14.07.2013 Views

Identification of Sulfamoylbenzamide derivatives as selective ...

Identification of Sulfamoylbenzamide derivatives as selective ...

Identification of Sulfamoylbenzamide derivatives as selective ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Identification</strong> <strong>of</strong> <strong>Sulfamoylbenzamide</strong> <strong>derivatives</strong> <strong>as</strong> <strong>selective</strong><br />

Cathepsin D inhibitors<br />

W<strong>as</strong>eem Ahmed *1,2 , Ishtiaq Ahmad Khan 1 , Muhammad Nadeem Arshad 3 ,<br />

W<strong>as</strong>eeq Ahmad Siddiqui 3 , Muhammad Abdul Haleem 4 and Muhammad Kamran Azim 1<br />

1 Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University <strong>of</strong> Karachi, Karachi, Pakistan<br />

2 Department <strong>of</strong> Biochemistry, Fed. Urdu Univ. <strong>of</strong> Arts Sci. & Tech., Gulshan-e-Iqbal Campus, Karachi, Pakistan<br />

3 GC University, Ketchery Road, Lahore, Pakistan<br />

4 Department <strong>of</strong> Biomedical Engineering, Sir Syed University <strong>of</strong> Technology, Karachi, Pakistan<br />

Abstract: Aspartic prote<strong>as</strong>es play very important role in post translational processing <strong>of</strong> proteins and several <strong>of</strong> them are<br />

essential for organism’s viability. Here we present the enzyme inhibition activities <strong>of</strong> different <strong>Sulfamoylbenzamide</strong><br />

<strong>derivatives</strong> against two <strong>as</strong>partic prote<strong>as</strong>es cathepsin D and pl<strong>as</strong>mepsin II. Cathepsin D is an <strong>as</strong>partic prote<strong>as</strong>e that<br />

degrades proteins at acidic pH in the lysosomes, or extracellular matrix. It is overexpressed by epithelial bre<strong>as</strong>t cancer<br />

cells and hence hyper-secreted. On the other hand pl<strong>as</strong>mepsin II is an essential enzyme <strong>of</strong> Pl<strong>as</strong>modium falciperum.<br />

Cathepsin D and Pl<strong>as</strong>mepsin II are pivotal drug targets for treatment <strong>of</strong> bre<strong>as</strong>t cancer and malaria respectively. Virtual<br />

screening <strong>of</strong> <strong>Sulfamoylbenzamide</strong> compounds followed by enzyme inhibition <strong>as</strong>says revealed these compounds <strong>as</strong><br />

<strong>selective</strong> Cathepsin D inhibitors while inactive against Pl<strong>as</strong>mepsin-II. IC50 values <strong>of</strong> five <strong>Sulfamoylbenzamide</strong><br />

compounds tested are in range <strong>of</strong> 1.25-2.0 μM. N-(3-chlorophenyl)-2-sulfamoylbenzamide is identified <strong>as</strong> the most<br />

potent <strong>of</strong> all tested <strong>Sulfamoylbenzamide</strong> compounds with IC50 1.25 μM. It w<strong>as</strong> also noted that the docking score<br />

<strong>of</strong> theses compounds w<strong>as</strong> better in c<strong>as</strong>e <strong>of</strong> Cathepsin D <strong>as</strong> compared to Pl<strong>as</strong>mepsin-II. Docking score ranges from<br />

-29.9±1.16 to -35.1±0.13 in c<strong>as</strong>e <strong>of</strong> Cathepsin D, while from -24.0±0.10 to -29.5±0.10 in c<strong>as</strong>e <strong>of</strong> Pl<strong>as</strong>mepsin-II.<br />

Keywords: Aspartic prote<strong>as</strong>es, Cathepsin D, Pl<strong>as</strong>mepsin-II, enzyme inhibition.<br />

INTRODUCTION<br />

Prote<strong>as</strong>es control several key functions <strong>of</strong> cells such <strong>as</strong><br />

extrav<strong>as</strong>ation, inv<strong>as</strong>ion, motility, proliferation and<br />

met<strong>as</strong>t<strong>as</strong>is (Smith and Marshall 2010; Roy et al., 2009;<br />

Palermo and Joyce 2008). Among these, cathepsin<br />

prote<strong>as</strong>es play main regulatory role <strong>as</strong> the factor-binding<br />

proteins and growth factors and their receptor activities<br />

have a major biological function in development <strong>of</strong><br />

human colorectal cancer (Sakkiah et al., 2012., M<strong>as</strong>son et<br />

al., 2010; Rawlings and Barrett, 1993). Human cathepsin<br />

D is an <strong>as</strong>partic prote<strong>as</strong>e which functions at acidic pH<br />

extracellularly in the matrix or lysosomes. It have been<br />

demonstrated by several studies that Cathepsin D affects a<br />

range <strong>of</strong> steps in tumor met<strong>as</strong>t<strong>as</strong>is and progression. It<br />

stimulates cancer cell growth by tumor angiogenesis<br />

stimulating fibrobl<strong>as</strong>t growth factors (Benes et al., 2008;<br />

M<strong>as</strong>son et al., 2010). Endosomes and lysosomes retain<br />

Cathepsin D in normal cells but in bre<strong>as</strong>t cancer cells it is<br />

over expressed and hyper-secreted by epithelial bre<strong>as</strong>t<br />

cells (Liaudet-Coopman et al., 2006, Azim et al., 2008;<br />

G<strong>as</strong>parini 1998). Consequently degradative capacities <strong>of</strong><br />

these cells are changed along with accumulation <strong>of</strong><br />

Cathepsin D in the tumor microenvironment. Lysosomal<br />

Cathepsin D is secreted into the cytosol during apoptosis,<br />

where it may interact with and/or cleave nuclear anti-<br />

*Corresponding author: e-mail: Hw<strong>as</strong>t_9@hotmail.com<br />

Pak. J. Pharm. Sci., Vol.26, No.4, July 2013, pp.687-690<br />

apoptotic or pro-apoptotic proteins. During the resolution<br />

<strong>of</strong> inflammatory responses, neutrophils rapidly undergo<br />

apoptosis. A direct and f<strong>as</strong>t activation <strong>of</strong> c<strong>as</strong>p<strong>as</strong>e-8 by<br />

cathepsin D h<strong>as</strong> been shown to be crucial in the initial<br />

steps <strong>of</strong> neutrophil apoptosis (Conus et al., 2012).<br />

The pl<strong>as</strong>mepsin family <strong>of</strong> Pl<strong>as</strong>modium <strong>as</strong>partic prote<strong>as</strong>es<br />

is involved in haemoglobin degradation during the intraerythrocyte<br />

ph<strong>as</strong>e <strong>of</strong> malarial infection (Ersmark et al.,<br />

2006). Pl<strong>as</strong>mepsins have been considered <strong>as</strong> promising<br />

target for new anti-malarial drugs (Ahmad et al., 2010).<br />

The bilobal structure <strong>of</strong> Cathepsin D and pl<strong>as</strong>mepsin II<br />

prote<strong>as</strong>es contain predominantly b-sheets with small ahelical<br />

segments. The active site is located at the interface<br />

between the two domains encloses two invariant<br />

<strong>as</strong>partates. Despite the structural similarities among the<br />

members <strong>of</strong> <strong>as</strong>partic prote<strong>as</strong>es they have for less sequence<br />

similarities. For example, Cathepsin D exhibits about<br />

35% sequence homology to Pl<strong>as</strong>mepsins (Schechter and<br />

Berger 1967; Silva et al., 1996).<br />

Benzenesulfonamide <strong>derivatives</strong> have a great potential for<br />

medicinal applications (Ashraf et al., 2012; Siddiqui et<br />

al., 2012, Siddiqui et al., 2010, Siddiqui et al., 2008,<br />

Siddiqui et al., 2007). The sulfamoylbenzamide<br />

compounds are agonists and modulating ligands <strong>of</strong><br />

cannabinoid receptors. These compounds are considered<br />

687


<strong>Identification</strong> <strong>of</strong> <strong>Sulfamoylbenzamide</strong> <strong>derivatives</strong> <strong>as</strong> <strong>selective</strong> Cathepsin D inhibitors<br />

Table 1: Docking scores and inhibition data <strong>of</strong> selected <strong>Sulfamoylbenzamide</strong> compounds<br />

W-5<br />

688<br />

Compd. ID Structure<br />

O<br />

N<br />

H<br />

OH<br />

O<br />

O<br />

S<br />

O<br />

NH2 3-(2-sulfamoylbenzamido)benzoic acid<br />

H<br />

N<br />

N<br />

W-7 S<br />

O<br />

O<br />

N-benzyl-1,2-benzothiazol-3-amine 1,1-dioxide<br />

O<br />

W-24<br />

W-28<br />

W-30<br />

N<br />

H<br />

S NH<br />

Cl<br />

2<br />

O<br />

O<br />

N-(3-chlorophenyl)-2-sulfamoylbenzamide<br />

Docking in CD<br />

(FlexX score)<br />

useful for g<strong>as</strong>trointestinal disorders, inflammation, autoimmune<br />

dise<strong>as</strong>es, ischemic conditions, immune-related<br />

disorders, hyper-tension and neurological disorders.<br />

During the course <strong>of</strong> present studies, ligand docking <strong>of</strong><br />

several <strong>Sulfamoylbenzamide</strong> <strong>derivatives</strong> into the<br />

substrate-binding clefts <strong>of</strong> Pl<strong>as</strong>mepsin-II from<br />

Pl<strong>as</strong>modium falciparum and human cathepsin D h<strong>as</strong> been<br />

N<br />

H<br />

S NH2 O<br />

O<br />

N-(2,6-dimethylphenyl)-2-sulfamoylbenzamide<br />

O<br />

NH<br />

S NH2 O<br />

O<br />

N-(pyridin-2-yl)-2-sulfamoylbenzamide<br />

CD= human cathepsin D; PII= Pl<strong>as</strong>mepsin II<br />

cathepsin D inhibition (%)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

N<br />

Inhibition <strong>of</strong> CD<br />

(IC50 in µM)<br />

Docking in PII<br />

(FlexX score)<br />

-32.5±0.20 2.0±0.10 -27.9±0.10<br />

Inhibtion <strong>of</strong> PII<br />

(IC50 in µM)<br />

Not active<br />

-35.1±0.13 2.0±0.13 -29.5±0.10 Not active<br />

-30.0±0.10 1.25±0.08 -26.1±0.15 Not active<br />

-30.9±0.13 1.5±0.08 -24.0±0.10 Not active<br />

-29.9±1.16 1.5±0.05 -26.9±0.10 Not active<br />

cathepsin D inhibition by <strong>Sulfamoylbenzamide</strong> compounds<br />

w4 w7 w24 w28 w30<br />

0 0.5 1 1.5<br />

Inhibitor concentration (Micromol)<br />

Fig. 1: Human cathepsin D inhibition plots <strong>of</strong> <strong>Sulfamoylbenzamide</strong> compounds.<br />

carried out. Enzyme inhibition <strong>as</strong>says were also<br />

performed using top scoring compounds from virtual<br />

screening. Interestingly, enzyme inhibition results showed<br />

that Sulfa-moylbenzamide compounds are <strong>selective</strong><br />

inhibitors <strong>of</strong> human cathepsin D and not active against<br />

Pl<strong>as</strong>mepsin II.<br />

Pak. J. Pharm. Sci., Vol.26, No.4, July 2013, pp.687-690<br />

2


MATERIALS AND METHODS<br />

In this study, virtual screening cum enzyme inhibition<br />

<strong>as</strong>say w<strong>as</strong> carried out to find the potent inhibitors <strong>of</strong><br />

Pl<strong>as</strong>mepsin II and Cathepsin D.<br />

Molecular docking<br />

FlexX ligand docking s<strong>of</strong>tware (version 2.0) ( Rarey et al.<br />

1996) w<strong>as</strong> utilized for docking using Pepstatin-A<br />

complexed crystal coordinates <strong>of</strong> cathepsin D and<br />

pl<strong>as</strong>mepsin-II (Silva et al, 1996) (Baldwin et al. 1993;<br />

Metcalf and Fusek 1993) (PDB id; 1M43 and 1LYB<br />

respectively). FlexX ligand docking method is b<strong>as</strong>ed on<br />

incremental construction <strong>of</strong> ligand molecules from<br />

smaller fragments in the cavity <strong>of</strong> a protein. The free<br />

binding energy (∆G) <strong>of</strong> protein-ligand complex is utilized<br />

to rank the generated docking results using a scoring<br />

function similar to that developed by Bohm (Bohm 1994).<br />

After completion <strong>of</strong> each docking experiment, top ten<br />

docking solutions were saved and utilized for in-depth<br />

analysis.<br />

Enzyme inhibition <strong>as</strong>say<br />

The enzyme activities <strong>of</strong> pl<strong>as</strong>mepsin-II and cathepsin D<br />

were me<strong>as</strong>ured <strong>as</strong> described earlier (Haque et al, 1999)<br />

using fluorescence resonance energy transfer (FRET)<br />

b<strong>as</strong>ed <strong>as</strong>say with the fluorogenic substrate DABCYL-Glu-<br />

Arg-Nle-Phe-Leu-Ser-Phe-Pro-EDANS (malaria FRET-1;<br />

AnaSpec Inc., USA). Purified Pl<strong>as</strong>modium falciparum<br />

pl<strong>as</strong>mepsin-II w<strong>as</strong> provided by Daniel E. Goldberg,<br />

Howard Hughes Medical Institute, St. Louis, Missouri,<br />

USA. Recombinant human liver cathepsin D w<strong>as</strong><br />

purch<strong>as</strong>ed from Biodesign International, USA. The <strong>as</strong>say<br />

w<strong>as</strong> performed with pl<strong>as</strong>mepsin-II/cathepsin D (1.2 nM)<br />

and substrate (malaria FRET-1; 1.0 μM) in 0.1 M Sodium<br />

acetate buffer pH 5.0, containing 0.01% Tween 20 and<br />

10% Glycerol. Before the addition <strong>of</strong> substrate the DMSO<br />

solution <strong>of</strong> <strong>Sulfamoylbenzamide</strong> <strong>derivatives</strong> were added<br />

in the reaction mixture. The <strong>as</strong>says were performed with<br />

5.0% final concentration <strong>of</strong> DMSO. The enzyme<br />

inhibition experiments were performed (in triplicates) in<br />

96 well plate format and readings were obtained on a<br />

Perkin Elmer LS55 Fluorescence spectrometer with an<br />

excitation and emission wavelengths <strong>of</strong> 336 and 490 nm<br />

respectively. IC50 values were calculated by nonlinear<br />

regression analysis from plots <strong>of</strong> percentage inhibition<br />

versus inhibitor concentrations. The enzyme <strong>as</strong>says using<br />

‘standard inhibitor’ Pepstatin-A (Sigma Inc, USA) w<strong>as</strong><br />

performed in the same experimental manner <strong>as</strong> for<br />

<strong>Sulfamoylbenzamide</strong> <strong>derivatives</strong>.<br />

W<strong>as</strong>eem Ahmed et al<br />

essentially <strong>as</strong> described by Francis and coworkers<br />

(Francis et al, 1994). 200 microliter aliquots <strong>of</strong> late ring<br />

stage cultures at 0.5% par<strong>as</strong>itemia were incubated with<br />

various concentrations <strong>of</strong> either pepstatinA (Roche<br />

Applied Sciences) or trans-epoxysuccinyl-L-leucylamino<br />

(4-guanidine)-butane (E64) in hypoxanthine-free rich<br />

medium for 42 h. 0.5 μCi <strong>of</strong> [3H]hypoxanthine (178.7<br />

Ci/mmol; PerkinElmer) w<strong>as</strong> added to the culture and the<br />

incubation continued for 24 h. Cultures were harvested on<br />

gl<strong>as</strong>s fiber paper, immersed in UltimaGold scintillation<br />

counting mixture (PerkinElmer, USA) and counted in a<br />

scintillation counter. The percentage <strong>of</strong> the inhibition <strong>of</strong><br />

[3H] hypoxanthine uptake w<strong>as</strong> plotted against the drug<br />

concentration and the curve w<strong>as</strong> fitted using the modified<br />

dose-response logistic equation in KaleidaGraph s<strong>of</strong>tware.<br />

RESULTS<br />

IC50 values <strong>of</strong> five <strong>Sulfamoylbenzamide</strong> compounds<br />

tested are in range <strong>of</strong> 1.25-2.0 μM. Cathepsin D inhibition<br />

plot <strong>of</strong> <strong>Sulfamoylbenzamide</strong> compounds is demonstrated<br />

in figure 1. IC50 value <strong>of</strong> N-(3-chlorophenyl)-2-sulfamoylbenzamide<br />

is 1.25 μM, so it is identified <strong>as</strong> the most<br />

potent <strong>of</strong> all tested <strong>Sulfamoylbenzamide</strong> compounds. In<br />

c<strong>as</strong>e <strong>of</strong> Cathepsin D docking score w<strong>as</strong> -29.9±1.16 to -<br />

35.1±0.13 while from -24.0±0.10 to -29.5±0.10 in c<strong>as</strong>e <strong>of</strong><br />

Pl<strong>as</strong>mepsin-II. Chemical structures, codes and inhibition<br />

data <strong>of</strong> these compounds are given table 1. Anti<br />

pl<strong>as</strong>modial activity <strong>of</strong> N-(3-chlorophenyl)-2-sulfamoylbenzamide<br />

w<strong>as</strong> also carried out to evaluate its<br />

antipl<strong>as</strong>modial behavior <strong>as</strong> the representative molecule <strong>of</strong><br />

the series. The IC50 w<strong>as</strong> ≥3 µM which is insignificant.<br />

DISCUSSION<br />

Aspartic prote<strong>as</strong>es play vital role in different cellular<br />

processes. Regulation and inhibition <strong>of</strong> their activities are<br />

<strong>of</strong> important consequences. Cathepsin D is overexpressed<br />

in bre<strong>as</strong>t cancer and considered <strong>as</strong> a possible target for<br />

anti-cancer drugs. Virtual screening <strong>of</strong> hundreds <strong>of</strong><br />

compounds pointed out <strong>Sulfamoylbenzamide</strong> <strong>derivatives</strong><br />

<strong>as</strong> potential Cathepsin D and/or Pl<strong>as</strong>mepsin II inhibitors.<br />

Subsequent enzyme inhibition <strong>as</strong>say <strong>of</strong> selected<br />

<strong>Sulfamoylbenzamide</strong> <strong>derivatives</strong> revealed these<br />

compounds <strong>as</strong> <strong>selective</strong> Cathepsin D inhibitors. It w<strong>as</strong><br />

also noted that the docking score <strong>of</strong> theses compounds<br />

w<strong>as</strong> better in c<strong>as</strong>e <strong>of</strong> Cathepsin D <strong>as</strong> compared to<br />

Pl<strong>as</strong>mepsin-II. These findings supports the results <strong>of</strong><br />

pl<strong>as</strong>mepsin II inhibition <strong>as</strong>say <strong>as</strong> sulfamoylbenzamide<br />

<strong>derivatives</strong> are inactive against pl<strong>as</strong>mepsin II.<br />

Antipl<strong>as</strong>modial <strong>as</strong>says<br />

The antipl<strong>as</strong>modial <strong>as</strong>says were carried out in the<br />

REFERENCES<br />

laboratory <strong>of</strong> Pr<strong>of</strong>. Daniel E. Goldberg at Howard Hughes<br />

Medical Institute, St. Louis, Missouri, USA. All testing<br />

h<strong>as</strong> been done in HB-3 Pl<strong>as</strong>modium falciparum clone.<br />

EC50 values <strong>of</strong> the tested compounds were determined<br />

Ashraf A, Tahir MN, Siddiqui WA and Perveen N (2012).<br />

2-(1H-Benzimidazol-2-yl)-N-(E)-(dimethylamino)<br />

methylidene benzenesulfonamide. Acta. Cryst., E68:<br />

o2069.<br />

Pak. J. Pharm. Sci., Vol.26, No.4, July 2013, pp.687-690 689


<strong>Identification</strong> <strong>of</strong> <strong>Sulfamoylbenzamide</strong> <strong>derivatives</strong> <strong>as</strong> <strong>selective</strong> Cathepsin D inhibitors<br />

Ahmed W, Rani M, Khan IA, Iqbal A, Khan KM, Haleem<br />

MA and Azim MK (2010). Characterisation <strong>of</strong><br />

hydrazides and hydrazine <strong>derivatives</strong> <strong>as</strong> novel <strong>as</strong>partic<br />

prote<strong>as</strong>e inhibitors. J. Enz. Inhib. Med. Chem., 25(5):<br />

673-678.<br />

Azim MK, Ahmed W, Khan IA, Rao NA and Khan KM<br />

(2008). <strong>Identification</strong> <strong>of</strong> acridinyl hydrazides <strong>as</strong> potent<br />

<strong>as</strong>partic prote<strong>as</strong>e inhibitors. Bioorg Med. Chem. Lett.,<br />

18: 3011-3015.<br />

Baldwin ET, Bhat TN, Gulnik S, Hosur MV, Sowder RC,<br />

Cachau, RE, Collins J, Silva AM and Erickson JW<br />

(1993). Crystal structures <strong>of</strong> native and inhibited forms<br />

<strong>of</strong> human cathepsin D: Iimplications for lysosomal<br />

targeting and drug design. Proc. Natl. Acad. Sci.<br />

U.S.A., 90: 6796-6800.<br />

Benes P, Vetvicka V and Fusek M (2008). Cathepsin D:<br />

Many functions <strong>of</strong> one <strong>as</strong>partic prote<strong>as</strong>e, Crit. Rev.<br />

Onco/Hemat., 68: 12-28<br />

Bohm HJ (1994). The development <strong>of</strong> a simple empirical<br />

scoring function to estimate the binding constant for a<br />

proteinligand complex <strong>of</strong> known three-dimensional<br />

structure. J. Comput-Aided Mol. Design, 8: 243-256.<br />

Conus S, Pop C, Snip<strong>as</strong> SJ, Salvesen GS and H Simon<br />

(2012). Cathepsin D Primes C<strong>as</strong>p<strong>as</strong>e-8 Activation by<br />

Multiple Intra-chain Proteolysis. J. Biol.<br />

Chem., 287: 21142-21151.<br />

Ersmark K, Samuelsson B and Hallberg A (2006).<br />

Pl<strong>as</strong>mepsins <strong>as</strong> potential targets for new antimalarial<br />

therapy. Med. Res. Rev., 26: 626-666.<br />

Francis SE, Gluzman IY, Oksman A, Knickerbocker A,<br />

Mueller R, Bryant ML, Sherman DR, Russell DG and<br />

Goldberg DE (1994). Molecular characterization and<br />

inhibition <strong>of</strong> a Pl<strong>as</strong>modium falciparum <strong>as</strong>partic<br />

hemoglobin<strong>as</strong>e. EMBO J., 13: 306-317.<br />

G<strong>as</strong>parini G, Brooks PC, Biganzoli E, Vermeulen PB,<br />

Bonoldi E, Dirix LY, Ranieri G, Miceli R and Cheresh<br />

DA (1998). V<strong>as</strong>cular integrin αvβ3: A new prognostic<br />

indicator in bre<strong>as</strong>t cancer. Clin. Cancer Res., 4: 2625-<br />

2634.<br />

Haque T.S, Skillman AG, Lee CE, Hab<strong>as</strong>hita H, Gluzman<br />

IY, Ewing TJA, Goldberg E, Kuntz ID and Ellman JA<br />

(1999). Potent, low-molecular-weight non-peptide<br />

inhibitors <strong>of</strong> malarial <strong>as</strong>partyl prote<strong>as</strong>e pl<strong>as</strong>mepsin II. J.<br />

Med. Chem., 42: 1428-1440.<br />

Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M,<br />

Glondu-L<strong>as</strong>sis M, Laurent-Matha V, Prebois C,<br />

Rochefort H and Vignon F (2006). Cathepsin D: Newly<br />

discovered functions <strong>of</strong> a long-standing <strong>as</strong>partic<br />

prote<strong>as</strong>e in cancer and apoptosis. Cancer Lett., 237:<br />

167-179.<br />

M<strong>as</strong>son O, Bach A, Derocq D Prébois C, Laurent-Matha<br />

V Pattingre S and Liaudet-Coopman E (2010).<br />

690<br />

Pthophysiological functions <strong>of</strong> cathepsin D: Targeting<br />

its catalytic activity versus its protein binding activity.<br />

Biochimie, 92: 1635-1643.<br />

Metcalf P and Fusek M (1993). Two crystal structures for<br />

cathepsin D: the lysosomal targeting signal and active<br />

site. EMBO J., 12: 1293-1302.<br />

Palermo C and Joyce JA (2008). Cysteine cathepsin<br />

prote<strong>as</strong>es <strong>as</strong> pharmacological targets in cancer. Trends<br />

Pharmacol. Sci., 29: 22-28.<br />

Rarey M, Kramer B, Lengauer T and Kleba G (1996). A<br />

f<strong>as</strong>t flexible docking method using an incremental<br />

construction algorithim. Chem. Biol., 261: 470-489.<br />

Rawlings ND and Barrett AJ (1993). Evolutionary<br />

families <strong>of</strong> peptid<strong>as</strong>es. Biochem. J., 290: 205-218.<br />

Roy R, Yang J and Moses MA (2009). Matrix<br />

metalloprotein<strong>as</strong>es <strong>as</strong> novel biomarkers and Potential<br />

therapeutic targets in human cancer. J. Clin. Oncol., 27:<br />

5287-5297.<br />

Siddiqui WA, Ahmad S, Siddiqui H L, Tariq MI and<br />

Parvez (2007). M 3-Benzylamino-1,2-benzisothiazole<br />

1,1-dioxide. Acta. Crystallographica, 63: 4001<br />

Siddiqui WA, Ahmad S, Siddiqui HL, Tariq H and Parvez<br />

M (2010). Synthesis and Crystal Structures <strong>of</strong> o-<br />

[(phenyl/p-methoxyphenyl)carbamoyl]benzene<br />

sulfonamides. J. Chem. Cyst., 40: 116-121.<br />

Siddiqui WA, Ahmad S, Siddiqui H L and Parvez M<br />

(2008). 2-[N-(2,3-Dimethylphenylcarbamoyl] benzene<br />

sulfonamide and the 3,4 and 2,6 dimethylphenyl<br />

analogues. Acta Cryst., 64: 367-371.<br />

Siddiqui WA, Ahmad S, Siddiqui HL and Parvez M<br />

(2008). 2-[N-(X-chlorophenyl)carbamoyl] benzene<br />

sulfonamide (with X=2 and 4). Acta Cryst., 64: 286-<br />

289.<br />

Siddiqui WA, Ashraf A, Siddiqui HL and Akram M<br />

Parvez M (2012). 2-(N- cyclohexylcarbamoyl) benzene<br />

sulfonamide. Acta. Cryst., 68: 370.<br />

Sakkiah S, Thangapandian S and Lee KW (2012).<br />

Ligand-b<strong>as</strong>ed virtual screening and molecular docking<br />

studies to identify the critical chemical features <strong>of</strong><br />

potent Cathepsin D inhibitors. Chem. Biol. Drug Des.,<br />

80(1): 64-79.<br />

Schechter I and Berger A (1967). On the size <strong>of</strong> the active<br />

site in prote<strong>as</strong>es I Papain. Biochem. Biophys. Res.<br />

Commun., 27: 157-162.<br />

Silva AM, Lee AY, Gulnik SV, Maier P, Collins J, Bhat<br />

TN, Collins PJ and Erickson JW (1996). Structure and<br />

inhibition <strong>of</strong> pl<strong>as</strong>mepsin II, A hemoglobin-degrading<br />

enzyme from Pl<strong>as</strong>modium falciparum. Proc. Natl.<br />

Acad. Sci. USA., 93: 10034-10039.<br />

Smith HW and Marshall CJ (2010). Regulation <strong>of</strong> cell<br />

signalling by upar. Nat. Rev. Mol. Cell Biol., 11: 23-36.<br />

Pak. J. Pharm. Sci., Vol.26, No.4, July 2013, pp.687-690

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!