Ω = m0∆ . In general AiG can differ<br />

for hadr<strong>on</strong>s. We, however, put Ai G (8m2c) = 0.9 for all the<br />

can be shown to deviate little from<br />

hadr<strong>on</strong>s because Aπ G<br />

this value at such a high energy scale.<br />

At vanish<strong>in</strong>g chemical potential, lattice calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state with physical quark mass are available<br />

[17, 18, 19]. The results have been compared with<br />

the res<strong>on</strong>ance gas. However, there is still uncerta<strong>in</strong>ty <strong>in</strong> the<br />

lattice results due to the discretizati<strong>on</strong> [20]. To take this<br />

uncerta<strong>in</strong>ty <strong>in</strong>to account, we <strong>in</strong>troduce an excluded volume<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hadr<strong>on</strong>s v0 as a fitt<strong>in</strong>g parameter <strong>in</strong> the model by follow<strong>in</strong>g<br />

a prescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ref. [21]. While vanish<strong>in</strong>g excluded<br />

volume, v0 = 0, fits the lattice equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state by<br />

the Wuppertal-Budapest collaborati<strong>on</strong> well [19], v0 = 1.19<br />

fm3 reproduces the scalar glu<strong>on</strong> c<strong>on</strong>densates by HotQCD<br />

collaborati<strong>on</strong> [18]. Figure 3 shows the comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

lattice data and the res<strong>on</strong>ance gas model. From this result,<br />

we may regard our v0 = 0 and v0 = 1.19 fm3 results as<br />

maximum and m<strong>in</strong>imum M0, respectively. After fix<strong>in</strong>g parameters,<br />

we can extend the model to <strong>in</strong>clude f<strong>in</strong>ite chemical<br />

potential.<br />

Table 1: Temperatures and chemical potentials at chemical<br />

freeze-out <strong>in</strong> heavy i<strong>on</strong> collisi<strong>on</strong>s at various energies. Data<br />

are taken from Ref. [13].<br />

√ sNN [GeV] T [MeV] µB[MeV]<br />

8.76 156 403<br />

12.3 154 298<br />

17.3 160 240<br />

130 165.5 38<br />

200 160.5 20<br />

Here we c<strong>on</strong>sider several sets <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature and chemical<br />

potential which are estimated by the statistical model<br />

[13] and summarized <strong>in</strong> Table 1. The electric c<strong>on</strong>densates<br />

are obta<strong>in</strong>ed by putt<strong>in</strong>g M0(T, µB) and M2(T, µB)<br />

[Eqs. (6) and (7)] <strong>in</strong>to Eq. (5) with Nf = 3. We depict<br />

some examples <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric c<strong>on</strong>densate <strong>in</strong> Fig. 4 for illustrat<strong>in</strong>g<br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the chemical potential. One sees at<br />

µB = 403 MeV, the change <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric c<strong>on</strong>densate is<br />

much larger than the <strong>on</strong>e at µB = 20 MeV. Hence <strong>on</strong>e expects<br />

a larger mass shift at lower collisi<strong>on</strong> energies.<br />

Figure 5 shows the mass shift obta<strong>in</strong>ed from the electric<br />

c<strong>on</strong>densate <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ance gas and the sec<strong>on</strong>d order<br />

Stark effect. The band <strong>in</strong>dicates the possible range <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

mass shift <strong>in</strong>corporat<strong>in</strong>g the uncerta<strong>in</strong>ty <str<strong>on</strong>g>of</str<strong>on</strong>g> the lattice data<br />

M 0 [GeV 4 ]<br />

(ε-3p)/T 4<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

HotQCD N τ =8, p4<br />

HotQCD N τ =8, asqtad<br />

WB, C<strong>on</strong>t<strong>in</strong>uum limit<br />

Model, v 0 =1.19 fm 3<br />

0.57 fm 3<br />

0 fm 3<br />

HotQCD N τ =8, p4<br />

HotQCD N τ =8, asqtad<br />

WB full e-3p (not M 0 )<br />

Model, v 0 =1.19 fm 3<br />

0.57 fm 3<br />

0 fm 3<br />

140 145 150 155 160 165 170 175 180<br />

T [MeV]<br />

Figure 3: Upper: <strong>in</strong>teracti<strong>on</strong> measure (ε − 3p)/T 4 . Lower<br />

: its glu<strong>on</strong>ic part M0. The po<strong>in</strong>ts are taken from Refs. [18]<br />

for the “HotQCD” data and [19] for the “WB” (Wuppertal-<br />

Budapest) data while each l<strong>in</strong>e shows the result corresp<strong>on</strong>d<strong>in</strong>g<br />

to various v0.<br />

through vary<strong>in</strong>g v0. S<strong>in</strong>ce the hadr<strong>on</strong>izati<strong>on</strong> temperature is<br />

not m<strong>on</strong>ot<strong>on</strong>ic aga<strong>in</strong>st collid<strong>in</strong>g energy, the mass shift does<br />

not exhibit so <strong>in</strong> spite <str<strong>on</strong>g>of</str<strong>on</strong>g> the decreas<strong>in</strong>g chemical potential.<br />

Nevertheless, <strong>on</strong>e sees the largest mass shift at the lowest<br />

collid<strong>in</strong>g energy and the magnitude is 10–20 MeV at the<br />

higher <strong>on</strong>es.<br />

IMPLICATION FOR EXPERIMENTS<br />

F<strong>in</strong>ally we discuss possible implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the results<br />

for heavy i<strong>on</strong> experiments. Unfortunately, the complexity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the collisi<strong>on</strong> process prevents us from directly detect<strong>in</strong>g<br />

the mass shift through the shift <str<strong>on</strong>g>of</str<strong>on</strong>g> the peak <strong>in</strong> the dilept<strong>on</strong><br />

spectrum, even if the detector resoluti<strong>on</strong> is f<strong>in</strong>e enough to<br />

cover the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the shift. In this case, a dynamical<br />

model is <strong>in</strong>dispensable to describe the space-time evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the created matter and <strong>on</strong>e needs to estimate the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> charm<strong>on</strong>ium which decay <strong>in</strong>side the medium [2, 22].<br />

Here we c<strong>on</strong>sider the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> the statistical<br />

hadr<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charm<strong>on</strong>ium [23, 24] and <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

mass shift <strong>on</strong> the charm<strong>on</strong>ium producti<strong>on</strong>. In fact, a measurement<br />

<strong>in</strong> the Pb+Pb collisi<strong>on</strong>s at CERN-SPS seems to<br />

support this scenario, because ψ ′ ratio to J/ψ can be well<br />

reproduced by the statistical producti<strong>on</strong> while that <strong>in</strong> the<br />

elementary collisi<strong>on</strong> such as p + p cannot be d<strong>on</strong>e so [25].<br />

We do not have to take <strong>in</strong>to account charm c<strong>on</strong>servati<strong>on</strong> if<br />

we restrict ourselves to the charm<strong>on</strong>ium-charm<strong>on</strong>ium ratio.<br />

To compare the experimental data, we need to <strong>in</strong>clude<br />

J/ψ from decay <str<strong>on</strong>g>of</str<strong>on</strong>g> higher res<strong>on</strong>ances. S<strong>in</strong>ce the<br />

sec<strong>on</strong>d order Stark effect applies to such res<strong>on</strong>ances, pro-


(α s /π)∆E 2 [GeV 4 ]<br />

0.003<br />

0.002<br />

0.001<br />

v 0 =0 fm 3 , µ B =403 MeV<br />

v 0 =1.19 fm 3 , µ B =403 MeV<br />

v 0 =0 fm 3 , µ B =20 MeV<br />

v 0 =1.19 fm 3 , µ B =20 MeV<br />

0<br />

130 135 140 145 150 155 160 165 170<br />

T [MeV]<br />

Figure 4: Electric c<strong>on</strong>densates as functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature.<br />

Each l<strong>in</strong>e stands for different chemical potential and the<br />

excluded volume.<br />

0<br />

∆m [MeV]<br />

-10<br />

-20<br />

-30<br />

-40<br />

J/ψ<br />

v 0 =1.19fm 3<br />

v 0 =0fm 3<br />

Stark<br />

10 1/2 100<br />

sNN [GeV]<br />

Figure 5: Mass shift <str<strong>on</strong>g>of</str<strong>on</strong>g> J/ψ at hadr<strong>on</strong>izati<strong>on</strong> temperature<br />

and chemical potentials for various collid<strong>in</strong>g energies.<br />

ducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> those res<strong>on</strong>ances is also <strong>in</strong>fluenced by the mass<br />

shift. Based <strong>on</strong> the dipole nature (2), we assume the mass<br />

shift scales with the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ance. Then we have<br />

∆mχc ≃ −24 ∼ −49 MeV and ∆mψ ′ ≃ −40 ∼ −82<br />

MeV, respectively. In fact, this crude estimate for χc is<br />

close to more precise <strong>on</strong>e obta<strong>in</strong>ed from QCD sum rules<br />

[26]. Assum<strong>in</strong>g the same branch<strong>in</strong>g ratio <strong>in</strong> medium as <strong>in</strong><br />

vacuum, we calculate the number ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ ′ to J/ψ <strong>in</strong>clud<strong>in</strong>g<br />

decay c<strong>on</strong>tributi<strong>on</strong> to J/ψ from mass-shifted χc<br />

and ψ ′ . The result is shown <strong>in</strong> Fig. 6 together with the experimental<br />

data. We plot the result as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ ′ mass<br />

shift which is not known well. One sees an enhancement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the ratio for large ψ ′ mass shift. While larger mass shift<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ψ ′ than 100 MeV does not seem c<strong>on</strong>sistent with the experimental<br />

data, our rough estimati<strong>on</strong> is still <strong>in</strong>side the experimental<br />

band. If such an enhancement is c<strong>on</strong>firmed, it<br />

will prove the mass shift <str<strong>on</strong>g>of</str<strong>on</strong>g> the charm<strong>on</strong>ia as a precursor <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the c<strong>on</strong>f<strong>in</strong>ement-dec<strong>on</strong>f<strong>in</strong>ement transiti<strong>on</strong>. Details <strong>in</strong>clud<strong>in</strong>g<br />

analyses with QCD sum rules have been presented <strong>in</strong><br />

Ref. [26].<br />

REFERENCES<br />

[1] T. Matsui, H. Satz, Phys. Lett. B 178 (1986) 416.<br />

[2] T. Hashimoto, O. Miyamura, K. Hirose, T. Kanki, Phys.<br />

Rev. Lett. 57 (1986) 2123.<br />

σ ψ′ /σ J/ψ<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

Exp. data<br />

Statistical producti<strong>on</strong> w/ mass shift<br />

No mass shift<br />

0<br />

-200 -150 -100 -50 0<br />

ψ′ mass shift [MeV]<br />

Figure 6: Ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ ′ to J/ψ as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ ′ mass shift.<br />

The horiz<strong>on</strong>tal band <strong>in</strong>dicates the experimental data measured<br />

<strong>in</strong> Pb+Pb collisi<strong>on</strong>s at √ sNN = 17 GeV.<br />

[3] E. Eichten, K. Gottfried, T. K<strong>in</strong>oshita, K. D. Lane, T. M.<br />

Yan, Phys. Rev. D 17 (1978) 3090.<br />

[4] M. E. Pesk<strong>in</strong>, Nucl. Phys. B 156 (1979) 365.<br />

[5] G. Bhanot, M. E. Pesk<strong>in</strong>, Nucl. Phys. B 156 (1979) 391.<br />

[6] H. Fujii, D. Kharzeev, Phys. Rev. D 60 (1999) 114039.<br />

[7] M. Luke, A. V. Manohar, M. J. Savage, Phys. Lett. B 288<br />

(1992) 355.<br />

[8] S. H. Lee, K. Morita, Phys. Rev. D 79 (2009) 011501.<br />

[9] G. Boyd, J. Engles, F. Karsch, E. Laermann, C. Legeland,<br />

M. Lütgemeier, B. Peterss<strong>on</strong>, Nucl. Phys. B469 (1996) 419.<br />

[10] O. Kaczmarek, F. Karsch, F. Zantow, P. Petreczky, Phys.<br />

Rev. D 70 (2004) 074505, [Erratum-ibid. D 72 (2005)<br />

059903].<br />

[11] E. Manousakis, J. Pol<strong>on</strong>yi, Phys. Rev. Lett. 58 (1987) 847.<br />

[12] M. A. Shifman, Nucl. Phys. B 173 (1980) 13.<br />

[13] A. Andr<strong>on</strong>ic, P. Braun-Munz<strong>in</strong>ger, J. Stachel, Nucl. Phys.<br />

A772 (2006) 167.<br />

[14] F. Kl<strong>in</strong>gl, S. Kim, S. H. Lee, P. Morath, W. Weise, Phys.<br />

Rev. Lett. 82 (1999) 3396.<br />

[15] K. Nakamura, et al., J. Phys. G.: Nucl. Part. Phys. 37 (2010)<br />

075021.<br />

[16] B. Borasoy, U. G. Meißner, Phys. Lett. B 365 (1996) 285.<br />

[17] M. Cheng et al., Phys. Rev. D 77 (2008) 014511.<br />

[18] A. Bazavov, et al., Phys. Rev. D 80 (2009) 014504.<br />

[19] S. Borsányi, G. Endrödi, Z. Fodor, A. Jakovác, S. D. Katz,<br />

S. Krieg, C. Ratti, K. K. Szabó, arXiv:1007.2580.<br />

[20] P. Huov<strong>in</strong>en, P. Petreczky, Nucl. Phys. A837 (2010) 26.<br />

[21] D. H. Rischke, M. I. Gorenste<strong>in</strong>, H. Stöcker, W. Gre<strong>in</strong>er, Z.<br />

Phys. C 51 (1991) 485.<br />

[22] T. S<strong>on</strong>g, W. Park, S. H. Lee, Phys. Rev. C 81 (2010) 034914.<br />

[23] M. Ga´zdzicki, M. I. Gorenste<strong>in</strong>, Phys. Rev. Lett. 83 (1999)<br />

4009.<br />

[24] A. Andr<strong>on</strong>ic, P. Braun-Munz<strong>in</strong>ger, K. Redlich, J. Stachel,<br />

Phys. Lett. B 571 (2003) 36.<br />

[25] A. Andr<strong>on</strong>ic and F. Beutler and P. Braun-Munz<strong>in</strong>ger and<br />

K. Redlich and J. Stachel, Phys. Lett. B 678 (2009) 350.<br />

[26] K. Morita, S. H. Lee. arXiv:1012.3110.


ON THE UNRUH EFFECT ∗<br />

Ralf Schützhold † , Fakultät für Physik, Universität Duisburg-Essen, D-47048 Duisburg, Germany<br />

Abstract<br />

After a brief <strong>in</strong>troducti<strong>on</strong> <strong>in</strong>to the Unruh effect and its<br />

generalizati<strong>on</strong> to n<strong>on</strong>-uniform (here circular) accelerati<strong>on</strong>,<br />

we discuss prospects for measur<strong>in</strong>g signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> this effect<br />

<strong>in</strong> str<strong>on</strong>g lasers.<br />

INTRODUCTION<br />

The Unruh effect [1] describes the strik<strong>in</strong>g discovery<br />

that an accelerated observer/detector experiences the<br />

M<strong>in</strong>kowski vacuum as a thermal bath – imply<strong>in</strong>g that<br />

the particle c<strong>on</strong>cept depends <strong>on</strong> the <strong>in</strong>ertial state <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

observer/detector. After important preparatory works by<br />

Full<strong>in</strong>g [2] and Davies [3], Unruh [1] realized this phenomen<strong>on</strong><br />

while try<strong>in</strong>g to understand how black holes can<br />

evaporate by emitt<strong>in</strong>g Hawk<strong>in</strong>g radiati<strong>on</strong> [4]. Around the<br />

same time, the mathematical foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this strik<strong>in</strong>g fact<br />

was established by Bisognano & Wichmann [5] by show<strong>in</strong>g<br />

the relati<strong>on</strong> between the R<strong>in</strong>dler Hamilt<strong>on</strong>ian and thermality<br />

– but apparently without immediately realiz<strong>in</strong>g the<br />

broad physical significance.<br />

However, so far this predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory<br />

has eluded a direct experimental verificati<strong>on</strong>, see also [6].<br />

There are some observati<strong>on</strong>s regard<strong>in</strong>g the imperfect polarizability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s <strong>in</strong> storage r<strong>in</strong>gs which are related to<br />

the Sokolov-Ternov effect [7] and can be <strong>in</strong>terpreted as an<br />

<strong>in</strong>direct verificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh effect generalized to the<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> circular accelerati<strong>on</strong>, see, e.g., [8, 9].<br />

In the follow<strong>in</strong>g, we briefly discuss a recent proposal<br />

[10, 11] for directly observ<strong>in</strong>g signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh<br />

effect <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> pairs created by electr<strong>on</strong>s<br />

which are accelerated <strong>in</strong> an ultra-str<strong>on</strong>g laser field, see also<br />

[12, 13]. We start with a short <strong>in</strong>troducti<strong>on</strong> <strong>in</strong>to the Unruh<br />

effect for uniform accelerati<strong>on</strong> and discuss the generalizati<strong>on</strong><br />

to circular accelerati<strong>on</strong>, which is relevant for electr<strong>on</strong>s<br />

<strong>in</strong> storage r<strong>in</strong>gs and the Sokolov-Ternov effect.<br />

DETECTOR PLUS FIELD<br />

Let us c<strong>on</strong>sider the follow<strong>in</strong>g acti<strong>on</strong> for the field ϕ and<br />

the detector with excitati<strong>on</strong> energy E, coupled with the<br />

coupl<strong>in</strong>g strength g (we use = c = 1)<br />

A = Adetector + Afield<br />

∫ [<br />

E<br />

= dτ<br />

2 σz<br />

]<br />

+ gσxϕ (x[τ])<br />

+ 1<br />

∫<br />

2<br />

d 4 x [(∂µϕ)(∂ µ ϕ)] , (1)<br />

∗ Work supported by DFG under grant SCHU 1557/1.<br />

† ralf.schuetzhold@uni-due.de<br />

where σz and σx are the Pauli matrices and τ is the proper<br />

time al<strong>on</strong>g the detector trajectory. In the <strong>in</strong>teracti<strong>on</strong> picture,<br />

the transiti<strong>on</strong> Hamilt<strong>on</strong>ian reads (with 2σ± = σx ± iσy)<br />

]<br />

ˆϕ (x[τ]) , (2)<br />

ˆH<strong>in</strong>t(τ) = g(τ) [ e iEτ σ+ + e −iEτ σ−<br />

where g(τ) is smooth switch<strong>in</strong>g (<strong>on</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g>f) functi<strong>on</strong>. Initially<br />

(where the <strong>in</strong>teracti<strong>on</strong> is switched <str<strong>on</strong>g>of</str<strong>on</strong>g>f) both, detector<br />

and field, are <strong>in</strong> their ground state<br />

|Ψ<strong>in</strong>⟩ = |Ψ(τ ↓ −∞)⟩<br />

= |Ψdetector⟩ ⊗ |Ψfield⟩ = |↓⟩ ⊗ |0⟩ . (3)<br />

Assum<strong>in</strong>g small coupl<strong>in</strong>g g, we may derive the f<strong>in</strong>al state<br />

via perturbati<strong>on</strong> theory<br />

|Ψout⟩ = |Ψ(τ ↑ +∞)⟩<br />

∫<br />

= |Ψ<strong>in</strong>⟩ − i<br />

dτ ˆ H<strong>in</strong>t(τ) |Ψ<strong>in</strong>⟩ + O(g 2 ) .(4)<br />

This yields the excitati<strong>on</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the detector<br />

P↑ = ⟨Ψout| ↑⟩ ⟨↑ |Ψout⟩<br />

=<br />

∫ ∫<br />

dτ dτ ′ g(τ) g(τ ′ ) e iE(τ−τ ′ )<br />

×<br />

× ⟨0| ˆ ϕ (x[τ]) ˆ ϕ (x[τ ′ ]) |0⟩ . (5)<br />

For simplicity, we c<strong>on</strong>sider the Wightmann functi<strong>on</strong> for a<br />

massless scalar field <strong>in</strong> 3+1 dimensi<strong>on</strong>s<br />

⟨0| ˆ ϕ (x) ˆ ϕ (x ′ ) |0⟩ = − 1<br />

(2π) 2<br />

1<br />

(t − t ′ ) 2 − (r − r ′ , (6)<br />

) 2<br />

where the pole structure (at the light-c<strong>on</strong>e) is understood <strong>in</strong><br />

such a way that the Fourier transform <str<strong>on</strong>g>of</str<strong>on</strong>g> the Wightmann<br />

functi<strong>on</strong> <strong>on</strong>ly c<strong>on</strong>ta<strong>in</strong>s n<strong>on</strong>-negative energies. Roughly<br />

speak<strong>in</strong>g, (t − t ′ ) 2 is replaced by (t − t ′ − iε) 2 with ε ↓ 0.<br />

UNIFORM ACCELERATION<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> (eternal) uniform accelerati<strong>on</strong> a, the detector<br />

trajectory <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the proper time τ reads<br />

t[τ] = 1<br />

a<br />

s<strong>in</strong>h(aτ) , x[τ] = 1<br />

a<br />

cosh(aτ) , y = z = 0 . (7)<br />

Evaluat<strong>in</strong>g the two-po<strong>in</strong>t functi<strong>on</strong> al<strong>on</strong>g this trajectory<br />

⟨0| ˆ ϕ (x[τ]) ˆ ϕ (x[τ ′ ]) |0⟩ = − 1<br />

2(2π) 2<br />

a2 cosh(a[τ − τ ′ , (8)<br />

]) − 1<br />

we f<strong>in</strong>d a stati<strong>on</strong>ary expressi<strong>on</strong> which is periodic al<strong>on</strong>g the<br />

imag<strong>in</strong>ary τ− = τ − τ ′ -axis and possesses double poles at<br />

this axis<br />

a[τ − τ ′ ] ∈ 2πi N . (9)


In the stati<strong>on</strong>ary case, it is useful to change the <strong>in</strong>tegrati<strong>on</strong><br />

variables <strong>in</strong> Eq. (5) from τ and τ ′ to τ− = τ − τ ′ and<br />

τ+ = (τ + τ ′ )/2. For positive E, we may deform the τ−<strong>in</strong>tegrati<strong>on</strong><br />

<strong>in</strong>to the upper complex half plane ℑ(τ−) > 0<br />

and close the <strong>in</strong>tegrati<strong>on</strong> c<strong>on</strong>tour at <strong>in</strong>f<strong>in</strong>ity. As a result, the<br />

τ−-<strong>in</strong>tegral is just the sum over all poles with ℑ(τ−) > 0.<br />

Due to periodicity, all residuals are equal and so their sum<br />

yields a geometric series<br />

∞∑<br />

{<br />

P↑ ∝ exp − 2πnE<br />

}<br />

1<br />

=<br />

. (10)<br />

a exp{2πE/a} − 1<br />

n=1<br />

Thus the excitati<strong>on</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the detector is given by a<br />

thermal spectrum with the Unruh temperature (kB = 1)<br />

TUnruh = a<br />

. (11)<br />

2π<br />

CIRCULAR ACCELERATION<br />

For comparis<strong>on</strong>, let us c<strong>on</strong>sider the case <str<strong>on</strong>g>of</str<strong>on</strong>g> circular moti<strong>on</strong><br />

where the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the accelerati<strong>on</strong> rema<strong>in</strong>s c<strong>on</strong>stant<br />

but its directi<strong>on</strong> changes all the time. In this case, the<br />

detector trajectory is given by<br />

x[τ] = R s<strong>in</strong>(γωτ) , y[τ] = R cos(γωτ) , z = 0 ,<br />

t[τ] = γτ =<br />

τ<br />

√ . (12)<br />

1 − R2ω2 The two-po<strong>in</strong>t functi<strong>on</strong> al<strong>on</strong>g this trajectory<br />

− 1<br />

(2π) 2<br />

⟨0| ˆ ϕ (x[τ]) ˆ ϕ (x[τ ′ ]) |0⟩ =<br />

1<br />

γ 2 (τ − τ ′ ) 2 − 4R 2 s<strong>in</strong> 2 (γω[τ − τ ′ ]/2)<br />

(13)<br />

is aga<strong>in</strong> stati<strong>on</strong>ary but no l<strong>on</strong>ger periodic. Now the poles<br />

lie at γ(τ − τ ′ ) = ±2R s<strong>in</strong>(γω[τ − τ ′ ]/2). Introduc<strong>in</strong>g<br />

the abbreviati<strong>on</strong> φ = γω[τ − τ ′ ]/2, we have φ = β s<strong>in</strong> φ<br />

where β = ±Rω.<br />

Ultra-relativistic Case<br />

The above transcendental equati<strong>on</strong> for the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the poles simplifies if the detector velocity approaches the<br />

speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light. Us<strong>in</strong>g a Taylor expansi<strong>on</strong> (assum<strong>in</strong>g β > 0)<br />

(<br />

φ = β s<strong>in</strong> φ = β φ − φ3<br />

6 + O(φ5 )<br />

) , (14)<br />

we f<strong>in</strong>d apart from the trivial pole at φ = 0<br />

φ 2 β − 1 3<br />

= 6 ≈ −<br />

β γ2 ❀ τ − τ ′ √<br />

12<br />

= ±<br />

γ2 i .<br />

ω<br />

(15)<br />

This yields the excitati<strong>on</strong> probability, see also [9]<br />

{ √<br />

12 E<br />

P↑ ∝ exp −<br />

γ2 }<br />

. (16)<br />

ω<br />

Even though the spectrum is not exactly thermal, we may<br />

identify an effective temperature (for large E) via<br />

Teff ≈ γ2 ω<br />

√ 12 ≈ a<br />

√ 12 , (17)<br />

where we have used that a ≈ γ 2 ω for β ↑ 1.<br />

SIGNATURES<br />

Instead <str<strong>on</strong>g>of</str<strong>on</strong>g> the excitati<strong>on</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the detector <strong>in</strong><br />

Eq. (5), we may also study the excitati<strong>on</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

quantum field itself via the particle number operator ˆ Nk<br />

Pk = ⟨Ψout| ˆ Nk |Ψout⟩<br />

∫<br />

<br />

∝ <br />

dτ g(τ) e iEτ+ikt[τ]+ik·r[τ]<br />

<br />

<br />

<br />

<br />

2<br />

. (18)<br />

Compar<strong>in</strong>g the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the two expressi<strong>on</strong>s for P↑ and<br />

Pk, we f<strong>in</strong>d that for each excitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the detector, exactly<br />

<strong>on</strong>e particle has been created [14]. Now, if the detector<br />

decays aga<strong>in</strong> after some time, another particle is created.<br />

So <strong>in</strong> total, the state <str<strong>on</strong>g>of</str<strong>on</strong>g> the detector is the same aga<strong>in</strong> – but<br />

a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> particles has been created.<br />

Tak<strong>in</strong>g the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> the time between excitati<strong>on</strong> and decay<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the detector go<strong>in</strong>g to zero, we effectively have a scatter<strong>in</strong>g<br />

event. In this limit, we may replace the detector by an<br />

electr<strong>on</strong>, which can scatter phot<strong>on</strong>s via Thoms<strong>on</strong> (Compt<strong>on</strong>)<br />

scatter<strong>in</strong>g. Thus an accelerated electr<strong>on</strong> would create<br />

pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s – which can be <strong>in</strong>terpreted as a signature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh effect [10, 11], see also [12, 13, 15]. As we<br />

have seen before, this effect is not restricted to uniform accelerati<strong>on</strong>,<br />

but also occurs <strong>in</strong> the more general case.<br />

REFERENCES<br />

[1] W. G. Unruh, Phys. Rev. D 14, 870 (1976).<br />

[2] S. A. Full<strong>in</strong>g, Phys. Rev. D 7, 2850 (1973).<br />

[3] P. C. W. Davies, J. Phys. A 8, 609 (1975).<br />

[4] S. W. Hawk<strong>in</strong>g, Nature 248, 30 (1974); Comm. Math. Phys.<br />

43, 199 (1975).<br />

[5] J.J. Bisognano, E.H. Wichmann, J. Math. Phys. 17, 303<br />

(1976).<br />

[6] H. C. Rosu, Grav. Cosmol. 7, 1 (2001); Int. J. Mod. Phys. D<br />

3, 545 (1994); <strong>Physics</strong> World, October 1999, 21-22.<br />

[7] A.A. Sokolov, I.M. Ternov, Sov. Phys. Dokl. 8, 1203 (1964).<br />

[8] J. S. Bell and J. M. Le<strong>in</strong>aas, Nucl. Phys. B 284, 488 (1987);<br />

W. G. Unruh, Phys. Rept. 307, 163 (1998).<br />

[9] E. T. Akhmedov, D. S<strong>in</strong>glet<strong>on</strong>, Pisma Zh. Eksp. Teor. Fiz.<br />

86, 702-706 (2007); Int. J. Mod. Phys. A22, 4797-4823<br />

(2007).<br />

[10] R. Schützhold, G. Schaller, D. Habs, Phys. Rev. Lett. 97,<br />

121302 (2006).<br />

[11] R. Schützhold, G. Schaller, D. Habs, Phys. Rev. Lett. 100,<br />

091301 (2008).<br />

[12] P. Chen and T. Tajima, Phys. Rev. Lett. 83, 256 (1999).<br />

[13] R. Schützhold, C. Maia, Eur. Phys. J. D55, 375 (2009).<br />

[14] W. G. Unruh and R. M. Wald, Phys. Rev. D 29, 1047 (1984).<br />

[15] Ya.B. Zeldovich, L.V. Rozhanskii, A.A. Starob<strong>in</strong>skii, Pisma<br />

Zh. Eksp. Teor. Fiz. 43, 407 (1986).


Abstract<br />

Can we detect ”Unruh radiati<strong>on</strong>” <strong>in</strong> the high <strong>in</strong>tensity lasers? ∗<br />

Satoshi Iso † , Yasuhiro Yamamoto ‡ and Sen Zhang § , <strong>KEK</strong>, Tsukuba, Japan<br />

An accelerated particle sees the M<strong>in</strong>kowski vacuum as<br />

thermally excited, which is called the Unruh effect. Due<br />

to an <strong>in</strong>teracti<strong>on</strong> with the thermal bath, the particle moves<br />

stochastically like the Brownian moti<strong>on</strong> <strong>in</strong> a heat bath. It<br />

has been discussed that the accelerated charged particle<br />

may emit extra radiati<strong>on</strong> (the Unruh radiati<strong>on</strong> [2]) besides<br />

the Larmor radiati<strong>on</strong>, and experiments are under plann<strong>in</strong>g<br />

to detect such radiati<strong>on</strong> by us<strong>in</strong>g ultrahigh <strong>in</strong>tensity lasers<br />

[3, 4]. There are, however, counterarguments that the radiati<strong>on</strong><br />

is canceled by an <strong>in</strong>terference effect between the<br />

vacuum fluctuati<strong>on</strong> and the radiati<strong>on</strong> from the fluctuat<strong>in</strong>g<br />

moti<strong>on</strong>. In this and another reports [5], we review our recent<br />

analysis <strong>on</strong> the issue <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh radiati<strong>on</strong>. In this<br />

report, we particularly c<strong>on</strong>sider the thermalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

accelerated particle <strong>in</strong> the scalar QED, and derive the relaxati<strong>on</strong><br />

time <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermalizati<strong>on</strong>. The <strong>in</strong>terference effect<br />

is discussed separately <strong>in</strong> [5].<br />

UNRUH EFFECT AND UNRUH<br />

RADIATION<br />

Quantum field theories <strong>in</strong> the space-time with horiz<strong>on</strong>s<br />

exhibit <strong>in</strong>terest<strong>in</strong>g thermodynamic behavior. The most<br />

prom<strong>in</strong>ent phenomen<strong>on</strong> is the Hawk<strong>in</strong>g radiati<strong>on</strong> and the<br />

fundamental laws <str<strong>on</strong>g>of</str<strong>on</strong>g> thermodynamics hold <strong>in</strong> the black<br />

hole background. A similar phenomen<strong>on</strong> occurs for a<br />

uniformly accelerated observer <strong>in</strong> the ord<strong>in</strong>ary M<strong>in</strong>kowski<br />

vacuum [6]. This is called the Unruh effect. If a particle<br />

is uniformly accelerated <strong>in</strong> the M<strong>in</strong>kowski space with an<br />

accelerati<strong>on</strong> a, there is a causal horiz<strong>on</strong> (the R<strong>in</strong>dler horiz<strong>on</strong>)<br />

and no <strong>in</strong>formati<strong>on</strong> can be transmitted from the other<br />

side <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong>. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the R<strong>in</strong>dler<br />

horiz<strong>on</strong>, the accelerated observer sees the M<strong>in</strong>kowski vac-<br />

uum as thermally excited with the Unruh temperature<br />

TU = a<br />

2πckB<br />

= 4 × 10 −23<br />

(<br />

a<br />

1 cm/s 2<br />

)<br />

[K]. (1)<br />

S<strong>in</strong>ce the Unruh temperature is very small for ord<strong>in</strong>ary<br />

accelerati<strong>on</strong>, it was very difficult to detect the Unruh effect.<br />

But with the ultra-high <strong>in</strong>tensity lasers, the Unruh effect<br />

can be experimentally accessible. In the electro-magnetic<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> a laser with <strong>in</strong>tensity I, the Unruh temperature is<br />

given by<br />

TU = 8 × 10 −11<br />

√<br />

I<br />

2 [K]. (2)<br />

1 W/cm<br />

∗ The report is based <strong>on</strong> a talk by S.Zhang and [1].<br />

† satoshi.iso@kek.jp<br />

‡ yamayasu@post.kek.jp<br />

§ zhangsen@post.kek.jp<br />

The Extreme Light Infrastructure project [4] is plann<strong>in</strong>g to<br />

c<strong>on</strong>struct Peta Watt lasers with an <strong>in</strong>tensity as high as 5 ×<br />

10 26 [W/cm 2 ]. The expected Unruh temperature becomes<br />

more than 10 3 K. So it is time to ask ourselves how we can<br />

experimentally observe such high Unruh temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

accelerated electr<strong>on</strong> <strong>in</strong> the laser field.<br />

Chen and Tajima proposed that <strong>on</strong>e may be able to detect<br />

the Unruh effect by observ<strong>in</strong>g quantum radiati<strong>on</strong> [2] from<br />

the electr<strong>on</strong>. It is called the Unruh radiati<strong>on</strong>. S<strong>in</strong>ce a uniformly<br />

accelerated electr<strong>on</strong> feels the vacuum (with quantum<br />

virtual pair creati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particles and anti-particles) as<br />

thermally excited with the Unruh temperature, the moti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> fluctuates and is expected to become thermalized(Fig.<br />

1). This fluctuat<strong>in</strong>g moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong><br />

Figure 1: Stochastic trajectories <str<strong>on</strong>g>of</str<strong>on</strong>g> a uniformly accelerated<br />

electr<strong>on</strong> affected by quantum field fluctuati<strong>on</strong>s.<br />

changes the accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> and may produce<br />

additi<strong>on</strong>al radiati<strong>on</strong> (the Unruh radiati<strong>on</strong>) to the ord<strong>in</strong>ary<br />

Larmor radiati<strong>on</strong>. The rough estimati<strong>on</strong> [2] suggested that<br />

the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh radiati<strong>on</strong> is much smaller than the<br />

classical <strong>on</strong>e by 10 −5 , but the angular dependence becomes<br />

quite different. Especially <strong>in</strong> the directi<strong>on</strong> al<strong>on</strong>g the accelerati<strong>on</strong><br />

there is a bl<strong>in</strong>d spot for the Larmor radiati<strong>on</strong> while<br />

the Unruh radiati<strong>on</strong> is expected to be radiated more spherically.<br />

Hence they proposed to detect the Unruh radiati<strong>on</strong><br />

by sett<strong>in</strong>g a phot<strong>on</strong> detector <strong>in</strong> this directi<strong>on</strong>.<br />

The above argument seems <strong>in</strong>tuitively correct, but there<br />

are two problems that should be clarified. The first problem<br />

is the thermalizati<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluctuati<strong>on</strong>. The electromagnetic<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> laser are not c<strong>on</strong>stant but oscillat<strong>in</strong>g. One<br />

may approximate the electr<strong>on</strong>’s moti<strong>on</strong> around the turn<strong>in</strong>g<br />

po<strong>in</strong>ts by a uniform accelerati<strong>on</strong>. This approximati<strong>on</strong> is<br />

valid <strong>on</strong>ly when the period <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser is large enough compared<br />

to the relaxati<strong>on</strong> time (or thermalizati<strong>on</strong> time) <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

particle’s fluctuati<strong>on</strong>. Us<strong>in</strong>g a stochastic approach, we ob-


ta<strong>in</strong>ed the relaxati<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluctuati<strong>on</strong> and showed that<br />

the relaxati<strong>on</strong> time is l<strong>on</strong>ger than the period <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser. In<br />

such a case, we must fully analyze the transient dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the fluctuati<strong>on</strong> to calculate the radiati<strong>on</strong> <strong>in</strong> the laser field.<br />

The sec<strong>on</strong>d problem is the <strong>in</strong>terference effect. S<strong>in</strong>ce the<br />

Unruh radiati<strong>on</strong> orig<strong>in</strong>ates <strong>in</strong> the <strong>in</strong>teracti<strong>on</strong> with the particle<br />

with the quantum fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum, we cannot<br />

neglect the <strong>in</strong>terference <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh radiati<strong>on</strong> and the vacuum<br />

quantum fluctuati<strong>on</strong>s. In a simpler model, it has been<br />

known that the Unruh radiati<strong>on</strong> is completely canceled by<br />

the <strong>in</strong>terference effect. The cancellati<strong>on</strong> was shown for<br />

the Unruh detector <strong>in</strong> both 1+1 and 3+1 dimensi<strong>on</strong>s[7, 8].<br />

There was no calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>terference effect <strong>in</strong> the<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> the uniformly accelerated charged particle s<strong>in</strong>ce the<br />

calculati<strong>on</strong> needs some technicalities. In the paper [1] we<br />

calculated the <strong>in</strong>terference effect for the charged particle<br />

<strong>in</strong> the scalar QED and found that some <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh radiati<strong>on</strong><br />

is canceled by the <strong>in</strong>terference effect, but the cancellati<strong>on</strong><br />

occurs <strong>on</strong>ly partially. So we still have a possibility<br />

to detect additi<strong>on</strong>al radiati<strong>on</strong> from the uniformly accelerated<br />

charged particle, but the complete understand<strong>in</strong>g<br />

needs more detailed analysis.<br />

In the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this report we first briefly review the<br />

stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> a uniformly accelerated charged particle<br />

and then show how the thermalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluctuati<strong>on</strong><br />

occurs by solv<strong>in</strong>g the stochastic equati<strong>on</strong>. F<strong>in</strong>ally we<br />

briefly sketch the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong>, particularly<br />

put emphasis <strong>on</strong> the <strong>in</strong>terference effect. More details <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>terference effect and the Unruh radiati<strong>on</strong><br />

are reviewed <strong>in</strong> another report <str<strong>on</strong>g>of</str<strong>on</strong>g> the same authors <strong>in</strong><br />

the proceed<strong>in</strong>gs [5].<br />

THERMALIZATION<br />

We c<strong>on</strong>sider the scalar QED. The model is analyzed<br />

<strong>in</strong> [9] and here we briefly review the sett<strong>in</strong>gs and the derivati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the stochastic Abraham-Lorentz-Dirac (ALD) equati<strong>on</strong>.<br />

The system composes <str<strong>on</strong>g>of</str<strong>on</strong>g> a relativistic particle z µ (τ)<br />

and the scalar field ϕ(x). The acti<strong>on</strong> is given by<br />

∫<br />

S[z, ϕ, h] = − m<br />

∫<br />

+<br />

dτ √ ˙z µ ∫<br />

˙zµ +<br />

d 4 x 1 2<br />

(∂µϕ)<br />

2<br />

d 4 x j(x; z)ϕ(x). (3)<br />

The scalar current j(x; z) is def<strong>in</strong>ed as<br />

∫<br />

j(x; z) = e dτ √ ˙z µ ˙zµ δ 4 (x − z(τ)), (4)<br />

We choose the parametrizati<strong>on</strong> τ to satisfy ˙z 2 = 1.<br />

The Stochastic Equati<strong>on</strong><br />

The equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle is given by<br />

m¨z µ = F µ ∫<br />

−<br />

d 4 x<br />

δj(x; z)<br />

ϕ(x) (5)<br />

δzµ(τ)<br />

where we have added the external force F µ so as to accelerate<br />

the particle uniformly; F µ = ma( ˙z 1 , ˙z 0 , 0, 0). Then<br />

a classical soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle (<strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

coupl<strong>in</strong>g to ϕ) is given by<br />

z µ<br />

0<br />

1 1<br />

= ( s<strong>in</strong>h aτ, cosh aτ, 0, 0). (6)<br />

a a<br />

The equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong> field ∂ 2 ϕ = j is<br />

solved by us<strong>in</strong>g the retarded Green functi<strong>on</strong> GR as<br />

ϕ(x) = ϕh(x) + ϕI(x),<br />

∫<br />

ϕI(x) =<br />

d 4 x ′ GR(x, x ′ )j(x ′ ; z) (7)<br />

where ϕh is the homogeneous soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

moti<strong>on</strong> and represents the vacuum fluctuati<strong>on</strong>. It is resp<strong>on</strong>sible<br />

for the particle’s fluctuat<strong>in</strong>g moti<strong>on</strong> under a uniform<br />

accelerati<strong>on</strong>. Insert<strong>in</strong>g the soluti<strong>on</strong> (7) <strong>in</strong>to (5), we have the<br />

follow<strong>in</strong>g stochastic equati<strong>on</strong> for the particle<br />

m¨z µ (τ) =F µ (z(τ)) − e⃗ω µ<br />

(<br />

∫<br />

× ϕh(z(τ)) + e<br />

dτ ′ GR(z(τ), z(τ ′ ))<br />

(8)<br />

)<br />

,<br />

where ⃗ωµ = ˙z ν ˙z [ν∂ µ]−¨zµ, which comes from the deviati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the current<br />

∫<br />

(9)<br />

d 4 δj(x; z)<br />

x<br />

δz µ (τ) f(x) = e⃗ωµf(x)| x=z(τ). (10)<br />

The homogeneous part ϕh(z(τ)) <str<strong>on</strong>g>of</str<strong>on</strong>g> the scalar field describes<br />

the Gaussian fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum, hence, the<br />

first term <strong>in</strong> the parenthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> (8) can be <strong>in</strong>terpreted as random<br />

noise to the particle’s moti<strong>on</strong><br />

⟨ϕh(x)ϕh(x ′ )⟩ = − 1<br />

4π2 1<br />

(t − t ′ − iϵ) 2 . (11)<br />

− r2 It is essentially quantum mechanical, but if it is evaluated<br />

<strong>on</strong> a world l<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> a uniformly accelerated particle<br />

x = z(τ), x ′ = z(τ ′ ), it behaves as the ord<strong>in</strong>ary f<strong>in</strong>ite<br />

temperature noise. The sec<strong>on</strong>d term <strong>in</strong> the parenthesis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(8) is a functi<strong>on</strong>al <str<strong>on</strong>g>of</str<strong>on</strong>g> the total history <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle’s moti<strong>on</strong><br />

z(τ ′ ) for τ ′ ≤ τ, but it can be reduced to the so<br />

called radiati<strong>on</strong> damp<strong>in</strong>g term <str<strong>on</strong>g>of</str<strong>on</strong>g> a charged particle coupled<br />

with radiati<strong>on</strong> field. It is generally n<strong>on</strong>local, but s<strong>in</strong>ce the<br />

Green functi<strong>on</strong> damps rapidly as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the distance<br />

r, the term is approximated by local derivative terms. After<br />

the mass renormalizati<strong>on</strong>, we get the follow<strong>in</strong>g generalized<br />

Langev<strong>in</strong> equati<strong>on</strong> for the charged particle,<br />

m ˙v µ − F µ − e2<br />

12π (vµ ˙v 2 + ¨v µ ) = −e⃗ω µ ϕh(z) (12)<br />

where v µ = ˙z µ . This equati<strong>on</strong> is an analog <str<strong>on</strong>g>of</str<strong>on</strong>g> the ALD<br />

equati<strong>on</strong> for a charged particle <strong>in</strong>teract<strong>in</strong>g with the electromagnetic<br />

field. The dissipati<strong>on</strong> term is <strong>in</strong>duced by the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the backreacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle’s radiati<strong>on</strong> to the<br />

particle’s moti<strong>on</strong>. Note that, if the noise term is absent, the<br />

classical soluti<strong>on</strong> (6) with a c<strong>on</strong>stant accelerati<strong>on</strong> is still a<br />

soluti<strong>on</strong> to the equati<strong>on</strong> (12).


Equipartiti<strong>on</strong> Theorem<br />

The stochastic equati<strong>on</strong> (12) is n<strong>on</strong>l<strong>in</strong>ear and difficult to<br />

solve. Here we c<strong>on</strong>sider small fluctuati<strong>on</strong>s around the classical<br />

trajectory <strong>in</strong>duced by the vacuum fluctuati<strong>on</strong> ϕh. Especially<br />

we c<strong>on</strong>sider fluctuati<strong>on</strong>s <strong>in</strong> the transverse directi<strong>on</strong>s.<br />

First we expand the particle’s moti<strong>on</strong> around the<br />

classical trajectory z µ<br />

0 as<br />

z µ (τ) = z µ<br />

0 (τ) + δzµ (τ). (13)<br />

The particle is accelerated al<strong>on</strong>g the x directi<strong>on</strong>. In the follow<strong>in</strong>g<br />

we c<strong>on</strong>sider small fluctuati<strong>on</strong> <strong>in</strong> transverse directi<strong>on</strong>s.<br />

By expand<strong>in</strong>g the stochastic equati<strong>on</strong> (12), we can<br />

obta<strong>in</strong> a l<strong>in</strong>earized stochastic equati<strong>on</strong> for the transverse<br />

velocity fluctuati<strong>on</strong> δv i ≡ δ ˙z i as,<br />

mδ ˙v i = e∂iϕh + e2<br />

12π (δ¨vi − a 2 δv i ). (14)<br />

Perform<strong>in</strong>g the Fourier transformati<strong>on</strong> with respect to the<br />

trajectory’s parameter τ<br />

δv i ∫<br />

dω<br />

(τ) =<br />

2π δ˜vi (ω)e −iωτ , (15)<br />

∫<br />

dω<br />

∂iϕh(τ) =<br />

2π ∂iφ(ω)e −iωτ , (16)<br />

the stochastic equati<strong>on</strong> can be solved as<br />

where<br />

δ˜v i (ω) = eh(ω)∂iφ(ω), (17)<br />

h(ω) =<br />

1<br />

−imω + e2 (ω 2 +a 2 )<br />

12π<br />

. (18)<br />

The vacuum 2-po<strong>in</strong>t functi<strong>on</strong> al<strong>on</strong>g the classical trajectory<br />

can be evaluated from (11) as<br />

⟨∂iϕh(x)∂jϕh(x ′ )⟩| x=z(τ),x ′ =z(τ ′ )<br />

= 1<br />

2π 2<br />

= a4<br />

32π 2<br />

δij<br />

((t − t ′ − iϵ) 2 − r 2 ) 2<br />

δij<br />

s<strong>in</strong>h 4 ( a(τ−τ ′ . (19)<br />

−iϵ)<br />

2 )<br />

It has orig<strong>in</strong>ated from the quantum fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum,<br />

but it can be <strong>in</strong>terpreted as f<strong>in</strong>ite temperature noise<br />

if it is evaluated <strong>on</strong> the accelerated particle’s trajectory [6].<br />

The Fourier transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the symmetrized two po<strong>in</strong>t<br />

functi<strong>on</strong> is evaluated as<br />

where<br />

⟨∂iϕ(x)∂jϕ(x ′ )⟩S = ⟨{∂iϕ(x), ∂jϕ(x ′ )}⟩/2<br />

= 2πδ(ω + ω ′ )δijIS(ω), (20)<br />

IS(ω) = 1<br />

12π coth<br />

(<br />

πω<br />

)<br />

(ω<br />

a<br />

3 + ωa 2 ), (21)<br />

which is an even functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ω. The correlator IS(ω)<br />

should be regularized at the UV, which is large ω or short<br />

proper time difference, where quantum field theoretic effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> become important. Full QED treatment is<br />

necessary there.<br />

For small ω, it is expanded as<br />

IS(ω) = a<br />

12π 2 (a2 + O(ω 2 )). (22)<br />

The expansi<strong>on</strong> corresp<strong>on</strong>ds to the derivative expansi<strong>on</strong><br />

⟨∂iϕh(x)∂jϕh(x ′ )⟩S = a3<br />

12π 2 δijδ(τ − τ ′ ) + · · · . (23)<br />

With this expansi<strong>on</strong>, the expectati<strong>on</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> the square <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the transverse velocity fluctuati<strong>on</strong> can be evaluated as<br />

⟨δv i (τ)δv j (τ ′ )⟩S<br />

= e 2<br />

∫ ′ dωdω<br />

(2π) 2 ⟨∂iφ(ω)∂jφ(ω ′ )⟩S h(ω)h(ω ′ )e −i(ωτ+ω′ τ ′ )<br />

∼ e 2 ∫<br />

dω<br />

δij<br />

24π3 a3e−iω(τ−τ ′ )<br />

) . (24)<br />

(ω2 + a2 ) 2<br />

(mω) 2 + ( e 2<br />

12π<br />

Here we c<strong>on</strong>sider the accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> to be at<br />

the order 0.1 eV, which is much smaller than the electr<strong>on</strong><br />

mass 0.5 MeV. With the assumpti<strong>on</strong> m ≫ a, <strong>on</strong>e can evaluate<br />

the <strong>in</strong>tegral and get the follow<strong>in</strong>g result,<br />

m<br />

2 ⟨δvi (τ)δv j (τ)⟩ = 1 a<br />

2<br />

2πc δij<br />

( 1 + O(a 2 /m 2 ) ) . (25)<br />

Here we have recovered c and . This gives the equipartiti<strong>on</strong><br />

relati<strong>on</strong> for the transverse momentum fluctuati<strong>on</strong>s <strong>in</strong><br />

the Unruh temperature TU = a/2πc.<br />

Relaxati<strong>on</strong> Time<br />

The thermalizati<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> the stochastic equati<strong>on</strong><br />

(14) can be also discussed. For simplicity, we approximate<br />

the stochastic equati<strong>on</strong> by dropp<strong>in</strong>g the sec<strong>on</strong>d derivative<br />

term. Then it is solved as<br />

δv i (τ) =e −Ω−τ δv i (0)<br />

+ e<br />

m<br />

∫ τ<br />

where Ω− is given by<br />

0<br />

dτ ′ ∂iϕ(z(τ ′ ))e −Ω−(τ−τ ′ ) , (26)<br />

Ω− = a2 e 2<br />

12πm<br />

(27)<br />

The relaxati<strong>on</strong> time is τR = 1/Ω−. The velocity square<br />

can be also calculated as<br />

⟨δv i (τ)δv j (τ)⟩ =e −2Ω−τ δv i (0)δv j (0)<br />

+ aδij<br />

2πm (1 − e−2Ω−τ ). (28)<br />

For τ → ∞, it approaches the thermalized average (25).<br />

The relaxati<strong>on</strong> time <strong>in</strong> the proper time can be estimated,<br />

for the parameter a = 0.1 eV and m = 0.5 MeV,<br />

τR = 12πm<br />

a 2 e 2 ∼ 10−5 sec. (29)


Let’s compare this relaxati<strong>on</strong> time with the laser frequency.<br />

The planned wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser at ELI is around<br />

10 3 nm and the oscillati<strong>on</strong> period <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser field is very<br />

short; 3 × 10 −15 sec<strong>on</strong>ds. So the relaxati<strong>on</strong> time is much<br />

l<strong>on</strong>ger and the charged particle cannot become thermalized<br />

dur<strong>in</strong>g each oscillati<strong>on</strong>. Hence the assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the uniform<br />

accelerati<strong>on</strong> <strong>in</strong> the laser field is not good. Even <strong>in</strong><br />

such a situati<strong>on</strong>, if the electr<strong>on</strong> is accelerated <strong>in</strong> the laser<br />

field for a l<strong>on</strong>g time, an electr<strong>on</strong> may feel an averaged temperature.<br />

The positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle <strong>in</strong> the transverse directi<strong>on</strong>s<br />

also fluctuates like the ord<strong>in</strong>ary Brownian moti<strong>on</strong> <strong>in</strong> a<br />

heat bath. The mean square <str<strong>on</strong>g>of</str<strong>on</strong>g> the transverse coord<strong>in</strong>ate<br />

R 2 (τ) = ∑<br />

i=y,z ⟨(zi (τ) − z i (0)) 2 ⟩ is calculated as<br />

R 2 (τ) = 2D<br />

(<br />

τ − 3 − 4e−Ω−τ + e −2Ω−τ<br />

2Ω−<br />

)<br />

. (30)<br />

with the diffusi<strong>on</strong> c<strong>on</strong>stant D = 2TU/(Ω−m) =<br />

12/ae 2 ∼ 8 × 10 4 m 2 /s. In the Ballistic regi<strong>on</strong> where<br />

τ < τR, the mean square becomes R 2 (τ) = 2TUτ 2 /m<br />

while <strong>in</strong> the diffusive regi<strong>on</strong> (τ > τR), it is proporti<strong>on</strong>al to<br />

the proper time as R 2 (τ) = 2Dτ. As the ord<strong>in</strong>ary Brownian<br />

moti<strong>on</strong>, the mean square <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle’s transverse<br />

positi<strong>on</strong> grows l<strong>in</strong>early with time. If it becomes possible to<br />

accelerate the particle for a sufficiently l<strong>on</strong>g period, it may<br />

be possible to detect such a Brownian moti<strong>on</strong> <strong>in</strong> future laser<br />

experiments.<br />

RADIATION AND INTERFERENCE<br />

Now we are ready to calculate the radiati<strong>on</strong> emanated<br />

from the uniformly accelerated charged particle. An important<br />

po<strong>in</strong>t is the <strong>in</strong>terference effect between the quantum<br />

fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum ϕh and the radiati<strong>on</strong> <strong>in</strong>duced by<br />

the fluctuat<strong>in</strong>g moti<strong>on</strong> <strong>in</strong> the transverse directi<strong>on</strong>s ϕI. First<br />

let’s c<strong>on</strong>sider the two po<strong>in</strong>t functi<strong>on</strong><br />

⟨ϕ(x)ϕ(x ′ )⟩ − ⟨ϕh(x)ϕh(x ′ )⟩ (31)<br />

= ⟨ϕI(x)ϕh(x ′ )⟩ + ⟨ϕh(x)ϕI(x ′ )⟩ + ⟨ϕI(x)ϕI(x ′ )⟩.<br />

The Unruh radiati<strong>on</strong> estimated <strong>in</strong> [2] corresp<strong>on</strong>ds to calculat<strong>in</strong>g<br />

the 2-po<strong>in</strong>t correlati<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>homogeneous<br />

terms ⟨ϕIϕI⟩. (The same term also c<strong>on</strong>ta<strong>in</strong>s the<br />

Larmor radiati<strong>on</strong>.) However, this is not the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

story. As it has been discussed <strong>in</strong> [7], the <strong>in</strong>terference terms<br />

⟨ϕIϕh⟩ + ⟨ϕhϕI⟩ may possibly cancel the Unruh radiati<strong>on</strong><br />

<strong>in</strong> ⟨ϕIϕI⟩ after the thermalizati<strong>on</strong> occurs. This is shown<br />

for an <strong>in</strong>ternal detector, but it is not obvious whether the<br />

same cancellati<strong>on</strong> occurs for the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a charged particle<br />

we are c<strong>on</strong>sider<strong>in</strong>g.<br />

The energy-momentum tensor <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong> field can<br />

be obta<strong>in</strong>ed from the 2-po<strong>in</strong>t functi<strong>on</strong><br />

⟨Tµν⟩ = ⟨: ∂µϕ∂νϕ − 1<br />

2 gµν∂ α ϕ∂αϕ :⟩S. (32)<br />

It is written as a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the classical part and the fluctuat<strong>in</strong>g<br />

part Tµν = Tcl,µν + Tfluc,µν. The classical part corresp<strong>on</strong>ds<br />

to the Larmor radiati<strong>on</strong> while the fluctuat<strong>in</strong>g part<br />

c<strong>on</strong>ta<strong>in</strong>s both <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh radiati<strong>on</strong> and the <strong>in</strong>terference<br />

terms.<br />

In [1] we calculated the 2-po<strong>in</strong>t functi<strong>on</strong> <strong>in</strong>clud<strong>in</strong>g the<br />

<strong>in</strong>terference term, and obta<strong>in</strong>ed the energy-momentum tensor.<br />

The result we have obta<strong>in</strong>ed is summarized <strong>in</strong> [5] <strong>in</strong><br />

this proceed<strong>in</strong>gs. Some terms are partially canceled but not<br />

all. Hence, it seems that the uniformly accelerated charged<br />

particle emits additi<strong>on</strong>al radiati<strong>on</strong> besides the Larmor radiati<strong>on</strong>.<br />

The rema<strong>in</strong><strong>in</strong>g terms after the partial cancellati<strong>on</strong><br />

are proporti<strong>on</strong>al to a 3 and suppressed compared to the Larmor<br />

radiati<strong>on</strong>. It has a different angular distributi<strong>on</strong>, but the<br />

additi<strong>on</strong>al radiati<strong>on</strong> also vanishes <strong>in</strong> the forward directi<strong>on</strong>.<br />

SUMMARY<br />

We have systematically studied the thermalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

uniformly accelerated charged particle <strong>in</strong> the scalar QED<br />

us<strong>in</strong>g the stochastic method, and calculated the radiati<strong>on</strong><br />

by the particle. Two ma<strong>in</strong> messages <str<strong>on</strong>g>of</str<strong>on</strong>g> are<br />

1. ”L<strong>on</strong>g relaxati<strong>on</strong> time compared to the laser period”<br />

2. ”Importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>terference”<br />

The fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle doesn’t become thermalized<br />

dur<strong>in</strong>g the period <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser, and we need to study transient<br />

dynamics to obta<strong>in</strong> the radiati<strong>on</strong> from an electr<strong>on</strong> accelerated<br />

<strong>in</strong> the oscillat<strong>in</strong>g laser field. The issue <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>terference<br />

terms are more subtle. S<strong>in</strong>ce the particle fluctuati<strong>on</strong><br />

orig<strong>in</strong>ates <strong>in</strong> the quantum vacuum fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

radiati<strong>on</strong> field, it can be by no means neglected. Our result<br />

shows that the <strong>in</strong>terference term partially cancels the Unruh<br />

radiati<strong>on</strong>, but some <str<strong>on</strong>g>of</str<strong>on</strong>g> them survives. The rema<strong>in</strong><strong>in</strong>g<br />

Unruh radiati<strong>on</strong> is smaller compared to the Larmor radiati<strong>on</strong><br />

by a factor a (accelerati<strong>on</strong>) and has a different angular<br />

distributi<strong>on</strong>. In this sense, it is qualitatively c<strong>on</strong>sistent with<br />

the proposal [2]. But as we briefly review <strong>in</strong> [5], the additi<strong>on</strong>al<br />

radiati<strong>on</strong> also vanishes <strong>in</strong> the forward directi<strong>on</strong>. and<br />

it seems difficult to detect such additi<strong>on</strong>al radiati<strong>on</strong> experimentally<br />

so far as the transverse fluctuati<strong>on</strong> is c<strong>on</strong>cerned.<br />

Please beware that the l<strong>on</strong>gitud<strong>in</strong>al fluctuati<strong>on</strong>s which we<br />

have not calculated yet (because <str<strong>on</strong>g>of</str<strong>on</strong>g> technical difficulties related<br />

to a choice <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge) may change the situati<strong>on</strong>.<br />

REFERENCES<br />

[1] S. Iso, Y. Yamamoto and S. Zhang, arXiv:1011.4191 [hep-th].<br />

[2] P. Chen and T. Tajima, Phys. Rev. Lett. 83 (1999) 256.<br />

[3] P.G. Thirolf, et.al. Eur. Phys. J. D 55, 379-389 (2009).<br />

[4] http://www.extreme-light-<strong>in</strong>frastructure.eu/<br />

[5] S. Iso, Y. Yamamoto and S. Zhang, <strong>in</strong> the same proceed<strong>in</strong>gs,<br />

“Unruh radiati<strong>on</strong> and Interference effect”<br />

[6] W. G. Unruh, Phys. Rev. D 14, 870 (1976).<br />

[7] D. J. Ra<strong>in</strong>e, D. W. Sciama and P. G. Grove, Proc. R. Soc.<br />

L<strong>on</strong>d. A (1991) 435, 205-215<br />

[8] A. Raval, B. L. Hu, J. Angl<strong>in</strong>, Phys. Rev. D 53 (1996) 7003.<br />

[9] P. R. Johns<strong>on</strong> and B. L. Hu, arXiv:quant-ph/0012137. Phys.<br />

Rev. D 65 (2002) 065015 [arXiv:quant-ph/0101001].


Abstract<br />

Quantum fields and static <strong>in</strong>teracti<strong>on</strong>s <strong>in</strong> accelerated frames<br />

Frieder Lenz<br />

Institute for Theoretical <strong>Physics</strong> III, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Erlangen-Nürnberg<br />

91058 Erlangen, Germany<br />

Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum fields <strong>in</strong> R<strong>in</strong>dler space or equivalently<br />

<strong>in</strong> accelerated frames are explored. C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <strong>in</strong>ertial forces for the k<strong>in</strong>ematics and the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

scalar particles and phot<strong>on</strong>s are discussed and results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vestigati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>teracti<strong>on</strong> energies generated by scalar and<br />

vector particle exchange <strong>in</strong> R<strong>in</strong>dler space are presented.<br />

INTRODUCTION<br />

Quantum fields observed <strong>in</strong> accelerated and <strong>in</strong> <strong>in</strong>ertial<br />

frames are related to each other by a coord<strong>in</strong>ate transformati<strong>on</strong>.<br />

Nevertheless their properties differ significantly<br />

which is due to the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a horiz<strong>on</strong> <strong>in</strong> accelerated<br />

frames (R<strong>in</strong>dler space). In the follow<strong>in</strong>g I will present the<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> studies [1, 2] <str<strong>on</strong>g>of</str<strong>on</strong>g> both k<strong>in</strong>ematical and dynamical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum fields. The k<strong>in</strong>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong><strong>in</strong>teract<strong>in</strong>g<br />

quantum fields <strong>in</strong> R<strong>in</strong>dler space [3, 4, 5] and<br />

their relati<strong>on</strong> to fields <strong>in</strong> M<strong>in</strong>kowski space together with the<br />

<strong>in</strong>terpretati<strong>on</strong> <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>ite temperature quantum fields<br />

[6] have been the subject <str<strong>on</strong>g>of</str<strong>on</strong>g> many <strong>in</strong>vestigati<strong>on</strong>s [7]. Here<br />

the focus will be <strong>on</strong> the peculiar properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the particles <strong>in</strong> R<strong>in</strong>dler space and their signatures <strong>in</strong> the<br />

Unruh radiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s <strong>in</strong> comparis<strong>on</strong> to blackbody radiati<strong>on</strong>.<br />

The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the unusual k<strong>in</strong>ematics <strong>in</strong> accelerated<br />

frames <strong>on</strong> the dynamics will be dem<strong>on</strong>strated <strong>in</strong> the<br />

discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> static <strong>in</strong>teracti<strong>on</strong>s.<br />

KINEMATICS<br />

A uniformly accelerated observer (accelerati<strong>on</strong> a) at fixed<br />

coord<strong>in</strong>ates transverse to the accelerati<strong>on</strong> x⊥ moves al<strong>on</strong>g<br />

a hyperbola [8]<br />

x 2 − t 2 = 1<br />

a 2 , x⊥ = 0 . (1)<br />

Quantum fields as seen by accelerated observers are most<br />

c<strong>on</strong>veniently described <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the coord<strong>in</strong>ates obta<strong>in</strong>ed<br />

by transformati<strong>on</strong> to the rest frame t, x, x⊥ → τ, ξ, x⊥<br />

t(τ, ξ) = 1<br />

a eaξ s<strong>in</strong>h aτ , x(τ, ξ) = 1<br />

a eaξ cosh aτ . (2)<br />

By c<strong>on</strong>structi<strong>on</strong>, ξ = 0 corresp<strong>on</strong>ds to the hyperbolic moti<strong>on</strong><br />

(1). More generally, a particle at rest <strong>in</strong> the observers<br />

system at ξ = ξ0 =c<strong>on</strong>st. corresp<strong>on</strong>ds to the uniformly<br />

accelerated moti<strong>on</strong> <strong>in</strong> M<strong>in</strong>kowski space with accelerati<strong>on</strong><br />

a exp{−aξ0}. Trajectories <str<strong>on</strong>g>of</str<strong>on</strong>g> uniformly accelerated particles<br />

for different values <str<strong>on</strong>g>of</str<strong>on</strong>g> ξ0 are shown <strong>in</strong> Fig. 1 together<br />

with the l<strong>in</strong>es τ =c<strong>on</strong>st. .<br />

II<br />

t<br />

10<br />

5<br />

+<br />

III x I<br />

10 5 5 10<br />

5<br />

10<br />

IV<br />

→<br />

ξ = −τ = −∞<br />

→<br />

←<br />

ξ = c<strong>on</strong>st.<br />

← τ = c<strong>on</strong>st.<br />

ξ = τ = −∞<br />

Figure 1: K<strong>in</strong>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> uniform accelerati<strong>on</strong><br />

The coord<strong>in</strong>ate transformati<strong>on</strong> (2) is not <strong>on</strong>e-to-<strong>on</strong>e. The<br />

coord<strong>in</strong>ates −∞ < τ, ξ < ∞ cover <strong>on</strong>ly <strong>on</strong>e quarter <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

M<strong>in</strong>kowski space, the right ”R<strong>in</strong>dler wedge”R+ (regi<strong>on</strong> I)<br />

R± = x µ |t| ≤ ±x . (3)<br />

Up<strong>on</strong> reversi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sign <str<strong>on</strong>g>of</str<strong>on</strong>g> x <strong>in</strong> Eq. (2) the left R<strong>in</strong>dler<br />

wedge R− (regi<strong>on</strong> III) is covered by a corresp<strong>on</strong>d<strong>in</strong>g<br />

parametrizati<strong>on</strong>. As illustrated <strong>in</strong> the Figure, the boundaries<br />

x = |t| corresp<strong>on</strong>d<strong>in</strong>g to ξ = ±τ = −∞ form an<br />

event horiz<strong>on</strong>. The light c<strong>on</strong>es shown <strong>in</strong> the Figure <strong>in</strong>dicate<br />

that <strong>in</strong> regi<strong>on</strong> I signals can be transmitted to regi<strong>on</strong> II<br />

but not received from it. Signals received from regi<strong>on</strong> IV<br />

appear to have orig<strong>in</strong>ated from the horiz<strong>on</strong> ξ = τ = −∞.<br />

The space-time def<strong>in</strong>ed by the coord<strong>in</strong>ate transformati<strong>on</strong><br />

(2) is called R<strong>in</strong>dler space and its metric is given by<br />

ds 2 = gµν(ξ)dx µ dx ν = e 2aξ (dτ 2 − dξ 2 ) − dx 2 ⊥ . (4)<br />

The R<strong>in</strong>dler metric derives its importance from the fact that<br />

essentially any static metric which possesses a horiz<strong>on</strong> can<br />

be approximated near the horiz<strong>on</strong> by the R<strong>in</strong>dler metric.<br />

This is the case for <strong>in</strong>stance for the Schwarzschild metric.<br />

Accelerati<strong>on</strong> and Schwarzschild radius, or black hole mass,<br />

are related by<br />

a = 1 1<br />

= . (5)<br />

2R 4GM<br />

QUANTUM FIELDS IN RINDLER SPACES<br />

Quantizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scalar fields<br />

Quantizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-<strong>in</strong>teract<strong>in</strong>g scalar field <strong>in</strong> R<strong>in</strong>dler<br />

space with the acti<strong>on</strong>


S = 1<br />

<br />

2<br />

dτ dξ d d−1 <br />

x⊥ (∂τ φ) 2 − (∂ξφ) 2<br />

−(m 2 φ 2 + (∂⊥φ) 2 ) e 2aξ , (6)<br />

is standard. The expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fields <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

normal modes (proporti<strong>on</strong>al to the Mc D<strong>on</strong>ald functi<strong>on</strong>s)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the associated wave equati<strong>on</strong> is given by<br />

<br />

dω<br />

φ(τ, ξ, x⊥) ∼ √ d<br />

2ω d−1 k⊥(a(ω, k⊥)e −iωτ+ik⊥x⊥<br />

<br />

m⊥ e aξ<br />

, m 2 ⊥ = (m 2 + k 2 ⊥)/a 2 , (7)<br />

+h.c.) Ki ω<br />

a<br />

and the normalizati<strong>on</strong> is chosen such that the commutator<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> creati<strong>on</strong> and annihilati<strong>on</strong> operators a (†) (ω, k⊥) is standard.<br />

The repulsive exp<strong>on</strong>ential barrier <strong>in</strong> uniformly accelerated<br />

frames is <str<strong>on</strong>g>of</str<strong>on</strong>g> similar orig<strong>in</strong> as the centrifugal barrier<br />

<strong>in</strong> rotat<strong>in</strong>g frames. It prevents unlimited propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

wave <strong>in</strong> positive ξ directi<strong>on</strong>. This repulsi<strong>on</strong> accounts for the<br />

fact that a particle mov<strong>in</strong>g with arbitrary c<strong>on</strong>stant speed <strong>in</strong><br />

M<strong>in</strong>kowski space is seen by the accelerated observer to approach<br />

ξ = −∞ and the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light for large times τ. In<br />

the accelerated frame, the transverse velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle<br />

vanishes exp<strong>on</strong>entially for large times (∼ exp{−2aτ})<br />

as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the forever <strong>in</strong>creas<strong>in</strong>g time dilati<strong>on</strong> <strong>in</strong>duced<br />

by the accelerati<strong>on</strong>. S<strong>in</strong>ce m 2 ⊥<br />

appears <strong>in</strong> the acti<strong>on</strong> (6) as<br />

a coupl<strong>in</strong>g c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> the exp<strong>on</strong>ential “potential” , the energy<br />

eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> the normal modes do not depend <strong>on</strong> the<br />

transverse momentum and the mass, though the eigenfuncti<strong>on</strong>s<br />

do. This is rem<strong>in</strong>iscent <str<strong>on</strong>g>of</str<strong>on</strong>g> the degeneracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the Landau<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle mov<strong>in</strong>g <strong>in</strong> a c<strong>on</strong>stant magnetic field.<br />

The high degeneracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the eigenstates <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hamilt<strong>on</strong>ian,<br />

<strong>in</strong>clud<strong>in</strong>g the ground state, is due to the <strong>in</strong>ertial force and<br />

has far reach<strong>in</strong>g c<strong>on</strong>sequences. It <strong>in</strong>dicates the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the R<strong>in</strong>dler space Hamilt<strong>on</strong>ian. In [1] the<br />

<strong>in</strong>variance <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hamilt<strong>on</strong>ian under scale transformati<strong>on</strong>s<br />

valid even <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a mass term has been identified<br />

as the source <str<strong>on</strong>g>of</str<strong>on</strong>g> the degeneracy.<br />

The Unruh heat bath<br />

Start<strong>in</strong>g po<strong>in</strong>t for establish<strong>in</strong>g the relati<strong>on</strong> between observables<br />

<strong>in</strong> <strong>in</strong>ertial and accelerated frames is the identity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

(scalar) fields (φ) and ( ˜ φ) <strong>in</strong> the two frames<br />

φ(τ, ξ, x⊥) = ˜ <br />

<br />

φ(t, x) . (8)<br />

t,x=t,x(τ,ξ)<br />

Projecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this equati<strong>on</strong> <strong>on</strong>to the R<strong>in</strong>dler space normal<br />

modes (6) yields the follow<strong>in</strong>g relati<strong>on</strong> (Bogoliubov transformati<strong>on</strong>)<br />

between the creati<strong>on</strong> and annihilati<strong>on</strong> operators<br />

<strong>in</strong> the two frames<br />

a(Ω, k⊥) = <br />

a s<strong>in</strong>h π Ω<br />

a<br />

1<br />

∞<br />

−∞<br />

dk Ω i √ e a<br />

4πωk<br />

βk<br />

<br />

· e πΩ<br />

πΩ<br />

2a −<br />

ã(k, k⊥) + e 2a ã † (k, −k⊥)<br />

<br />

. (9)<br />

Observati<strong>on</strong>s <strong>in</strong> the accelerated frame are performed <strong>in</strong> the<br />

M<strong>in</strong>kowski vacuum |0M 〉 rather than <strong>in</strong> the R<strong>in</strong>dler space<br />

vacuum. A fundamental quantity is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles<br />

measured <strong>in</strong> the accelerated frame which, with the help <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(9), is found to be<br />

〈0M |a † (Ω, k⊥)a(Ω ′ , k ′ ⊥)|0M 〉<br />

1<br />

=<br />

Ω<br />

e2π a − 1 δ(Ω − Ω′ )δ(k⊥ − k ′ ⊥) . (10)<br />

In the accelerated frame, a thermal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (R<strong>in</strong>dler)<br />

particles is observed with the temperature determ<strong>in</strong>ed by<br />

the accelerati<strong>on</strong><br />

T = a<br />

. (11)<br />

2π<br />

For a black hole (cf. Eq. (5)) this temperature agrees with<br />

the black hole temperature<br />

TBH =<br />

1<br />

8πGM .<br />

Although the above derivati<strong>on</strong> makes use <str<strong>on</strong>g>of</str<strong>on</strong>g> the properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-<strong>in</strong>teract<strong>in</strong>g fields, relati<strong>on</strong>s between observables <strong>in</strong><br />

accelerated frames and at f<strong>in</strong>ite temperature can be derived<br />

for <strong>in</strong>teract<strong>in</strong>g fields (cf. [9] for a derivati<strong>on</strong> with<strong>in</strong> the path<br />

<strong>in</strong>tegral approach). Here we c<strong>on</strong>sider the two po<strong>in</strong>t functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a self-<strong>in</strong>teract<strong>in</strong>g scalar field and use its <strong>in</strong>variance<br />

under Lorentz transformati<strong>on</strong>s. The relati<strong>on</strong> (8) between<br />

the fields <strong>in</strong> R<strong>in</strong>dler and M<strong>in</strong>kowski space implies that for<br />

arbitrary po<strong>in</strong>ts <strong>in</strong> the right R<strong>in</strong>dler wedge (cf. Fig. 1) the<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> the 2-po<strong>in</strong>t functi<strong>on</strong>s <strong>in</strong> M<strong>in</strong>kowski space and <strong>in</strong><br />

R<strong>in</strong>dler space are equal. The two po<strong>in</strong>t functi<strong>on</strong>s depend<br />

<strong>on</strong>ly <strong>on</strong> (x − x ′ ) 2 . We express the distance <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

R<strong>in</strong>dler space coord<strong>in</strong>ates<br />

(x − x ′ ) 2 = 2ea(ξ+ξ′ )<br />

a2 ′<br />

cosh a(τ − τ ) − cosh η , (12)<br />

with<br />

cosh η = 1 +<br />

and obta<strong>in</strong><br />

<br />

aξ aξ e − e ′2 2 + a x⊥ − x ′ 2 ⊥<br />

2e a(ξ+ξ′ )<br />

, (13)<br />

D (x − x ′ ) 2 = D(τ − τ ′ , ξ, ξ ′ , x⊥ − x ′ ⊥)<br />

<br />

= i〈0M<br />

T φ(τ, ξ, x⊥)φ(τ ′ , ξ ′ , x ′ ⊥) 0M 〉<br />

a(ξ+ξ 2e<br />

= D<br />

′ )<br />

a2 ′<br />

cosh a(τ − τ ) − cosh η <br />

. (14)<br />

After a Wick rotati<strong>on</strong> to imag<strong>in</strong>ary R<strong>in</strong>dler time,<br />

τ → τE = −iτ ,<br />

the two po<strong>in</strong>t functi<strong>on</strong> is periodic with period<br />

β = 2π<br />

a ,<br />

and therefore is a f<strong>in</strong>ite temperature 2-po<strong>in</strong>t functi<strong>on</strong> with<br />

T = 1/β, <strong>in</strong> agreement with the result (11) for n<strong>on</strong><strong>in</strong>teract<strong>in</strong>g<br />

fields.


The relati<strong>on</strong> between accelerati<strong>on</strong> and temperature is subtle.<br />

The R<strong>in</strong>dler space propagator def<strong>in</strong>ed with respect<br />

to the M<strong>in</strong>kowski ground state co<strong>in</strong>cides with the R<strong>in</strong>dler<br />

space f<strong>in</strong>ite temperature propagator with the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

temperature determ<strong>in</strong>ed by the accelerati<strong>on</strong> a (cf. Eq. (11)).<br />

This identity makes also manifest that a change <strong>in</strong> the accelerati<strong>on</strong><br />

a does not corresp<strong>on</strong>d to a change <strong>in</strong> temperature<br />

<strong>on</strong>ly. The accelerati<strong>on</strong> appears as temperature <strong>in</strong> the<br />

Boltzmann factor and as a parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hamilt<strong>on</strong>ian. It<br />

c<strong>on</strong>trols the range <str<strong>on</strong>g>of</str<strong>on</strong>g> the exp<strong>on</strong>ential barrier (cf. Eq. (6)).<br />

Accelerated versus f<strong>in</strong>ite temperature phot<strong>on</strong>s<br />

Can<strong>on</strong>ical quantizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic field <strong>in</strong><br />

R<strong>in</strong>dler space is straightforward though technically <strong>in</strong>volved<br />

[1]. If carried out <strong>in</strong> Weyl gauge, with the l<strong>on</strong>gitud<strong>in</strong>al<br />

fields determ<strong>in</strong>ed by the Gauß law, <strong>on</strong>ly physical, i.e.,<br />

transverse degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom appear. The relati<strong>on</strong> (10) can<br />

be shown to apply separately for the two polarizati<strong>on</strong>s. Although<br />

Eq. (10) is <str<strong>on</strong>g>of</str<strong>on</strong>g> the same structure as the corresp<strong>on</strong>d<strong>in</strong>g<br />

expressi<strong>on</strong> for the number <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>in</strong>kowski space phot<strong>on</strong>s<br />

at f<strong>in</strong>ite temperature, the different dispersi<strong>on</strong> law <str<strong>on</strong>g>of</str<strong>on</strong>g> R<strong>in</strong>dler<br />

phot<strong>on</strong>s<br />

∂ ω<br />

∂ k⊥<br />

= 0 gives rise to significant changes <strong>in</strong> Un-<br />

ruh as compared to blackbody radiati<strong>on</strong>. I illustrate this by<br />

a discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the expectati<strong>on</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh radiati<strong>on</strong> (g(ξ) = det[gµν(ξ)]) ,<br />

1<br />

|g(ξ)| 〈0M | : HE(ξ, x⊥) + HB(ξ, x⊥) : |0M 〉<br />

= 1<br />

<br />

e−4aξ<br />

π2 ωdω ω2 + a2 e ω<br />

11π2<br />

=<br />

Ta − 1 15 T 4 ξ . (15)<br />

As <strong>in</strong> f<strong>in</strong>ite temperature field theory, divergences <strong>in</strong> H are<br />

avoided by normal order<strong>in</strong>g with respect to the (R<strong>in</strong>dler)<br />

ground state. The <strong>in</strong>tegrand <str<strong>on</strong>g>of</str<strong>on</strong>g> the frequency <strong>in</strong>tegral <strong>in</strong><br />

Eq. (15) is shown <strong>in</strong> Fig. 2 and compared with the corresp<strong>on</strong>d<strong>in</strong>g<br />

energy density <str<strong>on</strong>g>of</str<strong>on</strong>g> the blackbody radiati<strong>on</strong>. This<br />

Figure dem<strong>on</strong>strates the qualitative difference <strong>in</strong> the spectrum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s at f<strong>in</strong>ite temperature <strong>in</strong> M<strong>in</strong>kowski and<br />

R<strong>in</strong>dler space. The degeneracy with respect to the transverse<br />

momenta gives rise to a n<strong>on</strong>-vanish<strong>in</strong>g energy density<br />

at vanish<strong>in</strong>g frequency.<br />

The quantity Tξ <strong>in</strong> (15) denotes the Tolman temperature,<br />

Tξ = a<br />

2π e−aξ . (16)<br />

With the local accelerati<strong>on</strong> (cf. the K<strong>in</strong>ematics secti<strong>on</strong>) also<br />

the local temperature Tξ varies with the coord<strong>in</strong>ate ξ. It sat-<br />

√<br />

isfies Tolman’s law [10], Tξ g00 = c<strong>on</strong>st., which is valid<br />

<strong>in</strong> any static space-time. The Tolman temperature is up to<br />

a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 2π given by the <strong>in</strong>verse <str<strong>on</strong>g>of</str<strong>on</strong>g> the proper distance to<br />

the horiz<strong>on</strong><br />

dH(ξ) = 1<br />

a eaξ , (17)<br />

i.e. the Tolman temperature diverges when approach<strong>in</strong>g the<br />

horiz<strong>on</strong>. The spatial variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature is necessary<br />

for thermal equilibrium. It compensates the red or blue<br />

shifts <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s mov<strong>in</strong>g away from or towards the horiz<strong>on</strong><br />

respectively.<br />

0.15<br />

0.10<br />

0.05<br />

Unruh<br />

Blackbody<br />

0.5 1.0 1.5 2.0<br />

Figure 2: Energy density <str<strong>on</strong>g>of</str<strong>on</strong>g> blackbody radiati<strong>on</strong> at T =<br />

a/2π and <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh radiati<strong>on</strong> at accelerati<strong>on</strong> a as a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the frequency ω <strong>in</strong> units <str<strong>on</strong>g>of</str<strong>on</strong>g> a.<br />

STATIC INTERACTIONS<br />

ω/a<br />

The propagator <str<strong>on</strong>g>of</str<strong>on</strong>g> a massless n<strong>on</strong>-<strong>in</strong>teract<strong>in</strong>g scalar field <strong>in</strong><br />

R<strong>in</strong>dler space is given by (cf. Eq. (14))<br />

D(x, x ′ ) =<br />

1<br />

4iπ 2 (x − x ′ ) 2 − iδ = D(τ, ξ, ξ′ , x⊥ − x ′ ⊥)<br />

= a2 e −a(ξ+ξ′ )<br />

8iπ 2<br />

Integrati<strong>on</strong> over the R<strong>in</strong>dler time τ,<br />

˜D(ξ, ξ ′ , x⊥ − x ′ ⊥) =<br />

=<br />

∞<br />

−∞<br />

1<br />

. (18)<br />

cosh aτ − cosh η − iδ<br />

a<br />

4πe a(ξ+ξ′ )<br />

dτD(τ, ξ, ξ ′ , x⊥ − x ′ ⊥)<br />

1<br />

<br />

s<strong>in</strong>h η<br />

1 + iη<br />

π<br />

<br />

, (19)<br />

yields the static <strong>in</strong>teracti<strong>on</strong> between two scalar sources<br />

Vsc = −κ 2 e a(ξ+ξ′ )<br />

D˜ ′<br />

ξ, ξ , x⊥ − x ′ =<br />

<br />

⊥<br />

− aκ2<br />

<br />

1 +<br />

4π s<strong>in</strong>h η<br />

iη<br />

<br />

,<br />

π<br />

(20)<br />

with the coupl<strong>in</strong>g c<strong>on</strong>stant κ. The exp<strong>on</strong>ential factors arise<br />

as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the volume factor |g(ξ)| and <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proper time <str<strong>on</strong>g>of</str<strong>on</strong>g> the accelerated sources to<br />

R<strong>in</strong>dler time.<br />

The static <strong>in</strong>teracti<strong>on</strong> energy is a complex quantity. The<br />

static propagator satisfies the Poiss<strong>on</strong> equati<strong>on</strong> for a po<strong>in</strong>tlike<br />

source <strong>in</strong> R<strong>in</strong>dler space. S<strong>in</strong>ce the source is real, the<br />

imag<strong>in</strong>ary part <str<strong>on</strong>g>of</str<strong>on</strong>g> the propagator satisfies the corresp<strong>on</strong>d<strong>in</strong>g<br />

(homogeneous) Laplace equati<strong>on</strong> and can be written<br />

therefore as a l<strong>in</strong>ear superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zero modes [2]<br />

Im ˜ D(ξ, ξ ′ , x⊥ − x ′ a η<br />

⊥) =<br />

4π2ea(ξ+ξ′ =<br />

) s<strong>in</strong>h η 1<br />

4π3a <br />

· d 2 ′<br />

ik⊥(x⊥−x<br />

k⊥e ⊥ ) <br />

k⊥<br />

K0<br />

a eaξ<br />

<br />

k⊥<br />

K0<br />

a eaξ′ . (21)<br />

Thus the imag<strong>in</strong>ary part is due to <strong>on</strong>-shell propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

zero-energy massless particles. Unlike <strong>in</strong> M<strong>in</strong>kowski space


Abstract<br />

Sh<strong>in</strong><strong>in</strong>g Light through Walls: en Route towards a new<br />

Particle <strong>Physics</strong> Fr<strong>on</strong>tier<br />

Axel L<strong>in</strong>dner for the ALPS Collaborati<strong>on</strong>, DESY, Hamburg, Germany<br />

“Light-sh<strong>in</strong><strong>in</strong>g-through-a-wall” experiments search for<br />

Weakly Interact<strong>in</strong>g Slim Particles (WISPs). L<strong>on</strong>g stand<strong>in</strong>g<br />

quest <strong>in</strong> particle physics and cosmology may f<strong>in</strong>d their<br />

soluti<strong>on</strong> <strong>in</strong> the discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> this new species <str<strong>on</strong>g>of</str<strong>on</strong>g> particles.<br />

In the recent years experiments have achieved unprecedented<br />

sensitivities. The experience ga<strong>in</strong>ed provides a firm<br />

foundati<strong>on</strong> for future enterprises <strong>in</strong>to unexplored parameter<br />

spaces.<br />

INTRODUCTION TO AXIONS AND WISPS<br />

S<strong>in</strong>ce about four decades the so called Standard Model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particle physics faces a triumphant success.<br />

There is not a s<strong>in</strong>gle earth-bound experiment which really<br />

questi<strong>on</strong>s the model. In c<strong>on</strong>trast, precisi<strong>on</strong> tests have<br />

probed its c<strong>on</strong>stituents and forces to the per mill level or<br />

better. However, evidence is mount<strong>in</strong>g that the known<br />

c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and forces do not fully describe the<br />

world around us. Such arguments arise from astrophysical<br />

and cosmological observati<strong>on</strong>s as well as from theoretical<br />

c<strong>on</strong>siderati<strong>on</strong>s. There are str<strong>on</strong>g c<strong>on</strong>victi<strong>on</strong>s am<strong>on</strong>g<br />

scientists that new experiments at the high energy fr<strong>on</strong>tier<br />

at LHC will provide <strong>in</strong>sight <strong>in</strong>to physics bey<strong>on</strong>d the Standard<br />

Model. Although theoretically well motivated, focus<strong>in</strong>g<br />

the search for new physics <strong>on</strong>to highest available energies<br />

neglects evidences po<strong>in</strong>t<strong>in</strong>g at the opposite energy<br />

scale. Extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Standard Model may manifest<br />

themselves also at meV energy scales, n<strong>in</strong>e orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude<br />

below the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>.<br />

Generally, new very light and very weakly <strong>in</strong>teract<strong>in</strong>g<br />

particles denoted as WISPs (Weakly Interact<strong>in</strong>g Slim Particles)<br />

occur naturally <strong>in</strong> str<strong>in</strong>g-theory-motivated extensi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Standard Model. There could be bos<strong>on</strong>s and<br />

fermi<strong>on</strong>s, charged and uncharged particles. WISPs may <strong>in</strong>teract<br />

with ord<strong>in</strong>ary matter via the exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> very heavy<br />

particles related to very high energy scales and thus give<br />

<strong>in</strong>sight <strong>in</strong>to physics at highest energy scales. The reader is<br />

referred to [1, 2, 3] and references there<strong>in</strong> for a more detailed<br />

view.<br />

One prime example for a WISP is the QCD axi<strong>on</strong> [4, 5,<br />

6] <strong>in</strong>vented to expla<strong>in</strong> the vanish<strong>in</strong>g electric dipole moment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the neutr<strong>on</strong>, which is a signature <str<strong>on</strong>g>of</str<strong>on</strong>g> CP c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the str<strong>on</strong>g <strong>in</strong>teracti<strong>on</strong>. From astrophysical observati<strong>on</strong>s its<br />

mass should be below about 1 eV. For the QCD axi<strong>on</strong> such<br />

a low mass implies very weak <strong>in</strong>teracti<strong>on</strong>s with the other<br />

c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> the Standard Model [7]. It is strik<strong>in</strong>g that a<br />

QCD axi<strong>on</strong> with a mass around 1 µeV is a perfect candidate<br />

for cold dark matter <strong>in</strong> the Universe [8, 9]. A discovery<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the axi<strong>on</strong> could solve l<strong>on</strong>g last<strong>in</strong>g questi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particle<br />

physics and cosmology simultaneously. It is worthwhile<br />

to note that also dark energy might be attributed to new<br />

physics at the meV scale [10].<br />

Besides theoretical c<strong>on</strong>siderati<strong>on</strong>s the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> very<br />

light axi<strong>on</strong>-like particles is suggested by different astrophysical<br />

observati<strong>on</strong>s. For example, the cool<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> white<br />

dwarfs can be modeled significantly better if an additi<strong>on</strong>al<br />

energy loss due to axi<strong>on</strong>-like particles is taken <strong>in</strong>to account<br />

[11]. The surpris<strong>in</strong>gly high transparency <str<strong>on</strong>g>of</str<strong>on</strong>g> the Universe<br />

to TeV phot<strong>on</strong>s from AGNs at cosmological distances<br />

may be expla<strong>in</strong>ed by back and forth oscillati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s<br />

<strong>in</strong>to axi<strong>on</strong>-like particles [12]. The heat<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the solar<br />

cor<strong>on</strong>a is not understood, but may be attributed to an energy<br />

flow mediated by axi<strong>on</strong>-like particles [13].<br />

SEARCHING FOR WISPS<br />

WISPs and especially ALPs are searched for <strong>in</strong> astrophysics<br />

phenomena and laboratory experiments. At present<br />

for most <str<strong>on</strong>g>of</str<strong>on</strong>g> the WISPs the most str<strong>in</strong>gent limits <strong>on</strong> their existence<br />

orig<strong>in</strong>ate from astrophysics c<strong>on</strong>siderati<strong>on</strong>s. The existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> WISPs would for example open up new energy<br />

loss channels for hot envir<strong>on</strong>ments <strong>in</strong> stars and thus shorten<br />

lifetimes or cool<strong>in</strong>g cycles [14]. Limits <strong>on</strong> axi<strong>on</strong>s are also<br />

derived from cosmology [15]. Direct searches for axi<strong>on</strong>like<br />

particles produced <strong>in</strong> the sun [16] or as c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

galactic dark matter [17] have greatly progressed <strong>in</strong> recent<br />

years and reached impressive sensitivities.<br />

However, <strong>in</strong>terpretati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> astrophysics data are always<br />

hampered by the unc<strong>on</strong>trolled producti<strong>on</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

WISPs. Effective theories have been presented, where the<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some WISP species is suppressed <strong>in</strong> hot envir<strong>on</strong>ments<br />

[18, 19]. If such scenarios are true, astrophysics<br />

experiments might fail to detect WISPs while laboratory<br />

experiments could open up this new physics w<strong>in</strong>dow. Literally,<br />

astrophysics deals with “astr<strong>on</strong>omical” or “cosmological”<br />

distances <strong>on</strong> the <strong>on</strong>e hand and microscopic distances<br />

<strong>in</strong> hot dense plasmas <strong>on</strong> the other hand. Intermediate distances<br />

are <strong>on</strong>ly probed <strong>in</strong> the laboratory.<br />

The are numerous experimental efforts to probe for<br />

WISPs <strong>in</strong> the laboratory. Typically they are searched for<br />

by look<strong>in</strong>g for new effects <strong>in</strong> gravitati<strong>on</strong>al or QED envir<strong>on</strong>ments.<br />

The latter <strong>on</strong>es comprise atomic physics like Lamb<br />

shift, positr<strong>on</strong>ium decay, Casimir forces or phot<strong>on</strong>-phot<strong>on</strong><br />

<strong>in</strong>teracti<strong>on</strong>. Only phot<strong>on</strong>-phot<strong>on</strong> processes are addressed<br />

<strong>in</strong> the follow<strong>in</strong>g.<br />

Phot<strong>on</strong>-WISPs <strong>in</strong>teracti<strong>on</strong>s<br />

WISPs may <strong>in</strong>teract with phot<strong>on</strong>s <strong>in</strong> different manners as<br />

shown <strong>in</strong> Fig. 1(see [1]). These <strong>in</strong>teracti<strong>on</strong> may give rise to


=<br />

γ WISP<br />

; ;<br />

ALP HP(mγ ′ > 0)<br />

...<br />

MCP<br />

HP(mγ ′ = 0)<br />

Figure 1: A collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some Feynman diagrams resp<strong>on</strong>sible for the mix<strong>in</strong>g term between phot<strong>on</strong>s and different hypothetical<br />

“weakly <strong>in</strong>teract<strong>in</strong>g slim particles” (WISPs). Phot<strong>on</strong> oscillati<strong>on</strong>s <strong>in</strong>to axi<strong>on</strong>-like particles (ALPs) and massless<br />

hidden phot<strong>on</strong>s (HPs) via m<strong>in</strong>i-charged particles (MCP) require the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a background electromagnetic field, denoted<br />

by crossed circles.<br />

subtle polarizati<strong>on</strong> phenomena [20, 21], but also to a very<br />

spectacular “light-sh<strong>in</strong><strong>in</strong>g-through-a-wall” effect (Fig. 2).<br />

γ γ<br />

WISP<br />

Figure 2: Schematic overview <str<strong>on</strong>g>of</str<strong>on</strong>g> a “light sh<strong>in</strong><strong>in</strong>g through a<br />

wall experiment”. The gray blob <strong>in</strong>dicates the mix<strong>in</strong>g term<br />

between phot<strong>on</strong>s and the WISP.<br />

In the first part <str<strong>on</strong>g>of</str<strong>on</strong>g> such an experiment WISPs are produced<br />

from <strong>in</strong>tense laser light, either by <strong>in</strong>teracti<strong>on</strong> with<br />

a str<strong>on</strong>g magnetic field or by k<strong>in</strong>etic mix<strong>in</strong>g. This first<br />

part is separated by a light-tight wall from the sec<strong>on</strong>d part.<br />

Only WISPs can traverse the wall due to their very low<br />

cross-secti<strong>on</strong>s. Beh<strong>in</strong>d the wall they could c<strong>on</strong>vert back<br />

<strong>in</strong>to phot<strong>on</strong>s with exactly the same properties as the light<br />

generat<strong>in</strong>g the WISPs. This gives the impressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> “lightsh<strong>in</strong><strong>in</strong>g-through-a-wall”<br />

(LSW).<br />

The c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>cident phot<strong>on</strong>s to axi<strong>on</strong>s or<br />

axi<strong>on</strong>-like particles ϕ <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a magnetic field<br />

is governed by the Primak<str<strong>on</strong>g>of</str<strong>on</strong>g>f effect [22]. Beh<strong>in</strong>d the absorber,<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> these ALPs will rec<strong>on</strong>vert via the <strong>in</strong>verse-<br />

Primak<str<strong>on</strong>g>of</str<strong>on</strong>g>f process <strong>in</strong>to phot<strong>on</strong>s with the <strong>in</strong>itial properties.<br />

In a symmetric LSW setup the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the Primak<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

transiti<strong>on</strong> Pγ→ϕ is the same as for the <strong>in</strong>verse-Primak<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

Pϕ→γ. Therefore the LSW probability is just the square <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Pγ→ϕ = g 2 B 2 E 2 /(4m 4 ϕ ) · s<strong>in</strong>2 (m 2 ϕ<br />

L/(4E)) with B the<br />

magnetic field strength, L the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>versi<strong>on</strong> regi<strong>on</strong><br />

and E the phot<strong>on</strong> energy. Mass (mϕ) and two phot<strong>on</strong><br />

coupl<strong>in</strong>g (g) <str<strong>on</strong>g>of</str<strong>on</strong>g> the ALPs are assumed to be uncorrelated.<br />

With βϕ denot<strong>in</strong>g the velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the ALP and q = pγ − pϕ<br />

<strong>on</strong>e achieves:<br />

Pγ→ϕ→γ = 1<br />

16β2 (gBL)<br />

ϕ<br />

4<br />

( s<strong>in</strong>(qL/2)<br />

qL/2<br />

For qL


Figure 3: Schematic view <str<strong>on</strong>g>of</str<strong>on</strong>g> the ALPS LSW experiment. PD denotes various photo detectors, CM the coupl<strong>in</strong>g mirror<br />

and EM the end mirror <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ant cavity. See the text and [23] for a descripti<strong>on</strong>.<br />

ti<strong>on</strong>, cf. Fig. 3. ALPS is the first experiment which successfully<br />

exploits a large-scale optical res<strong>on</strong>ator for WISP<br />

searches. The ma<strong>in</strong> parts and their basic functi<strong>on</strong>ality are<br />

expla<strong>in</strong>ed <strong>in</strong> [1] and reference there<strong>in</strong>. Dur<strong>in</strong>g the measurement<br />

period <strong>in</strong> the year 2009 a c<strong>on</strong>t<strong>in</strong>uously circulat<strong>in</strong>g<br />

power <strong>in</strong>side the ALPS producti<strong>on</strong> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> around 1.2 kW<br />

at 532 nm was achieved [23].<br />

ALPS also exploits successfully a new method to cover<br />

the gaps <strong>in</strong> the sensitivity for higher masses, where the ALP<br />

wave runs out <str<strong>on</strong>g>of</str<strong>on</strong>g> phase w.r.t. the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser beam,<br />

cf. Fig. 4. Introduc<strong>in</strong>g Ar gas at a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.18 mbar<br />

changes the phot<strong>on</strong> momentum and tunes therefore the refracti<strong>on</strong><br />

<strong>in</strong>dex. In the ALPS setup the γ−ALP relative<br />

phase velocity <strong>in</strong>creases thereby to have an extra half oscillati<strong>on</strong><br />

length. Even if the sensitivity is lowered compared<br />

to vacuum c<strong>on</strong>diti<strong>on</strong>s this helps to cover the higher mass<br />

gaps.<br />

ALPS RESULT<br />

ALPS took around 50 data sets (1 h frames) under different<br />

experimental c<strong>on</strong>diti<strong>on</strong>s: with magnet <strong>on</strong> or <str<strong>on</strong>g>of</str<strong>on</strong>g>f, laser<br />

polarizati<strong>on</strong> parallel or perpendicular to the magnetic field<br />

and different gas pressures. Details <strong>on</strong> the methodology<br />

and analysis are described <strong>in</strong> [1, 23]. From the n<strong>on</strong> observati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> any WISP signal a 95 % c<strong>on</strong>fidence level <strong>on</strong><br />

the c<strong>on</strong>versi<strong>on</strong> probabilty was obta<strong>in</strong>ed, rang<strong>in</strong>g between<br />

Pγ→ϕ→γ = 1 − 10 × 10 −25 for the different experimental<br />

setups. Fig. 4 shows the ALPS results for pseudoscalar and<br />

scalar axi<strong>on</strong>-like particles together with the results obta<strong>in</strong>ed<br />

from BMV [25], BFRT [26], GammeV [27], LIPSS [28]<br />

and OSQAR [29]. The gaps at higher masses are covered<br />

by the ALPS gas runs as described above. ALPS provide<br />

now the most str<strong>in</strong>gent laboratory bounds <strong>on</strong> ALPs <strong>in</strong> the<br />

sub-eV mass range.<br />

Also for hidden phot<strong>on</strong> and m<strong>in</strong>icharged particle<br />

searches ALPS has achieved the highest sensitivity <strong>in</strong> the<br />

laboratory, cf. Fig. 5. The ALPS LSW results <strong>on</strong> hidden<br />

phot<strong>on</strong> search fills the gap between lab searches for deviati<strong>on</strong>s<br />

from Coulomb’s law and astrophysical bounds.<br />

<br />

Remarkable, with the achieved sensitivity ALPS almost<br />

completely rules out the h<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> WMAP and large-scalestructure<br />

probes with n<strong>on</strong>-standard radiati<strong>on</strong> density c<strong>on</strong>tributi<strong>on</strong><br />

due to hidden phot<strong>on</strong>s, cf. [23] and references<br />

there<strong>in</strong>.<br />

OUTLOOK<br />

The present generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> laboratory experiments<br />

search<strong>in</strong>g for WISPs has not found any evidence for those<br />

elusive particles. It’s worth menti<strong>on</strong><strong>in</strong>g that this probes<br />

for new physics (if ALPs exist) at the 100 TeV scale 1 already.<br />

The physics case for WISPs is still strengthen<strong>in</strong>g<br />

due to <strong>on</strong>go<strong>in</strong>g theoretical studies and puzzl<strong>in</strong>g observati<strong>on</strong>s<br />

<strong>in</strong> astrophysics as menti<strong>on</strong>ed above. The QCD axi<strong>on</strong><br />

itself rema<strong>in</strong>s a “holy grail” for particle physics. To solve<br />

the CP problem <strong>in</strong> QCD and understand Dark Matter with<br />

<strong>on</strong>e stroke is very allur<strong>in</strong>g. Perhaps even Dark Energy will<br />

f<strong>in</strong>d its explanati<strong>on</strong> <strong>in</strong> the WISP sector via the detecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> “chamele<strong>on</strong>s” [31]. Due to these prospects attempts are<br />

<strong>on</strong>go<strong>in</strong>g to largely improve all comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> LSW experiments.<br />

Usually LSW experiments sh<strong>in</strong>e laser light through l<strong>on</strong>g<br />

and tight magnet bores. With the help <str<strong>on</strong>g>of</str<strong>on</strong>g> res<strong>on</strong>ant optical<br />

cavities effective laser light powers around 100 kW might<br />

be possible <strong>in</strong> future. The ALPS collaborati<strong>on</strong> is presently<br />

prepar<strong>in</strong>g such a setup.<br />

ALPS has used <strong>on</strong>e spare HERA dipole magnet to<br />

achieve the results menti<strong>on</strong>ed above. At DESY we study<br />

now the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> an experiment with up to 20+20<br />

HERA dipoles.<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the present-day LSW experiments use commercial<br />

CCD cameras to search for rec<strong>on</strong>verted phot<strong>on</strong>s from<br />

WISPs beh<strong>in</strong>d the wall. In the future the detecti<strong>on</strong> sensitivity<br />

might be enhanced c<strong>on</strong>siderably by us<strong>in</strong>g transiti<strong>on</strong><br />

edge sensors (TES) [32, 33]. Here a sensor is cooled down<br />

to about 100 mK and operated <strong>in</strong> the transiti<strong>on</strong> regi<strong>on</strong> be-<br />

1 The axi<strong>on</strong>-to-phot<strong>on</strong> coupl<strong>in</strong>g g is given by g = α · gγ/πfα, where<br />

fα denotes the new energy scale and gγ a factor derived from theory<br />

expected to vary by about an order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude for the QCD axi<strong>on</strong>.


Figure 4: Exclusi<strong>on</strong> limit (95% C.L.) for pseudoscalar<br />

(top) and scalar (bottom) axi<strong>on</strong>-like particles obta<strong>in</strong>ed by<br />

the ALPS experiment from vacumm and gas runs together<br />

with the results from various other LSW experiments [23],<br />

see the text for details. Dashed and dotted l<strong>in</strong>es show the<br />

bounds derived from the PVLAS measurement <strong>on</strong> ALP <strong>in</strong>duced<br />

dichroism and birefr<strong>in</strong>gence [30].<br />

tween a superc<strong>on</strong>duct<strong>in</strong>g and normal c<strong>on</strong>duct<strong>in</strong>g state. Due<br />

to the very low heat capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> such a state the energy deposit<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a s<strong>in</strong>gle phot<strong>on</strong> results <strong>in</strong> a significant temperature<br />

rise and is well measurable. TES detectors allow for essentially<br />

background-free count<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dividual phot<strong>on</strong>s,<br />

register their arrival times and allow to estimate their energies.<br />

A new technology will be exploited to boost the sensitivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> LSW experiments even further: the challenge is<br />

to realize a sec<strong>on</strong>d res<strong>on</strong>ant optical cavity <strong>in</strong> the part <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

experiment beh<strong>in</strong>d the wall. The idea <str<strong>on</strong>g>of</str<strong>on</strong>g> such a res<strong>on</strong>antly<br />

enhanced axi<strong>on</strong> phot<strong>on</strong> regenerati<strong>on</strong> was put forward first<br />

<strong>in</strong> 1993 by F. Hoogeveen and T. Ziegenhagen [34] and <strong>in</strong>dependently<br />

rediscovered <strong>in</strong> 2007 by P. Sikivie, D.B. Tanner<br />

and K. van Bibber [35]. The basic idea is to set up an optical<br />

res<strong>on</strong>ator also <strong>in</strong> the regenerati<strong>on</strong> part <str<strong>on</strong>g>of</str<strong>on</strong>g> a LSW experiment<br />

very similar to the optical res<strong>on</strong>ator <strong>in</strong> the first part.<br />

The sec<strong>on</strong>d res<strong>on</strong>ator effectively <strong>in</strong>creases the c<strong>on</strong>versi<strong>on</strong><br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a WISP <strong>in</strong>to a phot<strong>on</strong>. To understand this <strong>on</strong>e<br />

Figure 5: ALPS exclusi<strong>on</strong> limit (95% C.L.) for hidden phot<strong>on</strong>s<br />

(top) and m<strong>in</strong>icharged particles (bottom) together with<br />

the results from various other experiments [23].<br />

has to c<strong>on</strong>sider that the freely propagat<strong>in</strong>g WISP-related<br />

wave beh<strong>in</strong>d the wall <str<strong>on</strong>g>of</str<strong>on</strong>g> the LSW experiment comprises a<br />

very t<strong>in</strong>y electromagnetic phot<strong>on</strong> comp<strong>on</strong>ent. Due to this<br />

small comp<strong>on</strong>ent the WISP might c<strong>on</strong>vert <strong>in</strong>to a real phot<strong>on</strong>.<br />

An optical res<strong>on</strong>ator enhances this small comp<strong>on</strong>ent<br />

<strong>in</strong> the same way as the wave amplitude for real phot<strong>on</strong>s<br />

is <strong>in</strong>creased. Hence the transiti<strong>on</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> WISPs to<br />

phot<strong>on</strong>s rises with the power amplificati<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> an optical<br />

res<strong>on</strong>ator <strong>in</strong> the sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> the LSW experiment<br />

beh<strong>in</strong>d the wall. C<strong>on</strong>sequently the sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> such a setup<br />

for the coupl<strong>in</strong>g c<strong>on</strong>stant g improves with the square<br />

root <str<strong>on</strong>g>of</str<strong>on</strong>g> this factor. The technical challenge is to lock the<br />

sec<strong>on</strong>d cavity to exactly the same frequency and the same<br />

mode as the first cavity (used to enhance the effective laser<br />

phot<strong>on</strong> flux) while keep<strong>in</strong>g it dark <strong>in</strong> the light <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s<br />

searched for as WISP footpr<strong>in</strong>ts. At ALPS we study different<br />

approaches to realize a regenerati<strong>on</strong> cavity.<br />

Comb<strong>in</strong><strong>in</strong>g all the improvements menti<strong>on</strong>ed above would<br />

result <strong>in</strong> a greatly improved sensitivity allow<strong>in</strong>g LSW experiments<br />

to surpass present day <strong>in</strong>direct limits from astrophysics<br />

(g = 10 −10 GeV −1 ) and touch the parameter<br />

regi<strong>on</strong> for ALPS <strong>in</strong>dicated by astrophysics phenomena


Figure 6: Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitivities for the search <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

axi<strong>on</strong>-like particles for different dipole magnet types (taken<br />

from [36])<br />

.<br />

g < 10 −11 GeV −1 ) as shown <strong>in</strong> Fig. 6. A detailed analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> future possibilities can be found <strong>in</strong> [36]. Other excit<strong>in</strong>g<br />

possibilities for future WISP searches have been presented<br />

at this workshop (see K. Homma’s and T. Tomaru’s c<strong>on</strong>tributi<strong>on</strong>s<br />

to the proceed<strong>in</strong>gs).<br />

ACKNOWLEDGEMENTS<br />

I am very grateful to the organizers <str<strong>on</strong>g>of</str<strong>on</strong>g> PIF 2010 for giv<strong>in</strong>g<br />

me the opportunity to participate <strong>in</strong> and to c<strong>on</strong>tribute<br />

to this very excit<strong>in</strong>g meet<strong>in</strong>g with a broad physics scope! I<br />

thank my colleagues <str<strong>on</strong>g>of</str<strong>on</strong>g> the ALPS collaborati<strong>on</strong> for stimulat<strong>in</strong>g<br />

and fruitful discussi<strong>on</strong>s as well as for the fun work<strong>in</strong>g<br />

with experts <strong>in</strong> very different scientific discipl<strong>in</strong>es.<br />

REFERENCES<br />

[1] K. Ehret et al. [ ALPS Collaborati<strong>on</strong> ], Nucl. Instrum. Meth.<br />

A612, 83-96 (2009). [arXiv:0905.4159 [physics.<strong>in</strong>s-det]].<br />

[2] J. Jaeckel, A. R<strong>in</strong>gwald, Ann. Rev. Nucl. Part. Sci. 60, 405-<br />

437 (2010). [arXiv:1002.0329 [hep-ph]].<br />

[3] J. Red<strong>on</strong>do, A. R<strong>in</strong>gwald, [arXiv:1011.3741 [hep-ph]].<br />

[4] R. D. Peccei, H. R. Qu<strong>in</strong>n, Phys. Rev. Lett. 38, 1440-1443<br />

(1977).<br />

R. D. Peccei, H. R. Qu<strong>in</strong>n, Phys. Rev. D16, 1791-1797<br />

(1977).<br />

[5] S. We<strong>in</strong>berg, Phys. Rev. Lett. 40 (1978) 223–226.<br />

[6] F. Wilczek, Phys. Rev. Lett. 40 (1978) 279–282.<br />

[7] KNakamura et al. [ Particle Data Group Collaborati<strong>on</strong> ], J.<br />

Phys. G G37, 075021 (2010).<br />

[8] L. F. Abbott and P. Sikivie,Phys. Lett. B120 (1983) 133–136.<br />

[9] P. Sikivie, arXiv:0909.0949 [hep-ph].<br />

[10] E. Masso, J. Phys. C<strong>on</strong>f. Ser. 179, 012001 (2009)<br />

[arXiv:0902.4851 [hep-th]].<br />

[11] J. Isern, S. Catalan, E. Garcia-Berro et al., [arXiv:1010.5351<br />

[astro-ph.SR]].<br />

[12] M. R<strong>on</strong>cadelli, A. De Angelis, O. Mansutti, J. Phys. C<strong>on</strong>f.<br />

Ser. 203, 012120 (2010). [arXiv:1002.4523 [astro-ph.HE]].<br />

[13] K. Zioutas, T. Vafeiadis, M. Tsagri et al., [arXiv:1011.0629<br />

[astro-ph.SR]].<br />

[14] G. G. Raffelt, Lect. Notes Phys. 741, 51-71 (2008). [hepph/0611350].<br />

[15] D. Cadamuro, S. Hannestad, G. Raffelt et al.,<br />

[arXiv:1011.3694 [hep-ph]].<br />

[16] K. Zioutas, M. Tsagri, Y. Semertzidis, T. Papaevangelou,<br />

T. Dafni and V. Anastassopoulos, arXiv:0903.1807 [astroph.SR].<br />

[17] L. D. Duffy et al., Phys. Rev. D 74, 012006 (2006)<br />

[arXiv:astro-ph/0603108].<br />

[18] J. Jaeckel, E. Masso, J. Red<strong>on</strong>do, A. R<strong>in</strong>gwald and<br />

F. Takahashi, Phys. Rev. D 75, 013004 (2007) [arXiv:hepph/0610203].<br />

[19] J. Red<strong>on</strong>do, c<strong>on</strong>trib. to the 4th Patras Workshop <strong>on</strong> Axi<strong>on</strong>s,<br />

WIMPs and WISPs, Hamburg, Germany (DESY-PROC-<br />

2008-02), arXiv:0810.3200 [hep-ph].<br />

[20] M. Ahlers, J. Jaeckel and A. R<strong>in</strong>gwald, Phys. Rev. D 79,<br />

075017 (2009) [arXiv:0812.3150 [hep-ph]].<br />

[21] G. Cantatore, R. Cim<strong>in</strong>o, M. Karuza, V. Lozza and G. Raiteri,<br />

arXiv:0809.4208 [hep-ex].<br />

[22] H. Primak<str<strong>on</strong>g>of</str<strong>on</strong>g>f, Phys. Rev. 81, 899 (1951).<br />

[23] K. Ehret, M. Frede, S. Ghazaryan et al., Phys. Lett. B689,<br />

149-155 (2010). [arXiv:1004.1313 [hep-ex]].<br />

[24] http://www.pr<strong>in</strong>cet<strong>on</strong><strong>in</strong>struments.com/products/imcam/pixis/.<br />

[25] M. Fouche, C. Robilliard, S. Faure et al., Phys. Rev. D78,<br />

032013 (2008). [arXiv:0808.2800 [hep-ex]].<br />

C. Robilliard, R. Battesti, M. Fouche et al., Phys. Rev. Lett.<br />

99, 190403 (2007). [arXiv:0707.1296 [hep-ex]].<br />

[26] R. Camer<strong>on</strong>, G. Cantatore, A. C. Meliss<strong>in</strong>os et al., Phys.<br />

Rev. D47, 3707-3725 (1993).<br />

[27] A. S. .Chou et al. [ GammeV (T-969) Collaborati<strong>on</strong> ], Phys.<br />

Rev. Lett. 100, 080402 (2008). [arXiv:0710.3783 [hep-ex],<br />

arXiv:0710.3783 [hep-ex]].<br />

[28] A. Afanasev, O. K. Baker, K. B. Beard et al., Phys. Rev.<br />

Lett. 101, 120401 (2008). [arXiv:0806.2631 [hep-ex]].<br />

[29] P. Pugnat et al. [ OSQAR Collaborati<strong>on</strong> ], Phys. Rev. D78,<br />

092003 (2008). [arXiv:0712.3362 [hep-ex]].<br />

[30] M. Bregant et al. [ PVLAS Collaborati<strong>on</strong> ], Phys. Rev. D78,<br />

032006 (2008). [arXiv:0805.3036 [hep-ex]].<br />

[31] J. H. Steffen, A. Upadhye, A. Baumbaugh et al., Phys. Rev.<br />

Lett. 105, 261803 (2010). [arXiv:1010.0988 [astro-ph.CO]].<br />

[32] D. Rosenberg et al., Phys. Rev. A. 71 (2005) 061803,<br />

arXiv:quant-ph/0506175v1.<br />

[33] R. W. Romani et al., arXiv:astro-ph/0208070.<br />

[34] F. Hoogeveen and T. Ziegenhagen, Nucl. Phys. B358 (1991)<br />

3–26.<br />

[35] P. Sikivie, D. Tanner, and K. van Bibber, Phys. Rev. Lett.<br />

172002 (2007).<br />

[36] P. Arias, J. Jaeckel, J. Red<strong>on</strong>do et al., Phys. Rev. D82,<br />

115018 (2010). [arXiv:1009.4875 [hep-ph]].


Prob<strong>in</strong>g extremely light fields via res<strong>on</strong>ance scatter<strong>in</strong>g<br />

by focus<strong>in</strong>g <strong>in</strong>tense laser ∗<br />

Kensuke Homma<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Hiroshima Univ., Hiroshima 739-8526, Japan, and<br />

Fakultät für Physik, Ludwig Maximilians Universität München, D-85748 Garch<strong>in</strong>g, Germany<br />

Abstract<br />

Recent astr<strong>on</strong>omical observati<strong>on</strong>s suggest that there are<br />

unknown c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe such as dark energy<br />

and dark matter. They may be undiscovered extremely light<br />

fields <strong>in</strong> the vacuum which <strong>on</strong>ly weakly couple to matter.<br />

We suggest a method to observe phot<strong>on</strong>-phot<strong>on</strong> scatter<strong>in</strong>g<br />

via res<strong>on</strong>ance states <str<strong>on</strong>g>of</str<strong>on</strong>g> these fields by focus<strong>in</strong>g <strong>in</strong>tense laser<br />

fields <strong>in</strong> laboratory experiments.<br />

INTRODUCTION<br />

Dark energy and dark matter may be attributable to<br />

undiscovered fields <str<strong>on</strong>g>of</str<strong>on</strong>g> small mass below 1eV [1, 2, 3].<br />

These fields are thought to evade our effort to detect them<br />

<strong>in</strong> laboratory, because they are supposed to weakly couple<br />

to matter. Am<strong>on</strong>g them the most challeng<strong>in</strong>g puzzle is the<br />

dark energy problem. The observed dark energy density<br />

is too small to expla<strong>in</strong> it by a simple field theoretical view<br />

po<strong>in</strong>t [4]. In order to approach to this problem, let us start<br />

by rais<strong>in</strong>g follow<strong>in</strong>g view po<strong>in</strong>ts.<br />

The first po<strong>in</strong>t is that the m<strong>in</strong>imum energy state may be<br />

different depend<strong>in</strong>g <strong>on</strong> the order parameter to def<strong>in</strong>e the energy<br />

state. The sec<strong>on</strong>d po<strong>in</strong>t is that the space-time scales<br />

are totally different between particle physics and cosmology.<br />

In particle physics or field theory we <strong>in</strong>troduce local<br />

fields to def<strong>in</strong>e the energy state. We then discuss the energy<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum through the order parameter such<br />

as particle masses represented by the square term <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

polynomial <str<strong>on</strong>g>of</str<strong>on</strong>g> the field <strong>in</strong> the Lagrangian. On the other<br />

hand, <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> cosmology the observable is geometry.<br />

We relate curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum with the gravitati<strong>on</strong>al<br />

sources which provide the <strong>in</strong>formati<strong>on</strong> <strong>on</strong> the energy density<br />

and the pressure. For <strong>in</strong>stance, it is not surpris<strong>in</strong>g at all,<br />

even if the states <str<strong>on</strong>g>of</str<strong>on</strong>g> soundlessness and darkness, which are<br />

different states <str<strong>on</strong>g>of</str<strong>on</strong>g> sensory organs, do not po<strong>in</strong>t an identical<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. Similarly it might not be a real problem,<br />

even though we cannot immediately accommodate the c<strong>on</strong>necti<strong>on</strong><br />

<strong>on</strong> the energy state <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum between particle<br />

physics and cosmology as represented by the dark energy<br />

problem. Before claim<strong>in</strong>g the problem, we should admit<br />

that we have probed the vacuum <strong>on</strong>ly a little with very different<br />

scales. Thus if we could <strong>in</strong>troduce a new k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

observables or order parameters to def<strong>in</strong>e the state <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

vacuum <strong>in</strong> different scales, it would lead us to the deeper<br />

understand<strong>in</strong>g <strong>on</strong> the state <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum. Therefore, it is<br />

∗ Work supported by the Grant-<strong>in</strong>-Aid for Scientific Research<br />

no.21654035<br />

important for experiments to collect <strong>in</strong>formati<strong>on</strong> <strong>in</strong> different<br />

space-time scales as much as possible.<br />

In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> the fact that the vacuum is not a normal<br />

medium, if we could view the vacuum as if it is a medium,<br />

at least, we can obta<strong>in</strong> some h<strong>in</strong>ts <strong>on</strong> observables which<br />

have been neither applied to particle physics nor cosmology<br />

so far. Of course, we should remember that we cannot<br />

associate noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> to this ether like view po<strong>in</strong>t. Let<br />

us c<strong>on</strong>sider laser-matter <strong>in</strong>teracti<strong>on</strong>s where we <strong>in</strong>troduce<br />

polarizati<strong>on</strong>s as an order parameter with respect to external<br />

electric fields. All laser physicists are familiar with birefr<strong>in</strong>gence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crystals and higher harm<strong>on</strong>ic generati<strong>on</strong> from<br />

them as the n<strong>on</strong>l<strong>in</strong>ear resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms to external electric<br />

fields. We may try to apply these observables to <strong>in</strong>vestigate<br />

the state <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum. We now replace the role <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

crystal with the vacuum by <strong>in</strong>troduc<strong>in</strong>g noti<strong>on</strong> that the vacuum<br />

is also a special k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> medium under <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

external fields. In this case the <strong>in</strong>vestigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the high <strong>in</strong>tense<br />

laser-laser <strong>in</strong>teracti<strong>on</strong> <strong>in</strong> the vacuum is a quite natural<br />

approach to probe the medium-like nature. Therefore, we<br />

may foresee the applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> these known observables<br />

developed for laser-matter <strong>in</strong>teracti<strong>on</strong>.<br />

However, the dynamics <strong>in</strong> the vacuum is different from<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms <strong>in</strong> matter. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, we need discuss the<br />

scale dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the dynamics <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum.<br />

In this respect phot<strong>on</strong> is a valuable probe to see natures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum, s<strong>in</strong>ce we can <strong>in</strong>troduce the different<br />

frequencies by many orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <strong>in</strong> laboratory experiments.<br />

In higher energy side, e.g. higgs particle supposed<br />

to act as a fricti<strong>on</strong> to give masses to particles becomes<br />

important. In order to produce this, we would need<br />

∼ 100 GeV as the beam energy. This is <strong>on</strong>ly possible<br />

by <strong>in</strong>troduc<strong>in</strong>g higher beam momentum such as high energy<br />

colliders. What does happen <strong>in</strong> 1 eV-100 MeV range?<br />

Here the virtual vacuum polarizati<strong>on</strong>s by quantum electrodynamics<br />

and possibly quantum chromodynamics become<br />

the source <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>-phot<strong>on</strong> <strong>in</strong>teracti<strong>on</strong>s for an <strong>in</strong>stant moment.<br />

Below 1eV, the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum resp<strong>on</strong>se is<br />

not well known. In this energy range exchanged field between<br />

phot<strong>on</strong>s become very light. Therefore, they can be<br />

candidates <str<strong>on</strong>g>of</str<strong>on</strong>g> dark matter and/or dark energy. We note<br />

all these <strong>in</strong>teracti<strong>on</strong>s are characterized by masses <str<strong>on</strong>g>of</str<strong>on</strong>g> exchanged<br />

fields and the coupl<strong>in</strong>g strength to phot<strong>on</strong>s.<br />

As the most ambitious motivati<strong>on</strong> to search for a lowmass<br />

field, let us <strong>in</strong>troduce a scalar field <strong>in</strong> the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dark energy. Scalar-Tensor-Theory with Λ (ST T Λ) [2] is<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> many dark energy models <strong>in</strong> the market [1]. This


theory provides a natural explanati<strong>on</strong> why the observed<br />

dark energy is so small without any f<strong>in</strong>e tun<strong>in</strong>g. This predicts<br />

decay<strong>in</strong>g Λ with t −2 as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

universe t. The present age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe is t = 10 60 <strong>in</strong><br />

Planckian unit. Thus it naturally expla<strong>in</strong>s why Λ is 10 −120<br />

at present <strong>in</strong> the same unit. The uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> the theory<br />

from an experimental po<strong>in</strong>t view is that it can give us a<br />

testable predicti<strong>on</strong> with the explicit allowed mass and coupl<strong>in</strong>g<br />

strength. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the theory we expect a scalar<br />

field with mass <str<strong>on</strong>g>of</str<strong>on</strong>g> neV range by allow<strong>in</strong>g a few orders <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

latitudes which couples to matter via gravitati<strong>on</strong>al strength.<br />

In past experiments prob<strong>in</strong>g a deviati<strong>on</strong> from Newt<strong>on</strong>ian<br />

potential form, massive and huge bodies were used as a test<br />

probes [5]. However, when they measure the gravitati<strong>on</strong>al<br />

effects <strong>in</strong> a short distance, they must suffer from the background<br />

physical process like Coulomb force. In c<strong>on</strong>trast, if<br />

we could use phot<strong>on</strong>-phot<strong>on</strong> scatter<strong>in</strong>g as a probe for such<br />

a new k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> force, the experiment would be free from the<br />

background physical process, s<strong>in</strong>ce the total phot<strong>on</strong>-phot<strong>on</strong><br />

elastic cross secti<strong>on</strong> <strong>in</strong> the optical energy is <strong>on</strong>ly 10 −42 b at<br />

most [6].<br />

However, the biggest issue appears, because the huge<br />

and massive probes were actually demanded to have a sensitivity<br />

to the gravitati<strong>on</strong>al coupl<strong>in</strong>g strength. Nevertheless,<br />

if we could overcome this drawback to use phot<strong>on</strong>s<br />

as the test probe, the method opens up a new w<strong>in</strong>dow to<br />

probe weakly coupl<strong>in</strong>g and low-mass fields (f<strong>in</strong>ite l<strong>on</strong>g<br />

range force). As l<strong>on</strong>g as the field has a f<strong>in</strong>ite mass and coupl<strong>in</strong>g<br />

to matter, we can directly produce low-mass fields as<br />

res<strong>on</strong>ance states such as higgs particle producti<strong>on</strong> <strong>in</strong> high<br />

energy colliders. The producti<strong>on</strong> cross secti<strong>on</strong> is <strong>in</strong> pr<strong>in</strong>ciple<br />

free from the c<strong>on</strong>stra<strong>in</strong>ts by the weak coupl<strong>in</strong>g, if the<br />

center <str<strong>on</strong>g>of</str<strong>on</strong>g> mass system energy Ecms <str<strong>on</strong>g>of</str<strong>on</strong>g> two collid<strong>in</strong>g phot<strong>on</strong>s<br />

is adjusted to the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ance po<strong>in</strong>t. In the<br />

follow<strong>in</strong>g secti<strong>on</strong>s we discuss how to realize the phot<strong>on</strong>phot<strong>on</strong><br />

collisi<strong>on</strong> system and the sensitivity to the coupl<strong>in</strong>g<br />

as weak as gravitati<strong>on</strong>al coupl<strong>in</strong>g for the mass range well<br />

below optical frequency 1 eV.<br />

QUASI-PARALLEL SYSTEM OF<br />

PHOTON-PHOTON COLLISIONS<br />

If we are <strong>in</strong>terested <strong>in</strong> extremely low-mass ranges even<br />

below meV, we have to reduce the CMS energy <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>phot<strong>on</strong><br />

collisi<strong>on</strong>s compared to the <strong>in</strong>cident phot<strong>on</strong> energy if<br />

optical laser fields are assumed. As l<strong>on</strong>g as the res<strong>on</strong>ance is<br />

allowed to decay <strong>in</strong>to <strong>on</strong>ly two phot<strong>on</strong>s, the scatter<strong>in</strong>g process<br />

looks like elastic scatter<strong>in</strong>g even if a low-mass field<br />

is exchanged via the res<strong>on</strong>ance state <strong>in</strong> CMS. Thus there is<br />

no frequency shift <strong>in</strong> the f<strong>in</strong>al state <strong>in</strong> CMS. However, if we<br />

boost this system to the directi<strong>on</strong> perpendicular to the collid<strong>in</strong>g<br />

axis, the frequency shift takes place al<strong>on</strong>g that boost<br />

axis. In the forward directi<strong>on</strong> <strong>on</strong> the boost axis we expect a<br />

frequency up shift to close to the double <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>cident frequency,<br />

while a zero frequency phot<strong>on</strong> must be emitted to<br />

the backward directi<strong>on</strong> due to the energy-momentum c<strong>on</strong>servati<strong>on</strong><br />

<strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the exchanged<br />

field. We refer this boosted system as the quasi-parallel<br />

system (QPS). This may be <strong>in</strong>terpreted as if the sec<strong>on</strong>d harm<strong>on</strong>ic<br />

phot<strong>on</strong> is generated from the n<strong>on</strong>l<strong>in</strong>ear vacuum resp<strong>on</strong>se.<br />

This could be an <strong>in</strong>terest<strong>in</strong>g analogy to sec<strong>on</strong>d harm<strong>on</strong>ic<br />

generati<strong>on</strong> due to the n<strong>on</strong>l<strong>in</strong>ear resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a crystal<br />

with a laser <strong>in</strong>jecti<strong>on</strong> which was pi<strong>on</strong>eered by Franken<br />

et al. [7]. Inversely if we realize the QPS as a laboratory<br />

frame, the corresp<strong>on</strong>d<strong>in</strong>g CMS energy can be very much<br />

lowered. The CMS energy with variables <strong>in</strong> QPS can be<br />

def<strong>in</strong>ed as<br />

Ecms ∼ 2ϑω, (1)<br />

where ϑ is def<strong>in</strong>ed as a half <strong>in</strong>cident angle between two<br />

<strong>in</strong>com<strong>in</strong>g phot<strong>on</strong>s with ϑ ≪ 1 and ω is the beam energy<br />

<strong>in</strong> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯h = c = 1. This relati<strong>on</strong> <strong>in</strong>dicates that we have<br />

two experimental handles to adjust Ecms. If we take the<br />

head-<strong>on</strong> collisi<strong>on</strong> geometry, we have to <strong>in</strong>troduce very l<strong>on</strong>g<br />

wavelength as the <strong>in</strong>cident phot<strong>on</strong>s. However, it is not too<br />

difficult to <strong>in</strong>troduce the very small <strong>in</strong>cident angle. In such<br />

a case Ecms can be lowered by keep<strong>in</strong>g ω c<strong>on</strong>stant. We<br />

also know that the cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photo-phot<strong>on</strong> scatter<strong>in</strong>g<br />

<strong>in</strong> QED process σqed <strong>in</strong> QPS is quite suppressed due to the<br />

fourth power dependence <strong>on</strong> the <strong>in</strong>cident angle which is<br />

expressed as σqed ∼ (α 2 /m 4 e) 2 ω 6 ϑ 4 with the f<strong>in</strong>e structure<br />

c<strong>on</strong>stant α and electr<strong>on</strong> mass me [8]. Therefore, the low<br />

frequency phot<strong>on</strong>s <strong>in</strong> QPS is the best system to probe such<br />

a low-mass field.<br />

QPS BY FOCUSING WITH SINGLE<br />

GAUSSIAN LASER BEAM<br />

However, it is difficult to <strong>in</strong>troduce two collid<strong>in</strong>g phot<strong>on</strong><br />

beams which satisfy the small <strong>in</strong>cident angle based <strong>on</strong> the<br />

simple geometrical optics due to the wavy nature <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s<br />

<strong>in</strong> the diffracti<strong>on</strong> limit <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s. Below meV range<br />

we are naturally led to <strong>in</strong>troduce a geometry by focus<strong>in</strong>g a<br />

s<strong>in</strong>gle laser beam as illustrated <strong>in</strong> Fig.1. What is important<br />

here is that <strong>in</strong> the diffracti<strong>on</strong> limit there are uncerta<strong>in</strong>ties <strong>on</strong><br />

the <strong>in</strong>cident momentum due to the uncerta<strong>in</strong>ty pr<strong>in</strong>ciple, <strong>in</strong><br />

other words, there are uncerta<strong>in</strong>ties <strong>on</strong> the <strong>in</strong>cident angles<br />

between two phot<strong>on</strong>s am<strong>on</strong>g the s<strong>in</strong>gle beam, even though<br />

phot<strong>on</strong>s are <strong>in</strong> the degenerated state at the output <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

laser crystal. This should be c<strong>on</strong>trasted to the case <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

energy collider where the momentum spread <str<strong>on</strong>g>of</str<strong>on</strong>g> each collid<strong>in</strong>g<br />

particle or the uncerta<strong>in</strong>ty based <strong>on</strong> the de Broglie<br />

length is negligibly small compared to the magnitudes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

relevant momentum exchanges they are <strong>in</strong>terested <strong>in</strong>. This<br />

different <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong> becomes critically important for<br />

the follow<strong>in</strong>g discussi<strong>on</strong>s.<br />

DYNAMICS OF PHOTON-PHOTON<br />

SCATTERING<br />

As the simplest coupl<strong>in</strong>g between two phot<strong>on</strong>s and a<br />

low-mass field we focus <strong>on</strong> the quantum anomaly type coupl<strong>in</strong>g<br />

g 2 /M which <strong>in</strong>cludes square <str<strong>on</strong>g>of</str<strong>on</strong>g> electric charge g to<br />

couple virtual fermi<strong>on</strong> loops to two external phot<strong>on</strong>s and a<br />

dimensi<strong>on</strong>al coupl<strong>in</strong>g 1/M to low-mass neutral fields [9].


Figure 1: Sec<strong>on</strong>d harm<strong>on</strong>ic generati<strong>on</strong> <strong>in</strong> Quasi Parallel<br />

System by focus<strong>in</strong>g a s<strong>in</strong>gle Gaussian laser beam.<br />

If M is Planckian mass scale <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 27 eV, the coupl<strong>in</strong>g expresses<br />

gravitati<strong>on</strong>al <strong>on</strong>e. We may discuss possibilities to<br />

exchange scalar and pseudoscalar type <str<strong>on</strong>g>of</str<strong>on</strong>g> fields by requir<strong>in</strong>g<br />

comb<strong>in</strong>ati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> polarizati<strong>on</strong>s <strong>in</strong> the <strong>in</strong>itial and<br />

f<strong>in</strong>al states [10]. The virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> laser experiments is <strong>in</strong> the<br />

specificati<strong>on</strong>s <strong>on</strong> the all phot<strong>on</strong> sp<strong>in</strong> states both <strong>in</strong> the <strong>in</strong>itial<br />

and f<strong>in</strong>al states <strong>in</strong> the two body phot<strong>on</strong>-phot<strong>on</strong> <strong>in</strong>teracti<strong>on</strong>.<br />

This allows us to discuss types <str<strong>on</strong>g>of</str<strong>on</strong>g> exchanged fields <strong>in</strong> general.<br />

HOW TO OVERCOME THE EXTREMELY<br />

NARROW RESONANCE<br />

The exact res<strong>on</strong>ance c<strong>on</strong>diti<strong>on</strong> is the requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> m =<br />

Ecms where m is the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> exchanged field. The squire<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the scatter<strong>in</strong>g amplitude A can be expressed as Breit-<br />

Wigner(BW) res<strong>on</strong>ance functi<strong>on</strong> [11]<br />

|A| 2 = (4π) 2<br />

a 2<br />

χ2 , (2)<br />

(ϑ) + a2 where χ and width a are def<strong>in</strong>ed as χ(ϑ) ≡ ω 2 −ω 2 r(ϑ) and<br />

a ≡ (ω 2 r/16π)(g 2 m/M) 2 , respectively. The energy ωr<br />

satisfy<strong>in</strong>g the res<strong>on</strong>ance c<strong>on</strong>diti<strong>on</strong> can be def<strong>in</strong>ed as ωr ≡<br />

m 2 /(1 − cos 2ϑr) [10]. If we take Planckian mass as M,<br />

the width a becomes extremely small. This implies that the<br />

res<strong>on</strong>ance width is too small to hit the peak positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

res<strong>on</strong>ance functi<strong>on</strong>. How can we overcome this problem?<br />

We take a unique approach to this situati<strong>on</strong>. Let us rem<strong>in</strong>d<br />

you <str<strong>on</strong>g>of</str<strong>on</strong>g> higgs hunt<strong>in</strong>g by high energy colliders as an<br />

example to hit the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ance. In high energy<br />

colliders the spread <str<strong>on</strong>g>of</str<strong>on</strong>g> the beam energy is much smaller<br />

than the width <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ance functi<strong>on</strong> which they try to<br />

probe. On the hand, <strong>in</strong> collisi<strong>on</strong>s at the diffracti<strong>on</strong> limit <strong>in</strong><br />

QPS, the res<strong>on</strong>ance width looks almost like delta-functi<strong>on</strong><br />

and the uncerta<strong>in</strong>ty <strong>on</strong> the Ecms is much wider than the<br />

res<strong>on</strong>ance width as we discussed above. We may use the<br />

follow<strong>in</strong>g feature <str<strong>on</strong>g>of</str<strong>on</strong>g> delta-functi<strong>on</strong>. Although the width <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the delta-functi<strong>on</strong> is <strong>in</strong>f<strong>in</strong>itesimal, as far as it is <strong>in</strong>tegrated<br />

over ±∞, the value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tegral becomes order <str<strong>on</strong>g>of</str<strong>on</strong>g> unity. In<br />

the case <str<strong>on</strong>g>of</str<strong>on</strong>g> BW functi<strong>on</strong>, even if we <strong>in</strong>tegrate it over ±a,<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>tegral is just a half <str<strong>on</strong>g>of</str<strong>on</strong>g> the value <strong>in</strong>tegrated<br />

over ±∞. This implies that as l<strong>on</strong>g as we capture the res<strong>on</strong>ance<br />

peak with<strong>in</strong> a f<strong>in</strong>ite range bey<strong>on</strong>d ±a, the value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>tegral becomes proporti<strong>on</strong>al to a but not a 2 . Actually<br />

<strong>in</strong> the diffracti<strong>on</strong> limit <strong>in</strong>cident angles <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>com<strong>in</strong>g<br />

phot<strong>on</strong>s are <strong>in</strong> pr<strong>in</strong>ciple uncerta<strong>in</strong>. Thus we must use the<br />

averaged cross secti<strong>on</strong> by <strong>in</strong>tegrat<strong>in</strong>g the square <str<strong>on</strong>g>of</str<strong>on</strong>g> the scatter<strong>in</strong>g<br />

amplitude over a possible range <strong>on</strong> Ecms determ<strong>in</strong>ed<br />

by uncerta<strong>in</strong>ties <strong>on</strong> <strong>in</strong>cident angles.<br />

Let us reflect this feature <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle beam focus<strong>in</strong>g<br />

experiment. We can <strong>in</strong>troduce a probability distributi<strong>on</strong><br />

functi<strong>on</strong> <strong>on</strong> the possible <strong>in</strong>cident angles between randomly<br />

selected phot<strong>on</strong> pairs am<strong>on</strong>g the <strong>in</strong>cident s<strong>in</strong>gle laser<br />

beam. We then def<strong>in</strong>e the range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tegral <strong>on</strong> the <strong>in</strong>cident<br />

angel as ∆ϑ ∼ d/(2f) with the beam diameter d and the<br />

focal length f. If this range does not c<strong>on</strong>ta<strong>in</strong> the res<strong>on</strong>ance<br />

angle ϑr ≡ m/2ω, that is, ϑr > ∆ϑ, the averaged squared<br />

amplitude |A| 2 becomes proporti<strong>on</strong>al to a 2 which <strong>in</strong>dicates<br />

the suppressi<strong>on</strong> by M −4 . On the other hand, if ϑr < ∆ϑ is<br />

satisfied, we can obta<strong>in</strong> the proporti<strong>on</strong>ality to a, namely, a<br />

sensitivity enhancement by M 2 compared to the case without<br />

res<strong>on</strong>ance. Thus various focus<strong>in</strong>g parameters to adjust<br />

∆ϑ by c<strong>on</strong>troll<strong>in</strong>g the beam diameter and focal length can<br />

<strong>in</strong>troduce a sharp cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>on</strong> the cross secti<strong>on</strong> which eventually<br />

c<strong>on</strong>trols sensitive mass ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> this method through<br />

the relati<strong>on</strong> m < 2ω∆ϑ.<br />

SENSITIVITY TO GRAVITATIONAL<br />

COUPLING STRENGTH<br />

Let us now discuss how much <strong>in</strong>tense laser fields are<br />

necessary to have a sensitivity to gravitati<strong>on</strong>al coupl<strong>in</strong>g<br />

strength based <strong>on</strong> the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>-phot<strong>on</strong> scatter<strong>in</strong>g<br />

<strong>in</strong> QPS. As the most challeng<strong>in</strong>g case let us assume<br />

m ∼ 10 −9 eV which can be a candidate <str<strong>on</strong>g>of</str<strong>on</strong>g> dark energy if<br />

it could couple to matter as weak as gravitati<strong>on</strong>al coupl<strong>in</strong>g<br />

strength 1/MP ∼ 10 −27 eV −1 [2]. The yield <str<strong>on</strong>g>of</str<strong>on</strong>g> harm<strong>on</strong>ic<br />

generati<strong>on</strong> Y <strong>in</strong>tegrated over the solid angle which satisfies<br />

the c<strong>on</strong>diti<strong>on</strong> that <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>al state phot<strong>on</strong>s has the<br />

frequency close to 2ω, can be expressed as<br />

Y ∼ Kexp(g 2 m/M) 2 s<strong>in</strong> 2 ϑL, (3)<br />

where Kexp is a total experimental factor depend<strong>in</strong>g <strong>on</strong><br />

the the durati<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser pulse, the energy selecti<strong>on</strong><br />

and the focus<strong>in</strong>g parameter result<strong>in</strong>g <strong>in</strong> ϑr/∆ϑ relevant<br />

for the normalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the probability <strong>on</strong> <strong>in</strong>cident<br />

angles, (g 2 m/M) 2 ∼ (αm/M) 2 ∼ 10 −76 is the factor<br />

after averag<strong>in</strong>g <strong>on</strong> BW res<strong>on</strong>ance functi<strong>on</strong>, s<strong>in</strong> −2 ϑ is the<br />

factor related with the phase volume <strong>in</strong>tegral and the phot<strong>on</strong><br />

flux factor after <strong>in</strong>tegrated over the solid angle, and<br />

L is a lum<strong>in</strong>osity-like factor <strong>in</strong> the collider c<strong>on</strong>cept. The<br />

significant difference <str<strong>on</strong>g>of</str<strong>on</strong>g> L from that <str<strong>on</strong>g>of</str<strong>on</strong>g> collider c<strong>on</strong>cept is<br />

that phot<strong>on</strong>s are annihilated and created from degenerated


states rather than from the vacuum state |0 >. This implies<br />

that annihilati<strong>on</strong> and creati<strong>on</strong> operators cause √ ¯ N <strong>in</strong><br />

each vertex <str<strong>on</strong>g>of</str<strong>on</strong>g> the Feynman diagram with the mean number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s ¯ N <strong>in</strong> a laser field by assum<strong>in</strong>g ¯ N is large<br />

enough [12]. On the producti<strong>on</strong> vertex <str<strong>on</strong>g>of</str<strong>on</strong>g> the low-mass<br />

field, we expect a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> √ 2<br />

N¯ at the amplitude level due<br />

to two phot<strong>on</strong> annihilati<strong>on</strong> <strong>in</strong> the degenerated number state.<br />

Tak<strong>in</strong>g square <str<strong>on</strong>g>of</str<strong>on</strong>g> this factor gives a similar factor to collider<br />

lum<strong>in</strong>osity which <strong>in</strong>cludes a factor proport<strong>in</strong>al to n 2 where<br />

n is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles per beam bunch.<br />

In order to have <strong>on</strong>e sec<strong>on</strong>d harm<strong>on</strong>ic phot<strong>on</strong> per laser<br />

focus<strong>in</strong>g, we would need 10 34 optical phot<strong>on</strong>s corresp<strong>on</strong>d<strong>in</strong>g<br />

to ∼ 10 16 J with Kexp ∼ 10 −10 for the focal length<br />

f ∼ 1000 m, the beam diameter d ∼ 2 m and the pulse<br />

durati<strong>on</strong> τ ∼ 10 fs. Furthermore, we may also <strong>in</strong>duce decays<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the produced res<strong>on</strong>ances by add<strong>in</strong>g a degenerated<br />

phot<strong>on</strong> states with different frequency to let the <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

phot<strong>on</strong>s from the res<strong>on</strong>ance decay <strong>in</strong>to the prepared degenerated<br />

state, where creati<strong>on</strong> operator causes the additi<strong>on</strong>al<br />

factor <str<strong>on</strong>g>of</str<strong>on</strong>g> √ ¯ N at the scatter<strong>in</strong>g amplitude level. Therefore,<br />

if we mix two frequencies <strong>in</strong> advance with equal <strong>in</strong>tensity<br />

¯N, we may expect the <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> the lum<strong>in</strong>osity-like factor<br />

L ∼ ¯ N 3 . In this case the necessary phot<strong>on</strong> <strong>in</strong>tensity<br />

may be very much reduced to order <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 22 optical phot<strong>on</strong>s<br />

corresp<strong>on</strong>d<strong>in</strong>g to several kJ with the same Kexp factor. We<br />

note that the phot<strong>on</strong> frequency to be observed changes from<br />

the sec<strong>on</strong>d harm<strong>on</strong>ic <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>cident phot<strong>on</strong>s depend<strong>in</strong>g <strong>on</strong><br />

the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the field to <strong>in</strong>duce decays.<br />

SUMMARY<br />

Higher harm<strong>on</strong>ic generati<strong>on</strong> <strong>in</strong> Quasi-Parallel-System<br />

can be a novel probe to discuss weakly coupl<strong>in</strong>g low-mass<br />

fields. Experimental realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QPS as parallel as possible<br />

is a challenge for future experiments. The dom<strong>in</strong>ant<br />

enhancement mechanism is orig<strong>in</strong>ated by c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g the<br />

low-mass res<strong>on</strong>ant peak with<strong>in</strong> the uncerta<strong>in</strong>ty <strong>on</strong> the center<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mass energy <strong>in</strong> the diffracti<strong>on</strong> limit <str<strong>on</strong>g>of</str<strong>on</strong>g> the focused<br />

laser beam. A degenerated field to <strong>in</strong>duce decay <str<strong>on</strong>g>of</str<strong>on</strong>g> res<strong>on</strong>ance<br />

is important to probe coupl<strong>in</strong>g as weak as gravity<br />

though higher harm<strong>on</strong>ic generati<strong>on</strong>. Given high <strong>in</strong>tensity<br />

laser fields ∼ 2 kJ per pulse available <strong>in</strong> Extreme Light<br />

Infrastructure [13], we foresee the breakthrough <strong>on</strong> the exist<strong>in</strong>g<br />

sensitivity to coupl<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> low-mass fields to phot<strong>on</strong>s<br />

based <strong>on</strong> this novel idea.<br />

ACKNOWLEDGMENTS<br />

This work is based <strong>on</strong> <strong>in</strong>tensive discussi<strong>on</strong>s with Y. Fujii,<br />

D. Habs and T. Tajima under support by the DFG Cluster<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Excellence MAP (Munich-Center for Advanced Phot<strong>on</strong>ics).<br />

REFERENCES<br />

[1] Y. F. Cai, E. N. Saridakis, M. R. Setare and J. Q. Xia,<br />

arXiv:0909.2776 [hep-th]; S. Tsujikawa, arXiv:1004.1493<br />

[astro-ph.CO].<br />

[2] Y. Fujii and K. Maeda, The Scalar-Tensor Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Gravitati<strong>on</strong><br />

(Cambridge Univ. Press, 2003).<br />

[3] For example, see Figure 2 <strong>in</strong> J. Jaeckel and A. R<strong>in</strong>gwald,<br />

arXiv:1002.0329 [hep-ph].<br />

[4] V. Sahni and A. A. Starob<strong>in</strong>sky, Int. J. Mod. Phys. D 9, 373<br />

(2000) [arXiv:astro-ph/9904398].<br />

[5] See, for example, Figures; 2.13, 4.16-17 <strong>in</strong> E. Fischbach and<br />

C. Talmadge, The Search for N<strong>on</strong>-Newt<strong>on</strong>ian Gravity (AIP<br />

Press, Spr<strong>in</strong>ger-Verlag, N.Y., 1998).<br />

[6] B. De Tollis, Nuovo Cimento 32 757 (1964); B. De Tollis,<br />

Nouvo Cimento 35 1182 (1965).<br />

[7] P. Franken, A. E. Hill, C. W. Peters, and G. We<strong>in</strong>reich, Phys.<br />

Rev. Lett. 7, 118 (1961).<br />

[8] See p.183 <strong>in</strong> W. Dittrich and H. Gies, Prob<strong>in</strong>g the Quantum<br />

Vacuum (Spr<strong>in</strong>ger, Berl<strong>in</strong>, 2007).<br />

[9] Y. Fujii and K. Homma, arXiv:1006.1762 [gr-qc].<br />

[10] K. Homma, D. Habs and T. Tajima, arXiv:1006.4533<br />

[quant-ph].<br />

[11] For example, see secti<strong>on</strong> for Cross-secti<strong>on</strong> formulae for specific<br />

processes <strong>in</strong> C. Amsler et al. (Particle Data Group),<br />

Phy. Lett. B667, 1 (2008) and 2009 partial update for the<br />

2010 editi<strong>on</strong>.<br />

[12] For example see Rodney Loud<strong>on</strong>, The Quantum Theory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Light 3rd editi<strong>on</strong> (Oxford University Press, New York,<br />

2000).<br />

[13] http://www.extreme-light-<strong>in</strong>frastructure.eu/.


Abstract<br />

Dynamical view <str<strong>on</strong>g>of</str<strong>on</strong>g> pair creati<strong>on</strong> via the Schw<strong>in</strong>ger mechanism ∗<br />

Naoto Tanji †<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo, Komaba, Tokyo 153-8902, Japan<br />

Particle producti<strong>on</strong> via the Schw<strong>in</strong>ger mechanism has<br />

been studied as a mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> matter formati<strong>on</strong> <strong>in</strong> the<br />

c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy-i<strong>on</strong> collisi<strong>on</strong>s. We describe the particle<br />

pair creati<strong>on</strong> <strong>in</strong> a str<strong>on</strong>g electric field focus<strong>in</strong>g <strong>on</strong> its realtime<br />

dynamics. Motivated by the Color Glass C<strong>on</strong>densate<br />

framework, we <strong>in</strong>vestigate the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> a magnetic field<br />

which is parallel to the electric field, and show that the<br />

magnetic field enhances quark producti<strong>on</strong>. Also the pair<br />

creati<strong>on</strong> <strong>in</strong> a boost-<strong>in</strong>variantly expand<strong>in</strong>g electric field is<br />

discussed.<br />

INTRODUCTION<br />

Particle pair creati<strong>on</strong> from vacuum <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a str<strong>on</strong>g electric field, which is known as the Schw<strong>in</strong>ger<br />

mechanism [1], is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most remarkable c<strong>on</strong>sequences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory. This particle producti<strong>on</strong><br />

mechanism has attracted c<strong>on</strong>siderable theoretical<br />

and experimental <strong>in</strong>terests, because it c<strong>on</strong>cerns the n<strong>on</strong>perturbative<br />

aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory. However, no<br />

direct observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schw<strong>in</strong>ger particle producti<strong>on</strong> has<br />

ever been obta<strong>in</strong>ed because it requires very str<strong>on</strong>g electric<br />

fields above the critical strength Ec = m 2 e/e ∼ 10 16 V/cm,<br />

which is bey<strong>on</strong>d current technological capabilities.<br />

Although sufficient field strength has not yet been realized<br />

<strong>in</strong> laboratories as a QED electric field, it may be atta<strong>in</strong>able<br />

as a QCD color field because <str<strong>on</strong>g>of</str<strong>on</strong>g> its str<strong>on</strong>g nature.<br />

Color electric fields are expected to be generated <strong>in</strong> highenergy<br />

particle collisi<strong>on</strong> experiments, such as relativistic<br />

heavy-i<strong>on</strong> collisi<strong>on</strong>s. High energy particle collisi<strong>on</strong> experiments<br />

may be a promis<strong>in</strong>g playground for the str<strong>on</strong>g field<br />

physics.<br />

Figure 1: A schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>on</strong>gitud<strong>in</strong>al evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relativistic<br />

heavy-i<strong>on</strong> collisi<strong>on</strong>s.<br />

∗ Work supported by the Japan Society for the Promoti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

for Young Scientists<br />

† tanji@nt1.c.u-tokyo.ac.jp<br />

Relativistic heavy-i<strong>on</strong> collisi<strong>on</strong> experiments have been<br />

d<strong>on</strong>e at Relativistic Heavy I<strong>on</strong> Collider (RHIC) and are<br />

start<strong>in</strong>g at Large Hadr<strong>on</strong> Collider (LHC) to explore the nature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> matter <strong>in</strong> extreme c<strong>on</strong>diti<strong>on</strong>. A space-time picture<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> relativistic heavy-i<strong>on</strong> collisi<strong>on</strong>s is illustrated <strong>in</strong> Fig. 1.<br />

The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quark-glu<strong>on</strong> plasma (QGP), which c<strong>on</strong>sists<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quarks and glu<strong>on</strong>s liberated from c<strong>on</strong>f<strong>in</strong>ement, is<br />

expected there. In the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QGP, hydrodynamic<br />

simulati<strong>on</strong>s suppos<strong>in</strong>g the local thermalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the system<br />

have achieved great successes (see e.g. [2]). However,<br />

a full understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> how high-energy matter is created<br />

and how local thermalizati<strong>on</strong> is realized before the hydrodynamic<br />

evoluti<strong>on</strong> is still lack<strong>in</strong>g.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> matter formati<strong>on</strong> <strong>in</strong> heavy-i<strong>on</strong><br />

collisi<strong>on</strong>s is based <strong>on</strong> the flux-tube model [3]. When two<br />

Lorentz-c<strong>on</strong>tracted disks <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei collide and pass through<br />

each other, they exchange color charges (glu<strong>on</strong>s), and after<br />

the collisi<strong>on</strong>, many flux tubes are generated between the<br />

two capacitor plates (Fig. 2(a)). These flux tubes decay<br />

<strong>in</strong>to quarks and glu<strong>on</strong>s by the Schw<strong>in</strong>ger pair creati<strong>on</strong> [4].<br />

Recently also the Color Glass C<strong>on</strong>densate (CGC) model,<br />

which is an effective theory to describe high-energy nuclei<br />

<strong>in</strong> saturated regi<strong>on</strong> (see e.g. [5] for review), has predicted<br />

the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> color electric fields <strong>in</strong> the l<strong>on</strong>gitud<strong>in</strong>al<br />

beam directi<strong>on</strong> [6]. The field strength predicted by<br />

the CGC is gE ∼ 1 GeV 2 at RHIC energy. This is str<strong>on</strong>g<br />

enough to cause the Schw<strong>in</strong>ger particle producti<strong>on</strong>. Therefore<br />

the Schw<strong>in</strong>ger mechanism attracts renewed <strong>in</strong>terest <strong>in</strong><br />

the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> the CGC [7]. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the remarkable differences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the color flux tube given by the CGC from that <strong>in</strong><br />

the orig<strong>in</strong>al flux-tube model is the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>on</strong>gitud<strong>in</strong>al<br />

color magnetic fields <strong>in</strong> additi<strong>on</strong> to the electric fields<br />

[6].<br />

In this paper, we <strong>in</strong>vestigate the Schw<strong>in</strong>ger mechanism<br />

focus<strong>in</strong>g <strong>on</strong> the follow<strong>in</strong>g issues.<br />

(a) flux tubes<br />

(b) the boost-<strong>in</strong>variant c<strong>on</strong>figurati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electric fields<br />

Figure 2: Color electric fields expected <strong>in</strong> the early stage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heavy-i<strong>on</strong> collisi<strong>on</strong>s.


Real-time descripti<strong>on</strong> Because the system <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy-i<strong>on</strong><br />

collisi<strong>on</strong>s is a dynamic <strong>on</strong>e, we study the n<strong>on</strong>equilibrium<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the pair creati<strong>on</strong>.<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic fields The CGC predicts the generati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gitud<strong>in</strong>al color-magnetic fields as well as<br />

color-electric fields just after a collisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy-nuclei,<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> which state is called Glasma. We exam<strong>in</strong>e the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

such magnetic fields <strong>on</strong> the pair creati<strong>on</strong>.<br />

Expand<strong>in</strong>g geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric fields Electric fields<br />

expected to be generated <strong>in</strong> the early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy-i<strong>on</strong> collisi<strong>on</strong>s<br />

exist <strong>on</strong>ly between two nuclei reced<strong>in</strong>g from each<br />

other at a velocity close to the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light (Fig. 2(b)).<br />

This situati<strong>on</strong> is quite different from that <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schw<strong>in</strong>ger’s<br />

orig<strong>in</strong>al work, <strong>in</strong> which spatially uniform fields are treated.<br />

We study how the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> particle producti<strong>on</strong> is modified<br />

<strong>in</strong> this field c<strong>on</strong>figurati<strong>on</strong>.<br />

REAL-TIME DESCRIPTION OF PAIR<br />

CREATION<br />

Can<strong>on</strong>ical quantizati<strong>on</strong> <strong>in</strong> background fields<br />

To get a real-time descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pair creati<strong>on</strong>, we <strong>in</strong>troduce<br />

an <strong>in</strong>stantaneous particle def<strong>in</strong>iti<strong>on</strong> by an explicit<br />

quantizati<strong>on</strong> procedure under a background electric field<br />

[8]. The time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum state <str<strong>on</strong>g>of</str<strong>on</strong>g> charged<br />

particles is described by the variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> that particle def<strong>in</strong>iti<strong>on</strong>.<br />

As an illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it, we first study the QED particle<br />

producti<strong>on</strong> <strong>in</strong> a spatially uniform electric field. Extensi<strong>on</strong><br />

to the quark producti<strong>on</strong> under a n<strong>on</strong>-Abelian colorelectric<br />

field is possible [9]. We suppose the electric field<br />

E = (0, 0, Ez(t)) is vanish<strong>in</strong>g at t < 0 and is turned<br />

<strong>on</strong> at time t = 0. The gauge A 0 = 0 is chosen so that<br />

A 1 = A 2 = 0 and Ez(t) = − d<br />

dt A3 (t). The charged sp<strong>in</strong>or<br />

field ψ obeys the Dirac equati<strong>on</strong>:<br />

[iγ µ (∂µ + ieAµ) − m] ψ(t, x) = 0. (1)<br />

The field quantizati<strong>on</strong> is accomplished by impos<strong>in</strong>g the<br />

can<strong>on</strong>ical anti-commutati<strong>on</strong> relati<strong>on</strong> {ψ(t, x), π(t, x ′ )} =<br />

iδ(x − x ′ ), where π(t, x) = iψ † (t, x) is can<strong>on</strong>ical c<strong>on</strong>jugate<br />

momentum. The quantized quark field may be expanded<br />

as<br />

ψ(x) = ∑<br />

s=↑,↓<br />

∫<br />

d 3 [<br />

p +ψ <strong>in</strong> ps(x)a <strong>in</strong> p,s + −ψ <strong>in</strong> ps(x)b <strong>in</strong>†<br />

]<br />

−p,s ,<br />

(2)<br />

where a <strong>in</strong> p,s [b <strong>in</strong> p,s] is the annihilati<strong>on</strong> operator <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle<br />

[antiparticle] with momentum p and sp<strong>in</strong> s, and ±ψ <strong>in</strong> ps(x)<br />

are classical soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong> (1). The superscript<br />

‘<strong>in</strong>’ dist<strong>in</strong>guishes the <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong> for ±ψ <strong>in</strong> ps(x): at<br />

t < 0, +ψ <strong>in</strong> ps(x) [−ψ <strong>in</strong> ps(x)] is identical to the positive [negative]<br />

energy soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the free Dirac equati<strong>on</strong>. We set the<br />

state to be <strong>in</strong>-vacuum |0, <strong>in</strong>⟩, where no particle exists <strong>in</strong>itially<br />

and which is def<strong>in</strong>ed by a <strong>in</strong> p,s|0, <strong>in</strong>⟩ = b <strong>in</strong> p,s|0, <strong>in</strong>⟩ = 0.<br />

At t > 0, ±ψ <strong>in</strong> ps(x) evolves under the <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electric field and becomes superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a positive and<br />

negative energy (frequency) state. To describe the pair creati<strong>on</strong><br />

dynamically, we <strong>in</strong>troduce a time-dependent particle<br />

def<strong>in</strong>iti<strong>on</strong> by decompos<strong>in</strong>g the field operator ψ(x) <strong>in</strong>to positive<br />

and negative frequency <strong>in</strong>stantaneously:<br />

ψ(t0, x) = ∑<br />

s=↑,↓<br />

∫<br />

d 3 [<br />

p +ψ (t0)<br />

ps (x)ap,s(t0)<br />

+−ψ (t0)<br />

ps (x)b †<br />

−p,s(t0)<br />

]<br />

,<br />

where +ψ (t0)<br />

ps (x) [−ψ (t0)<br />

ps (x)] is a positive [negative] frequency<br />

soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong> under the pure gauge<br />

A 3 = A 3 (t = t0). Instantaneous particle picture is def<strong>in</strong>ed<br />

by ap,s(t) and bp,s(t). Of course, ap,s(t) and bp,s(t) agree<br />

with a <strong>in</strong> p,s and b <strong>in</strong> p,s at t < 0, respectively. The particle def<strong>in</strong>iti<strong>on</strong><br />

at time t and that <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>-state are related by the<br />

time-dependent Bogoliubov transformati<strong>on</strong>:<br />

ap,s(t) = αp,s(t)a <strong>in</strong> p+eA(t),s<br />

+ βp,s(t)b <strong>in</strong> †<br />

−p−eA(t),s ,<br />

(3)<br />

b †<br />

−p,s(t) = α ∗ <strong>in</strong> †<br />

p,s(t)b−p−eA(t),s − β∗ p,s(t)a <strong>in</strong> (4)<br />

p+eA(t),s ,<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> which coefficients satisfy<br />

|αps(t)| 2 + |βps(t)| 2 = 1. (5)<br />

Because the creati<strong>on</strong> and annihilati<strong>on</strong> operators are<br />

mixed by the Bogoliubov transformati<strong>on</strong>, the vacuum<br />

expectati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the number operator may be n<strong>on</strong>zero:<br />

⟨0, <strong>in</strong>|a † 2 V<br />

ps(t)aps(t)|0, <strong>in</strong>⟩ = |βps(t)| (2π) 3 , where V is the<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. This means that particle creati<strong>on</strong><br />

happens. We def<strong>in</strong>e a particle pair distributi<strong>on</strong> functi<strong>on</strong> as<br />

fps(t) = ⟨0, <strong>in</strong>|a † ps(t)aps(t)|0, <strong>in</strong>⟩ (2π)3<br />

V<br />

= ⟨0, <strong>in</strong>|b †<br />

−ps(t)b−ps(t)|0, <strong>in</strong>⟩ (2π)3<br />

V<br />

= |βps(t)| 2 .<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge and the momentum c<strong>on</strong>servati<strong>on</strong>,<br />

antiparticles have always opposite momentum to particles.<br />

The distributi<strong>on</strong> functi<strong>on</strong> can not exceed unity: fp,s(t) =<br />

|βp,s| 2 = 1 − |αp,s| 2 ≤ 1, because <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>stra<strong>in</strong>t (5).<br />

This is a manifestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pauli’s exclusi<strong>on</strong> pr<strong>in</strong>ciple.<br />

Pair creati<strong>on</strong> <strong>in</strong> c<strong>on</strong>stant electric fields<br />

In Fig. 3, the time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the momentum distributi<strong>on</strong><br />

functi<strong>on</strong> (6) under a c<strong>on</strong>stant electric field Ez(t) =<br />

E is plotted. Hereafter, all figures are shown <strong>in</strong> the<br />

dimensi<strong>on</strong>-less unit scaled by √ eE [or √ eE0 <strong>in</strong> a n<strong>on</strong>steady<br />

field case, where E0 is an <strong>in</strong>itial field strength].<br />

After the switch-<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field, particles are created<br />

with approximately vanish<strong>in</strong>g l<strong>on</strong>gitud<strong>in</strong>al momenta.<br />

Their occupati<strong>on</strong> numbers, <strong>in</strong> other words, the ( heights <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the distributi<strong>on</strong>s can be approximated by exp − πm2<br />

)<br />

⊥<br />

eE ,<br />

where m⊥ is the transverse mass def<strong>in</strong>ed by m 2 ⊥ ≡ m2 +p 2 ⊥ .<br />

(6)


(a) l<strong>on</strong>gitud<strong>in</strong>al momentum distributi<strong>on</strong> with fixed<br />

transverse momentum p⊥ = 0<br />

(b) transverse momentum distributi<strong>on</strong> with fixed<br />

l<strong>on</strong>gitud<strong>in</strong>al momentum √ eEpz = 1<br />

Figure 3: Time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the momentum distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> created particles under the c<strong>on</strong>stant electric field. m2<br />

2eE = 0.1.<br />

These features are c<strong>on</strong>sistent with the semi-classical tunnel<strong>in</strong>g<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pair creati<strong>on</strong> [10]. However, the l<strong>on</strong>gitud<strong>in</strong>al<br />

momenta that particles br<strong>in</strong>g when they are created<br />

are not exactly zero but broadened around zero due<br />

to quantum fluctuati<strong>on</strong>. After created, particles are accelerated<br />

by the electric field accord<strong>in</strong>g to the classical equati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>: pz = eEt + c<strong>on</strong>st. In c<strong>on</strong>trast, there is no<br />

accelerati<strong>on</strong> <strong>in</strong> the transverse directi<strong>on</strong>s and the transverse<br />

momentum distributi<strong>on</strong>s exhibits a Gaussian-like form.<br />

Back reacti<strong>on</strong><br />

Previously, we have treated the pair creati<strong>on</strong> <strong>in</strong> the c<strong>on</strong>stant<br />

electric field. However, if charged particles are created,<br />

they generate further electromagnetic fields and the<br />

orig<strong>in</strong>al field should be modified. This effect, called back<br />

reacti<strong>on</strong>, is not negligible under a str<strong>on</strong>g field where pair<br />

creati<strong>on</strong> happens <strong>in</strong>tensively. To take account <str<strong>on</strong>g>of</str<strong>on</strong>g> the back<br />

reacti<strong>on</strong>, we treat an electromagnetic field as a dynamical<br />

variable obey<strong>in</strong>g the Maxwell equati<strong>on</strong>s. The uniformity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the system reduces the Maxwell equati<strong>on</strong>s <strong>in</strong>to the s<strong>in</strong>gle<br />

equati<strong>on</strong><br />

dEz<br />

dt = −d2 A 3<br />

dt 2 = −jz, (7)<br />

Figure 4: Time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>on</strong>gitud<strong>in</strong>al momentum<br />

distributi<strong>on</strong>. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the back reacti<strong>on</strong> is taken <strong>in</strong>to<br />

account. m2 = 0.01 and e = 1.<br />

2eE0<br />

where jz is the charge current generated by created particles<br />

and antiparticles.<br />

We have numerically solved the coupled equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> (1)<br />

and (7). The results are shown <strong>in</strong> Figs. 4 and 5. The l<strong>on</strong>gitud<strong>in</strong>al<br />

momentum distributi<strong>on</strong> (Fig. 4) oscillates <strong>in</strong> momentum<br />

space, and also the current and the electric field<br />

(Fig. 5) show oscillati<strong>on</strong>s. These oscillati<strong>on</strong>s can be understood<br />

as usual plasma oscillati<strong>on</strong>.<br />

Other than the plasma oscillati<strong>on</strong>, which is a classical<br />

dynamics, also quantum effects such as the Pauli block<strong>in</strong>g<br />

and <strong>in</strong>terference between matter fields play remarkable<br />

roles <strong>in</strong> the time evoluti<strong>on</strong>. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>terference, the<br />

momentum distributi<strong>on</strong> shows f<strong>in</strong>e oscillati<strong>on</strong>s at later time<br />

(Fig. 4).<br />

EFFECTS OF MAGNETIC FIELDS<br />

S<strong>in</strong>ce the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gitud<strong>in</strong>al color-magnetic fields<br />

as well as color-electric fields is predicted by the framework<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the CGC [6], we study the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> a l<strong>on</strong>gitud<strong>in</strong>al<br />

magnetic field <strong>on</strong> the pair creati<strong>on</strong>. As illustrated <strong>in</strong> Fig. 6,<br />

under the l<strong>on</strong>gitud<strong>in</strong>al magnetic field, transverse momentum<br />

p⊥ is discretized <strong>in</strong>to the Landau levels as<br />

p 2 ⊥ −→ (2n + 1)eB (n = 0, 1, 2, . . . ). (8)<br />

Notice that even the lowest Landau level depends <strong>on</strong> the<br />

magnetic field strength B for the case <str<strong>on</strong>g>of</str<strong>on</strong>g> scalar particles.<br />

S<strong>in</strong>ce the transverse momentum acts as an effective mass<br />

m2 ⊥ = m2 + p2 ⊥ , scalar particles become effectively heavy<br />

under a str<strong>on</strong>g magnetic field, so that their pair producti<strong>on</strong><br />

(a) current density (b) electric field<br />

Figure 5: Time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge current density and<br />

the electric field. e = 1. (a = m2<br />

2eE0 ).


Figure 6: A schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> the Landau levels and the sp<strong>in</strong>magnetic<br />

field <strong>in</strong>teracti<strong>on</strong>.<br />

Figure 7: Magnetic field dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge current<br />

density. m2<br />

2gE0<br />

= 0.01 and g = 1.<br />

is str<strong>on</strong>gly suppressed. In c<strong>on</strong>trast, ow<strong>in</strong>g to sp<strong>in</strong>-magnetic<br />

field <strong>in</strong>teracti<strong>on</strong>, the lowest level <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>in</strong>or particles is zero<br />

and thereby <strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> B. Therefore, the producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>in</strong>or particles <strong>in</strong> that level is not at all suppressed. Not<br />

<strong>on</strong>ly the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lowest level is not suppressed, the<br />

magnetic field enhances field quantities such as the current<br />

and the total particle number. That is because the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modes degenerat<strong>in</strong>g <strong>in</strong> a unit transverse area is proporti<strong>on</strong>al<br />

to B.<br />

In Fig. 7, the magnetic field strength dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

charge current density is exhibited. The current density is<br />

<strong>in</strong>deed enhanced by the magnetic field. Furthermore, the<br />

enhanced current makes the time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma oscillati<strong>on</strong><br />

shorter through the back reacti<strong>on</strong>. This mechanism<br />

may have significance <strong>in</strong> the time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Glasma.<br />

PARTICLE PRODUCTION IN<br />

EXPANDING ELECTRIC FIELDS<br />

So far, we have <strong>in</strong>vestigated the pair creati<strong>on</strong> <strong>in</strong> the spatially<br />

uniform electric fields. However, <strong>in</strong> a system <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heavy-i<strong>on</strong> collisi<strong>on</strong>s, color electric fields are expected to<br />

be generated between two color-charged nuclei reced<strong>in</strong>g<br />

from each other at a velocity close to the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light<br />

(Fig. 2(b)). A characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> this electric field is the <strong>in</strong>variance<br />

under the Lorentz-boost <strong>in</strong> the l<strong>on</strong>gitud<strong>in</strong>al directi<strong>on</strong>.<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> spatially homogeneous fields, particles<br />

and antiparticles with (approximately) vanish<strong>in</strong>g l<strong>on</strong>gitud<strong>in</strong>al<br />

momentum are created. If this is true also <strong>in</strong> the boost<strong>in</strong>variant<br />

electric field c<strong>on</strong>f<strong>in</strong>ed <strong>in</strong> the forward light c<strong>on</strong>e,<br />

these particle-antiparticle pairs clearly break the boost <strong>in</strong>variance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the background field by <strong>in</strong>troduc<strong>in</strong>g <strong>on</strong>e spe-<br />

cific frame, namely their center-<str<strong>on</strong>g>of</str<strong>on</strong>g>-mass frame. How is this<br />

situati<strong>on</strong> modified if an electric field exists <strong>on</strong>ly <strong>in</strong>side the<br />

forward light c<strong>on</strong>e? Actually, under the boost-<strong>in</strong>variantly<br />

expand<strong>in</strong>g electric field, particles are created not as an<br />

eigenstate <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>on</strong>gitud<strong>in</strong>al momentum, which violates<br />

the boost-symmetry, but as a superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> several momentum<br />

modes preserv<strong>in</strong>g the boost-symmetry [11]. The<br />

particles have the scal<strong>in</strong>g velocity distributi<strong>on</strong> vz(t, z) =<br />

z/t from the first <strong>in</strong>stance they are created. This velocity<br />

distributi<strong>on</strong> is the same as the flow velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the boost<strong>in</strong>variantly<br />

expand<strong>in</strong>g fluid <str<strong>on</strong>g>of</str<strong>on</strong>g> QGP, i.e. the Bjorken flow<br />

[12]. Therefore, our result would narrow the gap between<br />

the pre-equilibrium stage <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy-i<strong>on</strong> collisi<strong>on</strong>s and the<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> the boost-<strong>in</strong>variantly expand<strong>in</strong>g QGP.<br />

SUMMARY<br />

In this paper, we have <strong>in</strong>vestigated the real-time dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Schw<strong>in</strong>ger particle producti<strong>on</strong> and its phenomenological<br />

applicati<strong>on</strong>s to matter formati<strong>on</strong> <strong>in</strong> relativistic<br />

heavy-i<strong>on</strong> collisi<strong>on</strong>s.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the back reacti<strong>on</strong>, the electric field varies <strong>in</strong><br />

time. Us<strong>in</strong>g the <strong>in</strong>itial field strength gE0 ∼ 1 GeV 2 , which<br />

is expected <strong>in</strong> the framework <str<strong>on</strong>g>of</str<strong>on</strong>g> the CGC, <strong>on</strong>e can estimate<br />

the time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> this field variati<strong>on</strong> to be a few fm/c. This<br />

time scale is the same order as that <str<strong>on</strong>g>of</str<strong>on</strong>g> the pre-equilibrium<br />

stage <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy-i<strong>on</strong> collisi<strong>on</strong>s ∼ 1 fm/c. This result would<br />

verify the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schw<strong>in</strong>ger mechanism at the<br />

<strong>in</strong>itial stage <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy-i<strong>on</strong> collisi<strong>on</strong>s.<br />

We have also discussed the enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> the quark<br />

producti<strong>on</strong> by the l<strong>on</strong>gitud<strong>in</strong>al magnetic field, and the<br />

emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> the boost-<strong>in</strong>variant velocity distributi<strong>on</strong> from<br />

the expand<strong>in</strong>g electric field. These results would have a<br />

significance to understand the formati<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> QGP.<br />

REFERENCES<br />

[1] J. S. Schw<strong>in</strong>ger, Phys. Rev. 82 (1951) 664.<br />

[2] R. Hwa, X. Wang, Quark-Glu<strong>on</strong> Plasma 3, World Scientific,<br />

2003.<br />

[3] F. E. Low, Phys. Rev. D12 (1975) 163; S. Nuss<strong>in</strong>ov, Phys.<br />

Rev. Lett. 34 (1975) 1286.<br />

[4] A. Bialas, W. Czyz, Phys. Rev. D31 (1985) 198; K. Kajantie,<br />

T. Matsui, Phys. Lett. B164 (1985) 373; G. Gat<str<strong>on</strong>g>of</str<strong>on</strong>g>f, A. K.<br />

Kerman, T. Matsui, Phys. Rev. D36 (1987) 114.<br />

[5] E. Iancu, R. Venugopalan, arXiv:hep-ph/0303204.<br />

[6] T. Lappi, L. McLerran, Nucl. Phys. A772 (2006) 200.<br />

[7] D. Kharzeev, E. Lev<strong>in</strong>, K. Tuch<strong>in</strong>, Phys. Rev. C75 (2007)<br />

044903; P. Castor<strong>in</strong>a, D. Kharzeev, H. Satz, Eur. Phys. J.<br />

C52 (2007) 187; K. Fukushima, F. Gelis, T. Lappi, Nucl.<br />

Phys. A831 (2009) 184.<br />

[8] N. Tanji, Ann. Phys. 324 (2009) 1691.<br />

[9] N. Tanji, Ann. Phys. 325 (2010) 2018.<br />

[10] V. Popov, Sov. Phys. JETP 34 (1972) 709; A. Casher,<br />

H. Neuberger, S. Nuss<strong>in</strong>ov, Phys. Rev. D20 (1979) 179.<br />

[11] N. Tanji, arXiv:1010.4516 [hep-ph].<br />

[12] J. D. Bjorken, Phys. Rev. D27 (1983) 140.


Exact soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pair producti<strong>on</strong>s <strong>in</strong> str<strong>on</strong>g electric field with f<strong>in</strong>ite width<br />

Abstract<br />

A. Iwazaki, Nishogakusha University, Chiyoda-ku 3-6-16, Tokyo, 102-8336, Japan<br />

We show that chiral anomaly is a very useful tool for discuss<strong>in</strong>g<br />

Schw<strong>in</strong>ger mechanism when coll<strong>in</strong>ear str<strong>on</strong>g electric<br />

and magnetic fields are present. We can obta<strong>in</strong> number<br />

densities <str<strong>on</strong>g>of</str<strong>on</strong>g> particles without calculat<strong>in</strong>g their wave functi<strong>on</strong>s.<br />

By tak<strong>in</strong>g <strong>in</strong>to account back reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particles<br />

we can explicitly show soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field even<br />

when it has f<strong>in</strong>ite size or when the pair creati<strong>on</strong>s occur <strong>in</strong><br />

heat bath.<br />

CHIRAL ANOMALY AND SCHWINGER<br />

MECHANISM<br />

The Schw<strong>in</strong>ger mechanism[1] is a n<strong>on</strong>-perturbative phenomena<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particle pair producti<strong>on</strong>s under str<strong>on</strong>g electric<br />

field. Namely, when the unifrom electric field E is present,<br />

the potential eEx <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles has no lower bound<br />

and becomes negative <strong>in</strong>f<strong>in</strong>ity as x → −∞. Then, it is<br />

energetically favorable that for example, electr<strong>on</strong>-positr<strong>on</strong><br />

pairs are sp<strong>on</strong>taneously produced and they partially screen<br />

the electric field. S<strong>in</strong>ce such a producti<strong>on</strong> is suppressed by<br />

the factor exp(−m 2 /eE) where m(e > 0) is the electr<strong>on</strong><br />

mass (charge), the phenomena is n<strong>on</strong>-perturbative; we can<br />

not expand it <strong>in</strong> the power series <str<strong>on</strong>g>of</str<strong>on</strong>g> eE.<br />

In general, <strong>in</strong> order to discuss such n<strong>on</strong>-perturbative<br />

phenomena we need to obta<strong>in</strong> wave functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> charged<br />

particles under electric fields[2]. When the electric field<br />

has spatially n<strong>on</strong>trivial c<strong>on</strong>figulati<strong>on</strong> or complicated time<br />

dependence, it is quite difficult to obta<strong>in</strong> the wave functi<strong>on</strong>s.<br />

Furthermore, if there is a magnetic field <strong>in</strong> additi<strong>on</strong><br />

to the electric field, Dirac equati<strong>on</strong> becomes too complicated.<br />

On the other hand, when the magnetic field is sufficiently<br />

str<strong>on</strong>g for the particles to occupy <strong>on</strong>ly the lowest<br />

Landau level, the phenomena are simplified. This is because<br />

<strong>on</strong>ly the moti<strong>on</strong>s <strong>in</strong> the l<strong>on</strong>gitud<strong>in</strong>al directi<strong>on</strong> parallel<br />

to the magnetic field are allowed; the moti<strong>on</strong>s <strong>in</strong> the<br />

transvers directi<strong>on</strong>s are frozen ow<strong>in</strong>g to the magnetic field.<br />

Thus, the phenomena occur <strong>in</strong> spatially <strong>on</strong>e dimensi<strong>on</strong>.<br />

In this report we expla<strong>in</strong> the utility[3] <str<strong>on</strong>g>of</str<strong>on</strong>g> chiral anomaly<br />

for the discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Schw<strong>in</strong>ger mechanism when such a<br />

str<strong>on</strong>g magnetic field is present. In particular, without solv<strong>in</strong>g<br />

the complicated field equati<strong>on</strong>s, we can f<strong>in</strong>d physically<br />

mean<strong>in</strong>gful quantities associated with the pair producti<strong>on</strong><br />

simply by us<strong>in</strong>g the chiral anomaly,<br />

∂t(nR − nL) = e2<br />

4π 2 ⃗ E · ⃗ B, (1)<br />

where nR and nL denote the number density <str<strong>on</strong>g>of</str<strong>on</strong>g> right and<br />

left chiral fermi<strong>on</strong>s (hereafter we c<strong>on</strong>sider electr<strong>on</strong>s and<br />

positr<strong>on</strong>s). We have assumed [3] that both <str<strong>on</strong>g>of</str<strong>on</strong>g> electric and<br />

magnetic fields are much larger than the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s<br />

and that the particles occupy <strong>on</strong>ly the lowest Lnadau level.<br />

The anomaly equati<strong>on</strong> implies that chirality is not c<strong>on</strong>served<br />

when both electric (E) and magnetic fields (B) are<br />

present. The chirality is equal to the helicity <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle<br />

when particle mass is negligible. Thus, the anomaly implies<br />

that the temporal evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the difference, nL−nR,<br />

is given by ⃗ E · ⃗ B.<br />

Here we should note that electr<strong>on</strong>s (positr<strong>on</strong>s) under<br />

the str<strong>on</strong>g magnetic field have sp<strong>in</strong>s anti-parallel (parallel)<br />

to the magnetic field. On the other hand, when the<br />

pair producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> and positr<strong>on</strong>s arises, electr<strong>on</strong>s<br />

(positr<strong>on</strong>s) are accelerated to the directi<strong>on</strong> anti-parallel<br />

(parallel) to the electric field. Therefore, when the electric<br />

field and magnetic field are parallel to each other, their sp<strong>in</strong><br />

and momentum are po<strong>in</strong>ted to the same directi<strong>on</strong>. Hence,<br />

all <str<strong>on</strong>g>of</str<strong>on</strong>g> produced particles are right handed; nR ̸= 0 and<br />

nL = 0. Obviously their number densities are equal to nR.<br />

Thus, the producti<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the particles is governed by the<br />

anomaly equati<strong>on</strong>. This is the reas<strong>on</strong> why the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the chiral anomaly describes the pair producti<strong>on</strong> when both<br />

str<strong>on</strong>g electric and magnetic fields are present. We expla<strong>in</strong><br />

it <strong>in</strong> several cases.<br />

We should stress that all <str<strong>on</strong>g>of</str<strong>on</strong>g> quatum effects <strong>on</strong> Schw<strong>in</strong>ger<br />

mechanism are <strong>in</strong>volved <strong>in</strong> the anomaly equati<strong>on</strong>. Hence,<br />

by simply solv<strong>in</strong>g classical equati<strong>on</strong>s al<strong>on</strong>g with the<br />

anomaly equati<strong>on</strong> we can obta<strong>in</strong> quantities <strong>in</strong>clud<strong>in</strong>g quatum<br />

effects.<br />

Time dependent homogeneus electric field<br />

Assum<strong>in</strong>g that there are no particles before t = 0 and<br />

the uniform electric field is switched <strong>on</strong> at t = 0, the<br />

pair producti<strong>on</strong> starts to occur and the number densities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electr<strong>on</strong>s ne and positr<strong>on</strong>s np(= ne) <strong>in</strong>crease with time;<br />

2ne = nR. It is given [4] from the anomaly equati<strong>on</strong> as<br />

ne(t) =<br />

∫ t<br />

0<br />

′ e2<br />

dt<br />

8π2 E(t′ )B (2)<br />

where the dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> E <strong>on</strong> t is arbitrary. In this calculati<strong>on</strong><br />

we have not taken <strong>in</strong>to account back reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> produced<br />

particles. We can treat the back reacti<strong>on</strong> by solv<strong>in</strong>g<br />

a Maxwell equati<strong>on</strong> ∂tE = −J with the electric current<br />

J = 2ene <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and positr<strong>on</strong>s. (The velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

particles is the light velocity <strong>in</strong> vacuum so that J is given as<br />

J =charge×velocity×number density.) Then, ne satisfies<br />

the equati<strong>on</strong>,<br />

(<br />

∂ 2 t + e3B 4π2 )<br />

ne = 0. (3)<br />

Soluti<strong>on</strong> can be found with the <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong>s ne(t =<br />

0) = 0 and ∂tne(t = 0) = e 2 E(t = 0)B/8π 2 where


E(t = 0) is the electric field switched <strong>on</strong> at t = 0.<br />

In this way we can easily obta<strong>in</strong> the number density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

produced electr<strong>on</strong>s when homogeneous electric and magnetic<br />

field are sufficiently str<strong>on</strong>g so as to neglect the mass<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s. This is a simple example[2] <str<strong>on</strong>g>of</str<strong>on</strong>g> the utility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the anomaly equati<strong>on</strong>.<br />

Electric flux tube<br />

It is remarkable that we can explicitly obta<strong>in</strong> the number<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s even if the electric field is tube<br />

like and back reacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the produced particles are important.<br />

The back reacti<strong>on</strong>s are reduc<strong>in</strong>g the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electric field by the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles and <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

azimuthal magnetic field, which is <strong>in</strong>duced by the electric<br />

current <str<strong>on</strong>g>of</str<strong>on</strong>g> the particles.<br />

Next we expla<strong>in</strong> how the number density is obta<strong>in</strong>ed by<br />

us<strong>in</strong>g the chiral anomaly <strong>in</strong> such a complicated situati<strong>on</strong>[3].<br />

We assume an axial symmetric electric field E(r, t)<br />

switched <strong>on</strong> at t = 0, where r denotes cyl<strong>in</strong>drical radial<br />

coord<strong>in</strong>ate. Then, electr<strong>on</strong>s and positr<strong>on</strong>s are produced<br />

and their axial symmetric electric current generates azimuthal<br />

magnetic field Bθ(r, t). We also assume that the<br />

back ground str<strong>on</strong>g magnetic field B is uniform and static.<br />

These quantities are governed by Maxwell equati<strong>on</strong>s,<br />

∂tBθ(r, t) = ∂rE(r, t)<br />

∂tE(r, t) = ∂r(rBθ(r, t))<br />

− J(r, t), (4)<br />

r<br />

with the <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong>s Bθ(r, t = 0) = 0 and E(r, t =<br />

0) = E0 exp(−r 2 /R 2 ), where R denotes the width <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electric field and J(r, t) is the electric current carried by<br />

electr<strong>on</strong>s and positr<strong>on</strong>s, given by J = 2ene.<br />

We should make a comment that the form <str<strong>on</strong>g>of</str<strong>on</strong>g> the current<br />

J = 2ene may be obta<strong>in</strong>ed by impos<strong>in</strong>g the c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the energy c<strong>on</strong>servati<strong>on</strong>,<br />

∫<br />

∂t d 3 {<br />

1<br />

x<br />

2 (E2 + B 2 }<br />

θ) + ϵ = 0 (5)<br />

where ϵ denotes the energy<br />

∫<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and<br />

t<br />

positr<strong>on</strong>s; ϵ = nepF = ne 0 dt′ eE(t ′ ). That is, positr<strong>on</strong>s<br />

and electr<strong>on</strong>s are produced with momentum p = 0 and accerelated<br />

by the electric field so that their Fermi momentum<br />

pF is equal to ± ∫ t<br />

0 dt′ eE(t ′ ). Thus, the Fermi distributi<strong>on</strong><br />

at zero temperature is formed. Obviously, the energy density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each particle is given by 1<br />

2ne ∫ t<br />

0 dt′ eE(t ′ ).<br />

We rewrite the c<strong>on</strong>diti<strong>on</strong> <strong>in</strong> the follow<strong>in</strong>g,<br />

∫<br />

d 3 x(E∂tE + Bθ∂tBθ + ∂tϵ) (6)<br />

=<br />

∫<br />

d 3 {<br />

x E ( ∂tE − 1<br />

r ∂r(rBθ) ) ∫<br />

}<br />

+ ∂tϵ (7)<br />

= d 3 ∫<br />

x(−JE + ∂tϵ) (8)<br />

= d 3 xE(−J + 2ene) = 0 (9)<br />

where we have used the Maxwell equati<strong>on</strong>s and the equa-<br />

ti<strong>on</strong> ∂tnepF = γBE ∫ t<br />

0 dt′ eE = E ∫ t<br />

0 dt′ ∂tne = neE<br />

with γ ≡ e2<br />

8π 2 . S<strong>in</strong>ce E(t = 0) can be taken arbitrary, we<br />

f<strong>in</strong>d that the current J is given by 2ene.<br />

Us<strong>in</strong>g eqs. (1) and (4), we derive the equati<strong>on</strong> for the<br />

electric field E under the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the back reacti<strong>on</strong>,<br />

∂ 2 t E(r, t) =<br />

(<br />

∂ 2 r + ∂r<br />

r<br />

)<br />

e3<br />

− B E(r, t). (10)<br />

4π2 We see that the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the back reacti<strong>on</strong> gives rise to an<br />

effective mass term m 2 ≡ e3<br />

4π 2 B <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field.<br />

By solv<strong>in</strong>g eq. (10) and us<strong>in</strong>g the chiral anomaly (1), we<br />

explicitly obta<strong>in</strong> the number density <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s,<br />

ne(r, t)<br />

= e2 E0R 2<br />

16π 2<br />

∫<br />

∞<br />

<br />

<br />

and the azimuthal magnetic field<br />

Bθ(r, t)<br />

2 E0R<br />

= −<br />

2<br />

0<br />

∫ ∞<br />

0<br />

kdk s<strong>in</strong>(t√ k 2 + m 2 )<br />

√ k 2 + m 2<br />

J0(kr)e −k2R 2 <br />

/4<br />

,<br />

kdk s<strong>in</strong>(t√k2 + m2 )<br />

√ J1(kr)e<br />

k2 + m2 −k2R 2 /4<br />

,<br />

where J0 and J1 denote Bessel functi<strong>on</strong>s. We can see that<br />

these soluti<strong>on</strong>s are reduced to the <strong>on</strong>es <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

homogeneous electric field as R → ∞.<br />

In Figs. 1 and 2, we show the spatial and temporal behaviors<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these soluti<strong>on</strong>s with R = 10 and t <strong>in</strong> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> R.<br />

nr<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0 5 10 15<br />

r<br />

20 25 30<br />

Figure 1: number densities ne(r) at t = 0.2 (small dots)<br />

and at t = 0.6 (large dots)<br />

Br<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0 5 10 15<br />

r<br />

20 25 30<br />

Figure 2: azimuthal magnetic fields Bθ(r) at t = 0.2 (small<br />

dots) and at t = 0.6 (large dots)


Pair producti<strong>on</strong> <strong>in</strong> heat bath<br />

F<strong>in</strong>ally, we give another example for the utility <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

chiral anomaly, Schw<strong>in</strong>ger mechanism <strong>in</strong> heat bath. That<br />

is, the pair producti<strong>on</strong> arises <strong>in</strong> heat bath and the produced<br />

particles are thermalized immediately after their producti<strong>on</strong>.<br />

Thus, the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particles is given by a<br />

Fermi distributi<strong>on</strong> with f<strong>in</strong>ite temperature.<br />

For simplicity, we assume that the electric field is uniform<br />

and we take <strong>in</strong>to account <strong>on</strong>ly back reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reduc<strong>in</strong>g<br />

the electric field energy by pair producti<strong>on</strong>s. In<br />

this case we need electric current <strong>in</strong> the heat bath when<br />

we solve a Maxwell equati<strong>on</strong> ∂tE = −J. As expla<strong>in</strong>ed<br />

above, we impose the c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy c<strong>on</strong>servati<strong>on</strong>,<br />

∫<br />

3 1<br />

∂t d x( 2E2 + ϵ) = ∫ d3x(−EJ + ∂tϵ) = 0 <strong>in</strong> order to<br />

f<strong>in</strong>d J. Here the energy density is given by<br />

∫ ∞<br />

p<br />

ϵ = γ dp<br />

(11)<br />

1 + exp(p − µ(t))β<br />

0<br />

with β = 1/T where T is the temperature, where µ(t) is<br />

the chemical potential which depends <strong>on</strong> the number density<br />

ne(t) through the formula,<br />

∫ ∞<br />

1<br />

ne = γ dp<br />

. (12)<br />

1 + exp(p − µ(t))β<br />

0<br />

Us<strong>in</strong>g the formulae ∂tϵ = ∂nϵ∂tne = ∂nϵγEB <strong>in</strong> the c<strong>on</strong>diti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the energy c<strong>on</strong>servati<strong>on</strong>, we f<strong>in</strong>d that J = γB∂nϵ.<br />

Therefore, us<strong>in</strong>g the anomaly equati<strong>on</strong> and Maxwell<br />

equati<strong>on</strong>, we obta<strong>in</strong> the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ne,<br />

∂ 2 t ne + 2γeB ne exp(neβ/n0)<br />

= 0, (13)<br />

exp(neβ/n0) − 1<br />

with n0 ≡ eB/8π 2 . It is easy to see that the formula <strong>in</strong><br />

the heat bath is reduced to the <strong>on</strong>e <strong>in</strong> vaccum when we<br />

take β → ∞; effective mass becomes m = √ e 3 B/4π 2<br />

as we have shown above; the mass means the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ne(t) ∝ s<strong>in</strong>(mt).<br />

Although we can not analytically solve the equati<strong>on</strong>, numerical<br />

soluti<strong>on</strong>s are available. We have shown the temporal<br />

behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> the number density (Fig. 3) and the electric<br />

field (Fig. 4) <strong>in</strong> both vacuum and heat bath. We can see<br />

that the electric field decays more rapidly <strong>in</strong> the heat bath<br />

than <strong>in</strong> vacuum. Similarly, we see that the number density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and positr<strong>on</strong>s is smaller <strong>in</strong> the heat bath<br />

than <strong>in</strong> vacuum. This is caused by the fact that accord<strong>in</strong>g<br />

to the Fermi distributi<strong>on</strong>, each electr<strong>on</strong> and positr<strong>on</strong> can<br />

have much larger energies <strong>in</strong> the heat bath with f<strong>in</strong>ite β<br />

than <strong>in</strong> vacuum with β = ∞ when it is produced. S<strong>in</strong>ce a<br />

pair producti<strong>on</strong> <strong>in</strong> the heat bath decreases the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electric field more than <strong>in</strong> vacuum, the electric field decays<br />

more rapidly <strong>in</strong> the heat bath than <strong>in</strong> vacuum. Therefore,<br />

we f<strong>in</strong>d that Schw<strong>in</strong>ger muchanism proceeds more effectively<br />

<strong>in</strong> heat bath than <strong>in</strong> vacuum.<br />

CONCLUSION<br />

To summarize, we have shown that simply us<strong>in</strong>g the chiral<br />

anomaly we can obta<strong>in</strong> physically <strong>in</strong>terest<strong>in</strong>g quantities<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.5 1.0 1.5 2.0 2.5<br />

Figure 3: number densities ne(t) with arbitrary scale <strong>in</strong><br />

vacuum (dash) and <strong>in</strong> heat bath (l<strong>in</strong>e)<br />

1.0<br />

0.5<br />

0.5<br />

0.5 1.0 1.5 2.0 2.5<br />

Figure 4: electric fields E(t) with arbitrary scale <strong>in</strong> vacuum<br />

(dash) and <strong>in</strong> heat bath (l<strong>in</strong>e)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Schw<strong>in</strong>ger mechanism without calculat<strong>in</strong>g wave functi<strong>on</strong>s.<br />

Thus, we can discuss pair producti<strong>on</strong>s under electric<br />

flux tube <strong>in</strong> vacuum or homogeneous electric field <strong>in</strong><br />

heat bath, which could not be obta<strong>in</strong>ed with the method <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wave functi<strong>on</strong>s. The simplificati<strong>on</strong> comes<br />

from the fact that the problem <strong>in</strong> Schw<strong>in</strong>ger mechanism<br />

is reduced to <strong>on</strong>e dimenti<strong>on</strong>al <strong>on</strong>e when str<strong>on</strong>g magnetic<br />

field is present. Such a coll<strong>in</strong>ear str<strong>on</strong>g magnetic field and<br />

electric field (B, E ≫ (electr<strong>on</strong> mass or quark mass) 2 )<br />

are produced by high-energy heavy-i<strong>on</strong> collisi<strong>on</strong>s [5]. In<br />

the collisi<strong>on</strong>s, corresp<strong>on</strong>d<strong>in</strong>g str<strong>on</strong>g fields are color electric<br />

and magnetic fields. Thus, they decay <strong>in</strong>to quarks by<br />

Schw<strong>in</strong>ger mechanism very rapidly (< 1fm/c).<br />

REFERENCES<br />

[1] J. Schw<strong>in</strong>ger, Phys. Rev. 82 (1951) 664.<br />

[2] N. Tanji, Ann. Phys. 324 (2009) 1691; see references there<strong>in</strong>.<br />

[3] A. Iwazaki, Phys. Rev. C80 (2009) 052202.<br />

[4] S.P. Gavrilov and D.M. Gitman, Phys. Rev. D53 (1996) 7162.<br />

[5] E. Iancu, A. Le<strong>on</strong>idov and L. McLerran, hep-ph/0202270.


Abstract<br />

Str<strong>on</strong>g field physics <strong>in</strong> c<strong>on</strong>densed matter ∗<br />

There are deep similarities between n<strong>on</strong>-l<strong>in</strong>ear QFT<br />

studied <strong>in</strong> high-energy and n<strong>on</strong>-equilibrium physics <strong>in</strong> c<strong>on</strong>densed<br />

matter. Ideas such as the Schw<strong>in</strong>ger mechanism and<br />

the Volkov state are deeply related to n<strong>on</strong>-l<strong>in</strong>ear transport<br />

and photovoltaic Hall effect <strong>in</strong> c<strong>on</strong>densed matter. Here, we<br />

give a review <strong>on</strong> these relati<strong>on</strong>s.<br />

INTRODUCTION<br />

In str<strong>on</strong>g field physics, researchers are <strong>in</strong>terested <strong>in</strong> the<br />

change <str<strong>on</strong>g>of</str<strong>on</strong>g> the “quantum vacuum” due to str<strong>on</strong>g external<br />

fields. A typical example is the decay <str<strong>on</strong>g>of</str<strong>on</strong>g> the QED vacuum<br />

<strong>in</strong> str<strong>on</strong>g electric fields due to the Schw<strong>in</strong>ger mechanism<br />

[1]. When a str<strong>on</strong>g enough electric field is applied<br />

to the vacuum, pair creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and positr<strong>on</strong>s<br />

takes place and the <strong>in</strong>sulati<strong>on</strong> breaks down. The threshold<br />

for this phenomena is known as Schw<strong>in</strong>ger’s critical<br />

field and is given by Eth = m 2 e/e = 1.3 × 10 16 V/cm.<br />

S<strong>in</strong>ce the critical field is extremely str<strong>on</strong>g, direct experimental<br />

verificati<strong>on</strong> is still a challenge. On the other<br />

hand, <strong>in</strong> the c<strong>on</strong>densed matter community, there is an <strong>in</strong>creas<strong>in</strong>g<br />

<strong>in</strong>terest <strong>in</strong> n<strong>on</strong>-equilibrium phase transiti<strong>on</strong>s and<br />

n<strong>on</strong>-l<strong>in</strong>ear transport <strong>in</strong> str<strong>on</strong>gly correlated electr<strong>on</strong> systems<br />

(Fig. 1)[2, 3, 4, 5, 6, 7]. In the experiments, <strong>on</strong>e also applies<br />

str<strong>on</strong>g electric fields and the orig<strong>in</strong>al <strong>in</strong>sulat<strong>in</strong>g phase is destroyed.<br />

However, the threshold for dielctric breakdown<br />

is orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude smaller than the Schw<strong>in</strong>ger mechanism<br />

<strong>in</strong> QED s<strong>in</strong>ce the excitati<strong>on</strong> gap is far smaller. This<br />

makes c<strong>on</strong>densed matter systems to be an idealistic play-<br />

Field strength<br />

E<br />

pair creati<strong>on</strong><br />

Schw<strong>in</strong>ger limit<br />

~1 eV/a<br />

<strong>in</strong>duced-polarizati<strong>on</strong><br />

V<br />

n<strong>on</strong>l<strong>in</strong>ear transport<br />

dielectric breakdown<br />

photovoltaic Hall effect<br />

(n<strong>on</strong>l<strong>in</strong>ear)-optics<br />

~1 eV Phot<strong>on</strong> energyΩ<br />

T. Oka † , University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo, Japan<br />

“Keldysh l<strong>in</strong>e”<br />

ξ E ~ Ω<br />

photo-<strong>in</strong>duced<br />

phase transiti<strong>on</strong><br />

Figure 1: Several phenomena <strong>in</strong> c<strong>on</strong>densed matter physics<br />

<strong>in</strong> str<strong>on</strong>g electric fields plotted <strong>in</strong> the (E, Ω)-space.<br />

∗ Work supported by Grant-<strong>in</strong>-Aid for Scientific Research <strong>on</strong> Priority<br />

Area “New Fr<strong>on</strong>tier <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science Opened by Molecular Degrees<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Freedom”.<br />

† oka@cms.phys.s.u-tokyo.ac.jp<br />

ground to test and develop theoretical ideas <strong>in</strong> n<strong>on</strong>-l<strong>in</strong>ear<br />

QFT. N<strong>on</strong>-l<strong>in</strong>ear physics has been studied rather <strong>in</strong>dependently<br />

<strong>in</strong> the two fields, high energy and c<strong>on</strong>densed matter,<br />

dur<strong>in</strong>g the past few decades, and several parallel ideas were<br />

developed. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this article is to expla<strong>in</strong> some <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

corresp<strong>on</strong>dences (Table 1).<br />

PAIR CREATION IN STRONG ELECTRIC<br />

FIELDS<br />

Hesenberg-Euler’s effective acti<strong>on</strong> and the n<strong>on</strong>l<strong>in</strong>ear<br />

extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Berry’s phase approach to<br />

polarizati<strong>on</strong> [4]:<br />

We study lattice electr<strong>on</strong>s <strong>in</strong> homogenious electric fields.<br />

In the time-dependent gauge, this can be realized by add<strong>in</strong>g<br />

a time dependent phase to the hopp<strong>in</strong>g term <strong>in</strong> the lattice<br />

Hamilt<strong>on</strong>ian. For example, for a <strong>on</strong>e-dimensi<strong>on</strong>al model, a<br />

typical Hamilt<strong>on</strong>ian is given by<br />

H(Φ) = −<br />

L∑ ∑<br />

i=1<br />

σ<br />

(e iΦ c †<br />

i+1σ ciσ + e −iΦ c †<br />

iσ ci+1σ)(1)<br />

+U ∑<br />

ni↑ni↓ + ∑<br />

V<strong>in</strong>i.<br />

i<br />

We impose periodic boundary c<strong>on</strong>diti<strong>on</strong> and the phase Φ is<br />

proporti<strong>on</strong>al to the magnetic flux through the r<strong>in</strong>g (L number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sites). The time derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic flux is related<br />

to the applied electric field through F (t) = eaE(t) =<br />

dΦ(t)/dt, where e is the charge quantum and a the lattice<br />

c<strong>on</strong>stant. U represents <strong>on</strong>-site Coulomb repulsi<strong>on</strong> and Vi<br />

the local potential. The hopp<strong>in</strong>g term is set to unity. The<br />

Hubbard model (U > 0, Vi = 0) at half-fill<strong>in</strong>g is <strong>in</strong> the<br />

Mott <strong>in</strong>sulat<strong>in</strong>g phase for positive U <strong>in</strong> <strong>on</strong>e dimensi<strong>on</strong>.<br />

Here, we study what happens to the an <strong>in</strong>sulator when we<br />

apply str<strong>on</strong>g electric fields. We denote the eigenstates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Hamilt<strong>on</strong>ian H(Φ) by |ψn(Φ)⟩, n = 0, 1, . . . and study<br />

the time evoluti<strong>on</strong> start<strong>in</strong>g from the groundstate |ψ0(Φ)⟩.<br />

The groundstate-to-groundstate amplitude def<strong>in</strong>ed by<br />

Ξ(t) ≡ ⟨ψ0(Φ(t))|e −i<br />

∫ t<br />

0 H(Φ(s))ds |ψ0(0)⟩e i<br />

∫ t<br />

0 E0(Φ(s))ds<br />

is <str<strong>on</strong>g>of</str<strong>on</strong>g> central importance. In the l<strong>on</strong>g time limit, an asymptotic<br />

behavior (d is dimensi<strong>on</strong>) Ξ(t) ∼ e itLd L is expected<br />

to take place where L is the c<strong>on</strong>densed matter versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Heisenberg-Euler effective Lagrangian. The imag<strong>in</strong>ary<br />

part describes quantum tunnel<strong>in</strong>g where Γ(F )/L d ≡<br />

2Im L(F ) gives the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> the exp<strong>on</strong>ential decay <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

vacuum (groundstate). This quantity is proporti<strong>on</strong>al to the<br />

decay rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the Loschmidt Echo L(t) = |Ξ(t)| 2 . The<br />

i<br />

(2)


Table 1: Related ideas <strong>in</strong> str<strong>on</strong>g field physics<br />

High Energy C<strong>on</strong>densed Matter<br />

Schw<strong>in</strong>ger mechanism <strong>in</strong> QED Landau-Zener tunnel<strong>in</strong>g <strong>in</strong> band <strong>in</strong>sulators<br />

Heisenberg-Euler effective Lagragian N<strong>on</strong>-adiabatic geometric phase, Loschmidt Echo<br />

Vacuum polarizati<strong>on</strong> Extended Berry’s phase theory <str<strong>on</strong>g>of</str<strong>on</strong>g> polarizati<strong>on</strong><br />

Pair creati<strong>on</strong> <strong>in</strong> <strong>in</strong>teract<strong>in</strong>g systems (e.g. QCD) Many-body Schw<strong>in</strong>ger-Landau-Zener mechanism<br />

<strong>in</strong> str<strong>on</strong>gly correlated system<br />

Dirac particles <strong>in</strong> circularly polarized light Photovoltaic Hall effect<br />

Furry picture Floquet picture<br />

real part ReL is written <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-adiabatic phase<br />

called the Ahar<strong>on</strong>ov-Anandan phase (which we denote γ)<br />

that the wave functi<strong>on</strong> acquires dur<strong>in</strong>g the time-evoluti<strong>on</strong>.<br />

For band <strong>in</strong>sulators (U = 0) <strong>in</strong> dc-electric fields, the effective<br />

Lagrangian becomes [4]<br />

∫<br />

dk<br />

Re L(F ) = −F<br />

BZ (2π) d<br />

γ(k)<br />

, (3)<br />

2π<br />

∫<br />

dk<br />

Im L(F ) = −F<br />

(2π) d<br />

1<br />

ln [1 − p(k)] , (4)<br />

4π<br />

BZ<br />

where the momemtum <strong>in</strong>tegral is over the Brillou<strong>in</strong> Z<strong>on</strong>e<br />

(BZ). There is an <strong>in</strong>terest<strong>in</strong>g parallel theory developeded<br />

<strong>in</strong> the c<strong>on</strong>densed matter comunity. This is known as the<br />

Berry’s phase theory <str<strong>on</strong>g>of</str<strong>on</strong>g> polarizati<strong>on</strong>[8, 9, 10, 11, 12], where<br />

the ground-state expectati<strong>on</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> the twist operator<br />

2π −i e L ˆ X , which shifts the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> wave functi<strong>on</strong>s<br />

<strong>on</strong> site j by − 2π<br />

L j, plays a crucial role. It was revealed that<br />

the real part <str<strong>on</strong>g>of</str<strong>on</strong>g> a quantity<br />

w = −i<br />

2π<br />

ln⟨0|e−i L<br />

2π ˆ X<br />

|0⟩ (5)<br />

gives the electric polarizati<strong>on</strong> Pel = −Rew [10] while its<br />

imag<strong>in</strong>ary part gives a criteri<strong>on</strong> for metal-<strong>in</strong>sulator transiti<strong>on</strong>,<br />

i.e., D = 4πImw is f<strong>in</strong>ite <strong>in</strong> <strong>in</strong>sulators and divergent<br />

<strong>in</strong> metals [11]. The present effective Lagrangian can be<br />

regarded as a n<strong>on</strong>-adiabatic (f<strong>in</strong>ite electric field) extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> w. To give a more accurate argument, we rewrite the<br />

effective Lagrangian <strong>in</strong> the time-<strong>in</strong>dependent gauge<br />

L(F ) ∼ −i¯h<br />

τL ln<br />

(<br />

i −<br />

⟨0|e ¯h τ(H+F ˆ i X)<br />

|0⟩e ¯h τE0<br />

)<br />

(6)<br />

for d = 1. Let us set τ = h/LF and c<strong>on</strong>sider the<br />

small F limit. For <strong>in</strong>sulators we can replace H with the<br />

groundstate energy E0 to have L(F ) ∼ wF <strong>in</strong> the l<strong>in</strong>earresp<strong>on</strong>se<br />

regime. Thus the real part <str<strong>on</strong>g>of</str<strong>on</strong>g> Heisenberg-Euler’s<br />

expressi<strong>on</strong>[13] for the n<strong>on</strong>-l<strong>in</strong>ear polarizati<strong>on</strong> P (F ) =<br />

−∂L(F )/∂F naturally reduces to the Berry’s phase formula<br />

Pel <strong>in</strong> the small field limit F → 0. Its imag<strong>in</strong>ary part<br />

gives the criteri<strong>on</strong> for photo-<strong>in</strong>duced metal-<strong>in</strong>sulator transiti<strong>on</strong>,<br />

orig<strong>in</strong>ally proposed for the zero field case.<br />

Many-body Schw<strong>in</strong>ger-Landau-Zener mechanism<br />

<strong>in</strong> st<strong>on</strong>gly correlated <strong>in</strong>sulators:<br />

Next, let us c<strong>on</strong>sider dielectric breakdown <strong>in</strong> a str<strong>on</strong>gly<br />

correlated system. In the <strong>on</strong>e-dimensi<strong>on</strong>al Mott <strong>in</strong>sulator<br />

where the groundstate is a state with <strong>on</strong>e electr<strong>on</strong> per site,<br />

the relevant charge excitati<strong>on</strong>s are doubl<strong>on</strong>s, i.e,. doubly<br />

occupied sites, and holes, i.e., sites with no electr<strong>on</strong>. Pairs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> doubl<strong>on</strong>s and holes play a similar role as the pair <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s<br />

and positr<strong>on</strong>s <strong>in</strong> the Schw<strong>in</strong>ger mechanism. Indeed,<br />

it has been shown that dielectric breakdown <strong>in</strong> Mott <strong>in</strong>sulators<br />

takes place due to pair producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charge excitati<strong>on</strong>s<br />

through quntum tunnel<strong>in</strong>g, which is called the many-<br />

(a)<br />

Im<br />

Φ<br />

Re E<br />

imag<strong>in</strong>ary time path<br />

(b)<br />

35<br />

30<br />

25<br />

20<br />

Fth 15<br />

10<br />

5<br />

Φ(t ) *<br />

n=1<br />

n=0<br />

0 2π/L 4π/L<br />

Φ(t 0)<br />

LZ<br />

Fth ITM<br />

Fth 0<br />

0 5 10 15 20<br />

U<br />

Φ = Φ(t)<br />

Re Φ<br />

Figure 2: (a) Many-body energy levels aga<strong>in</strong>st the complex<br />

AB flux Φ for a f<strong>in</strong>ite, half-filled 1D Hubbard model<br />

(L = 10, N↑ = N↓ = 5, U = 0.5). Only charge excitati<strong>on</strong>s<br />

are plotted. Quantum tunnel<strong>in</strong>g occurs between the<br />

groundstate (labeled as n = 0) and a low-ly<strong>in</strong>g excited state<br />

(n = 1) as the flux Φ(t) = F t <strong>in</strong>creases <strong>on</strong> the real axis,<br />

while the tunnel<strong>in</strong>g is absent for the states plotted as dashed<br />

l<strong>in</strong>es. The wavy l<strong>in</strong>es start<strong>in</strong>g from the s<strong>in</strong>gular po<strong>in</strong>ts (×)<br />

at Φ(t ∗ ) represent the branch cuts for different Riemann<br />

surfaces, al<strong>on</strong>g which the soluti<strong>on</strong>s n = 0 and n = 1<br />

are c<strong>on</strong>nected. In the DDP approach, the tunnel<strong>in</strong>g factor<br />

is calculated from the dynamical phase associated with<br />

adiabatic time evoluti<strong>on</strong> (DDP path) that encircles a gapclos<strong>in</strong>g<br />

po<strong>in</strong>t at Φ(t ∗ ) <strong>on</strong> the complex Φ plane. (b) Threshold<br />

electric field obta<strong>in</strong>ed by the imag<strong>in</strong>ary time method<br />

(solid) and the naive Landau-Zener formula (dashed).


IV-characteristics c<strong>on</strong>ductance<br />

<br />

<br />

<br />

Figure 4: (upper) DC current. (lower left) IVcharacteristics.<br />

(lower right) C<strong>on</strong>ductance.<br />

Especially, <strong>in</strong> a circularly polarized light, a gap opens at<br />

the Dirac po<strong>in</strong>t [7]. This has an important physical c<strong>on</strong>sequence<br />

s<strong>in</strong>ce a gap <str<strong>on</strong>g>of</str<strong>on</strong>g> a 2+1 dimensi<strong>on</strong>al Dirac electr<strong>on</strong><br />

is related to parity anomaly and is detectable through transport<br />

measurements, i.e., the Hall effect. In 2+1 dimensi<strong>on</strong>s,<br />

the Hall c<strong>on</strong>ductivity can be written as a momentum <strong>in</strong>tegral<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Berry curvature (∼ Chern density) over the<br />

Brillou<strong>in</strong> z<strong>on</strong>e. This is known as the TKNN formula[32],<br />

and is know extended to ac-driven transport via the Floquet<br />

picture (∼ Furry picture) [7]<br />

σxy(Aac) = e 2<br />

∫<br />

dk<br />

(2π) d<br />

∑<br />

fα(k) [ ∇k × Aα(k) ]<br />

. (10)<br />

z<br />

α<br />

Here, Aα(k) ≡ −i⟨⟨Φα(k)|∇ k |Φα(k)⟩⟩ is the photo<strong>in</strong>duced<br />

artificial gauge field. In the Floquet picture, the<br />

Green’s functi<strong>on</strong> <strong>in</strong>corporates the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> absorpti<strong>on</strong><br />

and emissi<strong>on</strong> (Fig. 3 (a)), and Hall c<strong>on</strong>ductivity is<br />

given by the bubble diagram <strong>in</strong> the n<strong>on</strong>-<strong>in</strong>teract<strong>in</strong>g case,<br />

which is noth<strong>in</strong>g but the parity anomaly diagram. The<br />

photo-<strong>in</strong>duced Berry curvature shown <strong>in</strong> Fig. 3 (c) acts as<br />

an artificial magnetic field and becomes f<strong>in</strong>ite when the circularly<br />

poralized light is <strong>in</strong>troduced.<br />

The current <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> circularly poralized light<br />

<strong>in</strong> a graphene ribb<strong>on</strong> attached to two electrodes is plotted<br />

<strong>in</strong> Fig. 4. The calculati<strong>on</strong> has been d<strong>on</strong>e by comb<strong>in</strong><strong>in</strong>g the<br />

Keldysh green’s functi<strong>on</strong> method with the Floquet picture.<br />

The Hall current, which is orig<strong>in</strong>ally absent, <strong>in</strong>creases as<br />

the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> light becomes str<strong>on</strong>ger. The numerical result<br />

supports our understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the photovotaic Hall effect<br />

obta<strong>in</strong> by the extended TKNN formula (eqn.(10)).<br />

We would like to acknowledge Naoto Tsuji, Mart<strong>in</strong> Eckste<strong>in</strong><br />

and Philipp Werner for enlight<strong>in</strong>g discussi<strong>on</strong>s. It is<br />

a pleasure to thank Gerald Dunne for illum<strong>in</strong>at<strong>in</strong>g discussi<strong>on</strong>s<br />

dur<strong>in</strong>g PIF2010.<br />

REFERENCES<br />

[1] J. Schw<strong>in</strong>ger, Phys. Rev. 82, 664 (1951).<br />

[2] T. Oka, and H. Aoki, <strong>in</strong> “Quantum and Semi-classical Percolati<strong>on</strong><br />

& Breakdown” (Lecture Note <strong>in</strong> <strong>Physics</strong>, Spr<strong>in</strong>ger-<br />

Verlag) (2008).<br />

[3] T. Oka R. Arita and H. Aoki, Phys. Rev. Lett. 91, 66406<br />

(2003).<br />

[4] T. Oka and H. Aoki, Phys. Rev. Lett. 95, 137601 (2005).<br />

[5] T. Oka and H. Aoki, Phys. Rev. B 81, 033103 (2010).<br />

[6] M. Eckste<strong>in</strong>, T. Oka, and P. Werner, Phys. Rev. Lett. 105,<br />

146404 (2010).<br />

[7] T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (R) (2009).<br />

[8] R. Resta, Ferroelectrics 136, 51 (1992).<br />

[9] R.D. K<strong>in</strong>g-Smith and D. Vanderbilt, Phys. Rev. B 47, R1651<br />

(1993).<br />

[10] R. Resta, Phys. Rev. Lett. 80, 1800 (1998).<br />

[11] R. Resta and S. Sorella, Phys. Rev. Lett. 82, 370 (1999).<br />

[12] M. Nakamura and J. Voit, Phys. Rev. B 65, 153110 (2002).<br />

[13] W. Heisenberg and H. Euler, Z.Physik 98, 714 (1936).<br />

[14] A. M. Dykhne, Sov. Phys. JETP 14, 941 (1962).<br />

[15] J. P. Davis and P. Pechukas, J. Chem. Phys. 64, 3129 (1976).<br />

[16] E. Brez<strong>in</strong> and C. Itzyks<strong>on</strong>, Phys. Rev. D 2, 1191 (1970).<br />

[17] V. S. Popov, Sov. J. Nucl. Phys. 19, 584 (1974).<br />

[18] V. S. Popov, JETP 34, 709 (1972).<br />

[19] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper and<br />

V. E. Korep<strong>in</strong>, The One-Dimensi<strong>on</strong>al Hubbard Model (Cambridge,<br />

2005).<br />

[20] T. Fukui and N. Kawakami, Phys. Rev. B 58, 1651 (1998).<br />

[21] C. F. Coll, Phys. Rev. B 9, 2150 (1974).<br />

[22] A. A. Ovch<strong>in</strong>nikov, Sov. Phys. JETP 30, 1160 (1970).<br />

[23] M. Takahashi, Prog. Theor. Phys. 47, 69 (1972).<br />

[24] F. Woynarovich, J. Phys. C 15, 85 (1982).<br />

[25] C. A. Stafford and A. J. Millis, Phys. Rev. B 48, 1409<br />

(1993).<br />

[26] E. H. Lieb, and F. Y. Wu, Phys. Rev. Lett 21, 192 (1968).<br />

[27] F. Heidrich-Meisner, et al, Phy. Rev. B 82, 205110 (2010).<br />

[28] L. Keldysh, JETP 20, 1307 (1965).<br />

[29] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.<br />

Zhang, S. V. Dub<strong>on</strong>os, I. V. Grigorieva, A. A. Firsov, Science<br />

306, 666 (2004).<br />

[30] D. M. Volkov, Z. Phys. 94, 250 (1935).<br />

[31] S. V. Syzranov, M. V. Fistul, and K. B. Efetov, Phys. Rev. B<br />

78, 045407 (2008).<br />

[32] D. J. Thouless, M. Kohmoto, M. P. Night<strong>in</strong>gale and M. den<br />

Nijs, Phys. Rev. Lett. 49, 405 (1982).


Abstract<br />

N<strong>on</strong>-l<strong>in</strong>ear charge transport <strong>in</strong> plasma under str<strong>on</strong>g field ∗<br />

S. Nakamura † , Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, Kyoto University, Kyoto 606-8502, JAPAN<br />

We study n<strong>on</strong>l<strong>in</strong>ear charge transport <strong>in</strong> a str<strong>on</strong>gly <strong>in</strong>teract<strong>in</strong>g<br />

system <str<strong>on</strong>g>of</str<strong>on</strong>g> charges under the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> external<br />

electric field, by us<strong>in</strong>g the AdS/CFT corresp<strong>on</strong>dence. We<br />

show that the pair-creati<strong>on</strong> process assisted by the external<br />

field can cause negative differential resistivity.<br />

INTRODUCTION<br />

Recent development <str<strong>on</strong>g>of</str<strong>on</strong>g> high-<strong>in</strong>tensity lasers is open<strong>in</strong>g a<br />

new w<strong>in</strong>dow for studies <strong>on</strong> str<strong>on</strong>g-field dynamics. One <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the ma<strong>in</strong> subjects <strong>in</strong> the str<strong>on</strong>g-field physics is pair creati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles assisted by the str<strong>on</strong>g external field. In<br />

this talk, we c<strong>on</strong>sider a pair-creati<strong>on</strong> process <strong>in</strong> a str<strong>on</strong>gly<br />

<strong>in</strong>teract<strong>in</strong>g system under the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an external field<br />

and its relati<strong>on</strong>ship to the n<strong>on</strong>l<strong>in</strong>ear charge transport. We<br />

shall show that the pair-creati<strong>on</strong> process affects the n<strong>on</strong>l<strong>in</strong>ear<br />

charge transport <strong>in</strong> such a way that the negative differential<br />

resistivity (NDR) 1 can be realized.<br />

NDR is a n<strong>on</strong>l<strong>in</strong>ear phenomen<strong>on</strong> <strong>in</strong> charge transport<br />

where the electric field (E) decreases with <strong>in</strong>creas<strong>in</strong>g current<br />

density (J), and vice versa (Fig. 1). This has been observed<br />

<strong>in</strong> various materials and devices[2]. S<strong>in</strong>ce electr<strong>on</strong>ic<br />

devices that exhibit NDR are useful <strong>in</strong> electric circuits, the<br />

understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> NDR is important from the viewpo<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>dustrial applicati<strong>on</strong>s, as well. However, theoretical study<br />

<strong>on</strong> NDR has difficulties com<strong>in</strong>g from the follow<strong>in</strong>g facts:<br />

• NDR is a n<strong>on</strong>l<strong>in</strong>ear phenomen<strong>on</strong> where we need to go<br />

bey<strong>on</strong>d the l<strong>in</strong>ear resp<strong>on</strong>se theory.<br />

• The system is far from equilibrium ow<strong>in</strong>g to the dissipati<strong>on</strong><br />

caused by the f<strong>in</strong>ite current.<br />

• N<strong>on</strong>perturbative analysis is necessary if the NDR is<br />

associated with the transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum such as<br />

the metal-<strong>in</strong>sulator transiti<strong>on</strong>.<br />

We employ the AdS/CFT corresp<strong>on</strong>dence [3, 4, 5] to overcome<br />

these difficulties.<br />

The typical J-E characteristics we obta<strong>in</strong> falls <strong>in</strong>to the<br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> the S-shaped NDR 2 which is sketched at Fig. 1.<br />

NDR is realized between B and C <strong>in</strong> Fig. 1. J(E) is a<br />

∗ Talk based <strong>on</strong> the orig<strong>in</strong>al work <strong>in</strong> Ref. [1]. The present work was<br />

supported by MEXT KAKENHI (21105006), Grant-<strong>in</strong>-Aid for Scientific<br />

Research <strong>on</strong> Innovative Areas “Elucidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> New Hadr<strong>on</strong>s with a Variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Flavors,” and by the Grant-<strong>in</strong>-Aid for the Global COE Program<br />

“The Next Generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, Spun from Universality and Emergence”<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> MEXT <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan.<br />

† nakamura@ruby.scphys.kyoto-u.ac.jp<br />

1 This may also be referred to as negative differential c<strong>on</strong>ductivity<br />

(NDC) <strong>in</strong> some literature.<br />

2 This corresp<strong>on</strong>ds to the SNDC <strong>in</strong> Ref. [2]<br />

J<br />

A<br />

C<br />

Figure 1: Schematic J-E characteristics with NDR.<br />

multivalued functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> E. Experimentally, the multivalued<br />

behavior is obta<strong>in</strong>ed by measur<strong>in</strong>g E as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the c<strong>on</strong>trolled current density J; note that the J-E curve is<br />

“N-shaped” if the axes are swapped. The functi<strong>on</strong> E <str<strong>on</strong>g>of</str<strong>on</strong>g> J is<br />

still a s<strong>in</strong>gle-valued functi<strong>on</strong>, and the NDR is well-def<strong>in</strong>ed<br />

if J is c<strong>on</strong>trolled. If we c<strong>on</strong>trol E <strong>in</strong>stead, the NDR branch<br />

is unstable and the hysteresis is observed. In this talk, we<br />

regard J as a c<strong>on</strong>trol parameter and E is determ<strong>in</strong>ed as a<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamics.<br />

B<br />

ADS/CFT CORRESPONDENCE<br />

The AdS/CFT corresp<strong>on</strong>dence is a c<strong>on</strong>jectured equivalence<br />

between str<strong>on</strong>gly-<strong>in</strong>teract<strong>in</strong>g n<strong>on</strong>-abelian quantum<br />

gauge theories and higher-dimensi<strong>on</strong>al classical gravitati<strong>on</strong>al<br />

theories. This enables us to analyze the n<strong>on</strong>perturbative<br />

nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the gauge theories <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity.<br />

The corresp<strong>on</strong>dence is at the level <str<strong>on</strong>g>of</str<strong>on</strong>g> the microscopic<br />

theory, and it is potentially possible to describe n<strong>on</strong>equilibrium<br />

process. What is surpris<strong>in</strong>g is that the noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equilibrium<br />

appears <strong>in</strong> the gravity side <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes.<br />

The coarse gra<strong>in</strong><strong>in</strong>g is automatically performed when we<br />

solve the E<strong>in</strong>ste<strong>in</strong>’s equati<strong>on</strong> to obta<strong>in</strong> the black hole soluti<strong>on</strong>.<br />

These features <str<strong>on</strong>g>of</str<strong>on</strong>g> the AdS/CFT corresp<strong>on</strong>dence<br />

tempts us to apply it to n<strong>on</strong>l<strong>in</strong>ear n<strong>on</strong>equilibrium physics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>gly-<strong>in</strong>teract<strong>in</strong>g gauge theories. Indeed, the n<strong>on</strong>l<strong>in</strong>ear<br />

c<strong>on</strong>ductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> a global charge <strong>in</strong> some system has<br />

already been computed by us<strong>in</strong>g the AdS/CFT corresp<strong>on</strong>dence<br />

[6]. 3<br />

The AdS/CFT corresp<strong>on</strong>dence has also disadvantages.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> them is that we cannot analyze U(1) gauge theory<br />

like QED. The c<strong>on</strong>venti<strong>on</strong>al analysis <strong>in</strong> the AdS/CFT<br />

corresp<strong>on</strong>dence is restricted to SU(Nc) gauge theories at<br />

the large-Nc limit. However, we can still <strong>in</strong>troduce n<strong>on</strong>dynamical<br />

external fields <str<strong>on</strong>g>of</str<strong>on</strong>g> the U(1) gauge theory. The<br />

SU(Nc) gauge theory can also be idealized <strong>in</strong> such a way<br />

that the <strong>in</strong>teracti<strong>on</strong> am<strong>on</strong>g the charges is <str<strong>on</strong>g>of</str<strong>on</strong>g> Coulomb type.<br />

3 See also, for example, Refs. [7, 8].<br />

D<br />

E


What we shall do <strong>in</strong> the present work is to c<strong>on</strong>sider an idealized<br />

gauge theory that has the Coulomb type <strong>in</strong>teracti<strong>on</strong><br />

am<strong>on</strong>g the charges <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the U(1) external<br />

electric field.<br />

MICROSCOPIC THEORY<br />

Our idealized gauge theory is the (3+1)-dimensi<strong>on</strong>al<br />

SU(Nc) N =4 super-symmetric Yang-Mills (SYM) theory<br />

with Nf flavors <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental N =2 hypermultiplets. This<br />

is a supersymmetric cous<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Quantum Chromodynamics<br />

(QCD), but the <strong>in</strong>ter-quark potential is <str<strong>on</strong>g>of</str<strong>on</strong>g> Coulomb type at<br />

zero temperature with <strong>in</strong>f<strong>in</strong>ite current quark mass due to<br />

the c<strong>on</strong>formal nature <str<strong>on</strong>g>of</str<strong>on</strong>g> N = 4 SYM. The supersymmetry<br />

is broken at f<strong>in</strong>ite temperatures. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> colors Nc<br />

is taken to be <strong>in</strong>f<strong>in</strong>ity with the ’t Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>t coupl<strong>in</strong>g gYMN 2 c<br />

kept fixed, where gYM is the Yang-Mills coupl<strong>in</strong>g c<strong>on</strong>stant.<br />

We def<strong>in</strong>e λ ≡ 2gYMN 2 c <strong>in</strong> this article, and take the str<strong>on</strong>gcoupl<strong>in</strong>g<br />

limit λ ≫ 1. In our setup, the quarks and the antiquarks<br />

are str<strong>on</strong>gly correlated ow<strong>in</strong>g to the large λ. The<br />

quarks carry the global U(1) bary<strong>on</strong> (U(1)B) charge (or the<br />

quark charge), and we analyze the c<strong>on</strong>ductivity associated<br />

with this charge. The above setup is employed to make the<br />

AdS/CFT corresp<strong>on</strong>dence applicable.<br />

Ignor<strong>in</strong>g the super-partners, the theory c<strong>on</strong>ta<strong>in</strong>s SU(Nc)<br />

adjo<strong>in</strong>t glu<strong>on</strong>s and the Nf species <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(Nc) fundamental<br />

quarks (and the anti-fundamental antiquarks). The glu<strong>on</strong>s<br />

and the quarks play the roles <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s and the electr<strong>on</strong>s<br />

<strong>in</strong> QED, respectively. The antiquark may be regarded as a<br />

counterpart <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong>s or holes, depend<strong>in</strong>g <strong>on</strong> the system<br />

we make an analogy.<br />

The system is <strong>in</strong> the dec<strong>on</strong>f<strong>in</strong>ement phase <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s<br />

(which means that the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom <str<strong>on</strong>g>of</str<strong>on</strong>g> the glu<strong>on</strong>ic<br />

sector is O(N 2 c )) at n<strong>on</strong>zero temperatures, but the quark<br />

and antiquark may still form the bound states depend<strong>in</strong>g <strong>on</strong><br />

the parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the theory. If they form the bound states,<br />

the system is an <strong>in</strong>sulator s<strong>in</strong>ce the bound states are neutral.<br />

The system becomes a c<strong>on</strong>ductor if the bound states<br />

are unstable and the charge carriers are liberated. This system<br />

shares several features similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g> the excit<strong>on</strong>ic<br />

<strong>in</strong>sulators [9, 10] or sQGP [11]. We f<strong>in</strong>d that the system<br />

shows NDR due to the pair-creati<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge<br />

carriers. Our result suggests a possibility to observe NDR<br />

<strong>in</strong> some excit<strong>on</strong>ic <strong>in</strong>sulators or <strong>in</strong> some quark-hadr<strong>on</strong> systems,<br />

as we shall discuss later.<br />

Let us c<strong>on</strong>sider how to realize a n<strong>on</strong>equilibrium steady<br />

state (NESS) with a c<strong>on</strong>stant current <strong>in</strong> the c<strong>on</strong>ductor<br />

phase. S<strong>in</strong>ce our quarks/antiquarks <strong>in</strong>teract str<strong>on</strong>gly with<br />

the glu<strong>on</strong>s, the k<strong>in</strong>etic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the quarks/antiquarks will<br />

be dissipated. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the dissipati<strong>on</strong>, the system will<br />

be heated up if we ma<strong>in</strong>ta<strong>in</strong> a c<strong>on</strong>stant current. However,<br />

we can realize a steady state with a c<strong>on</strong>stant current by tak<strong>in</strong>g<br />

the probe limit Nc ≫ Nf . The degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the glu<strong>on</strong>ic sector is O(N 2 c ), whereas that <str<strong>on</strong>g>of</str<strong>on</strong>g> the flavor sector<br />

(the quark/antiquark sector) is O(NcNf ); the glu<strong>on</strong>ic<br />

sector has <strong>in</strong>f<strong>in</strong>itely large degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom <strong>in</strong> comparis<strong>on</strong><br />

with the flavor sector at this limit. As a result, the<br />

dissipated energy from the flavor sector is absorbed <strong>in</strong>to an<br />

<strong>in</strong>f<strong>in</strong>itely large reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s and the system is wellapproximated<br />

as a NESS for the time period shorter than<br />

O(Nc) [12]. The glu<strong>on</strong>ic sector acts as a “heat bath” for<br />

the flavor sector <strong>in</strong> this sense. Note that the <strong>in</strong>teracti<strong>on</strong> between<br />

the charge carriers and the “heat bath” is taken <strong>in</strong>to<br />

account <strong>in</strong> our setup.<br />

GRAVITY DUAL<br />

The gravity dual <str<strong>on</strong>g>of</str<strong>on</strong>g> the forego<strong>in</strong>g microscopic theory is<br />

the so-called D3-D7 system [13], where the Nf D7-branes<br />

are embedded <strong>in</strong> the background geometry given by a direct<br />

product <str<strong>on</strong>g>of</str<strong>on</strong>g> a 5-dimensi<strong>on</strong>al AdS-Schwarzschild black hole<br />

(AdS-BH) and S 5 . The flavor sector is governed by the<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the D7-branes, whereas the glu<strong>on</strong>ic sector is<br />

described by the AdS-BH. We take the str<strong>in</strong>g tensi<strong>on</strong> to be<br />

1 for simplicity, namely, 2πl 2 s = 1, where ls is the str<strong>in</strong>g<br />

length. The metric <str<strong>on</strong>g>of</str<strong>on</strong>g> the AdS-BH part is given by<br />

ds 2 = − 1<br />

z 2<br />

(1 − z 4 /z 4 H )2<br />

1 + z 4 /z 4 H<br />

dt 2 + 1 + z4 /z 4 H<br />

z 2<br />

d⃗x 2 + dz2<br />

, (1)<br />

z2 where z is the radial coord<strong>in</strong>ate <str<strong>on</strong>g>of</str<strong>on</strong>g> the black hole. The horiz<strong>on</strong><br />

is located at z = zH and the boundary is at z = 0.<br />

The Hawk<strong>in</strong>g temperature that corresp<strong>on</strong>ds to the temperature<br />

√ <str<strong>on</strong>g>of</str<strong>on</strong>g> the glu<strong>on</strong>ic sector (heat bath) is given by T =<br />

2/(πzH). ⃗x denotes the 3-dimensi<strong>on</strong>al spatial directi<strong>on</strong>s.<br />

The S5 metric is dΩ2 5 = dθ2 + s<strong>in</strong> 2 θdψ2 + cos2 θdΩ2 3,<br />

where 0 ≤ θ ≤ π/2, and dΩd is the volume element <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the unit d-dimensi<strong>on</strong>al sphere. The radius <str<strong>on</strong>g>of</str<strong>on</strong>g> the S5 has<br />

been taken to be 1, which is equivalent to the choice <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

λ = (2π) 2 .<br />

The D7-branes are wrapped <strong>on</strong> an S3 part <str<strong>on</strong>g>of</str<strong>on</strong>g> the S5 . We<br />

choose our space-time coord<strong>in</strong>ates <strong>in</strong> such a way that the<br />

S3 is located at ψ = 0. Let us choose the worldvolume<br />

coord<strong>in</strong>ates <str<strong>on</strong>g>of</str<strong>on</strong>g> the D7-brane to be the same as the spacetime<br />

coord<strong>in</strong>ates. We also assume that the external U(1)B<br />

electric field E is applied al<strong>on</strong>g the x directi<strong>on</strong>. We have<br />

a U(1) gauge field Aµ <strong>on</strong> the D7-branes, which couples to<br />

the U(1)B current. The relati<strong>on</strong>ship between the external<br />

field E and the result<strong>in</strong>g current J al<strong>on</strong>g the x directi<strong>on</strong><br />

is given by the GKP-Witten prescripti<strong>on</strong> [4, 5] as (see also<br />

J<br />

2 N z2 +O(z 4 ), where<br />

we have employed the gauge ∂xAt = 0. N is given by<br />

N = Nf TD7(2π2 ), where TD7 is the D7-brane tensi<strong>on</strong>. In<br />

our choice <str<strong>on</strong>g>of</str<strong>on</strong>g> λ = (2π) 2 and 2πl2 s = 1, N = NcNf /(2π) 2 .<br />

We c<strong>on</strong>sider the vanish<strong>in</strong>g quark-charge density <strong>in</strong> most<br />

cases and we set the other comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the vector potential<br />

to be zero unless specified.<br />

The D7-brane acti<strong>on</strong> with the present setup is explicitly<br />

Ref. [6]) Ax(z, t) = −Et+c<strong>on</strong>st.+ 1<br />

written as<br />

∫<br />

SD7 = −N<br />

dtd 3 xdz cos 3 [<br />

θ |gtt|gxxgzz<br />

(<br />

− gzz( ˙ Ax) 2 − |gtt|(A ′ x) 2) ] 1/2<br />

, (2)<br />

where the prime (the dot) denotes the differentiati<strong>on</strong> with<br />

respect to z (t). We have already <strong>in</strong>tegrated the S 3 part


under the assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the symmetry al<strong>on</strong>g it. gtt, gxx<br />

and gzz are the <strong>in</strong>duced world-volume metric, and they are<br />

equal to the background metric (1) except for gzz = 1/z 2 +<br />

θ ′ (z) 2 .<br />

NONLINEAR CONDUCTIVITY<br />

It was found [6] that the <strong>on</strong>-shell D7-brane acti<strong>on</strong> becomes<br />

complex unless we choose a specific comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

J and E; the relati<strong>on</strong>ship between J and E is determ<strong>in</strong>ed<br />

by the reality c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong>-shell acti<strong>on</strong>, hence, J is<br />

obta<strong>in</strong>ed as a n<strong>on</strong>l<strong>in</strong>ear functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> E. The <strong>on</strong>-shell acti<strong>on</strong><br />

is given by [6] ¯ SD7 = −N ∫ dzdtd 3 x √ ¯gzz|gtt| −1√ F1F2<br />

with F1 = |gtt|gxx − E 2 and F2 = |gtt|g 2 xx cos 6 ¯ θ −<br />

gxxJ 2 /N 2 , where ¯gzz is the <strong>in</strong>duced metric given by ¯ θ,<br />

which is the <strong>on</strong>-shell c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> θ(z). S<strong>in</strong>ce both F1<br />

and F2 cross zero somewhere between the boundary and<br />

the horiz<strong>on</strong>, the <strong>on</strong>ly way to make ¯ SD7 real is to choose<br />

J and E so that F1 and F2 cross zero at the same po<strong>in</strong>t<br />

z = z∗. The hypersurface given by z = z∗ is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

called the “s<strong>in</strong>gular shell”. Then, the reality c<strong>on</strong>diti<strong>on</strong><br />

F1(z∗) = F2(z∗) = 0 gives us the relati<strong>on</strong>ship between<br />

J and E <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> J = σ0E [6], where<br />

σ0 = N T (e 2 + 1) 1/4 cos 3 ¯ θ(z∗). (3)<br />

Our task is to solve the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> (EOM) for θ<br />

to obta<strong>in</strong> the explicit representati<strong>on</strong>. ¯ θ(z) can be expanded<br />

as ¯ θ(z) = mqz + O(z 3 ), where mq is the current quark<br />

mass [13], which is a parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the microscopic theory.<br />

mq is related to the gap <strong>in</strong> c<strong>on</strong>densed matters.<br />

Let us choose the temperature to be T = √ 2/π so that<br />

zH = 1, e = E/2 and z∗ = √ E 2 /4 + 1 − E/2. 4 We<br />

further fix NcNf = 40. NcNf governs the pair-creati<strong>on</strong><br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge carriers as we shall expla<strong>in</strong> later. We<br />

need to solve the EOM for θ numerically. The boundary<br />

c<strong>on</strong>diti<strong>on</strong> we employ is θ(z)/z|z=0 = mq and we request<br />

the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gularity <strong>in</strong> the D7-brane c<strong>on</strong>figurati<strong>on</strong>.<br />

For earlier studies <strong>on</strong> the n<strong>on</strong>l<strong>in</strong>ear c<strong>on</strong>ductivity by us<strong>in</strong>g<br />

this method, see for example, Refs. [7, 8].<br />

RESULTS<br />

Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> J-mq curves at several values <str<strong>on</strong>g>of</str<strong>on</strong>g> E are<br />

shown <strong>in</strong> Fig. 2. Of course, mq has a unique value at a<br />

given model and we need to choose some particular value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mq. We f<strong>in</strong>d that there are two different possible values<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> J at given mq and given E <strong>in</strong> some parameter regi<strong>on</strong>,<br />

which <strong>in</strong>dicate the multi-valued nature <str<strong>on</strong>g>of</str<strong>on</strong>g> J(E). Furthermore,<br />

if we <strong>in</strong>crease E al<strong>on</strong>g the given mq, the smaller<br />

J decreases while the larger J <strong>in</strong>creases; the smaller-J<br />

branch shows NDR, whereas the larger-J branch has a positive<br />

differential resistivity. Note that the smaller-J branch<br />

4 In this article, we have employed the natural units c = ¯h = kB = 1.<br />

If our scale unit is meV (mili eV), T ∼ 5 K. If we identify the unit<br />

quark charge with the unit charge <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s, the effective f<strong>in</strong>e-structure<br />

c<strong>on</strong>stant read from the Coulomb <strong>in</strong>teracti<strong>on</strong> <strong>in</strong> the <strong>in</strong>ter-quark potential is<br />

∼ 1.<br />

mq<br />

1.34<br />

1.33<br />

1.32<br />

1.31<br />

1.30<br />

1.29<br />

E0.12<br />

E0.20<br />

E0.15<br />

1.28<br />

0.000 0.005 0.010 0.015 0.020 0.025<br />

Figure 2: J-mq curves at E = 0.12, 0.15, and 0.20. mq is<br />

maximum at a n<strong>on</strong>zero but small value <str<strong>on</strong>g>of</str<strong>on</strong>g> J.<br />

E<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

0.000 0.005 0.010 0.015 0.020 0.025<br />

Figure 3: J-E curve at mq = 1.315. Ec = 0.11 <strong>in</strong> this<br />

case. NDR appears <strong>in</strong> J ≤ 0.0031 and is absent for E ≥<br />

0.19.<br />

is a very narrow w<strong>in</strong>dow <strong>in</strong> the full part <str<strong>on</strong>g>of</str<strong>on</strong>g> the J-mq curve.<br />

For example, the J-mq curve at E = 0.2 extends until<br />

J = 0.288, and the width <str<strong>on</strong>g>of</str<strong>on</strong>g> the smaller-J branch al<strong>on</strong>g the<br />

J axes is less than 2% <str<strong>on</strong>g>of</str<strong>on</strong>g> the full part. The detailed analysis<br />

shows that the highest value <str<strong>on</strong>g>of</str<strong>on</strong>g> mq approaches around<br />

1.310 at the E → +0 limit, suggest<strong>in</strong>g that Ec = 0 if<br />

mq < 1.310. This is c<strong>on</strong>sistent with the fact that the system<br />

is a c<strong>on</strong>ductor at sufficiently small mq <strong>in</strong> comparis<strong>on</strong><br />

with T (or sufficiently high T <strong>in</strong> comparis<strong>on</strong> with mq).<br />

An example <str<strong>on</strong>g>of</str<strong>on</strong>g> J-E relati<strong>on</strong> at mq = 1.315 is given <strong>in</strong><br />

Fig. 3. 5 The system is an <strong>in</strong>sulator for E < Ec = 0.11. If<br />

E ≥ Ec, the <strong>in</strong>sulati<strong>on</strong> is broken and we observe a current.<br />

NDR is realized <strong>in</strong> the smaller-J regi<strong>on</strong>. We always have<br />

the J = 0 branch <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> the vertical axis. Therefore,<br />

our <strong>in</strong>terpretati<strong>on</strong> is that Fig. 3 shows the B-C-D regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fig. 1 with the axes swapped; our NDR falls with<strong>in</strong> the Sshaped<br />

NDR. There may be a small tunnel<strong>in</strong>g current that<br />

almost overlaps with the vertical axis, but we could not detect<br />

it with<strong>in</strong> our numerical precisi<strong>on</strong>. We leave the detailed<br />

analysis <strong>on</strong> the tunnel<strong>in</strong>g current <strong>in</strong> a future work.<br />

It is important to clarify what is the physically essential<br />

process <strong>in</strong> our NDR. Let us c<strong>on</strong>sider the doped cases.<br />

We can also “dope” the system by <strong>in</strong>troduc<strong>in</strong>g f<strong>in</strong>ite quarkcharge<br />

density [14, 15]. In this case, the system is always a<br />

5 If we choose our scale unit to be meV, the critical electric field Ec<br />

<strong>in</strong> Fig. 3 is Ec ∼ 5 × 10 −1 V/m, and the current density realized at<br />

E = Ec is J ∼ 1 × 10 −4 mA/mm 2 .<br />

J<br />

J


c<strong>on</strong>ductor. The current is given by [6]<br />

√<br />

J = σ2 0 + d2 /(e2 + 1) E, (4)<br />

where d is related to the quark-charge density ρ through<br />

d = ρ/( π<br />

√<br />

2<br />

2 λT ). Ow<strong>in</strong>g to the doped charges, any small<br />

E causes a current and we observe Ohm’s law <strong>in</strong> the small-<br />

J regi<strong>on</strong>. If we raise J, we may aga<strong>in</strong> observe NDR ow<strong>in</strong>g<br />

to the n<strong>on</strong>trivial behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> σ0. It is <strong>in</strong>deed the case if d<br />

is small enough not to smear the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> σ0. In this<br />

case, the curve <strong>in</strong> Fig. 3 will be “N-shaped”, (S-shaped <strong>in</strong><br />

the sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 1) start<strong>in</strong>g at the orig<strong>in</strong>. The po<strong>in</strong>t is that<br />

the d-dependent term <strong>in</strong> the square root <strong>in</strong> (4) does not have<br />

any structure to produce NDR. Therefore, the σ0-part <strong>in</strong> (4)<br />

is crucial for NDR. It is understood that the current due to<br />

the σ0-part is caused by the pair creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge carriers.<br />

The reas<strong>on</strong>s are as follows: it c<strong>on</strong>tributes the current<br />

with the total system be<strong>in</strong>g kept neutral, and it vanishes if<br />

the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge carriers mq is <strong>in</strong>f<strong>in</strong>ite. [6] 6 As a c<strong>on</strong>clusi<strong>on</strong>,<br />

the pair-creati<strong>on</strong> process is essential for our NDR.<br />

DISCUSSION<br />

We can suggest a phenomenological model <str<strong>on</strong>g>of</str<strong>on</strong>g> NDR. The<br />

phenomenological orig<strong>in</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> NDR are classified <strong>in</strong>to three<br />

types (except for the tunnel effect for some semic<strong>on</strong>ductor<br />

juncti<strong>on</strong>s) <strong>in</strong> Ref. [2]: 1) n<strong>on</strong>l<strong>in</strong>earity <str<strong>on</strong>g>of</str<strong>on</strong>g> mobility, 2)<br />

n<strong>on</strong>l<strong>in</strong>earity <str<strong>on</strong>g>of</str<strong>on</strong>g> carrier density, and 3) n<strong>on</strong>l<strong>in</strong>earity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electr<strong>on</strong> temperature. 7 We have found that our NDR orig<strong>in</strong>ates<br />

<strong>in</strong> the pair creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge carriers but not <strong>in</strong><br />

the normal current <str<strong>on</strong>g>of</str<strong>on</strong>g> the doped charges. This means that<br />

the above feature 2) is crucial <strong>in</strong> our NDR. Although further<br />

study is necessary to reach the f<strong>in</strong>al c<strong>on</strong>clusi<strong>on</strong>, it is<br />

natural to assume that both the normal current and the paircreated<br />

current c<strong>on</strong>tribute 1) and 3) regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> the orig<strong>in</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the charge carriers. If this assumpti<strong>on</strong> is right, 1) and 3)<br />

do not seem to be important <strong>in</strong> our NDR. The behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

our NDR is <strong>in</strong> the category <str<strong>on</strong>g>of</str<strong>on</strong>g> the “SNDC” <strong>in</strong> Ref. [2] and<br />

it may be attributed to the impact i<strong>on</strong>izati<strong>on</strong> expla<strong>in</strong>ed <strong>in</strong><br />

Ref. [2]. The proposal <str<strong>on</strong>g>of</str<strong>on</strong>g> the many-body avalanche model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NDR[17, 18] also matches our picture. It is important<br />

to study further the c<strong>on</strong>necti<strong>on</strong> between our results and the<br />

phenomenological models <str<strong>on</strong>g>of</str<strong>on</strong>g> NDR.<br />

We can also see our results from the viewpo<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

quark-hadr<strong>on</strong> physics and that <str<strong>on</strong>g>of</str<strong>on</strong>g> the excit<strong>on</strong>ic <strong>in</strong>sulators.<br />

Let us c<strong>on</strong>sider the sQGP state [11] where the quarkantiquark<br />

bound state exists <strong>in</strong> the dec<strong>on</strong>f<strong>in</strong>ement phase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glu<strong>on</strong>s. Our results suggest that the quarks are liberated<br />

at the critical value <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field and their current<br />

may show NDR. We may also have a chance to observe a<br />

qualitatively similar NDR <strong>in</strong> excit<strong>on</strong>ic <strong>in</strong>sulators after the<br />

<strong>in</strong>sulati<strong>on</strong> break<strong>in</strong>g. It is important to study how general<br />

this NDR is, <strong>in</strong> quark/mes<strong>on</strong> systems and <strong>in</strong> the systems <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

6 We also po<strong>in</strong>t out that σ0 is proporti<strong>on</strong>al to NcNf . This suggests<br />

that it may be a <strong>on</strong>e-loop c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the quarks, as <strong>in</strong> the perturbative<br />

computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pair-creati<strong>on</strong> rate. Note that the quark loops have been<br />

taken <strong>in</strong>to account to the 1-loop order <strong>in</strong> the probe approximati<strong>on</strong>.<br />

7 See also Ref. [16].<br />

charge-anticharge bound states, <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g<br />

external fields.<br />

We expect that the present system is a good theoretical<br />

playground for studies <strong>on</strong> n<strong>on</strong>l<strong>in</strong>ear charge transport<br />

and n<strong>on</strong>equilibrium steady states. The AdS/CFT corresp<strong>on</strong>dence<br />

can be a new tool for study<strong>in</strong>g n<strong>on</strong>equilibrium<br />

physics as we have dem<strong>on</strong>strated here.<br />

The author thanks the organizers <str<strong>on</strong>g>of</str<strong>on</strong>g> PIF2010 c<strong>on</strong>ference.<br />

Discussi<strong>on</strong>s with the participants <str<strong>on</strong>g>of</str<strong>on</strong>g> various research areas<br />

such as plasma physics, str<strong>on</strong>g-field dynamics and laser<br />

physics are quite fruitful <strong>in</strong> plann<strong>in</strong>g further studies al<strong>on</strong>g<br />

the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the present work.<br />

REFERENCES<br />

[1] S. Nakamura, Prog. Theor. Phys. 124 (2010), 1105.<br />

[2] E. Schöll, N<strong>on</strong>l<strong>in</strong>ear Spatio-Temporal Dynamics and Chaos<br />

<strong>in</strong> Semic<strong>on</strong>ductors (Cambridge University Press, Cambridge<br />

2001).<br />

[3] J. M. Maldacena, Adv. Theor. Math. Phys. 2 (1988), 231<br />

[Int. J. Theor. Phys. 38 (1999), 1113].<br />

[4] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett.<br />

B 428 (1998), 105.<br />

[5] E. Witten, Adv. Theor. Math. Phys. 2 (1998), 253.<br />

[6] A. Karch and A. O’Bann<strong>on</strong>, J. High Energy Phys. 0709<br />

(2007), 024.<br />

[7] J. Erdmenger, R. Meyer and J. P. Shock, J. High Energy<br />

Phys. 0712 (2007), 091.<br />

[8] T. Albash, V. G. Filev, C. V. Johns<strong>on</strong> and A. Kundu, J. High<br />

Energy Phys. 0808 (2008), 092.<br />

[9] N. F. Mott, Philos. Mag. 6 (1961), 287.<br />

[10] See also for a review, S. A. Moskalenko and D. W. Snoke,<br />

Bose-E<strong>in</strong>ste<strong>in</strong> C<strong>on</strong>densati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Excit<strong>on</strong>s and Biexcit<strong>on</strong>s<br />

(Cambridge Univ. Press, Cambridge 2000).<br />

[11] M. Gyulassy and L. McLerran, Nucl. Phys. A 750 (2005),<br />

30.<br />

[12] A. Karch, A. O’Bann<strong>on</strong> and E. Thomps<strong>on</strong>, J. High Energy<br />

Phys. 0904 (2009), 021.<br />

[13] A. Karch and E. Katz, J. High Energy Phys. 0206 (2002),<br />

043.<br />

[14] S. Nakamura, Y. Seo, S. J. S<strong>in</strong> and K. P. Yogendran, J. Korean<br />

Phys. Soc. 52 (2008), 1734.<br />

[15] S. Kobayashi, D. Mateos, S. Matsuura, R. C. Myers and<br />

R. M. Thoms<strong>on</strong>, J. High Energy Phys. 0702 (2007), 016.<br />

[16] H. C. Law and K. C. Kao, IEEE Trans. Electr<strong>on</strong> Devices 17<br />

(1970), 562.<br />

[17] Y. Tokura, H. Okamoto, T. Takao, T. Tadaoki and G. Saito,<br />

Phys. Rev. B 38 (1988), 2215.<br />

[18] T. Oka, H. Kishida and H. Aoki, talk given at JPS 2010 Annual<br />

Meet<strong>in</strong>g, March 20th (2010).


Brilliant hardγ-producti<strong>on</strong> ande + e−-creati<strong>on</strong> <strong>in</strong> vacuum with ultra-high<br />

laser fields: Test<strong>in</strong>g theoretical predicti<strong>on</strong>s at ELI-NP<br />

Dietrich Habs, Peter Thirolf, N<strong>in</strong>a Elk<strong>in</strong>a and Hartmut Ruhl<br />

Fakultät für Physik, Ludwig-Maximilians-Universität München, D-85748 Garch<strong>in</strong>g, Germany<br />

Abstract<br />

We want to measure the hard-γ producti<strong>on</strong>, when a<br />

brilliant bunch <str<strong>on</strong>g>of</str<strong>on</strong>g> 600 MeV electr<strong>on</strong>s is <strong>in</strong>jected <strong>in</strong>to<br />

the <strong>in</strong>tense focus <str<strong>on</strong>g>of</str<strong>on</strong>g> two counter-propagat<strong>in</strong>g lasers with<br />

10 24 W/cm 2 <strong>in</strong> vacuum. In a sec<strong>on</strong>d step these hard-γ phot<strong>on</strong>s<br />

can produce e + e − pairs <strong>in</strong> the same laser field <strong>in</strong><br />

vacuum. We describe an experiment planned for ELI-NP,<br />

where we want to test for the first time n<strong>on</strong>-perturbative<br />

high-field QED effects.<br />

INTRODUCTION<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the ma<strong>in</strong> goals <str<strong>on</strong>g>of</str<strong>on</strong>g> the project Extreme Light Infrastructure<br />

(ELI) [1] is to study the “boil<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum”<br />

[2], i.e. the electr<strong>on</strong>-positr<strong>on</strong> pair creati<strong>on</strong> <strong>in</strong> the vacuum<br />

and phot<strong>on</strong> producti<strong>on</strong> with ultra-high laser fields. At<br />

the Extreme Light Infrastructure - Nuclear <strong>Physics</strong> (ELI-<br />

NP) facility [3] we presently plan for laser <strong>in</strong>tensities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1024W/cm2 , equivalent to an electric field strength E =<br />

4.7 · 1015V/m, or normalized vector potentials a = 103 ,<br />

which are still much too small to produce directly pairs<br />

from the vacuum. Here the laser field is characterized by<br />

the Lorentz <strong>in</strong>variant dimensi<strong>on</strong>less normalized vector potential<br />

a:<br />

a = eEλL<br />

me2πc2 = eAµA µ<br />

mec2 , (1)<br />

whereλL is the laser wavelength andAµ is the laser vector<br />

potential. In comparis<strong>on</strong> to the Schw<strong>in</strong>ger <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g>Is =<br />

5·10 29 W/cm 2 , or the Schw<strong>in</strong>ger fieldES:<br />

Es = m2 ec 3<br />

e¯h = 1.3·1018 V/m (2)<br />

the extremely str<strong>on</strong>g suppressi<strong>on</strong> by the exp<strong>on</strong>ential factor<br />

exp[−π ·(Es/E)] ≈ 10 −1000<br />

prevents the observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pair creati<strong>on</strong>, when focus<strong>in</strong>g<br />

the high-power lasers <str<strong>on</strong>g>of</str<strong>on</strong>g> ELI-NP <strong>in</strong>to vacuum. Thus we<br />

need some k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> seed<strong>in</strong>g. The special feature <str<strong>on</strong>g>of</str<strong>on</strong>g> ELI-<br />

NP is, that at the same time a Compt<strong>on</strong>-backscatter<strong>in</strong>g γbeam<br />

facility [5] will be <strong>in</strong>stalled, where a very brilliant,<br />

<strong>in</strong>tense, classical electr<strong>on</strong> beam is produced <strong>in</strong> a warm electr<strong>on</strong><br />

l<strong>in</strong>ac with up to 600 MeV and is used to produce γquanta<br />

with maximum energiesEγ = 19 MeV by backscatter<strong>in</strong>g<br />

laser light. Thisγ-facility can be operated <strong>in</strong> co<strong>in</strong>cidence<br />

with the high-<strong>in</strong>tensity laser pulses with a repetiti<strong>on</strong><br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 1/m<strong>in</strong>. Here <strong>on</strong>e first might th<strong>in</strong>k <str<strong>on</strong>g>of</str<strong>on</strong>g> “dynamically<br />

(3)<br />

assisted pair creati<strong>on</strong>” [6], <strong>in</strong>ject<strong>in</strong>g <strong>in</strong>to the <strong>in</strong>tense lowfrequency<br />

laser focus at the same time the weak-<strong>in</strong>tensity,<br />

high-frequency γ-quanta, result<strong>in</strong>g <strong>in</strong> a new str<strong>on</strong>gly reduced<br />

exp<strong>on</strong>ential suppressi<strong>on</strong> factor:<br />

exp[−(π −2)·(Es/E)] ≈ 10 −350 . (4)<br />

Though this is a largely reduced h<strong>in</strong>drance factor, it is still<br />

much too small to generate for the given repetiti<strong>on</strong> rates and<br />

γ-<strong>in</strong>tensities any observable effects. Narozhnyi [15, 16]<br />

predicted for an additi<strong>on</strong>al <strong>in</strong>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> very high-energy<br />

γ-quanta with energyEγ an exp<strong>on</strong>ential h<strong>in</strong>drance factor:<br />

exp[−(8/3)·(Es/E)·(mec 2 /Eγ)] ≈ 10 −1 . (5)<br />

So, if we would <strong>in</strong>ject γ-quanta with much higher energy<br />

Eγ = 1000 · mec 2 =500 MeV, the exp<strong>on</strong>ential suppressi<strong>on</strong><br />

would basically vanish and we could observe pair<br />

creati<strong>on</strong>. However, it would be extremely difficult to produce<br />

such high-energy γ-quanta by Compt<strong>on</strong> backscatter<strong>in</strong>g<br />

with high harm<strong>on</strong>ic laser pulses from the 600 MeV<br />

electr<strong>on</strong> beam with sufficient <strong>in</strong>tensity. Is there another<br />

way to <strong>in</strong>ject γ-quanta <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 500 MeV <strong>in</strong>to the high<strong>in</strong>tensity<br />

laser focus at ELI-NP with sufficient <strong>in</strong>tensity?<br />

If <strong>on</strong>e looks at the Compt<strong>on</strong> backscatter<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> laser phot<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> energy EL and an <strong>in</strong>tensity (characterized by a)<br />

from the classical electr<strong>on</strong> beam with energy Ee = γe ·<br />

mec 2 , <strong>on</strong>e obta<strong>in</strong>s for the γ-energyEγ:<br />

Eγ = n· 4γ2 eEL<br />

1+a 2<br />

with the harm<strong>on</strong>ic number n. While <strong>on</strong>e obta<strong>in</strong>s for the<br />

600 MeV electr<strong>on</strong> beam with γe = 1200 and small values<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the normalized laser vector potential a γ-energies <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

few MeV, <strong>on</strong>e f<strong>in</strong>ds that for <strong>in</strong>creas<strong>in</strong>ga ≈ γe the Doppler<br />

boost for the γ-energy or the factors γ 2 e and a2 cancel out<br />

andEγ ≈ n·4·EL drops to the optical regime. However,<br />

for such large values <str<strong>on</strong>g>of</str<strong>on</strong>g> γe and a, new high-field effects<br />

come <strong>in</strong>to play and Eq. (6) is no l<strong>on</strong>ger valid.<br />

If large external electromagnetic fields are present electr<strong>on</strong>s<br />

can ga<strong>in</strong> large energies. In that case any field <strong>in</strong> their<br />

rest frame can be c<strong>on</strong>sidered as c<strong>on</strong>stant and crossed due<br />

to the transformati<strong>on</strong> properties<br />

E ′<br />

|| = ′<br />

E || , E <br />

⊥ = γ E⊥ +v × <br />

B<br />

B ′<br />

|| = ′<br />

B || , B <br />

⊥ = γ<br />

(6)<br />

, (7)<br />

<br />

B⊥ − 1<br />

c2 v × <br />

E . (8)


This implies that E 2 − c 2 B 2 ≈ 0 and E · B ≈ 0. Any<br />

c<strong>on</strong>stant crossed field can be transformed <strong>in</strong>to a pure magnetic<br />

field <strong>in</strong> an appropriate reference frame. Radiati<strong>on</strong><br />

emissi<strong>on</strong> by electr<strong>on</strong>s or positr<strong>on</strong>s <strong>in</strong> a c<strong>on</strong>stant magnetic<br />

field is naturally c<strong>on</strong>troled by the dimensi<strong>on</strong>less parameter<br />

B⊥ǫ/(mEs), where B⊥ is the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the external<br />

magnetic field normal to the particle momentum, ǫ is<br />

the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle and m is the mass. This can be<br />

understood by observ<strong>in</strong>g that the peak <str<strong>on</strong>g>of</str<strong>on</strong>g> the emitted radiati<strong>on</strong><br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> an energetic electr<strong>on</strong> <strong>in</strong> a c<strong>on</strong>stant magnetic<br />

field versus its k<strong>in</strong>etic energy is approximately given<br />

by (¯hω0/ǫ)(ǫ/m) 3 = B⊥ǫ/(mEs), where ω0 = eB⊥/ǫ.<br />

In the lab frame this parameter becomes the quantum effi-<br />

ciency parametersχ<br />

χ = e¯h<br />

<br />

−(F µν pν) 2<br />

m 3 c 4 , (9)<br />

where pν is the electr<strong>on</strong> or positr<strong>on</strong> 4-momentum. The<br />

total transiti<strong>on</strong> rate for radiati<strong>on</strong> <strong>in</strong> str<strong>on</strong>g external fields<br />

scales likem 2 χ 2/3 /ǫ, where the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the emittedγradiati<strong>on</strong><br />

now extends to ever larger energies the larger the<br />

parameterχis [7, 9]. If this Lorentz <strong>in</strong>variantχ gets close<br />

to unity, <strong>in</strong>tense γ emissi<strong>on</strong> with 10 8 times higher γ energies<br />

compared to Eq. (6) sets <strong>in</strong> and a significant fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the electr<strong>on</strong> energy is emitted over small radiati<strong>on</strong> lengths<br />

with high energy γ-quanta [9, 7]. We will focus the 600<br />

MeV classical electr<strong>on</strong> beam directly <strong>in</strong>to the high-power<br />

laser focus and produce an <strong>in</strong>tense, brilliant high-energyγ<br />

beam directly <strong>in</strong>side the high <strong>in</strong>tensity laser focus. Thus at<br />

ELI-NP we will pursue a two-fold strategy: (1) we want<br />

to study the high field processes to produce new brilliant,<br />

high-energyγ-beams as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>aandγe and then (2)<br />

the new γ-beam will cause pair creati<strong>on</strong> <strong>in</strong> the vacuum <strong>in</strong><br />

the same <strong>in</strong>tense laser focus.<br />

One could also th<strong>in</strong>k <str<strong>on</strong>g>of</str<strong>on</strong>g> produc<strong>in</strong>g the high-energy electr<strong>on</strong><br />

beam by laser accelerati<strong>on</strong>, but c<strong>on</strong>sider<strong>in</strong>g the fluctuati<strong>on</strong>s<br />

<strong>in</strong> presently produced laser-accelerated electr<strong>on</strong><br />

beams (e.g. po<strong>in</strong>t<strong>in</strong>g variati<strong>on</strong>s), it appears much more reliable<br />

to explore these new high-field forces and the producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> high-energyγ-quanta with a very brilliant, very<br />

stable, classical high-energy electr<strong>on</strong> beam.<br />

With these high-energy quanta γh and the laser phot<strong>on</strong>s<br />

γL even hadr<strong>on</strong>ic QCD processes likeγh+n·γL → π 0 →<br />

γ1+γ2 are energetically allowed, and we may learn someth<strong>in</strong>g<br />

about the hadr<strong>on</strong>ic QCD c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum with<br />

str<strong>on</strong>g laser-dressed processes.<br />

In the follow<strong>in</strong>g we will first decribe the experimental<br />

setup at ELI-NP to explore these new high-field processes,<br />

and then we show the theoretically predicted rates <str<strong>on</strong>g>of</str<strong>on</strong>g>γ producti<strong>on</strong><br />

ande + e − pair creati<strong>on</strong>.<br />

EXPERIMENTAL SETUP AT ELI-NP FOR<br />

DETECTING HARDγ-PRODUCTION<br />

AND PAIR CREATION<br />

In Fig. 1 we show <strong>in</strong> a schematic way the experimental<br />

setup. We focus the electr<strong>on</strong> beam with a triplet lens <strong>in</strong>to<br />

Figure 1: Experimental setup, show<strong>in</strong>g the two focus<strong>in</strong>g<br />

mirrors with the high-field focus and the triplet lense which<br />

focusses the electr<strong>on</strong> beam (red) <strong>in</strong>to the laser focus. Beh<strong>in</strong>d<br />

the laser focus, a dipole magnet deflects the electr<strong>on</strong><br />

beam, while theγ beam (green) c<strong>on</strong>t<strong>in</strong>ues straight <strong>on</strong>.<br />

Figure 2: Extended view <str<strong>on</strong>g>of</str<strong>on</strong>g> the experimental setup, show<strong>in</strong>g<br />

the sampl<strong>in</strong>g measurements <strong>on</strong> the γ beam, where <strong>in</strong><br />

th<strong>in</strong> foilsγ-quanta are c<strong>on</strong>verted toe + e − pairs, which then<br />

are deflected <strong>in</strong> small magnets and measured <strong>in</strong> calorimeters.<br />

the laser focus. The electr<strong>on</strong> bunches have a maximum energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 600 MeV, corresp<strong>on</strong>d<strong>in</strong>g toγe ≈ 1200, a maximum<br />

charge <str<strong>on</strong>g>of</str<strong>on</strong>g> 250 pC (≈ 10 9 e/s) with a typical bunch length<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5 ps or 450 µm , a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 5µm and a normalized<br />

emittance <str<strong>on</strong>g>of</str<strong>on</strong>g> ǫn = 0.2 mm mrad. We use two counterpropagat<strong>in</strong>g<br />

laser pulses from two synchr<strong>on</strong>ized APOL-<br />

LON lasers [11] with 15 fs FWHM, where we can realize<br />

different Lorentz-<strong>in</strong>variant <strong>in</strong>tensity parameters F and G<br />

from the field tensorF µ,ν <strong>in</strong> the focus<br />

µν<br />

FµνF<br />

F = −<br />

2E2 s<br />

G = ǫµνλκF µν F λκ<br />

8E 2 S<br />

= E 2 −c 2 B 2<br />

E 2 S<br />

= c E · B<br />

E 2 S<br />

1 m<br />

(10)<br />

(11)<br />

Especially <strong>in</strong>terest<strong>in</strong>g is a c<strong>on</strong>figurati<strong>on</strong>, where the electric<br />

E fields <str<strong>on</strong>g>of</str<strong>on</strong>g> both oppositely circular polarized lasers are<br />

added <strong>in</strong> the focal plane, while the magnetic B fields cancel


each other. Thus the E field rotates around the laser axis<br />

and its amplitude varies slowly with the envelope <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

laser pulse. The two parabolic mirrors focus the two lasers<br />

to a radius <str<strong>on</strong>g>of</str<strong>on</strong>g> about 1 µm, and we have a maximum field<br />

strength characterized by a normalized vector potential a≈<br />

1000. Thus with<strong>in</strong> the high-field volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser pulse<br />

about ≈ 10 5 electr<strong>on</strong>s are c<strong>on</strong>ta<strong>in</strong>ed. In the simulati<strong>on</strong>s<br />

(discussed below) we obta<strong>in</strong>, that each electr<strong>on</strong> <strong>in</strong> the highfield<br />

regime produces about 20 high-energyγ-quanta with<br />

an exp<strong>on</strong>ential spectrum, reach<strong>in</strong>g up to about 600 MeV<br />

with the special quantalγ emissi<strong>on</strong> processes [7]:<br />

e+n·γL → e′+γh<br />

(12)<br />

These γ-quantaγh exhibit the very small open<strong>in</strong>g angle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the electr<strong>on</strong> beam <str<strong>on</strong>g>of</str<strong>on</strong>g> ≈ 1/(2γ) ≈ 10µrad and a diameter<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the laser focus <str<strong>on</strong>g>of</str<strong>on</strong>g> about≈ 2µm.<br />

The process is c<strong>on</strong>trolled by the relativistic <strong>in</strong>variant parameters<br />

and<br />

χe = e¯h<br />

m3 ec4 <br />

−(Fµνpν e) 2 = E<br />

·<br />

ES<br />

Ee<br />

mec2 (13)<br />

κγ = e¯h<br />

m3 ec4 <br />

− Fµνkν 2 E<br />

γ = ·<br />

ES<br />

Eγ<br />

mec2 (14)<br />

is the<br />

where Fµν is the four-tensor <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser field, pν e<br />

four-momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> the high energy electr<strong>on</strong> and kν γ is the<br />

four-momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> theγ quantum.<br />

The durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the γ-pulse is about 15 fs, like the laser<br />

pulse. In Fig. 1 and Fig. 2 we show how the primary electr<strong>on</strong><br />

bunch is deflected by a dipole magnet beh<strong>in</strong>d the laser<br />

focus and then propagates straight to the electr<strong>on</strong> beam<br />

dump. The high-energy γ-pulse traverses several identical<br />

detector units before it is stopped <strong>in</strong> the γ-beam dump.<br />

Each detector unit c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a th<strong>in</strong> foil, which c<strong>on</strong>verts<br />

about <strong>on</strong>eγ-quantum <strong>in</strong>to an electr<strong>on</strong>-positr<strong>on</strong> pair. In this<br />

way we can sample the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>tense, 15 fs γbunch<br />

c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g about 106 γ-quanta. The forward-go<strong>in</strong>g<br />

e + e− pairs are opened up by a local magnetic field. Thus<br />

the positr<strong>on</strong> hits the calorimeter array <strong>on</strong> the lift side <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

γ-beam, while the electr<strong>on</strong> hits the calorimeter array <strong>on</strong> the<br />

right side. From the deposited energy, the positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

shower <strong>in</strong> the calorimeter and the vertex <strong>in</strong> the th<strong>in</strong> foil we<br />

can rec<strong>on</strong>struct the γ-ray spectrum and determ<strong>in</strong>e the spot<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> the γ beam. By this sampl<strong>in</strong>g technique we avoid<br />

a pile-up <str<strong>on</strong>g>of</str<strong>on</strong>g> the γ-pulses <strong>in</strong> the detectors. When reduc<strong>in</strong>g<br />

the field strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser pulse or reduc<strong>in</strong>g the electr<strong>on</strong><br />

energy, we obta<strong>in</strong> from simulati<strong>on</strong>s a fast decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

high field processes. Also a str<strong>on</strong>g dependence <strong>on</strong> the laser<br />

pulse durati<strong>on</strong> is predicted. This will allow us for the first<br />

time to test the assumed physical processes <str<strong>on</strong>g>of</str<strong>on</strong>g> this highfield<br />

regime. At the same time we will be able to predict the<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the brilliant, <strong>in</strong>tense γ beams for other laser<br />

and electr<strong>on</strong> beam parameters. Theseγ-beams have typical<br />

peak brilliances <str<strong>on</strong>g>of</str<strong>on</strong>g>≈ 1024 /[(mm·mrad) 2 ·s·0.1%BW].<br />

/N 0<br />

N e + e<br />

¢<br />

0 5 10 15<br />

t,<br />

20 25 30<br />

¡1<br />

10<br />

9<br />

a =10<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

3<br />

a =1.2 £10 3<br />

a =1.5 £10 3<br />

Figure 3: Simulated yield <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> positr<strong>on</strong> pairs as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time for different values <str<strong>on</strong>g>of</str<strong>on</strong>g> the dimensi<strong>on</strong>less<br />

field amplitudea = 10 3 , 1.2×10 3 , 1.5×10 3 . The energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the primary electr<strong>on</strong> beam is600MeV .<br />

The polarisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the brilliant γ-beam is determ<strong>in</strong>ed by<br />

the polarisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser beams.<br />

Furthermore, we show <strong>in</strong> Fig. 2 the broad-acceptance<br />

magnetic spectrometers with which we want to measure<br />

the energies and spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s and<br />

positr<strong>on</strong>s. We expect for our parameters <strong>on</strong>ly a few e + e −<br />

pairs per shot produced <strong>in</strong> the multiphot<strong>on</strong> Breit-Wheeler<br />

reacti<strong>on</strong><br />

γh +n·γL → e + e −<br />

(15)<br />

For our field strength characterized by a≈1000 and electr<strong>on</strong><br />

energies with γe ≈1200, the pair creati<strong>on</strong> is still<br />

marg<strong>in</strong>al. Exp<strong>on</strong>entially <strong>in</strong>creas<strong>in</strong>g QED cascades [14] are<br />

expected <strong>on</strong>ly for higher laser field strengths. Still these<br />

measurements will present a str<strong>on</strong>g test <str<strong>on</strong>g>of</str<strong>on</strong>g> the new highfield<br />

pair creati<strong>on</strong> simulati<strong>on</strong>s.<br />

The spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s may also be used to align the<br />

two laser pulses and the electr<strong>on</strong> bunch properly <strong>in</strong> space<br />

and time, because the deflecti<strong>on</strong>, accelerati<strong>on</strong> or decelerati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s depend sensitively <strong>on</strong> the comb<strong>in</strong>ed<br />

fields <str<strong>on</strong>g>of</str<strong>on</strong>g> the two lasers. The electr<strong>on</strong>s also probe the outer<br />

fr<strong>in</strong>ge fields <str<strong>on</strong>g>of</str<strong>on</strong>g> the lasers.<br />

Thus we hereby use the high-field laser focus <strong>in</strong> two<br />

functi<strong>on</strong>s at the same time: (1) to generate the high-energy<br />

γ-quanta and (2) to <strong>in</strong>duce their pair decay.<br />

SIMULATIONS<br />

For the f<strong>in</strong>al comparis<strong>on</strong> between experiment and simulati<strong>on</strong><br />

we need the precise parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser focus and<br />

the electr<strong>on</strong> bunch. We not <strong>on</strong>ly have to describe the highfield<br />

laser <strong>in</strong>teracti<strong>on</strong> for the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high-energyγquanta<br />

and e + e − pairs properly, but also the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the electr<strong>on</strong>s <strong>in</strong> the laser field like accelerati<strong>on</strong>, decelerati<strong>on</strong><br />

and the moti<strong>on</strong> <strong>in</strong> the p<strong>on</strong>deromotive potential. At


1<br />

, MεV<br />

§<br />

dN/d¦<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

¨<br />

created ε +<br />

primary ε ©<br />

10 0 200 400 600 800 1000<br />

e ¤ ¥ , , ¤ MεV<br />

0<br />

Figure 4: Simulated spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> generated γ-quanta,<br />

positr<strong>on</strong>s and electr<strong>on</strong>s for a focus with a rotat<strong>in</strong>g E field<br />

and10 24 W/cm 2 and a 600 MeV electr<strong>on</strong> bunch.<br />

present we performed first order calculati<strong>on</strong>s, which give<br />

us the ma<strong>in</strong> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> the high energy γ-quanta, electr<strong>on</strong>s<br />

and positr<strong>on</strong>s to design the spectrometers. In M<strong>on</strong>te Carlo<br />

computer simulati<strong>on</strong>s, solv<strong>in</strong>g the transport equati<strong>on</strong>s for<br />

the high-field laser <strong>in</strong>teracti<strong>on</strong> us<strong>in</strong>g Landau-Lifshitz-like<br />

forces or quantal <strong>in</strong>teracti<strong>on</strong>s [7, 10, 9], we obta<strong>in</strong>ed our<br />

predicti<strong>on</strong>s. We estimate about 2 electr<strong>on</strong>-positr<strong>on</strong> pairs<br />

per laser shot and about Nγ=20 high-energy phot<strong>on</strong>s per<br />

shot. Fig. 3 shows the str<strong>on</strong>g exp<strong>on</strong>ential <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> pairs with the normalized vector potentialaand<br />

the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser pulse. It dem<strong>on</strong>strates that we are<br />

just start<strong>in</strong>g to see positr<strong>on</strong>s and that a small improvement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the parameters will lead us <strong>in</strong> the QED cascade regime.<br />

In Fig. 4 <strong>on</strong> sees the exp<strong>on</strong>entially decreas<strong>in</strong>gγ-spectrum,<br />

reach<strong>in</strong>g up to 600 MeV. The high-energy γ-quanta then<br />

lead to the e + e − producti<strong>on</strong>. The electr<strong>on</strong> and positr<strong>on</strong><br />

spectra show, that they are accelerated <strong>in</strong> the rotat<strong>in</strong>g field,<br />

but at the same timeγ-emissi<strong>on</strong> results <strong>in</strong> lower energies.<br />

COMPARISON WITH THE E144 SLAC<br />

EXPERIMENT ON HIGHγ-PRODUCTION<br />

AND PAIR CREATION<br />

The high-field theory will be tested <strong>in</strong> the ELI-NP experiment,<br />

which is very different from the E144 SLAC experiment<br />

[12, 13]. In both experiments the dom<strong>in</strong>ant process<br />

for pair creati<strong>on</strong> is a two-step process, where an electr<strong>on</strong><br />

first produces a high-energy γ-quantum <strong>in</strong> the laser<br />

field and <strong>in</strong> the sec<strong>on</strong>d step via a Breit-Wheeler reacti<strong>on</strong><br />

the high energyγ-quantum is c<strong>on</strong>verted <strong>in</strong>to ane + e − pair.<br />

In Table 1 we compare the parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the two experiments.<br />

While the laser <strong>in</strong>tensity <strong>in</strong> the SLAC experiment<br />

was 1.3 · 10 18 W/cm 2 , we expect to have ≈ 10 24 W/cm 2<br />

and coresp<strong>on</strong>d<strong>in</strong>gly the normalized vector amplitude <strong>in</strong> the<br />

SLAC experiment was a = 0.36, while we will have a<br />

much larger value <str<strong>on</strong>g>of</str<strong>on</strong>g> a = 1000. Our laser field c<strong>on</strong>fig-<br />

urati<strong>on</strong> can be chosen very flexibly with the two Lorentz<br />

<strong>in</strong>variantsF andG, while <strong>in</strong> the SLAC case <strong>on</strong>ly <strong>on</strong>e laser<br />

beam with crossed E and B fields and F=0 was used. On<br />

the other hand, <strong>in</strong> the SLAC experiment much more highenergetic<br />

electr<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 46.6 GeV were used, while we will<br />

have <strong>on</strong>ly 0.6 GeV. For many c<strong>on</strong>siderati<strong>on</strong>s aga<strong>in</strong> <strong>on</strong>ly<br />

the Lorentz-<strong>in</strong>variant quantities χe and χγ are important.<br />

While <strong>in</strong> the SLAC experiment the produced high-energy<br />

γ-quanta had about 30 GeV, <strong>in</strong> the ELI-NP case we will<br />

have <strong>on</strong>ly quanta below 600 MeV. Theχvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> the ELI-<br />

NP experiment are larger and thus the creati<strong>on</strong> times for<br />

new particles are shorter. While the number <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s<br />

<strong>in</strong> the accelerated bunch is similar, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s<br />

reach<strong>in</strong>g the high-field laser <strong>in</strong>teracti<strong>on</strong> <strong>in</strong> the ELI-NP experiment<br />

will be a factor <str<strong>on</strong>g>of</str<strong>on</strong>g>10 4 smaller.<br />

Table 1: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the ELI-NP and<br />

E144 SLAC experiments [12]<br />

parameter ELI-NP E144 SLAC<br />

norm. vec. potent. a 1000 0.36<br />

laser <strong>in</strong>tensity ≈ 10 24 W/cm 2 1.3·10 18 W/cm 2<br />

laser width 15 fs 1600 fs<br />

σx ≈ 1µm 25µm<br />

σy ≈ 1µm 40µm<br />

Ee 0.6 GeV 46.6 GeV<br />

Ne 1.5·10 9 e 7·10 9<br />

repetiti<strong>on</strong> rate 0.02 Hz 10-20 Hz<br />

χe 1.7 0.3<br />

χγ ≈1 0.2<br />

phot<strong>on</strong>s absorbed<br />

<strong>in</strong> pair cr. npair ≈ 10 9 ≈ 5<br />

CONCLUSIONS AND OUTLOOK<br />

We are prepar<strong>in</strong>g for a very <strong>in</strong>tense laser focus <strong>in</strong> vacuum<br />

at ELI-NP with a large freedom to choose the <strong>in</strong>variant<br />

field parameters. Furthermore, we require very good<br />

vacum <strong>in</strong> the surround<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser focus us<strong>in</strong>g cryopump<strong>in</strong>g.<br />

Thus this setup will represent an ideal laboratory<br />

for prob<strong>in</strong>g the real and imag<strong>in</strong>ary part <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum<br />

<strong>in</strong> high laser fields. In additi<strong>on</strong>, we will add a very brilliant,<br />

<strong>in</strong>tense high-energy electr<strong>on</strong> beam and a brilliant polarized<br />

high-energyγ-beam for seed<strong>in</strong>g the high-field laservacuum<br />

<strong>in</strong>teracti<strong>on</strong>. Thus all comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> QED cascades<br />

[14] can be probed <strong>in</strong>dividually <strong>in</strong> order to test theoretical<br />

predicti<strong>on</strong>s. We may even improve the high-energyγ spectrum<br />

from its exp<strong>on</strong>ential shape to a spectrum with more <strong>in</strong>tensity<br />

at higher energies, by modulat<strong>in</strong>g the electr<strong>on</strong> density<br />

and electr<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the large bunch <strong>in</strong> the 100 fs<br />

range, before the 15 fs high field <strong>in</strong>teracti<strong>on</strong> occurs.


ACKNOWLEDGMENTS<br />

This work is based <strong>on</strong> <strong>in</strong>tensive discussi<strong>on</strong>s with H. Gies,<br />

R. Schützhold, T. He<strong>in</strong>zl, T. Tajima ans Z. Zamfir. It<br />

was supported by the DFG Cluster <str<strong>on</strong>g>of</str<strong>on</strong>g> Excellence MAP<br />

(Munich-Center for Advanced Phot<strong>on</strong>ics).<br />

REFERENCES<br />

[1] http://www.extreme-light-<strong>in</strong>frastructure.eu/.<br />

[2] <strong>Physics</strong> Today, June 2010, p. 20.<br />

[3] http:/www.eli-np.ro/excecutive committee-meet<strong>in</strong>g-april12-<br />

13.php (2010).<br />

[4] J. Schw<strong>in</strong>ger, Phys. Rev. 82, 664 (1951)<br />

[5] C. Barty et al., Development <str<strong>on</strong>g>of</str<strong>on</strong>g> MEGa-Ray technology at<br />

LLNL: http:/www.eli-np.ro/executive committee-meet<strong>in</strong>gapril-12-13.php<br />

(2010).<br />

[6] R. Schützhold et al., Phys. Rev. Lett. 101, 130404 (2008).<br />

G.V. Dunne et al., Phys. Rev. D 80, 111301(R) (2009).<br />

[7] A.I. Nikishov, and V.I. Ritus, Sov. Phys. JETP 19, 529<br />

(1964), JETP 25, 1135 (1967).<br />

[8] L.D. Landau and E.M. Lifschitz, Klassische Feldtheorie,<br />

Chapt. 76.<br />

[9] N.V. Elk<strong>in</strong>a et al., arXiv:1010.4528v1 21okt (2010).<br />

[10] N. Elk<strong>in</strong>a and H. Ruhl, c<strong>on</strong>tributi<strong>on</strong> to the PIF2010 c<strong>on</strong>ference.<br />

[11] J.P. Chambaret, The Extreme Light Infrastructure Project<br />

ELI and its Prototype APOLLON/ILE “the associated laser<br />

bottlenecks”, LEI <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g>, Brasov, Romania, Oct.16-21,<br />

2009<br />

[12] D.L. Burke et la., Phys. Rev. Lett. 79, 1626 (1997).<br />

[13] C. Bula et al., Phys. Rev. Lett., 76, 3116 (1996).<br />

[14] A.R. Bell and J.G Kirk., Phys. Rev. Lett. 101, 200403<br />

(2008).<br />

J.G. Kirk et al., Plasma Phys. C<strong>on</strong>trol. Fus., 51, 085008<br />

(2009).<br />

[15] N.B. Narozhnyi, Sov. Phys. JETP 27, 360 (1968).<br />

[16] V.N. Baier et al., arXiv:0912.5250v1[hep-ph] (2010).


Abstract<br />

Numerical simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QED cascades <strong>in</strong> <strong>in</strong>tense laser fields ∗<br />

Due to the dramatic progress <strong>in</strong> laser technology [1] a<br />

novel area <str<strong>on</strong>g>of</str<strong>on</strong>g> laser-matter <strong>in</strong>teracti<strong>on</strong> at ultra-high <strong>in</strong>tensity<br />

is aris<strong>in</strong>g. The Extreme Light Infrastructure project<br />

(ELI) [2] is aim<strong>in</strong>g at gett<strong>in</strong>g access to <strong>in</strong>tensity levels up to<br />

10 26 W/cm 2 . Therefore it is timely to <strong>in</strong>vestigate the structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the QED vacuum and the <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charged<br />

particles with extreme fields. In particular, cascades <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electr<strong>on</strong>s, positr<strong>on</strong>s, and phot<strong>on</strong>s may arise limit<strong>in</strong>g the <strong>in</strong>crease<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the laser <strong>in</strong>tensity bey<strong>on</strong>d a given threshold due<br />

to the depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser. In additi<strong>on</strong>, it is found that the<br />

super-<strong>in</strong>tense laser field is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> restor<strong>in</strong>g the energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and positr<strong>on</strong>s and the dynamical quantum efficiency<br />

parameter by efficient accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and<br />

positr<strong>on</strong>s <strong>in</strong> the laser field. This novel restorati<strong>on</strong> effect<br />

may become a dom<strong>in</strong>at<strong>in</strong>g feature <str<strong>on</strong>g>of</str<strong>on</strong>g> laser-matter <strong>in</strong>teracti<strong>on</strong><br />

at ultra-high <strong>in</strong>tensities. In the present paper we report<br />

about the current status our simulati<strong>on</strong> framework based <strong>on</strong><br />

semi-classical transport equati<strong>on</strong>s for electr<strong>on</strong>s, positr<strong>on</strong>s<br />

and phot<strong>on</strong>s.<br />

INTRODUCTION<br />

The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the present c<strong>on</strong>tributi<strong>on</strong> is to present<br />

the current status <str<strong>on</strong>g>of</str<strong>on</strong>g> our simulati<strong>on</strong> code capable <str<strong>on</strong>g>of</str<strong>on</strong>g> model<strong>in</strong>g<br />

new physical phenomena at ultra-high laser fields<br />

(I ≥ 10 24 W/cm 2 ) as they will be available <strong>in</strong> the<br />

near future (ELI). The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g electromagnetic<br />

fields reveals a range <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum electrodynamic effects,<br />

which may significantly change the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> relativistic<br />

plasma. At laser <strong>in</strong>tensities <strong>in</strong> excess <str<strong>on</strong>g>of</str<strong>on</strong>g> I ≥ 10 24 W/cm 2<br />

n<strong>on</strong>-classical effects like radiati<strong>on</strong> reacti<strong>on</strong>, vacuum polarizati<strong>on</strong>,<br />

and electr<strong>on</strong>-positr<strong>on</strong> pair creati<strong>on</strong> due to cascad<strong>in</strong>g<br />

become important and ultimately dom<strong>in</strong>ant. Due to the<br />

ubiquitous complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>teracti<strong>on</strong> at ultra-high fields<br />

simulati<strong>on</strong>s will have crucial importance. A c<strong>on</strong>certed research<br />

effort will be required because c<strong>on</strong>venti<strong>on</strong>al plasma<br />

model<strong>in</strong>g techniques, while adequate for classical laserplasma<br />

<strong>in</strong>teracti<strong>on</strong> or very small numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> particles, cannot<br />

access the length and time scales relevant to illumnate<br />

the real structure and dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g field QED.<br />

The paper is organized as follows. First we review and<br />

outl<strong>in</strong>e elementary quantum processes used <strong>in</strong> our code.<br />

They are s<strong>in</strong>gle phot<strong>on</strong> emissi<strong>on</strong> by electr<strong>on</strong>s and positr<strong>on</strong>s<br />

and pair creati<strong>on</strong> by hard phot<strong>on</strong>s <strong>in</strong> str<strong>on</strong>g laser fields<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> arbitrary c<strong>on</strong>figurati<strong>on</strong>. Next we proceed with stat<strong>in</strong>g<br />

appropriate k<strong>in</strong>etic equati<strong>on</strong>s, which <strong>in</strong>clude elementary<br />

quantum processes. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> high <strong>in</strong>tensity laser<br />

∗ This work was supported by DFG project RU-633/1-1 and the<br />

Cluster-<str<strong>on</strong>g>of</str<strong>on</strong>g>-Excellence ’Munich Centre for Advance Phot<strong>on</strong>ics’ (MAP)<br />

N. Elk<strong>in</strong>a and H. Ruhl<br />

LMU München<br />

fields allows a semiclassical approach for the descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the particle moti<strong>on</strong> <strong>in</strong> electromagnetic fields. This leads<br />

to the formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> semi-classical transport equati<strong>on</strong>s. As<br />

a first step for the <strong>in</strong>corporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>l<strong>in</strong>ear QED effects<br />

<strong>in</strong>to the model<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-positr<strong>on</strong>-phot<strong>on</strong> plasma we<br />

state a set <str<strong>on</strong>g>of</str<strong>on</strong>g> k<strong>in</strong>etic equati<strong>on</strong>s to describe QED effects. The<br />

k<strong>in</strong>etic equati<strong>on</strong>s can be reformulated as a set <str<strong>on</strong>g>of</str<strong>on</strong>g> moment<br />

equati<strong>on</strong>s for quasi-elements. S<strong>in</strong>ce phase space can grow<br />

rapidly <strong>in</strong> ultra-str<strong>on</strong>g fields adaptive management <str<strong>on</strong>g>of</str<strong>on</strong>g> phase<br />

space by adaptive weights for quasi-elements has to be <strong>in</strong>troduced<br />

<strong>in</strong> order to keep the required resoluti<strong>on</strong> <strong>in</strong> phase<br />

space. Next we present results <str<strong>on</strong>g>of</str<strong>on</strong>g> prelim<strong>in</strong>ary simulati<strong>on</strong>s<br />

<strong>in</strong> order to illustrate the power <str<strong>on</strong>g>of</str<strong>on</strong>g> our numerical approach.<br />

F<strong>in</strong>ally a short c<strong>on</strong>clusi<strong>on</strong> is given.<br />

ELEMENTARY QED EFFECTS IN<br />

STRONG LASER FIELDS<br />

The process <str<strong>on</strong>g>of</str<strong>on</strong>g> cascad<strong>in</strong>g can be represented by two<br />

coupled processes <str<strong>on</strong>g>of</str<strong>on</strong>g> hard phot<strong>on</strong> emissi<strong>on</strong> and pair producti<strong>on</strong><br />

via the absorbti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n ”s<str<strong>on</strong>g>of</str<strong>on</strong>g>t” phot<strong>on</strong>s (<str<strong>on</strong>g>of</str<strong>on</strong>g> energy<br />

¯hω ∼ 1 eV) from the laser field<br />

e ± + n¯hωl → γ + e ± , (1)<br />

γ + n¯hωl → e + + e − . (2)<br />

The created charged particles are ultra-relativistic (γ ≫<br />

1) and are exposed to electromagnetic fields <str<strong>on</strong>g>of</str<strong>on</strong>g> ultrarelativistic<br />

(a0 ≫ 1, χ ∼ 1) but still sub-critical (F ≪ ES)<br />

<strong>in</strong>tensities, where F = √ F µν √<br />

Fµν = ⃗E 2 − B⃗ 2 . The en-<br />

ergy <str<strong>on</strong>g>of</str<strong>on</strong>g> hard phot<strong>on</strong>s <strong>in</strong> the simulati<strong>on</strong>s are assumed to be <strong>in</strong><br />

the range <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯hω > mc 2 . The theoretical approach used <strong>in</strong><br />

this work is based <strong>on</strong> the fact that <strong>in</strong> the rest frame <str<strong>on</strong>g>of</str<strong>on</strong>g> highly<br />

relativistic charged particles any field can be c<strong>on</strong>sidered as<br />

c<strong>on</strong>stant and crossed. This implies that E 2 − H 2 ≈ 0 and<br />

⃗E · ⃗ H ≈ 0. C<strong>on</strong>stant crossed fields can be derived from<br />

a vector potential <str<strong>on</strong>g>of</str<strong>on</strong>g> the k<strong>in</strong>d A µ = a µ k · x, where a µ is<br />

a c<strong>on</strong>stant polarizati<strong>on</strong> vector. The functi<strong>on</strong>al form for the<br />

vector potential <str<strong>on</strong>g>of</str<strong>on</strong>g> a plane wave is A µ = a µ (k · x), where<br />

a µ would now be a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> k·x. The appropriate transiti<strong>on</strong><br />

amplitudes <strong>on</strong> a tree level are calculated with the help<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Volkov soluti<strong>on</strong>s for the fermi<strong>on</strong>s [4]. However, for c<strong>on</strong>stant<br />

crossed fields <strong>on</strong>e better makes use <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Dirac equati<strong>on</strong> for a c<strong>on</strong>stant external magnetic field,<br />

s<strong>in</strong>ce any c<strong>on</strong>stant crossed field can be transformed <strong>in</strong>to<br />

a pure magnetic field <strong>in</strong> an appropriate reference frame.<br />

Radiati<strong>on</strong> emissi<strong>on</strong> by electr<strong>on</strong>s or positr<strong>on</strong>s <strong>in</strong> a c<strong>on</strong>stant<br />

magnetic field is naturally c<strong>on</strong>troled by the dimensi<strong>on</strong>less<br />

parameter B⊥ϵ/(mEs), where B⊥ is the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

external magnetic field normal to the particle momentum,


ϵ is the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle, m is the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle,<br />

and Es = m2 /(e¯h) is the Schw<strong>in</strong>ger field. This<br />

can be understood by observ<strong>in</strong>g that the peak <str<strong>on</strong>g>of</str<strong>on</strong>g> the emitted<br />

radiati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> an energetic electr<strong>on</strong> <strong>in</strong> a c<strong>on</strong>stant<br />

magnetic field versus its energy is approximately given by<br />

(¯hω0/ϵ) (ϵ/m) 3 = B⊥ϵ/(mEs), where ω0 = eB⊥/ϵ.<br />

Further details can be found <strong>in</strong> [5]. In the lab frame this<br />

parameter becomes the quantum efficiency parameters χ<br />

χ = e¯h<br />

√<br />

− (F µν pν) 2<br />

m3 , (3)<br />

where pν is the electr<strong>on</strong> or positr<strong>on</strong> 4-momentum. In the<br />

classical radiati<strong>on</strong> realm the emitted phot<strong>on</strong> energies are<br />

much smaller than the charged particle energy. Hence,<br />

χ ≪ 1 holds. In the quantum realm χ ≫ 1 is valid. The<br />

transiti<strong>on</strong> rate for radiati<strong>on</strong> emissi<strong>on</strong> depends <strong>on</strong> a sec<strong>on</strong>d<br />

quantum parameter κ given by<br />

κ = e¯h<br />

√<br />

− (F µν kν) 2<br />

m3 , (4)<br />

where kν is the phot<strong>on</strong> 4-momentum. The angle <strong>in</strong>tegrated<br />

transiti<strong>on</strong> rate for phot<strong>on</strong> emissi<strong>on</strong> is<br />

where<br />

dWγ<br />

dω<br />

(∫ ∞<br />

m2<br />

= −α<br />

ϵ2 dz Ai(z) (5)<br />

x<br />

[<br />

2<br />

+<br />

x + κ √ ] )<br />

x ∂zAi(x) ,<br />

[<br />

κ<br />

x =<br />

χ (χ − κ)<br />

] 2<br />

3<br />

, 0 ≤ κ < χ . (6)<br />

The rate holds for radiati<strong>on</strong> emissi<strong>on</strong> by electr<strong>on</strong>s or<br />

positr<strong>on</strong>s. In the simulati<strong>on</strong>s we assume that<br />

′<br />

⃗k = ⃗p + ⃗p (7)<br />

holds for the momenta. For the energy balance we f<strong>in</strong>d<br />

q + ω = ϵ ′<br />

+ ϵ . (8)<br />

Mak<strong>in</strong>g use <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqns. (7) and (8) the energy taken from the<br />

external laser field is<br />

q =<br />

√<br />

ϵ 2 + 2ωϵ ′ (1 − v ′ cos θ) − ϵ ,<br />

where θ is the angle between the emitted phot<strong>on</strong> and the<br />

outgo<strong>in</strong>g electr<strong>on</strong> or positr<strong>on</strong> ⃗p ′<br />

and v ′<br />

= |⃗p ′<br />

|/ϵ ′<br />

is the<br />

velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> or positr<strong>on</strong> after the radiati<strong>on</strong> process.<br />

For electr<strong>on</strong>s or positr<strong>on</strong>s reta<strong>in</strong><strong>in</strong>g large momenta ⃗p ′<br />

al<strong>on</strong>g ⃗k after the emissi<strong>on</strong> process v ′<br />

cos θ ≈ 1 holds. The<br />

external field has to deliver <strong>on</strong>ly little energy, q ≈ 0, <strong>in</strong> that<br />

case. Given the electr<strong>on</strong> or positr<strong>on</strong> 4-momentum and the<br />

external field c<strong>on</strong>text χ can be calculated. In a sec<strong>on</strong>d step<br />

κ is obta<strong>in</strong>ed for permissible phot<strong>on</strong> emissi<strong>on</strong> and hence x.<br />

With the help <str<strong>on</strong>g>of</str<strong>on</strong>g> the cross<strong>in</strong>g symmetry the angle <strong>in</strong>tegrated<br />

transiti<strong>on</strong> rate for e + e−-pair creati<strong>on</strong> is given by<br />

where<br />

dW e + e −<br />

dϵ−<br />

= α m2<br />

ω2 (∫ ∞<br />

y<br />

+<br />

[<br />

κ<br />

y =<br />

χ (κ − χ)<br />

[<br />

2<br />

y − κ √ ]<br />

y<br />

] 2<br />

3<br />

dz Ai(z) (9)<br />

)<br />

∂zAi(y) ,<br />

, 0 ≤ χ < κ . (10)<br />

The follow<strong>in</strong>g k<strong>in</strong>ematic relati<strong>on</strong>s are used when pairs are<br />

created<br />

⃗ k = ⃗p+ + ⃗p− , (11)<br />

q + ω = ϵ+ + ϵ− . (12)<br />

Mak<strong>in</strong>g use <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqns. (11) and (12) the energy taken from<br />

the external laser field is<br />

√<br />

q = ϵ2 − + 2ωϵ+ (1 − v+ cos θ) − ϵ− ,<br />

where θ is the angle between the phot<strong>on</strong> and the emitted<br />

positr<strong>on</strong>, and v+ = |⃗p+|/ϵ+ is the velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the positr<strong>on</strong>.<br />

Given a phot<strong>on</strong> 4-vector and the field c<strong>on</strong>text κ can be obta<strong>in</strong>ed.<br />

Next it is possible to calculate χ for any permissible<br />

electr<strong>on</strong> energy and hence y.<br />

If χ and κ are large enough we f<strong>in</strong>d that phot<strong>on</strong>s generate<br />

electr<strong>on</strong>s and positr<strong>on</strong>s and the latter aga<strong>in</strong> phot<strong>on</strong>s.<br />

The cha<strong>in</strong> process leads to exp<strong>on</strong>ential growth <str<strong>on</strong>g>of</str<strong>on</strong>g> particles<br />

<strong>in</strong> the simulati<strong>on</strong>. The soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the underly<strong>in</strong>g transport<br />

equati<strong>on</strong>s for uniform circular polarized light is approximately<br />

N e + e −(t) = N e + e −(0) e Γ t , (13)<br />

where the growth rate Γ can be estimated as<br />

Γ = α µ 1<br />

√<br />

m ω c2 4 ,<br />

¯h<br />

µ = E<br />

.<br />

α Es<br />

(14)<br />

Here E is the external field.<br />

Quantum efficiency becomes very large <strong>in</strong> circular<br />

purely electric fields. Hence we c<strong>on</strong>sider two counterpropagat<strong>in</strong>g<br />

circular laser beams <strong>in</strong> the center <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

there is a rotat<strong>in</strong>g electric field. Figure 1 shows the situati<strong>on</strong><br />

and the simulati<strong>on</strong> results. Al<strong>on</strong>g the purple l<strong>in</strong>e electr<strong>on</strong>s<br />

are <strong>in</strong>jected <strong>in</strong>to the laser focus at 600 MeV. Red and<br />

green l<strong>in</strong>es represent sec<strong>on</strong>dary electr<strong>on</strong>s and positr<strong>on</strong>s. As<br />

a ma<strong>in</strong> result we f<strong>in</strong>d that the mean energy per particles is<br />

not decreas<strong>in</strong>g <strong>in</strong> the course <str<strong>on</strong>g>of</str<strong>on</strong>g> the cascade development.<br />

The c<strong>on</strong>trary could be expected s<strong>in</strong>ce the number <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary<br />

particles grows exp<strong>on</strong>entially. The f<strong>in</strong>d<strong>in</strong>g implies<br />

enhanced energy depositi<strong>on</strong>. In fact, the empirical observati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> almost c<strong>on</strong>stant mean energy per particle represents<br />

exp<strong>on</strong>entially grow<strong>in</strong>g energy depositi<strong>on</strong> <strong>in</strong> the evolv<strong>in</strong>g<br />

plasma.


Figure 1: Cascad<strong>in</strong>g <strong>in</strong> a laser focus at I = 3 · 10 24 W/cm 2<br />

<strong>in</strong>itiated by primary electr<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> energy ε = 600 MeV <strong>in</strong>jected<br />

<strong>in</strong>to the laser focus. The multiplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles<br />

is about 2.5, which represents the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-l<strong>in</strong>ear<br />

QED <strong>in</strong> the laser-focus.<br />

KINETIC SIMULATION OF THE QED<br />

PLASMA<br />

Relevant processes <strong>in</strong> ultra-<strong>in</strong>tense laser fields are the<br />

generati<strong>on</strong> and annihilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s dur<strong>in</strong>g the <strong>in</strong>teracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the laser with electr<strong>on</strong>s and positr<strong>on</strong>s and e + e−-pair creati<strong>on</strong> with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser and exist<strong>in</strong>g phot<strong>on</strong>s. Appropriate<br />

transport equati<strong>on</strong>s can be formulated. They are<br />

solved with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> the quasi-elements.<br />

Neglect<strong>in</strong>g higher order effects as the annihilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pairs and classical radiati<strong>on</strong> reacti<strong>on</strong> a system c<strong>on</strong>sist<strong>in</strong>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s, positr<strong>on</strong>s, and radiati<strong>on</strong> can be described by<br />

transport equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the follow<strong>in</strong>g k<strong>in</strong>d<br />

(<br />

∂t + ⃗v · ∂⃗x ± ⃗ )<br />

F · ∂⃗p f±(⃗x, ⃗p, t) (15)<br />

∫<br />

=<br />

ω>ω0 ∫<br />

−f±(⃗x, ⃗p, t)<br />

∫<br />

+<br />

d 3 k W ⃗ E, ⃗ B<br />

γ ( ⃗k, ⃗p + ⃗k) f±(⃗x, ⃗p + ⃗k, t)<br />

ω>ω0<br />

ω>ω0<br />

where ⃗ ( )<br />

F = |e| ⃗E + ⃗v × B⃗<br />

d 3 k W ⃗ E, ⃗ B<br />

γ ( ⃗k, ⃗p)<br />

d 3 k W ⃗ E, ⃗ B<br />

e + e −( ⃗ k, ⃗p) fγ(⃗x, ⃗ k, t) ,<br />

is the Lorentz force and<br />

(<br />

∂t + ∂ω<br />

∂⃗ )<br />

· ∂⃗x fγ(⃗x,<br />

k ⃗k, t) (16)<br />

∫<br />

= d 3 p W ⃗ E, ⃗ B<br />

γ ( ⃗k, ⃗p) [f+(⃗x, ⃗p, t) + f−(⃗x, ⃗p, t)]<br />

−fγ(⃗x, ⃗ ∫<br />

k, t)<br />

d 3 p W ⃗ E, ⃗ B<br />

e + e −( ⃗ k, ⃗p) ,<br />

which for ω < ω0 have to be coupled to Maxwell’s equa-<br />

ti<strong>on</strong>s with the current<br />

∫<br />

⃗j(⃗x, t) = e d 3 p ⃗v [f+(⃗x, ⃗p, t) − f−(⃗x, ⃗p, t)] . (17)<br />

It has to be made sure that radiati<strong>on</strong> stored <strong>in</strong> ⃗ E, ⃗ B and<br />

fγ does not lead to double count<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong>, hence the<br />

ω > ω0 threshold.<br />

S<str<strong>on</strong>g>of</str<strong>on</strong>g>t phot<strong>on</strong>s are described classically by means <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Maxwell equati<strong>on</strong>s for the electromagnetic fields<br />

1 ∂<br />

c<br />

⃗ E<br />

∂t = ∇ × ⃗ B − 4π ∑<br />

∫<br />

⃗p±<br />

q±<br />

c mγ f±d⃗p , (18)<br />

− 1 ∂<br />

c<br />

⃗ B<br />

∂t = ∇ × ⃗ E , (19)<br />

∇ · ⃗ E = −4π ∑ ∫<br />

q± f±d⃗p , (20)<br />

∇ · ⃗ B = 0 . (21)<br />

The complete set <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s with the discussed restricti<strong>on</strong>s<br />

can be solved for <strong>in</strong>tensities I ≥ 10 24 W/cm 2 , which<br />

are planned for ELI. For illustrati<strong>on</strong> a simulati<strong>on</strong> setup is<br />

shown <strong>in</strong> Figure 1, where the cascade is <strong>in</strong>itiated by an electr<strong>on</strong><br />

beam <str<strong>on</strong>g>of</str<strong>on</strong>g> energy ε = 600 MeV collid<strong>in</strong>g with a focused<br />

laser field <str<strong>on</strong>g>of</str<strong>on</strong>g> two circularly polarized counter-propagat<strong>in</strong>g<br />

Gaussian laser beams. The observed multiplicity is about<br />

2.5.<br />

EVENT GENERATOR<br />

To solve the transport equati<strong>on</strong>s we make use <str<strong>on</strong>g>of</str<strong>on</strong>g> an extended<br />

versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Particle-In-Cell (PIC) method [6].<br />

The PIC method samples the phase space with a f<strong>in</strong>ite number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-particles and proceeds by <strong>in</strong>tegrat<strong>in</strong>g k<strong>in</strong>etic<br />

equati<strong>on</strong>s <strong>in</strong> time by advanc<strong>in</strong>g quasi-particles al<strong>on</strong>g their<br />

characteristics with<strong>in</strong> phase space.<br />

We trace the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-electr<strong>on</strong>s and quasipositr<strong>on</strong>s<br />

<strong>in</strong> momentum and coord<strong>in</strong>ate space, whereas for<br />

hard phot<strong>on</strong>s we utilize the ray trac<strong>in</strong>g approximati<strong>on</strong>. Our<br />

numerical algorithm works as follows: At each time step<br />

tn = n ∆t we advance the positi<strong>on</strong>s and momenta <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

the particles present <strong>in</strong> the simulati<strong>on</strong> box by solv<strong>in</strong>g their<br />

equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. With the help <str<strong>on</strong>g>of</str<strong>on</strong>g> the event generator<br />

we check if an electr<strong>on</strong> or a positr<strong>on</strong> is go<strong>in</strong>g to emit a phot<strong>on</strong><br />

between tn < t < tn + ∆t and if any <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong>s<br />

present is go<strong>in</strong>g to produce a pair. With the help <str<strong>on</strong>g>of</str<strong>on</strong>g> ⃗p n and<br />

⃗E n at tn the efficiency parameter χ n is evaluated. Next<br />

the total transiti<strong>on</strong> probability Wγ is computed. In order<br />

to remove the <strong>in</strong>frared divergencies we restrict the <strong>in</strong>tegrati<strong>on</strong>s<br />

over phot<strong>on</strong>s to k0 > ε <strong>in</strong> the transport equati<strong>on</strong>s.<br />

We assume that electr<strong>on</strong>s or positr<strong>on</strong>s present <strong>in</strong> the simulati<strong>on</strong><br />

box emit a phot<strong>on</strong> between tn < t < tn + ∆t if<br />

Wγ ∆t < r, where 0 ≤ r < 1 is a uniformly distributed<br />

random number. If the above <strong>in</strong>equality is fulfilled the energy<br />

εγ = ¯hωγ <str<strong>on</strong>g>of</str<strong>on</strong>g> the emitted phot<strong>on</strong> is obta<strong>in</strong>ed as a root


<str<strong>on</strong>g>of</str<strong>on</strong>g> the sampl<strong>in</strong>g equati<strong>on</strong><br />

1<br />

εγ ∫<br />

Wγ<br />

ε0<br />

dWγ(εγ)<br />

dεγ = r<br />

dεγ<br />

′ , (22)<br />

where 0 ≤ r ′ < 1 is a sec<strong>on</strong>d random number. The directi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the newly emitted phot<strong>on</strong> is assumed<br />

to be parallel to the ⃗p n <str<strong>on</strong>g>of</str<strong>on</strong>g> the emitt<strong>in</strong>g electr<strong>on</strong> or positr<strong>on</strong>.<br />

Their momenta after emissi<strong>on</strong> are found from the c<strong>on</strong>servati<strong>on</strong><br />

laws. For pair creati<strong>on</strong> the event generator works<br />

the same way apart from the regularizati<strong>on</strong> parameter ε0,<br />

which is not needed <strong>in</strong> this case.<br />

ADAPTIVE MANAGEMENT METHOD<br />

FOR QUASIPARTICLES<br />

In ultra-<strong>in</strong>tense laser fields the number <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-elements<br />

Npart cannot be c<strong>on</strong>sidered c<strong>on</strong>stant. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particle<br />

number depends critically <strong>on</strong> the laser and seed particle<br />

parameters. Seed particles can be electr<strong>on</strong>s, positr<strong>on</strong>s,<br />

and phot<strong>on</strong>s. The c<strong>on</strong>trol parameters are the quantum efficiency<br />

parameters χ and κ. The qualitative threshold for<br />

the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> cascad<strong>in</strong>g is χ ∼ κ ∼ 1. At those c<strong>on</strong>diti<strong>on</strong>s<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles grows exp<strong>on</strong>entially. In<br />

order to handle exp<strong>on</strong>ential grows with a limited number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-particles we implement a new techniques <str<strong>on</strong>g>of</str<strong>on</strong>g> ref<strong>in</strong>ement/coarsen<strong>in</strong>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phase space represented by quasiparticles.<br />

Our approach to keep phase space adequately resolved<br />

c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two basic algorithms for particle splitt<strong>in</strong>g<br />

and merg<strong>in</strong>g.<br />

Splitt<strong>in</strong>g<br />

Splitt<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-particles is straightforward. The splitted<br />

quasi-particle’s weight, momentum and energy are the<br />

sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the same quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> the result<strong>in</strong>g smaller quasiparticles.<br />

Particle splitt<strong>in</strong>g is used to <strong>in</strong>crease the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quasi-particles per computati<strong>on</strong>al cell. Quasi-particles are<br />

split <strong>in</strong>to two equal smaller quasi-particles. The momenta<br />

and/or positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the produced quasi-particles should be<br />

slightly different from each other <strong>in</strong> order to reach better<br />

statistical sampl<strong>in</strong>g. This approach is probably not the most<br />

accurate <strong>on</strong>e but c<strong>on</strong>serves exactly all moments <str<strong>on</strong>g>of</str<strong>on</strong>g> the distributi<strong>on</strong><br />

functi<strong>on</strong>.<br />

Merg<strong>in</strong>g<br />

The merg<strong>in</strong>g algorithm is somewhat more complicated.<br />

Roughly speak<strong>in</strong>g we have to replace the orig<strong>in</strong>al set <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

quasi-particles by a new set <str<strong>on</strong>g>of</str<strong>on</strong>g> M particles, where N > M.<br />

Under this transformati<strong>on</strong> the basic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the distributi<strong>on</strong><br />

functi<strong>on</strong> have to be kept, i.e. f(N) ≃ f(M). This<br />

can be achieved by mak<strong>in</strong>g use <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>stra<strong>in</strong>ts def<strong>in</strong>ed<br />

by the c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moments. Let us assume that the<br />

distributi<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s, positr<strong>on</strong>s or phot<strong>on</strong>s<br />

is represented by a certa<strong>in</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-particles<br />

f(px, py, pz, t) = ∑<br />

wi δ(⃗p − ⃗pi(t)) S(⃗r − ⃗ri(t)) , (23)<br />

i<br />

where wi is the weight <str<strong>on</strong>g>of</str<strong>on</strong>g> the quasi-particle, which can<br />

change <strong>in</strong> the course <str<strong>on</strong>g>of</str<strong>on</strong>g> the simulati<strong>on</strong> and S is the shape<br />

factor <str<strong>on</strong>g>of</str<strong>on</strong>g> the quasi-particle <strong>in</strong> coord<strong>in</strong>ate space [6]. Tak<strong>in</strong>g<br />

moments <str<strong>on</strong>g>of</str<strong>on</strong>g> this distributi<strong>on</strong> functi<strong>on</strong>, <strong>on</strong>e can obta<strong>in</strong> the<br />

weight or mass, the momentum, the energy, and so <strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the plasma. Let us denote the weight <str<strong>on</strong>g>of</str<strong>on</strong>g> N quasi-elements<br />

<strong>in</strong> a cluster <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-particles to be merged by W, the momentum<br />

by ⃗ P , and the energy by ϵ. Then the c<strong>on</strong>servati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mass implies<br />

N∑<br />

wi = W = c<strong>on</strong>st .<br />

i=1<br />

Momentum c<strong>on</strong>servati<strong>on</strong> is implied by<br />

N∑<br />

wi ⃗ui = ⃗ P = c<strong>on</strong>st<br />

i=1<br />

and energy is c<strong>on</strong>served if<br />

N∑<br />

i=1<br />

wi<br />

√<br />

1 + u2 i = ε = c<strong>on</strong>st .<br />

To keep W , ⃗ P , and ε c<strong>on</strong>served the group <str<strong>on</strong>g>of</str<strong>on</strong>g> N orig<strong>in</strong>al<br />

quasi-particles has to be merged to at least two rema<strong>in</strong><strong>in</strong>g<br />

quasi-particles as is shown <strong>in</strong> Figure 2. The weight<br />

w 1/2 and momentum ⃗p 1/2 <str<strong>on</strong>g>of</str<strong>on</strong>g> the two new quasi-elements<br />

is given by<br />

w1,2 = W<br />

2 , ⃗p1,2 = ⃗ P<br />

2 ± ⃗ Q . (24)<br />

In 2D the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vector ⃗ Q can be def<strong>in</strong>ed as follows<br />

( )<br />

−Py<br />

⃗Q = |Q| , (25)<br />

Px<br />

where the quantity | ⃗ Q| can be obta<strong>in</strong>ed from the energy<br />

c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong> as<br />

| ⃗ Q| = 1√<br />

ε2 − P 2 − W 2 . (26)<br />

2<br />

Thus, <strong>in</strong> 2D momentum space the momenta for newly<br />

merged particles can be found exactly. In the 3D case the<br />

perpendicular comp<strong>on</strong>ent ⃗ Q lies <strong>in</strong> the plane perpendicular<br />

to ⃗ P , i.e. the number <str<strong>on</strong>g>of</str<strong>on</strong>g> possible directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ⃗ Q is <strong>in</strong>f<strong>in</strong>ite.<br />

In order to assign the vector directi<strong>on</strong> we suggest to use the<br />

local anisotropy <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase space represented by the cluster<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-particles. Mak<strong>in</strong>g use <str<strong>on</strong>g>of</str<strong>on</strong>g> the mean variati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the distributi<strong>on</strong> functi<strong>on</strong> we can choose the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

⃗Q. The test results <str<strong>on</strong>g>of</str<strong>on</strong>g> the code show that even for the case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> exp<strong>on</strong>ential growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> the real particles<br />

due to cascad<strong>in</strong>g, particle resampl<strong>in</strong>g based <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the local phase space topology can significantly reduce<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>al particles while reta<strong>in</strong><strong>in</strong>g<br />

the features <str<strong>on</strong>g>of</str<strong>on</strong>g> the distributi<strong>on</strong> functi<strong>on</strong> and keep<strong>in</strong>g mass,<br />

momentum, and energy c<strong>on</strong>served.


Figure 2: Cluster<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-particles with adaptive<br />

weights (color-coded) <strong>in</strong> phase space.<br />

Figure 3: Development <str<strong>on</strong>g>of</str<strong>on</strong>g> the e ± γ cascade <strong>in</strong> a rotat<strong>in</strong>g<br />

electric field. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> created pairs as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

time obta<strong>in</strong>ed from an unref<strong>in</strong>ed simulati<strong>on</strong> (green) [3] and<br />

<strong>on</strong>e with phase space ref<strong>in</strong>ement (blue).<br />

The two basic algorithms <str<strong>on</strong>g>of</str<strong>on</strong>g> particle splitt<strong>in</strong>g and merg<strong>in</strong>g<br />

are used to c<strong>on</strong>trol the number <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>al quasiparticles.<br />

The results are compared <strong>in</strong> Figure 3, where the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> the real particles represented by a f<strong>in</strong>ite number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-particles agrees with the results <str<strong>on</strong>g>of</str<strong>on</strong>g> an unref<strong>in</strong>ed<br />

simulati<strong>on</strong> reported <strong>in</strong> [3].<br />

SUMMARY AND CONCLUSIONS<br />

We have presented the current status <str<strong>on</strong>g>of</str<strong>on</strong>g> a new simulati<strong>on</strong><br />

framework for full scale simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> QED cascad<strong>in</strong>g<br />

<strong>in</strong> str<strong>on</strong>g laser fields. A novel feature <str<strong>on</strong>g>of</str<strong>on</strong>g> cascades <strong>in</strong><br />

an ultra-str<strong>on</strong>g laser field is the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s,<br />

positr<strong>on</strong>s, and energetic (hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> MeV) phot<strong>on</strong>s at <strong>in</strong>tensity<br />

levels far below the Sch<strong>in</strong>ger limit. S<strong>in</strong>ce the str<strong>on</strong>g<br />

external field is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> accelerat<strong>in</strong>g charged particles to<br />

ultra-relativistic energies cascades can be triggered by <strong>in</strong>i-<br />

tially slow electr<strong>on</strong>s and positr<strong>on</strong>s that are <strong>in</strong>jected <strong>in</strong>to the<br />

str<strong>on</strong>g field regi<strong>on</strong>. The appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> cascades raises pr<strong>in</strong>cipal<br />

questi<strong>on</strong> about the accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> higher laser fields<br />

s<strong>in</strong>ce the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles can deplete the<br />

laser field. This questi<strong>on</strong> requires further <strong>in</strong>vestigati<strong>on</strong> by<br />

tak<strong>in</strong>g exact energy c<strong>on</strong>servati<strong>on</strong> and the reverse processes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pair annihilati<strong>on</strong> <strong>in</strong>to account, which can both limit the<br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles. We also plan to extend<br />

our model further by the <strong>in</strong>corporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the elastic collisi<strong>on</strong>s<br />

between particles and Compt<strong>on</strong> scatter<strong>in</strong>g, which<br />

may be important for the design <str<strong>on</strong>g>of</str<strong>on</strong>g> new γ-sources.<br />

REFERENCES<br />

[1] Drake, P., High-energy-density physics, <strong>Physics</strong> Today 63, 28<br />

(2010).<br />

[2] http://www.extreme-light-<strong>in</strong>frastructure.eu/<br />

[3] Elk<strong>in</strong>a, N. V., Fedotov, A. M., Kostyukov, I. Y., Legkov,<br />

M. V., Narozhny, N. B., Nerush, E. N., Ruhl, H., QED cascades<br />

<strong>in</strong>duced by circularly polarized laser fields, accepted<br />

for publicati<strong>on</strong> by Phys. Rev. ST. Accel. Beams, 2011 and<br />

http://arxiv.org/abs/1010.4528.<br />

[4] Nikishov, A. I., Ritus, V. I., Sov. Phys. JETP 25, 1135 (1964).<br />

[5] Lifshitz, E. M., Pitaevskii, L. P., and Berestetskii, V. B.,<br />

Landau-Lifshitz Course <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical <strong>Physics</strong>, Vol. 4: Quantum<br />

Electrodynamics, Reed Educati<strong>on</strong>al and Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al<br />

Publish<strong>in</strong>g, Oxford, 1982.<br />

[6] Ruhl, H., Introducti<strong>on</strong> to Computati<strong>on</strong>al Methods <strong>in</strong> Many<br />

Body <strong>Physics</strong>, eds. M. B<strong>on</strong>itz and D. Semkat, R<strong>in</strong>t<strong>on</strong> Press,<br />

(2001).


Abstract<br />

SCHWINGER LIMIT ATTAINABILITY WITH EXTREME LIGHT ∗<br />

S. V. Bulanov † , T. Zh. Esirkepov, J. K. Koga, KPSI-JAEA, Kizugawa, Kyoto, Japan<br />

S. S. Bulanov, Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Berkeley, USA<br />

A. Thomas, Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan, Ann Arbor, USA<br />

High <strong>in</strong>tensity collid<strong>in</strong>g laser pulses can create abundant<br />

electr<strong>on</strong>-positr<strong>on</strong> pair plasma. This process can prevent<br />

reach<strong>in</strong>g the critical field <str<strong>on</strong>g>of</str<strong>on</strong>g> Quantum Electrodynamics<br />

at which vacuum breakdown and polarizati<strong>on</strong> occur.<br />

C<strong>on</strong>sider<strong>in</strong>g the pairs are seeded by the Schw<strong>in</strong>ger mechanizm,<br />

it is shown that the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> fricti<strong>on</strong> and<br />

the electr<strong>on</strong>-positr<strong>on</strong> avalanche development <strong>in</strong> vacuum depend<br />

<strong>on</strong> the electromagnetic wave polarizati<strong>on</strong>. For circularly<br />

polarized collid<strong>in</strong>g pulses these effects dom<strong>in</strong>ate<br />

not <strong>on</strong>ly the particle moti<strong>on</strong> but also the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

pulses. While for l<strong>in</strong>early polarized pulses, where the electr<strong>on</strong>s<br />

(positr<strong>on</strong>s) oscillate al<strong>on</strong>g the electric field, these effects<br />

are not as str<strong>on</strong>g. There is an apparent analogy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these cases with circular and l<strong>in</strong>ear electr<strong>on</strong> accelerators<br />

with the corresp<strong>on</strong>d<strong>in</strong>g c<strong>on</strong>stra<strong>in</strong><strong>in</strong>g and reduced roles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

synchrotr<strong>on</strong> radiati<strong>on</strong> losses.<br />

INTRODUCTION<br />

The lasers nowadays provide <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most powerful<br />

sources <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetic (EM) radiati<strong>on</strong> under laboratory<br />

c<strong>on</strong>diti<strong>on</strong>s and thus <strong>in</strong>spire the fast grow<strong>in</strong>g area<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> high field science aimed at the explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> novel<br />

physical processes [1]. Reach<strong>in</strong>g <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

10 23 W/cm 2 and above will br<strong>in</strong>g us to experimentally unexplored<br />

regimes. At such <strong>in</strong>tensities the laser <strong>in</strong>teracti<strong>on</strong><br />

with matter becomes str<strong>on</strong>gly dissipative, due to efficient<br />

EM energy transformati<strong>on</strong> <strong>in</strong>to high energy gamma rays<br />

[1, 2]. These gamma-phot<strong>on</strong>s <strong>in</strong> the laser field may produce<br />

electr<strong>on</strong>-positr<strong>on</strong> pairs via the Breit-Wheeler process<br />

[3]. Then the pairs accelerated by the laser generate high<br />

energy gamma quanta and so <strong>on</strong> [4], and thus the c<strong>on</strong>diti<strong>on</strong>s<br />

for the avalanche type discharge are produced at the<br />

<strong>in</strong>tensity ≈ 10 25 W/cm 2 . The occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> such ”showers”<br />

was foreseen by Heisenberg and Euler [5]. In Ref.<br />

[6] a c<strong>on</strong>clusi<strong>on</strong> is made that depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser energy<br />

<strong>on</strong> the electr<strong>on</strong>-positr<strong>on</strong>-gamma-ray plasma (EPGP) creati<strong>on</strong><br />

could limit atta<strong>in</strong>able EM wave <strong>in</strong>tensity and could<br />

prevent approach<strong>in</strong>g the critical quantum electrodynamics<br />

(QED) field. This field [5, 7] is also called the Schw<strong>in</strong>ger<br />

field, ES = m 2 ec 3 /e¯h corresp<strong>on</strong>d<strong>in</strong>g to the <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> ≈<br />

10 29 W/cm 2 .<br />

The particle-antiparticle pair creati<strong>on</strong> by the Schw<strong>in</strong>ger<br />

field cannot be described with<strong>in</strong> the framework <str<strong>on</strong>g>of</str<strong>on</strong>g> perturbati<strong>on</strong><br />

theory and sheds light <strong>on</strong> the n<strong>on</strong>l<strong>in</strong>ear QED prop-<br />

∗ Work supported by the M<strong>in</strong>istry <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong>, Culture, Sports, Science<br />

and Technology (MEXT) <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, Grant-<strong>in</strong>-Aid for Scientific Research,<br />

Project No. 20244065.<br />

† bulanov.sergei@jaea.go.jp<br />

erties <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum [8]. Understand<strong>in</strong>g the vacuum breakdown<br />

mechanisms is challeng<strong>in</strong>g for other n<strong>on</strong>l<strong>in</strong>ear quantum<br />

field theories [9] and for astrophysics [10]. Reach<strong>in</strong>g<br />

this field limit has been c<strong>on</strong>sidered as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most<br />

<strong>in</strong>trigu<strong>in</strong>g scientific problems. Dem<strong>on</strong>strati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the processes<br />

associated with the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>l<strong>in</strong>ear QED, such<br />

as vacuum polarizati<strong>on</strong> and vacuum electr<strong>on</strong>-positr<strong>on</strong> pair<br />

producti<strong>on</strong>, will be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the ma<strong>in</strong> challenges for extreme<br />

high power laser physics [1, 11].<br />

Below we discuss the atta<strong>in</strong>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schw<strong>in</strong>ger field<br />

with high power lasers (see also Ref. [12]). We compare<br />

the role <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> dissipative effects <strong>in</strong> the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electr<strong>on</strong>s (and positr<strong>on</strong>s) produced via the Schw<strong>in</strong>ger effect<br />

and show their dependence <strong>on</strong> the EM wave polarizati<strong>on</strong>.<br />

3D EM FIELD CONFIGURATION<br />

Pair creati<strong>on</strong> is determ<strong>in</strong>ed by the Po<strong>in</strong>care <strong>in</strong>variants<br />

[13] F = (E 2 − B 2 )/2, G = (E · B) and requires the<br />

first <strong>in</strong>variant F be positive. This c<strong>on</strong>diti<strong>on</strong> can be fulfilled<br />

<strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> the ant<strong>in</strong>odes <str<strong>on</strong>g>of</str<strong>on</strong>g> collid<strong>in</strong>g EM waves,<br />

or/and <strong>in</strong> the c<strong>on</strong>figurati<strong>on</strong> formed by several focused EM<br />

pulses, [14]. This EM c<strong>on</strong>figurati<strong>on</strong> locally can be approximated<br />

by an oscillat<strong>in</strong>g TM mode with poloidal electric<br />

and toroidal magnetic fields. The magnetic field <strong>in</strong> spherical<br />

coord<strong>in</strong>ates R, θ, ϕ is given by<br />

a0 s<strong>in</strong>(ω0t)<br />

B(R, θ) = eϕ<br />

(8πR) 1/2 Jn+1/2(k0R)L l n(cos θ), (1)<br />

where a0 = eE0/mecω0, k0 = ω0/c, Jν(x) and L l n(x) are<br />

the Bessel functi<strong>on</strong> and associated Legendre polnomials.<br />

The electric field is equal to E = ik0(∇ × B). In cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates r, ϕ, z the z-comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric<br />

field oscillates <strong>in</strong> vertical directi<strong>on</strong>, ∼ a0 cos(ω0t), the ϕcomp<strong>on</strong>ent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field vanishes <strong>on</strong> the axis be<strong>in</strong>g<br />

l<strong>in</strong>early proporti<strong>on</strong>al to the radius, ∼ (a0/8)k0r s<strong>in</strong>(ω0t),<br />

and the radial comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field is relatively<br />

small, ∼ 0.1a0k 2 0rz cos(ω0t). The EM field and first<br />

Po<strong>in</strong>care <strong>in</strong>variant F(r, z) are shown <strong>in</strong> Fig. 1. We see<br />

that the EM field is localized <strong>in</strong> a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> width less than<br />

the laser wavelength, λ0 = 2π/k0. The sec<strong>on</strong>d <strong>in</strong>variant is<br />

equal to zero, G = 0.<br />

Probability <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-positr<strong>on</strong> pair creati<strong>on</strong><br />

Us<strong>in</strong>g expressi<strong>on</strong> for the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-positr<strong>on</strong><br />

pair creati<strong>on</strong> [5, 7] and expand<strong>in</strong>g F(r, z) <strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

its maximum we f<strong>in</strong>d that the pairs are created <strong>in</strong> a small<br />

4-volume near the electric field maximum with the charac-


10<br />

k 0z<br />

0<br />

-10<br />

0<br />

k 0r<br />

a) 1<br />

10<br />

0<br />

-10<br />

0<br />

F/a0 2<br />

Figure 1: a) The vector field shows r- and z-comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the poloidal electric field <strong>in</strong> the r, z plane for the TM mode.<br />

The color density shows the toroidal magnetic field distributi<strong>on</strong>,<br />

Bϕ(r, z). b) The first Po<strong>in</strong>care <strong>in</strong>variant F(r, z).<br />

teristic size<br />

1<br />

0.5<br />

πr 2 0z0t0 ≈ 53/2 λ 4 0<br />

16π 5 c<br />

k 0r<br />

( a0<br />

aS<br />

10<br />

k 0z<br />

10<br />

b)<br />

) 2<br />

. (2)<br />

Here, we <strong>in</strong>troduce aS = eES/meω0c = mec 2 /¯hω0. Integrat<strong>in</strong>g<br />

over the 4-volume the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the pair creati<strong>on</strong><br />

[15] we obta<strong>in</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> pairs produced per wave<br />

period,<br />

53/2 4π3 a4 (<br />

0 exp − πaS<br />

)<br />

, (3)<br />

a0<br />

i. e. the first pairs can be observed for an <strong>on</strong>e-micr<strong>on</strong> wavelength<br />

laser <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> 2×10 27 W/cm 2 , which<br />

corresp<strong>on</strong>ds to a0/aS ≈ 0.075, i.e. a characteristic size, r0,<br />

approximately equal to 0.04λ0.<br />

Electr<strong>on</strong> orbit near magnetic null po<strong>in</strong>t<br />

In the regi<strong>on</strong>, where the magnetic field vanishes, the<br />

electr<strong>on</strong> oscillates al<strong>on</strong>g the electric field. For an electr<strong>on</strong><br />

generated at small but f<strong>in</strong>ite radius r0 ≪ λ0 the magnetic<br />

field bends its trajectory outwards. By solv<strong>in</strong>g the electr<strong>on</strong><br />

equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> l<strong>in</strong>earized about the soluti<strong>on</strong> corresp<strong>on</strong>d<strong>in</strong>g<br />

to ultrarelativistic electr<strong>on</strong> oscillati<strong>on</strong>s <strong>in</strong> the zdirecti<strong>on</strong>,<br />

i.e. a0ω0t ≫ 1, we can f<strong>in</strong>d the electr<strong>on</strong> trajectories,<br />

which are described <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> modified Bessel<br />

functi<strong>on</strong>s, Iν(x),:<br />

pz(t) = meca0ω0t, (4)<br />

pr(t) = mec a0k0r0ω0t<br />

23/2 (<br />

ω0t<br />

I1<br />

23/2 )<br />

,<br />

r(t) =<br />

(5)<br />

a0r0<br />

(<br />

ω0t<br />

I1<br />

23/2 23/2 )<br />

+<br />

[ (<br />

a0r0ω0t ω0t<br />

I0<br />

16 23/2 ) (<br />

ω0t<br />

+ I2<br />

23/2 )]<br />

. (6)<br />

Here r0 is the <strong>in</strong>itial electr<strong>on</strong> coord<strong>in</strong>ate, which is <str<strong>on</strong>g>of</str<strong>on</strong>g>the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> λ0(5a0/4π 3 aS) 1/2 . The <strong>in</strong>stability growth rate is<br />

approximately equal to half the EM field frequency, ω0/2,<br />

pr ≈<br />

( a0<br />

8<br />

)<br />

k0r0(ω0t) 2 , (7)<br />

i. e. the electr<strong>on</strong> rema<strong>in</strong>s <strong>in</strong> the close vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> the zeromagnetic<br />

field regi<strong>on</strong> leav<strong>in</strong>g it al<strong>on</strong>g the z-directi<strong>on</strong>.<br />

EM RADIATION EMISSION<br />

Frequency spectrum<br />

The electr<strong>on</strong> oscillat<strong>in</strong>g al<strong>on</strong>g the electric field emits<br />

the high frequency EM radiati<strong>on</strong> with the power ≈<br />

(2πre/3λ0)ωemec 2 γ 2 e proporti<strong>on</strong>al to the square <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong><br />

energy. In order to f<strong>in</strong>d the angular distributi<strong>on</strong> and<br />

frequency spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong> <strong>in</strong> this case we should<br />

take <strong>in</strong>to account its dependence <strong>on</strong> the retarded time:<br />

t ′ = t − n · r(t)/c. Here n is the unit vector <strong>in</strong> the directi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong> and r(t) is the electr<strong>on</strong> coord<strong>in</strong>ate.<br />

Introduc<strong>in</strong>g the angle η between vectors n and r(t),<br />

n · r(t) = |r(t)| cos η, (8)<br />

we can f<strong>in</strong>d that <strong>in</strong> the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> oscillati<strong>on</strong>s,<br />

η = 0, the radiati<strong>on</strong> <strong>in</strong>tensity vanishes. The maxima <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

radiated power corresp<strong>on</strong>d to the angle ηm, for large γe,<br />

<strong>in</strong>versely proporti<strong>on</strong>al to the particle energy: ηm ≈ 1/2γe.<br />

Fourier comp<strong>on</strong>ents for 4-vector potential <str<strong>on</strong>g>of</str<strong>on</strong>g> the EM<br />

field accord<strong>in</strong>g to Ref. [13] are<br />

A µ (ω) = e<br />

R<br />

∫+∞<br />

−∞<br />

u µ<br />

c exp<br />

{ [<br />

iω<br />

t − 1<br />

n · r(t)<br />

c<br />

where u µ = p µ /meγe is the four-velocity and<br />

]}<br />

dt, (9)<br />

r(t) = ey(c/ω0)Arcs<strong>in</strong> [βm s<strong>in</strong>(ω0t)] , (10)<br />

with βm = a0/ √ 1 + a2 0 is the electr<strong>on</strong> coord<strong>in</strong>ate.<br />

Expand<strong>in</strong>g the phase <strong>in</strong> expressi<strong>on</strong> (9),<br />

{ ( )<br />

}<br />

cos θ<br />

Φ(t) = ω t − Arcs<strong>in</strong> [βm s<strong>in</strong>(ω0t)] , (11)<br />

ω0<br />

<strong>on</strong> small parameters, γ −1<br />

e,m and ω0t, for θ = θm ≈ 1/2γe,m,<br />

we obta<strong>in</strong><br />

Φ(t) ≈ ω<br />

[<br />

(1 − βm cos θ) t +<br />

( βm cos θ<br />

6γ 2 e,mω0<br />

)<br />

(ω0t) 3<br />

]<br />

.<br />

(12)<br />

Us<strong>in</strong>g the Airy <strong>in</strong>tegral, we can f<strong>in</strong>d the y-comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the 4-vector potential <str<strong>on</strong>g>of</str<strong>on</strong>g> EM field (9). Tak<strong>in</strong>g <strong>in</strong>to account<br />

smallness <str<strong>on</strong>g>of</str<strong>on</strong>g> the angle θ ≈ θm, θ = ψ/2γe,m ≪ 1, and<br />

present<strong>in</strong>g cos θ <strong>in</strong> the form cos θ ≈ 1 − ψ2 /2(2γe.m) 2 we<br />

can obta<strong>in</strong> the radiati<strong>on</strong> power density pL(ω, ψ).<br />

The power emitted by the electr<strong>on</strong> is given by the <strong>in</strong>tegral<br />

∫+∞<br />

pL(ω) = pL(ω, ψ)dψ. (13)<br />

−∞


To f<strong>in</strong>d it we use the <strong>in</strong>tegral calculated <strong>in</strong> Ref [17] and<br />

obta<strong>in</strong><br />

dpL 16πre<br />

=<br />

dω 33/2 mec<br />

λ0<br />

2<br />

( ) 2 ( )<br />

ω 2 ω<br />

FL<br />

, (14)<br />

ω0 3<br />

where<br />

∫<br />

FL(z) = z<br />

z<br />

ω0γ 2 e,m<br />

∞<br />

K 5/3(η) dη − zK 2/3 (z). (15)<br />

Maximum frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong> emitted by oscillat<strong>in</strong>g<br />

electr<strong>on</strong> corresp<strong>on</strong>ds to ωm ≈ 0.21ω0γ 2 e,m. As we see,<br />

compared to the case <str<strong>on</strong>g>of</str<strong>on</strong>g> circular polarizati<strong>on</strong>, the l<strong>in</strong>early<br />

oscillat<strong>in</strong>g electr<strong>on</strong> emissi<strong>on</strong> is weaker with the phot<strong>on</strong> frequency<br />

<strong>in</strong> a factor γe,m smaller.<br />

Radiati<strong>on</strong> fricti<strong>on</strong> effects<br />

To take <strong>in</strong>to account the radiati<strong>on</strong> fricti<strong>on</strong> we use equati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a radiat<strong>in</strong>g electr<strong>on</strong> [13]. We can estimate<br />

the regime where the radiati<strong>on</strong> fricti<strong>on</strong> can become<br />

relatively large by compar<strong>in</strong>g the energy losses with the<br />

maximal energy ga<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> accelerated by the<br />

electric field, E ˙(+)<br />

≈ ω0 mec2a0, i.e. ω0 mec2a0 =<br />

εradω0mec2 γ2 e , where<br />

εrad = 4πre/3λ0, (16)<br />

with re = e2 /mec2 - classical electr<strong>on</strong> radius. As is apparent,<br />

although an electr<strong>on</strong> mov<strong>in</strong>g al<strong>on</strong>g the oscillat<strong>in</strong>g<br />

electric field loses energy, radiati<strong>on</strong> fricti<strong>on</strong> effects may be-<br />

come important <strong>on</strong>ly at a0 = 2ε −1<br />

rad<br />

, i.e. at the electric field<br />

E0 = 3m 2 ec 4 /e 3 , which is <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the critical electric<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> classical electrodynamics (see also Ref. [15]).<br />

This is 137 times larger than the field ES.<br />

DIMENSIONLESS PARAMETERS IN QED<br />

In QED the charged particle <strong>in</strong>teracti<strong>on</strong> with EM fields is<br />

determ<strong>in</strong>ed by relativistically and gauge <strong>in</strong>variant parameters<br />

[18] χe = [(Fµνpν) 2 ] 1/2 /mecES. The parameter, χe,<br />

characterizes the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the gamma-phot<strong>on</strong> emissi<strong>on</strong><br />

by the electr<strong>on</strong> with Lorentz factor γe. It is <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> the ratio E/ES <strong>in</strong> the electr<strong>on</strong> rest frame <str<strong>on</strong>g>of</str<strong>on</strong>g> reference.<br />

Another parameter, χγ = [(Fµν¯hkν) 2 ] 1/2 /mecES,<br />

is similar to χe with the phot<strong>on</strong> 4-momentum, ¯hkµ, <strong>in</strong>stead<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> 4-momentum, pµ. It characterizes the probability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>-positr<strong>on</strong> pair creati<strong>on</strong> due to the collisi<strong>on</strong><br />

between the high energy phot<strong>on</strong> and EM field. QED<br />

effects come <strong>in</strong>to play when the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a phot<strong>on</strong> emitted<br />

by an electr<strong>on</strong> becomes comparable to the electr<strong>on</strong> k<strong>in</strong>etic<br />

energy, i.e., for ¯hωm = mec 2 γe. In a l<strong>in</strong>early polarized<br />

oscillat<strong>in</strong>g electric field the maximum frequency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

emitted phot<strong>on</strong>s, ωm, is proporti<strong>on</strong>al γ 2 0, and, therefore,<br />

quantum effects should be <strong>in</strong>corporated <strong>in</strong>to the theoretical<br />

descripti<strong>on</strong> at the electr<strong>on</strong> energy corresp<strong>on</strong>d<strong>in</strong>g to the<br />

gamma-factor γ L Q = mec 2 /0.21 ¯hω0, which is above the<br />

Schw<strong>in</strong>ger limit. We see that <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> moti<strong>on</strong><br />

<strong>in</strong> a l<strong>in</strong>early polarized oscillat<strong>in</strong>g electric field neither<br />

radiati<strong>on</strong> fricti<strong>on</strong> nor quantum recoil effects are important.<br />

THRESHOLD OF AVALANCHE<br />

DISCHARGE<br />

Reach<strong>in</strong>g the threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> an avalanche type discharge<br />

with EPGP generati<strong>on</strong> discussed <strong>in</strong> Refs. [4, 6] requires<br />

high enough values <str<strong>on</strong>g>of</str<strong>on</strong>g> the parameters χe and χγ def<strong>in</strong>ed<br />

above because for χγ ≪ 1 the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the pair creati<strong>on</strong> is<br />

exp<strong>on</strong>entially small [19],<br />

( 2 m<br />

W (χγ) ≈ α<br />

ec4 ) (<br />

χγ exp − 8<br />

)<br />

. (17)<br />

3χγ<br />

¯h 2 ωγ<br />

In the limit χγ ≫ 1 the pair creati<strong>on</strong> rate is given by<br />

( 2 m<br />

W (χγ) ≈ α<br />

ec4 )<br />

(χγ) 2/3<br />

¯h 2 ωγ<br />

(18)<br />

(for details see Ref. [18]). Here ¯hωγ is the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

phot<strong>on</strong> which creates an electr<strong>on</strong>-positr<strong>on</strong> pair.<br />

S<strong>in</strong>ce for γe ≥ γQ the phot<strong>on</strong> is emitted by the electr<strong>on</strong><br />

(positr<strong>on</strong>) <strong>in</strong> a narrow angle almost parallel to the electr<strong>on</strong><br />

momentum with the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> energy,<br />

the parameters χe and χγ are approximately equal<br />

to each other. The parameter χe can be expressed via the<br />

electric and magnetic field as (see Ref. [18])<br />

χ 2 (<br />

e =<br />

E<br />

γe<br />

ES<br />

+ p × B<br />

mecES<br />

) 2<br />

( ) 2<br />

p · E<br />

−<br />

. (19)<br />

mecES<br />

In order to f<strong>in</strong>d the threshold for the avalanche development<br />

we need to estimate the QED parameter χe. The c<strong>on</strong>diti<strong>on</strong><br />

for avalanche development corresp<strong>on</strong>d<strong>in</strong>g to the parameter<br />

χe should become <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> unity with<strong>in</strong> <strong>on</strong>e<br />

tenth <str<strong>on</strong>g>of</str<strong>on</strong>g> the EM field period (e.g. see Ref. [6]). Due to the<br />

trajectory bend<strong>in</strong>g by the magnetic field the electr<strong>on</strong> transverse<br />

momentum changes as p⊥ ≈ (a0/16)k0r0(ω0t) 2 ,<br />

where k0r0 = (2.5a0/πas) 1/2 , Eq. (2). Assum<strong>in</strong>g ω0t<br />

to be equal to 0.1 π, we obta<strong>in</strong> from Eq. (19) that χe becomes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> unity, i.e. the avalanche can start, at<br />

a0/aS ≈ 0.105, which corresp<strong>on</strong>ds to the laser <strong>in</strong>tensity<br />

4 × 10 27 W/cm 2 . The radiati<strong>on</strong> losses <strong>in</strong> this limit can be<br />

described as the synchrotr<strong>on</strong> losses <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> with the<br />

energy ≈ mec 2 mov<strong>in</strong>g <strong>in</strong> the magnetic field a0(k0r0)/8.<br />

Us<strong>in</strong>g formulae for synchrotr<strong>on</strong> radiati<strong>on</strong> [13], it is easy<br />

to show that they do not become significant until a0 ≈<br />

5 × 10 4 . At that limit the Schw<strong>in</strong>ger mechanism provides<br />

approximately 5 × 10 5 pairs per <strong>on</strong>e-period.<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> two collid<strong>in</strong>g circularly polarized EM<br />

waves the result<strong>in</strong>g electric field rotates with frequency ω0<br />

be<strong>in</strong>g c<strong>on</strong>stant <strong>in</strong> magnitude. The power emitted by the<br />

electr<strong>on</strong> is ≈ εradω0mec 2 γ 4 e. This is a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> γ 2 e larger<br />

than <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>in</strong>ear polarizati<strong>on</strong>. The properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

radiati<strong>on</strong> emitted by rotat<strong>in</strong>g electr<strong>on</strong> are well known from<br />

the theory <str<strong>on</strong>g>of</str<strong>on</strong>g> synchrotr<strong>on</strong> radiati<strong>on</strong> [13, 15] and from Ref.<br />

[16]. In the limit γe ≫ 1 the emitted power is proporti<strong>on</strong>al<br />

to the fourth power <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> energy. The radiati<strong>on</strong><br />

is directed almost al<strong>on</strong>g the electr<strong>on</strong> momentum be<strong>in</strong>g localized<br />

with<strong>in</strong> the angle <strong>in</strong>versely proporti<strong>on</strong>al to the electr<strong>on</strong><br />

energy: δη ≈ 1/γe. The frequency spectrum given


y the well known expressi<strong>on</strong> [13] has a maximum frequency,<br />

ωm = 0.29ω0γ 3 e , proporti<strong>on</strong>al to the cube <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electr<strong>on</strong> energy. This is a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> γe larger than <strong>in</strong> the<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>in</strong>ear polarizati<strong>on</strong>. For the electr<strong>on</strong> rotat<strong>in</strong>g <strong>in</strong> the<br />

circularly polarized collid<strong>in</strong>g EM waves the emitted power<br />

becomes equal to the maximal energy ga<strong>in</strong> at the field amplitude<br />

a0 = arad = ε −1/3<br />

rad . For the laser wavelength<br />

λ0 = 0.8 µm εrad = 2.2 × 10−8 . The normalized amplitude<br />

arad is ≈ 400 corresp<strong>on</strong>d<strong>in</strong>g to the laser <strong>in</strong>tensity<br />

Irad = 4.5 × 1023W / cm2 .<br />

We represent the electric field and the electr<strong>on</strong> momentum<br />

<strong>in</strong> the complex form:<br />

and<br />

E = Ey + iEz = E0 exp ( −iω0t) (20)<br />

p = py + ipz = P exp ( −i(ω0t − φ)) , (21)<br />

where φ is the phase equal to the angle between the electric<br />

field vector and the electr<strong>on</strong> momentum. In the stati<strong>on</strong>ary<br />

regime, when the electr<strong>on</strong> rotates with c<strong>on</strong>stant energy, the<br />

equati<strong>on</strong>s for the electr<strong>on</strong> energy, γe = [1+(P/mec) 2 ] 1/2 ,<br />

and for the phase φ have the form<br />

a 2 0 = ( γ 2 e − 1 ) ( 1 + ε 2 radγ 6) e , (22)<br />

tan φ = − 1<br />

εradγ3 . (23)<br />

e<br />

In the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> weak radiati<strong>on</strong> damp<strong>in</strong>g, a0 ≪ ε −1/3<br />

rad ,<br />

the absolute value <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> momentum is proporti<strong>on</strong>al<br />

to the electric field magnitude, P = meca0, while<br />

<strong>in</strong> the regime <str<strong>on</strong>g>of</str<strong>on</strong>g> dom<strong>in</strong>ant radiati<strong>on</strong> damp<strong>in</strong>g effects, i.e. at<br />

a0 ≫ ε −1/3<br />

rad , it is given by P = mec (a0/εrad) 1/4 . For<br />

the momentum dependence given by this expressi<strong>on</strong> the<br />

power radiated by an electr<strong>on</strong> is Pγ,C = ω0mec 2 a0, i.e.<br />

the energy obta<strong>in</strong>ed from the driv<strong>in</strong>g electromagnetic wave<br />

is completely re-radiated <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> high energy gamma<br />

rays. At a0 ≈ ε −1/3<br />

rad we have for the gamma phot<strong>on</strong> energy<br />

¯hωγ = 0.29¯hω0a3 (<br />

3 2<br />

rad ≈ 0.45¯hω0 mc /e ) . For example,<br />

if λ0 ≈ 0.8 µm and a0 ≈ 400 the circularly polarized laser<br />

pulse <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tensity Irad = 4.5 × 1023 W/cm2 generates a<br />

burst <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma phot<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> energy about 20 MeV with the<br />

durati<strong>on</strong> determ<strong>in</strong>ed either by the laser pulse durati<strong>on</strong> or by<br />

the decay time <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser pulse <strong>in</strong> a plasma.<br />

In Fig. 2a we show a dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> γ and φ <strong>on</strong> the<br />

EM field amplitude, a, for the dimensi<strong>on</strong>less parameter<br />

εrad = 10−8 , obta<strong>in</strong>ed by numerical soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqs. (22,<br />

23). Here the horiz<strong>on</strong>tal axis is normalized <strong>on</strong> ε −1/3<br />

rad and<br />

the vertical axis is normalized <strong>on</strong> (am/εrad) 1/4 .<br />

The parameter χe can be expressed via the electric field,<br />

E, as (see Ref. [18])<br />

χe = |E|<br />

(<br />

m<br />

mecES<br />

2 ec 2 + |P| 2 s<strong>in</strong> 2 ) 1/2<br />

φ , (24)<br />

where φ is an angle between the electr<strong>on</strong> momentum and<br />

the electric field. As we see from Fig. 2 the angle φ tends<br />

to zero at large electric field.<br />

ϕ<br />

Figure 2: Dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> γ and φ <strong>on</strong> the EM field amplitude,<br />

a, for the dimensi<strong>on</strong>less parameter εrad = 10−8 . The<br />

horiz<strong>on</strong>tal axis is normalized <strong>on</strong> ε −1/3<br />

rad and the vertical axis<br />

is normalized <strong>on</strong> (am/εrad) 1/4 .<br />

S<strong>in</strong>ce <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> circular polarizati<strong>on</strong> ωm is proporti<strong>on</strong>al<br />

to the cube <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> gamma-factor quantum effects<br />

should be <strong>in</strong>corporated <strong>in</strong>to the theoretical descripti<strong>on</strong><br />

at γe ≈ γ C Q = (mec 2 /0.29 ¯hω0) 1/2 ≈ 1300. For γe = a0<br />

this limit is reached at the <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> ≈ 3.4 ×10 24 W/cm 2 .<br />

The electr<strong>on</strong> moti<strong>on</strong> should be described with<strong>in</strong> the framework<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quantum mechanics. These effects change the<br />

radiative loss functi<strong>on</strong> (see Ref. [18]). In the quantum<br />

regime, it is necessary to take <strong>in</strong>to account not <strong>on</strong>ly radiative<br />

damp<strong>in</strong>g effects but also recoil momentum effects,<br />

which change the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> because<br />

the outgo<strong>in</strong>g phot<strong>on</strong> carries away the momentum<br />

¯hkm = ¯hωm/c.<br />

In the regime when the radiati<strong>on</strong> fricti<strong>on</strong> effects are important,<br />

i.e. when a0 ≫ ε −1/3<br />

rad , the angle φ between the<br />

electr<strong>on</strong> momentum and the electric field is small be<strong>in</strong>g<br />

equal to ( εrada3 ) −1/4,<br />

0 i. e. the electr<strong>on</strong> moves almost<br />

<strong>in</strong> the electric field directi<strong>on</strong>. The electr<strong>on</strong> momentum is<br />

given by P = mec (a0/εrad) 1/4 . This yields an estimati<strong>on</strong><br />

χe ≈<br />

( a0<br />

γ<br />

a 2 S εrad<br />

b)<br />

a<br />

) 1/2<br />

. (25)<br />

This becomes greater than unity for a0 > εrada2 S ≈<br />

5.5 × 103 , which corresp<strong>on</strong>ds to the laser <strong>in</strong>tensity equal<br />

to 6 × 1025W/cm2 . In Ref. [6] an avalanche threshold<br />

<strong>in</strong>tensity several times lower has been found neglect<strong>in</strong>g<br />

the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong> fricti<strong>on</strong> force (see also [19]).<br />

However, the radiati<strong>on</strong> fricti<strong>on</strong> time is <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(<br />

trad = 1/ω0 εrada3 ) 1/2,<br />

0 which for a0 ≈ 5.5 × 103 is<br />

approximately <strong>on</strong>e tenth <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser period. Hence the radiati<strong>on</strong><br />

fricti<strong>on</strong> effects do not prevent the EPGP cascade development<br />

for circularly polarized collid<strong>in</strong>g waves. Such a<br />

prolific electr<strong>on</strong>-positr<strong>on</strong> pair and gamma ray creati<strong>on</strong> [4]<br />

should result <strong>in</strong> the EPGP generati<strong>on</strong>.<br />

While creat<strong>in</strong>g and then accelerat<strong>in</strong>g the electr<strong>on</strong>positr<strong>on</strong><br />

pairs the laser pulse generates an electric current<br />

and EM field. The electric field <strong>in</strong>duced <strong>in</strong>side the EPGP


cloud with a size <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser wavelength, λ0<br />

can be estimated to be<br />

Epol = 2πe(n+ + n−)λ0. (26)<br />

Here n+ ≈ n− are the electr<strong>on</strong> and positr<strong>on</strong> density, respectively.<br />

Coherent scatter<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser pulse away from<br />

the focus regi<strong>on</strong> occurs when the polarizati<strong>on</strong> electric field<br />

becomes equal to the laser electric field. This yields for the<br />

electr<strong>on</strong> and positr<strong>on</strong> density n+ ≈ n− = E/4πeλ0. The<br />

particle number per λ 3 0 volume is about a0λ0/re. This is a<br />

factor a0 smaller than required for the laser energy depleti<strong>on</strong>.<br />

CONCLUSION<br />

In c<strong>on</strong>clusi<strong>on</strong>, the high enough laser <strong>in</strong>tensity pulse<br />

with arbitrary polarizati<strong>on</strong> plus high enough density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seed electr<strong>on</strong>s, e.g. generated <strong>in</strong> the laser <strong>in</strong>teracti<strong>on</strong> with<br />

solid targets can provide necessary and sufficient c<strong>on</strong>diti<strong>on</strong>s<br />

for the avalanche development, [4]. Instead, <strong>in</strong> vacuum,<br />

when the seed electr<strong>on</strong>s(positr<strong>on</strong>s) are created via<br />

the Schw<strong>in</strong>ger mechanism, we see a fundamental difference<br />

between the circularly and l<strong>in</strong>early polarized waves.<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the circularly polarized EM wave the electr<strong>on</strong><br />

radiati<strong>on</strong> is str<strong>on</strong>g and the threshold for the avalanche<br />

is low enough for avalanche start<strong>in</strong>g at the laser <strong>in</strong>tensity<br />

well below the Schw<strong>in</strong>ger limit. S<strong>in</strong>ce, as noted <strong>in</strong> Ref.<br />

[4], the electr<strong>on</strong>-positr<strong>on</strong> avalanche parameters are <strong>in</strong>sensitive<br />

to the seed electr<strong>on</strong>s (positr<strong>on</strong>s), the parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Schw<strong>in</strong>ger created pairs become hidden and can hardly be<br />

revealed. C<strong>on</strong>trary to this, <strong>in</strong> the l<strong>in</strong>early polarized EM<br />

wave is more favorable for the realizati<strong>on</strong> and reach<strong>in</strong>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ”pure” Schw<strong>in</strong>ger electr<strong>on</strong>-positr<strong>on</strong> pair creati<strong>on</strong>. An<br />

electr<strong>on</strong> mov<strong>in</strong>g al<strong>on</strong>g the electric field with velocity and<br />

accelerati<strong>on</strong> parallel to the field emits much fewer phot<strong>on</strong>s<br />

with substantially lower energy neither experienc<strong>in</strong>g<br />

the radiati<strong>on</strong> fricti<strong>on</strong> nor quantum recoil effects. We see<br />

an analogy <str<strong>on</strong>g>of</str<strong>on</strong>g> these cases with circular and l<strong>in</strong>ear electr<strong>on</strong><br />

accelerators with the corresp<strong>on</strong>d<strong>in</strong>g c<strong>on</strong>stra<strong>in</strong><strong>in</strong>g and reduced<br />

roles <str<strong>on</strong>g>of</str<strong>on</strong>g> synchrotr<strong>on</strong> radiati<strong>on</strong> losses. The electr<strong>on</strong>positr<strong>on</strong><br />

pair creati<strong>on</strong> <strong>in</strong> the Breit-Wheeler type process is<br />

also suppressed because the key parameters χe and χγ dependence<br />

<strong>on</strong> the electr<strong>on</strong> and phot<strong>on</strong> momentum, <strong>in</strong> the<br />

laser field with the same <strong>in</strong>tensity,is much weaker. The<br />

l<strong>in</strong>ear polarizati<strong>on</strong> has apparent advantages for approach<strong>in</strong>g<br />

the regimes <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-positr<strong>on</strong> pair creati<strong>on</strong> <strong>in</strong> vacuum<br />

and n<strong>on</strong>l<strong>in</strong>ear vacuum polarizati<strong>on</strong> important for fundamental<br />

science.<br />

We thank S. G. Bochkarev, V. Yu. Bychenkov, P. Chen,<br />

G. Dunne, N. V. Elk<strong>in</strong>a, E. Esarey, A. M. Fedotov, V. F.<br />

Frolov, D. Habs, T. Henzl, M. Kando, Y. Kato, K. K<strong>on</strong>do,<br />

G. Korn, N. B. Narozhny, W. Rozmus, H. Ruhl, and A. I.<br />

Zelnikov for discussi<strong>on</strong>s.<br />

REFERENCES<br />

[1] G. A. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod.<br />

Phys. 78, 309 (2006).<br />

[2] Ya. B. Zel’dovich, Sov. Phys. Usp. 18, 79 (1975); A. Zhidkov,<br />

J. Koga, A. Sasaki, M. Uesaka, Phys. Rev. Lett. 88,<br />

185002 (2002); S. V. Bulanov, T. Esirkepov, J. Koga, and T.<br />

Tajima, Plasma Phys. Rep. 30, 196 (2004).<br />

[3] G. Breit and J. A. Wheeler, Phys. Rev. 46, 1087 (1934); C.<br />

Bamber et al., Phys. Rev. D 60, 092004 (1999); H. Hu et al.,<br />

Phys. Rev. Lett. 105, 080401 (2010).<br />

[4] A. R. Bell and J. G. Kirk, Phys. Rev. Lett. 101, 200403<br />

(2008); J. G. Kirk, A. R. Bell, and I. Arka, Plasma Phys.<br />

C<strong>on</strong>tr. Fusi<strong>on</strong> 51, 085008 (2009); R. Duclous, J. G. Kirk,<br />

and A. R. Bell, Plasma Phys. C<strong>on</strong>tr. Fusi<strong>on</strong> 53, 015009<br />

(2011); E. N. Nerush, I. Yu. Kostyukov, A. M. Fedotov, N.<br />

B. Narozhny, N. V. Elk<strong>in</strong>a, H. Ruhl, Phys. Rev. Lett. 106,<br />

035001 (2011).<br />

[5] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).<br />

[6] A. M. Fedotov, N. B. Narozhnyi, G. Mourou, and G. Korn,<br />

Phys. Rev. Lett. 105, 080402 (2010).<br />

[7] F. Sauter, Z. Phys. 69, 742 (1931); J. Schw<strong>in</strong>ger, Phys. Rev.<br />

82, 664 (1951).<br />

[8] W. Dittrich and H. Gies, Prob<strong>in</strong>g the Quantum Vacuum<br />

(Spr<strong>in</strong>ger. Berl<strong>in</strong>. 2000); Ya. B. Zeldovich and V. S. Popov,<br />

Sov. Phys. Usp. 14, 673 (1971).<br />

[9] A. Casher et al., Phys. Rev. D 20, 179 (1979); Y. Kluger et<br />

al., Phys. Rev. D 58, 125015 (1998); C. K. Dumlu and G. V.<br />

Dunne, Phys. Rev. Lett. 104, 250402 (2010).<br />

[10] V. S. Berez<strong>in</strong>skii, S. V. Bulanov, V. A. Dogiel, V. L.<br />

G<strong>in</strong>zburg, and V. S. Ptusk<strong>in</strong>, Astrophysics <str<strong>on</strong>g>of</str<strong>on</strong>g> Cosmic Rays<br />

(Elsevier. Amsterdam. 1990); S. V. Bulanov, T. Zh. Esirkepov,<br />

D. Habs, F. Pegoraro and T. Tajima, Eur. Phys. J. D 55,<br />

483 (2009); R. Ruff<strong>in</strong>i et al., Phys. Rep. 487, 1 (2010).<br />

[11] V. S. Popov, Phys. Lett. A 298, 83 (2002); N. B. Narozhny,<br />

S. S. Bulanov, V. D. Mur, and V. S. Popov,, Phys. Lett. A<br />

330, 1 (2004); S. S. Bulanov, N. B. Narozhnyi, V. D. Mur,<br />

and V. S. Popov, JETP 102, 9 (2006); A. Di Piazza et al.,<br />

Phys. Rev. Lett. 103, 170403 (2009); R. Schutzhold, Adv.<br />

Sci. Lett. 2, 121 (2009); G. V. Dunne et al., Phys. Rev. D 80,<br />

111301(R) (2009).<br />

[12] S. S. Bulanov, T. Esirkepov, J. Koga, A. Thomas, and S. V.<br />

Bulanov, Phys. Rev. Lett. 105, 220407 (2010).<br />

[13] L. D. Landau and E. M. Lifshitz, The Classical Theory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fields (Pergam<strong>on</strong> Press. Oxford. 1975); V. B. Berestetskii,<br />

E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics<br />

(Pergam<strong>on</strong>. New York. 1982).<br />

[14] S. S. Bulanov, N. B. Narozhnyi, V. D. Mur, and V. S. Popov,<br />

Phys. Rev. Lett. 104, 220404 (2010); C. H. R. Ooi and T. Y.<br />

Tou, Appl Phys B 101, 825 (2010).<br />

[15] J. Schw<strong>in</strong>ger, Phys. Rev 75, 1912 (1949).<br />

[16] E. Sarachik and G. Schappert, Phys. Rev. D 1, 2738 (1970);<br />

E. Esarey et al., Phys. Rev. E 48, 3003 (1993).<br />

[17] K. C. Westfold, Astrophys. J. 130, 241 (1959).<br />

[18] V. I. Ritus, Tr. Fiz. Inst. Akad. Nauk SSSR 111, 6 (1979).<br />

[19] H. R. Reiss, J. Math. Phys. 3, 59 (1962); A. I. Nikishov and<br />

V. I. Ritus, Sov. Phys. Usp. 13, 303 (1970).


PAIR CREATION IN QED-STRONG PULSED LASER FIELDS ∗<br />

I. V. Sokolov † , SPRL, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan, Ann Arbor, MI 48109, USA<br />

N. M. Naumova ‡ , LOA, ENSTA - Ecole Polytechnique - CNRS, 91761 Palaiseau, France<br />

J. A. Nees, CUOS and FOCUS Center, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan, Ann Arbor, MI 48109, USA<br />

G. A. Mourou, ILE, ENSTA - Ecole Polytechnique - CNRS, 91761 Palaiseau, France<br />

Abstract<br />

Electr<strong>on</strong>-positr<strong>on</strong> pair creati<strong>on</strong> is am<strong>on</strong>g the QEDeffects<br />

known to occur <strong>in</strong> a str<strong>on</strong>g laser pulse <strong>in</strong>teracti<strong>on</strong><br />

with a counter-propagat<strong>in</strong>g electr<strong>on</strong> beam. In this<br />

regime multiple pairs may be generated from a s<strong>in</strong>gle beam<br />

electr<strong>on</strong>, some <str<strong>on</strong>g>of</str<strong>on</strong>g> the newborn particles be<strong>in</strong>g capable <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

further pair producti<strong>on</strong>. Radiati<strong>on</strong> back-reacti<strong>on</strong> prevents<br />

avalanche development and limits pair creati<strong>on</strong>. The system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tegro-differential k<strong>in</strong>etic equati<strong>on</strong>s for electr<strong>on</strong>s,<br />

positr<strong>on</strong>s and γ-phot<strong>on</strong>s is solved numerically.<br />

INTRODUCTION<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum electrodynamics (QED) may occur<br />

<strong>in</strong> a str<strong>on</strong>g laser pulse <strong>in</strong>teracti<strong>on</strong> with a counterpropagat<strong>in</strong>g<br />

electr<strong>on</strong> beam. In the well-known experiment [1]<br />

these effects were weak and barely observable. If the laser<br />

pulse <strong>in</strong>tensity is <strong>in</strong>creased up to J ≥ 5 · 10 22 W/cm 2 the<br />

QED effects c<strong>on</strong>trol the laser-beam <strong>in</strong>teracti<strong>on</strong> and result<br />

<strong>in</strong> multiple pair producti<strong>on</strong> from a s<strong>in</strong>gle beam electr<strong>on</strong>.<br />

QED-str<strong>on</strong>g laser fields<br />

In QED an electric field, E, should be treated as str<strong>on</strong>g if<br />

it exceeds the Schw<strong>in</strong>ger limit: E ≥ ES = mec 2 /(|e| ¯ λC)<br />

(see [2]). Such field is potentially capable <str<strong>on</strong>g>of</str<strong>on</strong>g> separat<strong>in</strong>g a<br />

virtual electr<strong>on</strong>-positr<strong>on</strong> pair provid<strong>in</strong>g an energy, which<br />

exceeds the electr<strong>on</strong> rest mass energy, mec 2 , to a charge,<br />

e = −|e|, over an accelerati<strong>on</strong> length as small as the Compt<strong>on</strong><br />

wavelength, ¯ λC = ¯h/(mec) ≈ 3.9 · 10 −11 cm. Typical<br />

effects <strong>in</strong> QED str<strong>on</strong>g fields are: electr<strong>on</strong>-positr<strong>on</strong> pair creati<strong>on</strong><br />

from high-energy phot<strong>on</strong>s, high-energy phot<strong>on</strong> emissi<strong>on</strong><br />

from electr<strong>on</strong>s or positr<strong>on</strong>s and the cascade development<br />

(see [3, 4]) result<strong>in</strong>g from the first two processes.<br />

QED-str<strong>on</strong>g fields may be created <strong>in</strong> the focus <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

ultra-bright laser. C<strong>on</strong>sider QED-effects <strong>in</strong> a relativistically<br />

str<strong>on</strong>g pulsed field [3]:<br />

|a| ≫ 1, a = eA<br />

, (1)<br />

mec2 with A be<strong>in</strong>g the vector potential <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave. In the laboratory<br />

frame <str<strong>on</strong>g>of</str<strong>on</strong>g> reference the electric field is not QEDstr<strong>on</strong>g<br />

for achieved laser <strong>in</strong>tensities, J ∼ 10 22 W/cm 2 [5],<br />

and even for the J ∼ 10 25 W/cm 2 <strong>in</strong>tensity projected [6].<br />

∗ One <str<strong>on</strong>g>of</str<strong>on</strong>g> us (I.S.) is supported by the DOE NNSA under the Predictive<br />

Science Academic Alliances Program by grant DE-FC52-08NA28616.<br />

† igorsok@umich.edu<br />

‡ natalia.naumova@ensta-paristech.fr<br />

N<strong>on</strong>etheless, a counterpropagat<strong>in</strong>g particle <strong>in</strong> a 1D wave,<br />

a(ξ), ξ = ωt−(k·x), may experience a QED-str<strong>on</strong>g field,<br />

E0 = |dA/dξ|ω(E − p∥)/c, because the laser frequency,<br />

ω = c/ ¯ λ, is Doppler upshifted <strong>in</strong> the frame <str<strong>on</strong>g>of</str<strong>on</strong>g> reference<br />

co-mov<strong>in</strong>g with the electr<strong>on</strong>. Herewith the electr<strong>on</strong> dimensi<strong>on</strong>less<br />

energy, E, and its momentum are related to mec2 ,<br />

and mec corresp<strong>on</strong>d<strong>in</strong>gly, and subscript ∥ herewith denotes<br />

the vector projecti<strong>on</strong> <strong>on</strong> the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave propagati<strong>on</strong>.<br />

The Lorentz-transformed field exceeds the Schw<strong>in</strong>ger<br />

limit, if χ ∼ E0/ES ≥ 1. Numerical values <str<strong>on</strong>g>of</str<strong>on</strong>g> the parameter,<br />

χ, may be expressed <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the local <strong>in</strong>stantaneous<br />

<strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser wave, J:<br />

χ = 3 ¯λC<br />

2 ¯λ (E − p <br />

<br />

∥) <br />

da<br />

<br />

dξ ≈ (E − p∥) 1.4 · 103 √<br />

J<br />

1023 [W/cm 2 ] .<br />

(2)<br />

This dependence shown <strong>in</strong> Fig.1 dem<strong>on</strong>strate that χ parameter<br />

<strong>on</strong> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> tens can be achieved with <strong>KEK</strong><br />

or SLAC electr<strong>on</strong> beams us<strong>in</strong>g available or foreseen <strong>in</strong> the<br />

future ultra<strong>in</strong>tense laser pulses.<br />

Figure 1: Dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> χ <strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s counterpropagat<strong>in</strong>g<br />

to laser pulses <str<strong>on</strong>g>of</str<strong>on</strong>g> various <strong>in</strong>tensities, accord<strong>in</strong>g<br />

to Eq.(2).<br />

Radiati<strong>on</strong> back-reacti<strong>on</strong><br />

The creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pairs <strong>in</strong> QED-str<strong>on</strong>g fields is a particular<br />

form <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong> losses from charged particles. At high<br />

χ an <strong>in</strong>termediate stage <strong>in</strong> the pair creati<strong>on</strong> process is the<br />

emanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a high-energy phot<strong>on</strong> by a charged particle:<br />

e → γ, e. This phot<strong>on</strong> is then absorbed <strong>in</strong> the str<strong>on</strong>g field,<br />

generat<strong>in</strong>g an electr<strong>on</strong>-positr<strong>on</strong> pair: γ → e, p.


A way to quantify the irreversible radiati<strong>on</strong> losses has<br />

been found <strong>in</strong> [7]. Specifically, <strong>in</strong> the 1D wave field the<br />

transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> energy, ∆E, from the wave to a particle may be<br />

<strong>in</strong>terpreted as the absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some number <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s.<br />

Accord<strong>in</strong>gly, the momentum from the absorbed phot<strong>on</strong>s is<br />

added to the parallel momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle. So, both<br />

energy and parallel momentum are not c<strong>on</strong>served, however,<br />

their difference is: ∆(E − p∥) = 0. To get the Lorentz<strong>in</strong>variant<br />

formulati<strong>on</strong>, <strong>in</strong>troduce the four-vector <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle<br />

momentum, p = (E, p), and the wave four-vector,<br />

k = ( ω<br />

c , k) for the 1D wave field. Their four-dot-product,<br />

(k · p) = ω(E − p∥)/c, is c<strong>on</strong>served <strong>in</strong> any particle <strong>in</strong>teracti<strong>on</strong><br />

with the 1D wave field, <strong>in</strong>clud<strong>in</strong>g its moti<strong>on</strong>, phot<strong>on</strong><br />

emissi<strong>on</strong>, pair creati<strong>on</strong> etc. The sum <str<strong>on</strong>g>of</str<strong>on</strong>g> this quantity over<br />

all particles <strong>in</strong> the f<strong>in</strong>al state is equal to that for the particles<br />

<strong>in</strong> the <strong>in</strong>itial state.<br />

The radiati<strong>on</strong> losses, thereby limit the cascad<strong>in</strong>g pair<br />

creati<strong>on</strong>. Particularly, emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>ter γ phot<strong>on</strong>s even<br />

may be described with<strong>in</strong> the radiati<strong>on</strong> force approximati<strong>on</strong>,<br />

which is traditi<strong>on</strong>ally used to account for the radiati<strong>on</strong><br />

back-reacti<strong>on</strong> (see [8, 9, 10, 11]).<br />

The discussed processes are described by the k<strong>in</strong>etic<br />

equati<strong>on</strong>s for the <strong>in</strong>volved particles (electr<strong>on</strong>s, positr<strong>on</strong>s, γphot<strong>on</strong>s).<br />

For circularly polarized 1D wave <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant amplitude,<br />

the system <str<strong>on</strong>g>of</str<strong>on</strong>g> three 1D <strong>in</strong>tegro-differential k<strong>in</strong>etic<br />

equati<strong>on</strong>s is reducible to a large system <str<strong>on</strong>g>of</str<strong>on</strong>g> ODEs, which is<br />

solved here numerically.<br />

ELECTRON IN QED-STRONG FIELD<br />

The emissi<strong>on</strong> probability <strong>in</strong> the QED-str<strong>on</strong>g 1D wave<br />

field may be found <strong>in</strong> Secti<strong>on</strong>s 40,90,101 <strong>in</strong> [12]. However,<br />

to simulate highly dynamical effects <strong>in</strong> pulsed fields,<br />

<strong>on</strong>e needs a reformulated emissi<strong>on</strong> probability, related to<br />

short time <strong>in</strong>tervals (not (−∞, +∞)), which is rederived<br />

<strong>in</strong> Appendix A <strong>in</strong> [13] with careful attenti<strong>on</strong> to c<strong>on</strong>sistent<br />

problem formulati<strong>on</strong>.<br />

Aga<strong>in</strong>, the energy, ¯hω ′ , and momentum, ¯hk ′ , <str<strong>on</strong>g>of</str<strong>on</strong>g> the emitted<br />

phot<strong>on</strong> are normalized to mec 2 and mec. The fourdot-product,<br />

(k · p), is the moti<strong>on</strong>al <strong>in</strong>variant for an electr<strong>on</strong><br />

and it is also c<strong>on</strong>served <strong>in</strong> the process <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>:<br />

(k · pi) = (k · k ′ ) + (k · pf ). A subscript i, f denotes the<br />

electr<strong>on</strong> <strong>in</strong> the <strong>in</strong>itial (i) or f<strong>in</strong>al (f) state.<br />

In the 1D wave field the emissi<strong>on</strong> probability may be<br />

c<strong>on</strong>veniently related to the <strong>in</strong>terval <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave phase, dξ,<br />

which should be taken al<strong>on</strong>g the electr<strong>on</strong> trajectory. The<br />

<strong>in</strong>terval <str<strong>on</strong>g>of</str<strong>on</strong>g> time, dt, and that <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> proper time,<br />

dτe, are related to dξ as follows: dτe = dt/E = dξ/[c(k ·<br />

p)]. The phase volume element for the emitted phot<strong>on</strong> is<br />

chosen <strong>in</strong> the form d2k ′ ⊥d(k·k′ ). The emissi<strong>on</strong> probability,<br />

dWfi/(dξd(k · k ′ )), is <strong>in</strong>tegrated over d2k ′ ⊥ , therefore, it<br />

is related to the element <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase volume, d(k · k ′ ) (see<br />

detail <strong>in</strong> Appendix A <strong>in</strong> [13]):<br />

dWfi<br />

d(k · k ′ )dξ = α (∫ ∞<br />

r K5/3(y)dy + κrK2/3(r) )<br />

√<br />

3πλC(k ¯ · pi) 2<br />

, (3)<br />

κ = (k · k′ )χe<br />

(k · pi) , r = (k · k′ )<br />

χe(k · pf ) , χe = 3<br />

2 (k·pi)<br />

<br />

<br />

<br />

da<br />

<br />

dξ ¯ λC.<br />

Here Kν(r) is the MacD<strong>on</strong>ald functi<strong>on</strong> and α = e 2 /(c¯h).<br />

Collisi<strong>on</strong> <strong>in</strong>tegral<br />

In str<strong>on</strong>g fields we <strong>in</strong>troduce χ-parameter not <strong>on</strong>ly for<br />

electr<strong>on</strong>s but also for γ-phot<strong>on</strong>s and relate the emissi<strong>on</strong><br />

probability to dχγ ∝ d(k · k ′ ):<br />

χγ = 3<br />

2 (k · k′ <br />

<br />

) <br />

da<br />

<br />

dξ ¯ <br />

dWfi <br />

λC, = α <br />

da<br />

<br />

dχγdξ dξ we→γ,e χe→χγ ,<br />

√ [<br />

∫<br />

(4)<br />

∞ ]<br />

3<br />

χγrK2/3(r) + K5/3(y)dy ,<br />

w e→γ,e<br />

χe→χγ =<br />

2πχ 2 e<br />

(5)<br />

Here r = χγ/[χe(χe − χγ)], χγ ≤ χe. The electr<strong>on</strong> parameter,<br />

χe, is taken for the <strong>in</strong>itial state and its value <strong>in</strong> the<br />

f<strong>in</strong>al state is χe − χγ.<br />

The distributi<strong>on</strong> functi<strong>on</strong>s for electr<strong>on</strong>s and phot<strong>on</strong>s may<br />

be also <strong>in</strong>tegrated over p⊥ and k ′ ⊥ corresp<strong>on</strong>d<strong>in</strong>gly. Thus<br />

<strong>in</strong>tegrated functi<strong>on</strong>s are distributed over (k · p), (k · k ′ ). We<br />

can parameterize locally these distributi<strong>on</strong>s via χe ∝ (k·p),<br />

χγ ∝ (k · k ′ ) and <strong>in</strong>troduce the 1D distributi<strong>on</strong> functi<strong>on</strong>s,<br />

fe(χe) and fγ(χγ).<br />

The collisi<strong>on</strong> <strong>in</strong>tegral (see [14]) describes the change<br />

<strong>in</strong> the particle distributi<strong>on</strong>s due to emissi<strong>on</strong> and accounts<br />

for the electr<strong>on</strong>s, leav<strong>in</strong>g the given phase volume, dχe,<br />

and those arriv<strong>in</strong>g <strong>in</strong>to it with<strong>in</strong> the <strong>in</strong>terval, d ˜ ξ =<br />

α|da/dξ|dξ = 2αcχedτe/(3 ¯ λC):<br />

δfe(χe)<br />

d˜ =<br />

ξ<br />

∫ ∞<br />

χe<br />

fe(χ)w e→γ,e<br />

χ→χ−χedχ−fe(χe) ∫ χe<br />

0<br />

δfγ(χγ)<br />

d˜ =<br />

ξ<br />

∫ ∞<br />

χγ<br />

r<br />

w e→γ,e<br />

χe→χ dχ,<br />

fe(χ)w e→γ,e<br />

χ→χγ dχ. (6)<br />

PHOTON IN QED-STRONG FIELD<br />

The absorpti<strong>on</strong> probability for phot<strong>on</strong>s <strong>in</strong> the 1D field is<br />

derived <strong>in</strong> Appendix B <strong>in</strong> [13]. An electr<strong>on</strong>-positr<strong>on</strong> pair<br />

(e,p) is generated <strong>in</strong> the phot<strong>on</strong> absorpti<strong>on</strong> with the c<strong>on</strong>servati<strong>on</strong><br />

law: (k · k ′ ) = (k · pe) + (k · pp).<br />

The phase volume element for the created electr<strong>on</strong>, aga<strong>in</strong><br />

is chosen <strong>in</strong> the form d2p⊥d(k · p). The absorpti<strong>on</strong> probability,<br />

dWfi/(dξd(k · pe)), is <strong>in</strong>tegrated over the transversal<br />

momenta comp<strong>on</strong>ents and related to the element <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

phase volume <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>, d(k · pe), result<strong>in</strong>g <strong>in</strong> the follow<strong>in</strong>g<br />

collisi<strong>on</strong> <strong>in</strong>tegral:<br />

δ − fe,p(χe,p)<br />

d ˜ ξ<br />

=<br />

∫ ∞<br />

χe,p<br />

fγ(χγ)w γ→e,p<br />

χγ→χe dχγ, (7)<br />

∫ χγ<br />

δ−fγ(χγ) d˜ = −fγ(χγ)<br />

ξ<br />

0<br />

Here r = χγ/[χe(χγ − χe)], χe = χγ − χp ≤ χγ and<br />

√ [<br />

∫ ∞ ]<br />

3<br />

χγrK2/3(r) − K5/3(y)dy .<br />

w γ→e,p<br />

χγ→χe =<br />

2πχ 2 γ<br />

w γ→e,p<br />

χγ→χe dχe. (8)<br />

r<br />

(9)


Figure 2: Distributi<strong>on</strong> functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and positr<strong>on</strong>s, fe,p(χ), and a spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>, χγfγ(χ)/χ0, after the<br />

<strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 8-GeV electr<strong>on</strong>s with <strong>on</strong>e, five and ten cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> a laser pulse <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tensity J ≈ 2 · 10 23 W/cm 2 (so that<br />

χ ≈ 2E[GeV ] — see Eq.(2)). Here fe − fp is the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the beam electr<strong>on</strong>s and ∫ (fe − fp)dχ = 1.<br />

Figure 3: Pair producti<strong>on</strong> (upper panel) and energy exchange<br />

between electr<strong>on</strong>s, phot<strong>on</strong>s, positr<strong>on</strong>s (lower panel)<br />

as functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> phase for the simulati<strong>on</strong> presented <strong>in</strong> Fig.2.<br />

SOLUTION FOR KINETIC EQUATIONS<br />

As l<strong>on</strong>g as the distributi<strong>on</strong> functi<strong>on</strong>s are <strong>in</strong>tegrated over<br />

the transversal comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum and expressed <strong>in</strong><br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the moti<strong>on</strong>al <strong>in</strong>tegrals, (k · pe,p), their evoluti<strong>on</strong> is<br />

c<strong>on</strong>trolled by the collisi<strong>on</strong> <strong>in</strong>tegrals:<br />

(<br />

δ + + δ − + δ (rf))<br />

fe,p,γ.<br />

∂fe,p,γ( ˜ ξ, (k · pe,p,γ))<br />

∂ ˜ =<br />

ξ<br />

(10)<br />

The derivatives, ∂/∂ ˜ ξ, are taken at c<strong>on</strong>stant (k · p). The<br />

term δ (rf) accounts for the radiati<strong>on</strong> losses for the phot<strong>on</strong>s<br />

with χγ ≤ ϵ ≪ 1 excluded from the other two terms <strong>in</strong>-<br />

tenti<strong>on</strong>ally (see details <strong>in</strong> Ref.[7]). Eqs.(10) are easy-tosolve<br />

for the 1D wave field <str<strong>on</strong>g>of</str<strong>on</strong>g> any shape, however, for<br />

circularly polarized wave <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant amplitude the soluti<strong>on</strong><br />

is especially simple. In this case (k · p) are different<br />

from χ by a c<strong>on</strong>stant factor, and Eqs.(10) may be solved<br />

with derivatives, ∂/∂ ˜ ξ, at c<strong>on</strong>stant χ for the functi<strong>on</strong>s,<br />

fe,p,γ( ˜ ξ, χe,p,γ).<br />

We solve Eqs.(10) numerically, by discretiz<strong>in</strong>g them at a<br />

uniform grid, χj = j∆χ, j = 1, 2, 3..., N, with the choice<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ∆χ = 0.1. The ˜ ξ-dependent distributi<strong>on</strong> functi<strong>on</strong>s at<br />

this grid obey the system <str<strong>on</strong>g>of</str<strong>on</strong>g> 3N ODEs, which is <strong>in</strong>tegrated<br />

numerically.<br />

NUMERICAL EXAMPLES<br />

<strong>KEK</strong> parameters: χ = 30<br />

At <strong>in</strong>itializati<strong>on</strong>, electr<strong>on</strong>s with fe(χe) = δ(χe − χ0),<br />

χ0 = 30, counterpropagate <strong>in</strong> the circularly polarized wave<br />

field with |da/dξ| = 220. This choice corresp<strong>on</strong>ds to the<br />

8-GeV electr<strong>on</strong> beam and the laser <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> J ≈ 2 ·<br />

1023 W/cm 2 for λ = 0.8µm, to be achieved so<strong>on</strong>.<br />

In Fig.2 the beam-wave <strong>in</strong>teracti<strong>on</strong> is traced dur<strong>in</strong>g ξ<br />

2π =<br />

10 cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>cident laser pulse (≈ 27 fs). The <strong>in</strong>itial<br />

beam electr<strong>on</strong> energy is rapidly c<strong>on</strong>verted <strong>in</strong>to γ-phot<strong>on</strong>s<br />

with high χγ, which then rapidly produce pairs, the typical<br />

rates <str<strong>on</strong>g>of</str<strong>on</strong>g> the processes be<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>verse<br />

light period. However, the larger fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the new particles<br />

is born at χ ≤ 1, with str<strong>on</strong>gly reduced pair producti<strong>on</strong><br />

rate. Slow absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s with χγ ∼ 1−2 ma<strong>in</strong>ta<strong>in</strong>s<br />

pair producti<strong>on</strong> even after tens <str<strong>on</strong>g>of</str<strong>on</strong>g> wave periods, as shown <strong>in</strong><br />

Fig.3 (upper panel). In Fig.3 the lower panel shows the evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the functi<strong>on</strong>s ∑<br />

∑<br />

i<br />

χife,i/χ0,<br />

i χifp,i/χ0,<br />

∑<br />

and<br />

i χifγ,i/χ0, which represent the energy porti<strong>on</strong>s <strong>in</strong> the<br />

corresp<strong>on</strong>d<strong>in</strong>g sorts <str<strong>on</strong>g>of</str<strong>on</strong>g> particles. These plots dem<strong>on</strong>strate<br />

that for 10-cycle laser pulse ≈ 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>itial electr<strong>on</strong><br />

energy is c<strong>on</strong>verted <strong>in</strong>to phot<strong>on</strong>s, the rest part is split between<br />

electr<strong>on</strong>s and positr<strong>on</strong>s.<br />

SLAC parameters: χ = 90<br />

Us<strong>in</strong>g 46-GeV electr<strong>on</strong> beam and laser pulses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tensity<br />

J ≈ 5 · 10 22 W/cm 2 , the value <str<strong>on</strong>g>of</str<strong>on</strong>g> χ = 90 can be


Figure 4: Pair producti<strong>on</strong> vs time for 46.6 GeV electr<strong>on</strong>s <strong>in</strong>teract<strong>in</strong>g with laser pulse <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tensity J ≈ 5 · 10 22 W/cm 2 .<br />

Plots are presented <strong>in</strong> l<strong>in</strong>ear and log − log scale. Dashed l<strong>in</strong>e is ∝ ξ 2 .<br />

achieved <strong>in</strong> their <strong>in</strong>teracti<strong>on</strong>. An evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pair producti<strong>on</strong><br />

for these parameters is shown <strong>in</strong> Fig.4 (see other plots<br />

for the same parameters <strong>in</strong> Ref.[7]). The results for such<br />

high <strong>in</strong>itial value <str<strong>on</strong>g>of</str<strong>on</strong>g> χ dem<strong>on</strong>strate almost quadratic dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pair producti<strong>on</strong>. This observati<strong>on</strong> is <strong>in</strong> agreement<br />

with simple estimati<strong>on</strong>s as follows.<br />

The change <strong>in</strong> the pair producti<strong>on</strong> is proporti<strong>on</strong>al to the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> rigid phot<strong>on</strong>s:<br />

dN e − e +<br />

dξ<br />

∝ Nγ<br />

dWabsorpti<strong>on</strong><br />

.<br />

dξ<br />

In the same time, the change <strong>in</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> rigid phot<strong>on</strong>s<br />

is proporti<strong>on</strong>al to <strong>in</strong>itial number <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s:<br />

dNγ<br />

dξ<br />

∝ Ne,0<br />

dWemissi<strong>on</strong><br />

.<br />

dξ<br />

Assum<strong>in</strong>g a c<strong>on</strong>stant value for <strong>in</strong>itial number <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s,<br />

Ne,0, we obta<strong>in</strong> dependences for the number <str<strong>on</strong>g>of</str<strong>on</strong>g> rigid phot<strong>on</strong>s<br />

and the number <str<strong>on</strong>g>of</str<strong>on</strong>g> pairs:<br />

what agrees with our results.<br />

Nγ ∝ ξ, N e − e + ∝ ξ 2 ,<br />

CONCLUSION<br />

We see that the laser-beam <strong>in</strong>teracti<strong>on</strong> may be accompanied<br />

by multiple pair producti<strong>on</strong>. The <strong>in</strong>itial energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

beam electr<strong>on</strong> is efficiently spent for creat<strong>in</strong>g pairs with<br />

significantly lower energies as well as s<str<strong>on</strong>g>of</str<strong>on</strong>g>ter γ-phot<strong>on</strong>s.<br />

This effect may be used for produc<strong>in</strong>g a pair plasma. It<br />

could also be employed to deactivati<strong>on</strong> after-use electr<strong>on</strong><br />

beams, reduc<strong>in</strong>g radiati<strong>on</strong> hazard.<br />

The way to solve the k<strong>in</strong>etic equati<strong>on</strong>s is accurate and<br />

it does not employ the M<strong>on</strong>te-Carlo method. The soluti<strong>on</strong><br />

can be used to benchmark numerical methods designed to<br />

simulate processes <strong>in</strong> QED-str<strong>on</strong>g laser fields.<br />

REFERENCES<br />

[1] C. Bula et al, Phys. Rev. Lett. 76, 3116 (1996); D.L. Burke<br />

al, Phys. Rev. Lett. 79, 1626 (1997); C. Bamber et al, Phys.<br />

Rev. D 60, 092004 (1999).<br />

[2] J. Schw<strong>in</strong>ger, Phys. Rev. 82, 664 (1951); E. Brez<strong>in</strong> and C.<br />

Itzyks<strong>on</strong>, Phys. Rev. D 2, 1191 (1970).<br />

[3] M. Marklund and P. K. Shukla, Rev. Mod. Phys. 78, 591<br />

(2006); Y. I. Salam<strong>in</strong> et al, Phys. Reports 427, 41 (2006); A.<br />

M. Fedotov et al, Phys. Rev. Lett. 105, 080402 (2010).<br />

[4] A. R. Bell and J. G. Kirk, Phys. Rev. Lett. 101, 200403<br />

(2008); H. Hu, C. Mueller and C.H. Keitel, Phys. Rev. Lett.<br />

105, 080401 (2010).<br />

[5] S.-W. Bahk et al, Opt. Lett. 29, 2837 (2004); V. Yanovsky<br />

et al, Optics Express 16, 2109 (2008).<br />

[6] http://eli-laser.eu/; E. Gerstner, Nature 446, 16 (2007); T.<br />

Feder, Phys. Today 63 (6), 20 (2010).<br />

[7] I. V. Sokolov et al., Phys. Rev. Lett. 105, 195005 (2010).<br />

[8] L. D. Landau and E. M. Lifshits, The Classical Theory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fields (Pergam<strong>on</strong>, New York, 1994).<br />

[9] J. D. Jacks<strong>on</strong>, Classical Electrodynamics (Wiley, New York,<br />

1999).<br />

[10] A. Zhidkov et al, Phys. Rev. Lett. 88, 185002 (2002); J.<br />

Koga, T. Zh. Esirkepov and S. V. Bulanov, Phys. Plasmas<br />

12, 093106 (2005).<br />

[11] I. V. Sokolov, JETP 109, 207 (2009); I. V. Sokolov et al,<br />

Phys. Plasmas 16, 093115 (2009); I. V. Sokolov et al, Phys.<br />

Rev. E. 81, 036412 (2010).<br />

[12] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum<br />

Electrodynamics (Pergam<strong>on</strong>, Oxford, 1982).<br />

[13] See supplementary material <strong>in</strong> Ref.[7] or; I. V. Sokolov et<br />

al., arXiv:1009.0703.<br />

[14] E. M. Lifshitz and L. P. Pitaevskii, Physical K<strong>in</strong>etics (Pergam<strong>on</strong>,<br />

Oxford, 1981).


LASER ACCELERATION UP TO BLACK HOLES<br />

AND B-MESON DECAY *<br />

H. Hora, # Deptm. Theor. Phys. UNSW Sydney, Australia<br />

R. Castillo, T. Stait-Gardner, BMSci. U. Western Sydney Campbelltown, Australia<br />

D.H.H. H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, Dept. Nucl. Phys. TU Darmstadt, Germany<br />

G.H. Miley, Dept. Nucl. Plasma & Radiolog. Eng<strong>in</strong>. Univ. Ill<strong>in</strong>ois USA<br />

P. Lalousis, IESL/FORTH, Herakli<strong>on</strong>, Greece<br />

Abstract<br />

Studies about laser produced pair producti<strong>on</strong> are followed<br />

up from early stages. The pair producti<strong>on</strong> by vacuum<br />

polarizati<strong>on</strong> was discussed with laser produced<br />

accelerati<strong>on</strong> up to the values at black holes lead<strong>in</strong>g to the<br />

discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> a difference between Hawk<strong>in</strong>g and Unruh<br />

radiati<strong>on</strong>. It was clarified that producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-hydrogen<br />

is at least milli<strong>on</strong> times more efficient than by present day<br />

accelerator technology. Another applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

ultrahigh laser fields is to focus them <strong>in</strong>to the collisi<strong>on</strong><br />

area <str<strong>on</strong>g>of</str<strong>on</strong>g> the LHC with the possibility to study the details <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the B-mes<strong>on</strong> dacay. This <str<strong>on</strong>g>of</str<strong>on</strong>g>fers an access to detect more<br />

details about CP violati<strong>on</strong> and Bs mes<strong>on</strong>s and possible<br />

signs <str<strong>on</strong>g>of</str<strong>on</strong>g> new particles <strong>on</strong> the horiz<strong>on</strong>. The available lasers<br />

with picosec<strong>on</strong>d pulses are developed to exawatts power<br />

what is <strong>in</strong>terest<strong>in</strong>g also for study<strong>in</strong>g ultra-<strong>in</strong>tense shock<br />

waves <strong>in</strong> astrophysics and result<strong>in</strong>g nuclear reacti<strong>on</strong>s.<br />

INTRODUCTION AND INITIAL RESULTS<br />

Us<strong>in</strong>g the very high <strong>in</strong>tensity laser radiati<strong>on</strong> with the<br />

electric and magnetic fields E and H far above any values<br />

applied before, led to very many new physics phenomena<br />

and last not least to the realizati<strong>on</strong> that the opened<br />

n<strong>on</strong>l<strong>in</strong>ear physics opens a new dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> explorati<strong>on</strong><br />

where <strong>in</strong>deed the l<strong>in</strong>ear physics needs to be based <strong>on</strong><br />

higher accuracy data than needed before [1]. Examples<br />

appeared where results <strong>in</strong> l<strong>in</strong>ear physics were completely<br />

wr<strong>on</strong>g compared to the truth <strong>in</strong> n<strong>on</strong>l<strong>in</strong>ear physics <strong>in</strong><br />

c<strong>on</strong>trast to earlier happen<strong>in</strong>g gradual differences or<br />

approximati<strong>on</strong>s <strong>on</strong>ly. This all developed not <strong>on</strong>ly due to<br />

techniques to produce higher and higher laser <strong>in</strong>tensities,<br />

mostly realized by chirped pulse amplificati<strong>on</strong> CPA [2],<br />

but also from realiz<strong>in</strong>g to generate relativistic effects.<br />

After first c<strong>on</strong>siderati<strong>on</strong>s how to produce relativistic<br />

c<strong>on</strong>diti<strong>on</strong>s for pair producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s [3] the<br />

c<strong>on</strong>diti<strong>on</strong>s were elaborated for the laser fields produc<strong>in</strong>g<br />

quiver moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s with energies above mc 2 [4].<br />

The steps to c<strong>on</strong>clude the c<strong>on</strong>diti<strong>on</strong>s for produc<strong>in</strong>g<br />

anti-prot<strong>on</strong>s [5] were parallel to estimati<strong>on</strong>s [6] and<br />

experiments where <strong>in</strong>dicati<strong>on</strong>s for the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

very first laser produced positr<strong>on</strong>s were reported [7].<br />

With respect to the quiver moti<strong>on</strong> and drift for prot<strong>on</strong> pair<br />

producti<strong>on</strong>, the advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g wave length laser<br />

pulses were <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terest [8]. After estimati<strong>on</strong>s with anti-<br />

* Dedicated to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Chiyoe Yamanaka, Osaka<br />

University, to his 88 th year.<br />

# h.hora@unsw.edu.au<br />

1<br />

hydrogen for space research became known, the soluti<strong>on</strong><br />

with lasers were <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terest because the efficiency was<br />

more than <strong>on</strong>e milli<strong>on</strong> times higher with lasers due to the<br />

available much higher particle density than with<br />

accelerator techniques. It was proved that a missi<strong>on</strong> to the<br />

next fix star with<strong>in</strong> a reas<strong>on</strong>able time <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 years can <strong>on</strong>ly<br />

be d<strong>on</strong>e with laser produced anti-hydrogen fuel [9].<br />

Thanks to the CPA technique, sub-picosec<strong>on</strong>d laser<br />

pulses <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 PW produced the first c<strong>on</strong>siderable number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

positr<strong>on</strong>s [10] f<strong>in</strong>ally arriv<strong>in</strong>g [11] at record <strong>in</strong>tensities<br />

positr<strong>on</strong> beam above any other method.<br />

PAIR PRODUCTION BY VACUUM<br />

POLARIZATION<br />

Pair producti<strong>on</strong> <strong>in</strong> vacuum was from the beg<strong>in</strong>n<strong>in</strong>g<br />

c<strong>on</strong>sidered [3][4][5] where a laser <strong>in</strong>tensity above 10 28<br />

W/cm 2 was needed [12] and specified to the well known<br />

higher value later. The accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s by the<br />

electric field <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser was close to the values <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Hawk<strong>in</strong>g radiati<strong>on</strong> and the Unruh radiati<strong>on</strong> at the black<br />

holes. This was studied <strong>in</strong> c<strong>on</strong>necti<strong>on</strong> with the black body<br />

radiati<strong>on</strong> which fields are <str<strong>on</strong>g>of</str<strong>on</strong>g> the same order and where the<br />

electr<strong>on</strong>s at thermal equilibrium were not l<strong>on</strong>ger<br />

follow<strong>in</strong>g the Fermi-Dirac statistics [13]. Further studies<br />

clarified that there was a difference between the Hawk<strong>in</strong>g<br />

and the Unruh radiati<strong>on</strong> [14] with a relati<strong>on</strong> to the<br />

Casimir effect [15][16]. These results were based <strong>on</strong> the<br />

theory <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> accelerati<strong>on</strong> <strong>in</strong> vacuum [17] as a<br />

basically n<strong>on</strong>l<strong>in</strong>ear effect [1]. The essential aspects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these studies are as follows.<br />

The Unruh effect is a phenomen<strong>on</strong> whereby an<br />

accelerated observer travell<strong>in</strong>g through a true vacuum<br />

state—that is the ground state |0> which will be referred<br />

to here as the M<strong>in</strong>kowski vacuum—will experience<br />

themselves to be immersed <strong>in</strong> a thermal blackbody<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particles [16]; Before compar<strong>in</strong>g the<br />

thermal radiati<strong>on</strong> experienced by an accelerated observer<br />

to the Hawk<strong>in</strong>g radiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole a brief digressi<strong>on</strong><br />

<strong>in</strong>to the physical nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum is appropriate.<br />

The M<strong>in</strong>kowski vacuum is a physical vacuum with<br />

pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> virtual particles manifest<strong>in</strong>g for short durati<strong>on</strong>s<br />

c<strong>on</strong>t<strong>in</strong>uously and, unlike the pre-quantum field theory<br />

vacuum, has observable effects <strong>on</strong> physical systems (e.g.<br />

the f<strong>in</strong>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the atomic hydrogen spectrum and<br />

the Casimir effect). Tak<strong>in</strong>g the Casimir effect as an<br />

example, two parallel mirrors placed <strong>in</strong> a vacuum will<br />

experience an attractive force <strong>in</strong>versely proporti<strong>on</strong>al to<br />

the forth power <str<strong>on</strong>g>of</str<strong>on</strong>g> the distance separat<strong>in</strong>g them as a result


<str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum. Essentially<br />

l<strong>on</strong>g wavelength virtual particles cannot manifest between<br />

the c<strong>on</strong>duct<strong>in</strong>g mirrors result<strong>in</strong>g <strong>in</strong> a decreased energy<br />

density between the mirrors compared with the vacuum<br />

surround<strong>in</strong>g them where there is no such restricti<strong>on</strong>. The<br />

Casimir effect is symbolic <str<strong>on</strong>g>of</str<strong>on</strong>g> the physical nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

quantum vacuum.<br />

The quantum field is best decomposed for an<br />

accelerated observer us<strong>in</strong>g a different basis than the<br />

standard momentum basis used <strong>in</strong> quantum field theory;<br />

this basis be<strong>in</strong>g related to the standard basis by the<br />

Bogoliubov transformati<strong>on</strong>s. These transformati<strong>on</strong>s play<br />

an <strong>in</strong>tegral part <strong>in</strong> analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh effect. The<br />

particle number operator differs too and does not give<br />

zero when applied to the M<strong>in</strong>kowski vacuum state (which<br />

is not identical to the R<strong>in</strong>dler vacuum state). The result is,<br />

as stated above, that an accelerated observer <strong>in</strong> a pure<br />

vacuum will experience themselves <strong>in</strong> a heat bath with a<br />

blackbody distributi<strong>on</strong>.<br />

Thus a state without particles to an <strong>in</strong>ertial observer<br />

will be seen to c<strong>on</strong>ta<strong>in</strong> particles by an accelerated<br />

observer. The dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature up<strong>on</strong><br />

accelerati<strong>on</strong> is, T = 2πckBa/ħ, where c is the velocity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

light, and a is the accelerati<strong>on</strong>. If a is <strong>in</strong>terpreted as the<br />

accelerati<strong>on</strong> at the event horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole then the<br />

same equati<strong>on</strong> describes the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermal<br />

radiati<strong>on</strong> emitted from a black hole via the process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Hawk<strong>in</strong>g radiati<strong>on</strong>. The similarity <str<strong>on</strong>g>of</str<strong>on</strong>g> the equati<strong>on</strong>s and<br />

the equivalence pr<strong>in</strong>ciple <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity h<strong>in</strong>t that the<br />

mechanisms for the radiati<strong>on</strong> may be the same but this is<br />

not the case. C<strong>on</strong>sider the follow<strong>in</strong>g.<br />

Hawk<strong>in</strong>g radiati<strong>on</strong> is sometimes described as result<strong>in</strong>g<br />

from pair producti<strong>on</strong> near the horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole with<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the virtual particles escap<strong>in</strong>g and becom<strong>in</strong>g real<br />

and the other disappear<strong>in</strong>g <strong>in</strong>to the black hole [15]. All<br />

observers experience Hawk<strong>in</strong>g radiati<strong>on</strong> while <strong>on</strong>ly<br />

accelerated observers experience the Unruh effect.<br />

Furthermore, an observer <strong>on</strong> earth is effectively <strong>in</strong> an<br />

accelerated coord<strong>in</strong>ate system via the equivalence<br />

pr<strong>in</strong>ciple and hence should observe the surround<strong>in</strong>g<br />

vacuum to have a temperature due to the Unruh effect but<br />

the earth does not emit Hawk<strong>in</strong>g radiati<strong>on</strong> and neither do<br />

other gravitati<strong>on</strong>al bodies without event horiz<strong>on</strong>s. The<br />

Unruh effect results from a different mechanism to that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Hawk<strong>in</strong>g radiati<strong>on</strong>; it is local, be<strong>in</strong>g experienced <strong>on</strong>ly by<br />

accelerated observers [14].<br />

PETAWATT LASER PULSES FOR<br />

B-MESON DIAGNOSTICS<br />

The present day available PW laser pulses <str<strong>on</strong>g>of</str<strong>on</strong>g> subpicosec<strong>on</strong>d<br />

durati<strong>on</strong> and the next higher powers can be<br />

used for important studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the details <str<strong>on</strong>g>of</str<strong>on</strong>g> B-mes<strong>on</strong><br />

diagnostics because their lifetimes are <strong>on</strong> the same time<br />

scale. This diagnostics at collider beam <strong>in</strong>teracti<strong>on</strong>s with<br />

lasers was studied before [18] for the c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Large Electr<strong>on</strong> Positr<strong>on</strong> (LEP) collider and can now be<br />

extended for the c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> B-mes<strong>on</strong>s, e.g. at the Large<br />

Hadr<strong>on</strong> Collider LHC or similar B-mes<strong>on</strong> factories [19].<br />

2<br />

A prototype <str<strong>on</strong>g>of</str<strong>on</strong>g> this technique was given by the<br />

<strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 16 W/cm 2 laser <strong>in</strong>tensities <strong>in</strong> low density<br />

helium [20]. It was expected from theory that a radial<br />

emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s from the focus should c<strong>on</strong>vert half<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the quiver energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s <strong>in</strong>to energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

translative moti<strong>on</strong>. The measured radially emitted keV<br />

electr<strong>on</strong>s corresp<strong>on</strong>ded exactly to the expected theory.<br />

The c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong>s leads<br />

to a slightly forward directi<strong>on</strong> parallel to the laser axis.<br />

This was measured <strong>in</strong> [21] <strong>in</strong> agreement with the earlier<br />

predicti<strong>on</strong> [22]. In the same way, the charged particles<br />

generated <strong>in</strong> the focus <str<strong>on</strong>g>of</str<strong>on</strong>g> the collider when be<strong>in</strong>g <strong>in</strong> the<br />

focus <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser beam, will get an upshift <str<strong>on</strong>g>of</str<strong>on</strong>g> energy and<br />

a change <str<strong>on</strong>g>of</str<strong>on</strong>g> directi<strong>on</strong>. The PW laser pulses and even the<br />

better exawatt (EW) laser pulses <str<strong>on</strong>g>of</str<strong>on</strong>g> few fs durati<strong>on</strong> [23]<br />

can then follow up the tim<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> generat<strong>in</strong>g or<br />

annihilat<strong>in</strong>g process <str<strong>on</strong>g>of</str<strong>on</strong>g> the B-mes<strong>on</strong> generati<strong>on</strong> and the<br />

decay processes. The importance is evident for further<br />

analyz<strong>in</strong>g the different types <str<strong>on</strong>g>of</str<strong>on</strong>g> B-mes<strong>on</strong>s where <strong>in</strong>sights<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the CP violati<strong>on</strong> strange bos<strong>on</strong>s Bs will be <strong>in</strong>terest<strong>in</strong>g<br />

<strong>on</strong> the way <str<strong>on</strong>g>of</str<strong>on</strong>g> a “possible new particles <strong>on</strong> the horiz<strong>on</strong>”<br />

[24].<br />

The theory is based <strong>on</strong> electro-dynamic <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the laser radiati<strong>on</strong> with the particles as known from<br />

plasma <strong>in</strong>teracti<strong>on</strong> as the n<strong>on</strong>l<strong>in</strong>ear force given by [25]<br />

fNL = ∇•[EE + HH − 0.5(E 2 + H 2 )1<br />

+ (1+(∂/∂t)/ω)(n 2 −1)EE]/(4π)<br />

− (∂/∂t) E × H/(4πc) (1)<br />

(see Eq. 8.88 <str<strong>on</strong>g>of</str<strong>on</strong>g> Ref. 1991 [25]) where 1 is the unity<br />

tensor, c the vacuum speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light. The value n is the<br />

(complex) refractive <strong>in</strong>dex determ<strong>in</strong>ed by the laser<br />

frequency ω and the electr<strong>on</strong>-i<strong>on</strong> collisi<strong>on</strong> frequency ν <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a plasma<br />

n = 1 – (ne/nec)/(1 + iν/ω), (2)<br />

where ne is the electr<strong>on</strong> density, nec is the critical electr<strong>on</strong><br />

density where the plasma frequency ωp is equal to the<br />

laser frequency ω. The dielectric properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum<br />

polarizati<strong>on</strong> are to be <strong>in</strong>cluded appropriately for the pair<br />

producti<strong>on</strong> <strong>in</strong> vacuum. The derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this force with<br />

<strong>in</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dielectric plasma properties for the n<strong>on</strong>transient<br />

case s<strong>in</strong>ce 1969 [25] was based <strong>on</strong> momentum<br />

c<strong>on</strong>servati<strong>on</strong>. The f<strong>in</strong>al complete transient case, Eq. (1), is<br />

known s<strong>in</strong>ce 1985 based <strong>on</strong> symmetry where it was<br />

proved later that this and <strong>on</strong>ly this is the Lorentz and<br />

gauge <strong>in</strong>variant descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>l<strong>in</strong>ear force.<br />

For simplified <strong>on</strong>e-dimensi<strong>on</strong>al geometry and<br />

perpendicular laser irradiati<strong>on</strong>, the force (1) can be<br />

reduced to the time averaged value<br />

fNL = − (∂/∂x)(E 2 +H 2 )/(8π)<br />

= − (ωp/ω) 2 (∂/∂x)(Ev 2 /n)/(16π), (3)<br />

where Ev is the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field <strong>in</strong> vacuum.<br />

The last expressi<strong>on</strong> is rem<strong>in</strong>d<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

p<strong>on</strong>deromotive force <strong>in</strong> electrostatics and is sometimes<br />

called “radiati<strong>on</strong> pressure accelerati<strong>on</strong>”.<br />

The relativistic limits for the emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the charged<br />

particles from the collider area with a laser focus are<br />

given for laser <strong>in</strong>tensities <str<strong>on</strong>g>of</str<strong>on</strong>g> neodymium glass lasers [19]


(1) charged B-mes<strong>on</strong>s<br />

Irel = 1.2×10 25 W/cm 2 ∆ε = 2.41 keV<br />

(2) prot<strong>on</strong>s or antiprot<strong>on</strong>s from the B-decay<br />

Irel = 3.9×10 26 W/cm 2 ∆ε = 424 eV<br />

(3) charged π-mes<strong>on</strong>s from B-mes<strong>on</strong>s decay:<br />

Irel = 2.73×10 23 W/cm 2 ∆ε = 31.5 keV<br />

The size <str<strong>on</strong>g>of</str<strong>on</strong>g> the lasers for PW-fs pulses are comparably<br />

compact such that the diagnostics with an additi<strong>on</strong>al laser<br />

focus may not be a too difficult problem. The signals<br />

from the detectors for comparable cases with and without<br />

the laser will then be d<strong>on</strong>e by functi<strong>on</strong>al analytical<br />

fold<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>formati<strong>on</strong> about the time dependence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

creati<strong>on</strong>, decay and annihilati<strong>on</strong> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

numerous types <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles,<br />

Figure 1. Genu<strong>in</strong>e two fluid hydrodynamic computati<strong>on</strong>s<br />

[32][33] <str<strong>on</strong>g>of</str<strong>on</strong>g> the i<strong>on</strong> density <strong>in</strong> solid DT after irradiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a laser pulse <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 20 W/cm 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> ps durati<strong>on</strong> at the times 22<br />

ps (dashed) and 225ps after the <strong>in</strong>itiati<strong>on</strong>.<br />

EXAWATT LASER PULSES FOR SHOCK<br />

WAVES AND NUCLEAR REACTIONS<br />

Studies with the advanced PW to EW laser pulses are<br />

important also for exotic c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> shock waves <strong>in</strong><br />

astrophysics [26], ultrahigh accelerati<strong>on</strong>s and for related<br />

<strong>in</strong>teracti<strong>on</strong>s <strong>in</strong>clud<strong>in</strong>g nuclear mechanisms. The essential<br />

difference to the usual thermal pressure generati<strong>on</strong><br />

processes <strong>in</strong> plasmas is the direct c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> laser<br />

energy <strong>in</strong>to particle moti<strong>on</strong>. This can be seen from the<br />

n<strong>on</strong>l<strong>in</strong>ear forces <strong>in</strong>clud<strong>in</strong>g the optical resp<strong>on</strong>se s<strong>in</strong>ce 1969<br />

[25] expressed <strong>in</strong> Eq. (1). The then predicted ultrahigh<br />

accelerati<strong>on</strong>s were first measured by Sauerbrey by the<br />

Doppler effect at target <strong>in</strong>teracti<strong>on</strong> with above TW-ps<br />

laser pulses. The n<strong>on</strong>l<strong>in</strong>ear force driven accelerati<strong>on</strong>s<br />

were 10 20 cm/s 2 [27] <strong>in</strong> c<strong>on</strong>trast to comparable<br />

accelerati<strong>on</strong>s with thermal-pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 15 cm/s 2 [28].<br />

The high accelerati<strong>on</strong> was <strong>in</strong> full agreement with the<br />

theory [29] and could then be used to ignite solid state<br />

density fusi<strong>on</strong> fuel deuterium tritium DT [30]. This is a<br />

3<br />

rather simplified scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> ignit<strong>in</strong>g hydrogen-bor<strong>on</strong>11<br />

with produc<strong>in</strong>g less radioactive radiati<strong>on</strong> per generated<br />

energy than burn<strong>in</strong>g coal [31].<br />

In order to show the velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the react<strong>in</strong>g fusi<strong>on</strong><br />

flame – similar to cases <strong>in</strong> astrophysics – Fig. 1 shows the<br />

computati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the i<strong>on</strong> density <strong>in</strong> frozen DT at ps laser<br />

irradiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 20 W/cm 2 . The reacti<strong>on</strong> fr<strong>on</strong>t at the<br />

<strong>in</strong>teracti<strong>on</strong> follow<strong>in</strong>g the ps igniti<strong>on</strong> at later times when<br />

propagat<strong>in</strong>g through the solid density DT can be seen<br />

where compressi<strong>on</strong>s up to four times the solid state are<br />

generated with<strong>in</strong> the mov<strong>in</strong>g short depth shock wave.<br />

This numerical result automatically agrees with the factor<br />

four <str<strong>on</strong>g>of</str<strong>on</strong>g> the Rank<strong>in</strong>e-Hug<strong>on</strong>iot shock wave theory. The<br />

shock velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> 1550 km/s is <strong>in</strong> the range known for this<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>teracti<strong>on</strong>. For later times the fusi<strong>on</strong> flame shows<br />

more and more a deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the density pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile differ<strong>in</strong>g<br />

from the simplified shock wave theory. This is evident<br />

from the output <str<strong>on</strong>g>of</str<strong>on</strong>g> the fast velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the generated alpha<br />

particles when mov<strong>in</strong>g <strong>in</strong>to the untouched solid DT by<br />

gradually chang<strong>in</strong>g there the c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> densities and<br />

temperatures. However the velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire flame is<br />

remarkably unchanged. More properties are given <strong>in</strong> the<br />

references, however, the genu<strong>in</strong>e two-fluid computati<strong>on</strong>s<br />

arrive at many more details than known from the <strong>on</strong>efluid<br />

computati<strong>on</strong> [30][31]. It is important to note that<br />

these studies are aimed to apply ps laser pulses <strong>in</strong> the<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 PW up to nearly EW. Generaliz<strong>in</strong>g the<br />

preced<strong>in</strong>g computati<strong>on</strong>s [30][31], the genu<strong>in</strong>e two-fluid<br />

hydrodynamics [32][33] is used <strong>in</strong> order to follow up the<br />

details <str<strong>on</strong>g>of</str<strong>on</strong>g> the generated very high electric fields <strong>in</strong> the<br />

shock fr<strong>on</strong>ts and to c<strong>on</strong>firm most <str<strong>on</strong>g>of</str<strong>on</strong>g> the other results<br />

calculated before with the usual <strong>on</strong>e fluid hydrodynamics.<br />

The results are <strong>in</strong>terest<strong>in</strong>g for astrophysical cases and for<br />

shock igniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> [34] where <strong>in</strong> c<strong>on</strong>trast to the<br />

thermal pressure process, the new research now was<br />

generalized to n<strong>on</strong>-thermal n<strong>on</strong>l<strong>in</strong>ear force direct<br />

c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> laser energy <strong>in</strong>to plasma moti<strong>on</strong> to reach<br />

the ultra-high accelerati<strong>on</strong>s.<br />

REFERENCES<br />

[1] H. Hora, Laser Plasma <strong>Physics</strong>: Forces and the<br />

N<strong>on</strong>l<strong>in</strong>earity Pr<strong>in</strong>ciple, SPIE Book, Bell<strong>in</strong>gham 2000,<br />

260 pages. ISBN0-8194-3549-0<br />

[2] G. Mourou and T. Tajima. Ultra<strong>in</strong>tense lasers and<br />

their applicati<strong>on</strong>s. In Inertial Fusi<strong>on</strong> Science and<br />

Applicati<strong>on</strong>s 2001 (Tanaka, V.R., Meyerh<str<strong>on</strong>g>of</str<strong>on</strong>g>er, D.D. and<br />

Meyer-Ter-Vehn, J., Eds.) Paris: Elsevier 2002, p. 832.<br />

[3] F.V. Bunk<strong>in</strong>, and A.M. Prokhorov, Polarizati<strong>on</strong><br />

Matiere et Radiati<strong>on</strong>, Volume Jubilaire En L’h<strong>on</strong>eur<br />

d’Alfred Kastler (Paris 1969)<br />

[4] H. Hora, Nature (Physical Science) 243, 34 (1973).<br />

[5] H. Hora, Estimates for the efficient producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antihydrogen<br />

by lasers <str<strong>on</strong>g>of</str<strong>on</strong>g> very high <strong>in</strong>tensities. Optoelecr<strong>on</strong>ics<br />

3 491 (1973)<br />

[6] J. Shearer, J. Garris<strong>on</strong>, J. W<strong>on</strong>g, and J.E. Swa<strong>in</strong>. Phys.<br />

Rev. A 8, 1582 (1973)<br />

[7] J. Shearer, J. Garris<strong>on</strong>, J. W<strong>on</strong>g, and J.E. Swa<strong>in</strong>, Pair<br />

producti<strong>on</strong> by relativistic electr<strong>on</strong>s from an <strong>in</strong>tense laser<br />

focus, <strong>in</strong> Laser Interacti<strong>on</strong> and Related Plasma


Phenomena H. Schwarz and H. Hora Eds., Plenum New<br />

York 1974, Vol. 3B, p. 803.<br />

[8] A.S. Christopoulos, et al, Nucl. Instr. Methods A271<br />

178 (1988)<br />

[9] H. Hora, H. Loeb, Zeitschr. f. Flugwissenschaften und<br />

Weltraumforschung 10 393 (1986)<br />

[10] 13T. E. Cowan, M. D. Parry, M. H. Key, T. R.<br />

Dittmire, S. P. Hatchet, E. A.Henry, J. D. Mody, M. J.<br />

Morgan, D. M. Penn<strong>in</strong>gt<strong>on</strong>, T. W. Philips, T. C.Sangster,<br />

J. A. Sefcik, M. S. S<strong>in</strong>gh, R. A. Snavely, M. A. Stoyer, S.<br />

C.Wilks, P. E. Takahashi, B. D<strong>on</strong>g, W. Founta<strong>in</strong>, T.<br />

Parnell, J. Johns<strong>on</strong>, A.W. Hunt, and T. Kuhl, Laser Part.<br />

Beams 17, 773 (1999).<br />

[11] S.C. Wilks, H. Chen et al. Summaries IFSA<br />

<str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> San Francisco Sept. 2009, p. 357;H. Chen,<br />

S.C. Wilks et al. Physical Review Letters. 102, 105001<br />

(2009)<br />

[12] W. Heisenberg, Bemerkungen zu Diracschen Theorie<br />

des Positr<strong>on</strong>s. Zeitschr.. für Physik 90, 209 (1934); W.<br />

Heisenberg, W. and H. Euler. Folgerungen aus der<br />

Diracschen Theorie des Positr<strong>on</strong>s. Zeitschr. für Physik 98,<br />

714, 1936; H. Hora, F. Osman, R. Castillo, M. Coll<strong>in</strong>s, T.<br />

Stait-Gardner, W.-K. Chan, M. Hölss, W. Scheid, J.-X.<br />

Wang, and Y.-K. Ho. Laser-generated pair producti<strong>on</strong><br />

and Hawk<strong>in</strong>g–Unruh radiati<strong>on</strong>. Laser and Particle Beams<br />

20, 79 (2002)<br />

[13] H. Hora and H. Müller, Zeitschr. für Physik 164,<br />

359 (1961); S. Eliezer, A.K. Ghatak, H. Hora and E.<br />

Teller, Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> Equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> State S<strong>in</strong>gapore:<br />

World Scientific 2002<br />

[14] Timothy Stait-Gardner and Reynaldo Castillo.<br />

Difference between Hawk<strong>in</strong>g and Unruh radiati<strong>on</strong> derived<br />

from studies about pair producti<strong>on</strong> by lasers <strong>in</strong> vacuum.<br />

Laser and Particle Beams 24, 579 (2006)<br />

[15] S. W. Hawk<strong>in</strong>g. Commun. Math. Phys. 43, 199<br />

(1975)<br />

[16] W. G. Unruh. Phys. Rev. D 14, 870 (1976); W. G<br />

Unruh, R. M. Wald. Phys. Rev. D 29, 1047 (1984)<br />

[17] H. Hora, Nature 333, 337 (1988); Wang, J.X., Ho,<br />

Y.K., K<strong>on</strong>g, Q., Zhu, L.J., Feng, L., Scheid,W. and Hora,<br />

H. Phys. Rev. E 58, 6575 (1998); Hora, H., Hölss, M.,<br />

Scheid,W.,Wang, J.X., Ho, Y.K., Osman, F. & Castillo, R.<br />

Laser Part. Beams 18, 135 (2000).<br />

[18] H. Hora, Laser Accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles<br />

from a collider area. In CERN Sem<strong>in</strong>ar Lectures Geneva,<br />

Switzerland, Feb. 1992.<br />

4<br />

[19] H. Hora and D.H.H. H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann. Us<strong>in</strong>g Petawatt laser<br />

pulses <str<strong>on</strong>g>of</str<strong>on</strong>g> picosec<strong>on</strong>ds durati<strong>on</strong> for detailed diagnostics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

creati<strong>on</strong> and decay process <str<strong>on</strong>g>of</str<strong>on</strong>g> B-mes<strong>on</strong>s <strong>in</strong> the LHC.<br />

Laser and Particle Beams 26, 503 (2006).<br />

[20] B.W. Boreham and H. Hora, Debye Length<br />

Discrim<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N<strong>on</strong>l<strong>in</strong>ear Laser Forces act<strong>in</strong>g <strong>on</strong><br />

Electr<strong>on</strong>s <strong>in</strong> Tenuous Plasmas, Physical Review Letters<br />

42, 776-779 (1979).<br />

[21] D.D. Meyerh<str<strong>on</strong>g>of</str<strong>on</strong>g>er, J.P. Knauer, S.J. Mcnaught and<br />

C.I. More. J. Opt. Soc. Am. B, 13, 113 (1996)<br />

[22] H. Hora and G. Viera, The Lateral Injecti<strong>on</strong> Free<br />

Electr<strong>on</strong> Laser: Momentum Balance and Axial Shift <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Electr<strong>on</strong>s, Laser Interacti<strong>on</strong> and Related Plasma<br />

Phenomena, H. Hora and G.H. Miley eds. (Plenum, New<br />

York, 1983) Vol. 6, p.203<br />

[23] H. Azechi, this c<strong>on</strong>ference<br />

[24] A. Abullencia (CDF collaborati<strong>on</strong>) Phys. Rev.<br />

Letters 97, 24003 (2006); Editorial: Areas to watch: The<br />

Hadr<strong>on</strong> Collider. Science 330, 1608 (2010)<br />

[25] H. Hora, <strong>Physics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fluids 12, 182 (1969); H. Hora.<br />

The transient electrodynamic forces at laser plasma<br />

<strong>in</strong>teracti<strong>on</strong>. <strong>Physics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fluids 28, 370 (1985); H. Hora,<br />

Plasmas at High Temperature and Density. Heidelberg:<br />

Spr<strong>in</strong>ger 1991.<br />

[26] H. Hora, G.H. Miley, X. Yang and P. Lalousis,<br />

Str<strong>on</strong>g shock-phenomena at petawatt-picosec<strong>on</strong>d laser<br />

side-<strong>on</strong> igniti<strong>on</strong> fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uncompressed hydrogenbor<strong>on</strong>11.<br />

Astrophysics and Space Science (<strong>in</strong> pr<strong>in</strong>t 2011).<br />

[27] R. Sauerbrey, Phys. Plasmas 3, 4712 (1996).<br />

[28] Hye-Sook Park and Bruce Rem<strong>in</strong>gt<strong>on</strong>, Astrophyhsics<br />

and Space Science (2011) <strong>in</strong> pr<strong>in</strong>t<br />

[29] H. Hora, J. Badziak, M. N. Read, Y.-T. Li, T.-J.<br />

Liang, Y. Cang, H. Liu, Z.-M. Sheng, J. Zhang, F. Osman,<br />

G. H. Miley, W. Zhang, X. He, H. Peng, S. Glowacz, S.<br />

Jabl<strong>on</strong>ski, J. Wolowski, Z. Skladanoski, K. Jungwirth, K.<br />

Rohlena and J. Ullschmied, Phys. Plasmas, 14, 072701<br />

(2007)<br />

[30] H. Hora, Laser and Particle Beams 27, 107 (2009).<br />

[31] H. Hora, G.H. Miley et al. Energy and Envir<strong>on</strong>ment<br />

Science 3, 479 (2010).<br />

[32] P. Laolusis and H. Hora. Laser and Particle Beams 1,<br />

283 (1983).<br />

[33] H. Hora, P. Lalousis and S. Eliezer. Phys. Rev.<br />

Letters 53, 1650 (1984).<br />

[34] R. Betti, R., C. D. Zhou, C.D., K. S. Anders<strong>on</strong>, K. S.,<br />

L. J. Perk<strong>in</strong>s, L.J., W. Theobald, and A.A. Solodov, A. A.,<br />

Phys. Rev. Lett. 98, 155001 (2007)


Present Status <str<strong>on</strong>g>of</str<strong>on</strong>g> Ultra-<strong>in</strong>tense Lasers and High-Field <strong>Physics</strong><br />

<strong>in</strong> the World<br />

INTRODUCTION<br />

It is the 50 th year anniversary <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>venti<strong>on</strong> by<br />

Theodor Maiman, who dem<strong>on</strong>strated laser generati<strong>on</strong> <strong>in</strong><br />

1960 with a ruby rod as shown <strong>in</strong> Fig. 1. At that time,<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> scientists believed that the gas is the best for<br />

las<strong>in</strong>g media, while Maiman took a different way aga<strong>in</strong>st<br />

all and succeeded to be the first runner <strong>in</strong> this big race.<br />

Fig. 1 Maiman and his world first laser made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ruby rod. It was June <strong>in</strong> 1960.<br />

In the last fifty years, the scale, power, and focused<br />

<strong>in</strong>tensity dramatically <strong>in</strong>creased from 1kW to 10 PW, the<br />

12 order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <strong>in</strong>crease. The laser is now widely<br />

used <strong>in</strong> fundamental and applied science. In additi<strong>on</strong>, the<br />

laser is also used for many devices <strong>in</strong> commercial goods.<br />

In the present paper, we focus <strong>on</strong> the highest <strong>in</strong>tensity<br />

laser at the present time and to be c<strong>on</strong>structed <strong>in</strong> the near<br />

future and discuss about what k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme experiment<br />

we can do. The vacuum breakdown and resultant<br />

highly-relativistic electr<strong>on</strong>-positr<strong>on</strong> pair plasma<br />

producti<strong>on</strong> are ma<strong>in</strong> topics <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper. We have reached<br />

the <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.2×10 22 W/cm 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> focused laser at Univ.<br />

Michigan [1]. The electric field <str<strong>on</strong>g>of</str<strong>on</strong>g> this <strong>in</strong>tensity is 1.4×<br />

10 12 V/cm. The energy <str<strong>on</strong>g>of</str<strong>on</strong>g> an oscillat<strong>in</strong>g electr<strong>on</strong> <strong>in</strong> this<br />

electric field can be calculated to be 10 2 mc 2 . It is natural<br />

that with the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> such str<strong>on</strong>g lasers wishes to<br />

carry out a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments related to N<strong>on</strong>-l<strong>in</strong>er<br />

QED and QCD.<br />

H. Takabe, ILE, Osaka University, Japan<br />

In the present paper, we review the present status <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

exist<strong>in</strong>g and planned ultra-<strong>in</strong>tense laser facilities <strong>in</strong> the<br />

world at first, and describe the physics scenario <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> pair plasma. It is menti<strong>on</strong>ed that<br />

when the laser <strong>in</strong>tensity becomes 100 times the present<br />

record and it becomes above 10 24 W/cm 2 , vacuum<br />

breakdown becomes essential to creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> highly<br />

relativistic electr<strong>on</strong> pair plasma. The avalanche effect<br />

enhances the pair creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum.<br />

M U -PW L LASERS T I IN THE WORLD<br />

A great progress <strong>in</strong> c<strong>on</strong>struct<strong>in</strong>g 10 PW laser systems<br />

<strong>in</strong> Europe is go<strong>in</strong>g by the leadership <str<strong>on</strong>g>of</str<strong>on</strong>g> G. Mourou, the<br />

founder <str<strong>on</strong>g>of</str<strong>on</strong>g> the pulse compressi<strong>on</strong> technique with CPA [2].<br />

It is amaz<strong>in</strong>g that EU decided to fund three 10 PW laser<br />

facilities <strong>in</strong> the EU member countries <str<strong>on</strong>g>of</str<strong>on</strong>g> the East Europe,<br />

Czech, Hungary, and Romania. Total budget for<br />

c<strong>on</strong>structi<strong>on</strong> is about 800 M Euro. Laser property <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> them is almost same but with different ma<strong>in</strong> subjects<br />

[3]. Czech’s aims at high-brightness sources <str<strong>on</strong>g>of</str<strong>on</strong>g> x-rays and<br />

particles[4], Hungary’s atto-sec<strong>on</strong>d XUV/X-ray source<br />

and its applicati<strong>on</strong> [5], and Romania’s laser-<strong>in</strong>duced<br />

nuclear physics[6]. They are three ELI modules and the<br />

site selecti<strong>on</strong> was d<strong>on</strong>e <strong>on</strong> October 1, 2009. They will also<br />

play important role <strong>in</strong> technology development for<br />

c<strong>on</strong>struct<strong>in</strong>g 200PW laser system ELI (Extreme Light<br />

Infrastructure) [7]. It is announced that the technology<br />

and site <str<strong>on</strong>g>of</str<strong>on</strong>g> ELI are to be determ<strong>in</strong>ed after 2012.<br />

On the other hand, UK will c<strong>on</strong>struct 10 PW system<br />

by modify<strong>in</strong>g and expand the present Vulcan laser system<br />

and it will be completed due by 2014-15 [8]. France plans<br />

to c<strong>on</strong>struct a s<strong>in</strong>gle beam 10 PW laser APOLLON as<br />

<strong>in</strong>ternati<strong>on</strong>al collaborati<strong>on</strong> system with ma<strong>in</strong> c<strong>on</strong>tributi<strong>on</strong><br />

by three <strong>in</strong>stituti<strong>on</strong>s, LULI, LOA, and Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Optics<br />

and it will be completed due by 2012-13. Vulcan is <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

300J, 30fs, 1shot/15 m<strong>in</strong>, and APPLLON is <str<strong>on</strong>g>of</str<strong>on</strong>g> 150J, 15 fs,<br />

1shot/m<strong>in</strong>.<br />

In Asia, APRI <strong>in</strong> Korea has 1PW laser system with 47<br />

J/30fs at 0.1 Hz [9]. In Japan, 1 PW laser is <strong>in</strong><br />

Kansai-J A E [10] A and 10 PW laser LFEX with 10 kJ/ 1ps<br />

s<strong>in</strong>gle shot base [1 1] is under c<strong>on</strong>structi<strong>on</strong> <strong>in</strong> Osaka<br />

University.


In USA, LLNL has a user’s facility, Titan laser which<br />

is 1PW system with 400fs--10ps, up to 530 J and<br />

2shots/hour [12]. At LLE, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Rochester, an<br />

ultra-<strong>in</strong>tense laser system OMEGA-EP is now <strong>in</strong><br />

operati<strong>on</strong>. It is <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 P multi-kJ, W , 1ps and <strong>in</strong>tensity<br />

higher than 10 20 W/cm 2 We dem<strong>on</strong>strated that the Bethe-Heitler process is ma<strong>in</strong><br />

process to produce the pairs, although it is the two step<br />

process <strong>in</strong> the gold foil. We predicted the positr<strong>on</strong><br />

spectrum and compared with Cowan’s experimental data.<br />

What we found is that the experimental data looks like<br />

[13]. In additi<strong>on</strong>, the world- shifted by about 10 MeV to the higher energy side as you<br />

biggest laser NIF will have four beams to be multi-P It W . can see <strong>in</strong> Fig. 2 [18]. The M<strong>on</strong>te-Carlo calculati<strong>on</strong><br />

is called NIF-ARC [14]. NIF-ARC is orig<strong>in</strong>ally motivated<br />

for diagnostic purpose for NIF igniti<strong>on</strong> campaign (NIC),<br />

but it is also open to users <strong>in</strong> the world <strong>on</strong>ly for the<br />

fundamental science.<br />

PAIR PLASMAS<br />

E<strong>in</strong>ste<strong>in</strong> said “Imag<strong>in</strong>ati<strong>on</strong> is more important than<br />

knowledge”. We can spread the world <str<strong>on</strong>g>of</str<strong>on</strong>g> imag<strong>in</strong>ati<strong>on</strong> with<br />

the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> such ultra-<strong>in</strong>tense lasers. The first<br />

experiment with PW laser was d<strong>on</strong>e by T. Cowan et al.<br />

[15] and he reported photo-nuclear fissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Uranium<br />

and positr<strong>on</strong> producti<strong>on</strong> <strong>in</strong> a gold foil. In order to analyze<br />

his experimental data <strong>on</strong> positr<strong>on</strong> producti<strong>on</strong> [16], we<br />

pursued jo<strong>in</strong>t research start<strong>in</strong>g from model<strong>in</strong>g the Trident<br />

and Bethe-Heitler processes <strong>in</strong> Fokker-Planck equati<strong>on</strong> to<br />

relativistic electr<strong>on</strong>s as ma<strong>in</strong> source for pair creati<strong>on</strong> [17].<br />

Figure 2: (a) The l<strong>on</strong>gitud<strong>in</strong>al momentum<br />

distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong> (red) and electr<strong>on</strong>s (black) at<br />

back <str<strong>on</strong>g>of</str<strong>on</strong>g> the target. The target rear is at x=0. The solid<br />

l<strong>in</strong>e <strong>in</strong>dicates the sheath field normalized by 10 12 V/m.<br />

(b) Positr<strong>on</strong> spectrum calculated by PIC. The blue<br />

dotted l<strong>in</strong>e is the electr<strong>on</strong> spectrum used <strong>in</strong> PIC<br />

calculati<strong>on</strong>.<br />

usually used <strong>in</strong> HEP field [17] predicted almost the same<br />

as Fokker-Planck case.<br />

In order to see the physics caus<strong>in</strong>g the difference, we<br />

thought that s<strong>in</strong>ce the laser-produced relativistic electr<strong>on</strong><br />

density is much higher than the case <str<strong>on</strong>g>of</str<strong>on</strong>g> accelerator beams,<br />

a str<strong>on</strong>g electric field formati<strong>on</strong> by charge separati<strong>on</strong><br />

effect, namely; plasma effect, becomes important to<br />

accelerate the created positr<strong>on</strong> at the rear side <str<strong>on</strong>g>of</str<strong>on</strong>g> the target<br />

foil [18]. We po<strong>in</strong>ted out this is critically different po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

laser case compared to the accelerator case. We have<br />

carried out two-dimensi<strong>on</strong>al PIC (Particle-<strong>in</strong>-Cell)<br />

simulati<strong>on</strong> [20] with the <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong> calculated with<br />

the Fokker-Planck equati<strong>on</strong> and successes to reproduce<br />

the experimental positr<strong>on</strong> spectrum as shown <strong>in</strong> l<strong>in</strong>e with<br />

PIC. PIC simulati<strong>on</strong> calculated Maxwell equati<strong>on</strong>s c<strong>on</strong>-<br />

sistently with charged particles and the electric field the<br />

potential <str<strong>on</strong>g>of</str<strong>on</strong>g> about 20 MV is found to be produced. It<br />

should be noted that s<strong>in</strong>ce the electric field is the vertical<br />

directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the target rear surface and the positr<strong>on</strong>s are<br />

accelerated predom<strong>in</strong>antly to this directi<strong>on</strong>, we obta<strong>in</strong> a<br />

jet like positr<strong>on</strong>s with Lorentz factor about 10-20 the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> which is the same as those <str<strong>on</strong>g>of</str<strong>on</strong>g> AGN-jets<br />

(Cosmological jets) [21]. Recently, H. Chen et al. pub-<br />

lished several papers and they also found the importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field and jet-like emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong>s [22].<br />

We are now collaborat<strong>in</strong>g to dem<strong>on</strong>strate the charge<br />

Fig. 3 Positr<strong>on</strong> number scal<strong>in</strong>g from 100’s Joule<br />

regi<strong>on</strong> to Several KJ laser case.


neutral pair plasma producti<strong>on</strong> as shown <strong>in</strong> Fig. 3 with 10<br />

kJ class PW laser NIF-ARC to be completed <strong>in</strong> 2013 [23].<br />

VACUUM BRAKDOWN<br />

With more <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> laser <strong>in</strong>tensity higher than<br />

10 22 W/cm 2 , we have a possibility to use all laser energy<br />

to create the pair plasma fireball. This physics is based <strong>on</strong><br />

an excit<strong>in</strong>g physics <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum breakdown with laser<br />

fields. In this case, we use the vacuum as target to<br />

produce the pair plasma. The pair plasma creati<strong>on</strong> itself is<br />

a t<strong>in</strong>y topic, but the dem<strong>on</strong>strati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> “Vacuum<br />

Breakdown” is more dramatic target for the research.<br />

The vacuum breakdown started to be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the argu<strong>in</strong>g<br />

topics just after the paper <str<strong>on</strong>g>of</str<strong>on</strong>g> relativistic quantum<br />

mechanics with Dirac equati<strong>on</strong> [24]. N . B o W h . r ,<br />

Heisenberg, and so <strong>on</strong> predicted the vacuum breakdown<br />

as “Gedanken experiment”. It is now go<strong>in</strong>g to be a real<br />

experiment thanks to the progress <str<strong>on</strong>g>of</str<strong>on</strong>g> laser technology.<br />

When the laser <strong>in</strong>tensity exceeds 10 24 W/cm 2 , we<br />

can expect the follow<strong>in</strong>g three different physics scenario<br />

with <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser <strong>in</strong>tensity.<br />

(1) Vacuum breakdown due to the pair avalanche<br />

triggered by the <strong>in</strong>duced pair producti<strong>on</strong><br />

(2) Vacuum breakdown due to the pair avalanche<br />

by sp<strong>on</strong>taneous pair producti<strong>on</strong><br />

(3) Vacuum breakdown without the avalanche near<br />

and over the Schw<strong>in</strong>ger limit<br />

When the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> Dirac sea is proposed, dist<strong>in</strong>guished<br />

physicists predicted that if a str<strong>on</strong>g electric field is<br />

imposed <strong>in</strong> the vacuum, electr<strong>on</strong>-positr<strong>on</strong> pairs appears<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> the tunnel<strong>in</strong>g effect <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles.<br />

Heisenberg’s uncerta<strong>in</strong> pr<strong>in</strong>ciple requires the existence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quantum noise energy even <strong>in</strong> a complete vacuum. This<br />

means any particle with a f<strong>in</strong>ite energy shows its face <strong>in</strong> a<br />

very short time <strong>in</strong> the vacuum because the uncerta<strong>in</strong><br />

pr<strong>in</strong>ciple requires ∆ε∆t ≥ 1/2ℏ. If we assume ∆ε = mc 2 ,<br />

then we obta<strong>in</strong> ∆t ~ 10 -21 s. If dur<strong>in</strong>g this extremely short<br />

time, we can give the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the rest mass<br />

and separate the pair over a substantial distance to avoid<br />

sp<strong>on</strong>taneous annihilati<strong>on</strong>, real pair is created.<br />

The critical value <str<strong>on</strong>g>of</str<strong>on</strong>g> such extremely str<strong>on</strong>g electric<br />

field E can easily obta<strong>in</strong>ed with the relati<strong>on</strong>


field trigger<strong>in</strong>g such phenomena is calculated with<br />

particle and M<strong>on</strong>te-Carlo hybrid code [27] and it is<br />

c<strong>on</strong>cluded to be about 10 24 W/cm 2 , the value <str<strong>on</strong>g>of</str<strong>on</strong>g> which is<br />

very lower than the Schw<strong>in</strong>ger limit <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (4). It should<br />

be noted that prolific pair creati<strong>on</strong> occurs thanks to the<br />

avalanche effect expla<strong>in</strong>ed later.<br />

In order to know the radiati<strong>on</strong> emissi<strong>on</strong> by an<br />

electr<strong>on</strong> <strong>in</strong> a str<strong>on</strong>g electromagnetic field, we have to<br />

solve the soluti<strong>on</strong> for the Lagrangian


small for the electric field weaker than Schw<strong>in</strong>ger limit <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Eq. (3).<br />

It is very important to know that for the plane wave<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> laser field <strong>in</strong> the vacuum, the two scalars S and P<br />

disappear and no tunnel<strong>in</strong>g effect can be expected even<br />

with the laser <strong>in</strong>tensity higher than the Schw<strong>in</strong>ger limit <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Eq. (4). So, we are required to deform the laser field from<br />

the plane wave relati<strong>on</strong> to maximize the Lorentz<br />

<strong>in</strong>variants S and P, especially the scalar P <strong>in</strong> Eqs. (8) and<br />

(9). In order to optimize with realistic optics, not <strong>on</strong>ly the<br />

collid<strong>in</strong>g laser scheme but also str<strong>on</strong>gly tightly focused<br />

laser field is proposed [32]. In additi<strong>on</strong>, multiple collid<strong>in</strong>g<br />

laser pulses method is also proposed and evaluated<br />

quantitatively how less laser energy is enough to produce<br />

<strong>on</strong>e pair [33]. We have proposed another tightly focused<br />

laser with use <str<strong>on</strong>g>of</str<strong>on</strong>g> a radially polarized laser [34].<br />

In the above three schemes, it is c<strong>on</strong>cluded that the<br />

tunnel<strong>in</strong>g effect starts with the laser <strong>in</strong>tensity more than<br />

10 26 -10 27 W/cm 2 . Although the tunnel<strong>in</strong>g effect is not<br />

substantial like Schw<strong>in</strong>ger limit, the seed pairs are pro-<br />

duced <strong>in</strong> the pure vacuum and the prolific pair producti<strong>on</strong><br />

and the resultant vacuum breakdown might be expected<br />

by the avalanche mechanism. Of course, very precise cal-<br />

culati<strong>on</strong> is necessary with the computati<strong>on</strong>al model<strong>in</strong>g<br />

briefly menti<strong>on</strong>ed previously. In this case, solv<strong>in</strong>g the<br />

Maxwell equati<strong>on</strong>s self-c<strong>on</strong>sistently is very important to<br />

see if the laser field is scattered out without be<strong>in</strong>g focused<br />

like the case <str<strong>on</strong>g>of</str<strong>on</strong>g> pure vacuum. This is because the<br />

appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the pairs means average refractive <strong>in</strong>dex<br />

changes as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time at the focused po<strong>in</strong>t.<br />

When the laser <strong>in</strong>tensity reaches the Schw<strong>in</strong>ger limit<br />

Eq. (4), the pair creati<strong>on</strong> by the tunnel<strong>in</strong>g effect becomes<br />

dom<strong>in</strong>ant and sp<strong>on</strong>taneous creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pairs occur at<br />

all the place where the value <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (7) is large enough.<br />

In this case, the <strong>in</strong>terest<strong>in</strong>g po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> research is how the<br />

avalanche effect is still important for the pair creati<strong>on</strong><br />

process. In additi<strong>on</strong>, we also expect the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> low<br />

energy hadr<strong>on</strong> and hadr<strong>on</strong> pairs such as π and π ± .<br />

What k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> lept<strong>on</strong> pairs and hadr<strong>on</strong> mixture or quark-<br />

glu<strong>on</strong> mixture plasma is produced is a very <strong>in</strong>terest<strong>in</strong>g<br />

subject.<br />

LABORATORY COSMOLOGY AND<br />

MODELING QUARK-GLUON PLASMA<br />

We can expect to do a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> model experiments<br />

for open questi<strong>on</strong>s <strong>in</strong> high-energy astrophysics. The<br />

<strong>in</strong>vestigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma properties <str<strong>on</strong>g>of</str<strong>on</strong>g> highly rela-<br />

tivistic electr<strong>on</strong> positr<strong>on</strong> plasmas and jets is essential for<br />

example, AGN jets and the jets related to the gamma-ray<br />

bursts [35]. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> “quiet” pair producti<strong>on</strong> <strong>in</strong> gold<br />

foil as described relat<strong>in</strong>g to Fig. 2, the am-bipolar field<br />

accelerates the positr<strong>on</strong> to produce relativistic pair plasma<br />

<strong>in</strong> the jet-like structure. This is good to model the<br />

propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pair plasma jets <strong>in</strong> the Universe.<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> “violent” pair creati<strong>on</strong> via the vacuum<br />

breakdown, it is not clear what k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> energy distributi<strong>on</strong><br />

and angular distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pair plasma is produced<br />

and how we can c<strong>on</strong>trol them. In additi<strong>on</strong> the distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gamma-ray is also open questi<strong>on</strong>. It may not be <strong>in</strong> the<br />

thermodynamic equilibrium state, while the physical<br />

dynamics <strong>in</strong> the highly relativistic “pair fireball” is very<br />

<strong>in</strong>terest<strong>in</strong>g matter to study l<strong>in</strong>er and n<strong>on</strong>l<strong>in</strong>ear collective<br />

phenomena as plasma physics. Whether a collisi<strong>on</strong>less<br />

shock formati<strong>on</strong> may observed after the n<strong>on</strong>l<strong>in</strong>ear stage is<br />

very hot topics <strong>in</strong> the GRB physics [36]. For example, this<br />

plasma would be a good test bed to verify and validate the<br />

computati<strong>on</strong>al model<strong>in</strong>g. It is very challeng<strong>in</strong>g, while the<br />

improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> such simulati<strong>on</strong> code compared to the<br />

real experiment is very much beneficial also to the<br />

model<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Quark-Glu<strong>on</strong> plasma (QGP), where the color<br />

force is dom<strong>in</strong>ant than the electric force. It is said that<br />

n<strong>on</strong>-Abelian system like QGP would become thermo-<br />

dynamic equilibrium <strong>in</strong> an extremely short time [37]. In<br />

additi<strong>on</strong>, we may be able to identify if the avalanche<br />

effect plays an important role <strong>in</strong> the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QGP <strong>in</strong><br />

extremely t<strong>in</strong>y space and time.<br />

As schematically shown <strong>in</strong> Fig. 6, the QGP created<br />

through vacuum breakdown by color field is <str<strong>on</strong>g>of</str<strong>on</strong>g> the order<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 10 -12 cm (=10fm) and the life time <str<strong>on</strong>g>of</str<strong>on</strong>g> QGP is about<br />

10fm/c = 3×10 -21 s. In the RHIC [38] and LHC [39]<br />

experiment for QGP, therefore, it is difficult to measure<br />

the plasma state and, for example, the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fig. 6 Laser produced electr<strong>on</strong> pair fireball will be a<br />

model experiment <str<strong>on</strong>g>of</str<strong>on</strong>g> quark-glu<strong>on</strong> plasma (QGP)<br />

dynamics.


QGP is studied by us<strong>in</strong>g the particle energy and angle<br />

distributi<strong>on</strong> determ<strong>in</strong>ed just after the phase transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

liquid phase <str<strong>on</strong>g>of</str<strong>on</strong>g> QCD to free particle state which is called<br />

freeze-out [40]. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> laser driven vacuum breakdown,<br />

the lept<strong>on</strong> pair plasma is generated and its spatial<br />

scale is about 10 -4 cm (=1µm) and life time is about 10 -15 s<br />

(1fs) as schematically shown <strong>in</strong> Fig. 6. S<strong>in</strong>ce the plasma<br />

size and lifetime are milli<strong>on</strong> times bigger and l<strong>on</strong>ger than<br />

t h we can e develop the Q diagnostics G to P directly ,<br />

[1] V Yan<str<strong>on</strong>g>of</str<strong>on</strong>g>sky . et al., Opt. Express16, 2109n (2008)<br />

[2] G.A.Mourou, Phys. Today 51,No.1,22(1998).<br />

[3] http://www.extreme-light-<strong>in</strong>frastructure.eu/<br />

[4] Czech: http://www.eli-beams.eu/<br />

[5] Hungary:<br />

http://www.eli-beams.eu/news-from-hungary/<br />

[6] Romania: http://eli.ifa-mg.ro/<br />

[7] ELI: http://www.eli-beams.eu/evropsky-projekt/<br />

eli-v-kostce/<br />

[8] http://www.clf.rl.ac.uk/<br />

[9] http://apri.gist.ac.kr/eng/<strong>in</strong>dex.php<br />

[10] http://wwwapr.kansai.jaea.go.jp/outl<strong>in</strong>e.html<br />

[ 1 1 ] http://www.ile.osaka-u.ac.jp/<br />

[12] https://jlf.llnl.gov/html/facilities/titan/titan.html<br />

[13] http://www.lle.rochester.edu/<br />

[14] https://e-reports-ext.llnl.gov/pdf/349575.pdf<br />

[15] T.E. Cowan et al., Phys. Rev. Lett. 84, 903 (2000).<br />

[16] T.E. Cowan et al., Laser Part. Beams 17, 773<br />

(1999).<br />

[17] K. Nakashima and H. Takabe, Phys. Plasmas 9, 1505<br />

(2002).<br />

measure the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the pair plasma. For example,<br />

we can measure the turbulent spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the highly<br />

n<strong>on</strong>l<strong>in</strong>ear stage <str<strong>on</strong>g>of</str<strong>on</strong>g> the pair plasma with a bright x-ray<br />

source <strong>in</strong> the range <str<strong>on</strong>g>of</str<strong>on</strong>g> atto-sec<strong>on</strong>d pulse technology to be<br />

developed <strong>in</strong> Hungary [5]. Deep understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

plasma and verificati<strong>on</strong> and validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the computati<strong>on</strong>al<br />

model<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum breakdown, avalanche<br />

effect, phot<strong>on</strong>-lept<strong>on</strong> <strong>in</strong>teracti<strong>on</strong>, and a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> physics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> highly relativistic pair plasma are sure to be very much<br />

beneficial for understand<strong>in</strong>g the QGP physics. We can say<br />

the vacuum breakdown physics is a model experiment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

QGP <strong>in</strong> relatively small scale laser facility.<br />

CONCLUSION<br />

With the progress <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tense laser technology, the<br />

physics to be solved <strong>in</strong> laser-matter <strong>in</strong>teracti<strong>on</strong> has<br />

already become relativistic regime for electr<strong>on</strong>s. In<br />

several years, we will come to the regime where laservacuum<br />

<strong>in</strong>teracti<strong>on</strong> becomes important and the 80-years<br />

stand<strong>in</strong>g theory <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum breakdown will be really<br />

experimentally studied. We c<strong>on</strong>cluded that the electr<strong>on</strong><br />

pair creati<strong>on</strong> can be expected from 10 24 W/cm 2 with use<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> seed electr<strong>on</strong>s and thanks to the resultant avalanche<br />

effect. When the laser <strong>in</strong>tensity exceeds more than 10 26<br />

W/cm 2 [18] T. Cowan et al, 2002: H. Takabe, <strong>in</strong> “Hadr<strong>on</strong> and<br />

Nuclear <strong>Physics</strong> 09”, Edt. A. Hosaka et al., p.<br />

388-403 (World Scientifics, 2010)<br />

[19] Y. Sentoku, private communicati<strong>on</strong>.<br />

[20] For example; L. L. Stephan, Computer <strong>Physics</strong><br />

Communicati<strong>on</strong>s 72, Issues 2-3, November 1992,<br />

Pages 144-148<br />

[21]<br />

[22]<br />

[23]<br />

[24]<br />

A. Mizuta, S. Yamada, and H. Takabe,<br />

Astrophysical J. 606 804 (2004).<br />

H. Chen et al., Phys. Plasmas 16, 122702 (2009).<br />

References there <strong>in</strong>.<br />

H. Chen, H. Takabe et al, NIF proposal (2010) ,<br />

not published, approved by NIF committee.<br />

P. Dirac, The Pr<strong>in</strong>ciple <str<strong>on</strong>g>of</str<strong>on</strong>g> Quantum Mechanics.<br />

[25]<br />

(Oxford Univ. Press, 1930).<br />

A. R. Bell and J. G. Kirk, Phys. Rev. Lett., 101,<br />

200403 (2008)<br />

[26] Landau & Lifshitz, “Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Classical Field”,<br />

Chap. 9, S.75.<br />

[27] J. G. Kirk, A. R. Bell, and I. Arka, Plasam Phys.<br />

, we can really break down the pure vacuum with<br />

[28]<br />

[29]<br />

[30]<br />

[31]<br />

[32]<br />

C<strong>on</strong>trol Fusi<strong>on</strong> 51 085008 (2009).<br />

H. Takabe, “Relativistic Plasma <strong>Physics</strong>”, J.<br />

Plasma Fusi<strong>on</strong> Res. 78 427-438 (2002), <strong>in</strong><br />

Japanese<br />

N. Elk<strong>in</strong>a and H. Ruhl, <strong>in</strong> this proceed<strong>in</strong>g<br />

N. B. Narozhny et al., JETP Letters<br />

R. Ruff<strong>in</strong>i et al., <strong>Physics</strong> Reports 487, 1-140<br />

(2010)<br />

A. M. Fedotov, Laser <strong>Physics</strong> 19, 214 (2009)<br />

help <str<strong>on</strong>g>of</str<strong>on</strong>g> pairs appear<strong>in</strong>g by quantum tunnel<strong>in</strong>g effect. W e [33] S. S. Bulanov et al., Phys. Rev. Lett. 104, 220404<br />

also po<strong>in</strong>ted out that this lept<strong>on</strong> fireball physics will be (2010)<br />

beneficial to model<strong>in</strong>g quark-glu<strong>on</strong> plasmas.<br />

[34] G. Miyaji, PhD Thesis, January, 2004<br />

[35] For example; F. D. Seward and P. A. Charles,<br />

REFERENCES<br />

“Explor<strong>in</strong>g the X-ray Universe” 2 nd editi<strong>on</strong><br />

(Cambridge, 2010)<br />

[36] T. N. Kato, Astrophysical J. 668 974-979, (2007);<br />

P. Chang, A. Spitkovsky, and J. Ar<strong>on</strong>s 674 378,<br />

(2008).<br />

[37] M. Asakawa et al., Phys. Rev. Lett. 96, 252301<br />

(2006)<br />

[38] RHIC: http://www.bnl.gov/rhic/<br />

[39] LHC: http://lhc.web.cern.ch/lhc/<br />

[40] S. A. Bass and A. Dumitru, Phys. Rev. C 61,<br />

064909 (2000)


REACHING THE SCHWINGER LIMIT WITH X-RAYS*<br />

Charles K. Rhodes, John Boguta, Alex B. Borisov, Shahab F. Khan, James W. L<strong>on</strong>gworth, John C.<br />

McCork<strong>in</strong>dale, Sankar Poopalas<strong>in</strong>gam, Erv<strong>in</strong> Racz # and Ji Zhao<br />

Laboratory for X-ray Microimag<strong>in</strong>g and Bio<strong>in</strong>formatics, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ill<strong>in</strong>ois at Chicago, Chicago, IL 60607-7059, USA<br />

Abstract<br />

The derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an elementary figure <str<strong>on</strong>g>of</str<strong>on</strong>g> merit shows<br />

that atta<strong>in</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>in</strong>tensity corresp<strong>on</strong>d<strong>in</strong>g to the<br />

Schw<strong>in</strong>ger/Heisenberg Limit (~ 4.6 x 10 29 W/cm 2 ) is<br />

significantly facilitated by the use <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent x-ray<br />

sources <strong>in</strong> the kiloelectr<strong>on</strong>volt regime. For the Xe(L)<br />

system at ~ 4.5 keV, a m<strong>in</strong>imum pulse energy <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 1.5 J<br />

and corresp<strong>on</strong>d<strong>in</strong>g peak power P0 ~ 300 PW are estimated.<br />

INTRODUCTION<br />

The history <str<strong>on</strong>g>of</str<strong>on</strong>g> high-<strong>in</strong>tensity n<strong>on</strong>l<strong>in</strong>ear <strong>in</strong>teracti<strong>on</strong>s, that<br />

commenced <strong>in</strong> 1961 with the observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>d<br />

harm<strong>on</strong>ic radiati<strong>on</strong> [1] at 347.2 nm <strong>in</strong> crystall<strong>in</strong>e quartz,<br />

spans a range <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 10 18 <strong>in</strong> experimental <strong>in</strong>tensity and<br />

rema<strong>in</strong>s a stable, robust prov<strong>in</strong>ce <str<strong>on</strong>g>of</str<strong>on</strong>g> laser-based research<br />

after a half century. The generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> focal <strong>in</strong>tensities <strong>in</strong><br />

the 10 20 -10 21 W/cm 2 range is presently a rout<strong>in</strong>e<br />

achievement. Over a period <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 25 years, a path <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

research was cut through this field <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>l<strong>in</strong>ear<br />

phenomena that led to the development <str<strong>on</strong>g>of</str<strong>on</strong>g> a multikilovolt<br />

(~ 4.5 keV) x-ray amplifier <str<strong>on</strong>g>of</str<strong>on</strong>g> excepti<strong>on</strong>al peak brightness<br />

[2-5] that is excited by femtosec<strong>on</strong>d KrF* (248 nm)<br />

pulses and whose experimentally based power scal<strong>in</strong>g<br />

limit for a compact laboratory <strong>in</strong>strument falls <strong>in</strong> the<br />

multipetawatt realm [6]. The existence <str<strong>on</strong>g>of</str<strong>on</strong>g> advanced highenergy<br />

KrF* technology [7], that has been <strong>in</strong>dependently<br />

developed for fusi<strong>on</strong> applicati<strong>on</strong>s, could be readily<br />

adapted to extend the coherent x-ray power level <strong>in</strong>to the<br />

200 - 500 PW regime.<br />

* Sp<strong>on</strong>sored by Defense Advanced Research Projects<br />

Agency, Microsystems Technology Office (MTO),<br />

Program: Ultrabeam - The Scal<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Coherent<br />

Amplificati<strong>on</strong> to the Gamma Ray Regi<strong>on</strong>, issued by<br />

DARPA/CMO under C<strong>on</strong>tract No. HR0011-10-C-0105.<br />

"The views and c<strong>on</strong>clusi<strong>on</strong>s c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong> this document<br />

are those <str<strong>on</strong>g>of</str<strong>on</strong>g> the authors and should not be <strong>in</strong>terpreted as<br />

represent<strong>in</strong>g the <str<strong>on</strong>g>of</str<strong>on</strong>g>ficial policies, either expressly or<br />

implied, <str<strong>on</strong>g>of</str<strong>on</strong>g> the Defense Advanced Research Projects<br />

Agency or the U.S. Government."<br />

rhodes@uic.edu<br />

# KFKI Research Institute for Particle and Nuclear<br />

<strong>Physics</strong>, EURATOM Associati<strong>on</strong>, P.O. Box 49,1525,<br />

Budapest, Hungary<br />

DISCUSSION<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent x-rays for the atta<strong>in</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>tensities approach<strong>in</strong>g the Schw<strong>in</strong>ger Limit [8] <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 4.6 x<br />

10 29 W/cm 2 , a c<strong>on</strong>diti<strong>on</strong> <strong>in</strong>itially discussed by Sauter [9]<br />

and Heisenberg and Euler [10], is supported by very<br />

powerful scal<strong>in</strong>g relati<strong>on</strong>ships. A summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the key<br />

physical parameters is presented <strong>in</strong> Fig. (1); the<br />

assessment gives the comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>in</strong>frared source<br />

(ħω ≅ 1eV) with a corresp<strong>on</strong>d<strong>in</strong>g source deliver<strong>in</strong>g (ħω<br />

≅ 4.5 keV) x-rays. The chief outcome is a figure <str<strong>on</strong>g>of</str<strong>on</strong>g> merit<br />

that measures the propensity to generate a high <strong>in</strong>tensity,<br />

and the x-ray illum<strong>in</strong>ator is favored over the <strong>in</strong>frared<br />

system by a factor that exceeds 10 21 , a result predicated<br />

<strong>on</strong> a relati<strong>on</strong>ship proporti<strong>on</strong>al to ω 6 . Furthermore, it is<br />

known that the overall physical situati<strong>on</strong> govern<strong>in</strong>g the<br />

atta<strong>in</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schw<strong>in</strong>ger c<strong>on</strong>diti<strong>on</strong> is generally<br />

assisted by the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> particularly propitious<br />

geometries <str<strong>on</strong>g>of</str<strong>on</strong>g> irradiati<strong>on</strong> [11,12].<br />

An additi<strong>on</strong>al advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> an x-ray wavelength is the<br />

very large elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>tensity characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

relativistic regime that flows from a fundamental scal<strong>in</strong>g<br />

proporti<strong>on</strong>al to ω 2 . Basically, the electric field E<br />

corresp<strong>on</strong>d<strong>in</strong>g to the relativistic regime is given by the<br />

c<strong>on</strong>diti<strong>on</strong><br />

eE<br />

mc ω<br />

= 1 (1)<br />

which, for Xe(L) radiati<strong>on</strong> with ħω ≅ 4.5 keV, yields an<br />

<strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 10 25 W/cm 2 . This value is regarded both as<br />

(a) sufficiently high to produce observable c<strong>on</strong>sequences<br />

from the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum [13] and (b) free <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cascade limit for <strong>in</strong>tensities up to the Schw<strong>in</strong>ger/<br />

Heisenberg value, <strong>in</strong> c<strong>on</strong>trast to the <strong>in</strong>frared case [14].<br />

The ability to produce stable self-channeled propagati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tense pulses <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> <strong>in</strong> an underdense<br />

plasma is a well established phenomen<strong>on</strong> at quantum<br />

energies below ~5 eV [15-18]. An immediate c<strong>on</strong>sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> a high power source <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent<br />

x-rays is the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> extend<strong>in</strong>g the generati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these highly c<strong>on</strong>f<strong>in</strong>ed stable [16] modes <str<strong>on</strong>g>of</str<strong>on</strong>g> deeply<br />

penetrat<strong>in</strong>g propagati<strong>on</strong> to x-ray wavelengths <strong>in</strong> materials<br />

at solid density. If such channels can be pro-duced with<br />

multi-kilovolt x-rays <strong>in</strong> high-Z solids, the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

power densities <strong>on</strong> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 10 30 W/cm 3 are<br />

projected [19,20].


Fig. (1): Presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the physical parameters<br />

associated with the development <str<strong>on</strong>g>of</str<strong>on</strong>g> a figure <str<strong>on</strong>g>of</str<strong>on</strong>g> merit for<br />

the propensity to produce a high focal <strong>in</strong>tensity. The<br />

comb<strong>in</strong>ed c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum energy (ħω), the<br />

radiative rate, and the characteristic area, produces a<br />

str<strong>on</strong>g scal<strong>in</strong>g relati<strong>on</strong>ship favor<strong>in</strong>g short wavelengths<br />

that is proporti<strong>on</strong>al to ω 6 . Accord<strong>in</strong>gly, <strong>in</strong> the comparis<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>frared (ħω ≅ eV) to the x-ray range (ħω ≅ 4.5<br />

keV) associated with the Xe(L) system, the figure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

merit <strong>in</strong>creases by a factor greater than 10 21 .<br />

PHOTON STAGING CONCEPT<br />

The key c<strong>on</strong>cept for the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ultrahigh<br />

<strong>in</strong>tensities with x-rays is “Phot<strong>on</strong> Stag<strong>in</strong>g”. Simply stated,<br />

this is the channel<strong>in</strong>g process outl<strong>in</strong>ed <strong>in</strong> Fig. (2) elevated<br />

<strong>in</strong> both frequency ω and electr<strong>on</strong> density ne. The<br />

govern<strong>in</strong>g scal<strong>in</strong>gs are illustrated <strong>in</strong> Fig. (2); basically, it<br />

is the channel<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> x-rays <strong>in</strong> solids, a phenomen<strong>on</strong> that<br />

raises the critical power Pcr to values <strong>in</strong> the range <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 0.1-<br />

1 PW. S<strong>in</strong>ce the plasma density is ne ~ 4 – 5 x 10 24 cm -3<br />

<strong>in</strong> high-Z solids, the corresp<strong>on</strong>d<strong>in</strong>g channel diameters are<br />

compressed to ~ 100 Ǻ <strong>in</strong> materials like Fe, Au, and U.<br />

At the wavelength λx ~ 2.9 Å, for which the critical<br />

electr<strong>on</strong> density is ncr = 1.33 × 10 28 cm −3 , all fully i<strong>on</strong>ized<br />

c<strong>on</strong>densed matter is underdense, <strong>in</strong>clud<strong>in</strong>g uranium. The<br />

key requirement [15,16] for the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a channel <strong>in</strong><br />

the underdense regime is the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a peak power<br />

Po exceed<strong>in</strong>g the critical power Pcr necessary for the<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>f<strong>in</strong>ed propagati<strong>on</strong> with the<br />

relativistic/charge-displacement mechanism.<br />

The stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the propagati<strong>on</strong> is assured by the<br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a robust eigenmode [16]. For the case <str<strong>on</strong>g>of</str<strong>on</strong>g> λx<br />

≅ 2.9 Å and fully i<strong>on</strong>ized uranium, Pcr ≅ 49 TW. With a<br />

pulse length τx ~ 50 as, a value that is well with<strong>in</strong> the<br />

projected performance [5,6] <str<strong>on</strong>g>of</str<strong>on</strong>g> the Xe(L) system, the<br />

critical power corresp<strong>on</strong>d<strong>in</strong>g to uranium can be achieved<br />

with a pulse energy as small as Ex ~ 3.0 mJ.<br />

Fig. (2): “Phot<strong>on</strong> Stag<strong>in</strong>g”, channel formati<strong>on</strong> <strong>in</strong> solids<br />

with x-rays. Channel formati<strong>on</strong> becomes possible with<br />

pulse energies <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 10 – 100 mJ for corresp<strong>on</strong>d<strong>in</strong>g x-ray<br />

pulse lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 10 – 100 as. Enormously enhanced<br />

power compressi<strong>on</strong> is the lead<strong>in</strong>g outcome.<br />

FINDINGS<br />

The power and <strong>in</strong>tensity scal<strong>in</strong>g properties <str<strong>on</strong>g>of</str<strong>on</strong>g> channels<br />

produced <strong>in</strong> uranium by Xe(M) and Xe(L) radiati<strong>on</strong>,<br />

respectively at ħω ≅ 1 keV and ħω ≅ 4.5 keV, are<br />

summarized <strong>in</strong> Figs. (3) and (4). The calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Xe(L) radiati<strong>on</strong> <strong>in</strong> uranium channels show<br />

that a power <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 300 PW is sufficient to reach the<br />

Schw<strong>in</strong>ger value <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 4.6 x 10 29 W/cm 2 , the<br />

corresp<strong>on</strong>d<strong>in</strong>g power for Xe(M) is ~ 750 PW. The overall<br />

f<strong>in</strong>d<strong>in</strong>gs for the peak power <strong>in</strong> Be and U for Xe(M) and<br />

Xe(L) needed to reach the Schw<strong>in</strong>ger <strong>in</strong>tensity are<br />

presented <strong>in</strong> Fig. (5). The practicality <str<strong>on</strong>g>of</str<strong>on</strong>g> this achievement<br />

is documented <strong>in</strong> Table I. The m<strong>in</strong>imum total energy<br />

required to reach the Schw<strong>in</strong>ger level for the 248 nm<br />

driver technology is estimated to be 10 - 15 J, a value that<br />

can certa<strong>in</strong>ly be atta<strong>in</strong>ed with the utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> KrF*<br />

technology at its present level <str<strong>on</strong>g>of</str<strong>on</strong>g> development [3-7].<br />

Although mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> radiative loss, such as Compt<strong>on</strong><br />

scatter<strong>in</strong>g, Bremsstrahlung, pair producti<strong>on</strong>, and the<br />

excitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear reacti<strong>on</strong>s, have not been <strong>in</strong>cluded <strong>in</strong><br />

this elementary analysis, these losses can be significantly<br />

mitigated by the use <str<strong>on</strong>g>of</str<strong>on</strong>g> composite low-Z/high-Z targets.


Fig. (3): Channel producti<strong>on</strong> <strong>in</strong> solid U with a Xe(L)<br />

pulse hav<strong>in</strong>g an energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5 J and an <strong>in</strong>cident power P0<br />

= 300 PW. The peak <strong>in</strong>tensity produced is ~ 5.6 x 10 29<br />

W/cm 2 , a value <strong>in</strong>dicat<strong>in</strong>g that the Schw<strong>in</strong>ger Limit is<br />

atta<strong>in</strong>able.<br />

Fig. (4): Channel producti<strong>on</strong> <strong>in</strong> solid U with a Xe(M)<br />

pulse hav<strong>in</strong>g an energy <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 7.5 J and an <strong>in</strong>cident power<br />

P0 = 750 PW. The peak <strong>in</strong>tensity produced is ~ 5.5 x 10 29<br />

W/cm 2 , a value <strong>in</strong>dicat<strong>in</strong>g that the Schw<strong>in</strong>ger limit is<br />

atta<strong>in</strong>able.<br />

Fig. (5): Power scal<strong>in</strong>g for Xe(M) and Xe(L) <strong>in</strong> solid Be<br />

and U associated with the atta<strong>in</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>in</strong>tensity at the<br />

Schw<strong>in</strong>ger limit. S<strong>in</strong>ce the area <str<strong>on</strong>g>of</str<strong>on</strong>g> the channel scales<br />

approximately as the <strong>in</strong>verse <str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma density [16],<br />

the case <str<strong>on</strong>g>of</str<strong>on</strong>g> Be requires ~ 10-fold higher <strong>in</strong>cident power.<br />

The optimal case, illustrated <strong>in</strong> Fig. (3), corresp<strong>on</strong>ds to<br />

Xe(L) <strong>in</strong> U with an <strong>in</strong>cident peak power P0 ≅ 300 PW.<br />

Table I: Tabulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> practical c<strong>on</strong>siderati<strong>on</strong>s for the<br />

c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Xe(M) and Xe(L) x-ray systems capable<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reach<strong>in</strong>g the Schw<strong>in</strong>ger Limit. The range <str<strong>on</strong>g>of</str<strong>on</strong>g> system<br />

parameters shown corresp<strong>on</strong>ds to the <strong>in</strong>tensity range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

10 26 - 5 x 10 29 W/cm 2 . *The m<strong>in</strong>imum pulse energy<br />

shown is not corrected for the <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> radiative losses.<br />

SYSTEM PARAMETER Xe(M) Xe(L)<br />

Wavelength (eV) 900 4500<br />

Pulse Length (as) 10 5<br />

M<strong>in</strong>imum Pulse Energy<br />

(J)*<br />

~0.01–5 ~0.01–1.5<br />

Intensity Limit (W/cm 2 ) 10 26 – 5 x 10 29<br />

E-M Cascade Limit No<br />

Coherent Beam Additi<strong>on</strong><br />

Required<br />

No<br />

Pulse Rate (Hz) ~ 1<br />

Optical Beam<br />

Compressi<strong>on</strong>/Focus<strong>in</strong>g<br />

Required<br />

(Grat<strong>in</strong>gs/Optics)<br />

Prepulse C<strong>on</strong>trast C<strong>on</strong>trol<br />

Needed<br />

Aperture Scale<br />

(Wavelength)<br />

Basic New <strong>Physics</strong> <strong>in</strong><br />

Source and Interacti<strong>on</strong>s<br />

CONCLUSIONS<br />

No<br />

No<br />

~ 30 cm<br />

(248 nm)<br />

Attosec<strong>on</strong>d Excitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Progagati<strong>on</strong>/ Cluster<br />

Excitati<strong>on</strong>/Dicke<br />

Effect/Channel Focus<strong>in</strong>g<br />

We c<strong>on</strong>clude that an <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Schw<strong>in</strong>ger Limit can be atta<strong>in</strong>ed and that the basic<br />

physical scal<strong>in</strong>g greatly favors the use <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent x-rays.<br />

S<strong>in</strong>ce the cosmological c<strong>on</strong>stant represent<strong>in</strong>g the “dark<br />

energy” is now experimentally established [21] to be ΩΛ<br />

≅ 0.73, the ability to probe directly the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

complex entity that we traditi<strong>on</strong>ally c<strong>on</strong>sider as the<br />

“vacuum” can <strong>on</strong>ly be expected to yield pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound <strong>in</strong>sights<br />

<strong>in</strong>to the basic c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> space.<br />

ACKNOWLEDMENT<br />

Two authors, A.B. Borisov and C.K. Rhodes acknowledge<br />

<strong>in</strong>formative c<strong>on</strong>versati<strong>on</strong>s with S.V. Bulanov.


REFERENCES<br />

[1] P.A. Franken, A.E. Hill, C.W. Peters and G.<br />

We<strong>in</strong>reich, Phys. Rev. Lett. 7 (1961) 118.<br />

[2] A.B. Borisov, X. S<strong>on</strong>g, F. Frigeni, Y. Koshman,<br />

Y. Dai, K. Boyer. and C.K. Rhodes, J. Phys. B:<br />

At. Mol. Opt. Phys. 36 (2003) 3433.<br />

[3] A.B. Borisov, X. S<strong>on</strong>g, P. Zhang, J.C.<br />

McCork<strong>in</strong>dale, S.F. Khan, S. Poopalas<strong>in</strong>gam, J.<br />

Zhao, Y. Dai and C.K. Rhodes, J. Phys. B: At.<br />

Mol. Opt. Phys. 40 (2007) F131.<br />

[4] A.B. Borisov, P. Zhang, E. Racz, J.C.<br />

McCork<strong>in</strong>dale, S.F. Khan, S. Poopalas<strong>in</strong>gam, J.<br />

Zhao and C.K. Rhodes, J. Phys. B: At. Mol. Opt.<br />

Phys. 41 (2008) 105602.<br />

[5] A.B. Borisov, E. Racz, S.F. Khan, S.<br />

Poopalas<strong>in</strong>gam, J.C. McCork<strong>in</strong>dale, J. Zhao, J.<br />

F<strong>on</strong>tanarosa, Y. Dai, J. Boguta, J.W. L<strong>on</strong>gworth<br />

and C.K. Rhodes, J. Phys. B: At. Mol. Opt. Phys.<br />

43 (2010) 045402.<br />

[6] A.B. Borisov, E. Racz, S.F. Khan, S.<br />

Poopalas<strong>in</strong>gam, J.C. McCork<strong>in</strong>dale, J. Zhao, J.<br />

Boguta, J.W. L<strong>on</strong>gworth and C.K. Rhodes, J.<br />

Phys. B: At. Mol. Opt. Phys. 43 (2010) 015402.<br />

[7] S.P. Obenscha<strong>in</strong>, J.D. Sethian, A.J. Schmitt, A<br />

Laser Based Fusi<strong>on</strong> Test Facility Fusi<strong>on</strong> Science<br />

and Technology 56 (2009) 594.<br />

[8] J. Schw<strong>in</strong>ger, Phys. Rev. 82 (1951) 664.<br />

[9] F. Sauter, Zeitschrift für Physik A, Hadr<strong>on</strong>s and<br />

Nuclei 69 (1931) 742.<br />

[10] W. Heisenberg and H. Euler, Zeitschrift für<br />

Physik A, Hadr<strong>on</strong>s and Nuclei 98 (1936) 714.<br />

[11] S.S. Bulanov, T.Zh. Esirkepov, A.G.R. Thomas,<br />

J.K. Koga, and S.V. Bulanov, Phys. Rev. Lett.<br />

105 (2010) 220407.<br />

[12] S.S. Bulanov, V.D. Mur, N.B. Narozhny, J. Nees<br />

and V.S. Popov, Phys. Rev. Lett. 104 (2010)<br />

220404.<br />

[13] T. He<strong>in</strong>zl, B. Liesfeld, K.-U. Amthor, H.<br />

Schwoerer, R. Sauerbrey, and A. Wipf, Optics<br />

Communicati<strong>on</strong>s 267 (2006) 318; J. Lund<strong>in</strong>, M.<br />

Marklund, E. Lundström, and G. Brod<strong>in</strong>, Phys.<br />

Rev. A 74 (2006) 043821; M. Marklund and J.<br />

Lund<strong>in</strong>, Eur. Phys. J. D 55 (2009) 319.<br />

[14] A.M. Fedotov, N.B. Narozhny, G. Mourou, and<br />

G. Korn, Phys. Rev. Lett. 105 (2009) 080402.<br />

[15] A.B. Borisov, A.V. Borovskiy, V.V. Korobk<strong>in</strong>,<br />

A.M. Prokhorov, O.B. Shiryaev, X.M. Shi, T.S.<br />

Luk, A. McPhers<strong>on</strong>, J.C. Solem, K. Boyer and<br />

C.K. Rhodes, Phys. Rev. Lett. 68 (1992) 2309.<br />

[16] A.B. Borisov, J.W. L<strong>on</strong>gworth, K. Boyer and<br />

C.K. Rhodes, Proc. Natl. Acad. Sci. USA 95<br />

(1998) 7854.<br />

[17] T. Esirkepov, M. Borghesi, S.V. Bulanov, G.<br />

Mourou, and T. Tajima, Phys. Rev. Lett. 92<br />

(2004) 175003.<br />

[18] J. Davis, A.B. Borisov and C.K. Rhodes, Phys.<br />

Rev. E 70 (2004) 066406.<br />

[19] A.B. Borisov, X. S<strong>on</strong>g, P. Zhang, Y. Dai, K.<br />

Boyer and C.K. Rhodes, <strong>in</strong> Lasers and Nuclei,<br />

edited by J. Magill and H. Schwoerer (Spr<strong>in</strong>ger-<br />

Verlag, Berl<strong>in</strong>, 2005) p. 3.<br />

[20] A.B. Borisov, E. Racz, S.F. Khan, S.<br />

Poopalas<strong>in</strong>gam, J.C. McCork<strong>in</strong>dale, J. Zhao, J.<br />

Boguta, J.W. L<strong>on</strong>gworth, and C.K. Rhodes, The<br />

Fourth <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Symposium <strong>on</strong> Atomic<br />

Cluster Collisi<strong>on</strong>s (ISAACC 2009), edited by A.<br />

V. Solov’yov and E. Surdutovich.<br />

[21] S.W. Allen, D.A. Rapetti, R.W. Schmidt, H.<br />

Ebl<strong>in</strong>g, R.G. Morris and A.C. Fabian, M<strong>on</strong>. Not.<br />

R. Astr<strong>on</strong>. Soc. 383 (2008) 879.


Abstract<br />

N<strong>on</strong>-l<strong>in</strong>ear QED effects by str<strong>on</strong>g magnetic field <strong>in</strong> astrophysics<br />

Kazunori Kohri<br />

Cosmophysics group, Theory Center, IPNS, <strong>KEK</strong>, Tsukuba 305-0801, Japan<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Particle and Nuclear <strong>Physics</strong>, GUAS, Tsukuba, 305-0801, Japan<br />

In this talk we have reviewed possible n<strong>on</strong>-l<strong>in</strong>ear QED<br />

effects <strong>in</strong> supercritical magnetic fields with B ≫ 3 × 10 13<br />

G which sometimes appear <strong>in</strong> astrophysics. Under that circumstance,<br />

the Landau levels and the propagator <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong><br />

are significantly affected, which can <strong>in</strong>duce some n<strong>on</strong>trivial<br />

modificati<strong>on</strong>s, e.g., <strong>in</strong> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>,<br />

or <strong>in</strong> refractive <strong>in</strong>dices <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> <strong>in</strong> the magnetized plasma.<br />

In particular, it should be quite attractive that the so-called<br />

“phot<strong>on</strong> splitt<strong>in</strong>g” would occur <strong>in</strong> that situati<strong>on</strong>, which<br />

could have dom<strong>in</strong>ated energy-loss process <str<strong>on</strong>g>of</str<strong>on</strong>g> high-energy<br />

phot<strong>on</strong>s <strong>on</strong>ly <strong>in</strong> such an extremely str<strong>on</strong>g magnetic field.<br />

INTRODUCTION<br />

Astrophysical objects which have supercritical magnetic<br />

fields B > Bc with Bc ≡ m 2 e/e ≃ 3 × 10 13 have been<br />

reported. Here me denotes electr<strong>on</strong> mass and e means<br />

electr<strong>on</strong> charge. They are known as S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Gamma-ray Repeaters<br />

(SGRs) and Anomalous X-ray pulsars (AXPs) with<br />

hav<strong>in</strong>g Period <str<strong>on</strong>g>of</str<strong>on</strong>g> O(1) – O(10) sec and Period Derivative<br />

O(10 −12 )–O(10 −10 ). Nowadays they are collectively<br />

called “magnetars” [1].<br />

It has been known that pulsars have str<strong>on</strong>g magnetic<br />

fields with the order <str<strong>on</strong>g>of</str<strong>on</strong>g> B ∼ 10 12 G and periods with the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> O(1) sec. Therefore we may th<strong>in</strong>k that magnetars<br />

could bel<strong>on</strong>g to an another special class <str<strong>on</strong>g>of</str<strong>on</strong>g> pulsars or<br />

neutr<strong>on</strong> stars.<br />

In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>-l<strong>in</strong>ear quantum electrodynamics<br />

(QED), such a str<strong>on</strong>g magnetic field is exclusively attractive.<br />

That is because we cannot make use <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard<br />

perturbati<strong>on</strong> theory, i.e., the perturbative approach to calculate<br />

the scatter<strong>in</strong>g amplitudes, the self-energies and so<br />

<strong>on</strong>. Then usual results obta<strong>in</strong>ed <strong>in</strong> a weak-magnetic field<br />

limit can be completely different from those <strong>in</strong> the str<strong>on</strong>gmagnetic<br />

field limit.<br />

In the language <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory, the order parameter<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the perturbati<strong>on</strong> B/Bc becomes no l<strong>on</strong>ger sufficiently<br />

small <strong>in</strong> a supercritical magnetic field. In a weakmagnetic<br />

field limit, we can expand physical quantities as<br />

a power series with respect to the order parameter. For example,<br />

when we c<strong>on</strong>sider the full orders <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong><br />

propagator (which might be called “dressed propagator”)<br />

<strong>in</strong> a weak magnetic field, external magnetic field l<strong>in</strong>es can<br />

couple to the undressed propagator <strong>in</strong> the higher order calculati<strong>on</strong>s<br />

(see Fig. 1). Then the next-order term is obta<strong>in</strong>ed<br />

by multiply<strong>in</strong>g a numerical number <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> B/Bc<br />

to the undressed term. 1<br />

1 Readers can refer APPENDIX A for a <strong>in</strong>tuitive understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

reas<strong>on</strong> why B/Bc becomes the order parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the power-law expansi<strong>on</strong><br />

<strong>in</strong> the weak-field limit.<br />

Figure 1: Electr<strong>on</strong> propagator <strong>in</strong> a weak-magnetic field<br />

limit. The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the next-order term is obta<strong>in</strong>ed<br />

by multiply<strong>in</strong>g the order parameter B/Bc. See a simple<br />

pro<str<strong>on</strong>g>of</str<strong>on</strong>g> shown <strong>in</strong> APPENDIX A.<br />

If the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field is larger than the critical<br />

value, we cannot make use <str<strong>on</strong>g>of</str<strong>on</strong>g> the known techniques <strong>in</strong><br />

the perturbati<strong>on</strong> theory. Then we have to perform a fullorder<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the calculati<strong>on</strong> n<strong>on</strong>perturbatively, which means<br />

that we have to sum up all <str<strong>on</strong>g>of</str<strong>on</strong>g> the diagrams. It is notable<br />

that about this k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>perturbative calculati<strong>on</strong>s <strong>in</strong>clud<strong>in</strong>g<br />

the full-order <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupl<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the external magnetic<br />

fields, the lead<strong>in</strong>g term comes <strong>on</strong>ly from the tree level, not<br />

from the higher-loop levels (See Fig. 1).<br />

Under these circumstances, some significant modificati<strong>on</strong>s<br />

from the normal l<strong>in</strong>ear QED are possible <strong>in</strong><br />

• Energy gaps <str<strong>on</strong>g>of</str<strong>on</strong>g> Landau levels larger than me, which<br />

<strong>in</strong>duce anisotropic electr<strong>on</strong> pressure<br />

• N<strong>on</strong>-zero vacuum polarizati<strong>on</strong>, which <strong>in</strong>duces anomalous<br />

refractive <strong>in</strong>dices<br />

• Possible “phot<strong>on</strong> splitt<strong>in</strong>g” as a new class <str<strong>on</strong>g>of</str<strong>on</strong>g> cool<strong>in</strong>g<br />

process for high-energy phot<strong>on</strong>s<br />

Next we will discuss the details <str<strong>on</strong>g>of</str<strong>on</strong>g> those modificati<strong>on</strong>s and<br />

their effects <strong>on</strong> phenomena <strong>in</strong> astrophysics.<br />

LANDAU LEVELS IN STRONG<br />

MAGNETIC FIELD AND ANISOTROPIC<br />

ELECTRON PRESSURE<br />

First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, it is notable that the energy gap <strong>in</strong> the Landau<br />

levels <strong>in</strong> the supercritical str<strong>on</strong>g magnetic field can be<br />

larger than electr<strong>on</strong> rest mass. The electr<strong>on</strong> energy <strong>in</strong> the<br />

magnetized plasma with a uniform magnetic field al<strong>on</strong>g the<br />

z-axis B = Bˆz is given by<br />

E = √ m 2 e + p 2 z + eB(2n + 1 − α), (1)<br />

where pz means the z-comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the momentum, n denotes<br />

the <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g> a Landau level, and α is the sp<strong>in</strong> <strong>in</strong>dex


<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>. When the magnetic field is larger than the critical<br />

value, i.e., eB ≫ m 2 e, the x- and y- comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electr<strong>on</strong> momentums are no l<strong>on</strong>ger distributed uniformly<br />

and isotropicly because they are quantized <strong>in</strong> the x-y plane<br />

which is perpendicular to B.<br />

This anisotropic momentum <strong>in</strong>duces the corresp<strong>on</strong>d<strong>in</strong>g<br />

anisotropic dynamic pressure ˜ Pi = (n + 1/2 − α/2)eB/E<br />

with i = x and y. By averag<strong>in</strong>g the dynamic pressure <strong>in</strong> the<br />

grand can<strong>on</strong>ical ensemble, we get the pressure, Pi which<br />

corresp<strong>on</strong>ds to a diag<strong>on</strong>al comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the stress-energy<br />

tensor and is still anisotropic. This should be the pressure<br />

which can be used <strong>in</strong> the fluid dynamics [3].<br />

It was reported that this anisotropic pressure can <strong>in</strong>duce<br />

a n<strong>on</strong>standard result <strong>in</strong> supernovae. In the neutr<strong>in</strong>o-driven<br />

w<strong>in</strong>d which appears after a supernova, especially an additi<strong>on</strong>al<br />

entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma can be produced by the<br />

anisotropic pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> [3]. For a successful rprocess<br />

nucleosynthesis which is believed to occur after<br />

supernovae, we need the additi<strong>on</strong>al entropy per bary<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆S/kB ∼ 200. As is shown <strong>in</strong> Fig. 2, the<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the entropy per bary<strong>on</strong> with be<strong>in</strong>g the order<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> O(200) can be possible <strong>in</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g magnetic<br />

fields such as B ∼ 10 16 G. See Ref. [3] for the further<br />

details. We expect that future developments <strong>in</strong> numerical<br />

simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the supernovae explosi<strong>on</strong> will reveal the details<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the current scenario with its dynamics coupled to<br />

the supercritical magnetic field.<br />

Figure 2: Produced entropy per bary<strong>on</strong> <strong>in</strong> neutr<strong>in</strong>o-driven<br />

w<strong>in</strong>d <strong>in</strong> supernovae. We need ∆S/kB ∼ 200 for a successful<br />

r-process nucleosynthesis. Further details are shown <strong>in</strong><br />

Ref. [3].<br />

Figure 3: Diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum polarizati<strong>on</strong> tensors. We<br />

could have expanded it as a series <str<strong>on</strong>g>of</str<strong>on</strong>g> the order parameter<br />

B/Bc <strong>in</strong> the perturbati<strong>on</strong> theory <strong>in</strong> a weak magnetic field<br />

limit. However, if the magnetic field is larger than the critical<br />

<strong>on</strong>e, we have to add all <str<strong>on</strong>g>of</str<strong>on</strong>g> the diagram n<strong>on</strong>perturbatively.<br />

The double l<strong>in</strong>e denotes the fully-dressed propagator<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>.<br />

NON-ZERO VACUUM POLARIZATION<br />

AND ANOMALOUS REFRACTIVE<br />

INDICES<br />

In the supercritical magnetic field, it is expected that the<br />

regularized polarizati<strong>on</strong> tensor Π µν can have a n<strong>on</strong>-zero<br />

value. By add<strong>in</strong>g the all <str<strong>on</strong>g>of</str<strong>on</strong>g> the external field l<strong>in</strong>es, we<br />

can calculate the fully <strong>on</strong>e-loop vacuum polarizati<strong>on</strong> tensor<br />

(Fig. 3). By us<strong>in</strong>g Schw<strong>in</strong>ger’s proper time method<br />

(See Appendix B for a brief review), the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the external<br />

fields can be replaced by the <strong>in</strong>tegral <str<strong>on</strong>g>of</str<strong>on</strong>g> the proper<br />

time. In the full calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum polarizati<strong>on</strong> tensor,<br />

we should have to perform 2-dim <strong>in</strong>tegral by proper<br />

time.<br />

If there were n<strong>on</strong>-zero vacuum polarizati<strong>on</strong> tensor, we<br />

expected that the dispersi<strong>on</strong> relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> can be modified.<br />

The refractive <strong>in</strong>dices are def<strong>in</strong>ed by<br />

µ 2 = |k|2<br />

, (2)<br />

ω2 where k denotes the spatial 3-vector <str<strong>on</strong>g>of</str<strong>on</strong>g> the 4-dim phot<strong>on</strong><br />

momentum k µ with µ = 0, 1, 2, 3, and ω = k 0 = Eγ<br />

means the phot<strong>on</strong> energy.<br />

Then the wave equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> can be expressed by<br />

[ k 2 g µν k µ k ν + regΠ µν (k) ] Aµ(k) = 0. (3)<br />

In this case, the polarizati<strong>on</strong> tensor can be written by 2-dim<br />

<strong>in</strong>tegral to be<br />

Π αβ (x, x ′ )<br />

∝ Tr [ γ α G(x, x ′ )γ β G(x ′ , x) ]<br />

∝<br />

∫ ∞<br />

0<br />

ds<br />

s<br />

∫ ∞<br />

0<br />

(4)<br />

ds ′<br />

s ′ [· · ·] , (5)<br />

with the two spatial po<strong>in</strong>ts, x, and x ′ .<br />

To have n<strong>on</strong>trivial soluti<strong>on</strong>s for Aµ(k), the determ<strong>in</strong>ant<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the operator [· · ·] <strong>in</strong> the left-hand side should vanishes [5,<br />

6]. Then we obta<strong>in</strong> the soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> µ’s.<br />

In Fig. 4, we plotted refractive <strong>in</strong>dices µ1 which corresp<strong>on</strong>ds<br />

to the eigen vector <str<strong>on</strong>g>of</str<strong>on</strong>g> the polarizati<strong>on</strong> (0, 1, 0), and<br />

µ2 which corresp<strong>on</strong>ds to the other mode. The angle between<br />

B and k is taken to be cos 2 θ = 1/2.


Figure 4: Refractive <strong>in</strong>dices <str<strong>on</strong>g>of</str<strong>on</strong>g> two polarizati<strong>on</strong> modes as<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B/Bc. µ1 corresp<strong>on</strong>ds to the eigen vector <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the polarizati<strong>on</strong> (0, 1, 0), and µ2 corresp<strong>on</strong>ds to the other<br />

mode. This is shown <strong>in</strong> Ref. [4].<br />

PHOTON SPLITTING<br />

It has been said that the most impressive phenomen<strong>on</strong> <strong>in</strong><br />

the supercritical magnetic field should be phot<strong>on</strong> splitt<strong>in</strong>g.<br />

In the weak magnetic field limit, a phot<strong>on</strong> can not split <strong>in</strong>to<br />

two phot<strong>on</strong>s. On the other hand, <strong>in</strong> the supercritical magnetic<br />

field, a phot<strong>on</strong> can scatter <str<strong>on</strong>g>of</str<strong>on</strong>g>f the external magnetic<br />

field and produce two phot<strong>on</strong>s by <strong>on</strong>e loop effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

dressed <strong>in</strong>ternal electr<strong>on</strong>.<br />

More precisely, γ → γ + γ might be allowed <strong>on</strong>ly k<strong>in</strong>ematically<br />

through an <strong>on</strong>e-loop diagram with the normal undressed<br />

propagator. However, Furry’s theorem [7] does<br />

not permit odd number <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices. Thus, the actual diagram<br />

should start from the four-po<strong>in</strong>t box diagram which<br />

is shown <strong>in</strong> Fig. 5. Therefore the phot<strong>on</strong> splitt<strong>in</strong>g is purely<br />

n<strong>on</strong>-l<strong>in</strong>ear QED effect through the dressed electr<strong>on</strong> propagator.<br />

In this study, thus it is essential to calculate the<br />

full-orders <str<strong>on</strong>g>of</str<strong>on</strong>g> the dressed electr<strong>on</strong> propagator.<br />

Figure 5: Diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> triangle tensor for phot<strong>on</strong> splitt<strong>in</strong>g.<br />

Note that Furry’s theorem does not permit odd number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vertices.<br />

We have known that it is possible to write down the fullexpressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the decay rate or the triangle tensor <str<strong>on</strong>g>of</str<strong>on</strong>g> photo<br />

splitt<strong>in</strong>g by us<strong>in</strong>g Schw<strong>in</strong>ger’s proper time method as well<br />

as the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the polarizati<strong>on</strong> tensor:<br />

Π αβδ (x, x ′ , x ′′ )<br />

∝ Tr [ γ α G(x, x ′ )γ β G(x ′ , x ′′ )γ δ G(x ′′ , x) ]<br />

∝<br />

∫ ∞<br />

0<br />

ds<br />

s<br />

∫ ∞<br />

0<br />

ds ′<br />

s ′<br />

∫ ∞<br />

0<br />

(6)<br />

ds ′′<br />

s ′′ [· · ·] , (7)<br />

with the three spatial po<strong>in</strong>ts, x, x ′ , x ′′ . In this case, the dimensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>tegral is <strong>in</strong>evitably three, which makes the<br />

calculati<strong>on</strong> to obta<strong>in</strong> a c<strong>on</strong>crete numerical number much<br />

more difficult. So far no groups have succeeded to get c<strong>on</strong>crete<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> the rate for arbitrary physical variables, such<br />

as for B or ω by perform<strong>in</strong>g the <strong>in</strong>tegrati<strong>on</strong>s <strong>in</strong> the 3-dim<br />

proper time [8, 9].<br />

On the other hand, <strong>on</strong>ly soluti<strong>on</strong>s with both low-energy<br />

ω ≪ me and weak-field limits B ≪ Bc have been<br />

known [8]. Accord<strong>in</strong>g to those soluti<strong>on</strong>s, for example<br />

the <strong>in</strong>verse <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong> attenuati<strong>on</strong>-length due to phot<strong>on</strong><br />

splitt<strong>in</strong>g can be approximately proporti<strong>on</strong>al to ∝ ω 5 B 6 .<br />

Under this circumstance, Bar<strong>in</strong>g and Hard<strong>in</strong>g<br />

(2001) [10] extrapolated those approximate soluti<strong>on</strong>s<br />

to larger values <str<strong>on</strong>g>of</str<strong>on</strong>g> B and ω and applied them to energyloss<br />

processes <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> and phot<strong>on</strong> which exist around<br />

magnetars. It is astrophysically-impressive that s<strong>in</strong>ce<br />

the magnetic field l<strong>in</strong>e and the magnetosphere have<br />

n<strong>on</strong>trivial structures around pulsars, the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

e + e − -pair creati<strong>on</strong> by phot<strong>on</strong> scatter<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g>f the magnetic<br />

field (γ → e + + e − ) could be smaller than the phot<strong>on</strong><br />

splitt<strong>in</strong>g rate (γ → γ + γ). That is because the paircreati<strong>on</strong><br />

rate depends <strong>on</strong> the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the beam phot<strong>on</strong><br />

Γ ∝ B s<strong>in</strong> θkB/Bc with θkB be<strong>in</strong>g an angle between the<br />

magnetic-field l<strong>in</strong>e and the phot<strong>on</strong> momentum k although<br />

the phot<strong>on</strong> splitt<strong>in</strong>g rate does not depend <strong>on</strong> the directi<strong>on</strong><br />

under the uniform magnetic field. It might be <strong>in</strong>tuitive,<br />

for example, the former rate can become large <strong>in</strong> head-<strong>on</strong><br />

collisi<strong>on</strong>, or <strong>on</strong> the other hand it is negligible with a<br />

smaller energy than the threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> the pair creati<strong>on</strong><br />

Eγ < me/ s<strong>in</strong> θkB depend<strong>in</strong>g <strong>on</strong> a value <str<strong>on</strong>g>of</str<strong>on</strong>g> θkB. It should<br />

be the ast<strong>on</strong>ish<strong>in</strong>g po<strong>in</strong>t that the authors <str<strong>on</strong>g>of</str<strong>on</strong>g> [10] proposed<br />

that the reas<strong>on</strong> why the synchrotr<strong>on</strong> radio emissi<strong>on</strong> has<br />

not been observed from magnetars is that high-energy<br />

phot<strong>on</strong>s emitted by curvature radiati<strong>on</strong> can loose their<br />

energy ma<strong>in</strong>ly through phot<strong>on</strong> splitt<strong>in</strong>g, not through the<br />

e + e − -pair creati<strong>on</strong> <strong>in</strong> the supercritical magnetic field. To<br />

check this quite an attractive scenario, we would have to<br />

succeed the full calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong>-splitt<strong>in</strong>g rate<br />

to obta<strong>in</strong> the c<strong>on</strong>crete numerical numbers as functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnetic field and phot<strong>on</strong> energies.<br />

CONCLUSION<br />

In this talk, we have reviewed various astrophysical phenomena<br />

<strong>in</strong>duced by the n<strong>on</strong>-l<strong>in</strong>ear QED effect such as large<br />

Landau levels, n<strong>on</strong>-zero vacuum polarizati<strong>on</strong> tensor <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s<br />

and possible phot<strong>on</strong> splitt<strong>in</strong>g. About the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>


splitt<strong>in</strong>g, no <strong>on</strong>e has succeeded to fully calculate it and obta<strong>in</strong><br />

the c<strong>on</strong>crete numerical values as functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> arbitrary<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> B and Eγ by perform<strong>in</strong>g the 3-dim <strong>in</strong>tegrati<strong>on</strong>.<br />

Recently hard power-low emissi<strong>on</strong>s with the phot<strong>on</strong> <strong>in</strong>dex<br />

Γ ∼ 1 from magnetars has been reported by X-ray<br />

observati<strong>on</strong> by Suzaku [11, 12]. So far we have not known<br />

the orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such a hard comp<strong>on</strong>ent from normal pulsars.<br />

They might relate with new emissi<strong>on</strong> mechanisms <strong>in</strong>duced<br />

by the n<strong>on</strong>-l<strong>in</strong>ear QED effects <strong>in</strong> the supercritical magnetic<br />

field (See also Refs. [13, 14]).<br />

ACKNOWLEDGEMENT<br />

The author would like to thank Shoichi Yamada for l<strong>on</strong>gterm<br />

collaborati<strong>on</strong>s and c<strong>on</strong>t<strong>in</strong>uous discussi<strong>on</strong>s. He also<br />

thanks Kazuo Makishima and Teruaki Enoto for fruitful<br />

discussi<strong>on</strong>s.<br />

APPENDIX<br />

Appendix A: Analytical understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the order<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> radiative correcti<strong>on</strong><br />

In this secti<strong>on</strong>, we show that the first-order radiative correcti<strong>on</strong><br />

to the undressed electr<strong>on</strong> propagator <strong>in</strong> an external<br />

magnetic field is the undressed term multiplied by a factor<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> O(eB/m 2 e). This simply means that the order<br />

parameter <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the perturbati<strong>on</strong> due to the weak<br />

external-magnetic field could be eB/m 2 e.<br />

In Fig. 6 we showed the diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupl<strong>in</strong>g between<br />

the free electr<strong>on</strong> field (solid l<strong>in</strong>e) and an external static<br />

magnetic field Aµ (wavy l<strong>in</strong>e) with a coupl<strong>in</strong>g g = −|e|.<br />

The space-time po<strong>in</strong>ts, X, Y, Z are be<strong>in</strong>g c<strong>on</strong>sidered <strong>in</strong> the<br />

X3 ∼ Y3 ∼ Z3 ∼ 0 plane.<br />

Figure 6: diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupl<strong>in</strong>g between the free electr<strong>on</strong><br />

field (solid l<strong>in</strong>e) and an external static magnetic field Aµ<br />

(wavy l<strong>in</strong>e) with a coupl<strong>in</strong>g g = −|e|. The space-time<br />

po<strong>in</strong>ts, X, Y, Z are be<strong>in</strong>g c<strong>on</strong>sidered <strong>in</strong> the X3 ∼ Y3 ∼<br />

Z3 ∼ 0 plane.<br />

We c<strong>on</strong>sider the first-order propagator <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong><br />

which propagates from X to Y <strong>in</strong> real space.<br />

∫<br />

˜G(X, Y ) = dZ igγ µ ∫<br />

i<br />

Aµ(Z) dp e<br />

̸ p − me<br />

−ip(X−Z)<br />

∫<br />

i −iq(Z−Y )<br />

× dq e<br />

̸ q − me<br />

= +igZ3Bγ 2<br />

∫ ∫<br />

1<br />

dZ dp e<br />

̸ p − me<br />

−ip(X−Z)<br />

∫<br />

1<br />

× dq<br />

̸ q − me<br />

e −iq(Z−Y ) , (8)<br />

where we took Aµ(Z) = (0, 0, −Z3B, 0) with a c<strong>on</strong>stant<br />

magnetic field B, and we used γ µ Aµ(Z) = γ 2 (−Z3B) <strong>in</strong><br />

the last l<strong>in</strong>e.<br />

By <strong>in</strong>tegrati<strong>on</strong> by parts, the last <strong>in</strong>tegral is estimated to<br />

be ∫<br />

1 −iq(Z−Y )<br />

dq e<br />

̸ q − me<br />

∫<br />

1 ∂<br />

= dq<br />

̸ q − me ∂q3<br />

∫<br />

1<br />

= [· · ·] +<br />

dq<br />

i(Z3 − Y3)<br />

−iq(Z−Y ) 1<br />

e<br />

−i(Z3 − Y3)<br />

γ 3<br />

(̸ q − me) 2 e−iq(Z−Y ) ,(9)<br />

where we can omit the first term because <str<strong>on</strong>g>of</str<strong>on</strong>g> a natural<br />

boundary c<strong>on</strong>diti<strong>on</strong>. Then we get<br />

˜G(X, Y ) =<br />

Z3<br />

gBγ<br />

Z3 − Y3<br />

2 γ 3<br />

∫ ∫<br />

dZ dp e−ipX<br />

̸<br />

×<br />

∫<br />

p − me<br />

∼<br />

∫<br />

dq e−iZ(q−p)<br />

e+iqY<br />

(̸ q − me) 2<br />

i<br />

dp<br />

̸ p − me<br />

e −ip(X−Y ) eBγ2 γ 3<br />

,<br />

(̸ p − me) 2<br />

(10)<br />

where we have assumed that Z3/(Z3 − Y3) ∼ O(1), and<br />

made use <str<strong>on</strong>g>of</str<strong>on</strong>g> a delta functi<strong>on</strong>, δ(q − p). Because the momentum<br />

̸ p <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>ternal l<strong>in</strong>e is <str<strong>on</strong>g>of</str<strong>on</strong>g>f-shell, its 4-dim norm<br />

is smaller than the rest mass, √ p2 ≤ m. By us<strong>in</strong>g this<br />

approximati<strong>on</strong>, we obta<strong>in</strong> the f<strong>in</strong>al expressi<strong>on</strong>,<br />

∫<br />

˜G(X,<br />

i<br />

Y ) ∼ dp<br />

̸ p − me<br />

e −ip(X−Y ) × O( eB<br />

m2 ). (11)<br />

e<br />

From this <strong>in</strong>tegrand, we f<strong>in</strong>d that the 1st-order correcti<strong>on</strong><br />

is given by the 0-th order term by multiply<strong>in</strong>g the factor<br />

O(eB/m 2 e) <strong>in</strong> a perturbati<strong>on</strong> theory. This means that the<br />

order parameter for the perturbati<strong>on</strong> should be (eB/m 2 e).<br />

Therefore a series <str<strong>on</strong>g>of</str<strong>on</strong>g> the above calculati<strong>on</strong> could have given<br />

us a brief pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> what the order parameter <strong>in</strong> the perturbati<strong>on</strong><br />

theory is.<br />

Appendix B: Schw<strong>in</strong>ger’s proper-time method<br />

Here we briefly <strong>in</strong>troduce an outl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schw<strong>in</strong>ger’s<br />

proper-time method. In positi<strong>on</strong> representati<strong>on</strong>, we can<br />

write the Dirac’s delta functi<strong>on</strong> to be<br />

δ 4 (x − x ′ ) = ⟨x |1| x ′ ⟩ = ⟨x|x ′ ⟩, (12)<br />

with the propagator <strong>in</strong> positi<strong>on</strong> representati<strong>on</strong>,<br />

G(x, x ′ ) = ⟨ x ˆ G x ′⟩ . (13)<br />

Orig<strong>in</strong>ally the operator <str<strong>on</strong>g>of</str<strong>on</strong>g> the green functi<strong>on</strong> can be expressed<br />

by def<strong>in</strong>iti<strong>on</strong> as<br />

[γ µ Πµ − m] ˆ G = 1, (14)


with the can<strong>on</strong>ical momentum Πµ ≡ i∂µ + eAµ. Here the<br />

operator <str<strong>on</strong>g>of</str<strong>on</strong>g> the green functi<strong>on</strong> is rewritten to be<br />

ˆG =<br />

=<br />

=<br />

1<br />

γ µ Πµ − m<br />

γ µ Πµ + m<br />

(γ µ Πµ) 2 − m2 ∫ ∞<br />

ds<br />

0 i e−im2 s −iHs µ<br />

e (γ Πµ + m) ,<br />

(15)<br />

with H ≡ − (γ µ Πµ) 2 . In the transformati<strong>on</strong> to the<br />

last l<strong>in</strong>e, the <strong>in</strong>tegral representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the operator was<br />

adopted.<br />

Eq. (15) means that the operator can time-evolve through<br />

the unitary matrix U(s) = e −iHs as if that would be governed<br />

by an effective time s and an effective Hamilt<strong>on</strong>ian<br />

H <strong>in</strong> quantum mechanics. Then it is notable that their<br />

mass dimensi<strong>on</strong>s should be two and m<strong>in</strong>us two for H and<br />

s, respectively. Therefor H and s do not denote the usual<br />

Hamilt<strong>on</strong>ian and time. In this situati<strong>on</strong>, this effective time s<br />

is called the “Schw<strong>in</strong>ger’s proper time” [2]. After we have<br />

formulated quantum mechanics <strong>in</strong> this system, we will be<br />

able to use this unitary matrix to discuss the time evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> operators.<br />

REFERENCES<br />

[1] R. C. Duncan and C. Thomps<strong>on</strong>, “Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> very<br />

str<strong>on</strong>gly magnetized neutr<strong>on</strong> stars - implicati<strong>on</strong>s for gammaray<br />

bursts,” Astrophys. J. 392, L9 (1992).<br />

[2] J. S. Schw<strong>in</strong>ger, “On gauge <strong>in</strong>variance and vacuum polarizati<strong>on</strong>,”<br />

Phys. Rev. 82, 664 (1951).<br />

[3] K. Kohri, S. Yamada and S. Nagataki, “Anisotropic e+ epressure<br />

due to the QED effect <strong>in</strong> str<strong>on</strong>g magnetic fields and<br />

the applicati<strong>on</strong> to the entropy producti<strong>on</strong> <strong>in</strong> neutr<strong>in</strong>o-driven<br />

w<strong>in</strong>d,” Astropart. Phys. 21, 433 (2004)<br />

[4] K. Kohri and S. Yamada, “Polarizati<strong>on</strong> tensors <strong>in</strong> a<br />

str<strong>on</strong>g magnetic field,” Phys. Rev. D 65, 043006 (2002)<br />

[arXiv:astro-ph/0102225].<br />

[5] A. E. Shabad, “Phot<strong>on</strong> Dispersi<strong>on</strong> In A Str<strong>on</strong>g Magnetic<br />

Field,” Annals Phys. 90, 166 (1975).<br />

[6] D. B. Melrose and R. J. St<strong>on</strong>eham, “Vacuum Polarizati<strong>on</strong><br />

And Phot<strong>on</strong> Propagati<strong>on</strong> In A Magnetic Field,” Nuovo Cim.<br />

A 32, 435 (1976).<br />

[7] C. Itzyks<strong>on</strong> and J. B. Zuber, “Quantum Field Theory,” New<br />

York, USA: Mcgraw-Hill (1980) 705 pages. (<str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><br />

Series In Pure and Applied <strong>Physics</strong>)<br />

[8] S. L. Adler, “Phot<strong>on</strong> splitt<strong>in</strong>g and phot<strong>on</strong> dispersi<strong>on</strong> <strong>in</strong> a<br />

str<strong>on</strong>g magnetic field,” Annals Phys. 67, 599 (1971).<br />

[9] S. L. Adler and C. Schubert, “Phot<strong>on</strong> splitt<strong>in</strong>g <strong>in</strong> a str<strong>on</strong>g<br />

magnetic field: Recalculati<strong>on</strong> and comparis<strong>on</strong> with previous<br />

calculati<strong>on</strong>s,” Phys. Rev. Lett. 77, 1695 (1996) [arXiv:hepth/9605035].<br />

[10] M. G. Bar<strong>in</strong>g and A. K. Hard<strong>in</strong>g, “Phot<strong>on</strong> Splitt<strong>in</strong>g and Pair<br />

Creati<strong>on</strong> <strong>in</strong> Highly Magnetized Pulsars,” Astrophys. J. 547,<br />

2001, 929B arXiv:astro-ph/0010400.<br />

[11] T. Enoto, K. Nakazawa, K. Makishima, N. Rea, K. Hurley<br />

and S. Shibata, “Broad-band study with Suzaku <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetar<br />

class,” arXiv:1009.2810 [astro-ph.HE].<br />

[12] T. Enoto, K. Makishima, K. Nakazawa, M. Kokubun,<br />

M. Kawaharada, J. Kotoku and N. Shibazaki, “S<str<strong>on</strong>g>of</str<strong>on</strong>g>t and<br />

Hard X-Ray Emissi<strong>on</strong>s from the Anomalous X-ray Pulsar<br />

4U 0142+61 Observed with Suzaku,” arXiv:1102.1213<br />

[astro-ph.HE].<br />

[13] K. Makishima, c<strong>on</strong>tributed paper for PIF2010 proceed<strong>in</strong>gs<br />

<strong>in</strong> this volume.<br />

[14] T. Enoto, c<strong>on</strong>tributed paper for PIF2010 proceed<strong>in</strong>gs <strong>in</strong> this<br />

volume.


Abstract<br />

WIDE-BAND X-RAY OBSERVATIONS OF MAGNETARS ∗<br />

K. Makishima, Dept. <strong>Physics</strong> † and RESCEU, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

and the Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical and Chemical Research (RIKEN)<br />

After a brief review <str<strong>on</strong>g>of</str<strong>on</strong>g> physics <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong> stars, this article<br />

focuses <strong>on</strong> so called magnetars, a special subset <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong><br />

stars, which are though to have magnetic fields rach<strong>in</strong>g<br />

10 14−15 G. Recent observati<strong>on</strong>al results <str<strong>on</strong>g>of</str<strong>on</strong>g> these objects,<br />

made with the Japanese X-ray satellite Suzaku, suggest<br />

that their X-ray to gamma-ray emissi<strong>on</strong> results from<br />

phot<strong>on</strong> splitt<strong>in</strong>g process <strong>in</strong> the str<strong>on</strong>g magnetic field.<br />

INTRODUCTION<br />

As a brief <strong>in</strong>troducti<strong>on</strong> to neutr<strong>on</strong> stars, a paragraph may<br />

be spent <strong>on</strong> stellar evoluti<strong>on</strong>. As illustrated <strong>in</strong> Fig. 1, stars,<br />

first born as protostars, take different evoluti<strong>on</strong>ary paths<br />

depend<strong>in</strong>g <strong>on</strong> their <strong>in</strong>itial mass. The lightest <strong>on</strong>es end up<br />

with planets, where Coulombic repulsi<strong>on</strong> am<strong>on</strong>g i<strong>on</strong>s supports<br />

the gravity. Somewhat more massive <strong>on</strong>es become<br />

brown dwarfs, which employ electr<strong>on</strong> degenerate pressure<br />

<strong>in</strong>stead. Objects with > 0.08 times the solar mass become<br />

normal stars, where classical gas pressure generated by nuclear<br />

fusi<strong>on</strong> balances the gravity. After 10 6−10 years depend<strong>in</strong>g<br />

<strong>on</strong> their <strong>in</strong>itial mass, these stars come to their evoluti<strong>on</strong>ary<br />

endpo<strong>in</strong>ts. Lightest normal stars leave at their<br />

centers white dwarfs, which are similar to brown dwarfs<br />

except their lack <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen. More massive <strong>on</strong>es experience<br />

gravitati<strong>on</strong>al-collapse supernova explosi<strong>on</strong>s, and their<br />

cores collapse <strong>in</strong>to neutr<strong>on</strong> stars which are supported by degenerate<br />

neutr<strong>on</strong> pressure. If the <strong>in</strong>itial mass is even higher,<br />

the f<strong>in</strong>al gravity is too str<strong>on</strong>g for a neutr<strong>on</strong> star to support,<br />

and the object becomes a black hole.<br />

This article uses the MKSA units, except that magnetic<br />

field B is expressed <strong>in</strong> Gauss (G); 1 G = 10 −4 T.<br />

DEGENERATE STELLAR OBJECTS<br />

Stellar Equilibrium<br />

The balance between the gravity and pressure p <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

spherical star can be expressed at each radius r as<br />

dp/dr = GρMr(r)/r , (1)<br />

where G, ρ and Mr(r) = ∫ r<br />

0 4πr2 ρ(r)dr are the gravitati<strong>on</strong>al<br />

c<strong>on</strong>stant, mass density, and “mass coord<strong>in</strong>ate”, respectiveky.<br />

Instead <str<strong>on</strong>g>of</str<strong>on</strong>g> exactly solv<strong>in</strong>g eq.(1), it is useful to<br />

multiply its both sides by 4πr 3 and <strong>in</strong>tegrate from r = 0 to<br />

the stellar surface r = R, to obta<strong>in</strong> a Viriar relati<strong>on</strong> as<br />

3 < p > V = −Φ ≡<br />

∫ M<br />

0<br />

GMr<br />

r dMr<br />

2 5GM<br />

∼ . (2)<br />

3R<br />

∗ Work supported by T. Enoto, Y.E. Nakagawa, and M. Nakajima<br />

† maxima@phys.s.u-tokyo.ac.jp<br />

Figure 1: A very schematic illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stellar evoluti<strong>on</strong>.<br />

Abscissa at the top <strong>in</strong>dicates <strong>in</strong>itial stellar mass, while that<br />

at the bottom f<strong>in</strong>al mass. Time goes from top to bottom.<br />

Here, V is the stellar volume, means volume average,<br />

M ≡ Mr(R) is the stellar mass, Φ is self-gravitati<strong>on</strong>al<br />

energy, and the last approximati<strong>on</strong> assumes a c<strong>on</strong>stant ρ.<br />

Degenerate Stars<br />

C<strong>on</strong>sider a star which is supported by degenerate pressure<br />

pd <str<strong>on</strong>g>of</str<strong>on</strong>g> some Fermi<strong>on</strong>s, <str<strong>on</strong>g>of</str<strong>on</strong>g> which the mass is mf and<br />

density is nf. We may substite p <strong>in</strong> eq.(2) with the n<strong>on</strong>relativistic<br />

degenerate pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> an ideal Fermi gas, i.e.,<br />

pd = A¯hn 5/3<br />

f /mf, where ¯h is the Dirac c<strong>on</strong>stant and A is a<br />

numerical c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> order unity. Perform<strong>in</strong>g elementary<br />

calculati<strong>on</strong>s, and us<strong>in</strong>g another numerical c<strong>on</strong>stant A ′ , we<br />

obta<strong>in</strong> a mass-radius relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this degenerate star as<br />

R/λf = A ′ α −1<br />

g η −5/3 (M/mn) −1/3 . (3)<br />

Here, mn is the nucle<strong>on</strong> mass, η is the nucle<strong>on</strong>-to-Fermi<strong>on</strong><br />

number ratio, λf ≡ 2π¯h/mfc is the Fermi<strong>on</strong>’s Compt<strong>on</strong><br />

wavelength, and αg ≡ Gm 2 n/¯hc = 5.9 × 10 −39<br />

is a dimensi<strong>on</strong>less c<strong>on</strong>stant represent<strong>in</strong>g gravitati<strong>on</strong>al <strong>in</strong>teracti<strong>on</strong>.<br />

Thus, the stellar radius is proporti<strong>on</strong>al to the<br />

Fermi<strong>on</strong>’s Compt<strong>on</strong> wavelength. If we use the extreme<br />

relativistic expressi<strong>on</strong> for pd, an upper limit mass (Chandrasekhar<br />

mass) is derived.<br />

Brown and White Dwarfs<br />

If the Fermi<strong>on</strong>s are electr<strong>on</strong>s with λe = 2.4 × 10 −12<br />

m, the star becomes a brown dwarf (η = 1.2) or a white<br />

dwarf (η = 2.0). Normaliz<strong>in</strong>g M to the solar mass M⊙ ≡<br />

2.0 × 10 30 kg, and faithfully calculat<strong>in</strong>g A ′ , we obta<strong>in</strong><br />

R = 1.0 × 10 7 (M/M⊙) −1/3 (2/η) −5/3 m (4)<br />

which implies an object <str<strong>on</strong>g>of</str<strong>on</strong>g> the Earth’s size.


Basic C<strong>on</strong>cepts<br />

NEUTRON STARS<br />

When the stellar <strong>in</strong>terior is mostly “neutr<strong>on</strong>ized” and the<br />

neutr<strong>on</strong>s’ degenerate pressure supports the gravity, the object<br />

becomes a neutr<strong>on</strong> star (NS). From eq.(3), we f<strong>in</strong>d<br />

that a NS with M ∼ M⊙ is by 3 orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude<br />

(∼ λe/λn = mn/me) smaller <strong>in</strong> radius than a white dwarf<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the same mass; approximately ∼ 10 km. However, more<br />

accurate estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass-radius relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NSs are<br />

a subject <str<strong>on</strong>g>of</str<strong>on</strong>g> yet unsolved studies, because it is affected by<br />

general relativity and the nuclear equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state.<br />

Classificati<strong>on</strong><br />

NSs may be classified <strong>in</strong> several aspects. One is their<br />

surface magnetic fields (MFs) B, which range from < 10 9<br />

G to ∼ 10 15 . Another is whether the object is isolated or <strong>in</strong><br />

a b<strong>in</strong>ary system with another star. The classificati<strong>on</strong> from<br />

these two dimensi<strong>on</strong>s is presented <strong>in</strong> Table 1.<br />

Shown with [ ] <strong>in</strong> Table 1 is yet another classificati<strong>on</strong><br />

axis, the source energy <str<strong>on</strong>g>of</str<strong>on</strong>g> their radiati<strong>on</strong>. Isolated NSs with<br />

l<strong>on</strong>g rotati<strong>on</strong> periods (e.g.,> 10 s) can utilize <strong>on</strong>ly their<br />

<strong>in</strong>ternal energies [i], to emit blackbody radiati<strong>on</strong>. Fastrotat<strong>in</strong>g<br />

magnetized <strong>on</strong>es can spend their huge rotati<strong>on</strong>al<br />

energies [r], while those <strong>in</strong> b<strong>in</strong>aries can alternatively utilize<br />

gravitati<strong>on</strong>al energies [g] <str<strong>on</strong>g>of</str<strong>on</strong>g> accret<strong>in</strong>g materials. A<br />

subset <str<strong>on</strong>g>of</str<strong>on</strong>g> these accret<strong>in</strong>g NSs can also use nuclear energies<br />

[n], when the accreted material <strong>in</strong>termittently make<br />

nuclear fusi<strong>on</strong> <strong>on</strong> the NS surfaces (a phenomen<strong>on</strong> called<br />

X-ray bursts). F<strong>in</strong>ally, those with the str<strong>on</strong>gest B, magnetars,<br />

are thought to be magnetically powered [m].<br />

Table 1: Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong> stars. ∗,#<br />

B (G) isolated b<strong>in</strong>ary<br />

< 10 10 isolated NS [i](R) X-ray bursters [g,n](R)<br />

10 11−13 radio pulsars [r](B) X-ray pulsars [g](M, B)<br />

10 14−15 magnetars [m](B) —<br />

* : [ ] <strong>in</strong>dicate radiati<strong>on</strong> energy sources: [i]=<strong>in</strong>ternal,<br />

[r]=rotati<strong>on</strong>al, [n]=nuclear, [g]=gravitati<strong>on</strong>al, [m]=magnetic<br />

# : M, R and B <strong>in</strong>dicate that the mass, radius, and surface<br />

magnetic fields are measurable, respectively.<br />

Mass and Radius<br />

NSs have three important parameters; mass M, radius<br />

R, and MF B. In Table 1, we <strong>in</strong>diacate, with ( ), which <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

them can be measured <strong>in</strong> each class <str<strong>on</strong>g>of</str<strong>on</strong>g> objects.<br />

Like <strong>in</strong> other astrophysical c<strong>on</strong>texts, the b<strong>in</strong>ary envir<strong>on</strong>ment<br />

provides opportunities to measure the NS mass. C<strong>on</strong>sider<br />

a NS <strong>in</strong> a b<strong>in</strong>ary system with five unknowns; the<br />

NS mass Mns, the compani<strong>on</strong> mass Mc, orbital separati<strong>on</strong><br />

a, orbital angular frequency Ω, and orbital <strong>in</strong>cl<strong>in</strong>ati<strong>on</strong><br />

i. We can observe Ω, as well as the orbital velocity<br />

Kns = aΩ s<strong>in</strong> i/(1 + q) (with q ≡ Mns/Mc) <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

NS via pulse arrival delays, and that <str<strong>on</strong>g>of</str<strong>on</strong>g> the compani<strong>on</strong> star<br />

Kc = aqΩ s<strong>in</strong> i/(1 + q) via optical Doppler spectroscopy.<br />

Furthermore, we can utilize the Kepler’s law,<br />

G(Mns + Mc) = a 3 Ω 2 . (5)<br />

Then, if i is somehow estimated, the five variables can be<br />

all uniquely determ<strong>in</strong>ed. The results show a sharp c<strong>on</strong>centrati<strong>on</strong><br />

at Mns = 1.4M⊙ [24].<br />

The radius <str<strong>on</strong>g>of</str<strong>on</strong>g> an NS can be measured if it emits blackbody<br />

radiati<strong>on</strong> uniformly from its surface, like dur<strong>in</strong>g the<br />

X-ray bursts. Then, by observ<strong>in</strong>g the bolometric (=frequency<br />

<strong>in</strong>tegrated) flux f and the surface temperature T ,<br />

we can estimate R from the Stefan-Boltzmann law,<br />

f = 4πR 2 σT 4 /4πD 2 , (6)<br />

where D is the source distance and σ is the Stefan-<br />

Boltzmann c<strong>on</strong>stant. Measurements give R ∼ 10 km, but<br />

are not yet accurate enough to c<strong>on</strong>stra<strong>in</strong> nuclear equati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> state [19]. This is ma<strong>in</strong>ly because few subsets <strong>in</strong> Table 1<br />

provide simultaneous measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> M and R.<br />

Radio Pulsar Number<br />

250<br />

Radio Pulsars<br />

8<br />

200 Accr. Pulsars<br />

Magnetar<br />

Magnetars<br />

6&<br />

150<br />

4<br />

100<br />

Accret<strong>in</strong>g<br />

50<br />

2<br />

Pulsars<br />

0<br />

8<br />

9 10 11 12 13 14 15<br />

Log Magnetic Field (Gauss)<br />

Figure 2: Distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> surface magnetic fields <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong><br />

stars <strong>in</strong> our Galaxy. Blue represents rotati<strong>on</strong>-powered<br />

pulsars, and red magnetars, with their field strengths both<br />

estimated us<strong>in</strong>g eq.(7). Green (with the number <strong>on</strong> the right<br />

hand side) shows accreti<strong>on</strong>-powered pulsars <str<strong>on</strong>g>of</str<strong>on</strong>g> which the<br />

field <strong>in</strong>tensity is measured with eq.(11).<br />

Surface Magnetic Fields<br />

MF strengths <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong>-powered NSs (radio pulsars <strong>in</strong><br />

Table 1) are estimated assum<strong>in</strong>g that they lose their rotati<strong>on</strong>al<br />

energies by emitt<strong>in</strong>g magnetic dipole radiati<strong>on</strong> as<br />

they rotates [9]. Then, the dipolar MF strength is expressed,<br />

<strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the period P and its derivative ˙ P , as<br />

B = 1.0 × 10 12<br />

√<br />

(P/0.1s)( ˙ P /1 × 10−14ss−1 ) G , (7)<br />

assum<strong>in</strong>g a can<strong>on</strong>ical moment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>ertia. Similar results are<br />

obta<strong>in</strong>ed if we assume that the rotati<strong>on</strong>al energies are spent<br />

<strong>in</strong> particle accelerati<strong>on</strong> [7].<br />

The MF distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong>-powered NSs (i.e., objects<br />

with [r]), thus estimated, are given <strong>in</strong> Fig. 2 <strong>in</strong> blue<br />

and red. The major peak at B ∼ 10 12 G encompasses ord<strong>in</strong>ary<br />

radio pulsars, a m<strong>in</strong>or peak at 10 8−9 G millisec<strong>on</strong>d<br />

pulsars, while red are magnetars. Green data po<strong>in</strong>ts are expla<strong>in</strong>ed<br />

<strong>in</strong> the next secti<strong>on</strong>.<br />

0


Radiati<strong>on</strong> from Rotati<strong>on</strong>-Powered Pulsars<br />

The Crab pulsar (borne <strong>in</strong> AD1054), a prototypical<br />

rotati<strong>on</strong>-powered NS, has B ∼ 3 × 10 12 G, and rotates<br />

with an angular frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> ω = 200 Hz. As a result, the<br />

<strong>in</strong>duced Lorentz electric field amounts to<br />

E ∼ RωB ∼ 10 14 Vm −1 , (8)<br />

and the electric potential to ER ∼ 6 × 10 18 V. This ultrahigh<br />

electric field will accelerate electr<strong>on</strong>s (plus probably<br />

positr<strong>on</strong>s), which then emit n<strong>on</strong>-thermal radiati<strong>on</strong> via synchrotr<strong>on</strong><br />

radiati<strong>on</strong>, <strong>in</strong>verse Compt<strong>on</strong> scatter<strong>in</strong>g, and curvature<br />

radiati<strong>on</strong> [18]. Emergent spectra <strong>in</strong>evitably span many<br />

orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <strong>in</strong> frequency. To observe these objects,<br />

without hampered by background stellar signals, we<br />

may use either radio frequencies, or gamma-ray range as<br />

dem<strong>on</strong>strated by the Fermi Gamma-ray Space Telescope<br />

launched <strong>in</strong> 2008 June [1].<br />

ACCRETING X-RAY PULSARS<br />

X-ray Emissi<strong>on</strong><br />

C<strong>on</strong>trary to rotati<strong>on</strong>-powered NSs, accreti<strong>on</strong>-powered<br />

NSs (those with [g] <strong>in</strong> Table 1) radiate predom<strong>in</strong>antly <strong>in</strong><br />

the X-ray frequency, for the follow<strong>in</strong>g reas<strong>on</strong>. C<strong>on</strong>sider an<br />

accret<strong>in</strong>g NS with weak MF, radiat<strong>in</strong>g spherically at a lum<strong>in</strong>osity<br />

L. Then, the phot<strong>on</strong> momentum flux L/4πr 2 c exerts<br />

an outward force Fout ≡ LσTne/4πr 2 c per unit volume <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the accret<strong>in</strong>g matter, with σT be<strong>in</strong>g the Thoms<strong>on</strong> cross secti<strong>on</strong>.<br />

The maximum lum<strong>in</strong>osity LE, called Edd<strong>in</strong>gt<strong>on</strong> limit,<br />

is realized when Fout balances the <strong>in</strong>ward gravitati<strong>on</strong>al pull<br />

[right hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> eq.(1)] exerted <strong>on</strong> the same volume. Assum<strong>in</strong>g<br />

η = 1.2, we then have<br />

LE = 4πGηmpcM/σT = 2.2 × 10 31 (M/1.4M⊙) W.<br />

(9)<br />

Equat<strong>in</strong>g this with the blackbody lum<strong>in</strong>osity 4πR 2 σT 4 , the<br />

blackbody temperature is obta<strong>in</strong>ed as<br />

T = 2.3 × 10 7 (L/LE) K. (10)<br />

This falls right <strong>on</strong> the X-ray energy band.<br />

X-ray phot<strong>on</strong>s have high penetrat<strong>in</strong>g power, as evidenced<br />

by medical diagnostics. However, they cannot penetrate<br />

the atmosphere, which is ∼ 50 times thicker (<strong>in</strong> Oxygen<br />

column density) than human body. As a result, a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray astrophysics satellites have been launched. In<br />

Japan, Hakucho (launched <strong>in</strong> 1979), Tenma (1983), G<strong>in</strong>ga<br />

(1987), ASCA (1993)[21], and Suzaku (2005)[13] have<br />

been c<strong>on</strong>tribut<strong>in</strong>g. We are now prepar<strong>in</strong>g for the next missi<strong>on</strong>,<br />

ASTRO-H, to be launched <strong>in</strong> 2014.<br />

Cyclotr<strong>on</strong> Res<strong>on</strong>ances<br />

While eq.(10) applies to spherical accreti<strong>on</strong> <strong>on</strong>to weak-<br />

FM NSs, the c<strong>on</strong>diti<strong>on</strong> somewhat differs when the NS has<br />

a str<strong>on</strong>g MF (X-ray pulsars <strong>in</strong> Table 1), because the accreti<strong>on</strong><br />

flow is channeled <strong>on</strong>to the two magnetic poles, and the<br />

Thoms<strong>on</strong> cross secti<strong>on</strong> is magnetically modified [10]. As<br />

a result, the X-ray emissi<strong>on</strong> from X-ray pulsars atta<strong>in</strong>s a<br />

higher temperature, ∼ 10 8 K, or ∼ 10 keV.<br />

An outstand<strong>in</strong>g property <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray pulsars is a clear spectral<br />

feature due to electr<strong>on</strong> cyclotr<strong>on</strong> res<strong>on</strong>ance, or Cyclotr<strong>on</strong><br />

Res<strong>on</strong>ance Scatter<strong>in</strong>g Feature (CRSF), which <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

appears <strong>in</strong> their spectra at an energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ea = ¯heB/me = 11.6(B/10 12 G) keV. (11)<br />

So far, CRSFs have been observed, sometimes <strong>in</strong> multiple<br />

harm<strong>on</strong>ics, all <strong>in</strong> absorpti<strong>on</strong>, from ∼ 15 objects [12], about<br />

half the known X-ray pulsars. Figure 3 gives <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

most prom<strong>in</strong>ent examples <str<strong>on</strong>g>of</str<strong>on</strong>g> CRSFs [17].<br />

Equati<strong>on</strong> (11) have been used to directly measure the<br />

surface MF strengths <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray pulsars. Obviously, this<br />

method gives a much higher accuracy than eq.(7) <strong>in</strong> measur<strong>in</strong>g<br />

B. The green data po<strong>in</strong>ts <strong>in</strong> Fig. 2 refer to these measurements<br />

[12]. The results are c<strong>on</strong>centrated over a rather<br />

narrow range, B = (1−4)×10 12 G, although the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

B > 5 × 10 12 G is yet to be explored with high-sensitivity<br />

hard X-ray <strong>in</strong>struments, <strong>in</strong>clud<strong>in</strong>g the Hard X-ray Detector<br />

[20] <strong>on</strong>board Suzaku. This result argues aga<strong>in</strong>st a view,<br />

which was popular <strong>in</strong> the 1990’s, that the MF <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>gly<br />

magnetized NSs decay wit time [23].<br />

In Fig. 2, the green data po<strong>in</strong>ts appear to be rathe dist<strong>in</strong>ct<br />

from the more weakly magnetized objects. Then, the<br />

MF strengths may exhibit bimodal behavior. Based <strong>on</strong> this,<br />

we further speculate that the NS magnetism is a manifestati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ferromagnetism <strong>in</strong> nuclear matter [12], rather than<br />

the more popular idea <str<strong>on</strong>g>of</str<strong>on</strong>g> permanent current. Those with<br />

B = 10 8−9 G can be <strong>in</strong>terpreted as entirely paramagnetic<br />

objects. The str<strong>on</strong>ger-field objects with B ∼ 10 12 G can be<br />

expla<strong>in</strong>ed if <strong>on</strong>ly ∼ 10 −4 <str<strong>on</strong>g>of</str<strong>on</strong>g> the total NS volume becomes<br />

ferromagnetic. Furthermore, we expect B ∼ 10 16 G if the<br />

entire volume <str<strong>on</strong>g>of</str<strong>on</strong>g> a NS becomes ferromagnetic. Magnetars,<br />

to be described below, may be such objects.<br />

Figure 3: Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> CRSFs, measured from the transient<br />

pulsar X0331+53. The fundamental and 2nd harm<strong>on</strong>ic features<br />

are <strong>in</strong>dicated by arrows. Dashed l<strong>in</strong>es <strong>in</strong>dicate the<br />

underly<strong>in</strong>g thermal spectrum.


General behavior<br />

MAGNETARS<br />

About 15 NSs shown <strong>in</strong> Fig. 2 <strong>in</strong> red are called magnetars,<br />

and possess the follow<strong>in</strong>g comm<strong>on</strong> characteristics:<br />

1. Rotati<strong>on</strong> periods <str<strong>on</strong>g>of</str<strong>on</strong>g> P = 2 − 11 sec, and high sp<strong>in</strong>down<br />

rates as ˙<br />

P 10 −11 s s −1 , yield<strong>in</strong>g via via eq.(7)<br />

B = 10 14−15 G. (12)<br />

2. Young characteristic ages, τ ≡ P/2 ˙<br />

P = 10 2−4 yr,<br />

which is also supported by their occasi<strong>on</strong>al associati<strong>on</strong><br />

with supernova remnants.<br />

3. Sporadically recurr<strong>in</strong>g active periods, when a large<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> short (< 1 s) bursts are emitted as <strong>in</strong> Fig. 4.<br />

4. X-ray emissi<strong>on</strong> with a lum<strong>in</strong>osity L ∼ 10 27 W, which<br />

much exceeds the sp<strong>in</strong>-down energy release.<br />

5. No evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>in</strong>ary compani<strong>on</strong>s.<br />

6. No radio emissi<strong>on</strong> unlike typical rotati<strong>on</strong> driven NSs.<br />

Figure 4: An example <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetar short bursts. These<br />

were observed with Suzaku, for <strong>on</strong>e day, from the magnetar<br />

1E1547-54 dur<strong>in</strong>g its 2009 January activity.<br />

From 4 and 5, magnetars can neither be rotati<strong>on</strong> powered<br />

nor accreti<strong>on</strong> powered. Furthermore, eq.(12) implies<br />

that the magnetic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> these objects exceed their rotati<strong>on</strong>al<br />

energies. Thus, magnetars are c<strong>on</strong>sidered to be magnetically<br />

powered objects (marked with [m] <strong>in</strong> Table 1),<br />

produc<strong>in</strong>g persistent and burst X-ray radiati<strong>on</strong> by somehow<br />

releas<strong>in</strong>g their magnetic energy [22]. This <strong>in</strong>terpretati<strong>on</strong> is<br />

supported by Fig. 5, where B <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetars measured with<br />

eq.(7) decreases with τ. S<strong>in</strong>ce an NS with B = 10 15 G has<br />

a magnetic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> ∼ 3×10 40 J, its decay over ∼ 100 kyr<br />

(Fig. 5) would afford L ∼ 1×10 28 W, which is sufficient to<br />

expla<strong>in</strong> item 4. Magnetars may have even str<strong>on</strong>ger toroidal<br />

MF, which is mostly c<strong>on</strong>f<strong>in</strong>ed with the stellar <strong>in</strong>terior.<br />

Although we believe magnetars to be a special subset<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NSs, their masses and radii rema<strong>in</strong> totally unknown.<br />

Therefore, we cannot tell at present whether magnetars are<br />

different from other NSs <strong>in</strong> any aspect other than the MF.<br />

Likewise, noth<strong>in</strong>g is known, either, what k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> supernova<br />

explosi<strong>on</strong>s lead to the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetars.<br />

One fasc<strong>in</strong>at<strong>in</strong>g aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetars is that their <strong>in</strong>ferred<br />

MF strengths [eq.(12)] exceeds the critical value,<br />

Bcr = (mec) 2 /¯he = 4.4 × 10 13 G (13)<br />

at which the CRSF energy [eq.(11)], or equivalently the<br />

Landau level separati<strong>on</strong>, reaches mec 2 . Therefore, we expect<br />

various “str<strong>on</strong>g field” effects to take place.<br />

Figure 5: The estimated surface MF strengths <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetars<br />

(the same as <strong>in</strong> Fig. 2), shown as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> τ.<br />

Emissi<strong>on</strong> from Magnetars<br />

In the 20th Century, magnetars were known to emit (except<br />

short bursts) pulsat<strong>in</strong>g persistent s<str<strong>on</strong>g>of</str<strong>on</strong>g>t X-ray emissi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> which the spectrum is approximated by a ∼ 0.5 keV<br />

blackbody. Then, the European Gamma-ray observatory<br />

INTEGRAL discovered [11, 8], from several magnetars,<br />

a str<strong>on</strong>gly puls<strong>in</strong>g hard X-ray comp<strong>on</strong>ent, extend<strong>in</strong>g to<br />

∼ 100 keV with a very flat phot<strong>on</strong> <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g> Γ ∼ 1 (phot<strong>on</strong><br />

number flux scal<strong>in</strong>g with energy E as ∝ E −Γ ). Such<br />

a hard-slope emissi<strong>on</strong> has rarely been observed from other<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> cosmic X-ray sources, and is difficult to expla<strong>in</strong> <strong>in</strong><br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> know radiati<strong>on</strong> processes (e.g., synchrotr<strong>on</strong> emissi<strong>on</strong>).<br />

Therefore, this comp<strong>on</strong>ent is c<strong>on</strong>sidered to provide<br />

an important clue to the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetars.<br />

We have c<strong>on</strong>ducted extensive X-ray studies <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetars,<br />

us<strong>in</strong>g Suzaku [2, 3, 5, 4, 6, 16] which has a superior<br />

wide-band capability realized by the HXD [20], and the<br />

gamma-ray burst satellite HETE-2 [14, 15]. Our results,<br />

cover<strong>in</strong>g both persistent and burst emissi<strong>on</strong>s, are summarized<br />

as follows.<br />

1. As exemplified by Fig. 6, about 8 magnetars we observed<br />

all exhibit persistent spectra that are composed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a s<str<strong>on</strong>g>of</str<strong>on</strong>g>t and a hard comp<strong>on</strong>ent [2, 16, 5, 4, 6]. This<br />

re<strong>in</strong>forces the INTEGRAL discovery, and improves it.<br />

2. The s<str<strong>on</strong>g>of</str<strong>on</strong>g>t comp<strong>on</strong>ent is approximated by two blackbodies,<br />

with temperatures TL and TH which scales as<br />

TH ≈ 3.5TL. The emissi<strong>on</strong> areas are roughly c<strong>on</strong>sistent<br />

with the size <str<strong>on</strong>g>of</str<strong>on</strong>g> an NS.<br />

3. The above two items hold for both the persistent emissi<strong>on</strong>,<br />

and short bursts detected from a few objects [15].<br />

4. As shown <strong>in</strong> Fig. 7 (top), the spectral hardness ratio<br />

(1–60 keV flux ratios between the hard and s<str<strong>on</strong>g>of</str<strong>on</strong>g>t comp<strong>on</strong>ents)<br />

has been discovered to anti-correlates with τ<br />

[6]. This is a discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetar evoluti<strong>on</strong>.<br />

5. The hard comp<strong>on</strong>ent has an extremely flat slope, Γ =<br />

1.7−0.4, which becomes even harder (flatter) towards<br />

more aged objects. This is visualized <strong>in</strong> Fig. 6, and<br />

summarized <strong>in</strong> Fig. 7 (bottom).


2 -2 -1<br />

keV (ph cm s keV -1 )<br />

0.1<br />

0.01<br />

0.001<br />

1<br />

1E1547-54 (τ=1.4 kyr)<br />

4U 0142+61 (τ=70 kyr)<br />

10<br />

Energy (keV)<br />

100<br />

Figure 6: Suzaku νFν spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> two magnetars. Green is<br />

1E1547−54 <strong>in</strong> activity [4], while red is 4U 0142+61 [6].<br />

How Magnetars Work?<br />

Based <strong>on</strong> the Suzaku and HETE-2 results, let us present<br />

a speculative <strong>in</strong>terpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetars. First, we believe<br />

that they really have MF strengths exceed<strong>in</strong>g Bcr<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> eq.(13), even though the estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> eq.(12) could be<br />

very crude. This belief is based <strong>on</strong> the fact that their twocomp<strong>on</strong>ent<br />

X-ray spectra and burst activity (Fig. 4) are really<br />

unique am<strong>on</strong>g various celestial X-ray sources. Thus,<br />

magnetars must be <strong>in</strong> a unique physical c<strong>on</strong>diti<strong>on</strong>, and the<br />

proposed str<strong>on</strong>g-MF scenario [22] is most appropriate.<br />

Next, we found many similarities between persistent and<br />

burst emissi<strong>on</strong>s. Therefore, the persistent emissi<strong>on</strong> is likely<br />

to be formed by a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> micro-bursts [15], just<br />

as the solar cor<strong>on</strong>a may be heated by micro-flares. The<br />

bursts themselves could be a result <str<strong>on</strong>g>of</str<strong>on</strong>g> sporadic magnetic<br />

rec<strong>on</strong>necti<strong>on</strong> [22], either <strong>in</strong> the magnetosphere or stellar<br />

<strong>in</strong>terior. Then, Fig. 7 (top) can be understood as a gradual<br />

decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic activity, <strong>in</strong> agreement with Fig. 5.<br />

Third, the s<str<strong>on</strong>g>of</str<strong>on</strong>g>t comp<strong>on</strong>ent can be <strong>in</strong>terpreted as thermal<br />

radiati<strong>on</strong> from the NS surface, heated by the magnetic<br />

energy release. The two blackbodies may represent two<br />

phot<strong>on</strong> polarizati<strong>on</strong>s (O-mode and X-mode) with respect<br />

to the str<strong>on</strong>g MF, which have different electr<strong>on</strong>-scatter<strong>in</strong>g<br />

cross secti<strong>on</strong>s [10, 3]. We expect the emissi<strong>on</strong> to be hence<br />

str<strong>on</strong>gly polarized; this will be tested by the wold’s first<br />

X-ray polarimetric missi<strong>on</strong>, GEMS, developed under US-<br />

Japan collaborati<strong>on</strong> and scheduled for launch <strong>in</strong> 2014.<br />

F<strong>in</strong>ally, the enigmatic hard comp<strong>on</strong>ent may be a result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> splitt<strong>in</strong>g <strong>in</strong> the super-critical MF. In the magnetosphere,<br />

the str<strong>on</strong>g Lorentz field [eq.(8)] will accelerate<br />

electr<strong>on</strong>s (and positr<strong>on</strong>s), which will emit gamma-ray phot<strong>on</strong>s.<br />

These phot<strong>on</strong>s cannot escape out, s<strong>in</strong>ce they would<br />

<strong>in</strong>teract with the MF and split <strong>in</strong>to two lower-energy phot<strong>on</strong>s<br />

[10, 6]. A cascade <str<strong>on</strong>g>of</str<strong>on</strong>g> this process will produce a hard<br />

X-ray c<strong>on</strong>t<strong>in</strong>uum extend<strong>in</strong>g down to ∼ 10 keV with a very<br />

flat Γ. In additi<strong>on</strong>, this cascade will stop at relatively high<br />

energies <strong>in</strong> older magnetars, because <str<strong>on</strong>g>of</str<strong>on</strong>g> their weaker MF<br />

(Fig.5). This can expla<strong>in</strong> Fig. 7 (bottom). Detailed <strong>in</strong>vestigati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> magnetars <strong>in</strong> the 100–600 keV regi<strong>on</strong> is an important<br />

future task <str<strong>on</strong>g>of</str<strong>on</strong>g> our ASTRO-H.<br />

Figure 7: (Top) Ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> the 1–60 keV lum<strong>in</strong>osities between<br />

the hard and s<str<strong>on</strong>g>of</str<strong>on</strong>g>t comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetars, mesured<br />

with Suzaku, shown as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> their characteristic age<br />

τ [6]. Red and blue <strong>in</strong>dicate different subsets. (Bottom)<br />

The phot<strong>on</strong> <strong>in</strong>dex Γ <str<strong>on</strong>g>of</str<strong>on</strong>g> the hard comp<strong>on</strong>ent shown <strong>in</strong> the<br />

same way [6]. Green po<strong>in</strong>ts are take from literature.<br />

REFERENCES<br />

[1] A. A. Abdo et al., Science 325 (2009) 840<br />

[2] T. Enoto, Poster No.2 <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g><br />

[3] T. Enoto et al., Astrophys. J. Lett. 693 (2009) L122<br />

[4] T. Enoto. et al., Publ. Astr<strong>on</strong>. Soc. Japan 62 (2010) 475<br />

[5] T. Enoto et al., Astrophys. J. 715 (2010) 665<br />

[6] T. Enoto et al., Astrophys. J. Lett. 722 (2010) L162<br />

[7] P. Goldreich & W. H. Julian, Astrophys. J. 157 (1969) 869<br />

[8] D. Götz et al. Astr<strong>on</strong>. Astrophys. 475 (2007) 317<br />

[9] J. E. Gunn & J. P. Ostriker, Nature 223 (1969) 454<br />

[10] A. Hard<strong>in</strong>g & D. Lai, Reports Prog. Phys. 69 (2006) 2631<br />

[11] L. Kuiper et al., Astrophys. J. 645 (2006) 556<br />

[12] K. Makishima et al., Astrophys. J. 525 (1999) 978<br />

[13] K. Mitsuda et al., Publ. Astr<strong>on</strong>. Soc. Japan 59 (2007) S1<br />

[14] Y. Nakagawa et al., Publ. Astr<strong>on</strong>. Soc. Japan 58 (2007) 263<br />

[15] Y. Nakagawa et al., Publ. Astr<strong>on</strong>. Soc. Japan 61 (2009) 109<br />

[16] Y. Nakagawa et al., Publ. Astr<strong>on</strong>. Soc. Japan 61 (2009) S387<br />

[17] M. Nakajima et al., Astrophys. J. 710 (2010) 1755<br />

[18] G. B. Rybick & A. P. Lightmann, Radiative Processes <strong>in</strong><br />

Astrophysics, Wiley-VCH (1986)<br />

[19] A. W. Ste<strong>in</strong>er et al., Astrophys. J. 722 (2010) 33<br />

[20] T. Takahashi et al., Publ. Astr<strong>on</strong>. Soc. Japan 59 (2007) S35<br />

[21] Y. Tanaka et al., Publ. Astr<strong>on</strong>. Soc. Japan 46 (1994) L37<br />

[22] C. Thomps<strong>on</strong> & R. C. Duncan, Astrophys. J. 473 (1996) 322<br />

[23] V. Urp<strong>in</strong> & U. Geppert, M<strong>on</strong>.Not.R.A.Soc. 275 (1995) 1117<br />

[24] R. Valentim et al., astro-ph 1101.4872v1 (2011)


QCD ORIGIN OF STRONG MAGNETIC FIELD IN COMPACT STARS ∗<br />

Abstract<br />

T. Tatsumi † , Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, Kyoto University, Kyoto 606-8502, Japan<br />

Some magnetic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> quark matter and a microscopic<br />

orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g magnetic field <strong>in</strong> compact stars<br />

are discussed; ferromagnetic order is discussed with the<br />

Fermi liquid theory and possible appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>in</strong> density<br />

wave is suggested with<strong>in</strong> the NJL model. Implicati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these magnetic properties are briefly discussed for compact<br />

stars.<br />

INTRODUCTION AND MOTIVATION<br />

Nowadays there have been many works about the QCD<br />

phase diagram. Here, we are c<strong>on</strong>centrated <strong>in</strong> magnetic<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> quark matter and their implicati<strong>on</strong>s <strong>on</strong> compact<br />

star phenomena. Let’s beg<strong>in</strong> with a simple questi<strong>on</strong>:<br />

what is and where can we expect magnetism <strong>in</strong> QCD. At<br />

low densities we may expect the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> pi<strong>on</strong> c<strong>on</strong>densati<strong>on</strong><br />

<strong>in</strong> hadr<strong>on</strong>ic matter, where the classical pi<strong>on</strong> field<br />

develops , followed by the specific sp<strong>in</strong>-isosp<strong>in</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nucle<strong>on</strong>s [1]. In quark matter we shall see a n<strong>on</strong>-uniform<br />

phase (called dual chiral density wave (DCDW) phase),<br />

accompany<strong>in</strong>g the restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chiral symmetry, where<br />

the pseudoscalar c<strong>on</strong>densate ⟨¯qiγ5τ3q⟩ ̸= 0 as well as the<br />

scalar c<strong>on</strong>densate spatially oscillates [2]. Accord<strong>in</strong>gly the<br />

magnetizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quark matter also oscillates like sp<strong>in</strong> density<br />

wave (SDW) <strong>in</strong> c<strong>on</strong>densed matter physics. Furthermore<br />

we may expect a ferromagnetic phase at some density<br />

regi<strong>on</strong> [3].<br />

On the other hand such magnetic properties should have<br />

some implicati<strong>on</strong>s <strong>on</strong> the compact star phenomena. In particular<br />

it has been well known that there is a str<strong>on</strong>g magnetic<br />

field <strong>in</strong> compact stars. The orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such str<strong>on</strong>g<br />

field is not clear even now, and it has been a l<strong>on</strong>g-stand<strong>in</strong>g<br />

problem s<strong>in</strong>ce the first discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> pulsars <strong>in</strong> early seventies.<br />

The recent discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetars seems to revive<br />

the problem aga<strong>in</strong> [4]. Their magnetic field amounts to<br />

O(1015G) from the P − ˙ P diagram. At present many people<br />

believe the <strong>in</strong>heritance <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field from the<br />

progenitor ma<strong>in</strong>-sequence stars or dynamo scenario due to<br />

the electr<strong>on</strong> current. We c<strong>on</strong>sider here a microscopic orig<strong>in</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic field by exam<strong>in</strong><strong>in</strong>g a possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous<br />

sp<strong>in</strong> polarizati<strong>on</strong> <strong>in</strong> quark matter.<br />

Next, we c<strong>on</strong>sider a possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-uniform state<br />

<strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> the chiral transiti<strong>on</strong>. Recently there have<br />

d<strong>on</strong>e many works about the n<strong>on</strong>-uniform state at moderate<br />

∗ Work partially supported by the Grant-<strong>in</strong>-Aid for the Global COE<br />

Program “The Next Generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, Spun from Universality and<br />

Emergence” from the M<strong>in</strong>istry <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong>, Culture, Sports, Science<br />

and Technology (MEXT) <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan and the Grant-<strong>in</strong>-Aid for Scientific Research<br />

(C) (16540246, 20540267).<br />

† tatsumi@ruby.scphys.kyoto-u.ac.jp<br />

densities. We shall see that this phase exhibits an <strong>in</strong>terest<strong>in</strong>g<br />

magnetic property like SDW.<br />

FERROMAGNETIC TRANSITION<br />

The first study about the ferromagnetism <strong>in</strong> quark matter<br />

has been performed by us<strong>in</strong>g the Bloch idea about the<br />

ferromagnetism <str<strong>on</strong>g>of</str<strong>on</strong>g> it<strong>in</strong>erant electr<strong>on</strong>s [5]. The mechanism<br />

is rather simple due to the Pauli pr<strong>in</strong>ciple: c<strong>on</strong>sider electr<strong>on</strong>s<br />

<strong>in</strong>teract<strong>in</strong>g with each other by the Coulomb <strong>in</strong>teracti<strong>on</strong><br />

<strong>in</strong> the background <str<strong>on</strong>g>of</str<strong>on</strong>g> the uniformly distributed positive<br />

charge to compensate the electr<strong>on</strong> charge. Then the<br />

Fock exchange <strong>in</strong>teracti<strong>on</strong> gives a lead<strong>in</strong>g-order c<strong>on</strong>tributi<strong>on</strong>.<br />

Then the electr<strong>on</strong> pair with the same sp<strong>in</strong> can effectively<br />

avoid the Coulomb <strong>in</strong>teracti<strong>on</strong> to give an attractive<br />

c<strong>on</strong>tributi<strong>on</strong> to the total energy due to the Pauli pr<strong>in</strong>ciple.<br />

As the counter effect such polarized electr<strong>on</strong> system costs<br />

more k<strong>in</strong>etic energy <strong>in</strong>crease. So when the former effect<br />

becomes larger than the latter <strong>on</strong>e, we can expect sp<strong>on</strong>taneous<br />

sp<strong>in</strong> polarizati<strong>on</strong>. A perturbative calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quark<br />

matter <strong>in</strong>teract<strong>in</strong>g with the <strong>on</strong>e-glu<strong>on</strong>-exchange <strong>in</strong>teracti<strong>on</strong><br />

shows the transiti<strong>on</strong> to ferromagnetic phase at the order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nuclear density. Apply<strong>in</strong>g this idea to a star with solar mass<br />

and radius <str<strong>on</strong>g>of</str<strong>on</strong>g> 10km, we can roughly estimate the magnetic<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> O(10 13−17 G). Thus we can feel that quark matter<br />

<strong>in</strong>side the core regi<strong>on</strong> may give an orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic field<br />

<strong>in</strong> compact stars.<br />

Recently we have studied the magnetic susceptibility<br />

χM to get more <strong>in</strong>sight about the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> ferromagnetic<br />

transiti<strong>on</strong> with<strong>in</strong> the Fermi-liquid theory [6]. χM is<br />

written <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the quasiparticle <strong>in</strong>teracti<strong>on</strong>s,<br />

χM =<br />

( )2 ¯gDµq N(T )<br />

2 1 + N(T ) ¯ , (1)<br />

f a<br />

where ¯gD ≡ ∫<br />

|k|=kF dΩk/4πgD(k) is the effective gyromagnetic<br />

ratio, N(T ) the effective density <str<strong>on</strong>g>of</str<strong>on</strong>g> states around<br />

the Fermi surface and ¯ f a the sp<strong>in</strong> dependent Landau-<br />

Migdal parameter [7, 8]. The sp<strong>in</strong> susceptibility can be<br />

easily evaluated by us<strong>in</strong>g the OGE <strong>in</strong>teracti<strong>on</strong>. Then we<br />

can see that the Landau-Migdal (LM) parameters <strong>in</strong>volve<br />

<strong>in</strong>frared (IR) divergences <strong>in</strong> gauge theories (QCD/QED).<br />

So we must take <strong>in</strong>to account the screen<strong>in</strong>g effect at least<br />

to obta<strong>in</strong> the mean<strong>in</strong>gful results. We have d<strong>on</strong>e it by calculat<strong>in</strong>g<br />

the quark polarizati<strong>on</strong> operator by the hard-denseloop<br />

(HDL) resummati<strong>on</strong>. As the results, we can see that<br />

the Debye screen<strong>in</strong>g for the l<strong>on</strong>gitud<strong>in</strong>al glu<strong>on</strong>s surely improves<br />

the IR behavior, while the transverse glu<strong>on</strong>s <strong>on</strong>ly<br />

receive the dynamic screen<strong>in</strong>g due to the Landau damp<strong>in</strong>g.


Zero temperature case<br />

There are still left the divergences <strong>in</strong> the LM parameters<br />

at T = 0, but they cancel each other to give a f<strong>in</strong>ite χM. F<strong>in</strong>ally<br />

magnetic susceptibility is given as a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tributi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the bare <strong>in</strong>teracti<strong>on</strong> and the static screen<strong>in</strong>g<br />

effect,<br />

(χM/χPauli) −1<br />

0 = 1 − Cf g 2 µ<br />

12π 2 E 2 F kF<br />

− 1<br />

2 (E2 F + 4mEF − 2m 2 )κ ln 2<br />

κ<br />

[<br />

m(2EF + m) −<br />

]<br />

, (2)<br />

with κ = m2 D /2k2 F <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the Debye mass, m2D ≡<br />

g2 µkF /2π2 2<br />

Nc , and Cf = −1<br />

. Thus the screen<strong>in</strong>g effect<br />

2Nc<br />

gives the g4 ln g2 term.<br />

To dem<strong>on</strong>strate the screen<strong>in</strong>g effect, we show <strong>in</strong> Fig. 4.3<br />

the magnetic susceptibility. We assume a flavor-symmetric<br />

quark matter, ρu = ρd = ρs = ρB/3, and take the QCD<br />

coupl<strong>in</strong>g c<strong>on</strong>stant as αs ≡ g2 /4π = 2.2 and the strange<br />

quark mass ms = 300MeV <strong>in</strong>ferred from the MIT bag<br />

model. Note that the screen<strong>in</strong>g effect is qualitatively dif-<br />

χ M /χ Pauli<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

α S=2.2<br />

ms=300MeV<br />

mu=md=0<br />

0 0.5 1 1.5 2<br />

kF [1/fm]<br />

Figure 1: Magnetic susceptibility at T = 0. Screen<strong>in</strong>g<br />

effects are shown <strong>in</strong> comparis<strong>on</strong> with the simple OGE<br />

case: the solid curve shows the result with the simple OGE<br />

without screen<strong>in</strong>g, while the dashed and dash-dotted <strong>on</strong>es<br />

shows the screen<strong>in</strong>g effect with Nf = 1 (<strong>on</strong>ly s quark)and<br />

Nf = 2 + 1 (u, d, s quarks), respectively.<br />

ferent, depend<strong>in</strong>g <strong>on</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> flavor Nf . The Debye<br />

mass is given by all the flavors,<br />

m 2 D = ∑<br />

flavors<br />

g 2<br />

2π 2 kF,f EF,f , (3)<br />

so that the κ ln(2/κ) term changes its sign for κ =<br />

m2 D /2k2 F > 2. Thus we can see the screen<strong>in</strong>g flavors sp<strong>on</strong>taneous<br />

magnetizati<strong>on</strong> <strong>in</strong> large Nf .<br />

N<strong>on</strong>-Fermi-liquid effect at f<strong>in</strong>ite temperature<br />

We c<strong>on</strong>sider the low temperature case, T/µ ≪ 1, but<br />

usual low-temperature expansi<strong>on</strong> can not be applied, s<strong>in</strong>ce<br />

the quasiparticles exhibits an anomalous behavior near the<br />

Fermi surface. S<strong>in</strong>ce the l<strong>on</strong>gitud<strong>in</strong>al glu<strong>on</strong>s are short<br />

ranged due to the Debye screen<strong>in</strong>g, their c<strong>on</strong>tributi<strong>on</strong>s are<br />

almost temperature <strong>in</strong>dependent. Thus the ma<strong>in</strong> c<strong>on</strong>tributi<strong>on</strong><br />

to the temperature dependence comes from the transverse<br />

glu<strong>on</strong>s. Careful c<strong>on</strong>siderati<strong>on</strong>s about the quasiparticle<br />

energy show that quark matter behaves like marg<strong>in</strong>al<br />

Fermi liquid, where the Fermi velocity and the renormalizati<strong>on</strong><br />

factor vanish at the Fermi surface [9]. Such behavior<br />

is brought about by the transverse glu<strong>on</strong>s. The magnetic<br />

susceptibility is then given as<br />

(χM /χPauli) −1 = (χM /χPauli) −1<br />

0<br />

+ π2<br />

6k 4 F<br />

(<br />

2E 2 F − m 2 + m4<br />

E 2 F<br />

)<br />

T 2<br />

( )<br />

Λ<br />

T<br />

+ Cf g2uF (2k<br />

72<br />

4 F + k2 F m2 + m4 )<br />

k4 F E2 T<br />

F<br />

2 ln<br />

+ O(g 2 T 2 ). (4)<br />

with uF ≡ vF /EF , where we can see the T 2 ln T term appears<br />

as a novel n<strong>on</strong>-Fermi-liquid effect, besides the usual<br />

T 2 term, It should be <strong>in</strong>terest<strong>in</strong>g to compare this term with<br />

other <strong>on</strong>es <strong>in</strong> specific heat or the superc<strong>on</strong>duct<strong>in</strong>g gap energy.<br />

Furthermore, such logarithmic behavior also resembles<br />

the <strong>on</strong>e by the sp<strong>in</strong> fluctuati<strong>on</strong>s or paramagn<strong>on</strong>s. F<strong>in</strong>ally<br />

the phase diagram is presented <strong>in</strong> Fig. 2, where we<br />

can also asses the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>-Fermi-liquid effect.<br />

T [MeV]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Full.<br />

w/o dynamical scr.<br />

w/o static scr.<br />

w/o any scr.<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

kF [1/fm]<br />

Figure 2: Magnetic phase diagram <strong>in</strong> the densitytemperature<br />

plane. The open (filled) circle <strong>in</strong>dicates the<br />

Curie temperature at kF = 1.1(1.6) fm −1 while the<br />

squares show those without the T 2 ln T term.<br />

F<strong>in</strong>ally we present a phase diagram <strong>in</strong> Fig. 2, where we<br />

can estimate the Curie temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> several tens <str<strong>on</strong>g>of</str<strong>on</strong>g> MeV.<br />

We can also see how the n<strong>on</strong>-Fermi-liquid effect works for<br />

the ferromagnetic transiti<strong>on</strong>.<br />

MAGNETISM AND CHIRAL SYMMETRY<br />

Recently there have been appeared many studies about<br />

the n<strong>on</strong>-uniform states <strong>in</strong> QCD, stimulated by the development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the studies about the exact soluti<strong>on</strong>s <strong>in</strong> 1+1 dimensi<strong>on</strong>al<br />

models [10]. The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>-uniform


states <strong>in</strong> quark matter have been studied <strong>in</strong> relati<strong>on</strong> to chiral<br />

transiti<strong>on</strong> [11]. The appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> density waves or<br />

crystall<strong>in</strong>e structures has been an <strong>in</strong>terest<strong>in</strong>g possibility at<br />

moderate densities. Note that the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>uniform<br />

phase is not special, but rather familiar <strong>in</strong> c<strong>on</strong>densed<br />

matter physics. In some cases it may exhibit an <strong>in</strong>terest<strong>in</strong>g<br />

magnetic property; the sp<strong>in</strong> density wave (SDW)<br />

discussed by Overhauser is a typical example. In the previ-<br />

ψψ<br />

1<br />

0<br />

-1<br />

0<br />

Z<br />

-1<br />

0<br />

1<br />

ψiγ5τ3ψ<br />

Figure 3: Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> DCDW, where pseudoscalar density as<br />

well as scalar density oscillates al<strong>on</strong>g z directi<strong>on</strong>.<br />

ous paper [2] we have discussed the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> a density<br />

wave, where pseudoscalar density as well as scalar density<br />

oscillate <strong>in</strong> harm<strong>on</strong>y al<strong>on</strong>g <strong>on</strong>e directi<strong>on</strong>, which is called<br />

dual chiral density wave (DCDW).<br />

⟨ ¯ ψψ⟩ = ∆ cos(θ(r)),<br />

⟨ ¯ ψiγ5τ3ψ⟩ = ∆ s<strong>in</strong>(θ(r)). (5)<br />

The chiral angle θ(r) is taken <strong>in</strong> the <strong>on</strong>e dimensi<strong>on</strong>al form,<br />

θ(r) = q · r. The amplitude ∆ generates the dynamical<br />

mass M, M = −2G∆, while θ produces the axial-vector<br />

field for quarks, τ3γ5γ · ∇θ/2 = τ3γ5γ · q/2. The s<strong>in</strong>gleparticle<br />

(positive) energy is then given by<br />

E ± p = [E 2 p + q 2 /4 ± q √ p 2 z + M 2 ] 1/2 , (6)<br />

with Ep = √ p 2 + M 2 , depend<strong>in</strong>g <strong>on</strong> the sp<strong>in</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

freedom. Accord<strong>in</strong>gly the Fermi sea is split <strong>in</strong>to two deformed<br />

<strong>on</strong>es: <strong>on</strong>e is deformed <strong>in</strong> the prolate shape and the<br />

other <strong>in</strong> the oblate shape.<br />

DCDW enjoys many <strong>in</strong>terest<strong>in</strong>g features. First, the symmetry<br />

break<strong>in</strong>g pattern is Tˆp × U Q 3 5 (1) → U ˆp+Q 3 5 , which<br />

may be 1+1 dimensi<strong>on</strong>al analog <str<strong>on</strong>g>of</str<strong>on</strong>g> Skyrmi<strong>on</strong>. Then the<br />

Nambu-Goldst<strong>on</strong>e bos<strong>on</strong> (”phas<strong>on</strong>”) has a hybrid nature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

”pi<strong>on</strong>” and ”ph<strong>on</strong><strong>on</strong>”. Sec<strong>on</strong>dly, a direct evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

magnetizati<strong>on</strong> gives ⟨σ12⟩ ∝ cos(q · r), which means a<br />

k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> SDW. In this case quark matter can be regarded as<br />

a k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid crystal endowed with two-dimensi<strong>on</strong>al ferromagnetic<br />

order and <strong>on</strong>e dimensi<strong>on</strong>al anti-ferromagnetic<br />

order. Note that magnetic field is globally vanished <strong>in</strong> this<br />

phase, but locally very str<strong>on</strong>g.<br />

”Nest<strong>in</strong>g” mechanism<br />

Here we discuss the mechanism for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DCDW. There seems to be some c<strong>on</strong>fusi<strong>on</strong>s about it. In<br />

the references [12] authors emphasized the nest<strong>in</strong>g effect<br />

(or Overhauser effect) for the essential mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> chiral<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-q/2<br />

q/2+M<br />

q/2<br />

q/2-M<br />

q/2<br />

-0.5<br />

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2<br />

pz<br />

E+(pz)<br />

E-(pz)<br />

Figure 4: Energy spectra for p⊥ = 0 for q/2 > M. Solid<br />

(magenta) curves show the <strong>on</strong>e for massive quarks, while<br />

dashed (blue) curves for massless <strong>on</strong>es, |pz ± q/2|.<br />

density waves, but there is little discussi<strong>on</strong> about DCDW or<br />

other <strong>in</strong>homogeneous phases. For 1+1 dimensi<strong>on</strong>al case,<br />

we can immediately see that q is given as q = 2µ for given<br />

chemical potential µ [10]. This is simply because the energy<br />

spectrum (6) is reduced to E ± <br />

<br />

p → √ p2 z + M 2 <br />

<br />

± q/2<br />

and q is decoupled from pz. Recall that the outstand<strong>in</strong>g relati<strong>on</strong><br />

q = 2pF is held <strong>in</strong> the usual density wave like CDW<br />

or SDW <strong>in</strong> the <strong>on</strong>e dimensi<strong>on</strong>al system, due to the nest<strong>in</strong>g<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fermi surface. We can see that the similar<br />

mechanism works <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> DCDW, but <strong>in</strong> somewhat<br />

different manner from the usual <strong>on</strong>e. For the case,<br />

M > q/2, E ± p are <strong>on</strong>ly shifted ±q/2 from the free particle<br />

energy, so that formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DCDW depends <strong>on</strong> the <strong>in</strong>teracti<strong>on</strong><br />

strength like <strong>in</strong> the St<strong>on</strong>er model. However, numerical<br />

calculati<strong>on</strong> shows this is not the case: q/2 > M is always<br />

held <strong>in</strong> the DCDW phase. In Fig. 4 we sketch the energy<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> the s<strong>in</strong>gle quark energy for the case, q/2 > M.<br />

Note that mass is generated by the <strong>in</strong>teracti<strong>on</strong> with DCDW<br />

<strong>in</strong> this case. So E ± p can be regarded as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

switch<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>teracti<strong>on</strong> with DCDW between massless<br />

quarks with relative momentum q. For massless quarks, the<br />

two levels cross each other at pz = 0 for any q. Once the<br />

<strong>in</strong>teracti<strong>on</strong> with DCDW is present, mass is generated and<br />

two levels avoid the cross<strong>in</strong>g with the energy gap, 2M, at<br />

pz = 0 (magenta curves <strong>in</strong> Fig. 4). So if we choose q = 2µ<br />

and fill the levels up to pF = µ, there is always the energy<br />

ga<strong>in</strong> due to the <strong>in</strong>teracti<strong>on</strong> with DCDW. In the three dimensi<strong>on</strong>al<br />

case, the simple relati<strong>on</strong> is no more held, but we can<br />

expect some rem<strong>in</strong>iscence. Actually we can numerically<br />

check that the similar relati<strong>on</strong> is held <strong>in</strong> the three dimensi<strong>on</strong>al<br />

case. In the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> the critical end po<strong>in</strong>t we have<br />

seen that the chiral correlati<strong>on</strong> functi<strong>on</strong> χ(q) diverges at f<strong>in</strong>ite<br />

q <str<strong>on</strong>g>of</str<strong>on</strong>g> q ∼ 2pF , but the effective mass is almost vanished<br />

<strong>in</strong> this situati<strong>on</strong>.<br />

Thus we can understand DCDW with q/2 > M <strong>in</strong><br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the ”nest<strong>in</strong>g” effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the FErmi surface, while<br />

q smoothly <strong>in</strong>creases from zero for RKC. Their situati<strong>on</strong> is<br />

very different from our case: the opposite relati<strong>on</strong>, |q/2


M|, is realized <strong>in</strong> their case, and the level diagram looks<br />

very different from Fig. (4).<br />

Deformed DCDW<br />

Here we generalize the orig<strong>in</strong>al DCDW by tak<strong>in</strong>g <strong>in</strong>to<br />

account the symmetry break<strong>in</strong>g effect with the current<br />

quark mass mc ∝ m 2 π. Us<strong>in</strong>g a variati<strong>on</strong>al method, we can<br />

show that the functi<strong>on</strong>al form <str<strong>on</strong>g>of</str<strong>on</strong>g> the chiral angle <strong>in</strong> DCDW<br />

is deformed, satisfy<strong>in</strong>g the s<strong>in</strong>e-Gord<strong>on</strong> (SG) equati<strong>on</strong>, and<br />

thereby the allowed regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DCDW is extended. The stable<br />

soluti<strong>on</strong> is then given <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the Jacobian elliptic<br />

functi<strong>on</strong> with modulus k,<br />

θ = π + 2am (m ∗ πz/k, k) , (7)<br />

with the effective pi<strong>on</strong> mass <strong>in</strong> medium, m ∗ π. To recover<br />

the orig<strong>in</strong>al DCDW <strong>in</strong> the chiral limit, we must require the<br />

follow<strong>in</strong>g relati<strong>on</strong>,<br />

qk = m ∗ ππ/K (8)<br />

with the complete elliptic <strong>in</strong>tegral <str<strong>on</strong>g>of</str<strong>on</strong>g> the first k<strong>in</strong>d K. Note<br />

q/m* π<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

k<br />

Figure 5: Relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the modulus k and the parameter q.<br />

k → 0 <strong>in</strong> the chiral limit.<br />

that we can recover the SG equati<strong>on</strong> <strong>in</strong> ref. [13] and m ∗ π →<br />

mπ <strong>in</strong> the 1+1 dimensi<strong>on</strong>al case.<br />

CONCLUDING REMARKS<br />

We have discussed two k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quark matter separately, but a unified or comprehensive<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetism should be desired. Furthermore<br />

when we are <strong>in</strong>terested <strong>in</strong> magnetism at moderate densities,<br />

we must take <strong>in</strong>to account some n<strong>on</strong>-perturbative effects<br />

explicitly. It may be <strong>on</strong>e way to use the effective models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

QCD, e.g. NJL model, to this end.<br />

Ferromagnetic order may have a direct implicati<strong>on</strong> <strong>on</strong><br />

magnetic evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> compact stars, but SDW order should<br />

also have some implicati<strong>on</strong>s. DCDW may catalyse the elementary<br />

processes by provid<strong>in</strong>g extra momentum; for example<br />

it allows the quark β-decay process as neutr<strong>in</strong>o emissi<strong>on</strong><br />

dur<strong>in</strong>g the thermal evoluti<strong>on</strong>. The magnetizati<strong>on</strong> is<br />

globally vanished there, but its fluctuati<strong>on</strong>, ⟨M 2 ⟩, becomes<br />

large. Accord<strong>in</strong>gly the local str<strong>on</strong>g magnetic field may <strong>in</strong>duce<br />

new QED processes.<br />

For the present it needs more studies about the properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>-uniform states and relati<strong>on</strong>s am<strong>on</strong>g them.<br />

In particular, the comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DCDW and the real k<strong>in</strong>k<br />

crystal <strong>in</strong> [11] is important, s<strong>in</strong>ce they are typical structures<br />

<strong>in</strong> QCD, reflect<strong>in</strong>g the different symmetries, U(1) vs Z2.<br />

More studies are needed <strong>in</strong>clud<strong>in</strong>g the symmetry break<strong>in</strong>g<br />

effect, thermal effect or model dependence.<br />

The exist<strong>in</strong>g regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetism may be overlapped<br />

with color superc<strong>on</strong>ductivity.It is then <strong>in</strong>terest<strong>in</strong>g to elucidate<br />

the mutual relati<strong>on</strong> <strong>in</strong> quark matter. Some works<br />

have been already d<strong>on</strong>e [14], but more studies are needed,<br />

<strong>in</strong>clud<strong>in</strong>g unc<strong>on</strong>venti<strong>on</strong>al mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> pair<strong>in</strong>g.<br />

REFERENCES<br />

[1] T. Takatsuka et al., Prog. Theor. Phys. 59 (1978) 1933.<br />

A. Akmal and V.R. Pandharipande, Phys. Rev. C79 (1997)<br />

2261<br />

[2] E. Nakano and T. Tatsumi, Phys. Rev. D71 (2005) 114006.<br />

[3] T. Tatsumi, Phys. Lett. B489 (2000) 280.<br />

T. Tatsumi, E. Nakano and K. Nawa, Dark Matter, p.39 (Nova<br />

Science Pub., New York, 2006).<br />

[4] P.M. Woods and C. Thomps<strong>on</strong>, Compact stellar X-ray<br />

sources, 2006, 547.<br />

A.K. Hard<strong>in</strong>g and D. Lai, Rep. Prog. Phys. 69 (2006) 2631.<br />

[5] C. Herr<strong>in</strong>g, Exchange Interacti<strong>on</strong>s am<strong>on</strong>g It<strong>in</strong>erant Electr<strong>on</strong>s:<br />

Magnetism IV (Academic press, New York, 1966)<br />

[6] G. Baym and S.A. Ch<strong>in</strong>, Nucl. Phys. A262 (1976) 527.<br />

[7] T. Tatsumi and K. Sato, Phys. Lett. B663 (2008) 322.<br />

[8] T. Tatsumi and K. Sato, Phys. Lett. B672 (2009) 132.<br />

K. Sato and T. Tatsumi, Nucl. Phys. A 826 (2009) 74.<br />

[9] T. Schäfer and K. Schwenzer, Phys. Rev. D70 (2004) 054007;<br />

114037.<br />

[10] G. Basar and G.V. Dunne, Phys. Rev. Lett. 100 (2008)<br />

200404; Phys. Rev. D78 (2008) 065022.<br />

G. Basar, V.Dunne and M. Thies, Phys. Rev. D79 (2009)<br />

105012.<br />

[11] D. Nickel, Phys. Rev. Lett. 103 (2009) 072301; Phys. Rev.<br />

D80 (2009) 074025.<br />

[12] B. Y. Park, M. Rho, A. Wirzba and I. Zahed, Phys. Rev. D62,<br />

034015 (2000).<br />

R. Rapp, E. V. Shuryak and I. Zahed, Phys. Rev. D63 (2001)<br />

034008.<br />

[13] V. Schön and M. Thies, Phys. Rev. D62 (2000) 096002.<br />

[14] E. Nakano, T. Maruyama and T. Tatsumi, Phys. Rev. D68<br />

(2003) 105001.<br />

T. Tatsumi, T. Maruyama and E. Nakano, Superdense QCD<br />

Matter and Compact Stars, p.241 (Spr<strong>in</strong>ger, 2006).


Recent progress and prospects <strong>on</strong> laser-plasma<br />

accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles*<br />

Kazuhisa Nakajima #†<br />

High Energy Accelerator Research Organizati<strong>on</strong> (<strong>KEK</strong>) 1-1 Oho, Tsukuba 305-0081, Japan<br />

Abstract<br />

Recent progress <strong>in</strong> laser-driven plasma-based<br />

accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles such as electr<strong>on</strong>s and<br />

i<strong>on</strong>s is overviewed <strong>in</strong> theoretical and experimental aspects.<br />

In particular laser-plasma accelerati<strong>on</strong> physics such as<br />

laser wakefield accelerati<strong>on</strong> (LWFA) <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and i<strong>on</strong><br />

accelerati<strong>on</strong> mechanism is highlighted, show<strong>in</strong>g recent<br />

achievements <str<strong>on</strong>g>of</str<strong>on</strong>g> laser plasma accelerator technologies<br />

that produce high-energy, high-quality beams required for<br />

compact particle beam and radiati<strong>on</strong> sources.<br />

INTRODUCTION<br />

In this decade, worldwide experimental and theoretical<br />

researches <strong>on</strong> laser-driven plasma-based accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

charged particles have achieved great progress <strong>in</strong> highenergy,<br />

high-quality electr<strong>on</strong> beams <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> GeVclass<br />

energy and a 1%-level energy spread [1-6], whereas<br />

laser-driven producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong> beams such as prot<strong>on</strong>s and<br />

carb<strong>on</strong>s is underdeveloped, harness<strong>in</strong>g Petawatt-class<br />

ultra-<strong>in</strong>tense lasers and ultra-th<strong>in</strong> foil targets. These highenergy<br />

high-quality particle beams make it possible to<br />

open the door for a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s <strong>in</strong> research,<br />

medical and <strong>in</strong>dustrial uses.<br />

Here recent progress <strong>in</strong> laser-plasma accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

charged particles <strong>in</strong>clud<strong>in</strong>g electr<strong>on</strong>- and i<strong>on</strong>-accelerati<strong>on</strong><br />

is overviewed from the aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>jecti<strong>on</strong> or particle<br />

generati<strong>on</strong>, accelerati<strong>on</strong> process and resultant beam<br />

properties, which are strictly determ<strong>in</strong>ed by accelerati<strong>on</strong><br />

mechanism or laser-plasma <strong>in</strong>teracti<strong>on</strong> such as the bubble<br />

mechanism for electr<strong>on</strong>s and radiati<strong>on</strong> pressure<br />

accelerati<strong>on</strong> for i<strong>on</strong>s.<br />

Although there is no practical applicati<strong>on</strong> to date,<br />

underdeveloped are various applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> laser plasma<br />

accelerators such as a compact THz or coherent X-ray<br />

radiati<strong>on</strong> source and radiati<strong>on</strong> therapy driven by laseraccelerated<br />

electr<strong>on</strong>s [7]. On the other hand, a promis<strong>in</strong>g<br />

applicati<strong>on</strong> project <str<strong>on</strong>g>of</str<strong>on</strong>g> laser-driven prot<strong>on</strong> and i<strong>on</strong> beams<br />

to the future hadr<strong>on</strong> therapy is implemented worldwide.<br />

In the future laser-plasma accelerators may come <strong>in</strong>to<br />

be<strong>in</strong>g as a novel versatile tool for develop<strong>in</strong>g fields such<br />

as space science where a compact and cost-effective tool<br />

is required as well as <strong>in</strong>herent applicati<strong>on</strong> to energyfr<strong>on</strong>tier<br />

particle accelerators.<br />

___________________________________________<br />

* Work supported by Ch<strong>in</strong>ese Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences Visit<strong>in</strong>g<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essorship for Senior <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Scientists.<br />

# Visit<strong>in</strong>g affiliati<strong>on</strong>s : Shanghai Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Optics and F<strong>in</strong>e<br />

Mechanics, Ch<strong>in</strong>ese Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Shanghai 201800, P.R.<br />

Ch<strong>in</strong>a; Shanghai Jiao T<strong>on</strong>g University, Shanghai 200240, P.R. Ch<strong>in</strong>a.<br />

† nakajima@post.kek.jp<br />

LASER WAKEFIELD ACCELERATION<br />

OF ELECTRONS<br />

LWFA <strong>in</strong> the l<strong>in</strong>ear regime<br />

In underdense plasma an ultra<strong>in</strong>tense laser pulse excites<br />

a large-amplitude plasma wave with frequency p =<br />

(4e 2 ne/me) 1/2 and electric field <strong>on</strong> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ ne 1/2<br />

V/cm for the electr<strong>on</strong> rest mass mec 2 and plasma density<br />

ne cm -3 due to the p<strong>on</strong>deromotive force expell<strong>in</strong>g plasma<br />

electr<strong>on</strong>s out <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser pulse and the space charge force<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> immovable plasma i<strong>on</strong>s restor<strong>in</strong>g expelled electr<strong>on</strong>s <strong>on</strong><br />

the back <str<strong>on</strong>g>of</str<strong>on</strong>g> the i<strong>on</strong> column rema<strong>in</strong><strong>in</strong>g beh<strong>in</strong>d the laser<br />

pulse. S<strong>in</strong>ce the phase velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma wave is<br />

approximately equal to the group velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser<br />

pulse vg/c = (1- p 2 /0 2 ) 1/2 ~1 for the laser frequency 0<br />

and the accelerat<strong>in</strong>g field <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 1 GeV/cm for the plasma<br />

density ~ 10 18 cm -3 , electr<strong>on</strong>s trapped <strong>in</strong>to the plasma<br />

wave are likely to be accelerated up to ~ 1 GeV energy <strong>in</strong><br />

a 1 cm plasma. More accurately <strong>in</strong> the l<strong>in</strong>ear regime for<br />

the normalized vector potential def<strong>in</strong>ed by<br />

2 1<br />

2 18 2<br />

2<br />

a 0 0. 85 I<br />

/10 Wcm m<br />

,<br />

where I is the laser <strong>in</strong>tensity and = 2c/0 the laser<br />

wavelength, the energy ga<strong>in</strong> is given by [8]<br />

2 2<br />

E 1.<br />

3mec<br />

a0<br />

nc<br />

ne<br />

,<br />

2<br />

18 -3<br />

1<br />

P TWr<br />

m<br />

n 10 cm GeV<br />

35<br />

0<br />

e<br />

for the peak laser power P TW focused <strong>on</strong>to the spot<br />

radius r0 m, assum<strong>in</strong>g that the plasma wave is efficiently<br />

excited at p ~ cL for the pulse durati<strong>on</strong> L, and that<br />

electr<strong>on</strong>s are accelerated over the dephas<strong>in</strong>g length given<br />

by Ldp ~ p(p 2 /0 2 ) = p(nc/ne), where nc = /(re 2 ) ⋍<br />

1.115 × 10 21 cm -3 (/m) -2 is the cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f density, re =<br />

e 2 /mec 2 the classical electr<strong>on</strong> radius. The accelerated<br />

electr<strong>on</strong>s overrun the accelerat<strong>in</strong>g field toward the<br />

decelerat<strong>in</strong>g field bey<strong>on</strong>d the dephas<strong>in</strong>g length.<br />

Quasi-m<strong>on</strong>oenergetic accelerati<strong>on</strong> <strong>in</strong> the<br />

n<strong>on</strong>l<strong>in</strong>ear regime<br />

The lead<strong>in</strong>g experiments [9] that successfully<br />

dem<strong>on</strong>strated the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-m<strong>on</strong>oenergetic<br />

electr<strong>on</strong> beams with narrow energy spread have been<br />

elucidated <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> self-<strong>in</strong>jecti<strong>on</strong> and accelerati<strong>on</strong><br />

mechanism <strong>in</strong> the bubble regime [10,11]. In these<br />

experiments, electr<strong>on</strong>s are self-<strong>in</strong>jected <strong>in</strong>to a n<strong>on</strong>l<strong>in</strong>ear<br />

wake, referred to as a “bubble”, i.e. a cavity <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma<br />

electr<strong>on</strong>s c<strong>on</strong>sist<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> a spherical i<strong>on</strong> column surrounded<br />

with a narrow electr<strong>on</strong> sheath, formed beh<strong>in</strong>d the laser<br />

pulse <strong>in</strong>stead <str<strong>on</strong>g>of</str<strong>on</strong>g> a periodic plasma wave <strong>in</strong> the l<strong>in</strong>ear


egime. As analogous to a c<strong>on</strong>venti<strong>on</strong>al RF cavity <strong>in</strong>side<br />

which electromagnetic energy is res<strong>on</strong>antly c<strong>on</strong>f<strong>in</strong>ed at<br />

the matched frequency to accelerate externally <strong>in</strong>jected<br />

particles, <strong>in</strong>duc<strong>in</strong>g a current flow <strong>in</strong> a sk<strong>in</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

metal surface, plasma electr<strong>on</strong>s radially expelled by the<br />

radiati<strong>on</strong> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser form a sheath with<br />

thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma sk<strong>in</strong> depth 1/kp =<br />

c/p outside the i<strong>on</strong> sphere rema<strong>in</strong><strong>in</strong>g “unshielded”<br />

beh<strong>in</strong>d the laser pulse mov<strong>in</strong>g at relativistic velocity so<br />

that the cavity shape should be determ<strong>in</strong>ed by balanc<strong>in</strong>g<br />

the Lorentz force <str<strong>on</strong>g>of</str<strong>on</strong>g> the i<strong>on</strong> sphere exerted <strong>on</strong> the electr<strong>on</strong><br />

sheath with the p<strong>on</strong>deromotive force <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser pulse.<br />

This estimates the bubble radius RB matched to the laser<br />

spot radius w0 , approximately as ,<br />

for which a best spherical shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the bubble is created.<br />

This c<strong>on</strong>diti<strong>on</strong> is reformulated as<br />

where Pc = 17(0/p) 2 GW is the critical power for the<br />

relativistic self-focus<strong>in</strong>g[11].<br />

The l<strong>on</strong>gitud<strong>in</strong>al electric field <strong>in</strong>side the bubble is<br />

obta<strong>in</strong>ed as<br />

, where =z-vBt is<br />

the coord<strong>in</strong>ate <strong>in</strong> the frame <str<strong>on</strong>g>of</str<strong>on</strong>g> the bubble mov<strong>in</strong>g at the<br />

velocity vB [10]. One can see that the maximum<br />

accelerat<strong>in</strong>g field is given by e|Ez|max = (1/2)mec 2 kp 2 RB at<br />

the back <str<strong>on</strong>g>of</str<strong>on</strong>g> the bubble and the focus<strong>in</strong>g force is act<strong>in</strong>g <strong>on</strong><br />

an electr<strong>on</strong> <strong>in</strong>side the bubble. Assum<strong>in</strong>g the bubble phase<br />

velocity is given by vB ~ vg-vetch~c[1-(1/2+1)(p/0) 2 ],<br />

where vetch ~c(p/0) 2 is the velocity at which the laser<br />

fr<strong>on</strong>t etches back due to the local pump depleti<strong>on</strong>, the<br />

dephas<strong>in</strong>g length leads to<br />

Ldp ~ c/(c-vB)RB ~ (2/3) (0/p) 2 RB = (2/3) (nc/ne)RB.<br />

Hence the electr<strong>on</strong> <strong>in</strong>jected at the back <str<strong>on</strong>g>of</str<strong>on</strong>g> the bubble can<br />

be accelerated up to the energy<br />

1<br />

2 2 nc<br />

E e Ez<br />

Ldp<br />

mec<br />

a<br />

max<br />

0 .<br />

2<br />

3 ne<br />

Us<strong>in</strong>g the matched bubble radius c<strong>on</strong>diti<strong>on</strong>, the energy<br />

ga<strong>in</strong> is approximately given by<br />

2<br />

P nc<br />

<br />

E mec<br />

,<br />

Pr<br />

ne<br />

<br />

where Pr = me 2 c 5 /e 2 = 8.72 GW [12].<br />

The 2D or 3D particle-<strong>in</strong>-cell simulati<strong>on</strong>s c<strong>on</strong>firm that<br />

quasi-m<strong>on</strong>oenergetic electr<strong>on</strong> beams are produced due to<br />

self-<strong>in</strong>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma electr<strong>on</strong>s at the back <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

bubble from the electr<strong>on</strong> sheath outside the i<strong>on</strong> sphere as<br />

the laser <strong>in</strong>tensity <strong>in</strong>creases to the <strong>in</strong>jecti<strong>on</strong> threshold. As<br />

expelled electr<strong>on</strong>s flow<strong>in</strong>g the sheath are <strong>in</strong>itially<br />

decelerated backward <strong>in</strong> a fr<strong>on</strong>t half <str<strong>on</strong>g>of</str<strong>on</strong>g> the bubble and<br />

then accelerated <strong>in</strong> a back half <str<strong>on</strong>g>of</str<strong>on</strong>g> it toward the<br />

propagati<strong>on</strong> axis by the accelerat<strong>in</strong>g and focus<strong>in</strong>g forces<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the bubble i<strong>on</strong>s, their trajectories c<strong>on</strong>centrate at the<br />

back <str<strong>on</strong>g>of</str<strong>on</strong>g> the bubble to form a str<strong>on</strong>g local density peak <strong>in</strong><br />

the electr<strong>on</strong> sheath and a spiky accelerat<strong>in</strong>g field.<br />

Eventually the electr<strong>on</strong> is trapped <strong>in</strong>to the bubble when its<br />

velocity reaches the group velocity vg <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser pulse.<br />

Theoretical analysis <strong>on</strong> the trapp<strong>in</strong>g threshold gives kpRB<br />

≥ (2nc/ne) 1/2 [13]. This trapp<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong> leads to<br />

, while the trapp<strong>in</strong>g cross secti<strong>on</strong> ≃<br />

(2/kp 3 d)(ln kpRB/8 1/2 ) -1 [10] with the sheath width d<br />

1 3<br />

2 3<br />

,<br />

imposes kpRB ≥ 2.8, i.e. for the matched bubble<br />

radius. Once an electr<strong>on</strong> bunch is trapped <strong>in</strong> the bubble,<br />

load<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> trapped electr<strong>on</strong>s reduces the wakefield<br />

amplitude below the trapp<strong>in</strong>g threshold and stops further<br />

<strong>in</strong>jecti<strong>on</strong>. C<strong>on</strong>sequently the trapped electr<strong>on</strong>s undergo<br />

accelerati<strong>on</strong> and bunch<strong>in</strong>g process with<strong>in</strong> a separatrix <strong>on</strong><br />

the phase space <str<strong>on</strong>g>of</str<strong>on</strong>g> the bubble wakefield. This is a simple<br />

scenario for produc<strong>in</strong>g high-quality m<strong>on</strong>oenergetic<br />

electr<strong>on</strong> beams <strong>in</strong> the bubble regime. However, <strong>in</strong> most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

laser-plasma experiments aforementi<strong>on</strong>ed c<strong>on</strong>diti<strong>on</strong>s and<br />

scenarios are not always fulfilled.<br />

In the experiment for the plasma density ne =(1 ~ 2)×<br />

10 19 cm -3 , observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the self-<strong>in</strong>jecti<strong>on</strong> threshold <strong>on</strong><br />

the normalized laser <strong>in</strong>tensity gives after<br />

account<strong>in</strong>g for self-focus<strong>in</strong>g and self-compressi<strong>on</strong> that<br />

occur dur<strong>in</strong>g laser pulse propagati<strong>on</strong> <strong>in</strong> the plasma. In<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser peak power<br />

)2, the self-<strong>in</strong>jecti<strong>on</strong> threshold for the power (P/Pc )th<br />

≈ 12.6 as the laser spot size reduces to the plasma<br />

wavelength due to the relativistic self-focus<strong>in</strong>g[14]. In the<br />

experiment at ne =(3 ~ 5)×10 18 cm -3 , the self-<strong>in</strong>jecti<strong>on</strong><br />

threshold is (P/Pc )th = 3, corresp<strong>on</strong>d<strong>in</strong>g to [6].<br />

Our 2-D PIC simulati<strong>on</strong>s <strong>on</strong> the self-<strong>in</strong>jecti<strong>on</strong> threshold<br />

show that for the uniform density plasma such as a gas jet<br />

or a gas cell <str<strong>on</strong>g>of</str<strong>on</strong>g> ne =(1.7 ~ 5)×10 18 cm -3 , the self-<strong>in</strong>jecti<strong>on</strong><br />

occurs at and for the preformed plasma channel<br />

such as discharge capillary <str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma density ne = 2×<br />

10 18 cm -3 with the density depth nch/ne = 0.3, the<br />

threshold is .<br />

C<strong>on</strong>trolled laser wakefield accelerator<br />

For many applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> laser wakefield accelerators,<br />

stability and c<strong>on</strong>trollability <str<strong>on</strong>g>of</str<strong>on</strong>g> the beam performance such<br />

as energy, energy spread, emittance and charge are<br />

<strong>in</strong>dispensable as well as compact and robust features <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the system. In c<strong>on</strong>trast to the c<strong>on</strong>venti<strong>on</strong>al accelerators<br />

composed <str<strong>on</strong>g>of</str<strong>on</strong>g> various complex-functi<strong>on</strong>ed systems, the<br />

performance <str<strong>on</strong>g>of</str<strong>on</strong>g> laser plasma accelerators is str<strong>on</strong>gly<br />

correlated to the <strong>in</strong>jecti<strong>on</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> beams<br />

as well as the laser performance. To date, the external<br />

<strong>in</strong>jecti<strong>on</strong> <strong>in</strong>to laser wakefields from the c<strong>on</strong>venti<strong>on</strong>al RF<br />

<strong>in</strong>jector [15] or the stag<strong>in</strong>g c<strong>on</strong>cept, which is c<strong>on</strong>ceivable<br />

<strong>on</strong> the analogy <str<strong>on</strong>g>of</str<strong>on</strong>g> the high-energy RF accelerators, has not<br />

been always successful for generat<strong>in</strong>g <strong>in</strong>tense highquality<br />

electr<strong>on</strong> beams that could be useful for<br />

applicati<strong>on</strong>s. Hence, besides the self-<strong>in</strong>jecti<strong>on</strong>, the optical<br />

<strong>in</strong>jecti<strong>on</strong> scheme with two collid<strong>in</strong>g pulses is highlighted.<br />

The optical <strong>in</strong>jecti<strong>on</strong> scheme for manipulat<strong>in</strong>g electr<strong>on</strong><br />

beams <strong>in</strong> a phase space <str<strong>on</strong>g>of</str<strong>on</strong>g> laser wakefield accelerati<strong>on</strong><br />

with fs-synchr<strong>on</strong>izati<strong>on</strong> and MeV-energy resp<strong>on</strong>se utilize<br />

an <strong>in</strong>jecti<strong>on</strong> pulse split from the same drive pulse with fs<br />

durati<strong>on</strong>, cross<strong>in</strong>g the drive pulse at some angle <strong>in</strong> the<br />

plasma. When cross<strong>in</strong>g each other, the phase space <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wakefields excited by the drive pulse overlaps with the<br />

phase space <str<strong>on</strong>g>of</str<strong>on</strong>g> beat waves generated by mix<strong>in</strong>g the drive<br />

pulse and the <strong>in</strong>jecti<strong>on</strong> pulse. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

p<strong>on</strong>deromotive force <str<strong>on</strong>g>of</str<strong>on</strong>g> the beat wave boosts plasma<br />

electr<strong>on</strong>s and locally <strong>in</strong>jects them <strong>in</strong>to the separatrix <str<strong>on</strong>g>of</str<strong>on</strong>g>


the wakefields. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> head-<strong>on</strong> collisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

counter-propagat<strong>in</strong>g laser pulses at the angle <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

p<strong>on</strong>deromotive force<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <strong>in</strong>jecti<strong>on</strong> beat wave oscillat<strong>in</strong>g with the wavelength<br />

0/2 locally accelerates the plasma electr<strong>on</strong>s to be <strong>in</strong>jected<br />

<strong>in</strong>to the wakefield bucket, where k0 = 2/0 is the laser<br />

wave number, ɑ0, and ɑ1 the <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the drive pulse<br />

and the <strong>in</strong>jecti<strong>on</strong> pulse, respectively, and the Lorentz<br />

factor <str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma electr<strong>on</strong>, i.e. 1 for the cold<br />

plasma. On the c<strong>on</strong>trary to the self-<strong>in</strong>jecti<strong>on</strong> with a s<strong>in</strong>gle<br />

drive pulse, this force is <strong>in</strong>dependently c<strong>on</strong>trollable by<br />

chang<strong>in</strong>g the <strong>in</strong>jecti<strong>on</strong> pulse <strong>in</strong>tensity and/or its<br />

polarizati<strong>on</strong> with respect to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the drive pulse as well<br />

as the <strong>in</strong>jecti<strong>on</strong> positi<strong>on</strong>, where two pulses collides.<br />

Therefore the energy and the charge can be c<strong>on</strong>trolled<br />

with<strong>in</strong> some extent, associat<strong>in</strong>g with evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

energy spread due to the beam load<strong>in</strong>g and the <strong>in</strong>jecti<strong>on</strong><br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase space.<br />

These effects are successfully dem<strong>on</strong>strated with good<br />

stability by the experiments carried out below the self<strong>in</strong>jecti<strong>on</strong><br />

threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> the drive pulse <strong>in</strong>tensity. The<br />

experiment <str<strong>on</strong>g>of</str<strong>on</strong>g> ref. [16] with , and the<br />

pulse durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 fs for both pulses shows an almost<br />

l<strong>in</strong>ear c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>oenergetic beam energy from 50<br />

MeV to 250 MeV by chang<strong>in</strong>g the collid<strong>in</strong>g positi<strong>on</strong> over<br />

the 2-mm gas jet at the plasma density <str<strong>on</strong>g>of</str<strong>on</strong>g> ne = 7.5×10 18<br />

cm -3 , c<strong>on</strong>sequently chang<strong>in</strong>g the accelerati<strong>on</strong> length <strong>in</strong><br />

the average accelerat<strong>in</strong>g field <str<strong>on</strong>g>of</str<strong>on</strong>g> Ez = 270 GV/m, which is<br />

close to an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave break<strong>in</strong>g field for the<br />

cold plasma, Ewb ≈ 0.96ne 1/2 ~ 263 GV/m. The experiment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ref. [17] dem<strong>on</strong>strates the collid<strong>in</strong>g optical <strong>in</strong>jecti<strong>on</strong> at<br />

the cross<strong>in</strong>g angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 135 °<strong>in</strong> the 1-mm gas jet with<br />

(Pdrive = 3 TW), (P<strong>in</strong>j = 0.14 TW) and<br />

70 fs pulse durati<strong>on</strong>, result<strong>in</strong>g <strong>in</strong> the energy E =15 MeV<br />

and the energy spread E/E =7.8% at ne = 3.95×10 19 cm -<br />

3 free from the self-<strong>in</strong>jecti<strong>on</strong> as well as the head-<strong>on</strong><br />

collid<strong>in</strong>g <strong>in</strong>jecti<strong>on</strong> at 180° with (Pdrive = 10<br />

TW), (P<strong>in</strong>j = 0.6 TW) and 40 fs pulse durati<strong>on</strong>,<br />

result<strong>in</strong>g <strong>in</strong> the energy E =134 MeV and the energy<br />

spread E/E =3.5% at ne = 1 × 10 19 cm -3 . These<br />

experiments suggest a very compact system <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electr<strong>on</strong> beam source <strong>in</strong>clud<strong>in</strong>g the laser and the<br />

accelerator <strong>on</strong> a table-top size with high quality and high<br />

stability.<br />

The trapped electr<strong>on</strong>s <strong>in</strong>side the bubble generate<br />

electromagnetic fields and modify the bubble wakefields.<br />

As a result, the trail<strong>in</strong>g electr<strong>on</strong> bunch undergoes less<br />

accelerated field that limits the charge and produces<br />

energy spread. The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the beam load<strong>in</strong>g <strong>in</strong> the<br />

bubble regime gives the energy absorbed per unit length<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the beam is given as<br />

Q<br />

eE<br />

4 k<br />

16 3<br />

s s 10 cm<br />

0.<br />

047<br />

pRB<br />

1nC<br />

mec<br />

p<br />

ne<br />

where Qs is the total charge and Es the accelerat<strong>in</strong>g<br />

wakefield at the phase positi<strong>on</strong> where the bunch charge<br />

starts, assum<strong>in</strong>g the density distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the bunch<br />

charge has a trapezoidal shape so that the energy spread<br />

<strong>in</strong>side the bunch is m<strong>in</strong>imized [18]. This equati<strong>on</strong> implies<br />

the trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between the total charge that can be<br />

accelerated and the accelerat<strong>in</strong>g gradient, i.e. the<br />

accelerated energy. With , the charge is<br />

proporti<strong>on</strong>al to ne -1/2 .<br />

Toward high-energy accelerati<strong>on</strong> bey<strong>on</strong>d GeV<br />

S<strong>in</strong>ce the energy ga<strong>in</strong> scales as , it would be<br />

necessary for the multi-GeV accelerati<strong>on</strong> to decrease the<br />

operat<strong>in</strong>g plasma density from the 10 18 cm -3 range to the<br />

10 17 cm -3 range and <strong>in</strong>crease the accelerator length, i.e.<br />

plasma channel length, up to several tens cm. Recent<br />

experiments dem<strong>on</strong>strated GeV-class quasim<strong>on</strong>oenergetic<br />

electr<strong>on</strong> beams with a cm-scale gas jet or a capillary<br />

plasma waveguide, rely<strong>in</strong>g <strong>on</strong> self-<strong>in</strong>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma<br />

electr<strong>on</strong>s:<br />

E=1 GeV, E/E=2.5%(rms), =1.6mrad, Q=35pC<br />

for P= 40TW, L = 37 fs, a0 =1.4, ne = 4.3×10 18 cm -3<br />

with 3.3-cm gas-fill capillary [1].<br />

E = 0.5 GeV, E/E = 2.5 % (FWHM), = 0.3mrad,<br />

Q > 0.3 pC for P=18TW, L = 42 fs, a0 = 0.84, ne =<br />

8.4×10 18 cm -3 with 15-mm gas-fill capillary [2].<br />

E = 0.59 GeV, E/E = 1.2 % (FWHM), = 0.59<br />

mrad, Q > 10 fC for P=24TW, L = 27 fs, a0 = 1.7, ne<br />

= 1.9×10 18 cm -3 with 4-cm ablative capillary [3].<br />

E = 0.52 GeV, E/E = 5 % (FWHM), = 5.4 mrad,<br />

Q=70 pC for P=32TW, L=80fs, a0=0.8, ne= 1.8×10 18<br />

cm -3 with 3-cm gas-fill capillary [4].<br />

E = 0.8 GeV, E/E = 12 % (FWHM), = 3.6 mrad,<br />

Q=90pC <strong>in</strong> average for P=180TW, L =55fs, a0=3.9,<br />

ne= 5.7×10 18 cm -3 with 8-mm gas jet [5].<br />

E=0.72 GeV, E/E = 14 % (FWHM), = 2.9 mrad,<br />

Q~100pC for P=65TW, L =60fs, a0=2.8, ne= 3×10 18<br />

cm -3 with 8-mm gas jet [6].<br />

One f<strong>in</strong>ds that high-energy and high-quality electr<strong>on</strong><br />

beams with less charge are accelerated with cm-scale<br />

capillary plasma waveguides <strong>in</strong> the quasi l<strong>in</strong>ear regime (a0<br />

< 2), while high-energy and high-charge electr<strong>on</strong> beams<br />

with less quality are produced with gas jets rely<strong>in</strong>g <strong>on</strong><br />

self-guid<strong>in</strong>g <strong>in</strong> the bubble regime (a0 > 2). Recent<br />

progress <str<strong>on</strong>g>of</str<strong>on</strong>g> PW-class lasers boosts the accelerati<strong>on</strong> energy<br />

bey<strong>on</strong>d 1 GeV. Two experiments are attempted with a cmscale<br />

gas cell and a capillary, respectively, show<strong>in</strong>g n<strong>on</strong>m<strong>on</strong>oenergetic<br />

spectra with a clear cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f energy Emax:<br />

Emax=1.45 GeV for P= 110TW, L = 60 fs, a0 =3.8, ne<br />

= 1.3×10 18 cm -3 with 1.3-cm gas cell c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g 97%<br />

He and 3% CO2 mixed gas [19].<br />

Emax=1.8 GeV for P= 72TW, L = 50 fs, a0 =2.9, ne =<br />

2.1×10 18 cm -3 with 4-cm ablative capillary made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

polycarb<strong>on</strong>ate [20].<br />

Although both cases corresp<strong>on</strong>d to the bubble regime for<br />

a0 high enough to cause self-<strong>in</strong>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s, the<br />

i<strong>on</strong>izati<strong>on</strong>-<strong>in</strong>duced trapp<strong>in</strong>g mechanism [21] due to<br />

oxygen impurities enhances the electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> <strong>in</strong>to the<br />

bubble c<strong>on</strong>t<strong>in</strong>uously over the plasma length. For the<br />

multi-GeV LWFA operat<strong>in</strong>g <strong>in</strong> the plasma density lower<br />

than 10 18 cm -3 , a dedicated <strong>in</strong>jector would be essential to<br />

produce high-quality electr<strong>on</strong> beams with high-stability.


With extremely high-peak power lasers bey<strong>on</strong>d PW,<br />

based <strong>on</strong> a naïve scal<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> atta<strong>in</strong>able energies <strong>in</strong> a s<strong>in</strong>gle<br />

stage, it is possible to design ultrahigh-energy laserplasma<br />

accelerators bey<strong>on</strong>d 10 GeV <strong>in</strong> a much smaller<br />

size than that <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al accelerators. However,<br />

various requirements for applicati<strong>on</strong>s such as the beam<br />

qualities and the electrical power would strictly limit<br />

acceptable parameters <strong>on</strong> the accelerator performance.<br />

Recent 3D-PIC simulati<strong>on</strong>s [22] show that 10-PW and 3-<br />

PW lasers cannot produce high-energy ( 10 23 W/cm 2 with a l<strong>in</strong>early<br />

polarized laser pulse <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 kJ energy that could accelerate<br />

GeV quasi-m<strong>on</strong>oenergetic i<strong>on</strong>s with high c<strong>on</strong>versi<strong>on</strong><br />

efficiency (> 40%) [27], though such experiments are far<br />

bey<strong>on</strong>d current technology. Circularly polarized laser<br />

pulses <str<strong>on</strong>g>of</str<strong>on</strong>g> which the p<strong>on</strong>deromotive force has no<br />

oscillat<strong>in</strong>g comp<strong>on</strong>ent can push forward electr<strong>on</strong>s steadily,<br />

suppress<strong>in</strong>g foil heat<strong>in</strong>g and expansi<strong>on</strong>. The absence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hot electr<strong>on</strong>s suppresses TNSA and allows RPA even at<br />

currently achievable laser <strong>in</strong>tensities (I < 10 22 W/cm 2 ).<br />

The <strong>on</strong>e-dimensi<strong>on</strong>al (1D) model <str<strong>on</strong>g>of</str<strong>on</strong>g> RPA is modeled<br />

by the follow<strong>in</strong>g relativistic equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for the<br />

foil [25]:<br />

2 2 2<br />

dp 2I<br />

1<br />

2I<br />

p c p<br />

<br />

2 2 2<br />

dt c 1<br />

c p c p<br />

where is the foil velocity, p the areal momentum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the foil and = m<strong>in</strong>il the areal mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the foil with the<br />

i<strong>on</strong> mass mi, the i<strong>on</strong> density ni, and the foil thickness l.<br />

The soluti<strong>on</strong> is given by<br />

with<br />

. One obta<strong>in</strong>s<br />

the f<strong>in</strong>al velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the foil<br />

, where<br />

and<br />

with<br />

the <strong>in</strong>itial electr<strong>on</strong> density n0, the cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f density nc, the<br />

laser wavelength , the pulse durati<strong>on</strong> <strong>in</strong> units <str<strong>on</strong>g>of</str<strong>on</strong>g> laser<br />

period and the normalized vector potential<br />

for a circularly polarized laser pulse. The f<strong>in</strong>al k<strong>in</strong>etic<br />

energy results <strong>in</strong><br />

. Hence the i<strong>on</strong> f<strong>in</strong>al energy scales as and<br />

. As an example, for a 100 fs circularly polarized laser


pulse with I = 10 21 Wcm -2 at = 0.8 m and a 150 nm<br />

thick target with density, m<strong>on</strong>oenergetic i<strong>on</strong>s<br />

with the k<strong>in</strong>etic energy ~ 230 MeV per nucle<strong>on</strong> may be<br />

accelerated.<br />

The optimal c<strong>on</strong>diti<strong>on</strong> for produc<strong>in</strong>g i<strong>on</strong>s with a narrow<br />

spectral peak is obta<strong>in</strong>ed from the equilibrium between<br />

the electrostatic and radiati<strong>on</strong> pressure that cause a str<strong>on</strong>g<br />

expulsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and produce a density distributi<strong>on</strong><br />

c<strong>on</strong>sist<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> depleti<strong>on</strong> regi<strong>on</strong> with density<br />

, thickness d and the compressed electr<strong>on</strong> layer<br />

with density np0, thickness ls where all electr<strong>on</strong>s pile at the<br />

rear surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the foil with the reflectivity :<br />

, where<br />

is the total<br />

radiati<strong>on</strong> pressure and<br />

is<br />

the electrostatic pressure, obta<strong>in</strong>ed from the peak<br />

electrostatic field and the charge<br />

c<strong>on</strong>servati<strong>on</strong> . This c<strong>on</strong>diti<strong>on</strong><br />

results <strong>in</strong> , which determ<strong>in</strong>es the optimal foil<br />

thickness<br />

.<br />

The beam quality <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong> beams produced by RPA is<br />

expected to improve drastically <strong>on</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> TNSAproduced<br />

i<strong>on</strong>s. The PIC simulati<strong>on</strong> for the <strong>in</strong>teracti<strong>on</strong><br />

between the circularly polarized laser pulse <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

, the pulse durati<strong>on</strong> and a 150 nm<br />

thick foil at the prot<strong>on</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> shows a<br />

m<strong>on</strong>oenergetic spectral peak <str<strong>on</strong>g>of</str<strong>on</strong>g> prot<strong>on</strong>s at 485 MeV and<br />

an excellent l<strong>on</strong>gitud<strong>in</strong>al emittance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

, which is three orders magnitude<br />

smaller than that <str<strong>on</strong>g>of</str<strong>on</strong>g> TNSA [25].<br />

Despite <str<strong>on</strong>g>of</str<strong>on</strong>g> many simulati<strong>on</strong> works, a few experiments<br />

have attempted to dem<strong>on</strong>strate the i<strong>on</strong> accelerati<strong>on</strong> driven<br />

by RPA because <str<strong>on</strong>g>of</str<strong>on</strong>g> difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> produc<strong>in</strong>g laser pulses<br />

with extremely high-c<strong>on</strong>trast ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the ma<strong>in</strong> pulse<br />

<strong>in</strong>tensity over the <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> ASE (amplified<br />

sp<strong>on</strong>taneous emissi<strong>on</strong>) pedestal and prepulses as well as<br />

high <strong>in</strong>tensities (I 2 > 10 20 Wcm -2 m 2 ) to avoid target<br />

heat<strong>in</strong>g prior to arrival <str<strong>on</strong>g>of</str<strong>on</strong>g> the ma<strong>in</strong> pulse. The first pro<str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>of</str<strong>on</strong>g>-pr<strong>in</strong>ciple<br />

experiment <str<strong>on</strong>g>of</str<strong>on</strong>g> RPA was dem<strong>on</strong>strated by<br />

irradiat<strong>in</strong>g a circularly polarized laser pulse <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(a0 =3.5) <strong>on</strong> diam<strong>on</strong>dlike carb<strong>on</strong> (DLC)<br />

foils <str<strong>on</strong>g>of</str<strong>on</strong>g> thickness 2.9 – 40 nm at normal <strong>in</strong>cidence and<br />

ultrahigh c<strong>on</strong>trast (~10 11 ), produced by the double-plasma<br />

mirror technique [29]. The results showed a peak <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

maximum i<strong>on</strong> energy per nucle<strong>on</strong> at the optimum<br />

thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.3 nm that corresp<strong>on</strong>ds to the c<strong>on</strong>diti<strong>on</strong><br />

and a broad quasim<strong>on</strong>oenergetic peak <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(2.5MeV/u) <strong>in</strong> the carb<strong>on</strong> C 6+ spectra for circular<br />

polarizati<strong>on</strong>.<br />

CONCLUSIONS<br />

Recent progress <strong>in</strong> laser-plasma accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charged<br />

particles are overviewed from the aspects <strong>on</strong> laser<br />

wakefield accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s <strong>in</strong> the l<strong>in</strong>ear and<br />

n<strong>on</strong>l<strong>in</strong>ear regime, so-called “bubble” regime,<br />

characterized by quasi m<strong>on</strong>oenergetic beam producti<strong>on</strong><br />

due to the self- and the c<strong>on</strong>trolled <strong>in</strong>jecti<strong>on</strong> as well as the<br />

beam load<strong>in</strong>g, and i<strong>on</strong> accelerati<strong>on</strong> mechanisms such as<br />

TNSA and RPA. Based <strong>on</strong> up-to-date achievements, the<br />

design parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 GeV s<strong>in</strong>gle-stage LWFA are<br />

presented, aim<strong>in</strong>g at a currently advocated goal.<br />

REFERENCES<br />

[1] W.P. Leemans et al., Nature Phys. 2 (2006) 696.<br />

[2] S. Karsh et al., New J. Phys. 9 (2007) 415.<br />

[3] T. Kameshima et al., Appl. Phys. Exp. 1 (2008)<br />

066001.<br />

[4] T.P.A. Ibbots<strong>on</strong> et al., Phys. Rev. S.T. Acc. Beams<br />

13 (2010) 031301.<br />

[5] S. Kneip et al., Phys. Rev. Lett. 103 (2009) 035002.<br />

[6] D.H. Froula, et al., Phys. Rev. Lett. 103 (2009)<br />

215006.<br />

[7] K. Nakajima, Nature Phys. 4 (2008) 92; V. Malka et<br />

al., Nature Phys. 4 (2008) 447:<br />

[8] K. Nakajima, Phys. Plasmas, 3 (1996) 2169.<br />

[9] S.P.D. Mangles et al., Nature 431 (2004) 535; C.G.R.<br />

Geddess et al., Nature 431 (2004) 538; J. Faure et al.,<br />

Nature 431 (2004) 541.<br />

[10] I. Kostyukov et al., Phys. Plasmas 11 (2004) 5256.<br />

[11] W. Lu et al., Phys. Rev. Lett. 96 (2006) 165002.<br />

[12] W. Lu et al., Phys. Rev. S.T. Acc. Beams 10 (2007)<br />

061301.<br />

[13] I. Kostyukov et al., Phys. Rev. Lett. 103 (2009)<br />

175003..<br />

[14] S.P.D. Mangles et al., Phys. Plasmas 14 (2007)<br />

056702.<br />

[15] M. Kando et al., J.J. Appl. Phys. 38 (1999) L967.<br />

[16] J. Faure et al., Nature 444 (2006) 737.<br />

[17] H. Kotaki et al., Phys. Rev. Lett. 103 (2009) 194803.<br />

[18] M. Tzoufras et al., Phys. Rev. Lett. 101 (2008)<br />

145002.<br />

[19] C.E. Clayt<strong>on</strong> et al., Phys. Rev. Lett. 105 (2010)<br />

105003.<br />

[20] J-S Liu et al., CCAST-WL Worshop <strong>on</strong> Str<strong>on</strong>g Field<br />

Laser <strong>Physics</strong>, Shanghai, Oct.10-29 (2010).<br />

[21] A. Pak et al., Phys. Rev. Lett. 104 (2010) 025003.<br />

[22] S. F. Mart<strong>in</strong>s et al., Nature Phys. 6 (2010) 311.<br />

[23] E.L. Clark et al., Phys. Rev. Lett. 84 (2000) 670; R.<br />

A. Snavely et al., ibid. 85 (2000) 2945.<br />

[24] B.M. Hegelich et al., Nature 439 (2006) 441; H.<br />

Schwoerer et al., Nature 439 (2006) 445.<br />

[25] A.P.L. Rob<strong>in</strong>s<strong>on</strong> et al., New J. Phys. 10 (2008)<br />

013021.<br />

[26] A. Macchi et al., Phys. Rev. Lett. 103 (2009) 085003.<br />

[27] T. Esirkepov at al., Phys. Rev. Lett. 92 (2004)<br />

175003.<br />

[28] L. O. Silva et al., Phys. Rev. Lett. 92 (2004) 015002.<br />

[29] A. Henig et al., Phys. Rev. Lett. 103 (2009) 245003


Abstract<br />

Fly<strong>in</strong>g Mirror as a tool to access ultra-high fields ∗<br />

M. Kando, A. S. Pirozhkov, T. Zh. Esirkepov, T. Nakamura, J. Koga, H. Kotaki<br />

Y. Hayashi, S. V. Bulanov<br />

JAEA, Kizugawa, Kyoto 619-0215, Japan<br />

Thanks to the recent progress <str<strong>on</strong>g>of</str<strong>on</strong>g> laser technology, there<br />

are grow<strong>in</strong>g <strong>in</strong>terests to explore ultra-high fields (electromagnetic<br />

fields) by focus<strong>in</strong>g <strong>in</strong>tense, ultra-short laser<br />

pulses down to a few micr<strong>on</strong> sizes. Presented here is a<br />

study to possibility reach (or boost) such ultra-high fields<br />

us<strong>in</strong>g a new c<strong>on</strong>cept employ<strong>in</strong>g the <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tense<br />

laser pulses with plasma. The c<strong>on</strong>cept uses break<strong>in</strong>g waves<br />

excited by ultra-short, <strong>in</strong>tense laser pulses <strong>in</strong> plasma. We<br />

present example parameters to reach the Schw<strong>in</strong>ger field<br />

and review the recent experimental progress <str<strong>on</strong>g>of</str<strong>on</strong>g> the fly<strong>in</strong>g<br />

mirror c<strong>on</strong>cept.<br />

INTRODUCTION<br />

S<strong>in</strong>ce the <strong>in</strong>novati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the chirped pulse amplificati<strong>on</strong><br />

(CPA) technique [1], the peak power <str<strong>on</strong>g>of</str<strong>on</strong>g> lasers has been <strong>in</strong>creas<strong>in</strong>g<br />

and the focused irradiance has reached as high as<br />

10 22 W/cm 2 [2, 3]. The extreme light <strong>in</strong>frastructure (ELI)<br />

project[4] is be<strong>in</strong>g promoted and the goal is to reach 10 26<br />

W/cm 2 . The unprecedented irradiances allow us to explore<br />

a new regime <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, which has previously not been<br />

accessible experimentally. Theoretically there are challeng<strong>in</strong>g<br />

tasks which can be d<strong>on</strong>e <strong>in</strong> the high electromagnetic<br />

fields. One example is to explore the so-called quantum<br />

electrodynamics critical field or the Schw<strong>in</strong>ger field,<br />

at which vacuum breaks down and therefore n<strong>on</strong>-virtual<br />

electr<strong>on</strong>-positr<strong>on</strong> pairs are created from vacuum. Assum<strong>in</strong>g<br />

a direct-current (DC) electric field the QED critical<br />

field Ec = 1.3 × 10 18 V/m is obta<strong>in</strong>ed. The associated<br />

laser irradiance is Ic = 2.3 × 10 29 W/cm 2 , which is 7 orders<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude higher than the world record and still<br />

3 orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude higher than that at the planned ELI<br />

project. Can we use the present laser technology to reach<br />

the Schw<strong>in</strong>ger field?<br />

The answer might be ’Yes’. There is theoretical work <strong>in</strong>dicat<strong>in</strong>g<br />

lower<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-positr<strong>on</strong> creati<strong>on</strong><br />

from vacuum[5, 6, 7]. Here <strong>in</strong> additi<strong>on</strong> to the work, we recall<br />

the proposal that an plasma device –relativistic fly<strong>in</strong>g<br />

mirror– can be used to <strong>in</strong>tensify the laser pulse as shown <strong>in</strong><br />

Fig. 1[8]. Fly<strong>in</strong>g mirrors are electr<strong>on</strong> density cusps propagat<strong>in</strong>g<br />

almost at the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light <strong>in</strong> tenuous plasma.<br />

Such electr<strong>on</strong> density cusps are formed when plasma wake<br />

waves excited by <strong>in</strong>tense, ultrashort laser pulses are break<strong>in</strong>g.<br />

The fly<strong>in</strong>g mirror reflects an <strong>in</strong>com<strong>in</strong>g laser, and the<br />

reflected pulse is upshifted due to the double Doppler effect<br />

∗ Work <strong>in</strong> part supported by JAEA and KAKENHI No. 20244065<br />

and is compressed as well. In additi<strong>on</strong>, the fly<strong>in</strong>g mirror<br />

may focus the laser pulse. Thus, the fly<strong>in</strong>g mirror can be<br />

a novel device that enhances the laser focused irradiance<br />

drastically. In this paper, we discuss the possibility to access<br />

ultra-high electromagnetic fields employ<strong>in</strong>g the fly<strong>in</strong>g<br />

mirror.<br />

THEORY<br />

We shall c<strong>on</strong>sider a mirror mov<strong>in</strong>g at the speed vM =<br />

βMc, where βM denotes the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the mirror speed to the<br />

speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light c. The reflected frequency <strong>in</strong> the laboratory<br />

frame <str<strong>on</strong>g>of</str<strong>on</strong>g> reference is expressed as<br />

ωr = ωs<br />

1 + βM cos θ<br />

, (1)<br />

1 − βM cos θr<br />

where ωs is the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>cident source pulse and<br />

π −θ and θr are angles <strong>in</strong> the laboratory frame <str<strong>on</strong>g>of</str<strong>on</strong>g> reference<br />

between the wave propagati<strong>on</strong> directi<strong>on</strong> and the mirror velocity<br />

for the <strong>in</strong>cident and reflected waves, respectively. If<br />

the <strong>in</strong>cident angle satisfies the c<strong>on</strong>diti<strong>on</strong> −π/2 < θ < π/2,<br />

the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the reflected pulse is upshifted. The maximum<br />

upshift is achieved when θ = θr = 0. In this case the<br />

reflected frequency is approximately equal to ωr ≈ 4γ 2 M ωs<br />

for γM ≫ 1, where γM = 1/ √ 1 − β 2 M .<br />

The electric field amplitude <strong>in</strong> the reflected wave is ex-<br />

pressed as<br />

Er = R 1/2 Es<br />

( ωr<br />

ωs<br />

)<br />

, (2)<br />

where R is the reflectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the mov<strong>in</strong>g mirror <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the phot<strong>on</strong> number. For a mirror with a paraboloidal shape,<br />

the reflected light can be focused down to a spot equal to<br />

λs/(2γM). In this case the focused irradiance is given by<br />

Ir = 64Rγ 6 M<br />

( D<br />

λs<br />

) 2<br />

Is. (3)<br />

Here Is is the irradiance <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>cident source pulse <strong>on</strong><br />

the mirror with a waist <str<strong>on</strong>g>of</str<strong>on</strong>g> D. As expla<strong>in</strong>ed <strong>in</strong> the previous<br />

secti<strong>on</strong> fly<strong>in</strong>g mirrors are created dur<strong>in</strong>g the <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>tense, utra-short laser pulses with tenuous plasma. The<br />

velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the fly<strong>in</strong>g mirror is equal to the phase velocity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma wave, i.e. βMc = βphc. The phase velocity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma wave is approximately equal to the group velocity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the laser <strong>in</strong> the plasma βphc = c[1−(ωpe/ω) 2 ] 1/2 ,<br />

where ωpe = (4πnee 2 /m) 1/2 , m and e are the electr<strong>on</strong><br />

mass and charge, and ω is the laser angular frequency.


Plasma<br />

Fly<strong>in</strong>g mirrors<br />

Driver pulse<br />

Reflected pulse<br />

Source pulse<br />

Figure 1: C<strong>on</strong>ceptual scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> the fly<strong>in</strong>g mirror. The driver pulse generates electr<strong>on</strong> density modulati<strong>on</strong>s (wake waves).<br />

The counter-propagat<strong>in</strong>g source pulse is reflected, frequency-upshifted, compressed, and focused by the fly<strong>in</strong>g mirror.<br />

The dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the reflectivity <strong>on</strong> the parameters <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the laser-plasma <strong>in</strong>teracti<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> the key <strong>in</strong>terest, and has<br />

been analyzed <strong>in</strong> Refs. [8] and [9] for different c<strong>on</strong>figurati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> break<strong>in</strong>g n<strong>on</strong>l<strong>in</strong>ear waves. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a str<strong>on</strong>g<br />

s<strong>in</strong>gularity, the electr<strong>on</strong> density modulati<strong>on</strong> <strong>in</strong> the break<strong>in</strong>g<br />

wave may be described by the Dirac delta functi<strong>on</strong>. In this<br />

case the reflectivity <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> number is<br />

(<br />

ωpe<br />

Rδ ≈<br />

ωs cos2 ) 2<br />

1<br />

. (4)<br />

(θ/2)<br />

2γph<br />

Us<strong>in</strong>g the approximati<strong>on</strong> γph ≈ ωd/ωpe, where ne is the<br />

plasma density, and assum<strong>in</strong>g that ωd = ωs and θ = 0, the<br />

reflectivity is simplified to<br />

Rδ ≈ 1<br />

2γ3 . (5)<br />

ph<br />

When the electr<strong>on</strong> density has a cusp form <strong>in</strong> the vic<strong>in</strong>ity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a s<strong>in</strong>gularity expressed as n(X) ∝ X −2/3 (cusp), the<br />

reflectivity is<br />

R2/3 = 4 −7/3 3 −1/3 Γ 2 (<br />

(1/3)<br />

ωpe<br />

ωs cos 2 (θ/2)<br />

) 8/3<br />

1<br />

γ 4/3<br />

ph<br />

(6)<br />

where Γ(x) is the Euler gamma functi<strong>on</strong>. Substitut<strong>in</strong>g<br />

γph ≈ ωd/ωpe, ωd = ωs and θ = 0, Eq. (6) reduces to<br />

R2/3 ≈ 0.2<br />

γ4 . (7)<br />

ph<br />

By us<strong>in</strong>g the best reflectivity described <strong>in</strong> Eq. (5), the<br />

irradiance obta<strong>in</strong>ed <strong>in</strong> the fly<strong>in</strong>g mirror scheme, Eq. (3) is<br />

expressed as<br />

Ir = 32γ 3 ph<br />

( D<br />

λs<br />

EXAMPLES<br />

) 2<br />

Is. (8)<br />

Here we show numerical examples to obta<strong>in</strong> the<br />

Schw<strong>in</strong>ger limit (10 29 W/cm 2 ) with the fly<strong>in</strong>g mirror c<strong>on</strong>cept.<br />

We c<strong>on</strong>sider a laser system that does not exist but<br />

is possible to c<strong>on</strong>struct with<strong>in</strong> exist<strong>in</strong>g laser technologies.<br />

The assumpti<strong>on</strong>s used here are as follows. A source laser<br />

irradiance is set to be weakly relativistic Is = 10 17 W/cm 2<br />

<strong>in</strong> order to avoid possible modificati<strong>on</strong>s to the fly<strong>in</strong>g mirrors.<br />

Both driver and source laser pulses have the same<br />

,<br />

wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> λd = λs=0.8 µm and the same pulse durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> τ=20 fs. We assume that the driver irradiance is<br />

equal to the <strong>on</strong>e-dimensi<strong>on</strong>al wave break<strong>in</strong>g limit a 2 0/2 =<br />

γph, where a0 = eE/(mcω)=0.86×10 −9 λ[µm]I[W/cm 2 ]<br />

is the normalized field amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> a laser with the electric<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> E , the angular frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> ω, the wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

λ, and the irradiance <str<strong>on</strong>g>of</str<strong>on</strong>g> I.<br />

From Eq. (3) the free parameters seem to be γph or<br />

D. We choose γph (plasma density), therefore D is determ<strong>in</strong>ed.<br />

Shown <strong>in</strong> Table 1 are examples when γph =<br />

100, 200.<br />

Table 1: Example parameters to achieve a focused irradiance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 10 29 W/cm 2 . ne is the plasma density, Is and Id are<br />

irradiances <str<strong>on</strong>g>of</str<strong>on</strong>g> the source and driver laser pulses. D and wd<br />

are diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the fly<strong>in</strong>g mirror and the driver laser. If<br />

is the focused irradiance <str<strong>on</strong>g>of</str<strong>on</strong>g> the reflected pulse. Ex denotes<br />

the pulse energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the driver (source) pulse.<br />

Parameters Units Case I Case II<br />

γph 100 200<br />

ne cm −3 2×10 17 4×10 16<br />

Is W/cm 2 1×10 17 1×10 17<br />

D µm 140 50<br />

Id W/cm 2 2×10 20 2×10 18<br />

wd µm 280 100<br />

Ir W/cm 2 1×10 29 1×10 29<br />

Ed kJ 5.4 1.3<br />

Es mJ 320 40<br />

DISCUSSIONS<br />

In the previous secti<strong>on</strong> we assume that all the functi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the fly<strong>in</strong>g mirror work very well as described <strong>in</strong> Eq. (8).<br />

We notice this assumpti<strong>on</strong> is too optimistic and need further<br />

<strong>in</strong>vestigati<strong>on</strong> to implement it <strong>in</strong> a device.<br />

First, let us check the experimental progress <str<strong>on</strong>g>of</str<strong>on</strong>g> the fly<strong>in</strong>g<br />

mirror. A basic c<strong>on</strong>cept that fly<strong>in</strong>g mirrors can reflect laser<br />

pulses and upshift the <strong>in</strong>cident source laser frequency was<br />

verified <strong>in</strong> an experiment [10, 11]. In the experiment, 180<br />

mJ, 76 fs, 0.8 µm laser pulses were focused <strong>on</strong>to helium<br />

gas-jet targets and 10 mJ, ∼ 100 fs laser pulses were used as<br />

source laser pulses at the angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 135 ◦ . The reflected light


Reflected light <strong>in</strong>tensity (μJ/sr/nm)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

12 14 16 18 20 22<br />

Wavelength (nm)<br />

Figure 2: Observed spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the reflected laser light <strong>in</strong><br />

the fly<strong>in</strong>g mirror experiment [12].<br />

was measured with a graz<strong>in</strong>g-<strong>in</strong>cidence flat-field spectrograph<br />

<strong>in</strong> the forward (0 ◦ ) directi<strong>on</strong>. The observed spectra<br />

distributed <strong>in</strong> the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 7–15 nm. The upshift factors<br />

were 50–114.<br />

Although the experiment showed a somewhat coherent<br />

effect, the reflected phot<strong>on</strong> number was smaller than the<br />

theoretical expectati<strong>on</strong>. In the 2nd experiment[12], a head<strong>on</strong><br />

collisi<strong>on</strong>s setup <str<strong>on</strong>g>of</str<strong>on</strong>g> the driver and source pulses was employed<br />

thanks to the improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser system and<br />

a more powerful laser was used. The driver and source<br />

laser had peak powers <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 TW(400 mJ/27 fs) and 1.2<br />

TW(42 mJ/ 34 fs), respectively. Reflected source pulses<br />

were observed with an imag<strong>in</strong>g spectrograph that covered<br />

the wavelength range <str<strong>on</strong>g>of</str<strong>on</strong>g> 12-25 nm at the angle range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

9 ◦ − 17 ◦ . The result is shown <strong>in</strong> Fig. 2. The reflected phot<strong>on</strong><br />

number <strong>in</strong>creased to half <str<strong>on</strong>g>of</str<strong>on</strong>g> the theoretical cusp model<br />

(see Table 2).<br />

To <strong>in</strong>crease the reflectivity further, we can use a variant<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (5) assum<strong>in</strong>g ωd ̸= ωs and θ = 0,<br />

Rδ ≈<br />

( ) 2<br />

ωd 1<br />

ωs 2γ3 ph<br />

. (9)<br />

If ωd > ωs, we obta<strong>in</strong> a ga<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (ωd/ωs) 2 . For example,<br />

we can use a frequency doubl<strong>in</strong>g crystal for the driver laser.<br />

Table 2: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reflectivities and phot<strong>on</strong> numbers<br />

between the theoretical model and the experiment.<br />

Reflectivity Phot<strong>on</strong> number<br />

Theory 4×10 −5 1.5×10 10<br />

Experiment 3×10 −6 1.1×10 9<br />

Exp. (corrected) 2×10 −5 7.9×10 9<br />

There are no measurement so far <strong>on</strong> the pulse durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a reflected pulse from fly<strong>in</strong>g mirrors. However, the large<br />

phot<strong>on</strong> number obta<strong>in</strong>ed <strong>in</strong> the experiment implies that the<br />

coherent effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s exists. Therefore, we may<br />

Intensity (arb. u.)<br />

-3<br />

-3<br />

0<br />

300 400 500<br />

Figure 3: Observed spectrum <strong>in</strong> a high-resoluti<strong>on</strong> particle<strong>in</strong>-cell<br />

simulati<strong>on</strong>.<br />

be allowed to assume that the pulse durati<strong>on</strong> is compressed<br />

down to the theoretical model predicti<strong>on</strong>.<br />

Most serious and to be c<strong>on</strong>firmed is the spot size <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

reflected pulse. There are many po<strong>in</strong>ts that degrades the<br />

focus spot such as a surface error from an ideal parabola,<br />

surface roughness, alignment error to the fly<strong>in</strong>g mirror,<br />

etc. These po<strong>in</strong>ts have not yet been addressed both experimentally<br />

and theoretically. We have just started to estimate<br />

the roughness <str<strong>on</strong>g>of</str<strong>on</strong>g> the fly<strong>in</strong>g mirror. As a prelim<strong>in</strong>ary<br />

result we have obta<strong>in</strong>ed that the surface roughness<br />

<strong>in</strong> two-dimensi<strong>on</strong>al particle-<strong>in</strong>-cell simulati<strong>on</strong>s is smaller<br />

than the simulati<strong>on</strong> resoluti<strong>on</strong> 0.02 µm. Further analysis<br />

is needed to determ<strong>in</strong>e the focusability <str<strong>on</strong>g>of</str<strong>on</strong>g> the reflected<br />

pulse, especially at low densities (high γph) <strong>in</strong> Table 1. We<br />

also obta<strong>in</strong>ed the upshift factor <str<strong>on</strong>g>of</str<strong>on</strong>g> ωr/ωs ∼500 <strong>in</strong> a highresoluti<strong>on</strong><br />

particle-<strong>in</strong>-cell simulati<strong>on</strong> as shown <strong>in</strong> Fig. 3.<br />

Here the driver laser has an energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.3 J and a pulse<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 fs, and the focused irradiance <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.7×10 19<br />

W/cm 2 (a0 = 4.1). The source laser has a wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2.4 µm <strong>in</strong> this simulati<strong>on</strong>. The plasma density is 1.5×10 19<br />

cm −3 and mesh sizes are ∆x =0.8 nm and ∆y=20 nm. Although<br />

the resolved wavelength is larger than the requirement<br />

<strong>in</strong> Table 1, water-w<strong>in</strong>dow or shorter wavelength Xrays<br />

are generated <strong>in</strong> the simulati<strong>on</strong>.<br />

CONCLUSION<br />

A relativistic fly<strong>in</strong>g mirror is exam<strong>in</strong>ed as a tool to access<br />

ultra-high electromagnetic field irradiance. We carved<br />

out laser and plasma parameters assum<strong>in</strong>g plasma and laser<br />

parameters that are not far from present-day laser technologies.<br />

We reviewed the recent experimental progress <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

fly<strong>in</strong>g mirror. The c<strong>on</strong>cept is <strong>in</strong> progress show<strong>in</strong>g that the<br />

reflectivity is close to the theoretical estimate us<strong>in</strong>g a cusp<br />

model. Still further study is necessary to <strong>in</strong>tensify the focused<br />

laser.


REFERENCES<br />

[1] D. Strickland and G. Mourou, Opt. Comm. 56 (1985) 212.<br />

[2] S.-W. Bahk et al., Opt. Lett. 29 (2004) 2837.<br />

[3] V. Yanovsky et al., Opt. Express 16 (2008) 2109.<br />

[4] http://www.extreme-light-<strong>in</strong>frastructure.eu/<br />

[5] G. V. Dunne, H. Gies, R. Schützhold, Phys. Rev. D 80<br />

(2009) 111301(R).<br />

[6] A. Di Pizazza, E. Lötstedt, A. I. Milste<strong>in</strong>, and C. H. Keitel,<br />

Phys. Rev. Lett. 103 (2009) 170403.<br />

[7] S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S.<br />

Popov, Phys. Rev. Lett. 104 (2010) 220404.<br />

[8] S. V. Bulanov, T. Zh. Esirkepov, and T. Tajima, Phys. Rev.<br />

Lett. 91 (2003) 085001.<br />

[9] A. V. Panchenko et al., Phys. Rev. E 78 (2008) 056402.<br />

[10] M. Kando et al., Phys. Rev. Lett. 99 (2007) 135001.<br />

[11] A. S. Pirozhkov et al., Phys. Plasmas 14 (2007)123106.<br />

[12] M. Kando et al., Phys. Rev. Lett. 103 (2009) 235003.


4-mirror laser stack<strong>in</strong>g cavity for high <strong>in</strong>tensity polarized phot<strong>on</strong> generati<strong>on</strong><br />

T. Akagi, M. Kuriki, T. Takahashi, S. Miyoshi : Hiroshima Univ.<br />

S. Araki, J. Urakawa, T. Omori, T. Okugi, H. Shimizu, N. Terunuma, Y. Funahashi, Y. H<strong>on</strong>da : <strong>KEK</strong><br />

K. Sakaue, T. Hirose, M. Washio : Waseda Univ.<br />

Abstract<br />

We are develop<strong>in</strong>g a compact light source based <strong>on</strong> the<br />

laser-Compt<strong>on</strong> scatter<strong>in</strong>g. We have performed a phot<strong>on</strong><br />

generati<strong>on</strong> experiment at the <strong>KEK</strong>-ATF us<strong>in</strong>g a Fabry-<br />

Perot type 2-mirror laser pulse stack<strong>in</strong>g cavity[1]. The laser<br />

pulses are accumulated and their power was enhanced by<br />

up to 760 times <strong>in</strong> the 2-mirror Fabry-Perot cavity. In order<br />

further improve performance <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser power enhancement,<br />

a new three dimensi<strong>on</strong>al 4 mirror cavity is be<strong>in</strong>g designed.<br />

In this article, we report status and prospect <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

phot<strong>on</strong> generati<strong>on</strong> experiment, and 3D 4-mirrorcavity design.<br />

INTRODUCTION<br />

X-ray have been used <strong>in</strong> various scientific <strong>in</strong>dustrial and<br />

medical applicati<strong>on</strong>s. Compact and bright light source is<br />

highly desirable for these applicati<strong>on</strong>s. We are develop<strong>in</strong>g<br />

compact light source based <strong>on</strong> the laser-Compt<strong>on</strong> scatter<strong>in</strong>g.<br />

In this scheme, for example, tens <str<strong>on</strong>g>of</str<strong>on</strong>g> MeV phot<strong>on</strong>s can<br />

be generated by collisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> laser phot<strong>on</strong>s with about 1<br />

GeV electr<strong>on</strong> beam, as shown <strong>in</strong> Fig. 1. To <strong>in</strong>crease the <strong>in</strong>tensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> generated phot<strong>on</strong>s by laser-Compt<strong>on</strong> scatter<strong>in</strong>g,<br />

<strong>in</strong>creas<strong>in</strong>g <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> laser pulses and focus<strong>in</strong>g at collisi<strong>on</strong><br />

po<strong>in</strong>t by accumulat<strong>in</strong>g them <strong>in</strong> an optical cavity is an<br />

attractive method.<br />

We already achieved laser <strong>in</strong>tensity enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> 760<br />

and laser waist size is 30µm (1σ) by the 2-mirror Fabry-<br />

Perot cavity. To <strong>in</strong>crease the <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> generated phot<strong>on</strong>s<br />

more, it is necessary to use high reflectivity mirrors and<br />

to make lasar waist size smaller. However, it is difficult<br />

to achieve the improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> enhancement and focus<strong>in</strong>g<br />

performance at the same time <strong>in</strong> the 2-mirror Fabry-Peror<br />

cavity. Thus, to achieve the two requirement, now we are<br />

develop<strong>in</strong>g three dimensi<strong>on</strong>al 4-mirror optical cavity.<br />

Figure 1: laser-Compt<strong>on</strong> scatter<strong>in</strong>g<br />

OPTICAL CAVITY<br />

We succeeded to generate gamma-rays by laser-<br />

Compt<strong>on</strong> scatter<strong>in</strong>g with the 2-mirror Fabry-Perot cavity at<br />

the <strong>KEK</strong>-ATF. This secti<strong>on</strong> describes our 2-mirror Fabry-<br />

Perot cavity. We use a 357 MHz mode-locked laser, its<br />

repetiti<strong>on</strong> rate is the same as electr<strong>on</strong> bunch spac<strong>in</strong>g <strong>in</strong> the<br />

ATF. The wavelength and pulse width <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser are 1064<br />

nm and 5 ps <strong>in</strong> the root mean square.<br />

In order to accumulate laser pulses <strong>in</strong> the optical cavity,<br />

the optical cavity has to be <strong>on</strong>-res<strong>on</strong>ance. The length (L) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the optical cavity has to be<br />

L = n λ<br />

2<br />

where λ is the wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser, and n is a positive<br />

<strong>in</strong>teger. In additi<strong>on</strong>, accmulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> laser pulses from<br />

a mode-locked pulsed laser requires that the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

optical cavity is <strong>in</strong>teger times <str<strong>on</strong>g>of</str<strong>on</strong>g> the cavity <strong>in</strong>side the laser<br />

oscillator.<br />

L = mL ′<br />

(2)<br />

where L ′ is the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the cavity <strong>in</strong>side the mode-locked<br />

laser oscillator, and m is a positive <strong>in</strong>teger. In this experiment,<br />

the length <str<strong>on</strong>g>of</str<strong>on</strong>g> optical cavities are L = L ′ = 420mm.<br />

The waist size <str<strong>on</strong>g>of</str<strong>on</strong>g> laser pulses is 30µm (1σ) <strong>in</strong> the optical<br />

cavity, because the curvature radius <str<strong>on</strong>g>of</str<strong>on</strong>g> mirrors is 210.5mm.<br />

The performance <str<strong>on</strong>g>of</str<strong>on</strong>g> the optical cavity is expressed by the<br />

f<strong>in</strong>esse (F), and can be expressed as<br />

F = π√ R<br />

1 − R<br />

R = √ R1R2<br />

and the power enhancement factor (S) <str<strong>on</strong>g>of</str<strong>on</strong>g> laser pulses <strong>in</strong> the<br />

optical cavity can be estimated as<br />

S =<br />

T1<br />

(1 − R) 2<br />

where R1 and T1 are the reflectivity and transmissivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the entrance mirror, R2 is the reflectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the other mirror<br />

respectively. The res<strong>on</strong>ant c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the optical cavity<br />

is m<strong>on</strong>itored by the <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> transmitted light from the<br />

cavity, which is at the maximum when the cavity is <strong>on</strong>res<strong>on</strong>ance.<br />

The <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmitted light obta<strong>in</strong>ed<br />

by chang<strong>in</strong>g the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the cavity is shown <strong>in</strong> Fig. 2.<br />

The width <str<strong>on</strong>g>of</str<strong>on</strong>g> res<strong>on</strong>ant peak is 0.36 nm with our 2-mirror<br />

optical cavity, which <strong>in</strong>dicates that the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the optical<br />

cavity has to be c<strong>on</strong>trolled with precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller enough<br />

than <strong>on</strong>e tens <str<strong>on</strong>g>of</str<strong>on</strong>g> a nanometer. The optical cavity has to<br />

be high f<strong>in</strong>esse for high enhancement factor. However, the<br />

(1)<br />

(3)<br />

(4)<br />

(5)


Figure 6: To reduce the laser waist size, 2-mirror cavity has to be c<strong>on</strong>centric type. On the other hand, 4-mirror cavity is<br />

c<strong>on</strong>focal type.<br />

However, <strong>in</strong> the 4-mirror cavity, effective focal length<br />

(ft, fs) are different <strong>in</strong> tangential plane and sagittal plane,<br />

and the difference causes astigmatism at the focal po<strong>in</strong>t. ft<br />

and fs are expressed as<br />

ft = ρ<br />

cos θ (6)<br />

2<br />

fs = ρ<br />

2 cos θ<br />

where θ is reflecti<strong>on</strong> half angle <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cave mirror. Because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this astigmatism, laser pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <strong>in</strong>side the 4-mirror cavity<br />

will be ellipse.<br />

To avoid the astigmatism, the cavity has to be three dimensi<strong>on</strong>al<br />

c<strong>on</strong>figurati<strong>on</strong>. 3D 4-mirror optical cavity generally<br />

have a circular-polarizati<strong>on</strong> dependent property due to<br />

the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the image <strong>in</strong> the three-dimensi<strong>on</strong>al optical<br />

path. A new method utiliz<strong>in</strong>g this property to obta<strong>in</strong> a differential<br />

signal from the cavity res<strong>on</strong>ance was proposed[2].<br />

The differential signal can be used to lock an optical cavity<br />

at a res<strong>on</strong>ance peak.<br />

We c<strong>on</strong>ducted experiment to obta<strong>in</strong> differential signal<br />

us<strong>in</strong>g a 3D 4-mirror optical cavity testbench. The setup<br />

is shown <strong>in</strong> Fig. 7. A l<strong>in</strong>ear polarizati<strong>on</strong> wave was <strong>in</strong>jected<br />

to the 4-mirror cavity. Then we measured the output <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

differential amplifier while scann<strong>in</strong>g the cavity length. The<br />

signal observed is shown <strong>in</strong> Fig. 8. The bottom l<strong>in</strong>e is the<br />

signal <str<strong>on</strong>g>of</str<strong>on</strong>g> the photo-diode that measurred the transmissi<strong>on</strong>.<br />

And it shows the po<strong>in</strong>ts that the cavity’s res<strong>on</strong>ance <str<strong>on</strong>g>of</str<strong>on</strong>g> right<br />

and left-handed polarized light. The top and middle l<strong>in</strong>es<br />

are output <str<strong>on</strong>g>of</str<strong>on</strong>g> the differential amplifier. The signal crossed<br />

zero at the po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> res<strong>on</strong>ace. It provides a good differential<br />

signal for lock<strong>in</strong>g the cavity to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the peaks <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

res<strong>on</strong>ance. Actually, we have succeeded to lock the optical<br />

cavity <strong>on</strong> the res<strong>on</strong>ance peak and switch the circularpolarizati<strong>on</strong><br />

peak. It means the polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the generated<br />

phot<strong>on</strong>s by laser-Compt<strong>on</strong> can be switched quickly.<br />

Now, a 3D 4-mirror cavity are be<strong>in</strong>g designed <strong>in</strong> order to<br />

be <strong>in</strong>stalled <strong>in</strong> the ATF dur<strong>in</strong>g summer 2011. Then we will<br />

cunduct the experiment <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma-rays generati<strong>on</strong>.<br />

CONCULSION<br />

In order to <strong>in</strong>crease the number <str<strong>on</strong>g>of</str<strong>on</strong>g> generated phot<strong>on</strong>s by<br />

laser-Compt<strong>on</strong> scatter<strong>in</strong>g, it is necessary to reduce the laser<br />

(7)<br />

Figure 7: Setup to obta<strong>in</strong> the differential signal.<br />

Figure 8: Signal <str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong> and difference.<br />

waist size. We performed gamma-rays generati<strong>on</strong> experiment<br />

us<strong>in</strong>g a 2-mirror cavity and observed 10.8 ± 0.1 phot<strong>on</strong>s/bunch.<br />

The laser power enhanced by up to 760 times<br />

and laser waist size is 30µm (1σ).<br />

As the next step, a 4-mirror r<strong>in</strong>g cavity with a threedimensi<strong>on</strong>al<br />

(n<strong>on</strong>-planar) c<strong>on</strong>figrati<strong>on</strong> is be<strong>in</strong>g c<strong>on</strong>structed.<br />

The cavity has unique property such that it <strong>on</strong>ly res<strong>on</strong>ate<br />

with circular polarized light. It allows us to utilize new<br />

method to obta<strong>in</strong> feed back signal for the cavity stabilizati<strong>on</strong><br />

as well as fast polarizati<strong>on</strong> switch<strong>in</strong>g.<br />

REFERENCES<br />

[1] S. Miyoshi et al., Nucl. Inst. Meth. A 623 (2010) 576.<br />

[2] Y. H<strong>on</strong>da et al., Opt. Commun. 282 (2009) 3108.


CURRENT STATUS OF LFEX LASER AND EXA-WATT LASER CONCEPT<br />

AT ILE/OSAKA<br />

J. Kawanaka, LFEX-Team, EXA-Team, and H. Azechi<br />

Institute for Laser Eng<strong>in</strong>eer<strong>in</strong>g, Osaka University, Yamadaoka, Suita 565-0871 Japan<br />

Abstract<br />

The LFEX laser has been developed for the basic<br />

research <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma heat<strong>in</strong>g <strong>in</strong> fast igniti<strong>on</strong> scheme.<br />

Its dem<strong>on</strong>strati<strong>on</strong> ensures the high potential <str<strong>on</strong>g>of</str<strong>on</strong>g> the LFEX<br />

laser and various novel applicati<strong>on</strong> fields has been<br />

str<strong>on</strong>gly discussed, such as lab-astrophysics, particle<br />

physics and so <strong>on</strong>. We are plann<strong>in</strong>g the “Gekko-EXA”<br />

laser, which is a sub-exa-watt ultrahigh peak power laser<br />

where various advanced laser technologies developed <strong>in</strong><br />

the LFEX laser project are used. In this letter, the recent<br />

status <str<strong>on</strong>g>of</str<strong>on</strong>g> the LFEX laser and the rough c<strong>on</strong>ceptual design<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> “Gekko-EXA” are menti<strong>on</strong>ed.<br />

INTRODUCTION<br />

The central igniti<strong>on</strong> for the laser fusi<strong>on</strong> has been<br />

studied. The Nati<strong>on</strong>al Igniti<strong>on</strong> Facility (NIF) <strong>in</strong> Lawrence<br />

Liver More Nati<strong>on</strong>al Laboratory (LLNL) will<br />

dem<strong>on</strong>strate it with a mega-joules class laser [1]. On the<br />

other hand, the fast-igniti<strong>on</strong> has been actively researched<br />

<strong>in</strong> our <strong>in</strong>stitute. It reduces a total laser power to <strong>on</strong>e tenth,<br />

which improves not <strong>on</strong>ly a compactness <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser<br />

system but also a repeatability <str<strong>on</strong>g>of</str<strong>on</strong>g> laser operati<strong>on</strong> and a<br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser operati<strong>on</strong>. A high peak power laser<br />

with short pulse durati<strong>on</strong> is necessary as a heat<strong>in</strong>g laser<br />

for the fast igniti<strong>on</strong>. The LFEX (Laser for Fusi<strong>on</strong><br />

EXperiments)-Laser system has been developed to clarify<br />

the heat<strong>in</strong>g mechanism [2]. The plasma heat<strong>in</strong>g<br />

experiments have started by us<strong>in</strong>g the LFEX-Laser. In<br />

Figure 1: Block diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the LFEX-Laser.<br />

additi<strong>on</strong>, the “Gekko-EXA” Laser with a higher peak<br />

power has been under a c<strong>on</strong>ceptual design to improve the<br />

fusi<strong>on</strong> researches and to open the new high field<br />

researches <strong>in</strong> the plasma physics.<br />

LFEX-LASER<br />

The LFEX laser generates 10 kJ pico-sec<strong>on</strong>ds pulse<br />

energy with four beams by us<strong>in</strong>g a chirped-pulse<br />

amplificati<strong>on</strong> (CPA) technique, which corresp<strong>on</strong>ds<br />

to several peta-watts peak power. The laser system<br />

c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a fr<strong>on</strong>t end, rod amplifier cha<strong>in</strong>s, a ma<strong>in</strong><br />

amplifier, and rear end (pulse compressi<strong>on</strong>), shown <strong>in</strong> fig.<br />

1. A fr<strong>on</strong>t end is a comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a mode-locked fibre<br />

oscillator, two pulse stretchers and three optical<br />

parametric chirped-pulse amplificati<strong>on</strong> (OPCPA) stages.<br />

The OPCPA stages are used <strong>in</strong>stead <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>venti<strong>on</strong>al<br />

regenerative amplifier to improve the temporal pulse<br />

c<strong>on</strong>trast. Much care <str<strong>on</strong>g>of</str<strong>on</strong>g> a beam transport with image relays<br />

are taken not to make the beam quality <strong>in</strong>ferior. The<br />

maximum pulse energy is obta<strong>in</strong>ed up to 100 mJ <strong>in</strong> fig. 2.<br />

The typical pulse durati<strong>on</strong> is 3 ns with a 6 nm spectral<br />

width at a 1053 nm centre wavelength. After four-pass<br />

Nd:glass rod (φ50mm)-amplificati<strong>on</strong> (RA), the amplified<br />

beam is divided <strong>in</strong>to four beams and each beam<br />

experiences two rod-amplifiers to obta<strong>in</strong> about 10 J pulse<br />

energy. The ma<strong>in</strong> amplifier is a four-pass amplifier with a<br />

Nd:glass slab amplifier and a l<strong>on</strong>g image relay. Eight<br />

large slab glasses (46 cm x 81 cm x t4cm) are used for


Amplified Pulse Energy (mJ)<br />

100<br />

Horiz<strong>on</strong>tal (μrad)<br />

10<br />

1<br />

0<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

100<br />

Figure 2: The obta<strong>in</strong>ed pulse energy at the threestages<br />

OPCPA.<br />

PV : 4.144!<br />

RMS : 0.937<br />

200<br />

3rd Path<br />

2nd Path<br />

DFM75<br />

each beam and the slab glass series are set side by side to<br />

arrange 2 x 2 beams spatially. The obta<strong>in</strong>ed pulse energy<br />

is 1.77 kJ/beam. The obta<strong>in</strong>ed spectral width is ga<strong>in</strong>narrowed<br />

to 3.1 nm and the pulse durati<strong>on</strong> is shortened at<br />

1.45 ns. A highly excellent focusibility <strong>on</strong> the target is<br />

str<strong>on</strong>gly required for a heat<strong>in</strong>g laser. Two pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> largeaperture<br />

bimorph deformable mirror (DFM) and Shack-<br />

Hartmann sensor are used for the beam wave fr<strong>on</strong>t c<strong>on</strong>trol<br />

<strong>in</strong> the ma<strong>in</strong> amplifier cha<strong>in</strong>, shown <strong>in</strong> fig. 3. A loop<br />

program is used for automatic optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave<br />

fr<strong>on</strong>t correcti<strong>on</strong>. The obta<strong>in</strong>ed wave fr<strong>on</strong>t after four-pass<br />

amplificati<strong>on</strong> is 4.56λ (peak-valley) and 0.94λ (rms)<br />

without the deformable mirrors. Us<strong>in</strong>g DFMs, they were<br />

c<strong>on</strong>siderably improved at 0.95λ and 0.18λ, respectively,<br />

1st Path 4th Path<br />

4th Path<br />

M0 DA400<br />

SF400<br />

FR400<br />

M1 IMAP<br />

AA<br />

SF50<br />

RA50<br />

OS50 RA50 SF75 OS75<br />

Numerical Cal.!<br />

&!<br />

Apply PZT voltage<br />

OS125<br />

PCS125<br />

DFM125<br />

Sensor Image<br />

Shack-Haltmann<br />

Numerical Cal.!<br />

&!<br />

Apply PZT voltage<br />

Shack-Haltmann<br />

Sensor Image<br />

Figure 3: A schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> a deformable mirror system and the measured wavefr<strong>on</strong>t (a) without and<br />

(b) with deformable-mirror compensati<strong>on</strong>.<br />

!"μ#$%<br />

-4<br />

Menu<br />

-6<br />

1st<br />

-8<br />

2nd<br />

-10<br />

-12<br />

3rd<br />

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12<br />

Vertical (μrad)<br />

300<br />

(a) (b)<br />

400<br />

Pump Energy (mJ)<br />

500<br />

PV : 0.952!<br />

RMS : 0.177<br />

Figure 4: Po<strong>in</strong>t<strong>in</strong>g stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the LFEX<br />

laser before compressi<strong>on</strong>.<br />

600<br />

2x2<br />

700<br />

Focus<strong>in</strong>g Optics<br />

(2F)<br />

Pulse Compressor (1F)<br />

Beam Transfer<br />

(2F ->1F)<br />

1x4<br />

s<br />

2x2<br />

From the Fr<strong>on</strong>t<br />

Figure 5: Diam<strong>on</strong>d-trace pulse compressor with 16 meter-size<br />

segmented grat<strong>in</strong>gs for the LFEX laser.


which were comparable to those before the ma<strong>in</strong><br />

amplificati<strong>on</strong>. The encircled energy was estimated to be<br />

more than 70% at Fλ=2.5 with the observed far-field<br />

patterns when 10% without the DFM correcti<strong>on</strong>. In<br />

additi<strong>on</strong>, all shots with kilo-joule pulse energy were<br />

below 10 μrad <strong>in</strong> the po<strong>in</strong>t<strong>in</strong>g beam stability before the<br />

compressor <strong>in</strong> fig. 4. The amplified pulse beams go <strong>in</strong>to<br />

Figure 6: Block diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the “Gekko-EXA” laser.<br />

Figure 7: Arrangement plan <str<strong>on</strong>g>of</str<strong>on</strong>g> the “Gekko-EXA” laser.<br />

the pulse compressor to be arranged with 1 x 4 beams<br />

from 2 x 2. The pulse compressor is our orig<strong>in</strong>al diam<strong>on</strong>d<br />

trace compressor with four large (91 cm x 42 cm) grat<strong>in</strong>gs<br />

for <strong>on</strong>e-beam diffracti<strong>on</strong>, which results <strong>in</strong> sixteen grat<strong>in</strong>gs<br />

for <strong>on</strong>e-beam compressi<strong>on</strong>, shown <strong>in</strong> fig. 5. The obta<strong>in</strong>ed<br />

m<strong>in</strong>imum pulse durati<strong>on</strong> is 2.2 ps. The LFEX laser is<br />

gradually mov<strong>in</strong>g <strong>in</strong>to the plasma experiments. The laser


dem<strong>on</strong>strati<strong>on</strong> encourages four-beams full operati<strong>on</strong> for<br />

the plasma heat<strong>in</strong>g.<br />

GEKKO-EXA LASER<br />

The “Gekko-EXA” laser is our great challenge for the<br />

next generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the high field science, the energetic<br />

beam generati<strong>on</strong> and their applicati<strong>on</strong>s, and is under<br />

c<strong>on</strong>ceptual design. The “Gekko-EXA” has two k<strong>in</strong>ds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

operati<strong>on</strong> mode, 1 PW at 100 Hz with a s<strong>in</strong>gle beam and<br />

0.2 EW as a s<strong>in</strong>gle shot laser with two bundle beams,<br />

respectively, shown <strong>in</strong> fig. 6. These output power is ultrashort<br />

high-peak power laser with pulse durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 fs.<br />

An effective laser ga<strong>in</strong> over the extremely wide spectral<br />

width up to 500 nm is required for such short pulse<br />

amplificati<strong>on</strong>. The laser system is, therefore, based <strong>on</strong> the<br />

large-aperture optical parametric chirped-pulse<br />

amplificati<strong>on</strong> (LA-OPCPA).<br />

In the fr<strong>on</strong>t end, the femto-sec<strong>on</strong>d oscillator supplies<br />

seed pulses for both the pump laser and the white light<br />

generati<strong>on</strong> <strong>in</strong> the LA-OPCPA. Because a temporal jitter<br />

between the pump beam and the seed pulse should be<br />

reduced as possible. The oscillator generates few cycle<br />

pulses with the c<strong>on</strong>siderably broad spectral width. A seed<br />

pulse for the pump laser is temporally stretched and<br />

amplified by us<strong>in</strong>g fibre amplifiers after a pulse picker<br />

and a pulse shaper.<br />

A part <str<strong>on</strong>g>of</str<strong>on</strong>g> the amplified pulse is used as a seed pulse <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a repeatable amplificati<strong>on</strong> system, which based <strong>on</strong> highpower<br />

diode-pumped solid-state lasers (DPSSL) with<br />

cryogenic Yb:YAG ceramics[3] as a laser material. The<br />

repeatable pump source generates green laser pulses with<br />

70 J pulse energy at 100 Hz repetiti<strong>on</strong> rate after sec<strong>on</strong>d<br />

harm<strong>on</strong>ic generati<strong>on</strong>. The other part <str<strong>on</strong>g>of</str<strong>on</strong>g> the amplified<br />

pulse is divided <strong>in</strong>to four beams and each <str<strong>on</strong>g>of</str<strong>on</strong>g> them seeded<br />

<strong>in</strong>to the s<strong>in</strong>gle-shot-based Nd:glass amplifier system.<br />

Pulse energy <strong>in</strong>creases up to 3 kJ per beam. A bundle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

four beams supplies 12 kJ (ω) <strong>in</strong> 1 ns and is frequencydoubled<br />

at 8.4 kJ. Two bundles are prepared as pump<br />

sources.<br />

On the other hand, the generated white coherent light is<br />

used as a seed pulse for the OPCPA system. Several<br />

hundreds mili-joules pulse energy is obta<strong>in</strong>ed after fibre<br />

and small-power (SP-) OPCPA stages. Then, <strong>in</strong> the LA-<br />

OPCPA with partially deuterated DKDP crystals, kilojoule<br />

class pulse energy is obta<strong>in</strong>ed with a more than 200<br />

nm spectral width (FWHM). Us<strong>in</strong>g high-damagethreshold<br />

grat<strong>in</strong>gs and chirped mirrors <strong>in</strong> large aperture,<br />

0.1 EW (1 kJ/ 10 fs) pulse beam is generated and two set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the pump beam and the seed pulse results <strong>in</strong> 0.2 EW.<br />

There are some key issues <strong>in</strong> “Gekko-EXA” laser<br />

design. Spectral dispersi<strong>on</strong> compensati<strong>on</strong> is c<strong>on</strong>siderably<br />

important to improve the temporal pulse c<strong>on</strong>trast ratio up<br />

to 10 12 to reduce pre-pulses and a pedestal.<br />

Technologically, there are two significant optics to be<br />

developed, a grat<strong>in</strong>g and a large aperture chirped mirror,<br />

which have both high optical damage strength <strong>in</strong> J/cm 2 <strong>in</strong><br />

an ultra-broadband up to 500 nm with a large aperture.<br />

Figure 7 shows an arrangement plan for the “Gekko-<br />

EXA” laser. The fr<strong>on</strong>t end and the 1 PW/ 100 Hz laser<br />

system are <strong>in</strong> another room, which is not shown here. The<br />

kJ-pump-laser is at the next to the “Gekko” laser system.<br />

In the additi<strong>on</strong>al planed build<strong>in</strong>g, the booster amplifiers<br />

for 12 kJ, the sec<strong>on</strong>d harm<strong>on</strong>ic generator and the kJ-class<br />

OPCPA system are <strong>on</strong> the same floor. Two pulse<br />

compressors are <strong>in</strong> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the target chamber.<br />

REFERENCE<br />

[1] G. M. Heestand, C. A. Haynam, P. J. Wegner, M. W.<br />

Bowers, S. N. Dixit, G. V. Erbert, M. A. Henesian, M.<br />

R. Hermann, K. S. Jancaitis, K. Knittel, T. Kohut, J. D.<br />

L<strong>in</strong>dl, K. R. Manes, C. D. Marshall, N. C. Mehta, J.<br />

Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C.<br />

D. Orth, R. Patters<strong>on</strong>, R. A. Sacks, R. Saunders, M. J.<br />

Shaw, M. Spaeth, S. B. Sutt<strong>on</strong>, W. H. Williams, C. C.<br />

Widmayer, R. K. White, P. K. Whitman, S. T. Yang,<br />

and B. M. Van W<strong>on</strong>terghem, “Dem<strong>on</strong>strati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> highenergy<br />

2ω (526.5 nm) operati<strong>on</strong> <strong>on</strong> the Nati<strong>on</strong>al<br />

Igniti<strong>on</strong> Facility Laser System,” Applied Optics, Vol.<br />

47 Issue 19, pp.3494-3499 (2008).<br />

[2] N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T.<br />

Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H.<br />

Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, K.<br />

Sueda, H. Murakami, N. Morio, S. Matsuo, N.<br />

Sarukura, Y. Izawa, and K. Mima, “Technological<br />

Challenge and Activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10-kJ PW Laser LFEX<br />

for Fast Igniti<strong>on</strong> at ILE,” Fr<strong>on</strong>tiers <strong>in</strong> Optics (FiO)<br />

2008 paper: FWQ1.<br />

[3] J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R.<br />

Yasuhara, T. Kawashima, and H. Kan, “Highly<br />

Efficient Cryogenically_Cooled Yb:YAG Laser”,<br />

Laser <strong>Physics</strong> vol. 20, No. 1079-1084 (2010).


Abstract<br />

X-ray Emissi<strong>on</strong> from Magnetars and Its Physical Interpretati<strong>on</strong><br />

T. Enoto ∗ , KIPAC, Stanford University, CA, 94305-4085, USA †<br />

K. Makishima, Dep. <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo ‡ , and Suzaku Magnetar Team<br />

Recent astr<strong>on</strong>omy has been accumulat<strong>in</strong>g evidence that a<br />

subset <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong> stars has an ultra str<strong>on</strong>g magnetic filed, ∼<br />

10 10−11 T. These enigmatic sources are called magnetars,<br />

and their field is believed to be str<strong>on</strong>ger than those (∼ 10 8<br />

T) <str<strong>on</strong>g>of</str<strong>on</strong>g> normal pulsars by 2–3 orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitudes. S<strong>in</strong>ce<br />

such a field exceeds the QED critical field, 4.4 × 10 9 T,<br />

magnetars are a promis<strong>in</strong>g laboratory <strong>in</strong> the universe for<br />

the high-field physics. Us<strong>in</strong>g the Japanese astrophysical<br />

satellite Suzaku, we performed X-ray observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ∼9<br />

magnetars. We found a systematic trend <str<strong>on</strong>g>of</str<strong>on</strong>g> the wide-band<br />

X-ray spectra, which is c<strong>on</strong>sidered to be related with the<br />

str<strong>on</strong>g field physics (e.g., phot<strong>on</strong> splitt<strong>in</strong>g).<br />

MAGNETIC FIELD OF NEUTRON STARS<br />

Celestial objects, especially compact objects such as<br />

black holes and neutr<strong>on</strong> stars (NSs), are ideal laboratories<br />

to exam<strong>in</strong>e the extreme physics, which cannot be atta<strong>in</strong>ed<br />

through the ground experiments. For example, astr<strong>on</strong>omical<br />

observati<strong>on</strong>s have been revealed that NSs exhibit a<br />

str<strong>on</strong>g magnetic field (B ∼ 10 8 T), an <strong>in</strong>tense phot<strong>on</strong> field<br />

(its maximum lum<strong>in</strong>osity at L ∼ 10 38 erg s −1 ), and a high<br />

gravity field (its gravitati<strong>on</strong>al redshift at z ∼ 0.2). Thanks<br />

to recent sensitive detectors, we acquired an observati<strong>on</strong>al<br />

approach to study these exotic physics.<br />

Figure 1: An X-ray image <str<strong>on</strong>g>of</str<strong>on</strong>g> the Crab Nebula obta<strong>in</strong>ed by<br />

the Chandra observatory [1]. The Crab pulsar locates at<br />

the center <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nebula.<br />

NSs are born after a gravitati<strong>on</strong>al collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> a massive<br />

star. S<strong>in</strong>ce their mass and radii are estimated to be<br />

M ∼ 1.4 − 2.1M⊙ and R ∼ 10 km, this compact star is<br />

∗ JSPS (Japan Society for the Promoti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Science) Fellow, e-mail:<br />

enoto@stanford.edu<br />

† Address: Stanford University, Kavli Institute for Particle Astrophysics<br />

& Cosmology, <strong>Physics</strong> Astrophysics Build<strong>in</strong>g, 452 Lomita Mall,<br />

MC 4085, Stanford, CA 94305-4085, USA<br />

‡ Address: Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>,School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, The University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo, 7-3-1 H<strong>on</strong>go, Bunkyo-ku, Tokyo, 113-0033, Japan<br />

believed to be supported by a degeneracy pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong>s.<br />

Electromagnetic waves from NSs have been detected<br />

by various wavelengths with their stellar rotati<strong>on</strong>s. Therefore,<br />

most NSs are called “pulsars”. For example, Figure<br />

1 shows an X-ray image <str<strong>on</strong>g>of</str<strong>on</strong>g> the Crab Nebula, which was<br />

formed at a historically recorded supernova <strong>in</strong> 1054. At the<br />

center <str<strong>on</strong>g>of</str<strong>on</strong>g> this nebula, the Crab pulsar is rotat<strong>in</strong>g at its period<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> P ∼ 33 ms and its period derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> ˙ P ∼ 4.2×10−13 s s−1 . So far, pulsati<strong>on</strong>s and their derivatives have been<br />

measured from more than 1500 normal NSs, which are<br />

plotted <strong>on</strong> the P - ˙ P diagram <strong>in</strong> Figure 2, ma<strong>in</strong>ly distributed<br />

around P ∼ 0.4 s and ˙ P ∼ 10−15 s s−1 . S<strong>in</strong>ce most<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> normal pulsars exhibit a l<strong>on</strong>g-term tim<strong>in</strong>g stability, they<br />

are though to be isolated NSs1 Pdot (s/s)<br />

10 −8<br />

10 −9<br />

10 −10<br />

10 −11<br />

10 −12<br />

10 −13<br />

10 −14<br />

10 −15<br />

10 −16<br />

10 −17<br />

10 −18<br />

10 −19<br />

10 −20<br />

10 −21<br />

10 13 G<br />

10 12 G<br />

10 11 G<br />

10 10 G<br />

10 9 G<br />

10 14 G<br />

Bcr<br />

10 15 G<br />

10−3 10<br />

0.01 0.1 1 10<br />

−22<br />

Period (s)<br />

Figure 2: (a) A P - ˙<br />

P diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> pulsars, <strong>in</strong>clud<strong>in</strong>g<br />

rotati<strong>on</strong>-powered pulsars (black), SGRs (red stars),<br />

and AXPs (blue circles) after [2], http://www.atnf.csiro.<br />

au/research/pulsar/psrcat/. Dotted l<strong>in</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> negative slopes<br />

represent c<strong>on</strong>stant magnetic field grids.<br />

Follow<strong>in</strong>g a standard pulsar model [3], emissi<strong>on</strong> from<br />

normal isolated NSs can be powered by their rotati<strong>on</strong>al<br />

energy loss. Let us assume the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the rotati<strong>on</strong> energy,<br />

d/dt(0.5IP 2 ) is eventually c<strong>on</strong>verted <strong>in</strong>to a magnetic<br />

dipole radiati<strong>on</strong> (e.g., electromagnetic wave), where<br />

I = 10 45 g cm 2 is a momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>ertia <str<strong>on</strong>g>of</str<strong>on</strong>g> the NS. Then,<br />

1 “Isolated” means that the NS is not a b<strong>in</strong>ary system (accreti<strong>on</strong>powered<br />

pulsars), where mass accreti<strong>on</strong> from a compani<strong>on</strong> star make the<br />

pulsati<strong>on</strong> fluctuate.


Radio Pulsar Number<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0<br />

7 8 9 10 11 12 13 14 15 16<br />

Magnetic Field Strength [Log B(Gauss)]<br />

Figure 3: Magnetic field distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> normal (radio) pulsars<br />

(blue, peak at ∼ 10 12 G) from [2], accreti<strong>on</strong>-powered<br />

pulsars (green), and magnetars (red, peak at ∼ 10 15 G) [4].<br />

1 T = 10 4 G.<br />

the surface magnetic field <str<strong>on</strong>g>of</str<strong>on</strong>g> the NS can be estimated to be<br />

B = 3.2 × 10 15√ (P ˙<br />

P ) T. (1)<br />

The evaluated fields are shown <strong>in</strong> Figure 3 and Fig. 2 as<br />

dashed l<strong>in</strong>es. Typical value <str<strong>on</strong>g>of</str<strong>on</strong>g> normal NSs, ∼ 10 8 T, is a<br />

basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the current emissi<strong>on</strong> model from pulsars, and the<br />

model expla<strong>in</strong>s the observati<strong>on</strong>s so far.<br />

ULTRA-STRONG FIELD OF MAGNETARS<br />

Dur<strong>in</strong>g a last few decades, a new subclass <str<strong>on</strong>g>of</str<strong>on</strong>g> isolated<br />

NSs is emerg<strong>in</strong>g <strong>on</strong> the upper right corner <strong>on</strong> the P - ˙ P<br />

diagram, mostly observed <strong>on</strong>ly <strong>in</strong> the X-ray band. From<br />

their peculiar properties, the <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> them are named S<str<strong>on</strong>g>of</str<strong>on</strong>g>t<br />

Gamma Repeaters (SGRs) and the others are Anomalous<br />

X-ray Pulsars (AXPs). Both <str<strong>on</strong>g>of</str<strong>on</strong>g> them are slowly rotat<strong>in</strong>g<br />

X-ray pulsars (P ∼ 2 − 10 s), show<strong>in</strong>g large period derivatives<br />

( ˙ P ∼ 10−12 − 10−9 s s−1 ). Us<strong>in</strong>g the above estimati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field, SGRs and AXPs should have an<br />

ultra-str<strong>on</strong>g magnetic field, B ∼ 1010−11 T (Fig. 3). This<br />

field strength is str<strong>on</strong>ger than those <str<strong>on</strong>g>of</str<strong>on</strong>g> normal pulsars by 2–<br />

3 orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude, and even exceeds the QED critical<br />

field, Bcr = m2 ec3 /¯he = 4.4 × 109 T, where the Landau<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s <strong>in</strong> the magnetic field becomes equivalent<br />

with the rest mass <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong>. If SGRs and AXPs have<br />

<strong>in</strong>deed the ultra-str<strong>on</strong>g field, they are promis<strong>in</strong>g targets to<br />

exam<strong>in</strong>e the QED physics. As shown <strong>in</strong> Fig. 3, SGRs and<br />

AXPs have a different field distributi<strong>on</strong> from those <str<strong>on</strong>g>of</str<strong>on</strong>g> normal<br />

rotati<strong>on</strong> powered pulsars, theay are correctively called<br />

“magnetars” [5, 6, 7].<br />

There are accumulated evidence that magnetars have an<br />

ultra-str<strong>on</strong>g field. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, bright X-ray lum<strong>in</strong>osity<br />

(Lx ∼ 1035 erg s−1 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetars cannot be expla<strong>in</strong>ed<br />

by their sp<strong>in</strong>-down power (L ∼ 1033 erg s−1 ). This is<br />

a prom<strong>in</strong>ent difference from normal pulsar, and thus, the<br />

emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetars are believed to be susta<strong>in</strong>ed by their<br />

huge stored magnetic energy. Sec<strong>on</strong>dly, magnetars exhibit<br />

various burst activities, which cannot be seen from normal<br />

pulsars so far. Sporadic burst emissi<strong>on</strong> occurres with a<br />

8<br />

6<br />

4<br />

2<br />

Magnetar & Accreti<strong>on</strong> Pulsar Number<br />

Figure 4: A light curve <str<strong>on</strong>g>of</str<strong>on</strong>g> the giant flare from SGR 1806-20<br />

<strong>in</strong> the 20–100 keV energy range, recorded by the RHESSI<br />

satellite <strong>on</strong> 2004 December 27. The <strong>in</strong>set shows a precursor<br />

which was recorded 142 s before the giant flare [8].<br />

keV 2 cm -2 s -1 keV -1<br />

1 mCrab<br />

1806-20 (2007 Oct.)<br />

1900+14 (2006 Apr.)<br />

1547-54 (2009 (2009 Jan.) Jan.)<br />

1841-04 (2006 (2006 Apr.) Apr.)<br />

1708-40 (2009 (2009 Aug.) Aug.)<br />

0501+45 (2008 (2008 Aug.) Aug.)<br />

0142+61 (2007 (2007 Aug.) Aug.)<br />

2259+58 2259+58 (2009 (2009 (2009 (2009 (2009 May) May) May) May) May)<br />

1 10 100<br />

Energy (keV)<br />

Figure 5: X-ray spectra (νFν form) <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetars observed<br />

by Suzaku with abbreviated names [12]. Individual<br />

spectra are shown with <str<strong>on</strong>g>of</str<strong>on</strong>g>fsets, and are arranged <strong>in</strong> order<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>creas<strong>in</strong>g magnetic field from bottom (weak) to top<br />

(str<strong>on</strong>g). Blue horiz<strong>on</strong>tal l<strong>in</strong>es <strong>in</strong>dicate a 1 mCrab <strong>in</strong>tensity.<br />

short time scale (a few hundread ms – a few s). One prom<strong>in</strong>ent<br />

example is a giant flare from SGRs, as dem<strong>on</strong>strated <strong>in</strong><br />

Figure 4. A current hypothesis speculates that these bursts<br />

are emissi<strong>on</strong> from trapped fire balls <strong>on</strong> the magnetar surface,<br />

presumably related with magnetic activities (e.g., rec<strong>on</strong>necti<strong>on</strong>s).<br />

Interest<strong>in</strong>gly, the lum<strong>in</strong>osities <str<strong>on</strong>g>of</str<strong>on</strong>g> these burst


sometimes exceed the Edd<strong>in</strong>gt<strong>on</strong> lum<strong>in</strong>osity (a maximum<br />

permitted lum<strong>in</strong>osity), and this excess is c<strong>on</strong>sidered to orig<strong>in</strong>ate<br />

from a suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Thoms<strong>on</strong> cross secti<strong>on</strong> <strong>in</strong><br />

the high magnetic field. Thirdly, there is marg<strong>in</strong>al evidence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> prot<strong>on</strong> cyclotr<strong>on</strong>s <strong>in</strong> the magnetar X-ray spectra, which<br />

suggests B ∼ 10 15 G [9].<br />

X-RAY EMISSION OF MAGNETARS<br />

Persistent X-ray emissi<strong>on</strong> from magnetars have been extensively<br />

observed <strong>in</strong> the ∼0.2–10 keV. In this energy band,<br />

a thermal emissi<strong>on</strong> with its temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> kT ∼ 0.5 keV is<br />

c<strong>on</strong>sidered to be emitted from the stellar surface. However,<br />

through a new hard X-ray imag<strong>in</strong>g with the INTEGRAL<br />

satellite, some persistently bright magnetars were discovered<br />

to emit a dist<strong>in</strong>ct hard-tail comp<strong>on</strong>ent which emerges<br />

above ∼10 keV with an extremely hard phot<strong>on</strong> <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Γh ∼ 1 [10]. This unusual new comp<strong>on</strong>ent, though not yet<br />

observed from all magnetars, is expected to provide a h<strong>in</strong>t<br />

to the high field physics <strong>in</strong> magnetars.<br />

Us<strong>in</strong>g the Suzaku X-ray satellite [11], we performed<br />

broad-band (0.8–70 keV) spectral analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> the persistent<br />

X-ray emissi<strong>on</strong> from 9 magnetars [12]. As shown <strong>in</strong><br />

Figure 5, the s<str<strong>on</strong>g>of</str<strong>on</strong>g>t thermal comp<strong>on</strong>ent was detected from all<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> them (green l<strong>in</strong>es), while the hard-tail comp<strong>on</strong>ent, dom<strong>in</strong>at<strong>in</strong>g<br />

above ∼10 keV, was detected at ∼1 mCrab 2 <strong>in</strong>tensity<br />

from 7 <str<strong>on</strong>g>of</str<strong>on</strong>g> them (red l<strong>in</strong>es). In additi<strong>on</strong>, as shown <strong>in</strong> this<br />

figure, the hard-tail comp<strong>on</strong>ent has a tendency to become<br />

str<strong>on</strong>ger but s<str<strong>on</strong>g>of</str<strong>on</strong>g>ter towards sources with larger magnetic<br />

fields. To quantitatively evaluate this trend, we employ the<br />

1–60 keV fluxes <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>t-thermal and hard-tail comp<strong>on</strong>ents,<br />

Fs and Fh, respectively, and then, calculate the hardness<br />

ratio (HR) between these two comp<strong>on</strong>ents, ξ ≡ Fh/Fs. As<br />

shown <strong>in</strong> Figure 6 (top), the HR is found to be tightly correlated<br />

with the magnetic field B as<br />

ξ = (0.09 ± 0.07) × (B/Bcr) 1.2±0.2<br />

with a correlati<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.873, over the range from<br />

ξ ∼ 10 to ξ ∼ 0.1. On the other hand, as shown <strong>in</strong> Figure 6<br />

(bottom), the phot<strong>on</strong> <strong>in</strong>dex becomes s<str<strong>on</strong>g>of</str<strong>on</strong>g>ter toward str<strong>on</strong>ger<br />

field pulsars with ξ becom<strong>in</strong>g larger.<br />

Although several scenarios have been proposed [13, 14,<br />

15, 16], the emissi<strong>on</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> the hard X-rays has<br />

not yet been resolved. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the biggest difficulties is<br />

how to expla<strong>in</strong> the extremely hard Γh ∼ 1 with its spectral<br />

trend depend<strong>in</strong>g <strong>on</strong> B. A possible candidate <str<strong>on</strong>g>of</str<strong>on</strong>g> the emissi<strong>on</strong><br />

process is phot<strong>on</strong>-splitt<strong>in</strong>gs [17, 18]. In ultra-str<strong>on</strong>g<br />

magnetic fields exceed<strong>in</strong>g Bcr, electr<strong>on</strong>-positr<strong>on</strong> pair cascades<br />

are suppressed, while the phot<strong>on</strong> splitt<strong>in</strong>g may be<br />

dom<strong>in</strong>ant. In this case, gamma-rays from the surface may<br />

repeatedly split <strong>in</strong>to lower energy phot<strong>on</strong>s. This process<br />

can also expla<strong>in</strong> the differences <strong>in</strong> Γh am<strong>on</strong>g magnetars, <strong>in</strong><br />

such a way that higher fields objects will allow the phot<strong>on</strong>splitt<strong>in</strong>g<br />

cascade to proceed down to lower energies, and<br />

hence to make the c<strong>on</strong>t<strong>in</strong>uum s<str<strong>on</strong>g>of</str<strong>on</strong>g>ter.<br />

2 1 mCrab is <strong>on</strong>e-thousandth <str<strong>on</strong>g>of</str<strong>on</strong>g> the Crab Nebula <strong>in</strong>tensity, which is a<br />

standard candle <str<strong>on</strong>g>of</str<strong>on</strong>g> the astr<strong>on</strong>omy.<br />

(2)<br />

Hardness Ratio ξ = F h /F s<br />

Hardness Ratio ξ = F h /F s<br />

10<br />

1<br />

0.1<br />

10<br />

1<br />

0.1<br />

2259+58<br />

(b)<br />

0142+61<br />

0501+45<br />

(2009)<br />

0501+45<br />

(2008)<br />

0142+61<br />

1547-54<br />

1900+14<br />

1708-40<br />

1841-04<br />

10<br />

Magnetic Field (G)<br />

14 1015 0501+45<br />

1806-20<br />

1841-04<br />

1900+14<br />

1806-20<br />

0 0.5 1 1.5 2<br />

Phot<strong>on</strong> <strong>in</strong>dex Γ h<br />

1708-40<br />

1547-54<br />

Figure 6: (top) A correlati<strong>on</strong> between the HR ξ and the<br />

magnetic field B [12]. Green solid l<strong>in</strong>e represents the best<br />

fit <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong> (2). SGRs and AXPs are shown <strong>in</strong> red and<br />

blue, respectively. (bottom) The HR ξ as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong><br />

<strong>in</strong>dices Γh <str<strong>on</strong>g>of</str<strong>on</strong>g> the hard-tail comp<strong>on</strong>ent [12].<br />

REFERENCES<br />

[1] Hester, J. J., et al. 2002, Astrophys. J. Let., 577, L49<br />

[2] Manchester, R. N., et al., 2005, VizieR Onl<strong>in</strong>e Data Catalog<br />

[3] Goldreich, P., & Julian, W. H. 1969, Astrophys. J., 157, 869<br />

[4] Enoto T., et al., 2009, Suzaku <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> 2009 Proceedng<br />

[5] Duncan, R. C., & Thomps<strong>on</strong>, C. 1992, ApJL, 392, L9<br />

[6] Woods, P. M., & Thomps<strong>on</strong>, C. 2006, Compact stellar X-ray<br />

sources, 547<br />

[7] Mereghetti, S. 2008, Astr<strong>on</strong>. and Astrophy. Rev., 15, 225<br />

[8] Hurley, K., et al. 2005, Nature, 434, 1098<br />

[9] Ibrahim, A. I., et al., 2003, ApJL, 584, L17<br />

[10] Kuiper, L., et al., 2006, Astrophysical Journal, 645, 556<br />

[11] Mitsuda, K., et al. 2007, PASJ, 59, 1<br />

[12] Enoto, T., et al., 2010, ApJL, 722, L162<br />

[13] Heyl, J. S., & Hernquist, L. 2005, MNRAS, 362, 777<br />

[14] Thomps<strong>on</strong>, C., & Beloborodov, A. M. 2005, ApJ, 634, 565<br />

[15] Beloborodov, A. M., & Thomps<strong>on</strong>, C. 2007, ApJ, 657, 967<br />

[16] Bar<strong>in</strong>g, M. G., & Hard<strong>in</strong>g, A. K. 2001, ApJ, 547, 929<br />

[17] Bar<strong>in</strong>g, M. G., & Hard<strong>in</strong>g, A. K. 2001, ApJ., 547, 929<br />

[18] Enoto, T., et al. 2010, Ph.D thesis, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo


Abstract<br />

THE NIELSEN-OLESEN INSTABILITIES IN THE GLASMA<br />

H. Fujii, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo, Komaba, Tokyo<br />

K. Itakura, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Particle and Nuclear Studies (IPNS), <strong>KEK</strong>, Ibaraki<br />

A. Iwazaki, Int’l Ec<strong>on</strong>omics and Politics, Nishogakusha University, Kashiwa, Chiba<br />

In the framework <str<strong>on</strong>g>of</str<strong>on</strong>g> the Color Glass C<strong>on</strong>densate, str<strong>on</strong>g<br />

color electric and magnetic fields are expected to appear <strong>in</strong><br />

the early transient stage <str<strong>on</strong>g>of</str<strong>on</strong>g> ultrarelativistic heavy-i<strong>on</strong> collisi<strong>on</strong>s.<br />

We show that this c<strong>on</strong>figurati<strong>on</strong> with l<strong>on</strong>gitud<strong>in</strong>ally<br />

polarized str<strong>on</strong>g gauge fields has the Nielsen-Olesen<br />

<strong>in</strong>stability[1], and discuss its relevance to the <strong>in</strong>itial stage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the heavy i<strong>on</strong> collisi<strong>on</strong>s[2, 3, 4].<br />

STRONG COLOR FIELD IN GLASMA<br />

In ultrarelativistic heavy-i<strong>on</strong> collisi<strong>on</strong>s (HIC), two heavy<br />

nuclei at nearly the light speed smash <strong>in</strong>to each other to<br />

generate a dense medium <str<strong>on</strong>g>of</str<strong>on</strong>g> liberated quarks and glu<strong>on</strong>s.<br />

Study<strong>in</strong>g properties <str<strong>on</strong>g>of</str<strong>on</strong>g> this extremely dense medium is <strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the ma<strong>in</strong> subjects <strong>in</strong> subnuclear physics.<br />

The Color Glass C<strong>on</strong>densate picture<br />

Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>cident nuclei is seen as an assembly <str<strong>on</strong>g>of</str<strong>on</strong>g> part<strong>on</strong>s<br />

(quarks and glu<strong>on</strong>s) with l<strong>on</strong>gitud<strong>in</strong>al momentum fracti<strong>on</strong><br />

x = p/( √ s/2) <strong>in</strong> HIC at very large center-<str<strong>on</strong>g>of</str<strong>on</strong>g>-mass energy<br />

√ s. At high energies, particle producti<strong>on</strong>s are dom<strong>in</strong>ated<br />

by collisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the part<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> small x such as x √ s/2 ∼<br />

mπ with mπ the pi<strong>on</strong> mass because these small-x part<strong>on</strong>s,<br />

predom<strong>in</strong>antly glu<strong>on</strong>s, are abundant through QCD<br />

bremsstrahlung processes from the larger-x colored part<strong>on</strong>s<br />

with<strong>in</strong> the nuclear wavefuncti<strong>on</strong> and because the QCD<br />

cross secti<strong>on</strong> is larger at the smaller momentum scale.<br />

Such dense small-x glu<strong>on</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the nuclear<br />

wavefuncti<strong>on</strong> should be described as classical gauge fields<br />

generated from larger-x color source, and the effective<br />

theory for small-x degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> hadr<strong>on</strong>ic wavefuncti<strong>on</strong> is<br />

known as the Color Glass C<strong>on</strong>densate (CGC) framework.<br />

The field strength is characterized by a momentum scale,<br />

Q 2 s(x), called saturati<strong>on</strong> scale, which emerges from n<strong>on</strong>l<strong>in</strong>ear<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> QCD and estimated empirically as about<br />

1 (GeV/c) 2 <strong>in</strong> HIC at √ s = 200 GeV. Keep <strong>in</strong> m<strong>in</strong>d that<br />

any hadr<strong>on</strong>s (nuclei) are color s<strong>in</strong>glet objects and the (transversely<br />

polarized) color fields exist <strong>on</strong>ly with<strong>in</strong> the hadr<strong>on</strong><br />

as fluctuati<strong>on</strong>s whose lifetime is Lorentz-el<strong>on</strong>gated.<br />

S<strong>in</strong>ce the particle producti<strong>on</strong>s are dom<strong>in</strong>ated by the<br />

small-x part<strong>on</strong>s <strong>in</strong> the high-energy limit, nucleus-nucleus<br />

collisi<strong>on</strong>s then may be effectively modeled as CGC-CGC<br />

collisi<strong>on</strong>s where the classical fields coupled with the charge<br />

sources <strong>on</strong> the light-c<strong>on</strong>e <strong>in</strong>tersect with each other. It is<br />

shown that cross<strong>in</strong>g the two CGCs with each other results<br />

<strong>in</strong> l<strong>on</strong>gitud<strong>in</strong>ally polarized color electric and magnetic<br />

fields due to n<strong>on</strong>-Abelian nature <str<strong>on</strong>g>of</str<strong>on</strong>g> QCD. The term<br />

x –<br />

τ = c<strong>on</strong>st<br />

t<br />

η=c<strong>on</strong>st<br />

A µ<br />

=pure gauge Aµ =pure gauge<br />

(1) (2)<br />

CGC (1)<br />

QGP<br />

Glasma<br />

CGC (2)<br />

Figure 1: CGC-CGC collisi<strong>on</strong>. Str<strong>on</strong>g fields c<strong>on</strong>f<strong>in</strong>ed <strong>in</strong><br />

each nucleus before the collisi<strong>on</strong>, and boost-<strong>in</strong>variantly extend<br />

between the two reced<strong>in</strong>g nuclei after the collisi<strong>on</strong>.<br />

τ = √ t 2 − z 2 and η = (1/2) ln((t + z)/(t − z)).<br />

Glasma[5] was recently co<strong>in</strong>ed for this transient c<strong>on</strong>figurati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g fields produced from the CGC, which evolves<br />

toward the QCD plasma. This is a l<strong>on</strong>gitud<strong>in</strong>al-boost <strong>in</strong>variant<br />

c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> very str<strong>on</strong>g classical fields. See<br />

Fig. 1, where <strong>in</strong>com<strong>in</strong>g nuclei are modeled as two CGCs.<br />

Expand<strong>in</strong>g flux tube<br />

With a simple Abelian Ansatz for a purely magnetic<br />

flux tube with l<strong>on</strong>gitud<strong>in</strong>al polarizati<strong>on</strong>, <strong>on</strong>e can f<strong>in</strong>d an<br />

analytic soluti<strong>on</strong>[3], which stretches al<strong>on</strong>g <strong>in</strong> the z directi<strong>on</strong><br />

and expands transversely, as shown <strong>in</strong> Fig. 2. There<br />

2<br />

1<br />

-2 -1 1 2<br />

-1<br />

-2<br />

Qsr<br />

x +<br />

z<br />

Qsz<br />

Figure 2: Magnetic flux tube pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile at Qsτ = 1, 2.<br />

are <strong>on</strong>ly two n<strong>on</strong>vanish<strong>in</strong>g comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> field strengths,<br />

l<strong>on</strong>gitud<strong>in</strong>al Bz and transverse ET . The time evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the field strengths <strong>in</strong>tegrated over the transverse plane<br />

at z = 0 is plotted <strong>in</strong> Fig. 3. The stress tensor at


1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

B 2 z<br />

E 2 T<br />

0.5 1 1.5 2 2.5 3<br />

Qsτ<br />

Figure 3: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the field strength as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Qsτ. Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a purely electric flux tube is obta<strong>in</strong>ed by<br />

exchang<strong>in</strong>g E and B.<br />

τ = 0+ is found as diag(E, E, E, −E) with energy density<br />

E, which is quite different from the equilibrium form<br />

diag(E, E/3, E/3, E/3). Note that the l<strong>on</strong>gitud<strong>in</strong>al pressure<br />

∝ E 2 T − B2 z is always negative and <strong>on</strong>ly approaches<br />

to zero at later times, while the transverse pressure ∝ B 2 z is<br />

positive.<br />

How will this highly anisotropic c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g<br />

fields evolve <strong>in</strong>to locally thermalized plasma — quark<br />

glu<strong>on</strong> plasma (QGP)? Here we argue that the <strong>in</strong>itial<br />

glasma c<strong>on</strong>figurati<strong>on</strong> with color magnetic fields has unstable<br />

modes, which play a role <strong>in</strong> the system evoluti<strong>on</strong>.<br />

NIELSEN-OLESEN INSTABILITY<br />

S<strong>in</strong>ce late 70s it has been known that a uniform magnetic<br />

field c<strong>on</strong>figurati<strong>on</strong> <strong>in</strong> SU(2) gauge theory is unstable — the<br />

Nielsen-Olesen (N-O) <strong>in</strong>stability[1], which we review here.<br />

We decompose the SU(2) gauge fields <strong>in</strong>to diag<strong>on</strong>al and<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f-diag<strong>on</strong>al parts, and assume a homogeneous magnetic<br />

field <strong>in</strong> the 3rd color directi<strong>on</strong>:<br />

L = − 1<br />

4 fµνf µν − 1<br />

2 |Dµφν − Dνφµ| 2 + igf µν φ ∗ µφν<br />

+ 1<br />

4 g2 (φµφ ∗ ν − φνφ ∗ µ) 2 , (1)<br />

where Aµ ≡ A 3 µ, φµ ≡ (A 1 µ + iA 2 µ)/ √ 2 and fµν =<br />

∂µAν − ∂νAµ. D = ∂µ + igAµ is the covariant derivative<br />

w.r.t. Aµ. Regard<strong>in</strong>g Aµ gauge theory, the <str<strong>on</strong>g>of</str<strong>on</strong>g>f-diag<strong>on</strong>al<br />

parts φµ behave as charged massless vector fields. They<br />

form the Landau levels EN = (2N +1)gB (N = 0, 1, · · · )<br />

<strong>in</strong> a c<strong>on</strong>stant magnetic field background B with<strong>in</strong> the l<strong>in</strong>ear<br />

approximati<strong>on</strong> with φ be<strong>in</strong>g small fluctuati<strong>on</strong>s. However,<br />

the most important observati<strong>on</strong> is that the third term<br />

<strong>in</strong> Eq. (1) gives the Zeeman splitt<strong>in</strong>g ±2gB for sp<strong>in</strong> ±, result<strong>in</strong>g<br />

<strong>in</strong> the mode energy<br />

ω 2 = p 2 z + (2N + 1)gB ± 2gB , (2)<br />

where we see that the lowest mode has the mass term with<br />

a wr<strong>on</strong>g sign −gB. This is the N-O <strong>in</strong>stability. The growth<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>stability depends <strong>on</strong> the l<strong>on</strong>gitud<strong>in</strong>al momentum<br />

pz as γ = √ gB − p 2 z. The <strong>in</strong>stability appears even at<br />

pz = 0, which is qualitative difference from the pz dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Weibel <strong>in</strong>stability known <strong>in</strong> plasma physics.<br />

Figure 4: Schematic picture for glasma with fluctuati<strong>on</strong>s,<br />

between two reced<strong>in</strong>g nuclei.<br />

GLASMA INSTABILITIES<br />

As previously menti<strong>on</strong>ed, the boost-<strong>in</strong>variant background<br />

never acquires positive l<strong>on</strong>gitud<strong>in</strong>al pressure,<br />

which is necessary for system isotropizati<strong>on</strong>. We c<strong>on</strong>sider<br />

here small fluctuati<strong>on</strong>s φ around the background field <strong>in</strong> the<br />

τ-η coord<strong>in</strong>ates. For simplicity, we neglect the transverse<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the collisi<strong>on</strong> event and assume transversely a<br />

uniform magnetic background B, even though, more realistically,<br />

the background field should have transverse structures<br />

characterized by the scale Qs, and an electric field <strong>in</strong><br />

the background is also allowed.<br />

By comb<strong>in</strong><strong>in</strong>g the fluctuat<strong>in</strong>g fields φµ(τ, η, x⊥) as<br />

φ ± ≡ 1<br />

√ 2 (φ1 ± iφ2) , (3)<br />

we f<strong>in</strong>d the mode equati<strong>on</strong> for φ ± [2, 3],<br />

(<br />

)<br />

˜φ ± = 0 , (4)<br />

1<br />

τ ∂τ (τ∂τ ˜ φ ± ) +<br />

EN ± 2gB + ν2<br />

τ 2<br />

where ˜ φ is the mode with N specify<strong>in</strong>g the Landau level<br />

and with ν the momentum c<strong>on</strong>jugate to η. There is another<br />

equati<strong>on</strong> for φ ∗ which has the opposite charge to φ.<br />

• First we note that the sp<strong>in</strong>-+ mode with ν = 0 <strong>in</strong> the<br />

lowest Landau level N = 0 has a negative mass −gB<br />

just as <strong>in</strong> the previous secti<strong>on</strong>. There exists the N-O<br />

<strong>in</strong>stability <strong>in</strong> the glasma.<br />

• N<strong>on</strong>zero ν modes are stabilized by the term (ν/τ) 2 .<br />

For ν is dimensi<strong>on</strong>less, physical l<strong>on</strong>gitud<strong>in</strong>al momentum<br />

corresp<strong>on</strong>ds to pz ∼ ν/τ[6], which is large at<br />

small τ with fixed ν. The maximum value νmax for<br />

the <strong>in</strong>stability is determ<strong>in</strong>ed by<br />

νmax = τ √ gB ∼ τQs . (5)<br />

In fact, these po<strong>in</strong>ts were observed <strong>in</strong> a numerical simulati<strong>on</strong><br />

for the glasma[7], although the proporti<strong>on</strong>ality c<strong>on</strong>stant<br />

<strong>in</strong> the sec<strong>on</strong>d po<strong>in</strong>t was found very small there. At<br />

the same time, we notice that the expansi<strong>on</strong> generally delays<br />

the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>stability.


GLASMA INSTABILITIES IN A BOX<br />

Recently, classical statistical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Abelian<br />

gauge theories were performed <strong>in</strong> a box without expansi<strong>on</strong><br />

but with very anisotropic <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong>s[8], motivated by<br />

the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> the glasma. They found the unstable behavior<br />

whose growth rate is shown <strong>in</strong> Fig. 5 as “primary.” Furthermore,<br />

they claimed that there is a sec<strong>on</strong>dary <strong>in</strong>stability<br />

which is triggered by the first (primary) <strong>in</strong>stability.<br />

The pz dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the growth rate γ <str<strong>on</strong>g>of</str<strong>on</strong>g> the primary<br />

<strong>in</strong>stability looks c<strong>on</strong>sistent with the N-O <strong>in</strong>stability; γ is<br />

n<strong>on</strong>zero at zero pz and decreases as pz <strong>in</strong>creases. On the<br />

other hand, the growth rate γ <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>dary <strong>in</strong>creases<br />

with pz, and extends to the larger pz regi<strong>on</strong>. In Ref. [8], the<br />

sec<strong>on</strong>dary was discussed as n<strong>on</strong>l<strong>in</strong>ear effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the primary<br />

<strong>in</strong>stability <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the re-summed self-energy diagrams.<br />

Here, we attempt to <strong>in</strong>terpret their f<strong>in</strong>d<strong>in</strong>gs from the viewpo<strong>in</strong>t<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the N-O <strong>in</strong>stability scenario[4].<br />

The numerical simulati<strong>on</strong> starts with the <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong><br />

very smooth <strong>in</strong> the z directi<strong>on</strong> but randomized <strong>in</strong> the x-y directi<strong>on</strong>s<br />

with the scale ∆ ∼ Qs. The color electric fields<br />

are set to zero at the <strong>in</strong>itial time. This c<strong>on</strong>figurati<strong>on</strong> will<br />

allow tube structures <str<strong>on</strong>g>of</str<strong>on</strong>g> the color magnetic fields al<strong>on</strong>g the<br />

z directi<strong>on</strong>, and therefore the N-O <strong>in</strong>stability is expected<br />

there as the primary[4]. If the magnetic field po<strong>in</strong>t to the<br />

3rd directi<strong>on</strong> <strong>in</strong> the SU(2) color space, the <str<strong>on</strong>g>of</str<strong>on</strong>g>f-diag<strong>on</strong>al<br />

comp<strong>on</strong>ents φ ± w.r.t. the magnetic field are amplified <strong>in</strong><br />

time due to the N-O <strong>in</strong>stability.<br />

Because φ ± are charged fields, they can also <strong>in</strong>duce<br />

the color electric current al<strong>on</strong>g the magnetic field. Although<br />

the directi<strong>on</strong> and magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric current<br />

cannot be determ<strong>in</strong>ed with<strong>in</strong> the l<strong>in</strong>ear analysis, <strong>on</strong>e<br />

may roughly estimate the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the current as J z ∼<br />

O(g · √ gB · B/g) = O((gB) 3/2 /g) ∼ O(Q3 s/g) with<br />

the momentum scale √ gB ∼ Qs and the field amplitude<br />

φ ± ∼ √ B/g. Accord<strong>in</strong>g to the Ampère law, the color<br />

magnetic field <str<strong>on</strong>g>of</str<strong>on</strong>g> order O(Q2 s/g) will be generated around<br />

this current. Let us exam<strong>in</strong>e the c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> this azimuthal<br />

magnetic field.<br />

Follow<strong>in</strong>g the same analysis as the N-O <strong>in</strong>stability but <strong>in</strong><br />

the cyl<strong>in</strong>drical coord<strong>in</strong>ates with a c<strong>on</strong>stant background Bθ ,<br />

we f<strong>in</strong>d the mode equati<strong>on</strong> for the <str<strong>on</strong>g>of</str<strong>on</strong>g>f-diag<strong>on</strong>al comp<strong>on</strong>ent<br />

ϕ ± = (φz ± iφr )/ √ 2 as<br />

{<br />

− 1 d d<br />

r<br />

r dr dr + ( pz − gB θ r )2 1<br />

+ − 2gBθ} ϕ<br />

2r2 − (r)<br />

=ω 2 ϕ − (r) , (6)<br />

assum<strong>in</strong>g that ϕ + is small compared to ϕ − and sett<strong>in</strong>g<br />

ϕ + = 0. The parameter pz shifts the potential m<strong>in</strong>imum<br />

outward. Thus, for larger pz the N-O <strong>in</strong>stability appears as<br />

<strong>in</strong> the orig<strong>in</strong>al case, while 1/r 2 term cannot be neglected<br />

for smaller pz — the growth rate is approximately<br />

−ω 2 ≡ γ 2 ∼ gB θ<br />

(<br />

1 − gBθ<br />

4p2 )<br />

z<br />

. (7)<br />

This gives rise to qualitatively the same behavior as γ for<br />

the sec<strong>on</strong>dary shown <strong>in</strong> Fig. 5.<br />

γ / ε 1/4<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0 2.5<br />

pz / ε 1/4<br />

prim. 96 3<br />

prim. 128 3<br />

sec. 96 3<br />

sec. 128 3<br />

Figure 5: Growth rates <str<strong>on</strong>g>of</str<strong>on</strong>g> the primary and sec<strong>on</strong>dary <strong>in</strong>stabilities<br />

vs l<strong>on</strong>gitud<strong>in</strong>al momentum pz, observed <strong>in</strong> Ref. [8]<br />

(<strong>in</strong> units <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>itial energy density ε).<br />

OUTLOOK<br />

In ultrarelativistic HIC, a system <str<strong>on</strong>g>of</str<strong>on</strong>g> extremely str<strong>on</strong>g<br />

color fields, glasma, is generated. N<strong>on</strong>-equilibrium dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the glasma itself is very <strong>in</strong>terest<strong>in</strong>g and at the same<br />

time is quite important to understand the producti<strong>on</strong> mechanism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> QGP. We have discussed the Nielsen-Olesen <strong>in</strong>stabilities<br />

<strong>in</strong> the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> HIC, and shown that results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the numerical simulati<strong>on</strong>s[7, 8] can be understood nicely<br />

from this viewpo<strong>in</strong>t.<br />

The Nielsen-Olesen <strong>in</strong>stability certa<strong>in</strong>ly exists <strong>in</strong> n<strong>on</strong>-<br />

Abelian gauge theories. Its relevance to “thermalizati<strong>on</strong>”<br />

mechanism <strong>in</strong> HIC, however, is under debate. The Weibel<br />

<strong>in</strong>stability is another possibility am<strong>on</strong>g others. Towards understand<strong>in</strong>g<br />

the early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> HIC, <strong>on</strong>e needs obviously to<br />

go bey<strong>on</strong>d the l<strong>in</strong>ear analysis and has to study the n<strong>on</strong>l<strong>in</strong>ear<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge field. To this end, it is <strong>in</strong>dispensable to<br />

pursue more detailed numerical simulati<strong>on</strong>s together with<br />

theoretical physics <strong>in</strong>sights.<br />

REFERENCES<br />

[1] N.K. Nielsen and P. Olesen, Nucl. Phys. B 144 376 (1978).<br />

[2] A. Iwazaki, Prog. Theor. Phys. 121 809 (2009).<br />

[3] H. Fujii and K. Itakura, Nucl. Phys. A 809 88 (2008).<br />

[4] H. Fujii, K. Itakura and A. Iwazaki, Nucl. Phys. A 828 178<br />

(2009).<br />

[5] T. Lappi and L. McLerran, Nucl. Phys. A 772 200 (2006).<br />

[6] N. Tanji, arXiv:arXiv:1010.4516 [hep-ph].<br />

[7] P. Romatschke and R. Venugopalan, Phys. Rev. Lett. 96<br />

045011 (2006).<br />

[8] J. Berges, S. Scheffler and D. Sexty, Phys. Rev. D 77 034504<br />

(2008).


First order quantum correcti<strong>on</strong> to the Larmor radiati<strong>on</strong> ∗<br />

Gen Nakamura<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan<br />

Abstract<br />

First-order quantum correcti<strong>on</strong> to the Larmor radiati<strong>on</strong> is<br />

<strong>in</strong>vestigated <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the scalar QED <strong>on</strong> a homogeneous<br />

background <str<strong>on</strong>g>of</str<strong>on</strong>g> a time-dependent electric field, which<br />

is a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a recent work by Higuchi and Walker<br />

so as to be extended for an accelerated charged particle <strong>in</strong><br />

a relativistic moti<strong>on</strong>. We obta<strong>in</strong> a simple approximate formula<br />

for the quantum correcti<strong>on</strong> <strong>in</strong> the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> the relativistic<br />

moti<strong>on</strong> when the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle moti<strong>on</strong> is<br />

parallel to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field.<br />

INTRODUCTION<br />

The Larmor radiati<strong>on</strong> is the classical radiati<strong>on</strong> from a<br />

charged particle <strong>in</strong> an accelerated moti<strong>on</strong> [2]. In the recent<br />

paper by Higuchi and Walker [3], the quantum correcti<strong>on</strong><br />

to the Larmor radiati<strong>on</strong> is <strong>in</strong>vestigated <strong>on</strong> the basis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the scalar quantum electrodynamics (QED). In their<br />

approach, the mode functi<strong>on</strong> for the complex scalar field<br />

is c<strong>on</strong>structed with the Wentzel-Kramers-Brillou<strong>in</strong> (WKB)<br />

approximati<strong>on</strong>, <strong>in</strong> a form expanded with respect to ¯h. In a<br />

series <str<strong>on</strong>g>of</str<strong>on</strong>g> Higuchi and Mart<strong>in</strong>’s work [4, 5, 6] (see also references<br />

there<strong>in</strong>), it has been well understood that the mode<br />

functi<strong>on</strong> reproduces the classical Larmor formula when the<br />

radiati<strong>on</strong> energy is evaluated at the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯h 0 . The firstorder<br />

quantum correcti<strong>on</strong> to the classical Larmor radiati<strong>on</strong><br />

is evaluated at the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯h <strong>in</strong> Ref. [3], though the <strong>in</strong>vestigati<strong>on</strong><br />

is limited to the n<strong>on</strong>-relativistic moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

charged particle.<br />

In our work, we c<strong>on</strong>sider a simple generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Higuchi and Walker’s work [3], <strong>in</strong> order to <strong>in</strong>vestigate the<br />

case a relativistic moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an accelerated charge. Assum<strong>in</strong>g<br />

a homogeneous but time-vary<strong>in</strong>g background <str<strong>on</strong>g>of</str<strong>on</strong>g> electric<br />

field, we derive a formula for the radiati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯h, the first-order correcti<strong>on</strong> due to the quantum<br />

effect. This generalized formula is applicable to the<br />

accelerated charge <strong>in</strong> a relativistic moti<strong>on</strong>, and we focus<br />

our <strong>in</strong>vestigati<strong>on</strong> <strong>on</strong> the first-order quantum correcti<strong>on</strong> to<br />

the Larmor radiati<strong>on</strong> <strong>in</strong> the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> the relativistic moti<strong>on</strong>.<br />

FORMULATION<br />

We c<strong>on</strong>sider the scalar QED with the acti<strong>on</strong>,<br />

∫<br />

S = dtd 3 x<br />

×<br />

[<br />

(Dµφ) † D µ φ − m2<br />

¯h 2 φ† φ − 1<br />

∗ This presentati<strong>on</strong> is based <strong>on</strong> Ref.[1]<br />

4µ0<br />

FµνF µν<br />

]<br />

, (1)<br />

φ<br />

Pi<br />

k<br />

Pf<br />

Figure 1: Feynman Diagram for the process.<br />

where Dµ = (∂/∂x µ + ieAµ/¯h), e and m are the charge<br />

and the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the massive scalar field, respectively, and<br />

µ0 is the magnetic permeability <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum. We work <strong>in</strong><br />

the M<strong>in</strong>kowski spacetime, but c<strong>on</strong>sider the homogeneous<br />

electric background field E(t), which is related to the vector<br />

potential by Aµ = (0, A(t)) and ˙ A(t) = −E(t), where<br />

the dot denotes the differentiati<strong>on</strong> with respect to the time.<br />

The equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the free scalar field yields<br />

( ∂ 2<br />

∂t 2 + (p − eA(t))2 + m 2<br />

¯h 2<br />

γ<br />

φ<br />

)<br />

ϕp(t) = 0, (2)<br />

where ϕp(t) is the coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fourier expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the field, i.e., the mode functi<strong>on</strong>. Us<strong>in</strong>g the mode functi<strong>on</strong>,<br />

which is normalized so as to be ˙ϕ ∗ pϕp − ϕ ∗ p ˙ϕp = i, the<br />

quantized field is c<strong>on</strong>structed as<br />

φ(x) =<br />

√ ¯h<br />

L 3<br />

∑<br />

p<br />

(<br />

ϕp(t)bp + ϕ ∗ −p(t)c †<br />

)<br />

−p e ip·x/¯h , (3)<br />

where L 3 is the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the space, the creati<strong>on</strong> and annihilati<strong>on</strong><br />

operators satisfy the commutati<strong>on</strong> relati<strong>on</strong>s,<br />

[bp, b †<br />

p ′] = δp,p ′, [bp, bp ′] = [b† p, b †<br />

′] = 0, (4)<br />

and the same relati<strong>on</strong>s hold for cp and c † p. We also quantize<br />

the free electromagnetic field as,<br />

Aµ =<br />

√ µ0¯h<br />

L 3<br />

∑<br />

λ=1,2<br />

∑<br />

k<br />

ɛ λ µ<br />

p<br />

( −ikt e<br />

√ a<br />

2k λ )<br />

k + h.c. e ik·x , (5)<br />

where ɛ λ µ denotes the polarizati<strong>on</strong> vector, and a λ†<br />

k and aλ k<br />

are the creati<strong>on</strong> and annihilati<strong>on</strong> operators which satisfy the<br />

follow<strong>in</strong>g commutati<strong>on</strong> relati<strong>on</strong>,<br />

[a λ k, a λ′ †<br />

k ′ ] = δ λλ′<br />

δk,k ′. (6)<br />

We c<strong>on</strong>sider the process, <strong>in</strong> which <strong>on</strong>e phot<strong>on</strong> is emitted<br />

from a charged particle, as shown <strong>in</strong> Fig. 1. Note that<br />

this process is prohibited without the background electric


field because <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lorentz <strong>in</strong>variance <str<strong>on</strong>g>of</str<strong>on</strong>g> the M<strong>in</strong>kowski<br />

spacetime, which ensures existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the frame that the<br />

charged particle is at rest. However, <strong>on</strong> the electric field<br />

background, we have the radiati<strong>on</strong> energy from the process,<br />

which can be evaluated, as follows. Us<strong>in</strong>g the <strong>in</strong>-<strong>in</strong><br />

formalism [7, 8], we may compute the radiati<strong>on</strong> energy at<br />

the lowest order <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupl<strong>in</strong>g c<strong>on</strong>stant,<br />

E = ∑<br />

∫<br />

λ<br />

∑<br />

∫<br />

−2<br />

= ¯h<br />

λ<br />

d 3 k¯hk〈a λ†<br />

k aλ k〉<br />

d 3 ∫ ∞ ∫ ∞<br />

k¯hkRe dt2<br />

−∞<br />

<br />

× <strong>in</strong>|HI(t1)a λ†<br />

k aλkHI(t2)|<strong>in</strong> dt1<br />

−∞<br />

<br />

, (7)<br />

where we adopted the range <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>tegrati<strong>on</strong> from the <strong>in</strong>f<strong>in</strong>ite<br />

past to the <strong>in</strong>f<strong>in</strong>ite future, and |<strong>in</strong>〉 denotes the <strong>in</strong>itial<br />

state, which we choose as <strong>on</strong>e charged particle state with<br />

the momentum pi, i.e., |<strong>in</strong>〉 = b † pi |0〉, and<br />

HI(t) = − ie<br />

∫<br />

d<br />

¯h<br />

3 xA µ<br />

{(<br />

× ∂µ − ie<br />

¯h Āµ<br />

)<br />

φ † φ − φ †<br />

(<br />

∂µ + ie<br />

¯h Āµ<br />

) }<br />

φ .(8)<br />

In order to evaluate the quantum correcti<strong>on</strong>, we c<strong>on</strong>sider<br />

the expansi<strong>on</strong> <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> a power series <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯h. Up to the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> O(¯h), we have<br />

where we def<strong>in</strong>ed<br />

E = E (0) + E (1) + O(¯h 2 ), (9)<br />

E (0) =<br />

(( 2 d x<br />

×<br />

dξ2 e2<br />

(4π) 2ɛ0 )2<br />

∫ ∫<br />

dΩˆ k dξ<br />

(<br />

− ˆk · d2x dξ2 )2)<br />

. (10)<br />

The expressi<strong>on</strong> (10) yields the classical formula <str<strong>on</strong>g>of</str<strong>on</strong>g> the Larmor<br />

radiati<strong>on</strong> from a charged particle. The first-order quantum<br />

correcti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯h is described by<br />

E (1) =<br />

e2¯h (4π) 3 ∫ ∫ ∫<br />

dΩˆ k dξ dξ<br />

ɛ0<br />

′ 1<br />

ξ − ξ ′<br />

×<br />

{ (<br />

d d<br />

−<br />

dξ dξ ′<br />

)<br />

d d<br />

dξ dξ ′<br />

[( (ˆk<br />

dx<br />

)(<br />

· ˆk<br />

dx<br />

·<br />

dξ<br />

′<br />

dξ ′<br />

)<br />

− dx dx′<br />

·<br />

dξ dξ ′<br />

)(<br />

ˆk · dx dτ<br />

dt dt + ˆ k · dx′<br />

dt ′<br />

dτ ′<br />

dt ′<br />

+<br />

)]<br />

2 d2<br />

dξ2 d2 dξ ′2<br />

[( (ˆk<br />

dx<br />

)(<br />

· ˆk<br />

dx<br />

·<br />

dξ<br />

′<br />

dξ ′<br />

)<br />

− dx dx′<br />

·<br />

dξ dξ ′<br />

×<br />

)<br />

∫ ξ(t) ′′<br />

′′ dτ<br />

dξ<br />

dξ ′′<br />

( (<br />

1 − ˆk · dx′′<br />

dt ′′<br />

) 2)] }<br />

, (11)<br />

ξ ′ (t ′ )<br />

where we follow the notati<strong>on</strong>s <strong>in</strong> Ref.[1]<br />

APPROXIMATE FORMULAS<br />

In the n<strong>on</strong>-relativistic limit, where the velocity v =<br />

dx/dt is small enough compared with the velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> light,<br />

|v| ≪ 1, Eqs. (10) and (11) reduce to<br />

E (0) e<br />

=<br />

2 ∫<br />

dt ˙v(t) · ˙v(t), (12)<br />

6πɛ0<br />

E (1) =<br />

e 2 ¯h<br />

6π 2 ɛ0m<br />

∫ ∫<br />

dt dt ′<br />

× ¨v(t) · ˙v(t′ ) − ˙v(t) · ¨v(t ′ )<br />

t − t ′ , (13)<br />

respectively. Eq. (13) was found for the first time by<br />

Higuchi and Walker <strong>in</strong> Ref. [3]. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the periodic<br />

electric field, |E| = E0 s<strong>in</strong> ωt, where E0 is a c<strong>on</strong>stant,<br />

we have the periodic accelerati<strong>on</strong>, | ˙v| = (eE0/m) s<strong>in</strong> ωt.<br />

Then,<br />

dE (0)<br />

dt = e4E2 0<br />

m2 dE (1)<br />

dt = −¯he4 E2 0<br />

m2 s<strong>in</strong> 2 ωt<br />

,<br />

6πɛ0<br />

(14)<br />

ω<br />

.<br />

12πɛ0m<br />

(15)<br />

After tak<strong>in</strong>g an average over a l<strong>on</strong>g time-durati<strong>on</strong>, we have<br />

E (1)<br />

E<br />

¯hω<br />

= − , (16)<br />

(0) mc2 where c is the light velocity, which is restored here. The<br />

quantum effect becomes important when the time scale <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the accelerati<strong>on</strong> multiplied by c is comparable to the Compt<strong>on</strong><br />

wavelength, namely, when the wave-like feature <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

particle appears.<br />

Next, let us c<strong>on</strong>sider the relativistic limit, |pi| ≫<br />

|eA|, m. For simplicity, we c<strong>on</strong>sider the case when the<br />

directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle moti<strong>on</strong> is always parallel to that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the background electric field, i.e., v ∝ A. Namely, we c<strong>on</strong>sider<br />

the case when the directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle’s moti<strong>on</strong><br />

and the background electric field are parallel at any moment,<br />

and adopt this directi<strong>on</strong> as the z axis. Then, we may<br />

write A = (0, 0, A(t)), A ˙ = (0, 0, −E(t)), v = (0, 0, v),<br />

and pi = (0, 0, pi). In this case, we have<br />

E (0) = 1 m<br />

6πɛ0<br />

4e4 p6 i<br />

∫<br />

dt<br />

˙<br />

A 2 (t)<br />

(1 − v2 . (17)<br />

) 3<br />

We c<strong>on</strong>sider the case, pi ≫ |eA|, m. We also assume<br />

|A| ∼ | ˙ A/ω| ∼ | Ä/ω2 |, where 1/ω is a time-scale <str<strong>on</strong>g>of</str<strong>on</strong>g> timevary<strong>in</strong>g<br />

background electric field. In this relativistic limit,<br />

we have<br />

E (1) − e4¯h 3(2π) 2 m<br />

ɛ0<br />

2<br />

p5 ∫ ∫<br />

dt dt<br />

i<br />

′<br />

×<br />

1<br />

(1 − ¯v 2 ) 3<br />

Ä(t) ˙ A(t ′ ) − ˙ A(t) Ä(t′ )<br />

t − t ′ . (18)<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the periodic background <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric<br />

field, ˙<br />

A(t) = −E0 s<strong>in</strong> ωt, where E0 is a c<strong>on</strong>stant, we have<br />

dE (0)<br />

dt = e4 m 4<br />

6πɛ0p 6 i<br />

E2 0 cos2 ωt<br />

(1 − v2 , (19)<br />

) 3


dE (1)<br />

dt = ¯he4 m 2<br />

12πɛ0p 5 i<br />

E2 0ω<br />

(1 − v2 . (20)<br />

) 3<br />

After averag<strong>in</strong>g over sufficiently l<strong>on</strong>g time-durati<strong>on</strong>, we<br />

have<br />

E (1)<br />

pi<br />

=<br />

E (0) mc<br />

¯hω<br />

. (21)<br />

mc2 Note that the quantum correcti<strong>on</strong> E (1) is positive, which is<br />

a c<strong>on</strong>trast to the n<strong>on</strong>-relativistic case.<br />

For the radiati<strong>on</strong> from an electr<strong>on</strong> <strong>in</strong> a periodic electric<br />

field, e.g., by a laser field, Eq. (21) is estimated as<br />

E (1)<br />

∼ 2.6 × 10−3<br />

E (0)<br />

×<br />

(<br />

pic<br />

)<br />

GeV<br />

( mc2 )−2 (<br />

0.5MeV<br />

ω<br />

10 15 s −1<br />

)<br />

,(22)<br />

where ω ∼ 10 15 s −1 corresp<strong>on</strong>ds to an X-ray laser. The<br />

quantum effect becomes significant when the electr<strong>on</strong> k<strong>in</strong>etic<br />

energy reaches TeV scale. The above formula is<br />

derived under the c<strong>on</strong>diti<strong>on</strong>, pi ≫ |eA|, m. For a periodic<br />

electric field <str<strong>on</strong>g>of</str<strong>on</strong>g> large amplitude, pi ∼ |eA|, the<br />

c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the relativistic moti<strong>on</strong> cannot be always guaranteed,<br />

because the physical momentum might become<br />

|pi − eA| ∼ m. In this case, it is difficult to express the<br />

quantum correcti<strong>on</strong> <strong>in</strong> a simple analytic form. We need a<br />

more general treatment <strong>in</strong>clud<strong>in</strong>g fully numerical calculati<strong>on</strong>,<br />

because the n<strong>on</strong>-locality plays an important role. Potentially,<br />

there is a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> room for discussi<strong>on</strong> about how to<br />

detect the quantum effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the Larmor radiati<strong>on</strong> experimentally,<br />

but this is out <str<strong>on</strong>g>of</str<strong>on</strong>g> scope <str<strong>on</strong>g>of</str<strong>on</strong>g> the present work.<br />

SUMMARY<br />

In this work, we obta<strong>in</strong>ed the general formula for the<br />

first-order quantum correcti<strong>on</strong> to the Larmor radiati<strong>on</strong> from<br />

a charged particle mov<strong>in</strong>g <strong>in</strong> spatially homogeneous timedependent<br />

electric field. This formula reproduces the same<br />

result as that <strong>in</strong> Ref. [3], <strong>in</strong> the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-relativistic<br />

moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the charged particle. Our result is useful to <strong>in</strong>vestigate<br />

the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a relativistic moti<strong>on</strong>.<br />

By apply<strong>in</strong>g the formula to the cases <str<strong>on</strong>g>of</str<strong>on</strong>g> a periodic accelerati<strong>on</strong>,<br />

it was dem<strong>on</strong>strated that the lead<strong>in</strong>g quantum<br />

effect enhances the radiati<strong>on</strong> <strong>in</strong> the relativistic limit and<br />

that it decreases <strong>in</strong> the n<strong>on</strong>-relativistic limit. This quantum<br />

effect will become important when the <strong>in</strong>cident k<strong>in</strong>etic<br />

electr<strong>on</strong> energy approaches TeV scale with an x-ray laser.<br />

This situati<strong>on</strong> is the same <strong>in</strong> some possible functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> accelerati<strong>on</strong><br />

cases. The details <str<strong>on</strong>g>of</str<strong>on</strong>g> our work can be found <strong>in</strong><br />

Ref.[1].<br />

REFERENCES<br />

[1] K. Yamamoto, G. Nakamura, arXiv:1012.5182, accepted for<br />

publicati<strong>on</strong> <strong>in</strong> Phys. Rev. D<br />

[2] J. D. Jacks<strong>on</strong>, Classical Electrodynamics (Wiley, 1998)<br />

[3] A. Higuchi and P. J. Walker, Phys. Rev. D 80 105019 (2009)<br />

[4] A. Higuchi and G. D. R. Mart<strong>in</strong>, Found. Phys. 35 1149<br />

(2005)<br />

[5] A. Higuchi and G. D. R. Mart<strong>in</strong>, Phys. Rev. D 73 025019<br />

(2006)<br />

[6] A. Higuchi and G. D. R. Mart<strong>in</strong>, Phys. Rev. D 74 125002<br />

(2006)<br />

[7] S. We<strong>in</strong>berg, Phys. Rev. D 72 043514 (2005)<br />

[8] P. Adshead, R. Easther and E. A. Lim, Phys. Rev. D 80<br />

083521 (2009)<br />

[9] H. Nomura, M. Sasaki and K. Yamamoto JCAP 0611 013<br />

(2006)<br />

[10] P. Chen, T. Tajima, Phys. Rev. Lett. 83 256 (1999)<br />

[11] R. Schutzhold, G. Schaller, D. Habs, Phys. Rev. Lett. 97,<br />

121302 (2006) ;Erratum-ibid. 97 139902 (2006)<br />

[12] L.C. B. Crisp<strong>in</strong>o, A. Higuchi, and G. E. A. Matsas, Rev.<br />

Mod. Phys. 80 787 (2008)<br />

[13] S. Iso, Y. Yamamoto, S. Zhang, arXiv:1011.4191<br />

[14] A. Higuchi and P. J. Walker, Phys. Rev. D 79 105023 (2009)<br />

[15] R. Kimura, G. Nakamura, and K. Yamamoto,<br />

arXiv:1101.4699, accepted for publicati<strong>on</strong> <strong>in</strong> Phys.<br />

Rev. D<br />

[16] N. D. Birrell and P. C. W. Davies, Quantum fields <strong>in</strong> curved<br />

space (Cambridge University Press ,1982)


FAST VACUUM DECAY INTO PARTICLE PAIRS<br />

IN STRONG ELECTRIC AND MAGNETIC FIELDS ∗<br />

Y. Hidaka, T. Iritani, and H. Suganuma,<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, Kyoto University, Kitashirakawa Oiwakecho, Sakyo, Kyoto 606-8502, Japan<br />

Abstract<br />

We discuss fermi<strong>on</strong> pair producti<strong>on</strong>s <strong>in</strong> str<strong>on</strong>g electric<br />

and magnetic fields. We po<strong>in</strong>t out that, <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> massless<br />

fermi<strong>on</strong>s, the vacuum persistency probability per unit<br />

time and volume is zero <strong>in</strong> the str<strong>on</strong>g electric and magnetic<br />

fields, while it is f<strong>in</strong>ite when the magnetic field is absent.<br />

The c<strong>on</strong>tributi<strong>on</strong> from the lowest Landau level (LLL) dom<strong>in</strong>ates<br />

this phenomen<strong>on</strong>. We also discuss dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

vacuum decay, us<strong>in</strong>g an effective theory <str<strong>on</strong>g>of</str<strong>on</strong>g> the LLL projecti<strong>on</strong>,<br />

tak<strong>in</strong>g <strong>in</strong>to account the back reacti<strong>on</strong>.<br />

INTRODUCTION<br />

Dynamics <strong>in</strong> str<strong>on</strong>g fields has been an <strong>in</strong>terest<strong>in</strong>g subject<br />

<strong>in</strong> theoretical physics. Recently, this subject is be<strong>in</strong>g<br />

paid attenti<strong>on</strong> also <strong>in</strong> the experimental physics <str<strong>on</strong>g>of</str<strong>on</strong>g> creati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the quark glu<strong>on</strong> plasma. In high-energy heavy-i<strong>on</strong> collisi<strong>on</strong><br />

experiments, at the so-called Glasma stage [1] just<br />

after the collisi<strong>on</strong>, l<strong>on</strong>gitud<strong>in</strong>al color electric and magnetic<br />

fields are expected to be produced <strong>in</strong> the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

color glass c<strong>on</strong>densate <str<strong>on</strong>g>of</str<strong>on</strong>g> order 1–2 GeV <strong>in</strong> RHIC and 5<br />

GeV <strong>in</strong> LHC. In the peripheral collisi<strong>on</strong>, a str<strong>on</strong>g magnetic<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> order 100 MeV would be <strong>in</strong>duced. The questi<strong>on</strong> is<br />

how the str<strong>on</strong>g fields decay and the system is thermalized.<br />

In this work, we c<strong>on</strong>centrate <strong>on</strong> how the str<strong>on</strong>g fields decay<br />

<strong>in</strong>to particles. For this purpose, we first briefly review<br />

the Schw<strong>in</strong>ger mechanism <strong>in</strong> the coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> electric and<br />

magnetic fields. We will po<strong>in</strong>t out that the vacuum immediately<br />

decays <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> massless fermi<strong>on</strong> and n<strong>on</strong>zero<br />

E and B. For simplicity, we c<strong>on</strong>sider the case that the<br />

electric and magnetic fields are covariantly c<strong>on</strong>stant [2],<br />

i.e., [Dµ, E] = [Dµ, B] = 0, where Dµ = ∂µ − igAµ<br />

is the covariant derivative with the gauge field Aµ. The<br />

electric and magnetic fields are def<strong>in</strong>ed as E i = F i0 and<br />

B i = −ɛ ijk Fjk/2 with Fµν = i[Dµ, Dν]/g. This is a generalizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant fields <strong>in</strong> QED, ∂µE = ∂µB = 0, to<br />

the n<strong>on</strong>-Abelian fields. For the covariantly c<strong>on</strong>stant fields,<br />

all the comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> E and B can be diag<strong>on</strong>alized to be<br />

c<strong>on</strong>stant matrices <strong>in</strong> color space by a gauge transformati<strong>on</strong>.<br />

Without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality, <strong>on</strong>e can also set E = (0, 0, E)<br />

and B = (0, 0, B) by choos<strong>in</strong>g an appropriate Lorentz<br />

frame and the coord<strong>in</strong>ate axis.<br />

∗ This work was supported by the Grant-<strong>in</strong>-Aid for the Global COE<br />

Program “The Next Generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, Spun from Universality and<br />

Emergence” from the M<strong>in</strong>istry <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong>, Culture, Sports, Science and<br />

Technology (MEXT) <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan.<br />

SCHWINGER MECHANISM<br />

The vacuum decay <strong>in</strong> an electric field was discussed by<br />

[3, 4]. C<strong>on</strong>sider the vacuum persistency probability, which<br />

is def<strong>in</strong>ed by<br />

|〈Ωout|Ω<strong>in</strong>〉| 2 = exp(−V T w), (1)<br />

where V and T are <strong>in</strong>f<strong>in</strong>ite space volume and time length.<br />

|Ω<strong>in</strong>〉 and |Ωout〉 are the <strong>in</strong>-vacuum and the out-vacuum def<strong>in</strong>ed<br />

at t = −T/2 and t = T/2, respectively. If the vacuum<br />

is unstable, w has a n<strong>on</strong>zero value, while, if the vacuum<br />

is stable, w vanishes. Therefore, w denotes magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum decay per unit volume and time. When w is<br />

small, |〈Ωout|Ω<strong>in</strong>〉| 2 ≈ 1 − V T w, so that w is regarded as<br />

the pair producti<strong>on</strong> probability per unit volume and time.<br />

For QCD, the analytic formula <str<strong>on</strong>g>of</str<strong>on</strong>g> w for the quark-pair<br />

creati<strong>on</strong> <strong>in</strong> the covariantly c<strong>on</strong>stant is given by [2]<br />

w =<br />

∞∑<br />

n=1<br />

tr g2 EB<br />

4π 2<br />

1<br />

n coth(πnBE−1 )e −nπm2 / √ g 2 E 2<br />

,<br />

(2)<br />

where m denotes the quark-mass matrix and the trace is<br />

taken over the <strong>in</strong>dices <str<strong>on</strong>g>of</str<strong>on</strong>g> color and flavor. This is a n<strong>on</strong>-<br />

Abelian extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the follow<strong>in</strong>g formula for QED [5]:<br />

w =<br />

∞∑<br />

n=1<br />

e 2 EB<br />

4π 2<br />

1<br />

n coth(πnBE−1 )e −nπm2 / √ e 2 E 2<br />

, (3)<br />

with the QED coupl<strong>in</strong>g c<strong>on</strong>stant e(> 0). Note that the<br />

fermi<strong>on</strong> pair creati<strong>on</strong> formalism <strong>in</strong> the covariantly c<strong>on</strong>stant<br />

fields <strong>in</strong> QCD is similar to that <strong>in</strong> QED, so that we hereafter<br />

give the formula for QED, where we set E ≥ 0 and B ≥ 0<br />

by a suitable axis choice and the parity transformati<strong>on</strong>.<br />

In the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field, this formula reduces<br />

to the well-known result,<br />

w =<br />

∞∑<br />

n=1<br />

e 2 E 2<br />

4π 3<br />

1<br />

n 2 e−nπm2 /(eE) . (4)<br />

If the masses are zero, w has a f<strong>in</strong>ite value <str<strong>on</strong>g>of</str<strong>on</strong>g> w =<br />

e 2 E 2 /(24π). The situati<strong>on</strong> changes if the magnetic field<br />

exists. From Eq. (3), w diverges <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic<br />

field. To see this, summ<strong>in</strong>g over all modes <strong>in</strong> Eq. (3),<br />

we obta<strong>in</strong> for small m as<br />

w e2EB 4π2 ln eE<br />

. (5)<br />

πm2 As m → 0, w logarithmically diverges as<br />

w ∝ − ln m → ∞. (6)


Next, let us c<strong>on</strong>sider the orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the divergence <str<strong>on</strong>g>of</str<strong>on</strong>g> w <strong>in</strong><br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> effective dimensi<strong>on</strong>al reducti<strong>on</strong> <strong>in</strong> a str<strong>on</strong>g magnetic<br />

field. When a magnetic field exists, the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the transverse directi<strong>on</strong> is discretized by Landau quantizati<strong>on</strong>.<br />

Actually, the energy spectrum for E=0 is given by<br />

ε = ± √ p 2 z + 2eB(n + 1/2 ∓ sz) + m 2 , (7)<br />

where n = 0, 1, · · · corresp<strong>on</strong>d to the Landau levels,<br />

and sz = ±1/2 is the sp<strong>in</strong>. The system effectively becomes<br />

1+1 dimensi<strong>on</strong>al system with <strong>in</strong>f<strong>in</strong>ite tower <str<strong>on</strong>g>of</str<strong>on</strong>g> massive<br />

state: m 2 n,eff ≡ 2eBn + m2 . For the lowest Landau<br />

level (LLL), n = 0 and s = +1/2, the energy is<br />

ε = ± √ p 2 z + m 2 . This is the spectrum <strong>in</strong> 1+1 dimensi<strong>on</strong>s.<br />

This LLL causes the divergence <str<strong>on</strong>g>of</str<strong>on</strong>g> w as will be shown below.<br />

The divergence <str<strong>on</strong>g>of</str<strong>on</strong>g> w does not mean the divergence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <strong>in</strong>f<strong>in</strong>ite pair producti<strong>on</strong> per unit space-time. The divergence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> w rather implies that the vacuum always decays<br />

and produces pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>. The questi<strong>on</strong> is where the<br />

vacuum goes. In the coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> B and E, <strong>on</strong>e can obta<strong>in</strong><br />

the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the n pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong> with LLL as<br />

|〈n pairs|Ω<strong>in</strong>〉| 2<br />

= exp<br />

[<br />

V eB<br />

−<br />

4π2 ( ∫<br />

eET −<br />

dpznpz<br />

)<br />

ln eE<br />

πm2 ]<br />

.<br />

The vacuum persistency probability corresp<strong>on</strong>ds to all<br />

npz’s be<strong>in</strong>g zero <strong>in</strong> Eq. (8), and w is equal to Eq. (5), so<br />

that w diverges at m = 0. At m = 0, this probability is<br />

f<strong>in</strong>ite <strong>on</strong>ly if the follow<strong>in</strong>g equati<strong>on</strong> is satisfied:<br />

∫<br />

eET − dpznpz = 0. (9)<br />

Therefore, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle with the LLL is restricted<br />

by Eq. (9), and l<strong>in</strong>early <strong>in</strong>creases with time. The<br />

higher Landau levels give heavy effective masses <str<strong>on</strong>g>of</str<strong>on</strong>g> order<br />

eB, so that all the c<strong>on</strong>tributi<strong>on</strong>s to the pair producti<strong>on</strong>s<br />

from such modes are suppressed. The total number <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

particle pairs can be calculated:<br />

N = V T e2 E 2<br />

4π 3<br />

πB<br />

E<br />

(8)<br />

πB<br />

coth . (10)<br />

E<br />

At B = 0, N = V T e 2 E 2 /(4π 3 ). The c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LLL<br />

is obta<strong>in</strong>ed as<br />

N = V T e2 E 2<br />

4π 3<br />

πB<br />

, (11)<br />

E<br />

which is equal to tak<strong>in</strong>g coth(πB/E) → 1 <strong>in</strong> Eq. (10). In<br />

Fig. 1, the total number <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle for the full c<strong>on</strong>tributi<strong>on</strong><br />

and LLL c<strong>on</strong>tributi<strong>on</strong> are shown. The LLL dom<strong>in</strong>ates<br />

for B > E, so that the effective model for the LLL works<br />

well for B > E.<br />

THEORY OF STRONG MAGNETIC FIELD<br />

In this secti<strong>on</strong>, we study particle producti<strong>on</strong>s com<strong>in</strong>g<br />

from the LLL for QED taken <strong>in</strong>to account the back reacti<strong>on</strong>.<br />

For this purpose, we c<strong>on</strong>sider LLL projected theory,<br />

N(E,B)/N(E,B=0)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

LLL<br />

Full<br />

0 0.5 1 1.5<br />

B/E<br />

Figure 1: Ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle number to that at B = 0.<br />

The solid l<strong>in</strong>e denotes the c<strong>on</strong>tributi<strong>on</strong> from the LLL, and<br />

the dotted l<strong>in</strong>e denotes the c<strong>on</strong>tributi<strong>on</strong> from all modes.<br />

that is, the wave functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fermi<strong>on</strong> is projected to the<br />

LLL state. The wave functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the LLL is<br />

√ ( ) l<br />

2<br />

eB eB<br />

φl(x, y) =<br />

(x + iy)<br />

2πl! 2<br />

l<br />

(<br />

× exp − eB<br />

4 (x2 + y 2 ) (12)<br />

) ,<br />

where l denotes the angular momentum <strong>in</strong> z directi<strong>on</strong> for<br />

the LLL, and the energy is degenerate for l. One can decompose<br />

the fermi<strong>on</strong> field <strong>in</strong>to the l<strong>on</strong>gitud<strong>in</strong>al mode and<br />

the transverse mode <strong>in</strong> a suitable representati<strong>on</strong> as<br />

(∑<br />

ψ(x) = l φl(x,<br />

)<br />

y)ϕl(t, z)<br />

, (13)<br />

0<br />

where ϕl(t, z) is the two comp<strong>on</strong>ent Dirac field <strong>in</strong> 1+1 dimensi<strong>on</strong>s.<br />

Then the fermi<strong>on</strong> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QED <strong>in</strong> 3+1 dimensi<strong>on</strong>s<br />

reduces to that <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Abelian gauge theory <strong>in</strong> 1 + 1<br />

dimensi<strong>on</strong>s:<br />

∫<br />

S = d 4 x ¯ ψ(x)iγ µ Dµψ(x)<br />

∑<br />

∫<br />

dtdz ¯ϕl ′(t, z)i˜γµ D˜ l ′ l<br />

µ ϕl(t, z),<br />

(14)<br />

l,l ′<br />

where ˜γ t and ˜γ z are the gamma matrices <strong>in</strong> 1 + 1 dimensi<strong>on</strong>s<br />

and ˜γ x = ˜γ y = 0. The covariant derivative is def<strong>in</strong>ed<br />

by ˜ Dl′ l<br />

µ = δl′ l∂µ − ieÃl′ l<br />

µ with<br />

à l′ l<br />

µ (t, z) =<br />

∫<br />

dxdyφ ∗ l ′(x, y)φl(x, y)Aµ(x, y, z, t). (15)<br />

à l′ l<br />

µ (t, z) corresp<strong>on</strong>ds to the gauge field <strong>in</strong> U(∞) gauge<br />

theory, s<strong>in</strong>ce Ãl′ l<br />

µ (t, z) is an Hermite matrix, Ã∗l′ l<br />

µ (t, z) =<br />

à ll′<br />

µ (t, z), and the <strong>in</strong>dices l and l ′ run from 0 to ∞. To<br />

simplify the situati<strong>on</strong>, we assume that the At and Az do<br />

not depend <strong>on</strong> the transverse directi<strong>on</strong>s, x and y. Then the l<br />

dependence can be factorized out: Ãl′ l<br />

µ (t, z) = δll ′õ(t, z)<br />

and ϕl(t, z) = ϕ(t, z). The acti<strong>on</strong> <strong>in</strong> Eq. (14) becomes<br />

S eBV⊥<br />

2π<br />

∫<br />

dtdz ¯ϕ(t, z)i˜γ µ Dµϕ(t, ˜ z), (16)


E/E 0<br />

N/N max<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-6 -4 -2 0<br />

ωt<br />

2 4 6<br />

1<br />

0.5<br />

0<br />

-6 -4 -2 0<br />

ωt<br />

2 4 6<br />

Figure 2: The electric field (upper) and the number <str<strong>on</strong>g>of</str<strong>on</strong>g> pairs<br />

(lower) at z = 0 plotted aga<strong>in</strong>st time. Both values are normalized<br />

by that at maximum values.<br />

where V⊥ is the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the transverse directi<strong>on</strong>s. This<br />

acti<strong>on</strong> is noth<strong>in</strong>g but that <strong>in</strong> 1+1 QED, i.e., the Schw<strong>in</strong>ger<br />

model, except for the overall factor eBV⊥/(2π). The exact<br />

soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the effective acti<strong>on</strong> for the fermi<strong>on</strong> is known as<br />

Γ(Aµ) = − m2 ∫<br />

γV⊥<br />

dtdz<br />

2<br />

õ(t, z)<br />

×<br />

(<br />

g µν<br />

<br />

− ∂µ<br />

∂ν <br />

∂ 2 <br />

)<br />

Ãν(t, z),<br />

(17)<br />

where denotes for l<strong>on</strong>gitud<strong>in</strong>al directi<strong>on</strong>s, t and z. mγ<br />

denotes the effective phot<strong>on</strong> mass, m 2 γ ≡ e 3 B/(2π 2 ).<br />

Equati<strong>on</strong> (17) is manifestly gauge <strong>in</strong>variant. In the Lorenz<br />

gauge, it reduces to the result by [6]. The mass mγ is <strong>in</strong>duced<br />

by the axial anomaly, <str<strong>on</strong>g>of</str<strong>on</strong>g> which effect is called “dynamical<br />

Higgs effect.” This mass generati<strong>on</strong> is related to<br />

the fact w → ∞ as m → 0. Us<strong>in</strong>g this form, we can<br />

calculate the fermi<strong>on</strong> and axial currents,<br />

j µ (x) = δΓ(A)<br />

δ(eAµ) = −e2 B<br />

2π 2 õ (t, z), (18)<br />

j µ<br />

5 (x) = −ɛµν jν(x), (19)<br />

where we choose the Lorenz gauge, ∂µ õ = 0. The divergence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the axial current leads the axial anomaly <strong>in</strong> 1 + 1<br />

dimensi<strong>on</strong>s except for the overall factor eB/(2π):<br />

∂µj µ<br />

5 (x) = e2 B<br />

2π2 ɛµν∂µ Ãν(t, z) = e2<br />

BE. (20)<br />

2π2 This relati<strong>on</strong> is noth<strong>in</strong>g but axial anomaly <strong>in</strong> 3 + 1 dimensi<strong>on</strong>s.<br />

S<strong>in</strong>ce the effective acti<strong>on</strong> <strong>in</strong> Eq. (17) has a quadratic<br />

form <strong>in</strong> õ, the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for the phot<strong>on</strong> can be<br />

solved. For example, the electric field <str<strong>on</strong>g>of</str<strong>on</strong>g> z directi<strong>on</strong> is<br />

E = E0 cos(ωt − kzz), (21)<br />

where ω =<br />

√<br />

k2 z + m2 γ. The currents satisfy ej µ =<br />

−ɛ µν∂νE and ej µ<br />

5 = ∂µ E. We show the electric field<br />

and the number density for the spatially homogeneous case,<br />

kz = 0, as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time <strong>in</strong> Fig. 2. The electric field<br />

oscillates with a frequency ω. In this case, jt = 0, but<br />

jt 5 = 0. The number density <str<strong>on</strong>g>of</str<strong>on</strong>g> pairs is equal to |jt 5|/2.<br />

These results agree with the previous works [5, 7].<br />

The generalizati<strong>on</strong> to n<strong>on</strong>-Abelian theories is straight<br />

forward if the magnetic field is enough str<strong>on</strong>g. The fermi<strong>on</strong><br />

determ<strong>in</strong>ant becomes Wess-Zum<strong>in</strong>o-Witten acti<strong>on</strong>.<br />

SUMMARY AND OUTLOOK<br />

In this work, we have discussed the vacuum decay <strong>in</strong><br />

str<strong>on</strong>g electric and magnetic fields. When the fermi<strong>on</strong> is<br />

massless, the vacuum persistency probability per unit time<br />

and volume becomes zero, and hence w diverges. The orig<strong>in</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the divergence is from discretized spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> transverse<br />

directi<strong>on</strong>s and the lowest Landau level. The LLL<br />

level dom<strong>in</strong>ates for B > E. With the LLL projecti<strong>on</strong>,<br />

we have analytically calculated the effective acti<strong>on</strong> <strong>in</strong> this<br />

situati<strong>on</strong>, and reproduced the previous numerical results.<br />

S<strong>in</strong>ce the effective theory <str<strong>on</strong>g>of</str<strong>on</strong>g> the LLL is solvable, there is<br />

no chaotic behavior nor thermalizati<strong>on</strong>. The thermalizati<strong>on</strong><br />

does not happen <strong>in</strong> the LLL-dom<strong>in</strong>ant process.<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> QCD, the glu<strong>on</strong> is more <strong>in</strong>terest<strong>in</strong>g because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its self-<strong>in</strong>teracti<strong>on</strong>. The Landau quantizati<strong>on</strong><br />

causes <strong>in</strong>stability because the helicity <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong> is <strong>on</strong>e. Insert<strong>in</strong>g<br />

sz = 1 <strong>in</strong> Eq. (7), the energy becomes imag<strong>in</strong>ary<br />

when pz < eB, <str<strong>on</strong>g>of</str<strong>on</strong>g> which <strong>in</strong>stability is known as Nielsen-<br />

Olesen <strong>in</strong>stability. The situati<strong>on</strong> is similar to quench<strong>in</strong>g<br />

phenomen<strong>on</strong> <strong>in</strong> general phase transiti<strong>on</strong>, where a temperature<br />

suddenly changes. In such a situati<strong>on</strong>, a phase separati<strong>on</strong><br />

occurs. The same phenomena would happen <strong>in</strong> relativistic<br />

heavy-i<strong>on</strong> collisi<strong>on</strong>s, because the electric and magnetic<br />

fields are suddenly <strong>in</strong>duced by the collisi<strong>on</strong>, and the<br />

perturbative vacuum <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong> is unstable. Although dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> unstable glu<strong>on</strong> vacuum is very <strong>in</strong>terest<strong>in</strong>g, we<br />

leave this topic <strong>in</strong> the future work.<br />

REFERENCES<br />

[1] T. Lappi and L. McLerran, Nucl. Phys. A 772, 200 (2006).<br />

[2] H. Suganuma, T. Tatsumi, Prog. Theor. Phys. 90, 379 (1993).<br />

[3] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).<br />

[4] J. Schw<strong>in</strong>ger, Phys. Rev. 82, 664 (1951).<br />

[5] N. Tanji, Ann. Phys. 324, 1691 (2009); ibid 325, 2018 (2010).<br />

[6] J. Schw<strong>in</strong>ger Phys. Rev. 128, 2425 (1962); <strong>in</strong> Theoretical<br />

<strong>Physics</strong>, Trieste Lectures 1962 (IAEA, Vienna, 1963) p.89.<br />

[7] A. Iwazaki, Phys. Rev. C 80, 7 (2009).


Abstract<br />

NONCANONICAL LIE PERTURBATION ANALYSIS FOR THE<br />

RELATIVISTIC PONDEROMOTIVE FORCE ∗<br />

N. Iwata † , Y. Kishimoto and K. Imadera, Kyoto University, Kyoto, Japan<br />

An analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a relativistic particle moti<strong>on</strong> <strong>in</strong> a n<strong>on</strong>uniform<br />

high <strong>in</strong>tensity laser field with l<strong>in</strong>ear polarizati<strong>on</strong><br />

is presented by us<strong>in</strong>g the n<strong>on</strong>can<strong>on</strong>ical Lie perturbati<strong>on</strong><br />

method, which is based <strong>on</strong> the perturbati<strong>on</strong> theory <str<strong>on</strong>g>of</str<strong>on</strong>g> phase<br />

space Lagrangian. Introduc<strong>in</strong>g a smallness parameter ϵ by<br />

the ratio between the excursi<strong>on</strong> length l and the scale length<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the laser field amplitude L, the relativistic p<strong>on</strong>deromotive<br />

force and the corresp<strong>on</strong>d<strong>in</strong>g particle moti<strong>on</strong> are derived<br />

up to the sec<strong>on</strong>d order with respect to ϵ, which is a n<strong>on</strong>local<br />

extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>venti<strong>on</strong>al p<strong>on</strong>deromotive force. Specifically,<br />

the particle is found to exhibit a betatr<strong>on</strong>-like oscillati<strong>on</strong><br />

with a l<strong>on</strong>g period characterized by the curvature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the laser field amplitude.<br />

INTRODUCTION<br />

Recently, the <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> ultra-short high power lasers<br />

has reached at the level <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 22 W/cm 2 . In this regime,<br />

electr<strong>on</strong>s irradiated by the lasers exhibit highly relativistic<br />

characters. In order to realize such high <strong>in</strong>tensities, the reducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the pulse width and/or the spot size is necessary.<br />

In such spatially localized laser fields, the p<strong>on</strong>deromotive<br />

force (light pressure) exists <strong>in</strong>evitably and plays an important<br />

role <strong>in</strong> the particle dynamics [1, 2].<br />

The relativistic p<strong>on</strong>deromotive force, which is proporti<strong>on</strong>al<br />

to the field gradient, has been <strong>in</strong>vestigated us<strong>in</strong>g the<br />

averag<strong>in</strong>g method to the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> assum<strong>in</strong>g that<br />

the ratio between the excursi<strong>on</strong> length l and the scale length<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the laser field amplitude L is small, i.e. ϵ ∼ l/L ≪ 1.<br />

However, as the laser field is tightly focused, higher order<br />

perturbati<strong>on</strong>s such as the spatial curvature become important.<br />

Namely, <strong>in</strong> the n<strong>on</strong>-uniform laser fields, besides the<br />

force that simply ejects charged particles from the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the str<strong>on</strong>g field, the particles suffer an additi<strong>on</strong>al force orig<strong>in</strong>at<strong>in</strong>g<br />

from the curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> the field. Such a higher-order<br />

force may be utilized to c<strong>on</strong>f<strong>in</strong>e the particle by carefully<br />

c<strong>on</strong>troll<strong>in</strong>g the laser field pattern.<br />

In order to <strong>in</strong>vestigate the particle moti<strong>on</strong> <strong>in</strong> complicated<br />

electromagnetic fields, we have <strong>in</strong>troduced the n<strong>on</strong>can<strong>on</strong>ical<br />

Lie perturbati<strong>on</strong> method based <strong>on</strong> the perturbati<strong>on</strong> theory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phase space Lagrangian [3, 4, 5], and derived the<br />

p<strong>on</strong>deromotive force up to the first order <str<strong>on</strong>g>of</str<strong>on</strong>g> ϵ [6]. The<br />

method is found to be efficient and powerful <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

the particle moti<strong>on</strong> systematically keep<strong>in</strong>g the Hamilt<strong>on</strong>ian<br />

structure. Motivated by these studies, here, we extend the<br />

analysis to the higher order particle dynamics <strong>in</strong>clud<strong>in</strong>g the<br />

curvature effect.<br />

∗ Work supported by a Grant-<strong>in</strong>-Aid from JSPS (No. 21340171)<br />

† iwata@center.iae.kyoto-u.ac.jp<br />

NONCANONICAL TRANSFORMATION<br />

We c<strong>on</strong>sider the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle with charge q <strong>in</strong><br />

vacuum irradiated by a l<strong>in</strong>early-polarized high-<strong>in</strong>tensity<br />

laser field. The field is assumed to propagate <strong>in</strong> the zdirecti<strong>on</strong><br />

and be localized <strong>in</strong> the transverse x- and ydirecti<strong>on</strong>s.<br />

As discussed <strong>in</strong> <strong>in</strong>troducti<strong>on</strong>, we def<strong>in</strong>e a smallness<br />

parameter, ϵ ∼ l/L, where l and L (see later) are the<br />

transverse excursi<strong>on</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle and the transverse<br />

scale length <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser field amplitude, respectively.<br />

Here, we normalize the vector potential <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser field A<br />

as a ≡ qA/mc 2 , where m is the rest mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle<br />

and c is the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light, and express a as<br />

a(x, y, η) = ax(x, y, η)êx + ϵaz(η)êz, (1)<br />

where ax(x, y, η) ≡ a0x(x, y) s<strong>in</strong> η, az(η) ≡ a0z cos η, êx<br />

and êz are the unit vectors <strong>in</strong> the x- and z-directi<strong>on</strong>s, respectively,<br />

and η ≡ ωt − kzz. Note that az is necessary to<br />

satisfy the Maxwell equati<strong>on</strong> <strong>in</strong> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ϵ. As we discuss<br />

later, it is found that az does not affect <strong>on</strong> the secular<br />

moti<strong>on</strong> <strong>in</strong> the first order, whereas it does <strong>in</strong> the sec<strong>on</strong>d order<br />

where we neglect the <strong>in</strong>fluence <strong>in</strong> the present analysis for<br />

simplicity. We expand the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the vector potential<br />

around the <strong>in</strong>itial particle positi<strong>on</strong> (x, y, z) = (x0, y0, 0) as<br />

a0x (x⊥) = a0x0 + ϵ˜x⊥ · ∂x⊥ a0x (x⊥0)<br />

+ ϵ2<br />

[ ˜x 2 ∂ 2 xa0x (x⊥0) + ˜y 2 ∂ 2 ya0x (x⊥0) ]<br />

2<br />

+ ϵ 2 ˜x˜y∂x∂ya0x (x⊥0) + O ( ϵ 3) , (2)<br />

where a0x0 ≡ a0x(x⊥0), ˜x⊥ ≡ x⊥ − x⊥0 and<br />

∂x⊥a0x (x⊥0) = ∂a0x (x⊥) /∂x⊥|x⊥=x⊥0 .<br />

Here, we <strong>in</strong>troduce the extended phase space expressed<br />

by the can<strong>on</strong>ical variables as z µ = (t; q, pc) =<br />

(t; qx, qy, qz, pcx, pcy, pcz), where the time t is the <strong>in</strong>dependent<br />

variable. The corresp<strong>on</strong>d<strong>in</strong>g covariant vector is given<br />

by γµ = (−h; pc, 0), where h is the relativistic Hamilt<strong>on</strong>ian<br />

expressed as<br />

√<br />

h(q, pc, t) = m2c4 + c2 (pc − mca) 2 . (3)<br />

In this paper, we use Lat<strong>in</strong> <strong>in</strong>dices that run from 1 to 6<br />

whereas Greek from 0 to 6. Us<strong>in</strong>g these notati<strong>on</strong>s, the variati<strong>on</strong>al<br />

pr<strong>in</strong>ciple is expressed as δ ∫ γµdz µ = 0. We call<br />

ˆγ ≡ γµdz µ a fundamental 1-form. The general transformati<strong>on</strong><br />

law from γµ to the new covariant vector Γµ under<br />

arbitrary coord<strong>in</strong>ate transformati<strong>on</strong> z µ → Z µ can be obta<strong>in</strong>ed<br />

by the relati<strong>on</strong> γµdz µ = ΓµdZ µ . As a preparatory<br />

transformati<strong>on</strong>, we first <strong>in</strong>troduce a n<strong>on</strong>can<strong>on</strong>ical coord<strong>in</strong>ate,<br />

z µ = (η; x, y, z, px, py, pη), (4)


where p = pc − mca is the mechanical momentum, x =<br />

q, and pη ≡ pz − γmc where γ is the relativistic factor.<br />

Here, we take η as the <strong>in</strong>dependent variable to move to<br />

the oscillati<strong>on</strong>-center coord<strong>in</strong>ate <strong>in</strong> the later analysis. The<br />

corresp<strong>on</strong>d<strong>in</strong>g covariant vector is then calculated as<br />

γµ = (−K; px + mcax(x⊥, η), py,<br />

pη + ϵmcaz(η), 0, 0, 0), (5)<br />

where K = − (2kpη) −1 [ m2c2 + p2 ⊥ + p2 ]<br />

η is the new<br />

Hamilt<strong>on</strong>ian. By tak<strong>in</strong>g pη as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the coord<strong>in</strong>ate variables,<br />

we can simplify the zeroth-order Poiss<strong>on</strong> tensor<br />

which determ<strong>in</strong>es the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong><br />

[3] as that <strong>in</strong> the can<strong>on</strong>ical coord<strong>in</strong>ate. Note that the field a<br />

does not explicitly appear <strong>in</strong> the new Hamilt<strong>on</strong>ian but <strong>in</strong> the<br />

first comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> γµ, that also simplifies the perturbati<strong>on</strong><br />

analysis.<br />

ORBIT ANALYSIS IN LASER FIELDS<br />

In the coord<strong>in</strong>ate given by Eq. (4), the unperturbed particle<br />

orbit z (0)i is obta<strong>in</strong>ed by solv<strong>in</strong>g the zeroth-order equati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, which are derived by the variati<strong>on</strong>al pr<strong>in</strong>-<br />

ciple to the 1-form ˆγ (0) = γ (0)<br />

µ dz (0)µ , as<br />

z (0)i =<br />

( a0x0<br />

kzζ0<br />

1<br />

2kzζ 2 0<br />

(cos η − 1) + x0, y0,<br />

[ a 2 0x0<br />

2<br />

(<br />

η − 1<br />

2<br />

− mca0x0 s<strong>in</strong> η, 0, pη0<br />

)<br />

s<strong>in</strong> 2η<br />

+ ( 1 − ζ 2 ]<br />

)<br />

0 η ,<br />

)<br />

, (6)<br />

under the <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong> (x, p, pη) = (x⊥0, 0, 0, 0, pη0)<br />

and pz = pz0 at η = 0. Here, we def<strong>in</strong>ed ζ0 as pη0 ≡<br />

−mcζ0. In this notati<strong>on</strong>, ζ0 = 1 when the <strong>in</strong>itial momentum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the particle is zero, i.e. pz0 = 0. The particle<br />

exhibits the well-known figure-eight orbit with the<br />

drift moti<strong>on</strong> <strong>in</strong> the z-directi<strong>on</strong> [7]. The excursi<strong>on</strong> length<br />

l is obta<strong>in</strong>ed from the first comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (6) as l =<br />

a0x0/kzζ0.<br />

Next, to <strong>in</strong>vestigate the secular moti<strong>on</strong>, we transform the<br />

coord<strong>in</strong>ate z µ to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the oscillati<strong>on</strong>-center <str<strong>on</strong>g>of</str<strong>on</strong>g> the zerothorder<br />

oscillatory moti<strong>on</strong>, Z µ = (η; X, Y, Z, Px, Py, pη).<br />

The relati<strong>on</strong>ship between the old and new coord<strong>in</strong>ates is<br />

given by zi = Zi + z i(0)<br />

os. , where z i(0)<br />

os. is the oscillatory part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the zeroth-order orbit. Then, the new covariant vector is<br />

obta<strong>in</strong>ed as<br />

(<br />

Γµ = − κ; Px + mc (ax(X⊥, η) − ax0(η)) ,<br />

)<br />

Py, pη + ϵmcaz(η), 0, 0, 0 , (7)<br />

where ax0(η) ≡ ax(X⊥0, η). Here, κ is the new Hamilt<strong>on</strong>ian<br />

calculated us<strong>in</strong>g the relati<strong>on</strong>ship between the old and<br />

new coord<strong>in</strong>ates, which yields<br />

κ =K + l [Px + mc (ax(X⊥, η) − ax0(η))] s<strong>in</strong> η<br />

+ a0x0<br />

l [pη + ϵmcaz(η)] cos 2η. (8)<br />

4ζ0<br />

The old Hamiot<strong>on</strong>ian K is now written <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the new coord<strong>in</strong>ate variables Px⊥ , pη [<br />

and η as K =<br />

− (mc) 2 + (Px − mcax0(η)) 2 + P 2 y + p2 ]<br />

η /2kzpη. In<br />

the zeroth order, the trajectory is found to be c<strong>on</strong>sistent<br />

with that given by Eq. (6).<br />

To analyze the first-order moti<strong>on</strong>, we perform a<br />

near-identity Lie transformati<strong>on</strong> from the oscillati<strong>on</strong>center<br />

coord<strong>in</strong>ate Z µ to a new <strong>on</strong>e, Z ′µ , as Z ′µ =<br />

exp ( ϵL (1)) Z µ by the operator def<strong>in</strong>ed to act as L (n) f =<br />

g (n)µ ∂µf for a scalar functi<strong>on</strong> f, where g (n)µ is the<br />

nth order Lie generator <str<strong>on</strong>g>of</str<strong>on</strong>g> the transformati<strong>on</strong>. In<br />

the new coord<strong>in</strong>ate, the first-order covariant vector<br />

is simplified as Γ ′(1)<br />

(<br />

µ = V (0)µ Γ (1)<br />

)<br />

µ ; 0, 0 , where<br />

( )<br />

˜X ′ + Y ˜ ′ /2kzp ′ ηL. Here, L =<br />

V (0)µ Γ (1)<br />

µ = m 2 c 2 a 2 0x0<br />

(∂x [log a0x(X⊥0)]) −1 = (∂y [log a0x(X⊥0)]) −1 , ˜ X ′ ≡<br />

X ′ − x0, ˜ Y ′ ≡ Y ′ − y0, and V (0)µ is the unperturbed<br />

flow vector def<strong>in</strong>ed by V (0)0 = 1 and V (0)i (Z µ ) =<br />

dZ (0)i /dZ 0 , respectively. The overl<strong>in</strong>e <strong>in</strong>dicates the average<br />

over <strong>on</strong>e cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> the fast oscillatory moti<strong>on</strong> with period<br />

η. Note that all the terms <strong>in</strong>clud<strong>in</strong>g az are removed<br />

out <strong>in</strong> the averag<strong>in</strong>g process. The new covariant vector up<br />

to the first order is given by Γ ′ µ = Γ (0)<br />

µ +ϵΓ ′(1)<br />

µ . S<strong>in</strong>ce Γ ′(1)<br />

µ<br />

c<strong>on</strong>ta<strong>in</strong>s variables X ′ , Y ′ and p ′ η, the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong><br />

for P ′ x, P ′ y and Z ′ c<strong>on</strong>ta<strong>in</strong> the terms <str<strong>on</strong>g>of</str<strong>on</strong>g> O(ϵ) as<br />

dZ ′<br />

dη<br />

dP ′ ⊥<br />

dη<br />

= dZ(0)<br />

dη<br />

<br />

<br />

<br />

Z ′µ + m2c2 a2 0x0<br />

p ′2<br />

η<br />

2kz<br />

[ ]<br />

˜X ′ + Y ˜ ′<br />

, (9)<br />

L<br />

mc<br />

=<br />

p ′ mca<br />

η<br />

2 0x0<br />

2kzL ê⊥, (10)<br />

where ê⊥ is the unit vector perpendicular to the z-axis. The<br />

expressi<strong>on</strong> dZ (0) /dη|Z ′µ denotes to replace the coord<strong>in</strong>ate<br />

variables Z (0)µ <strong>in</strong> the zeroth-order equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> with<br />

those <str<strong>on</strong>g>of</str<strong>on</strong>g> Z ′µ . Note that s<strong>in</strong>ce the backward Lie transformati<strong>on</strong>,<br />

Z µ = exp ( −ϵL (1)) Z ′µ , adds <strong>on</strong>ly the oscillatory<br />

comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the moti<strong>on</strong>, we have the relati<strong>on</strong> ¯ Z ′i = ¯ Zi .<br />

Therefore, the right-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (10) is the p<strong>on</strong>deromotive<br />

force <strong>in</strong> the orig<strong>in</strong>al oscillati<strong>on</strong>-center coord<strong>in</strong>ate.<br />

From Eq. (10), we can see that az does not affect the firstorder<br />

p<strong>on</strong>deromotive force. We have also c<strong>on</strong>firmed that<br />

the terms proporti<strong>on</strong>al to az appear <strong>in</strong> the first-order oscillatory<br />

part <strong>in</strong> both the x- and z-directi<strong>on</strong>s. This result is<br />

physically reas<strong>on</strong>able s<strong>in</strong>ce the first order oscillati<strong>on</strong> <strong>in</strong> the<br />

z-directi<strong>on</strong> generated by the z-comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric<br />

field affects <strong>on</strong> the oscillati<strong>on</strong> <strong>in</strong> the x-directi<strong>on</strong> through<br />

the v × B force.<br />

Next, we analyze the sec<strong>on</strong>d-order particle moti<strong>on</strong>.<br />

Here, we c<strong>on</strong>sider the case where the field is uniform <strong>in</strong> the<br />

y-directi<strong>on</strong>, i.e. ∂ya = 0, for simplicity. We also neglect<br />

the z-comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the vector potential <strong>in</strong> order to see <strong>on</strong>ly<br />

the curvature effect <strong>on</strong> the particle moti<strong>on</strong>. We transform<br />

the coord<strong>in</strong>ate to a new <strong>on</strong>e, Z ′′µ . In the sec<strong>on</strong>d order Lie<br />

transformati<strong>on</strong>, the new covariant vector is given by Γ ′′ µ =<br />

Γ (0)<br />

µ + ϵΓ ′(1)<br />

µ + ϵ2Γ ′′(2)<br />

µ , where Γ ′′(2)<br />

µ =<br />

(<br />

V (0)µ C (2)<br />

µ ; 0, 0<br />

)


with C (2)<br />

µ = Γ (2)<br />

µ − ˆ L (1) Γ (1)<br />

µ + ˆ L (1)2 Γ (0)<br />

µ /2. Then, we have<br />

V (0)µ C (2)<br />

µ = mca2 0x0<br />

4kz<br />

mc<br />

p ′′<br />

[ ( ) (<br />

1 1<br />

+<br />

η L2 R<br />

+ 1<br />

L 2<br />

3 a0x0<br />

l<br />

16 kz<br />

˜X ′′2 + l2<br />

4<br />

)<br />

mc<br />

p ′′<br />

]<br />

η<br />

. (11)<br />

Here, R ≡ ([ ∂2 xa0x(x0) ] ) −1<br />

/a0x0 is the scale length <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the field curvature. S<strong>in</strong>ce the new Hamilt<strong>on</strong>ian, −Γ ′′<br />

0, does<br />

not c<strong>on</strong>ta<strong>in</strong> the variable Z ′′ , the corresp<strong>on</strong>d<strong>in</strong>g comp<strong>on</strong>ent<br />

p ′′<br />

η is found to be c<strong>on</strong>stant. Then, the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong><br />

<strong>in</strong> the x-directi<strong>on</strong> are reduced to<br />

dX ′′<br />

dη<br />

dP ′′<br />

x<br />

dη<br />

′′ P x<br />

= − , (12)<br />

kzpη0<br />

= −mca0x0 l<br />

2<br />

[<br />

1<br />

L +<br />

( )<br />

1 1<br />

+<br />

L2 R<br />

˜X ′′<br />

]<br />

. (13)<br />

These equati<strong>on</strong>s determ<strong>in</strong>e the particle moti<strong>on</strong> up to the<br />

sec<strong>on</strong>d order <str<strong>on</strong>g>of</str<strong>on</strong>g> ϵ, which varies slowly compared with the<br />

period <str<strong>on</strong>g>of</str<strong>on</strong>g> the fast oscillati<strong>on</strong> appeared <strong>in</strong> the zeroth-order<br />

orbit.<br />

In the case 1/L 2 +1/R ≥ 0, we obta<strong>in</strong> a slow oscillatory<br />

moti<strong>on</strong> given by<br />

P ′′<br />

x = α s<strong>in</strong> θη + P (2)<br />

x0<br />

X ′′ = − α 1<br />

(cos θη − 1) +<br />

mc θζ0kz<br />

cos θη, (14)<br />

P (2)<br />

x0<br />

mca0x0<br />

l<br />

s<strong>in</strong> θη + X′′ 0 ,<br />

θ<br />

(15)<br />

where θ = l √ (1/L 2 + 1/R) /2, α is a c<strong>on</strong>-<br />

stant determ<strong>in</strong>ed by the <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong> as α =<br />

mca0x0θ ( 1 − l/ ( 2Lθ 2) − 7l/ (8L) ) , X ′′<br />

0 is the <strong>in</strong>itial<br />

particle positi<strong>on</strong> and P (2)<br />

x0 is the sec<strong>on</strong>d-order <strong>in</strong>itial value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> P ′′<br />

x calculated by the sec<strong>on</strong>d-order backward Lie transformati<strong>on</strong>.<br />

It is remarkably noted that the unbounded secular<br />

moti<strong>on</strong> orig<strong>in</strong>at<strong>in</strong>g from the first-order p<strong>on</strong>deromotive<br />

force given <strong>in</strong> Eq. (10) is changed to the bounded soluti<strong>on</strong>,<br />

Eqs. (14) and (15), by tak<strong>in</strong>g <strong>in</strong>to account the sec<strong>on</strong>d order<br />

curvature terms. This moti<strong>on</strong> corresp<strong>on</strong>ds to a betatr<strong>on</strong><br />

oscillati<strong>on</strong> by which the particle is c<strong>on</strong>f<strong>in</strong>ed <strong>in</strong> the f<strong>in</strong>ite<br />

radial regi<strong>on</strong>. Note that s<strong>in</strong>ce the amplitude factor α and<br />

the period θ are def<strong>in</strong>ed by the local gradient and curvature<br />

at the <strong>in</strong>itial particle positi<strong>on</strong>, they are valid <strong>on</strong>ly <strong>in</strong> the<br />

regi<strong>on</strong> where the variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the curvature is sufficiently<br />

small dur<strong>in</strong>g <strong>on</strong>e cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>on</strong>g period oscillati<strong>on</strong>s.<br />

In the case 1/L2 + 1/R < 0, Eqs. (12) and (13) yield to<br />

the soluti<strong>on</strong><br />

P ′′<br />

x =<br />

(2)<br />

α + P x0<br />

e<br />

2<br />

θη +<br />

(2)<br />

−α + P x0<br />

e<br />

2<br />

−θη . (16)<br />

This soluti<strong>on</strong> <strong>in</strong>dicates that the particle is rapidly ejected<br />

from the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large laser field amplitude. Tak<strong>in</strong>g the<br />

expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the right-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (16) assum<strong>in</strong>g θη ∼<br />

O (ϵ), Eq. (16) leads to<br />

P ′′<br />

x = αθη + P (2)<br />

x0<br />

X ′′ = α<br />

mc<br />

1<br />

kzζ0<br />

, (17)<br />

θ<br />

2 η2 +<br />

P (2)<br />

x0<br />

mc<br />

1<br />

kzζ0<br />

η + X ′′<br />

0 . (18)<br />

This soluti<strong>on</strong> is c<strong>on</strong>sistent with that obta<strong>in</strong>ed <strong>in</strong> Eq. (10)<br />

up to the first order, though the sec<strong>on</strong>d order collecti<strong>on</strong> is<br />

<strong>in</strong>cluded <strong>in</strong> Eqs. (17) and (18).<br />

Here, we have neglected the z-comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the vector<br />

potential, az, for simplicity. The <strong>in</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> az may cause<br />

modulati<strong>on</strong> to the amplitude factor α and/or the period θ,<br />

which will be discussed separately.<br />

SUMMARY<br />

We derived a equati<strong>on</strong> system describ<strong>in</strong>g the relativistic<br />

p<strong>on</strong>deromotive force and the related particle dynamics<br />

<strong>in</strong> a transversely-focused l<strong>in</strong>early-polarized laser field<br />

up to the sec<strong>on</strong>d order with respect to ϵ. In the first order,<br />

we obta<strong>in</strong>ed the p<strong>on</strong>deromotive force proporti<strong>on</strong>al to<br />

the field gradient <strong>in</strong> the x- and y-directi<strong>on</strong>s that is essentially<br />

the same as the result <strong>in</strong> Ref. [6]. In the sec<strong>on</strong>d order,<br />

we found that the particle can exhibit a slow period<br />

betatr<strong>on</strong>-like oscillatory moti<strong>on</strong> characterized by the curvature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the laser field amplitude. This suggests that the<br />

c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the curvature is important <strong>in</strong> c<strong>on</strong>f<strong>in</strong><strong>in</strong>g the particle<br />

and keep<strong>in</strong>g the laser-particle <strong>in</strong>teracti<strong>on</strong> <strong>in</strong> transversely<br />

localized high-<strong>in</strong>tensity laser fields. The betatr<strong>on</strong>-like oscillati<strong>on</strong><br />

may cause <strong>in</strong>tense radiati<strong>on</strong> that will be discussed<br />

<strong>in</strong> a future paper. The present result up to the first order<br />

and the expansi<strong>on</strong> form, Eqs. (17) and (18), up to the sec<strong>on</strong>d<br />

order are c<strong>on</strong>sistent with those obta<strong>in</strong>ed by perform<strong>in</strong>g<br />

the perturbati<strong>on</strong> expansi<strong>on</strong> directly to the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

However, <strong>in</strong> the present analysis, the n<strong>on</strong>local soluti<strong>on</strong>s,<br />

Eqs. (14), (15) and (16) are obta<strong>in</strong>ed for the first time<br />

through the Lie perturbati<strong>on</strong> approach.<br />

REFERENCES<br />

[1] E. A. Startsev and C. J. McK<strong>in</strong>strie, Phys. Rev. E 55 (1996)<br />

7527.<br />

[2] P. Gibb<strong>on</strong>, ”Short Pulse Laser Interacti<strong>on</strong>s with Matter”, Imperial<br />

College Press, L<strong>on</strong>d<strong>on</strong>, p. 36 (2005).<br />

[3] J. R. Cary and R. G. Littlejohn, Ann. Phys. 151 (1983) 1.<br />

[4] Y. Kishimoto, S. Tokuda and K. Sakamoto, Phys. Plasmas 2<br />

(1995) 1316.<br />

[5] K. Imadera and Y. Kishimoto, accepted for publicati<strong>on</strong> <strong>in</strong><br />

Plasma Fusi<strong>on</strong> Res..<br />

[6] N. Iwata, K. Imadera and Y. Kishimoto, Plasma Fusi<strong>on</strong> Res.<br />

5 (2010) 028.<br />

[7] E. S. Sarachik and G. T. Schappert, Phys. Rev. D 1 (1970)<br />

2738.


PARTICLE BASED INTEGRATED CODE EPIC3D<br />

FOR LASER-MATTER INTERACTION<br />

Y. Kishimoto, Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan<br />

Abstract<br />

A complex plasma state, where neutral atoms and<br />

molecules, i<strong>on</strong>s with different charge states, free<br />

electr<strong>on</strong>s and positr<strong>on</strong>s, various wavelength radiati<strong>on</strong>s<br />

<strong>in</strong>clud<strong>in</strong>g X-rays and γ-rays, etc. coexist is established <strong>in</strong><br />

nature and laboratory through complex atomic and<br />

nuclear processes. In such plasmas, the level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

complexity is <str<strong>on</strong>g>of</str<strong>on</strong>g> especially high due to the synergetic<br />

<strong>in</strong>terplays am<strong>on</strong>g spatio-temporally different scale<br />

dynamics <strong>in</strong>side and outside the Debye sphere. We refer<br />

to this k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma state as synergetic complexity <strong>in</strong><br />

dist<strong>in</strong>cti<strong>on</strong> from that used <strong>in</strong> c<strong>on</strong>venti<strong>on</strong>al ideal plasmas.<br />

Such plasma can be established <strong>in</strong> high-power laser<br />

matter <strong>in</strong>teracti<strong>on</strong>. In order to <strong>in</strong>vestigate such plasmas,<br />

we have developed a comprehensive particle based<br />

<strong>in</strong>tegrated code EPIC3D, which <strong>in</strong>cludes various atomic<br />

and collisi<strong>on</strong>al relaxati<strong>on</strong> processes self-c<strong>on</strong>sistently.<br />

Based <strong>on</strong> the EPIC3D, we performed the simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

laser-cluster <strong>in</strong>teracti<strong>on</strong> <strong>in</strong> parameter regimes relevant to<br />

the experiment and also complex discharge/lightn<strong>in</strong>g<br />

process. Through these simulati<strong>on</strong>s, we successfully<br />

reproduced prom<strong>in</strong>ent structure formati<strong>on</strong>s, which lead to<br />

the key physical understand<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> complex plasma state.<br />

INTRODUCTION<br />

Interacti<strong>on</strong> am<strong>on</strong>g various material states, charged<br />

particles, energetic phot<strong>on</strong>s, etc. leads to a complex<br />

plasma state, <strong>in</strong> which multiply charged i<strong>on</strong>s, electr<strong>on</strong>s<br />

and positr<strong>on</strong>s, neutral atoms and molecules, etc coexist.<br />

Such plasmas exhibit the characteristics as an active<br />

medium which is highly n<strong>on</strong>-l<strong>in</strong>er, n<strong>on</strong>-equilibrium and<br />

n<strong>on</strong>-stati<strong>on</strong>ary, and can be seen not <strong>on</strong>ly <strong>in</strong> laboratory, but<br />

also <strong>in</strong> space and universe, such as aurora, lightn<strong>in</strong>g, solar<br />

flares, <strong>in</strong>ter-stellar medium, accreti<strong>on</strong> disks, etc. We refer<br />

to this k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma state as synergetic complexity <strong>in</strong><br />

dist<strong>in</strong>cti<strong>on</strong> from that used <strong>in</strong> c<strong>on</strong>venti<strong>on</strong>al ideal plasmas.<br />

Such plasma can be also established <strong>in</strong> high-power laser<br />

matter <strong>in</strong>teracti<strong>on</strong>.<br />

The particle-<strong>in</strong>-cell (PIC) method that solves the<br />

n<strong>on</strong>l<strong>in</strong>ear wave–particle <strong>in</strong>teracti<strong>on</strong> has been widely used<br />

<strong>in</strong> simulat<strong>in</strong>g complex plasma dynamics. However, most<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> them a priori made an assumpti<strong>on</strong> that the plasma is<br />

fully i<strong>on</strong>ized <strong>in</strong> the <strong>in</strong>itial state. For applicati<strong>on</strong>s utiliz<strong>in</strong>g<br />

relatively high-Z materials, complex atomic and<br />

relaxati<strong>on</strong> processes play an important role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

the <strong>in</strong>teracti<strong>on</strong> and subsequent dynamics. Here, <strong>in</strong> order to<br />

<strong>in</strong>vestigate such complex plasmas, we have developed a<br />

three-dimensi<strong>on</strong>al particle based <strong>in</strong>tegrated code, EPIC3D,<br />

<strong>in</strong> which complex atomic and relaxati<strong>on</strong> processes are<br />

self-c<strong>on</strong>sistently <strong>in</strong>cluded [1].<br />

Based <strong>on</strong> the EPIC3D, we performed the simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

laser-cluster <strong>in</strong>teracti<strong>on</strong> <strong>in</strong> parameter regimes relevant to<br />

the experiment. We also performed the simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

lightn<strong>in</strong>g/discharge process <str<strong>on</strong>g>of</str<strong>on</strong>g> a compressed ne<strong>on</strong> gas and<br />

successfully reproduced key physical processes such as<br />

streamer formati<strong>on</strong> and sprite events. Lightn<strong>in</strong>g and<br />

discharges are a well known process, but the details have<br />

not been fully clarified. The understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the process<br />

is crucially important not <strong>on</strong>ly from the academic<br />

viewpo<strong>in</strong>t but also for various <strong>in</strong>dustrial applicati<strong>on</strong>s.<br />

SIMULATION MODEL OF EPIC3D<br />

Here we describe EPIC3D, which was orig<strong>in</strong>ally based<br />

<strong>on</strong> a fully relativistic three-dimensi<strong>on</strong>al electromagnetic<br />

PIC technique. The phot<strong>on</strong> field is classically treated by<br />

the Maxwell equati<strong>on</strong>s <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> electric and magnetic<br />

field (E,B) or its potential form (A, φ). The charge density<br />

ρ and current density j are assigned <strong>on</strong> each spatial grid<br />

us<strong>in</strong>g the cloud-<strong>in</strong>-cell (CIC) method. For the (A, φ)<br />

versi<strong>on</strong>, the Poiss<strong>on</strong> equati<strong>on</strong> as well as the c<strong>on</strong>t<strong>in</strong>uity<br />

equati<strong>on</strong> are imposed, while for the (E,B) versi<strong>on</strong>, a local<br />

solver technique is employed [2]. We extended the model<br />

by <strong>in</strong>corporat<strong>in</strong>g the i<strong>on</strong>izati<strong>on</strong> and relaxati<strong>on</strong> processes<br />

described <strong>in</strong> the follow<strong>in</strong>g.<br />

2.1. Collisi<strong>on</strong> and relaxati<strong>on</strong> process<br />

We here <strong>in</strong>troduced a relativistic pair<strong>in</strong>g method by<br />

successive b<strong>in</strong>ary collisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particle pairs, which<br />

precisely c<strong>on</strong>serves the momentum and energy before and<br />

after the collisi<strong>on</strong> event <strong>in</strong> a relativistic regime. It has<br />

been certified <strong>in</strong> [3] that the method successfully resolves<br />

n<strong>on</strong>-local electr<strong>on</strong> heat transport where the temperature<br />

scale length becomes comparable to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong><br />

mean free path and the assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fick’s law (or<br />

diffusi<strong>on</strong> approximati<strong>on</strong>) breaks up.<br />

2.2. I<strong>on</strong>izati<strong>on</strong> process due to phot<strong>on</strong> field (Optical Field<br />

I<strong>on</strong>izati<strong>on</strong>-process)<br />

We <strong>in</strong>troduced an additi<strong>on</strong>al dimensi<strong>on</strong> <strong>in</strong> each atom<br />

that represents the <strong>in</strong>ternal electr<strong>on</strong>ic state <str<strong>on</strong>g>of</str<strong>on</strong>g> the atom [4].<br />

The i<strong>on</strong>izati<strong>on</strong> rate W (k) j (E), where the suffix denotes the<br />

k-th electr<strong>on</strong>ic state <str<strong>on</strong>g>of</str<strong>on</strong>g> j-th atom, is calculated from the<br />

local electric field E. Here we employed a cycle-averaged<br />

tunnel<strong>in</strong>g i<strong>on</strong>izati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ammosov–Debre-Kra<strong>in</strong>ov<br />

(ADK) formula [5]. Then, the i<strong>on</strong>izati<strong>on</strong> <strong>in</strong>dex def<strong>in</strong>ed <strong>in</strong><br />

the range {0,1} is obta<strong>in</strong>ed as<br />

R (k) j (t) = 1 – exp[−W (k) j (E)Δt ]. (2.1)


log N (PIC particle)<br />

When the c<strong>on</strong>diti<strong>on</strong> Rj>R[0, 1] is satisfied, a free electr<strong>on</strong><br />

with the zero k<strong>in</strong>etic energy (Ee =0) is created and then<br />

the i<strong>on</strong> charge state is <strong>in</strong>creased by <strong>on</strong>e. Here, R[0,1]<br />

represents the random number def<strong>in</strong>ed <strong>in</strong> the range {0,1}.<br />

2.3. I<strong>on</strong>izati<strong>on</strong> process due to electr<strong>on</strong> impact<br />

Here we utilize the electr<strong>on</strong>–i<strong>on</strong> pairs <strong>in</strong>troduced <strong>in</strong> Sec.<br />

2.1 for the Coulomb collisi<strong>on</strong>s <strong>in</strong>side the computati<strong>on</strong>al<br />

mesh. After the Coulomb scatter<strong>in</strong>g takes place ( p (i) e →<br />

p (f) e), the i<strong>on</strong>izati<strong>on</strong> <strong>in</strong>dex is obta<strong>in</strong>ed from the cross<br />

secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> impact i<strong>on</strong>izati<strong>on</strong> σ (e) i (Ee). Thus, the<br />

i<strong>on</strong>izati<strong>on</strong> event is successively determ<strong>in</strong>ed for every<br />

electr<strong>on</strong>–i<strong>on</strong> pair. In the case where the i<strong>on</strong>izati<strong>on</strong> is<br />

switched <strong>on</strong>, a free electr<strong>on</strong> with Ee =0 is created from the<br />

i<strong>on</strong>. The i<strong>on</strong>izati<strong>on</strong> energy is subtracted from that <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Coulomb-scattered electr<strong>on</strong> to keep the total momentum<br />

and energy c<strong>on</strong>servati<strong>on</strong>s.<br />

LASER-CLUSTER INTERACTION<br />

In Advance Phot<strong>on</strong> Research Center <str<strong>on</strong>g>of</str<strong>on</strong>g> JAEA,<br />

<strong>in</strong>teracti<strong>on</strong> experiments us<strong>in</strong>g Xe and Ar clusters and an<br />

ultra-short pulse laser <strong>in</strong> the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 17 ~10 18 W/cm 2<br />

were performed and the energy distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multiply<br />

charged i<strong>on</strong>s and c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy distributi<strong>on</strong><br />

utiliz<strong>in</strong>g a pulse shap<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser have been studied [2].<br />

In order to clarify the underly<strong>in</strong>g physical process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>teracti<strong>on</strong>s, we performed simulati<strong>on</strong>s us<strong>in</strong>g the EPIC3D.<br />

The parameters are given as follows: cluster radius: a =<br />

24nm, electr<strong>on</strong> density: ne = 2.44 × 10 22 cm −3 , laser<br />

wavelength: λ1 = 820nm, pulse length: τ1 = 20fsec,<br />

maximum laser amplitude: IL =1.0×10 18 W/cm 2 .<br />

Figure 1 illustrates the i<strong>on</strong> charge state distributi<strong>on</strong> at<br />

t = 61fsec. The Ne-like charge state (Ar +8 ) is almost<br />

i<strong>on</strong>ized and the peak appears at Ar +9 . Figure 2 shows the<br />

i<strong>on</strong> energy distributi<strong>on</strong> for different charge state. The<br />

maximum i<strong>on</strong> energy <strong>in</strong>creases with the i<strong>on</strong> charge state<br />

and the energy distributi<strong>on</strong> with higher charge state (Ar +12<br />

− Ar +16 ) exhibits an <strong>in</strong>verted structure that is typically<br />

seen <strong>in</strong> cluster Coulomb explosi<strong>on</strong>. Figure 3 illustrates<br />

the density distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ar +9 (a) and Ar +16 (b),<br />

respectively. The i<strong>on</strong>s with Ar +9 distributes dom<strong>in</strong>antly <strong>in</strong><br />

the core regi<strong>on</strong>, while those <str<strong>on</strong>g>of</str<strong>on</strong>g> Ar +16 distribute around the<br />

2.5 10 5<br />

2 10 5<br />

1.5 10 5<br />

1 10 5<br />

5 10 4<br />

Ar +9<br />

Ar +10<br />

Ar +11<br />

Ar +16<br />

0<br />

0 5 10<br />

charge stae<br />

15 20<br />

Fig. 1. I<strong>on</strong> charge<br />

state distributi<strong>on</strong> at<br />

t = 61fsec after the<br />

<strong>in</strong>teracti<strong>on</strong>. Field<br />

i<strong>on</strong>izati<strong>on</strong> and<br />

electr<strong>on</strong> impact<br />

i<strong>on</strong>izati<strong>on</strong> are taken<br />

<strong>in</strong>to account <strong>in</strong> the<br />

simulati<strong>on</strong>.<br />

log{f(E +n )}<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -1<br />

Ar +9 Ar +8<br />

10 0<br />

Ar +10 Ar +11<br />

10 1<br />

10 2<br />

log{E +n (keV)}<br />

Fig.2 (a)<br />

Ar +16<br />

(a) Z=9<br />

(b) Z=16<br />

Fig. 2 Energy<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>s<br />

with different charge<br />

state at t = 61fsec.<br />

Different symbols,<br />

□ for Z=8, + for Z=9,<br />

△ for Z=15, ○ for<br />

Z=16, are used.<br />

Fig. 3. I<strong>on</strong> density distributi<strong>on</strong> <strong>in</strong> (x,y) doma<strong>in</strong> for different<br />

charge state, (a) Z = 9 and (b) Z = 16, at t = 61 fsec. The<br />

polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> laser electric field is x-directi<strong>on</strong>.<br />

expansi<strong>on</strong> fr<strong>on</strong>t. This is due to the fact that i<strong>on</strong>s with<br />

higher charge state are produced by str<strong>on</strong>g polarizati<strong>on</strong><br />

fields generated near the cluster surface [4]. Such<br />

polarizati<strong>on</strong> field is found to reach the value<br />

approximately 5 times larger than that <str<strong>on</strong>g>of</str<strong>on</strong>g> the orig<strong>in</strong>al laser<br />

field. I<strong>on</strong>s hav<strong>in</strong>g large accelerati<strong>on</strong> rate provide a<br />

maximum energy around MeV.<br />

DISCHARGE AND LIGHTNING PROCESS<br />

Recently, discharge/lightn<strong>in</strong>g phenomena, which are<br />

observed <strong>in</strong> the earth atmosphere and also <strong>in</strong> the<br />

i<strong>on</strong>osphere, have attracted c<strong>on</strong>siderable attenti<strong>on</strong> [5]. For<br />

example, high energy relativistic electr<strong>on</strong>s and even γrays<br />

were observed dur<strong>in</strong>g such lightn<strong>in</strong>g event. Here, we<br />

performed discharge simulati<strong>on</strong>s for high pressure ne<strong>on</strong><br />

gas with the density <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.6×10 20 cm −3 (17 times the ideal<br />

gas), where high voltage electric field, E = 10 7 V/cm, is<br />

uniformly applied. A t<strong>in</strong>y i<strong>on</strong>izati<strong>on</strong> spot with Ne +2 is<br />

<strong>in</strong>itially set to trigger discharge.<br />

Figure 4 (a)-(c) show the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong> charge<br />

density and Fig. 5 shows the time history <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong> density<br />

with different charge state. The density <str<strong>on</strong>g>of</str<strong>on</strong>g> Ne +1 i<strong>on</strong> is<br />

found to slowly <strong>in</strong>crease, but suddenly exhibits<br />

exp<strong>on</strong>ential growth with fast time scale around t = 43psec.<br />

After the explosive growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Ne +1 i<strong>on</strong>s, the i<strong>on</strong> density<br />

with charge state higher than Ne +1 , i.e. Ne +σ with σ ≥ 2 ,<br />

also explosively <strong>in</strong>creases with the growth rate larger than<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> Ne +1 i<strong>on</strong> (Fig.5). Branch-like structures referred as<br />

10 3<br />

Ar +14<br />

Ar +15<br />

Ar +13<br />

Ar +12<br />

10 4


P(k x )<br />

(a) 44.3psec (b) 45.3pec (c) 45.9psec<br />

(d) i<strong>on</strong>izati<strong>on</strong> spots<br />

at t = 42psec<br />

Fig. 4. I<strong>on</strong> density distributi<strong>on</strong> at three different times, (a) 44.3,<br />

(b) 45.3, (c) 45.9psec, after prom<strong>in</strong>ent streamer formati<strong>on</strong> and<br />

avalanches takes place. Fig. 4(d) illustrates the i<strong>on</strong> spot<br />

distributi<strong>on</strong> prior to the avalanche.<br />

log(N)<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

1000<br />

100<br />

0 1 10 4<br />

2 10 4<br />

3 10 4<br />

4 10 4<br />

t(fsec)<br />

Fig. 5. Time history <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong> density for different charge state.<br />

Avalanche <str<strong>on</strong>g>of</str<strong>on</strong>g> Ne +1 i<strong>on</strong> is triggered around t = 43psec. The<br />

regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> t = 40-47psec is shown <strong>in</strong> order to see the details <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

avalanches.<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -2<br />

10 -1<br />

k x (wave number)<br />

+4<br />

Ne +1<br />

Ne +2<br />

Ne +3<br />

Ne Spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> B z Fig. 6.<br />

Wave number spectrum<br />

-1.86<br />

kx “streamer” develop from the <strong>in</strong>itial i<strong>on</strong>izati<strong>on</strong> spot<br />

[Fig.4(a)]. However, after the exp<strong>on</strong>ential growth,<br />

neighbor<strong>in</strong>g streamers c<strong>on</strong>nect each other (b) and develop<br />

to a complex net-like structure (c), which c<strong>on</strong>ta<strong>in</strong>s<br />

enormous branches with different spatial scales. This<br />

structure may corresp<strong>on</strong>d to the so-called “sprite”.<br />

10 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> self- <strong>in</strong>duced B z field<br />

dur<strong>in</strong>g the avalanche<br />

process at t = 45.3psec.<br />

The power law<br />

dependence with k x -1.86<br />

is obta<strong>in</strong>ed.<br />

Figure 4 (d) illustrates the spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong><br />

charge state <strong>in</strong> early time before the explosive event takes<br />

place (t = 42psec). Many t<strong>in</strong>y i<strong>on</strong>izati<strong>on</strong> spots are found<br />

to appear <strong>in</strong> the entire system. When the number <str<strong>on</strong>g>of</str<strong>on</strong>g> spots<br />

(or equivalently “pack<strong>in</strong>g fracti<strong>on</strong>” <str<strong>on</strong>g>of</str<strong>on</strong>g> the spot) exceeds a<br />

certa<strong>in</strong> value, micro-scale discharges are triggered<br />

between neighbor<strong>in</strong>g i<strong>on</strong>izati<strong>on</strong> spots. Such a local event<br />

simultaneously propagates over the wide spatial regi<strong>on</strong>,<br />

lead<strong>in</strong>g to explosive “sprite” phenomen<strong>on</strong>. This process is<br />

similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> “forest burn<strong>in</strong>g” and/or “percolati<strong>on</strong>”<br />

dynamics. Furthermore, s<strong>in</strong>ce the electr<strong>on</strong> current is<br />

driven al<strong>on</strong>g i<strong>on</strong>izati<strong>on</strong> branches c<strong>on</strong>stitut<strong>in</strong>g sprites,<br />

electro-magnetic signals are emitted from the system.<br />

Figure 6 illustrates the wave number spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>duced<br />

magnetic fields obta<strong>in</strong>ed from the data at t = 45.9psec. A<br />

clear power low spectrum is found, suggest<strong>in</strong>g that the<br />

sprite shows a fractal nature that exhibits no special scales.<br />

It is <strong>in</strong>terest<strong>in</strong>g to note that similar spectrum was observed<br />

<strong>in</strong> low frequency electromagnetic signals dur<strong>in</strong>g lightn<strong>in</strong>g<br />

events <strong>in</strong> the atmosphere [5].<br />

CONCLUSION<br />

In order to <strong>in</strong>vestigate the complex plasmas dom<strong>in</strong>ated<br />

by atomic and relaxati<strong>on</strong> processes, we have developed a<br />

three-dimensi<strong>on</strong>al particle based <strong>in</strong>tegrated code, EPIC3D.<br />

Us<strong>in</strong>g the developed code, we performed the simulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> laser-cluster <strong>in</strong>teracti<strong>on</strong> and also lightn<strong>in</strong>g process and<br />

found the prom<strong>in</strong>ent i<strong>on</strong>izati<strong>on</strong> dynamics. Complex<br />

i<strong>on</strong>izati<strong>on</strong> dynamics and i<strong>on</strong> accelerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

charge state were clarified. We found the complex<br />

structures dur<strong>in</strong>g lightn<strong>in</strong>g/discharge such as streamer and<br />

sprite. A mechanism lead<strong>in</strong>g to the sudden appearance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the lightn<strong>in</strong>g/discharge was <strong>in</strong>vestigated. Through these<br />

simulati<strong>on</strong>s, we successfully reproduced prom<strong>in</strong>ent<br />

structure formati<strong>on</strong>, which lead to the key physical<br />

understand<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> complex plasma state dom<strong>in</strong>ated by<br />

atomic and relaxati<strong>on</strong> processes.<br />

REFERENCES<br />

[1] Y. Kishimoto, Annual Report <str<strong>on</strong>g>of</str<strong>on</strong>g> the Earth Simulator<br />

Center, April 2002-Marcg 2003 (ISSN 1348-5822),<br />

Chapter 4 Epoch-Mak<strong>in</strong>g Simulati<strong>on</strong>, pp.201-205.<br />

[2] Y. Fukuda, K. Yamakawa, et al., Phys. Rev. A67,<br />

061201(R) (2003). Also, Y. Fukuda and K.<br />

Yamakawa, private communicati<strong>on</strong>, 2003.<br />

[3] Y. Kishimoto, T. Masaki, and T. Tajima, Phys.<br />

Plasmas 9, pp.589-601, February, 2002<br />

[4] V.P. Pasko, M.A. Stanley, J.D. Mathews, U.S. Inan,<br />

and T.W. Wood, Nature 416, pp.152-154, March,<br />

2002, H.T. Su, R.R. Hsu, A. BB. Chen et al., Nature<br />

423, pp.974-976, June, 2003<br />

[5] M.A. Uman, The lightn<strong>in</strong>g discharge, Academic, San<br />

Diego, 1987


Abstract<br />

X-RAY GENERATION VIA LASER COMPTON SCATTERING BY<br />

LASER-ACCELERATED ELECTRON BEAM ∗<br />

E. Miura † , R. Kuroda, H. Toyokawa, AIST, Tsukuba, Ibaraki 3058568, Japan<br />

S. Ishii, K. Tanaka, Tokyo University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Noda, Chiba 2788510, Japan<br />

X-ray generati<strong>on</strong> by laser Compt<strong>on</strong> scatter<strong>in</strong>g us<strong>in</strong>g a<br />

quasi-m<strong>on</strong>oenergetic electr<strong>on</strong> beam with a narrow energy<br />

spread obta<strong>in</strong>ed by laser-driven plasma-based accelerati<strong>on</strong><br />

is reported. X-rays are produced by the collisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

femtosec<strong>on</strong>d laser pulse (140 mJ, 100 fs) with a quasim<strong>on</strong>oenergetic<br />

electr<strong>on</strong> beam with a peak energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 50<br />

MeV and a charge <strong>in</strong> the m<strong>on</strong>oenergetic peak <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 pC produced<br />

by focus<strong>in</strong>g an <strong>in</strong>tense laser pulse (700 mJ, 40 fs) <strong>on</strong><br />

a He gas jet. A well-collimated X-ray beam with a divergence<br />

angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mrad is obta<strong>in</strong>ed. The maximum phot<strong>on</strong><br />

energy and the yield <str<strong>on</strong>g>of</str<strong>on</strong>g> the X-rays are estimated to be 60<br />

keV and 10 5 phot<strong>on</strong>s/pulse.<br />

INTRODUCTION<br />

In laser-driven plasma-based accelerati<strong>on</strong>, electr<strong>on</strong>s are<br />

accelerated by the electric field <str<strong>on</strong>g>of</str<strong>on</strong>g> a plasma wave driven<br />

by an <strong>in</strong>tense laser pulse[1]. To realize next-generati<strong>on</strong><br />

electr<strong>on</strong> accelerators, the research has been <strong>in</strong>tensively<br />

c<strong>on</strong>ducted over a few decades. S<strong>in</strong>ce 2004, the generati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a well-collimated electr<strong>on</strong> beam with a narrow energy<br />

spread, that is quasi-m<strong>on</strong>oenergetic electr<strong>on</strong> (QME)<br />

beam, has been dem<strong>on</strong>strated by several groups[2, 3, 4, 5].<br />

The generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a QME beam with a peak energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 1<br />

GeV [6], and a QME beam c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g 0.5 nC electr<strong>on</strong>s <strong>in</strong><br />

the m<strong>on</strong>oenergetic peak [5], which is comparable to that<br />

achieved with radio-frequency (rf) accelerators, has been<br />

also dem<strong>on</strong>strated. The road toward the realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

practical laser electr<strong>on</strong> accelerator is now open.<br />

In laser-driven plasma-based accelerati<strong>on</strong>, a high accelerati<strong>on</strong><br />

field more than 100 GV/m, which corresp<strong>on</strong>ds to<br />

thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> those achieved by rf accelerators, is obta<strong>in</strong>ed.<br />

A compact electr<strong>on</strong> accelerator can be realized us<strong>in</strong>g such<br />

a high accelerati<strong>on</strong> field. Furthermore, the wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the accelerati<strong>on</strong> field, that is the wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma<br />

wave, is short, <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> tens <str<strong>on</strong>g>of</str<strong>on</strong>g> micrometers. Then,<br />

the electr<strong>on</strong> pulse durati<strong>on</strong> is extremely short, <str<strong>on</strong>g>of</str<strong>on</strong>g> the order<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a few tens <str<strong>on</strong>g>of</str<strong>on</strong>g> femtosec<strong>on</strong>ds. The set <str<strong>on</strong>g>of</str<strong>on</strong>g> such unique characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> laser-driven plasma-based accelerati<strong>on</strong> enables<br />

us to realize a compact, all-optical, ultrashort X-ray<br />

source based <strong>on</strong> laser Compt<strong>on</strong> scatter<strong>in</strong>g, that is scatter<strong>in</strong>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s by energetic electr<strong>on</strong>s.<br />

∗ A part <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was f<strong>in</strong>ancially supported by the Budget for Nuclear<br />

Research <str<strong>on</strong>g>of</str<strong>on</strong>g> the M<strong>in</strong>istry <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong>, Culture, Sports, Science, and<br />

Technology, Japan, based <strong>on</strong> the screen<strong>in</strong>g and counsel<strong>in</strong>g by the Atomic<br />

Energy Commissi<strong>on</strong>.<br />

† e-miura@aist.go.jp<br />

So far, generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an ultrashort X-ray pulse by laser<br />

Compt<strong>on</strong> scatter<strong>in</strong>g has been dem<strong>on</strong>strated by us<strong>in</strong>g a femtosec<strong>on</strong>d<br />

laser pulse and a picosec<strong>on</strong>d electr<strong>on</strong> pulse from<br />

rf accelerators[7, 8]. The X-ray pulse durati<strong>on</strong> is determ<strong>in</strong>ed<br />

by the <strong>in</strong>teracti<strong>on</strong> time between the laser and electr<strong>on</strong><br />

pulses. To obta<strong>in</strong> a femtosec<strong>on</strong>d X-ray pulse, 90 ◦<br />

scatter<strong>in</strong>g geometry should be adopted for a picosec<strong>on</strong>d<br />

electr<strong>on</strong> pulse. In c<strong>on</strong>trast, 180 ◦ scatter<strong>in</strong>g (head-<strong>on</strong> collisi<strong>on</strong>)<br />

geometry is available for a femtosec<strong>on</strong>d electr<strong>on</strong><br />

pulse. There are some advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> us<strong>in</strong>g 180 ◦ scatter<strong>in</strong>g<br />

geometry. Even though the electr<strong>on</strong> energy and the charge<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> beam are the same, the phot<strong>on</strong> energy and the<br />

yield <str<strong>on</strong>g>of</str<strong>on</strong>g> X-rays are higher than those for 90 ◦ scatter<strong>in</strong>g geometry.<br />

Recently, X-ray generati<strong>on</strong> has been dem<strong>on</strong>strated<br />

us<strong>in</strong>g a laser-accelerated electr<strong>on</strong> beam[9]. However, the<br />

X-ray energy was around 1 keV and the yield was not so<br />

high, because an electr<strong>on</strong> beam with Maxwell-like energy<br />

distributi<strong>on</strong> was used. To obta<strong>in</strong> a bright X-ray source with<br />

higher phot<strong>on</strong> energy, a QME beam with a higher energy<br />

and a larger charge is necessary.<br />

In this paper, we report X-ray generati<strong>on</strong> by laser Compt<strong>on</strong><br />

scatter<strong>in</strong>g us<strong>in</strong>g a QME beam obta<strong>in</strong>ed by laser-driven<br />

plasma-based accelerati<strong>on</strong>.<br />

EXPERIMENTAL CONDITIONS<br />

Figure 1 shows the experimental setup. In the follow<strong>in</strong>g<br />

part, laser pulses for electr<strong>on</strong> accelerati<strong>on</strong> and laser Compt<strong>on</strong><br />

scatter<strong>in</strong>g are called ”ma<strong>in</strong> laser pulse” and ”collid<strong>in</strong>g<br />

laser pulse”, respectively. A p-polarized ma<strong>in</strong> laser pulse<br />

(700 mJ, 40 fs, 800 nm) was focused <strong>on</strong> the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> a He<br />

gas jet us<strong>in</strong>g an <str<strong>on</strong>g>of</str<strong>on</strong>g>f-axis parabolic mirror with a focal length<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 720 mm. The laser spot diameter <strong>in</strong> vacuum was 13 µm<br />

at full width at half maximum (FWHM). The peak <strong>in</strong>tensity<br />

was 4.7 × 10 18 W/cm 2 . The gas jet was ejected from<br />

a supers<strong>on</strong>ic nozzle with a c<strong>on</strong>ical shape. The diameter <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the nozzle exit was 1.6 mm. The focal positi<strong>on</strong> was set at<br />

1 mm above the nozzle exit. A p-polarized collid<strong>in</strong>g pulse<br />

(140 mJ, 100 fs, 800 nm) was focused around the exit <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

ma<strong>in</strong> laser pulse from the gas jet us<strong>in</strong>g an <str<strong>on</strong>g>of</str<strong>on</strong>g>f-axis parabolic<br />

mirror with a focal length <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 mm. The laser spot diameter<br />

<strong>in</strong> vacuum was 9 µm at FWHM. The <strong>in</strong>cident angle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the collid<strong>in</strong>g laser pulse was 20 ◦ to the propagati<strong>on</strong> axis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the ma<strong>in</strong> laser pulse.<br />

X-rays produced by laser Compt<strong>on</strong> scatter<strong>in</strong>g were emitted<br />

<strong>on</strong> the coaxial directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> beam. The<br />

electr<strong>on</strong> beam was bended by a magnetic field and spatially<br />

separated from the X-rays. Both X-rays and electr<strong>on</strong>s<br />

were <strong>in</strong>cident <strong>on</strong> a phosphor screen (DRZ-HGH, Mit-


the positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzle exit with 1.6-mm diameter. In<br />

Fig. 3(d), the ma<strong>in</strong> pulse propagated from top to bottom<br />

and the collid<strong>in</strong>g pulse propagated from lower right to upper<br />

left <strong>in</strong> the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 ◦ to the ma<strong>in</strong> laser propagati<strong>on</strong><br />

axis. As shown by the arrow, a bright spot was observed,<br />

<strong>on</strong>ly the synchr<strong>on</strong>ized collisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the two laser pulses was<br />

achieved. It is supposed that the bright spot <strong>in</strong>dicates the<br />

collisi<strong>on</strong> po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the two laser pulses. The collisi<strong>on</strong> po<strong>in</strong>t<br />

was set near the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the nozzle exit, which was near the<br />

extracti<strong>on</strong> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> beam from a plasma.<br />

(a)<br />

(b)<br />

(c)<br />

Collid<strong>in</strong>g Ma<strong>in</strong> Ma<strong>in</strong><br />

(d)<br />

Collisi<strong>on</strong><br />

po<strong>in</strong>t<br />

1 mm<br />

Collid<strong>in</strong>g<br />

Collisi<strong>on</strong><br />

po<strong>in</strong>t<br />

Figure 3: (a)-(c) Shadowgraph images observed for different<br />

delay times <str<strong>on</strong>g>of</str<strong>on</strong>g> a probe pulse to a ma<strong>in</strong> pulse: (a) -1.33<br />

ps, (b) -0.67 ps, and (c) 0 ps. (d) Thoms<strong>on</strong>-scattered light<br />

image when the synchr<strong>on</strong>ized collisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ma<strong>in</strong> and collid<strong>in</strong>g<br />

laser pulses is achieved. The bright spot <strong>in</strong>dicates the<br />

collisi<strong>on</strong> po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the two laser pulse.<br />

X-ray generati<strong>on</strong><br />

X-rays produced by laser Compt<strong>on</strong> scatter<strong>in</strong>g were observed,<br />

when a QME beam with a c<strong>on</strong>siderably high charge<br />

was obta<strong>in</strong>ed. Figure 4(a) shows a image <str<strong>on</strong>g>of</str<strong>on</strong>g> X-rays. The<br />

image was obta<strong>in</strong>ed <strong>in</strong> a s<strong>in</strong>gle shot. From the energyresolved<br />

electr<strong>on</strong> image simultaneously observed with the<br />

image shown <strong>in</strong> Fig. 4(a), the peak energy and the charge <strong>in</strong><br />

the m<strong>on</strong>oenergetic peak <str<strong>on</strong>g>of</str<strong>on</strong>g> the QME beam was 50 MeV and<br />

30 pC, respectively. Figure 4(b) shows the <strong>in</strong>tensity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the image <strong>in</strong> the vertical directi<strong>on</strong>. The divergence angle<br />

<strong>in</strong> vertical directi<strong>on</strong> was 5 mrad at FWHM. The divergence<br />

angle <strong>in</strong> horiz<strong>on</strong>tal directi<strong>on</strong> was 7 mrad at FWHM. In laser<br />

Compt<strong>on</strong> scatter<strong>in</strong>g, a collimated X-ray beam can be obta<strong>in</strong>ed.<br />

The divergence angle <str<strong>on</strong>g>of</str<strong>on</strong>g> the X-ray beam is given by<br />

∼ 1/γ. Here, γ is the Lorentz factor <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> energy.<br />

The divergence <str<strong>on</strong>g>of</str<strong>on</strong>g> an X-ray beam is estimated to be approximately<br />

10 mrad from the observed peak energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 MeV.<br />

The observed divergence angle was close to the predicted<br />

value from the electr<strong>on</strong> energy. The maximum phot<strong>on</strong> energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the X-rays was estimated to be 60 keV from the<br />

peak energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the QME beam and the <strong>in</strong>teracti<strong>on</strong> angle.<br />

The X-ray yield was also estimated to be approximately<br />

10 5 phot<strong>on</strong>s/pulse from the charge <str<strong>on</strong>g>of</str<strong>on</strong>g> the QME beam and<br />

the irradiati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the collid<strong>in</strong>g laser pulse by <strong>in</strong>clud<strong>in</strong>g<br />

the dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the differential cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

scatter<strong>in</strong>g <strong>on</strong> the scattered angle.<br />

The allowance range <str<strong>on</strong>g>of</str<strong>on</strong>g> the delay between the ma<strong>in</strong> and<br />

collid<strong>in</strong>g laser pulses for X-ray generati<strong>on</strong> was <strong>in</strong>vestigated.<br />

The allowance range was approximately 100 fs, corresp<strong>on</strong>d<strong>in</strong>g<br />

to the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the collid<strong>in</strong>g pulse. This result<br />

suggests that a pulse durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a QME beam is nearly<br />

equal to or less than 100 fs. The generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an ultrashort<br />

electr<strong>on</strong> pulse by laser-drive plasma-based accelerati<strong>on</strong> has<br />

been dem<strong>on</strong>strated at the same time.<br />

70<br />

(a) (b)<br />

Vertical positi<strong>on</strong> [pixel]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 200 400 600 800<br />

Intensity [arb. unit]<br />

Figure 4: (a) Image <str<strong>on</strong>g>of</str<strong>on</strong>g> X-rays produced by laser Compt<strong>on</strong><br />

scatter<strong>in</strong>g and (b) the vertical pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> the image. A wellcollimated<br />

X-ray beam with a divergence angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mrad<br />

at FWHM is observed.<br />

SUMMARY<br />

X-ray generati<strong>on</strong> by laser Compt<strong>on</strong> scatter<strong>in</strong>g has been<br />

dem<strong>on</strong>strated us<strong>in</strong>g a QME beam with a peak energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 50<br />

MeV and a charge <strong>in</strong> the m<strong>on</strong>oenergetic peak <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 pC obta<strong>in</strong>ed<br />

by laser-driven plasma-based accelerati<strong>on</strong>. A wellcollimated<br />

X-ray beam with a divergence angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mrad<br />

at FWHM was obta<strong>in</strong>ed. The maximum phot<strong>on</strong> energy and<br />

the yield <str<strong>on</strong>g>of</str<strong>on</strong>g> the X-rays were estimated to be 60 keV and<br />

10 5 phot<strong>on</strong>s/pulse from the peak energy and the charge <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the QME beam.<br />

REFERENCES<br />

[1] T. Tajima and J. M. Daws<strong>on</strong>, Phys. Rev. Lett. 43 (1979) 267.<br />

[2] E. Miura et al., Appl. Phys. Lett. 86 (2005) 251501.<br />

[3] S. P. D. Mangles et al., Nature 431 (2004) 535.<br />

[4] C. G. R. Geddes et al., Nature 431 (2004) 538.<br />

[5] J. Faure et al., Nature 431 (2004) 541.<br />

[6] W. P. Leemans et al., Nature <strong>Physics</strong> 2 (2006) 696.<br />

[7] R. Schoenle<strong>in</strong> et al., Science 274 (1996) 236.<br />

[8] M. Yorozu et al., Appl. Phys. B 74 (2002) 327.<br />

[9] H. Schwoerer et al., Phys. Rev. Lett. 96 (2006) 014802.<br />

[10] S. Masuda et al., Rev. Sci. Instrum. 79 (2008) 083301.<br />

[11] S. Masuda and E. Miura, Appl. Phys. Express 1 (2008)<br />

086002.<br />

[12] E. Miura and S. Masuda, Appl. Phys. Express 2 (2009)<br />

126003.


The electr<strong>on</strong> beam is bent to the dump prevent<strong>in</strong>g it from<br />

strik<strong>in</strong>g the detector.<br />

Upgrade po<strong>in</strong>ts from FFTB<br />

We upgraded this m<strong>on</strong>itor to measure the even smaller<br />

beam sizes to be available at ATF2. The laser wavelength<br />

has been modified from 1064 nm to 532 nm us<strong>in</strong>g a sec<strong>on</strong>d<br />

harm<strong>on</strong>ics generator. The laser optics was newly designed<br />

and c<strong>on</strong>structed by implement<strong>in</strong>g a laser wire scheme to<br />

measure a larger horiz<strong>on</strong>tal beam size, and by enabl<strong>in</strong>g different<br />

cross<strong>in</strong>g angles <str<strong>on</strong>g>of</str<strong>on</strong>g> split laser beams to measure a<br />

wide (diverse) range <str<strong>on</strong>g>of</str<strong>on</strong>g> vertical beam sizes. The gamma<br />

detector for Sh<strong>in</strong>take M<strong>on</strong>itor has also been newly developed.<br />

MEASUREMENT SCHEME<br />

The Sh<strong>in</strong>take M<strong>on</strong>itor employs the <strong>in</strong>terference pattern<br />

created by splitt<strong>in</strong>g laser beams and cross<strong>in</strong>g them at the<br />

focal po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> beam. Laser <strong>in</strong>terference plays<br />

the role <str<strong>on</strong>g>of</str<strong>on</strong>g> chang<strong>in</strong>g the electr<strong>on</strong> beam size <strong>in</strong> corresp<strong>on</strong>dence<br />

to the gamma signal modulati<strong>on</strong>. In their <strong>in</strong>tersect<strong>in</strong>g<br />

regi<strong>on</strong>, the electromagnetic fields <str<strong>on</strong>g>of</str<strong>on</strong>g> the two laser beams<br />

form a stand<strong>in</strong>g wave (<strong>in</strong>terference fr<strong>in</strong>ge). The number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Compt<strong>on</strong> scattered phot<strong>on</strong>s varies accord<strong>in</strong>g to the phase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the stand<strong>in</strong>g wave where the electr<strong>on</strong>s pass through.<br />

With a smaller beam size, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s variates<br />

more significantly compared to a large beam size (Fig.3).<br />

Figure 3: Different modulati<strong>on</strong> for different beam size<br />

Therefore the parameter called “Modulati<strong>on</strong> Depth” can<br />

be def<strong>in</strong>ed as<br />

M ≡ N+ − N−<br />

= | cos θ|exp(−2(kyσy)<br />

N+ + N−<br />

2 ) (1)<br />

us<strong>in</strong>g the maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s N+ and the m<strong>in</strong>imum<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s N− are<br />

The beam size can be obta<strong>in</strong>ed from modulati<strong>on</strong> depth.<br />

Calculati<strong>on</strong> formula is<br />

σy = d<br />

√<br />

2π<br />

| cos θ|<br />

2ln( )<br />

M<br />

(2)<br />

In eq.2, d is a distance between peak to peak <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field. d = π<br />

ky<br />

ϕ is the half <str<strong>on</strong>g>of</str<strong>on</strong>g> θ.<br />

= λ<br />

2 s<strong>in</strong>(ϕ) .<br />

SYSTEMATIC ERROR SOURCES<br />

There are 2 types <str<strong>on</strong>g>of</str<strong>on</strong>g> errors related to the measurement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Sh<strong>in</strong>take M<strong>on</strong>itor. The first type is related to the<br />

strength <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma signal an example <str<strong>on</strong>g>of</str<strong>on</strong>g> which is detector<br />

resoluti<strong>on</strong>, Beam current jitter also bel<strong>on</strong>gs to this category.<br />

This type <str<strong>on</strong>g>of</str<strong>on</strong>g> errors c<strong>on</strong>sequently lead to the error bars<br />

at each gamma signal po<strong>in</strong>t and relate to the statistical error<br />

and the fitt<strong>in</strong>g accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the modulati<strong>on</strong>. The sec<strong>on</strong>d<br />

type is related to the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modulati<strong>on</strong>. For example,<br />

c<strong>on</strong>trast <str<strong>on</strong>g>of</str<strong>on</strong>g> laser fr<strong>in</strong>ge, beam positi<strong>on</strong> jitter bel<strong>on</strong>gs to<br />

this type <str<strong>on</strong>g>of</str<strong>on</strong>g> errors. These c<strong>on</strong>sequently become systematic<br />

beam size measurement errors.<br />

Us<strong>in</strong>g the parameters Cα, Cβ, which represents the reducti<strong>on</strong><br />

factor <str<strong>on</strong>g>of</str<strong>on</strong>g> each sources, the measured modulati<strong>on</strong><br />

Mmeas can be written as<br />

Mmeas = CαCβ...Mideal<br />

Table 1: Error sources<br />

Source Value<br />

Error bar Detector resoluti<strong>on</strong> 8 %<br />

at each po<strong>in</strong>t Beam current jitter 1%(us<strong>in</strong>g ICT)<br />

Laser power jitter 3 %<br />

Total 9 %<br />

Reducti<strong>on</strong> BPM jitter 99.5 %<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> modulati<strong>on</strong> Spherical wavefr<strong>on</strong>t 99.4%<br />

Laser temporalcoherence<br />

99.7%<br />

Laser alighnmentaccuracy<br />

98.1%<br />

Beamsize growth <strong>in</strong>fr<strong>in</strong>ge<br />

99.9%<br />

Tilt <str<strong>on</strong>g>of</str<strong>on</strong>g> fr<strong>in</strong>ge 97.3%<br />

Total 94 %<br />

6 % <str<strong>on</strong>g>of</str<strong>on</strong>g> the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modulait<strong>on</strong> corresp<strong>on</strong>ds to 2.9<br />

nm systematic error <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> 37 nm measurement.<br />

CROSSING ANGLE MODE<br />

The Sh<strong>in</strong>take M<strong>on</strong>itor for ATF2 has 3 cross<strong>in</strong>g angle<br />

modes for vertical beam size measurement and laser wire<br />

mode for horiz<strong>on</strong>tal beam size measurement.<br />

For the different cross<strong>in</strong>g angle θ, the value <str<strong>on</strong>g>of</str<strong>on</strong>g> d and the<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> measurable beam size is shown <strong>in</strong> table 2<br />

The c<strong>on</strong>t<strong>in</strong>uous changable 2-8 degree mode was implemented<br />

for the measurement down to several micr<strong>on</strong>s,<br />

which overlaps with traditi<strong>on</strong>al wire scanner ranges.<br />

(3)


Table 2: cross<strong>in</strong>g angle and the range <str<strong>on</strong>g>of</str<strong>on</strong>g> measurable beam<br />

size<br />

θ d range beam size<br />

2 deg 15.2µ m 1.4 - 6.0 µ m<br />

8 deg 3.81µ m 0.36 -1.4 µ m<br />

30 deg 1.28µ m 100 - 360 nm<br />

174 deg 266nm 25 - 100 nm<br />

A s<strong>in</strong>gle laser path mode, without cross<strong>in</strong>g is also implemented<br />

for functi<strong>on</strong><strong>in</strong>g as a laser wire. It enables to<br />

measure σx beam size.<br />

BEAM TIME RESULT<br />

The measurement with 7.96 deg. mode was performed<br />

until now. Fig.4 is the measurement <strong>in</strong> May <str<strong>on</strong>g>of</str<strong>on</strong>g> this year.<br />

The size was 313 ± 31(stat.) +0<br />

−40 (sys.)nm Corresp<strong>on</strong>d<strong>in</strong>g<br />

modulati<strong>on</strong> depth was 0.85.<br />

Signal Energy / ICT Charge [arb. units]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 2 4 6 8 10 12 14<br />

phase [rad]<br />

Figure 4: Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> beam size<br />

At that time, beam c<strong>on</strong>diti<strong>on</strong> was as follows. The background<br />

amount was 15 GeV. S/N was about 10, signal<br />

amount was much more than background. The beta functi<strong>on</strong>(vertical)<br />

at IP was 1mm, 10 larger times than the nom<strong>in</strong>al<br />

value. This was from the beam tun<strong>in</strong>g issue. When<br />

the beam is focused to 37nm, background is estimated to<br />

<strong>in</strong>crease because <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g focus<strong>in</strong>g. But if the background<br />

become 100 times larger, the resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the detetctor is<br />

less than 10 %.<br />

UPGRADE POINTS IN THE SUMMER<br />

SHUTDOWN 2010<br />

Laser positi<strong>on</strong> stabilizati<strong>on</strong><br />

In order to stabilize the laser positi<strong>on</strong> at IP, an actuator<br />

followd by a PSD have been newly <strong>in</strong>stalled <strong>in</strong> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

20 m transport l<strong>in</strong>e<br />

Focal po<strong>in</strong>t scan<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fset <str<strong>on</strong>g>of</str<strong>on</strong>g> the beam from the laser focus<br />

po<strong>in</strong>t, spherical wavefr<strong>on</strong>t effect would cause systematic<br />

errors. To prevent this we added a system for scann<strong>in</strong>g the<br />

laser focus positi<strong>on</strong>.<br />

Tilt m<strong>on</strong>itor<br />

Tilt <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>terfrence fr<strong>in</strong>ge relative to the beam axis<br />

would also br<strong>in</strong>g about systematic errors. To counter this<br />

effect, 2 PSDs have been <strong>in</strong>stalled to m<strong>on</strong>itor the tilt <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

beam.<br />

SUMMARY AND NEAR FUTURE PLAN<br />

The study reported <strong>in</strong> this paper can be c<strong>on</strong>cluded based<br />

<strong>on</strong> the follow<strong>in</strong>g three major po<strong>in</strong>ts.<br />

1. Sh<strong>in</strong>take m<strong>on</strong>itor at ATF2 is desg<strong>in</strong>ed to measure vertical<br />

beam sizes from several micr<strong>on</strong> down to 25 nm<br />

2. About 300 nm beam size measurements were performed<br />

with 2 degree laser cross<strong>in</strong>g angle mode<br />

3. 37 nm beam size measurement is planned to be<br />

achieved and verified dur<strong>in</strong>g the next run period(Nov<br />

2010 May 2011)<br />

ACKNOWLEDGMENT<br />

The authors are very grateful for the researchers who<br />

took part <strong>in</strong> the comissi<strong>on</strong><strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> beam at ATF2.<br />

We would like to express our thanks for the support<strong>in</strong>g fund<br />

by <strong>KEK</strong>.<br />

REFERENCES<br />

[1] C. Petit-Jean-Genaz and J. Poole, “JACoW, A service to<br />

the Accelerator Community”, EPAC’04, Lucerne, July 2004,<br />

THZCH03, p. 249, http://www.JACoW.org.<br />

[2] A. Name and D. Pers<strong>on</strong>, Phys. Rev. Lett. 25 (1997) 56.<br />

[3] A.N. Other, “A Very Interest<strong>in</strong>g Paper”, EPAC’96,<br />

Sitges, June 1996, MOPCH31, p. 7984 (1996),<br />

http://www.JACoW.org.<br />

[4] T.Suehara, et al. Nucl. Instrum. Methods Phys. Res., Sect. A<br />

616, 1 (2010)


INVESTIGATING THE ONE-PHOTON ANNIHILATION CHANNEL IN AN<br />

e − e + PLASMA CREATED FROM VACUUM IN STRONG LASER FIELDS<br />

D.B. Blaschke, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wroclaw, 50-204 Wroclaw, Poland; JINR, 141980 Dubna, Russia<br />

G. Röpke, Institut für Physik, Universität Rostock, D-18051 Rostock, Germany<br />

V.V. Dmitriev, S.A. Smolyansky ∗ , A.V. Tarakanov, Saratov State University, 410026 Saratov, Russia<br />

Abstract<br />

It is well known that <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g external<br />

electromagnetic fields many processes forbidden <strong>in</strong> standard<br />

QED become possible. One example is the <strong>on</strong>ephot<strong>on</strong><br />

annihilati<strong>on</strong> process c<strong>on</strong>sidered recently by the<br />

present authors <strong>in</strong> the framework <str<strong>on</strong>g>of</str<strong>on</strong>g> a k<strong>in</strong>etic approach to<br />

the quasiparticle e − e + γ plasma created from vacuum <strong>in</strong><br />

the focal spot <str<strong>on</strong>g>of</str<strong>on</strong>g> two counter-propagat<strong>in</strong>g laser beams. In<br />

these works the doma<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large values <str<strong>on</strong>g>of</str<strong>on</strong>g> the adiabaticity<br />

parameter γ ≫ 1 (corresp<strong>on</strong>d<strong>in</strong>g to multiphot<strong>on</strong> processes)<br />

was c<strong>on</strong>sidered. In the present work we estimate the <strong>in</strong>tensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong> stemm<strong>in</strong>g from phot<strong>on</strong> annihilati<strong>on</strong> <strong>in</strong><br />

the framework <str<strong>on</strong>g>of</str<strong>on</strong>g> the effective mass model where γ 1,<br />

corresp<strong>on</strong>d<strong>in</strong>g to large electric fields E Ec = m 2 /e and<br />

high ”laser” field frequencies ν m (the doma<strong>in</strong> characteristic<br />

for X-ray lasers <str<strong>on</strong>g>of</str<strong>on</strong>g> the next generati<strong>on</strong>). Under such<br />

limit<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s the result<strong>in</strong>g effect is sufficiently large<br />

to be accessible to experimental observati<strong>on</strong>.<br />

INTRODUCTION<br />

The planned experiments [1] for the observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

e − e + plasma created from the vacuum <strong>in</strong> the focal spot <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

two counter-propagat<strong>in</strong>g optical laser beams with the <strong>in</strong>tensity<br />

I 10 21 W/cm 2 raises the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> an accurate theoretical<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experimental manifestati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the dynamical Schw<strong>in</strong>ger effect [2], see also Refs. [3, 4, 5].<br />

The exist<strong>in</strong>g predicti<strong>on</strong> [6] <strong>in</strong> the doma<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>gly subcritical<br />

fields E ≪ Ec = m 2 /e <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>siderable number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary annihilati<strong>on</strong> phot<strong>on</strong>s is not rather c<strong>on</strong>v<strong>in</strong>c<strong>in</strong>g<br />

because it is based <strong>on</strong> the S-matrix approach for<br />

the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quasiparticle excitati<strong>on</strong>s <strong>in</strong> the presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a str<strong>on</strong>g external electric field. In particular, this approach<br />

does not take <strong>in</strong>to account vacuum polarizati<strong>on</strong> effects.<br />

Apparently, an adequate approach for the descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum excitati<strong>on</strong>s <strong>in</strong> str<strong>on</strong>g electromagnetic fields<br />

is a k<strong>in</strong>etic theory <strong>in</strong> the quasiparticle representati<strong>on</strong>. The<br />

simplest k<strong>in</strong>etic equati<strong>on</strong> (KE) <str<strong>on</strong>g>of</str<strong>on</strong>g> such type for the e − e +<br />

subsystem has been obta<strong>in</strong>ed for the case <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>in</strong>early polarized,<br />

time dependent and spatially homogeneous electric<br />

fields [2]. Some generalizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the KE <strong>in</strong> the fermi<strong>on</strong><br />

sector have been worked out <strong>in</strong> Refs. [7, 8, 9]. It can be expected,<br />

that electromagnetic field fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the e − e +<br />

plasma are accompanied by the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> real phot<strong>on</strong>s<br />

∗ smol@sgu.ru<br />

which can be registered far from the focal spot. The first<br />

two equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the BBGKY cha<strong>in</strong> for the phot<strong>on</strong> sector<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the e − e + plasma were obta<strong>in</strong>ed <strong>in</strong> [10, 11]. This level is<br />

sufficient for the k<strong>in</strong>etic descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong>e-phot<strong>on</strong> annihilati<strong>on</strong>.<br />

In the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an external field such process<br />

is not forbidden [12]. In the works [10, 11] it was shown<br />

that the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>dary phot<strong>on</strong>s <strong>in</strong> the low frequency<br />

doma<strong>in</strong> k ≪ m has the character <str<strong>on</strong>g>of</str<strong>on</strong>g> the flicker<br />

noise. In the work [13] the <strong>in</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum polarizati<strong>on</strong><br />

effects <strong>in</strong> the <strong>on</strong>e-phot<strong>on</strong> radiati<strong>on</strong> spectrum led to an<br />

essential change <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong> KE which was <strong>in</strong>vestigated<br />

<strong>in</strong> a broad spectral band <strong>in</strong>clud<strong>in</strong>g the annihilati<strong>on</strong> doma<strong>in</strong><br />

ν ∼ 2m. First we have c<strong>on</strong>sidered the doma<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large<br />

adiabaticity parameters γ ≫ 1, where the phot<strong>on</strong> radiati<strong>on</strong><br />

from the focal spot turns out to be very small. However,<br />

the tendency <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect to grow for γ → 1 has been discovered.<br />

This is just the doma<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> practical <strong>in</strong>terest for<br />

parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> modern lasers.<br />

In the present work the effective mass model is c<strong>on</strong>sidered<br />

which allows to <strong>in</strong>vestigate the phot<strong>on</strong> radiati<strong>on</strong> <strong>in</strong> the<br />

doma<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rather str<strong>on</strong>g fields not restricted to specific values<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the adiabacity parameter. Some crude estimati<strong>on</strong>s <strong>in</strong><br />

the framework <str<strong>on</strong>g>of</str<strong>on</strong>g> this model [12] lead to an unexpectedly<br />

large total phot<strong>on</strong> producti<strong>on</strong> <strong>in</strong>tensity.<br />

EFFECTIVE MASS MODEL<br />

We will proceed from the phot<strong>on</strong> k<strong>in</strong>etic equati<strong>on</strong><br />

F ˙ ( e<br />

k, t) =<br />

2<br />

4k(2π) 3<br />

t<br />

dt ′<br />

<br />

d 3 pe −iθ(p,p+ k, k;t ′ ,t) ×<br />

×K(p, p + k, k; t ′ , t)f(p, t ′ )f(p + k, t ′ ) + c.c. (1)<br />

for the <strong>on</strong>e-phot<strong>on</strong> annihilati<strong>on</strong> mechanism tak<strong>in</strong>g <strong>in</strong>to account<br />

vacuum polarizati<strong>on</strong> effects <strong>in</strong> the low density approximati<strong>on</strong><br />

[13]. In Eq. (1) F ( k, t) and f(p, t) are the<br />

phot<strong>on</strong> and electr<strong>on</strong> (positr<strong>on</strong>) distributi<strong>on</strong> functi<strong>on</strong>s, respectively,<br />

k is the wave vector <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiated phot<strong>on</strong> and<br />

θ(p1, p2, k; t ′ , t) =<br />

t<br />

t ′<br />

dτ [ω(p1, τ) + ω(p2, τ) − k] (2)<br />

is the high frequency phase.<br />

The two-time c<strong>on</strong>voluti<strong>on</strong> K(p, p+ k, k; t ′ , t) <str<strong>on</strong>g>of</str<strong>on</strong>g> the foursp<strong>in</strong>ors<br />

is a slowly vary<strong>in</strong>g functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its variables and can


e replaced by its average K → K0 ∼ 1, which is sufficient<br />

for coarse estimati<strong>on</strong>s.<br />

The effective mass model [12] is based <strong>on</strong> the approximati<strong>on</strong><br />

ω(p, t) =<br />

<br />

m 2 +<br />

<br />

p − e 2 A(t) →<br />

→ ω∗(p) = m 2 ∗ + p 2 , (3)<br />

with the effective mass def<strong>in</strong>ed by the relati<strong>on</strong><br />

m 2 ∗ = m 2 + e 2 <br />

A 2<br />

(t) = m 2 + e 2 E 2 0/2ν 2 =<br />

= m 2 (1 + 1/2γ 2 ), (4)<br />

where 〈...〉 denotes the time averag<strong>in</strong>g operati<strong>on</strong>, ν is the<br />

frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the periodic ”laser” field and E0 is its field<br />

strength amplitude, γ = (Ec/E0)(ν/m) is the adiabaticity<br />

parameter.<br />

In this approximati<strong>on</strong> the phase (2) becomes m<strong>on</strong>ochromatic<br />

θ(p1, p2, k; t ′ , t) = Ω∗(p1, p2, k)(t − t ′ ), (5)<br />

Ω∗(p1, p2, k) = ω∗(p1) + ω∗(p2) − k, (6)<br />

i.e. the approximati<strong>on</strong> (3) leads to a suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multiphot<strong>on</strong><br />

processes (it corresp<strong>on</strong>ds to the large values <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

adiabacity parameter γ ≫ 1) and the mismatch (6) can be<br />

compensated by the harm<strong>on</strong>ics <str<strong>on</strong>g>of</str<strong>on</strong>g> the fermi<strong>on</strong> distributi<strong>on</strong><br />

functi<strong>on</strong>s <strong>in</strong> Eq. (1) <strong>on</strong>ly.<br />

The <strong>in</strong>specti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fermi<strong>on</strong> distributi<strong>on</strong> functi<strong>on</strong><br />

shows, <strong>in</strong> particular, that it oscillates basically with twice<br />

the laser frequency<br />

f(p, t) = 1<br />

2 ¯ f(p) [1 − cos(2νt)] . (7)<br />

The substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqs. (5) and (7) <strong>in</strong>to the k<strong>in</strong>etic equati<strong>on</strong><br />

(1) allows to perform the time <strong>in</strong>tegrati<strong>on</strong>, lead<strong>in</strong>g to<br />

the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> two harm<strong>on</strong>ics <strong>in</strong> the radiati<strong>on</strong> spectrum<br />

<strong>on</strong>ly (the 2 nd and the 4 th ),<br />

˙<br />

F ( k, t) = −A (2) ( k) cos(2νt) + A (4) ( k) cos(4νt), (8)<br />

A (2) ( k) = π2 K0α<br />

2k<br />

A (4) ( k) = π2 K0α<br />

8k<br />

<br />

<br />

d 3 p<br />

(2π) 3 ¯ f(p) ¯ f(p + k)δ (2ν − Ω∗) , (9)<br />

d 3 p<br />

(2π) 3 ¯ f(p) ¯ f(p + k)δ (4ν − Ω∗) . (10)<br />

It is important that a c<strong>on</strong>stant comp<strong>on</strong>ent is absent here,<br />

because the mismatch (6) could not be compensated <strong>in</strong> this<br />

case by other sources <str<strong>on</strong>g>of</str<strong>on</strong>g> the time dependence <strong>on</strong> the r.h.s.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (1). 1<br />

Thus, <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>f<strong>in</strong>ite system the soluti<strong>on</strong> (8)<br />

can be <strong>in</strong>terpreted as ”breath<strong>in</strong>g” <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong> subsystem.<br />

However, the situati<strong>on</strong> is changed, when the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the e − e + γ plasma is c<strong>on</strong>sidered <strong>in</strong> a small spatial doma<strong>in</strong><br />

1 This is <strong>in</strong> c<strong>on</strong>trast to the case γ ≫ 1, where account<strong>in</strong>g for multiphot<strong>on</strong><br />

processes <strong>in</strong> the phase (2) leads to a c<strong>on</strong>stant comp<strong>on</strong>ent [13].<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the focal spot with volume ∼ λ 3 due to the vacuum<br />

c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> the e − e + γ plasma <strong>in</strong> the <strong>in</strong>itial<br />

moment <str<strong>on</strong>g>of</str<strong>on</strong>g> switch<strong>in</strong>g <strong>on</strong> the laser field. In this case<br />

<strong>on</strong>e can expect, that all annihilati<strong>on</strong> phot<strong>on</strong>s generated <strong>in</strong><br />

the first half-period <str<strong>on</strong>g>of</str<strong>on</strong>g> the field will leave the volume <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the system and therefore <strong>in</strong> the next half-period the reverse<br />

process (phot<strong>on</strong> transformati<strong>on</strong> to e − e + plasma) will be<br />

impossible. Such a mechanism leads to a pulsati<strong>on</strong> pattern<br />

for the phot<strong>on</strong> radiati<strong>on</strong> from the focal spot. It corresp<strong>on</strong>ds<br />

to <strong>in</strong>troduc<strong>in</strong>g the c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a positive def<strong>in</strong>ite phot<strong>on</strong><br />

producti<strong>on</strong> rate <strong>on</strong> the r.h.s <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (8).<br />

For estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the amplitudes (9), (10) let us <strong>in</strong>troduce<br />

the additi<strong>on</strong>al model approximati<strong>on</strong> <strong>in</strong> the spirit <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

model (3)<br />

ω∗(p + k) → ω∗(p, k) = ω 2 ∗(p) + k 2 (11)<br />

and the isotropisati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong> ¯ f(p + k) → ¯ f(p + k). The<br />

<strong>in</strong>tegrals <strong>on</strong> the r.h.s <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqs. (9), (10) can then be calculated.<br />

For example,<br />

A (2) ( k) = K0α<br />

4k ¯ f(p0) ¯ f(p0 + k) ω∗(p0)ω∗(p0, k)<br />

ω∗(p0) + ω∗(p0, k) p0,<br />

where<br />

p0 =<br />

(12)<br />

<br />

4ν 2 (k + ν) 2<br />

(k + 2ν) 2 − m2 ∗ (13)<br />

is the root <str<strong>on</strong>g>of</str<strong>on</strong>g> the equati<strong>on</strong> Ω∗ − 2ν = 0. From Eq. (13) it<br />

is follows the threshold c<strong>on</strong>diti<strong>on</strong> 2<br />

2ν(k + ν)<br />

k + 2ν m∗ . (14)<br />

This c<strong>on</strong>diti<strong>on</strong> is rather n<strong>on</strong>trivial because the effective<br />

mass (4) depends also <strong>on</strong> ν. The m<strong>in</strong>imal permissible value<br />

ν = 2m∗ corresp<strong>on</strong>ds to k = 0. For the 4 th harm<strong>on</strong>ic the<br />

threshold value falls to ν = m∗, which is close to the parameters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the XFEL [15].<br />

The 1/k - dependence <strong>on</strong> the r.h.s. <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (12) corresp<strong>on</strong>ds<br />

to the flicker noise. This feature <strong>in</strong> the spectrum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> radiated annihilati<strong>on</strong> phot<strong>on</strong>s has been found first <strong>in</strong><br />

Ref. [10].<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s with the frequency k ly<strong>in</strong>g <strong>in</strong> the<br />

<strong>in</strong>terval [k, k + dk] and radiated from the focal spot with<br />

the volume λ 3 = ν −3 per time <strong>in</strong>terval is<br />

d 2 N<br />

dtdk<br />

= 8πk2<br />

ν 3<br />

F ˙ ( k, t). (15)<br />

The fracti<strong>on</strong> <strong>on</strong> the r.h.s. <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (12) is a slow functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the frequencies k and ν and for the sake <str<strong>on</strong>g>of</str<strong>on</strong>g> a prelim<strong>in</strong>ary<br />

estimati<strong>on</strong> it can be replaced by m∗/2. For the 2 nd<br />

harm<strong>on</strong>ic we then obta<strong>in</strong> from Eqs. (12) and (15)<br />

d 2 N (2)<br />

dtdk<br />

= 2παK0km∗<br />

ν 3<br />

¯f(p0) ¯ f(p0 + k)p0 . (16)<br />

2 A similar effect was found first <strong>in</strong> the theory describ<strong>in</strong>g the absorpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a weak signal by the e − e + plasma created from vacuum [14].


As a representative characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the radiati<strong>on</strong> from the focal spot doma<strong>in</strong> we will c<strong>on</strong>sider<br />

the total phot<strong>on</strong> number per time <strong>in</strong>terval,<br />

˙N (2) = 2παK0m∗<br />

ν 3<br />

<br />

kmax<br />

0<br />

dk k ¯ f(p0) ¯ f(p0 + k)p0 . (17)<br />

The electr<strong>on</strong> and positr<strong>on</strong> distributi<strong>on</strong> functi<strong>on</strong>s enter<strong>in</strong>g<br />

here are def<strong>in</strong>ed as the soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>d<strong>in</strong>g n<strong>on</strong>perturbative<br />

k<strong>in</strong>etic equati<strong>on</strong> [2, 7] describ<strong>in</strong>g vacuum creati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> e − e + pairs under the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a str<strong>on</strong>g, time dependent<br />

electric field <str<strong>on</strong>g>of</str<strong>on</strong>g> a stand<strong>in</strong>g wave <str<strong>on</strong>g>of</str<strong>on</strong>g> two counter<br />

propagat<strong>in</strong>g laser beams. The cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f parameter kmax =<br />

2m∗ is <strong>in</strong>troduced <strong>in</strong> order to take <strong>in</strong>to account the annihilati<strong>on</strong><br />

phot<strong>on</strong>s <strong>in</strong> the radiati<strong>on</strong> spectrum.<br />

The fermi<strong>on</strong> distributi<strong>on</strong> functi<strong>on</strong> f(p, t) is a rapidly decreas<strong>in</strong>g<br />

functi<strong>on</strong> with its maximum <strong>in</strong> the po<strong>in</strong>t p = 0 [3].<br />

On this basis for a rough estimati<strong>on</strong> <strong>on</strong>e can put p0 = 0 <strong>in</strong><br />

the arguments <str<strong>on</strong>g>of</str<strong>on</strong>g> these functi<strong>on</strong>s <strong>on</strong> the r.h.s. <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (17),<br />

˙N (2) = 2παK0m∗<br />

ν 3<br />

¯f(0)<br />

<br />

kmax<br />

0<br />

dk k ¯ f(k)p0 , (18)<br />

where accord<strong>in</strong>g to Eq. (13)<br />

m<br />

p0(k) =<br />

2 <br />

∗<br />

48 + 56<br />

k + 4m∗<br />

k<br />

+ 15<br />

m∗<br />

k2<br />

m2 <br />

∗<br />

m<br />

<br />

48 + 56<br />

4<br />

k<br />

, (19)<br />

m∗<br />

because the small kmax ≪ m∗ is effective <strong>in</strong> the <strong>in</strong>tegral<br />

(18). As the result, we obta<strong>in</strong> the follow<strong>in</strong>g order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude<br />

estimate<br />

˙N (2) ∼ αm∗ ¯ f 2 (0) . (20)<br />

For the XFEL parameters E0 = 0.24Ec and λ = 15 nm<br />

[15] we have accord<strong>in</strong>g to the k<strong>in</strong>etic theory <strong>in</strong> the e − e +<br />

sector ¯ f(0) ∼ 10 −2 . From Eq. (20) then follows<br />

˙N (2) ∼ 10 17 s −1 . (21)<br />

For the 4 th harm<strong>on</strong>ic with the oscillati<strong>on</strong> amplitude (10)<br />

the threshold for the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> annihilati<strong>on</strong> phot<strong>on</strong>s is<br />

lowered (see discussi<strong>on</strong> after Eq. (14)) but the <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the phot<strong>on</strong> radiati<strong>on</strong> is also lowered so that the order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> (21) rema<strong>in</strong>s unchanged.<br />

SUMMARY<br />

We have c<strong>on</strong>sidered the effective mass model [12] which<br />

allows a rather simple soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the k<strong>in</strong>etic equati<strong>on</strong> describ<strong>in</strong>g<br />

(<strong>in</strong> the framework <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong>e-phot<strong>on</strong> annihilati<strong>on</strong><br />

mechanism) the phot<strong>on</strong> radiati<strong>on</strong> from the focal spot <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

counter-propagat<strong>in</strong>g laser beams. This simple model leads<br />

to c<strong>on</strong>siderable depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> parametric oscillati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the e − e + γ plasma: <strong>on</strong>ly the 2 nd and 4 th harm<strong>on</strong>ics<br />

rema<strong>in</strong> due to the c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

c<strong>on</strong>stant comp<strong>on</strong>ent <strong>in</strong> the phot<strong>on</strong> producti<strong>on</strong> rate. Thus<br />

a compensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the mismatch (6) is possible by means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these two harm<strong>on</strong>ics <strong>on</strong>ly. The doma<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> applicability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this model is limited to the X-ray doma<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser<br />

radiati<strong>on</strong>. The model suggests a high <strong>in</strong>tegral lum<strong>in</strong>osity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

∼ 10 15 phot<strong>on</strong>s per sec from the focal spot. Other features<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the model are: the 1/k-behavior <strong>in</strong> the <strong>in</strong>frared doma<strong>in</strong><br />

k ≪ m (the flicker noise <str<strong>on</strong>g>of</str<strong>on</strong>g> electrodynamic nature) and the<br />

threshold effect. These results are encourag<strong>in</strong>g for a further<br />

detailed study <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong> k<strong>in</strong>etics <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <strong>on</strong>e-phot<strong>on</strong> annihilati<strong>on</strong> mechanism <strong>in</strong> the doma<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

small adiabacity parameters γ 1.<br />

ACKNOWLEDGEMENTS: We thank our colleagues<br />

G. Gregori, C.D. Murphy, A.V. Prozorkevich, C.D. Roberts<br />

and S. Schmidt for their collaborati<strong>on</strong>. A.M. Fedotov,<br />

D. Habs, B. Kämpfer, H. Ruhl and R. Sauerbrey are acknowledged<br />

for their c<strong>on</strong>t<strong>in</strong>ued <strong>in</strong>terest <strong>in</strong> our work and<br />

valuable discussi<strong>on</strong>s. A.V.T would like to thank the Organiz<strong>in</strong>g<br />

Committee for the warm and stimulat<strong>in</strong>g atmosphere<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the PIF2010.<br />

REFERENCES<br />

[1] G. Gregori, D.B. Blaschke, P.P. Rajeev, H. Chen, R.J.<br />

Clarke, T. Huffman, C.D. Murphy, A.V. Prozorkevich, C.D.<br />

Roberts, G. Röpke, S.M. Schmidt, S.A. Smolyansky, S.<br />

Wilks, R. B<strong>in</strong>gham, High Energy Dens. Phys. 6 (2010) 166.<br />

[2] S.A. Smolyansky, A.V. Prozorkevich, S.M. Schmidt, D.<br />

Blaschke, G. Röpke and V.D. T<strong>on</strong>eev, Int. J. Mod. Phys. E 7<br />

(1998) 515.<br />

[3] D.B. Blaschke, A.V. Prozorkevich, G. Röpke, C.D. Roberts,<br />

S.M. Schmidt, D.S. Shkirmanov and S.A. Smolyansky, Eur.<br />

Phys. J. D 55 (2009) 341.<br />

[4] F. Hebenstreit, R. Alk<str<strong>on</strong>g>of</str<strong>on</strong>g>er and H. Gies, Phys. Rev. D 78<br />

(2008) 061701.<br />

[5] R. Yaresko, M.G. Mustafa and B. Kämpfer, Phys. Plasmas<br />

17 (2010) 103302.<br />

[6] D.B. Blaschke, A.V. Prozorkevich, C.D. Roberts, S.M.<br />

Schmidt and S.A. Smolyansky, Phys. Rev. Lett. 96 (2006)<br />

140402.<br />

[7] A.V. Filatov, A.V. Prozorkevich and S.A. Smolyansky, Proc.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> SPIE v6165, (2006) 616509.<br />

[8] V.N. Pervush<strong>in</strong>, V.V. Skokov, Int. J. Mod. Phys. A, 20,<br />

(2005) 5689.<br />

[9] S.A. Smolyansky, A.V. Reichel, D.V. V<strong>in</strong>nik, S.M. Schmidt,<br />

<strong>in</strong>: ”Progress <strong>in</strong> N<strong>on</strong>equilibrium Green’s Functi<strong>on</strong>s 2”,<br />

World Scientific, S<strong>in</strong>gapore , p.384 (2003).<br />

[10] D.B. Blaschke, S.M. Schmidt, S.A. Smolyansky and A.V.<br />

Tarakanov, Phys. Part. Nucl. 41 (2010) 1004.<br />

[11] D.B. Blaschke, G. Röpke, S.M. Schmidt, S.A. Smolyansky<br />

and A.V. Tarakanov, arXiv:1006.1098 [physics.plasm-ph].<br />

[12] V.I. Ritus, Trudy FIAN SSSR, 111 (1979) 5.<br />

[13] S.A. Smolyansky D.B. Blaschke, A.V. Chertil<strong>in</strong> G. Röpke,<br />

A.V. Tarakanov, arXiv:1012.0559 [physics.plasm-ph].<br />

[14] D.B. Blaschke, S.V. Ily<strong>in</strong>, A.D. Panferov, G. Röpke and S.A.<br />

Smolyansky, C<strong>on</strong>trib. Plasma Phys. 49 (2009) 602.<br />

[15] A. R<strong>in</strong>gwald, Phys. Lett. 510, (2001) 107.


Abstract<br />

Unruh radiati<strong>on</strong> and Interference effect ∗<br />

Satoshi Iso † , Yasuhiro Yamamoto ‡ and Sen Zhang § , <strong>KEK</strong>, Tsukuba, Japan<br />

A uniformly accelerated charged particle feels the vacuum<br />

as thermally excited and fluctuates around the classical<br />

trajectory. Then we may expect additi<strong>on</strong>al radiati<strong>on</strong> besides<br />

the Larmor radiati<strong>on</strong>. It is called Unruh radiati<strong>on</strong>. In<br />

this report, we review the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh radiati<strong>on</strong><br />

with an emphasis <strong>on</strong> the <strong>in</strong>terference effect between the<br />

vacuum fluctuati<strong>on</strong> and the radiati<strong>on</strong> from the fluctuat<strong>in</strong>g<br />

moti<strong>on</strong>. Our calculati<strong>on</strong> is based <strong>on</strong> a stochastic treatment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the particle under a uniform accelerati<strong>on</strong>. The basics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the stochastic equati<strong>on</strong> are reviewed <strong>in</strong> another report <strong>in</strong> the<br />

same proceed<strong>in</strong>g [2]. In this report, we ma<strong>in</strong>ly discuss the<br />

radiati<strong>on</strong> and the <strong>in</strong>terference effect.<br />

STOCHASTIC ALD EQUATION<br />

The Unruh radiati<strong>on</strong> is the additi<strong>on</strong>al radiati<strong>on</strong> expected<br />

to be emanated by a uniformly accelerated charged particle<br />

[3]. A uniformly accelerated observer feels the quantum<br />

vacuum as thermally excited with the Unruh temperature<br />

TU = a/2πckB. Hence as the ord<strong>in</strong>ary Unruh-de Wit detector,<br />

a charged particle <strong>in</strong>teract<strong>in</strong>g with the radiati<strong>on</strong> field<br />

can be expected to fluctuate around the classical trajectory.<br />

Is there additi<strong>on</strong>al radiati<strong>on</strong> associated with this fluctuat<strong>in</strong>g<br />

moti<strong>on</strong>? It is the issue <str<strong>on</strong>g>of</str<strong>on</strong>g> the present report.<br />

In order to formulate the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> such fluctuat<strong>in</strong>g<br />

moti<strong>on</strong>, we make use <str<strong>on</strong>g>of</str<strong>on</strong>g> the stochastic technique. Namely,<br />

we solve a set <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the accelerated particle and<br />

the radiati<strong>on</strong> field <strong>in</strong> a semiclassical approximati<strong>on</strong>. By<br />

semiclassical, we mean that the radiati<strong>on</strong> field is treated<br />

as a quantum field while the particle is treated classically.<br />

S<strong>in</strong>ce the accelerated particle dissipates its energy<br />

through the Larmor radiati<strong>on</strong>, the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> c<strong>on</strong>ta<strong>in</strong>s<br />

the radiati<strong>on</strong> damp<strong>in</strong>g term. This is the Abraham-<br />

Lorentz-Dirac (ALD) equati<strong>on</strong>. Furthermore, s<strong>in</strong>ce the accelerated<br />

particle feels the M<strong>in</strong>kowski vacuum as thermally<br />

excited, a noise term is also <strong>in</strong>duced <strong>in</strong> the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

The stochastic equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the accelerated charged<br />

particle is called the stochastic ALD equati<strong>on</strong> and derived<br />

by [4].<br />

We c<strong>on</strong>sider the scalar QED whose acti<strong>on</strong> is given by<br />

∫<br />

S[z, ϕ, h] = − m<br />

∫<br />

+<br />

dτ √ ˙z µ ∫<br />

˙zµ +<br />

d 4 x 1 2<br />

(∂µϕ)<br />

2<br />

d 4 x j(x; z)ϕ(x). (1)<br />

∗ Based <strong>on</strong> a poster presentati<strong>on</strong> by Y.Yamamoto and [1].<br />

† satoshi.iso@kek.jp<br />

‡ yamayasu@post.kek.jp<br />

§ zhangsen@post.kek.jp<br />

where<br />

∫<br />

j(x; z) = e<br />

dτ √ ˙z µ ˙zµδ 4 (x − z(τ)), (2)<br />

We choose the parametrizati<strong>on</strong> τ to satisfy ˙z 2 = 1.<br />

By solv<strong>in</strong>g the Heisenberg equati<strong>on</strong> for ϕ, we get the<br />

stochastic ALD equati<strong>on</strong> for the charged particle:<br />

m ˙v µ − F µ − e2<br />

12π (vµ ˙v 2 + ¨v µ ) = −e −→ ω µ ϕh(z) (3)<br />

where v µ = ˙z µ . The dissipative term corresp<strong>on</strong>ds to loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> energy through the radiati<strong>on</strong> and it is called the radiati<strong>on</strong><br />

damp<strong>in</strong>g term. On the other hand, the noise term comes<br />

from the Unruh effect, namely, <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a uniformly<br />

accelerated particle with the thermal bath <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong><br />

field.<br />

We can easily solve the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> small fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the transverse velocities v i = v i 0+δv i <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum<br />

fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the field ϕh (or its Fourier tranformed<br />

field φ) as<br />

where<br />

δ˜v i (ω) = eh(ω)∂iφ(ω), (4)<br />

δv i ∫<br />

dω<br />

(τ) =<br />

2π δ˜vi (ω)e −iωτ ,<br />

∫<br />

dω<br />

−iωτ<br />

∂iϕh(τ) = ∂iφ(ω)e<br />

2π<br />

(5)<br />

(6)<br />

h(ω) =<br />

1<br />

. (7)<br />

−imω + e2<br />

12π (ω2 + a 2 )<br />

In the follow<strong>in</strong>g, as an ideal case we c<strong>on</strong>sider a uniformly<br />

accelerated charged particle <strong>in</strong> the scalar QED, and <strong>in</strong>vestigate<br />

the radiati<strong>on</strong> from such a particle. The ma<strong>in</strong> issue is<br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terference.<br />

RADIATION AND INTERFERENCE<br />

Now we calculate the radiati<strong>on</strong> emanated from the uniformly<br />

accelerated charged particle. First let’s c<strong>on</strong>sider the<br />

2-po<strong>in</strong>t functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong> field. S<strong>in</strong>ce the field is<br />

written as a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum fluctuati<strong>on</strong> (a homogeneous<br />

soluti<strong>on</strong>) ϕh and the <strong>in</strong>homogeneous soluti<strong>on</strong> <strong>in</strong> the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the charged particle ϕI, the 2-po<strong>in</strong>t functi<strong>on</strong> is<br />

given by<br />

⟨ϕ(x)ϕ(y)⟩ − ⟨ϕh(x)ϕh(y)⟩ (8)<br />

= ⟨ϕI(x)ϕh(y)⟩ + ⟨ϕh(x)ϕI(y)⟩ + ⟨ϕI(x)ϕI(y)⟩.<br />

The Unruh radiati<strong>on</strong> estimated <strong>in</strong> [3] is c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong><br />

⟨ϕIϕI⟩, which <strong>in</strong>clude the Larmor radiati<strong>on</strong>. We need special<br />

care <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>terference terms. As discussed <strong>in</strong> [5],


the <strong>in</strong>terference terms ⟨ϕIϕh⟩ + ⟨ϕhϕI⟩ may possibly cancel<br />

the Unruh radiati<strong>on</strong> <strong>in</strong> ⟨ϕIϕI⟩ after the thermalizati<strong>on</strong><br />

occurs. The cancellati<strong>on</strong> is explicitly shown for an <strong>in</strong>ternal<br />

detector, but it is not obvious whether the same cancellati<strong>on</strong><br />

occurs for the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a charged particle we are c<strong>on</strong>sider<strong>in</strong>g.<br />

The <strong>in</strong>homogeneous soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the scalar field is written<br />

as<br />

∫<br />

ϕI(x) = e<br />

dτGR(x − z(τ)) =<br />

e<br />

. (9)<br />

4πρ(x)<br />

ρ(x) = ˙z(τ x −) · (x − z(τ x −)), (10)<br />

where τ x − satisfies (x − z(τ x −)) 2 = 0, x0 > z0 (τ x −),<br />

which is the proper time <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle whose radiati<strong>on</strong><br />

travels to the space-time po<strong>in</strong>t x. Hence, z(τ x −) lies <strong>on</strong> an<br />

<strong>in</strong>tersecti<strong>on</strong> between the particle’s world l<strong>in</strong>e and the light<br />

c<strong>on</strong>e extend<strong>in</strong>g from the observer’s positi<strong>on</strong> x (See Fig 1).<br />

We write the superscript x to make the x dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> τ<br />

explicitly.<br />

The particle’s trajectory is fluctuat<strong>in</strong>g and expressed as<br />

z = z0 + δz + δ2z + · · · where we have expanded the<br />

tragectory with respect to the <strong>in</strong>teracti<strong>on</strong> with the radiati<strong>on</strong><br />

field (i.e. e). Then ρ is also expanded as ρ = ρ0 + δρ +<br />

δ2ρ + · · · and (9) becomes<br />

(<br />

) )<br />

2<br />

ϕI = e<br />

4πρ0<br />

1 − δρ<br />

+<br />

ρ0<br />

( δρ<br />

ρ0<br />

− δ2 ρ<br />

ρ0<br />

+ · · ·<br />

. (11)<br />

The first term is the classical potential, but s<strong>in</strong>ce the particle’s<br />

trajectory deviates from the classical <strong>on</strong>e, the potential<br />

also receives correcti<strong>on</strong>s.<br />

Inhomogeneous part<br />

By <strong>in</strong>sert<strong>in</strong>g the expansi<strong>on</strong> (11), the correlator <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>homogeneous<br />

soluti<strong>on</strong> ϕI becomes<br />

⟨ϕI(x)ϕI(y)⟩ (12)<br />

(<br />

e<br />

) 2 1<br />

=<br />

4π ρ0(x)ρ0(y)<br />

)<br />

×<br />

.<br />

(<br />

1 + ⟨δρ(x)δρ(y)⟩<br />

ρ0(x)ρ0(y) + ⟨(δρ(x))2 ⟩<br />

ρ2 0 (x) + ⟨(δρ(y))2 ⟩<br />

ρ2 0 (y)<br />

The first term gives the Larmor radiati<strong>on</strong>. The other terms<br />

corresp<strong>on</strong>d to the radiati<strong>on</strong> <strong>in</strong>duced by the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the particle’s moti<strong>on</strong>.<br />

The calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these terms are easy, because <strong>on</strong>e can<br />

write ⟨δρδρ⟩ <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> ⟨δ ˙z i δ ˙z i ⟩ = ⟨δv i δv i ⟩, which can<br />

be obta<strong>in</strong>ed by solv<strong>in</strong>g the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s <strong>in</strong> the<br />

stochastic ALD equati<strong>on</strong> [1, 2]. They become<br />

⟨ϕI(x)ϕI(y)⟩ (13)<br />

(<br />

e<br />

) [<br />

2 1<br />

=<br />

1 + e<br />

4π ρ0(x)ρ0(y)<br />

2<br />

∫<br />

dω<br />

2π |h(ω)|2IS(ω) )<br />

×<br />

]<br />

.<br />

( i i −iω(τ<br />

x y e x y<br />

−−τ− )<br />

ρ0(x)ρ0(y) + xixi ρ2 0 (x) + yiyi ρ2 0 (y)<br />

S<strong>in</strong>ce we are c<strong>on</strong>sider<strong>in</strong>g the fluctuat<strong>in</strong>g moti<strong>on</strong> whose frequency<br />

is smaller than the accelerati<strong>on</strong>, IS can be approximately<br />

given by a 3 /12π 2 .<br />

Figure 1: The hyperbolic l<strong>in</strong>e <strong>in</strong> the right wedge denotes<br />

the world l<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle. The po<strong>in</strong>ts OF and OR are<br />

observers <strong>in</strong> the future and right wedges, respectively. For<br />

an observer <strong>in</strong> the right wedge, the light-c<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the observer<br />

has two <strong>in</strong>tersecti<strong>on</strong>s with the world l<strong>in</strong>e, and the<br />

proper time <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>tersecti<strong>on</strong>s are given by τ R ± . For an<br />

observer <strong>in</strong> the future wedge, there is <strong>on</strong>ly <strong>on</strong>e <strong>in</strong>tersecti<strong>on</strong><br />

<strong>on</strong> the particle’s real trajectory which corresp<strong>on</strong>ds to τ F − .<br />

The other soluti<strong>on</strong> T F + = τ F + + iπ/a is complex. One may<br />

<strong>in</strong>terpret this complex proper time as the <strong>in</strong>tersecti<strong>on</strong> between<br />

the light-c<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the observer and the world l<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

virtual particle with a real proper time τ F + <strong>in</strong> the left wedge.<br />

The superscript letters R or F are used to dist<strong>in</strong>guish two<br />

different observers, but we do not use them <strong>in</strong> the body <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the paper to leave the space for the observer’s positi<strong>on</strong> x.<br />

Interference Term<br />

The calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>terference terms is a bit more<br />

<strong>in</strong>volved. The <strong>in</strong>homogeneous soluti<strong>on</strong> ϕI is expanded as<br />

(11). S<strong>in</strong>ce the lead<strong>in</strong>g term which has a n<strong>on</strong>vanish<strong>in</strong>g correlati<strong>on</strong><br />

with the quantum fluctuati<strong>on</strong> ϕh is the sec<strong>on</strong>d term,<br />

we have<br />

⟨ϕI(x)ϕh(y)⟩ + ⟨ϕh(x)ϕI(y)⟩<br />

= − e<br />

(<br />

⟨δρ(x)ϕh(y)⟩<br />

4π<br />

ρ 2 0 (x)<br />

+ ⟨ϕh(x)δρ(y)⟩<br />

ρ 2 0 (y)<br />

)<br />

. (14)<br />

The fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the distance δρ is written <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> δv i<br />

which is the soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the stochastic ALD equati<strong>on</strong> (4),<br />

and we obta<strong>in</strong><br />

⟨ϕh(x)δρ(y)⟩ = −ey i<br />

∫<br />

dω<br />

y<br />

e−iωτ−h(ω)⟨ϕh(x)∂iφ(ω)⟩. 2π


The <strong>in</strong>tegrand can be written as<br />

∫<br />

⟨ϕh(x)∂iφ(ω)⟩ = dτe iωτ<br />

( )<br />

∂<br />

⟨ϕh(x)ϕh(y)⟩<br />

∂yi y=z(τ)<br />

∫<br />

= − dτe iωτ<br />

(<br />

∂P (x, ω)<br />

∂xi )<br />

, (15)<br />

where<br />

∫<br />

P (x, ω) = dτ<br />

e iωτ<br />

(x 0 − z 0 (τ) − iϵ) 2 − (x 1 − z 1 (τ)) 2 − x 2 ⊥<br />

x 2 ⊥ = (x2 ) 2 + (x 3 ) 2 is the transverse distance. The τ <strong>in</strong>tegral<br />

can be calculated by the c<strong>on</strong>tour <strong>in</strong>tegral. The residues<br />

are located where the <strong>in</strong>variant length between the observed<br />

po<strong>in</strong>t x and a po<strong>in</strong>t <strong>on</strong> the particle’s trajectory vanishes.<br />

The c<strong>on</strong>diti<strong>on</strong> is noth<strong>in</strong>g but the c<strong>on</strong>diti<strong>on</strong> that the radiati<strong>on</strong><br />

field propagates <strong>on</strong> the light c<strong>on</strong>e. Fig.1 shows such<br />

a situati<strong>on</strong>. It is <strong>in</strong>terest<strong>in</strong>g that the c<strong>on</strong>diti<strong>on</strong> for residues<br />

has a soluti<strong>on</strong> <strong>on</strong> an <strong>in</strong>tersecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the light-c<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the observer<br />

and the virtual path <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle (dotted l<strong>in</strong>e <strong>in</strong> the<br />

left wedge). We skip the calculati<strong>on</strong>s and show the f<strong>in</strong>al<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>terference terms;<br />

⟨ϕI(x)ϕh(y)⟩ + ⟨ϕh(x)ϕI(y)⟩ (16)<br />

=<br />

×<br />

where<br />

−iae2xiy i<br />

(4π) 2ρ0(x) 2ρ0(y) 2<br />

[<br />

e<br />

x y<br />

−iω(τ−−τ e<br />

+ e<br />

− e<br />

∫<br />

dω 1<br />

2π 1 − e−2πω/a − ) h(−ω) ( aL2 x<br />

2ρ0(x)<br />

x y<br />

−iω(τ−−τ− ) − h(ω) ( aL2y 2ρ0(y)<br />

x<br />

−iω(τ+ −τ y<br />

x<br />

−iω(τ− − iω<br />

a<br />

)<br />

iω )<br />

+<br />

a<br />

− ) h(−ω) ( − aL2x iω )<br />

− Zx(−ω)<br />

2ρ0(x) a<br />

y<br />

−τ+ ) h(ω) ( − aL2y iω ) ]<br />

+ Zy(−ω)<br />

2ρ0(y) a<br />

Zx(ω) = e πω/a θ(x 0 − x 1 ) + θ(x 1 − x 0 ) (17)<br />

L 2 x = −x µ xµ + 1<br />

a2 , L2y = −y µ yµ + 1<br />

. (18)<br />

a2 Partial Cancellati<strong>on</strong><br />

The correlati<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>homogeneous terms<br />

(13) depends <strong>on</strong>ly <strong>on</strong> τ−. The <strong>in</strong>terference terms c<strong>on</strong>ta<strong>in</strong><br />

both <str<strong>on</strong>g>of</str<strong>on</strong>g> terms depend<strong>in</strong>g <strong>on</strong> τ− and τ+; the first term <strong>in</strong> the<br />

parenthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> (17) depends <strong>on</strong>ly <strong>on</strong> τ−, so it is the term<br />

that may cancel the <strong>in</strong>homogeneous terms (i.e. the Unruh<br />

radiati<strong>on</strong>). Us<strong>in</strong>g the relati<strong>on</strong><br />

h(ω) + h(−ω) = e2<br />

6π (ω2 + a 2 )|h(ω)| 2 , (19)<br />

<strong>on</strong>e can show that a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>terference terms<br />

iae2xiy i<br />

(4π) 2ρ0(x) 2ρ0(y) 2<br />

×<br />

∫ x y<br />

−iω(τ<br />

dω e −−τ− 2π<br />

)<br />

1 − e−2πω/a ( iω<br />

h(−ω)<br />

a<br />

)<br />

+ h(ω)iω<br />

a<br />

(20)<br />

.<br />

cancels the first correcti<strong>on</strong> term <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>homogeneous part<br />

<strong>in</strong> (13). This term was obta<strong>in</strong>ed by tak<strong>in</strong>g a derivative <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

x<br />

iωτ e − <strong>in</strong> P (x, ω). But note that the cancellati<strong>on</strong> occurs <strong>on</strong>ly<br />

partially. Furthermore, the τ+-dependent terms <strong>in</strong> the <strong>in</strong>terference<br />

terms cannot be canceled with the Unruh radiati<strong>on</strong>.<br />

The Energy Momentum Tensor<br />

Given the 2-po<strong>in</strong>t functi<strong>on</strong>, we can calculate the energy<br />

momentum tensor <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong><br />

⟨Tµν(x)⟩ = ⟨: ∂µϕ∂νϕ − 1<br />

2 gµν∂ α ϕ∂αϕ :⟩. (21)<br />

It is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the classical and the fluctuati<strong>on</strong> parts; Tµν =<br />

Tcl,µν + Tfluc,µν. The classical part is given by<br />

Tcl,µν ∼ e2∂µρ0∂νρ0 (4π) 2ρ4 . (22)<br />

0<br />

It corresp<strong>on</strong>ds to the energy momentum tensor <str<strong>on</strong>g>of</str<strong>on</strong>g> the Larmor<br />

radiati<strong>on</strong>. From (10) it can be seen to be proporti<strong>on</strong>al<br />

to a 2 /r 2 where a is the accelerati<strong>on</strong> and r is the spacial<br />

distance from the particle to the observer. Tfluc,µν is the<br />

energy momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> the additi<strong>on</strong>al radiati<strong>on</strong><br />

Tfluc,µν = (xi ) 2<br />

− e2 a 2 L 2 x<br />

(4π) 2 ρ 3 0<br />

(<br />

ρ 2 0<br />

[ (e 2<br />

π Im − 6ma2 I1L 2 x<br />

ρ0<br />

)<br />

Tcl,µν<br />

mI3 ∂µτ x −∂ντ x − + 2mI1<br />

ρ0L2 (xµ∂νρ0 + xν∂µρ0)<br />

x<br />

+ e2Im 12πL2 (xµ∂ντ<br />

x<br />

x − + xν∂µτ x −)<br />

− e2Im (∂µτ<br />

24πρ0<br />

x −∂νρ0 + ∂ντ x −∂µρ0)<br />

) ]<br />

(23)<br />

where I1 = 3<br />

2mae2 , I3 ∼ Ω2 −I1 ≪ a2I1, Im = I3+a2 I1 ∼<br />

a2I1. Hence, these terms orig<strong>in</strong>at<strong>in</strong>g from the fluctuat<strong>in</strong>g<br />

moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle is proporti<strong>on</strong>al to a3 , and smaller<br />

by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> a compared to the above Larmor radiati<strong>on</strong>.<br />

Though they have different angular distributi<strong>on</strong>, there is an<br />

overall factor (x2 i ) <strong>in</strong> fr<strong>on</strong>t and they vanish at the forward<br />

directi<strong>on</strong>. Together with the l<strong>on</strong>g relaxati<strong>on</strong> time discussed<br />

<strong>in</strong> [2], the detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh radiati<strong>on</strong> seems to be very<br />

difficult experimentally.<br />

REFERENCES<br />

[1] S. Iso, Y. Yamamoto and S. Zhang, arXiv:1011.4191 [hep-th].<br />

[2] S. Iso, Y. Yamamoto and S. Zhang, <strong>in</strong> the same proceed<strong>in</strong>g,<br />

“Can we detect ”Unruh radiati<strong>on</strong>” <strong>in</strong> the high <strong>in</strong>tensity laser?”<br />

[3] P. Chen and T. Tajima, Phys. Rev. Lett. 83 (1999) 256.<br />

[4] P. R. Johns<strong>on</strong> and B. L. Hu, arXiv:quant-ph/0012137.<br />

Phys. Rev. D 65 (2002) 065015 [arXiv:quant-ph/0101001].<br />

P. R. Johns<strong>on</strong> and B. L. Hu, Found. Phys. 35, 1117 (2005)<br />

[arXiv:gr-qc/0501029].<br />

[5] D. J. Ra<strong>in</strong>e, D. W. Sciama and P. G. Grove, Proc. R. Soc.<br />

L<strong>on</strong>d. A (1991) 435, 205-215


P r o g r a m <str<strong>on</strong>g>of</str<strong>on</strong>g> PIF2010<br />

th<br />

N o v (Wednesday) . 2 4<br />

08:30 Registrati<strong>on</strong> starts @ foyer <strong>in</strong> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> Kobayashi Hall<br />

[Open<strong>in</strong>g and tutorial-1 : chaired by T shiki o Tajima (LMU, Munich)]<br />

09:00 Open<strong>in</strong>g address by Satoshi Iso (<strong>KEK</strong>, the c<strong>on</strong>ference chair) [10]<br />

09:10 Welcome speech by Fumihiko Takasaki (<strong>KEK</strong>) [10]<br />

09:20 Gerard Mourou (Ecole Polytechnique) [60]<br />

“Extreme Light for High Energy <strong>Physics</strong>”<br />

10:20 break [15]<br />

[N<strong>on</strong>l<strong>in</strong>ear QED : chaired by Toshiaki Tauchi (<strong>KEK</strong>)]<br />

10:35 Thomas He<strong>in</strong>zl (Plymouth U.) [45]<br />

“QED <strong>in</strong> ultra-<strong>in</strong>tense laser fields”<br />

11:20 Kaoru Yokoya (<strong>KEK</strong>) [30]<br />

“Beam-beam <strong>in</strong>teracti<strong>on</strong> <strong>in</strong> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> L<strong>in</strong>ear Collider”<br />

11:50 Anth<strong>on</strong>y Hart<strong>in</strong> (DESY) [25]<br />

“Sec<strong>on</strong>d Order QED processes <strong>in</strong> the Furry Picture and their Radiative Correcti<strong>on</strong>s”<br />

12:15 lunch [75]<br />

[Heavy-i<strong>on</strong> collisi<strong>on</strong>s and Quark-Glu<strong>on</strong> Plasma : chaired by Tetsuo Hatsuda (U. T o )] k y o<br />

13:30 Kazunori Itakura (<strong>KEK</strong>) [30]<br />

“Str<strong>on</strong>g Field Dynamics <strong>in</strong> Heavy I<strong>on</strong> Collisi<strong>on</strong>s”<br />

14:00 Andreas Ipp (TU Vienna) [25]<br />

“Yoctosec<strong>on</strong>d phot<strong>on</strong> pulse generati<strong>on</strong> <strong>in</strong> heavy i<strong>on</strong> collisi<strong>on</strong>s”<br />

14:25 Kenji Fukushima (Keio U.) [25]<br />

“Fields, <strong>in</strong>stant<strong>on</strong>s, and currents”<br />

14:50 Kenji Morita (GSI) [25]<br />

“Critical behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> charm<strong>on</strong>ium : QCD sec<strong>on</strong>d order Stark effect”


15:15 break [15]<br />

[Unruh radiati<strong>on</strong> : chaired by Kensuke Homma (Hiroshima U.)]<br />

15:30 Ralf Schutzhold (Essen U.) [45]<br />

“Fundamental Quantum Effects <strong>in</strong> Str<strong>on</strong>g Lasers”<br />

16:15 Sen Zhang (<strong>KEK</strong>) [25]<br />

“Does an uniformly accelerated electr<strong>on</strong> radiate Unruh radiati<strong>on</strong>? ”<br />

16:40 Frieder Lenz (Erlangen-Nuernberg & RIKEN) [25]<br />

“Quantum fields <strong>in</strong> accelerated frames”<br />

17:05 break [15]<br />

[Axi<strong>on</strong>-like particle searches : chaired by Hiroshi Azechi (ILE, Osaka U.)]<br />

17:20 Axel L<strong>in</strong>dner (DESY) [45]<br />

“Sh<strong>in</strong><strong>in</strong>g light through walls: enroute towards a new particle physics fr<strong>on</strong>tier”<br />

18:05 Kensuke Homma (Hiroshima U.) [25]<br />

“Prob<strong>in</strong>g extremely light fields via res<strong>on</strong>ance scatter<strong>in</strong>g by laser focus<strong>in</strong>g”<br />

th<br />

N o v (Thursday) . 2 5<br />

[Tutorial-2 : chaired by Dietrich Habs (LMU, Munich)]<br />

09:00 Gerald Dunne (C<strong>on</strong>necticut U.) [60]<br />

“The Heisenberg-Schw<strong>in</strong>ger Effect: N<strong>on</strong>perturbative Pair Producti<strong>on</strong> from Vacuum”<br />

10:00 break [15]<br />

[Schw<strong>in</strong>ger mechanism <strong>in</strong> QGP and c<strong>on</strong>densed matter : chaired by Masayuki Asakawa (Osaka<br />

U.)]<br />

10:15 Naoto Tanji (Tokyo U. Komaba) [25]<br />

“Dynamical view <str<strong>on</strong>g>of</str<strong>on</strong>g> pair creati<strong>on</strong> via the Schw<strong>in</strong>ger mechanism”<br />

10:40 Aiichi Iwazaki (Nishogakusha U.) [25]<br />

“Exact soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pair producti<strong>on</strong>s <strong>in</strong> str<strong>on</strong>g electric fields with f<strong>in</strong>ite sizes”<br />

11:05 Takashi Oka (Tokyo U.) [25]<br />

“Str<strong>on</strong>g field physics <strong>in</strong> c<strong>on</strong>densed matter”<br />

11:30 Sh<strong>in</strong> Nakamura (Kyoto) [25]<br />

“N<strong>on</strong>-l<strong>in</strong>ear charge transport <strong>in</strong> plasma under str<strong>on</strong>g field”


11:55 lunch & group photo [85]<br />

[Recent developments <strong>in</strong> Schw<strong>in</strong>ger mechanism 1: chaired by Philip Bambade (LAL, Orsay)]<br />

13:20 Dietrich Habs (LMU,Munich) [45]<br />

“Vacuum Pair Creati<strong>on</strong>”<br />

14:05 Hartmut Ruhl (LMU,Munich) [25]<br />

“QED cascad<strong>in</strong>g: A particle <strong>in</strong> cell model”<br />

14:30 N<strong>in</strong>a Elk<strong>in</strong>a (LMU, Munich) [25]<br />

“Numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> QED cascades <strong>in</strong> circularly polarized laser fields”<br />

14:55 break [15]<br />

[Recent developments <strong>in</strong> Schw<strong>in</strong>ger mechanism 2: chaired by Gerald Dunne (C<strong>on</strong>necticut U.)]<br />

15:10 Sergei Bulanov (Kansai Phot<strong>on</strong> Science Institute, JAEA) [45]<br />

“On the Schw<strong>in</strong>ger limit atta<strong>in</strong>ability with extreme power lasers”<br />

15:55 Natalia Naumova (Ecole Polytechnique) [25]<br />

“Pair Creati<strong>on</strong> <strong>in</strong> QED-Str<strong>on</strong>g Pulsed Laser Fields Interact<strong>in</strong>g with Electr<strong>on</strong> Beams”<br />

16:20 He<strong>in</strong>rich Hora (New South Wales) [25]<br />

“Accelerati<strong>on</strong> up to black hole c<strong>on</strong>diti<strong>on</strong>s and B-mes<strong>on</strong> decay”<br />

16:45 POSTER SESSION at the foyer <strong>in</strong> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> Kobayashi Hall [90] (~ 18:15)<br />

18:30 Buses leave for banquet<br />

19:00 Banquet at Okura Fr<strong>on</strong>tier Hotel Tsukuba (~21:00)<br />

th<br />

N o v ( F r i . d a y ) 2 6<br />

[Recent progress <str<strong>on</strong>g>of</str<strong>on</strong>g> ultra-<strong>in</strong>tense lasers : chaired by Alex Borisov (U. Ill<strong>in</strong>ois at Chicago)]<br />

09:00 Hideaki Takabe (ILE, Osaka U.) [45]<br />

“Present Status <str<strong>on</strong>g>of</str<strong>on</strong>g> Ultra-<strong>in</strong>tense Lasers and High-Field <strong>Physics</strong> <strong>in</strong> the World”<br />

09:45 Baifei Shen (Shanghai Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Optics and F<strong>in</strong>e Mechanics) [25]<br />

“Generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ultra <strong>in</strong>tense X ray approach<strong>in</strong>g the Schw<strong>in</strong>ger limit”<br />

10:10 Charles Rhodes (U. Ill<strong>in</strong>ois at Chicago) [25]<br />

“Reach<strong>in</strong>g the Schw<strong>in</strong>ger Limit with X-Rays”


10:35 break (20)<br />

[Magnetars : chaired by David Salzmann (Weizmann Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Science)]<br />

10:55 Kazunori Kohri (<strong>KEK</strong>) [30]<br />

“N<strong>on</strong>l<strong>in</strong>ear QED effects by str<strong>on</strong>g magnetic field <strong>in</strong> astrophysics”<br />

11:25 Kazuo Makishima (Tokyo U.) [45]<br />

“W i -Band d e X-ray Observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Magnetars”<br />

12:10 Toshitaka Tatsumi (Kyoto U.) [25]<br />

“QCD orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g magnetic fields <strong>in</strong> compact stars”<br />

12:35 lunch @ foyer [105]<br />

[New technologies : chaired by Kim<strong>in</strong>ori K<strong>on</strong>do (JAEA)]<br />

14:20 Kazuhisa Nakajima (<strong>KEK</strong>) [45]<br />

“Recent progress and prospects <strong>on</strong> laser-plasma accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles”<br />

15:05 Masaki Kando (JAEA) [25]<br />

“Fly<strong>in</strong>g Mirror as a tool to access ultra-high field”<br />

15:30 break [15]<br />

[Overview : chaired by Tohru Takahashi (Hiroshima U.)]<br />

15:45 Toshiki Tajima (LMU, Munich) [60]<br />

“High field science”<br />

16:45 Clos<strong>in</strong>g remarks by Tohru Takahashi (Hiroshima U., the c<strong>on</strong>ference chair) [10]


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Participants<br />

Name Instituti<strong>on</strong> Name Instituti<strong>on</strong><br />

AKAGI, Tomoya Hiroshima University NAKAMURA, Sh<strong>in</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, Kyoto University<br />

ARAKI, Sakae <strong>KEK</strong> NAKAMURA, Gen Hiroshima University<br />

ASAKAWA, Masayuki Osaka University NARA, Yasushi Akita <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> University<br />

AZECHI, Hiroshi Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Laser Eng<strong>in</strong>eer<strong>in</strong>g Osaka University NAUMOVA, Natalia Ecole Polytechnique<br />

BAIOTTI, Luca Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Laser Eng<strong>in</strong>eer<strong>in</strong>g, Osaka University NISHIMURA, Hiroaki Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Laser Eng<strong>in</strong>eer<strong>in</strong>g, Osaka University<br />

BAMBADE, S.Philip LAL-Orsay NISHIMURA, Jun <strong>KEK</strong><br />

BORISOV, B.Alex University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ill<strong>in</strong>ois at Chicago NODA, Akira Institute for Chemical Research, Kyoto University<br />

BULANOV, V.Sergei Kansai Phot<strong>on</strong> Science Institute, JAEA NOZAKI, Mitsuaki <strong>KEK</strong><br />

DELERUE, Nicolas LAL, Orsay OHTA, Masahiro <strong>KEK</strong><br />

DUNNE, V.Gerald University <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>necticut OKA, Takashi University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

ELKINA, N<strong>in</strong>a Ludwig-Maximilian University, Munich OKADA, Yasuhiro <strong>KEK</strong><br />

ENOTO, Teruaki KIPAC / Stanford University OKAZAWA, Susumu SOKENDAI, <strong>KEK</strong><br />

FUJII, Keisuke <strong>KEK</strong> OMORI, Tsunehiko <strong>KEK</strong><br />

FUJII, Hirotsugu University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo OROKU, Masahiro University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

FUJII, Yasunori Waseda University POSCH, Paul <strong>KEK</strong><br />

FUJITSUKA, Masashi SOKENDAI, <strong>KEK</strong> RHODES, K. Charles University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ill<strong>in</strong>ois at Chicago<br />

FUJIWARA, Mamoru Research Center for Nuclear <strong>Physics</strong>, Osaka Univ. RUHL, Hartmut Ludwig-Maximilians-University Munich<br />

FUKUSHIMA, Kenji Keio University SAEKI, Takayuki <strong>KEK</strong><br />

GOTO, Hajime Graduate University for Advanced Studies SALZMANN, DAVID Weizmann Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

HABS, Dietrich Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, LMU Munich SASAKI, Toshihiko University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo, <strong>KEK</strong><br />

HARTIN, Anth<strong>on</strong>y DESY SCHUETZHOLD, Ralf Fakultät für Physik der Universität Duisburg-Essen<br />

HATSUDA, Tetsuo Phys. Dep., Univ. Tokyo SEKINO, Yasuhiro Okayama Institute for Quantum <strong>Physics</strong><br />

HATTORI, Koichi <strong>KEK</strong> SHEN, Baifei Shanghai Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Optics and F<strong>in</strong>e Mechanics<br />

HEINZL, Thomas University <str<strong>on</strong>g>of</str<strong>on</strong>g> Plymouth, Comput<strong>in</strong>g and Mathematics SHIMADA, Kengo SOKENDAI, <strong>KEK</strong><br />

HIDAKA, Yoshimasa Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, Kyoto University SHIMIZU, Katsuya KYOKUGEN, Osaka University<br />

HOMMA, Kensuke Hiroshima University / LMU SHIMIZU, Hirotaka <strong>KEK</strong><br />

HONDA, Yosuke <strong>KEK</strong> SOUDA, Hikaru Institute for Chemical Research, Kyoto University<br />

HORA, He<strong>in</strong>rich University <str<strong>on</strong>g>of</str<strong>on</strong>g> New South Wales SUNAHARA, Atsushi Institute for Laser Technology<br />

IPP, Andreas Vienna University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology SUZUKI, Atsuto <strong>KEK</strong><br />

ISO, Satoshi <strong>KEK</strong> TAJIMA, Toshiki LMU<br />

ITAKURA, Kazunori <strong>KEK</strong> TAKABE, Hideaki ILE and School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Osaka University<br />

IWATA, Natsumi Kyoto University TAKAHASHI, Tohru Hiroshima University<br />

IWAZAKI, Aiichi Nishogakusha Universeity TAKASAKI, Fumihiko <strong>KEK</strong><br />

KANDO, Masaki Japan Atomic Energy Agency TANJI, Naoto University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

KISHIMOTO, Yausaki Kyoto University TARAKANOV, Alexander Saratov State University, <strong>Physics</strong> Department<br />

KITAMOTO, Hiroyuki SOKENDAI, <strong>KEK</strong> TATSUMI, Toshitaka Kyoto University<br />

KITAZAWA, Yoshihisa <strong>KEK</strong> TATSUMI, Daisuke Nati<strong>on</strong>al Astr<strong>on</strong>omical Observatory <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan<br />

KOHRI, Kazunori <strong>KEK</strong> TAUCHI, Toshiaki <strong>KEK</strong><br />

KOYAMA, Kazuyoshi University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo TERUNUMA, Nobuhiro <strong>KEK</strong><br />

KUBO, Kiyoshi <strong>KEK</strong> TOMARU, TAKAYUKI <strong>KEK</strong><br />

KUBOTA, Hirohisa SOKENDAI, <strong>KEK</strong> UEDA, Ken-ichi University <str<strong>on</strong>g>of</str<strong>on</strong>g> Electro-Communicati<strong>on</strong>s<br />

KUMADA, Masayuki NIRS URAKAWA, Junji <strong>KEK</strong><br />

KUMITA, Tetsuro Tokyo Metropolitan University YABANA, Kazuhiro University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tsukuba<br />

LENZ, Frieder University <str<strong>on</strong>g>of</str<strong>on</strong>g> Erlangen-Nuernberg YAMAGUCHI, Yohei University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

LINDNER, Axel DESY YAMAMOTO, Yasuhiro SOKENDAI/<strong>KEK</strong><br />

MAKISHIMA, Kazuo University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo YAN, Jacquel<strong>in</strong>e University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

MATSUBA, Shunya SOKENDAI, <strong>KEK</strong> YAZAKI, Koichi Hashimoto Math. Phys. Lab., Nish<strong>in</strong>a Center, RIKEN<br />

MINAKATA, Hisakazu Tokyo Metropolitan University YOKOYA, Kaoru <strong>KEK</strong><br />

MIURA, Eisuke AIST ZHANG, Sen <strong>KEK</strong><br />

MORITA, Kenji GSI<br />

MOUROU, A. Gerard Institut Lumière Extrême/Ecole Polytechnique ENSTA<br />

MURAKAMI, Masakatsu Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Laser Eng<strong>in</strong>eer<strong>in</strong>g, Osaka University Secretaries<br />

MUROYA, Sh<strong>in</strong> Matsumoto University IKEDA, Kimiyo <strong>KEK</strong><br />

NAKAI, Mitsuo Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Laser Eng<strong>in</strong>eer<strong>in</strong>g, Osaka University KUSAMA, Hitomi <strong>KEK</strong><br />

NAKAJIMA, Kazuhisa <strong>KEK</strong> SHISHIDO, Tamao <strong>KEK</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!