15.10.2012 Views

Presentation - Modeling and Analysis of Interconnects for RFIC

Presentation - Modeling and Analysis of Interconnects for RFIC

Presentation - Modeling and Analysis of Interconnects for RFIC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1<br />

2002 Empowering Pr<strong>of</strong>itability<br />

<strong>RFIC</strong> interconnect<br />

10Gb/s Channel <strong>Modeling</strong><br />

<strong>Modeling</strong> <strong>and</strong> <strong>Analysis</strong> <strong>of</strong> <strong>Interconnects</strong> <strong>for</strong> <strong>RFIC</strong><br />

<strong>Presentation</strong> #2


◗ Introduction<br />

Outline<br />

◗ Electrical <strong>Modeling</strong> Solution<br />

◗ EMPOWERING Design Flow<br />

◗ Differential VCO Design<br />

◗ Spiral Inductor Design<br />

◗ On-chip <strong>Interconnects</strong><br />

◗ QFN Package<br />

◗ Conclusion<br />

◗ References


◗ Industry challenge<br />

<strong>RFIC</strong> Design<br />

◗ Great dem<strong>and</strong> on high per<strong>for</strong>mance<br />

◗ Increasing operating frequency while decreasing<br />

size<br />

◗ Reducing development costs <strong>and</strong> time-to-market<br />

◗ Electrical modeling has become one <strong>of</strong> the<br />

most important factors<br />

◗ An accurate electrical model <strong>of</strong><br />

interconnect is an essential part <strong>of</strong> doing<br />

design


What Is An Interconnect <strong>for</strong><br />

<strong>RFIC</strong>?<br />

◗ Path used to carry a signal from one point to another<br />

◗ On-chip interconnects<br />

◗ Spiral inductor<br />

◗ MIM capacitor<br />

◗ Routing traces<br />

◗ Package<br />

◗ C4 Bump<br />

◗ Bondwire<br />

◗ Solderball<br />

◗ Traces<br />

BYP<br />

Tune<br />

GND<br />

SHDN<br />

GND<br />

GND<br />

OUTIP<br />

IND<br />

GND<br />

VCC<br />

OUTIN<br />

GND<br />

GND<br />

OUTQN<br />

GND<br />

OUTQP


Why are <strong>Interconnects</strong><br />

Important to Model?<br />

◗ At lower frequencies, the main loss occurs in the conductor, which is<br />

negligible. Most designers will assume an ideal short in between<br />

connection points<br />

Active<br />

Component<br />

Active<br />

Component<br />

◗ At higher frequencies, there are now 2 loss mechanisms - conductor<br />

<strong>and</strong> substrate loss. The conductor loss is now an important due to<br />

skin effect. Substrate loss will be dominant in the lossy dielectric<br />

medium <strong>of</strong> silicon<br />

Active<br />

Component<br />

L R<br />

Active<br />

Component<br />

◗ Neglecting these 2 modeling parameters will mean the electrical<br />

per<strong>for</strong>mance will be <strong>of</strong>f from expected results, which will cause a<br />

loss in pr<strong>of</strong>itability<br />

C<br />

L R<br />

C


Electrical <strong>Modeling</strong><br />

IC-1 wire<br />

Driver<br />

Physical Geometry<br />

lead frame<br />

signal line<br />

PKG-1 PKG-2<br />

PCB<br />

wire<br />

Electrical Model<br />

L R<br />

C<br />

C<br />

L R<br />

IC-2<br />

Electrical <strong>Modeling</strong><br />

- EM Simulation Based<br />

- Measurement Based<br />

Receiver<br />

IC-1 PKG-1 PCB PKG-2 IC-2


Electrical <strong>Modeling</strong> Procedure<br />

Initial Design<br />

Simulation Based<br />

<strong>Modeling</strong><br />

OK?<br />

Yes<br />

Sample Fabrication<br />

Measurement Based<br />

<strong>Modeling</strong><br />

No<br />

Modification<br />

OK?<br />

No<br />

Yes<br />

Electrical Model


Full-Wave<br />

Quasi-Static<br />

Ans<strong>of</strong>t Electrical <strong>Modeling</strong><br />

SPICE<br />

Fields<br />

Ans<strong>of</strong>t SIWave<br />

Ans<strong>of</strong>t TPA<br />

SPICE/DML/IBIS<br />

RLC<br />

Solution<br />

Design Automation Ans<strong>of</strong>t Optimetrics<br />

Cadence<br />

Zuken Avanti<br />

Mentor<br />

Ans<strong>of</strong>tLinks<br />

IGES STEP<br />

Fields/Radiation<br />

Full-Wave SPICE<br />

S-Parameters<br />

Ans<strong>of</strong>t HFSS<br />

Ans<strong>of</strong>t SpiceLink<br />

SPICE/DML/IBIS<br />

RLC(G)<br />

Fields<br />

Current/Radiation<br />

Full-Wave SPICE<br />

S-Parameters<br />

Ans<strong>of</strong>t Designer<br />

Planar EM<br />

GDSII<br />

DXF<br />

ACIS


Ans<strong>of</strong>t Electrical <strong>Modeling</strong><br />

Advantage<br />

◗ Ans<strong>of</strong>t has a strategic advantage over all <strong>of</strong><br />

EDA s<strong>of</strong>tware companies because <strong>of</strong>:<br />

◗ Advanced Technology<br />

◗ Adaptive meshing<br />

◗ PEEC<br />

◗ Solve-on-dem<strong>and</strong><br />

◗ Integrated translation to 3 rd party layout programs<br />

◗ Diversity <strong>of</strong> Solving techniques


Geometry<br />

(no mesh data)<br />

Create Initial Mesh<br />

Create Initial Mesh<br />

Calculate Field<br />

Calculate Field<br />

Calculate<br />

Field Accuracy<br />

DE Acceptable?<br />

DE Acceptable?<br />

Yes<br />

Display<br />

Simulation Results<br />

Adaptive Mesh<br />

No<br />

Refine Mesh<br />

Refine Mesh<br />

Initial<br />

23981 tets<br />

Final<br />

320620tets


Integration<br />

Cadence<br />

Zuken Avanti<br />

Mentor<br />

Ans<strong>of</strong>tLinks<br />

IGES STEP<br />

◗ By having this tight integration to layout tools, it<br />

saves the engineer time in redrawing structure<br />

◗ Allows engineer to solve the problems as close to<br />

the actual product as possible.<br />

◗ Surface Roughness<br />

◗ Etched traces<br />

◗ Process variability<br />

◗ Allows the engineer to pull data from many<br />

different sources. Not “pigeon-holed”


Diversity <strong>of</strong> Solving Techniques<br />

Solving Method<br />

Desired Output<br />

FWS<br />

RLCG<br />

Eye Diagrams<br />

Parametrics<br />

Sensitivity<br />

FEM<br />

BEM<br />

Harmonic<br />

Balance<br />

PEEC<br />

Transient<br />

<strong>Analysis</strong><br />

S,Y,Z Parameters<br />

Fields<br />

Spice Sub-<br />

Circuits<br />

Radiation<br />

2D FEM<br />

DML<br />

IBIS<br />

Optimization<br />

MOM<br />

BER<br />

Q-Factor<br />

N-Port<br />

Devices


EMPOWERING Design Flow<br />

Ans<strong>of</strong>t Designer<br />

Circuit/System/Planar EM<br />

Cadence<br />

Zuken Avanti<br />

Mentor<br />

Power, Ground / BGA<br />

S-, Y-, Z-<br />

R, L, C<br />

Matrix / Parameters<br />

S-, Y-, Z-<br />

R, L, C<br />

Ans<strong>of</strong>tLinks<br />

GDSII<br />

DXF<br />

TPA / SIwave<br />

HFSS / SpiceLink<br />

with Optimetrics


Differential VCO<br />

Differential VCO [1]<br />

Differential VCO Layout VCO_Core<br />

LC Tank<br />

Resonator<br />

Feedback<br />

Gain block


Ans<strong>of</strong>tLinks <strong>for</strong> Virtuoso


3D Solid<br />

Model<br />

GDSII Translator<br />

2D Pr<strong>of</strong>iles


Center-tapped Multi-layer<br />

Differential Spiral Inductor [2]<br />

◗ Parasitic coupling between two inductors is canceled by differential mode<br />

◗ Differential Q is higher than Single-ended<br />

◗ Self-resonance frequency is higher than single-ended<br />

Port1<br />

Center-tap<br />

Port2<br />

Port3


Stack-up <strong>for</strong> Spiral Inductor<br />

Metal 8 Metal 7 Metal 6<br />

e r = 3.6<br />

e r = 4<br />

e r = 4<br />

e r = 4<br />

e r = 11.9<br />

Conductivity = 13.3333 S/m<br />

Passivation=0.875um<br />

TM8=0.9um<br />

SiO 2 =0.65um<br />

TM7=0.35um<br />

SiO 2 =0.45um<br />

Silicon=300um<br />

Copper<br />

Copper<br />

TM6=0.35um Copper<br />

SiO 2 =4.4um


Spiral Inductor Design<br />

Model Solved In HFSS<br />

Solutions exported <strong>for</strong><br />

use in Designer<br />

simulation<br />

3D model generated<br />

<strong>and</strong> parameterized as a<br />

function <strong>of</strong> (R i , W, S, N)<br />

Optimetrics<br />

Designer circuit specified<br />

<strong>and</strong> parameterized (R s , L s ,<br />

C s , R sub , C sub , C ox )<br />

(R s , L s , C s , R sub ,<br />

C sub , C ox )<br />

Resulting schematic saved <strong>and</strong><br />

parsed to provide Optimetrics<br />

with circuit values.<br />

R<strong>and</strong>om/Gradient optimization<br />

per<strong>for</strong>med to match circuit<br />

response to HFSS results.


S-Parameter<br />

S 11<br />

S 23 , S 32<br />

S 22 , S 33<br />

S 12 , S 13 , S 21 , S 31


Differential Q-factor<br />

Single-ended Q<br />

Differential Q


Phase Noise Comparison<br />

Spiral Inductor<br />

Ideal Inductor


On-chip <strong>Interconnects</strong>


Which <strong>Interconnects</strong> are Important to<br />

Model?<br />

◗ LC tank circuits are used <strong>for</strong> the oscillation frequencies. <strong>Interconnects</strong> can add capacitance <strong>and</strong><br />

inductance to these values which can throw <strong>of</strong>f the expected oscillation point.


Which <strong>Interconnects</strong> are Important to<br />

Model?<br />

◗ Reversed biased diodes are used as capacitors at a known value. The interconnects<br />

between these connections will invariably add to these capacitor's value.


Which <strong>Interconnects</strong> are Important to<br />

Model?<br />

• The interconnects between the VCO core cell will generate negative resistance which is<br />

the source <strong>of</strong> oscillation. It is important to know the parasitics that are present which will<br />

determine the oscillation point<br />

Figure 1: Interconnect in between Varactor Diodes


Out to<br />

Spiral<br />

4 Transistors<br />

Simplifying the Model<br />

Varactors<br />

4 Transistors<br />

Interconnect structures<br />

<strong>of</strong> importance


Source<br />

Spiral to Varactor Interconnect<br />

Sink<br />

0.04 ohms<br />

0.04 ohms<br />

Trace Parasitics<br />

0.006 nH<br />

0.006 nH<br />

6.4 fF<br />

0.05 nH 0.05 nH<br />

15.3 fF<br />

Ground Parasitics<br />

0.04 ohms<br />

0.04 ohms


Varactor to Varactor Interconnect<br />

Source<br />

Sink<br />

0.06 ohms<br />

0.04 ohms<br />

Trace Parasitics<br />

0.01 nH<br />

0.01 nH<br />

6.6 fF<br />

0.05 nH 0.05 nH<br />

17 fF<br />

Ground Parasitics<br />

0.06 ohms<br />

0.04 ohms


Transistor to Varactor Interconnect<br />

Sink<br />

Source<br />

0.13 ohms<br />

0.04 ohms<br />

Trace Parasitics<br />

0.02 nH<br />

0.02 nH<br />

5.4 fF<br />

0.05 nH 0.05 nH<br />

16.1 fF<br />

Ground Parasitics<br />

0.13 ohms<br />

0.04 ohms


0.5 mm<br />

Cu Leadframe<br />

Die Attach Material<br />

BYP<br />

Tune<br />

GND<br />

SHDN<br />

Down<br />

Bond<br />

GND<br />

GND<br />

QFN Package [3][4]<br />

Mold Compound<br />

Exposed Die<br />

Paddle<br />

OUTIP<br />

IND<br />

3.0 mm<br />

GND<br />

VCC<br />

0.3 mm 0.5 mm<br />

OUTIN<br />

GND<br />

Gold Wire<br />

Ground Bond<br />

GND<br />

OUTQN<br />

GND<br />

OUTQP<br />

3.0 mm<br />

� Package Descriptions:<br />

Package height 0.9 mm<br />

Body size 3 x 3 mm<br />

Exposed pad 1.25 x 1.25<br />

mm<br />

Die size 1.0 x 1.0<br />

mm<br />

Die thickness 0.30 mm


Exposed Die<br />

Paddle<br />

Package Model in HFSS<br />

Vias<br />

Die<br />

Port2<br />

Port4<br />

Ports<br />

Port1<br />

Port3<br />

Gold Wire<br />

Cu Leadframe


Package <strong>Analysis</strong> in HFSS<br />

◗ Final mesh size : 320620<br />

tets<br />

◗ Lumped gap source used<br />

◗ Solve surface option<br />

◗ ZERO_ORDER=1


S-parameter


S-parameter


LC VCO with <strong>Interconnects</strong>


Spectral Plot


Output Frequency & Power<br />

<strong>Interconnects</strong><br />

Ideal


Conclusion<br />

◗ Electrically modeling interconnects <strong>for</strong> <strong>RFIC</strong>s is very important to<br />

the first time success <strong>of</strong> the design.<br />

◗ Ans<strong>of</strong>t’s suite <strong>of</strong> s<strong>of</strong>tware provides all <strong>of</strong> the necessary electrical<br />

simulation engines to per<strong>for</strong>m accurate simulations <strong>of</strong> the <strong>RFIC</strong>.<br />

◗ Spiral Inductor – HFSS, Designer<br />

◗ <strong>Interconnects</strong> - Spicelink<br />

◗ QFN Package – HFSS, Spicelink<br />

◗ Circuit/System <strong>Analysis</strong> - Designer<br />

◗ An electrical model was made <strong>for</strong> every part <strong>of</strong> the differential<br />

VCO core including the interconnects.<br />

◗ Using the extracted models, in depth analysis <strong>of</strong> the <strong>RFIC</strong><br />

system within Designer provides results that are used to obtain<br />

phase noise plots.<br />

◗ Optimizing the phase noise provides the engineer a way to<br />

improve the design <strong>and</strong> improve pr<strong>of</strong>itability.


References<br />

1. P. Andreani, H. Sjol<strong>and</strong>, “Tail Current Noise<br />

Suppression in RF CMOS VCOs,” IEEE Jour. Solid-<br />

State Circuits, Vol. 37, No. 3, March 2002<br />

2. A. M. Niknejad, J. L. Tham, <strong>and</strong> R. G. Meyer, "Fully-<br />

Integrated Low Phase Noise Bipolar Differential VCOs<br />

at 2.9 <strong>and</strong> 4.4 GHz," Proceedings <strong>of</strong> the 25th European<br />

Solid-State Circuits Conference, 1999. p. 198-201.<br />

3. http://www.amkor.com/products/notes_papers/MLF_Ap<br />

pNote_0301.pdf<br />

4. http://www.jedec.org/ , JEDEC st<strong>and</strong>ard, “MO-220d”

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!