20.07.2013 Views

Gravita(onal waves from black hole-‐neutron star binaries ... - LUTH

Gravita(onal waves from black hole-‐neutron star binaries ... - LUTH

Gravita(onal waves from black hole-‐neutron star binaries ... - LUTH

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

<strong>Gravita</strong>'<strong>onal</strong> <strong>waves</strong> <strong>from</strong><br />

<strong>black</strong> <strong>hole</strong>-­<strong>‐neutron</strong> <strong>star</strong> <strong>binaries</strong>:<br />

dependence on EOSs and BH spins<br />

Koutarou Kyutoku<br />

Yukawa Ins'tute for Theore'cal Physics,<br />

Kyoto University (Japan)<br />

Kyutoku, Shibata, Taniguchi Phys. Rev. D 82 (2010) 044049<br />

Kyutoku, Shibata, Taniguchi in prepara'on


Plan of the talk<br />

• 1. Introduc'on<br />

• 2. Numerical methods<br />

• 3. Results<br />

-­‐ nonspinning BH case<br />

-­‐ spinning BH case<br />

• 4. Summary


Introduc'on


Why do we inves'gate BH-­‐NS binary?<br />

• <strong>Gravita</strong>'<strong>onal</strong> wave (GW) astronomy<br />

For ground-­‐based laser-­‐interferometric detectors,<br />

compact <strong>binaries</strong> are the most promising sources<br />

GWs as probes to GR and high density NS maYer<br />

• Short gamma-­‐ray burst (SGRB)<br />

BH-­‐hot, massive accre'on disk systems are<br />

the possible candidates of GRB progenitors<br />

Does compact <strong>binaries</strong> bring SGRBs or not?


<strong>Gravita</strong>'<strong>onal</strong>-­‐wave detectors<br />

VIRGO at Cascina<br />

Sensitve in 10-­‐1000Hz<br />

… astrophysical sources<br />

(Planned) LCGT at Kamioka<br />

LIGO at Hanford


Es'mated detec'on rate of BH-­‐NS<br />

• No detec'on of<br />

the BH-­‐NS binary<br />

• S'll unknown<br />

due to difficulty<br />

in popula'on<br />

synthesis<br />

• ~10 detec'on/yr<br />

may be possible<br />

with Adv. LIGO<br />

Ini'al LIGO<br />

BH-­‐NS<br />

Advanced LIGO<br />

NS-­‐NS<br />

BH-­‐BH<br />

Kalogera+ (2007)


Unknown NS radius and EOS<br />

• The NS radius is determined by T=0 (cold) EOS<br />

• One main goal of GW astronomy is to determine<br />

or at least constrain the EOS at high density<br />

• NS radii are not<br />

constrained well<br />

by observa'ons<br />

• NS EOSs are not<br />

constrained by<br />

experiments<br />

Lagmer&Prakash (2007)


Why do we inves'gate BH-­‐NS binary?<br />

• <strong>Gravita</strong>'<strong>onal</strong> wave (GW) astronomy<br />

For ground-­‐based laser-­‐interferometric detectors,<br />

compact <strong>binaries</strong> are the most promising sources<br />

GWs as probes to GR and high density NS maYer<br />

• Short gamma-­‐ray burst (SGRB)<br />

BH-­‐hot, massive accre'on disk systems are<br />

the possible candidates of GRB progenitors<br />

Does compact <strong>binaries</strong> bring SGRBs or not?


Short gamma-­‐ray burst<br />

• Release huge energy<br />

about<br />

• In short 'mescale<br />

less than<br />

• BH-­‐hot, massive disk<br />

-­‐ LGRB: “collapsar” model<br />

-­‐ SGRB: merger scenario?<br />

BH-­‐NS or NS-­‐NS<br />

From encyclopedia of science


Role of numerical rela'vity<br />

• Three different phases of binary coalescences<br />

1. inspiral phase … post Newtonian approxima'on<br />

2. merger phase … numerical rela'vity<br />

strong (nonlinear) gravity, hydrodynamic effect<br />

3. ringdown phase … BH perturba'on<br />

• Numerical rela'vity is the unique approach to<br />

inves'gate merger phases of binary coalescences<br />

• Especially, the 'dal disrup'on of the NS is interes'ng<br />

since they determine GWs / remnant disks


Main ques'ons for BH-­‐NS<br />

• How does a BH-­‐NS binary merge?<br />

-­‐ the NS is 'dally disrupted, and disk is formed?<br />

-­‐ just like a BH-­‐BH binary, and no disk is leo?<br />

• What parameters are important?<br />

-­‐ BH mass, BH spin, NS mass, NS radius or EOS<br />

• What do we know <strong>from</strong> GW signals?<br />

-­‐ if the 'dal disrup'on occurs or not<br />

-­‐ NS radius, and more informa'on about EOS


Onset of 'dal disrup'on (mass shedding)<br />

• BH 'dal force vs. NS self gravity, at NS surface<br />

(neglect NS deforma'on for simplicity)<br />

• BH Innermost stable circular orbit (ISCO)<br />

radius is propor'<strong>onal</strong> to the BH mass


When is the 'dal disrup'on important?<br />

• Two important dimensionless parameters<br />

-­‐ mass ra'o of BH to NS<br />

-­‐ compactness of the NS<br />

<strong>from</strong> the previous calcula'on,<br />

the ,dal disrup,on occurs outside the ISCO<br />

if the mass ra,o Q and/or compactness C is small<br />

(since the 'dal effect is a NS finite size effect)<br />

• The BH spin is also important since ISCO radius,<br />

equivalently depends strongly on the BH spin


Numerical<br />

methods


Nuclear-­‐theory based EOS<br />

• Too many EOSs for systema'c calcula'ons<br />

• Tabulated EOS is heavy for<br />

the numerical simula'on,<br />

since the interpola'on is<br />

always required<br />

• Analy'c EOS with few<br />

parameters is preferable<br />

(also for observa'ons)<br />

Read+ (2009)


Piecewise polytrope (PWP)<br />

• PWP mimics many nuclear-­‐theory based EOSs<br />

with 4 pieces, where 1 for crust and 3 for core<br />

• However, in this work we<br />

focus on 2-­‐piece PWPs<br />

~crust<br />

~core<br />

(in a BH-­‐NS case, we never<br />

have “hypermassive” object)<br />

• Sound velocity jumps…<br />

crust<br />

Read+ (2009)


PWP models in this work<br />

• Use 8 models of PWPs (crust EOS always fixed)<br />

• Core EOS is specified by 2 paremeters<br />

: s'ffness of the core<br />

: pressure at fiducial density<br />

• is storongly related<br />

to the NS radius and<br />

deformability<br />

(Lagmer&Prakash 2001)<br />

crust


M-­‐R rela'on of PWP<br />

• We can reproduce some proper'es of a nuclear-­‐<br />

theory based EOS even with a 2-­‐piece PWP<br />

• Weak dependence<br />

of radius on mass<br />

= stellar structure<br />

• Cannot with<br />

a polytropic EOS<br />

Standard<br />

polytrope


Brief explana'on of procedure<br />

• First, we compute ini'al condi'ons<br />

-­‐ solve the Einstein constraint equa'ons and some<br />

quasiequilibrium equa'ons<br />

-­‐ solve equa'ons of hydrosta'c equilibrium<br />

• Next, we perform dynamical simula'ons<br />

-­‐ solve the Einstein evolu'on equa'ons (free evol)<br />

-­‐ solve hydrodynamic evolu'on equa'ons<br />

-­‐ extract GWs, analyze remnant disks and BHs


Moving-­‐puncture technique<br />

• Both for ini'al condi'on and 'me evolu'on<br />

(Campanelli+ 2006/Baker+ 2006 cf: Brandt&Brugmann 1997)<br />

• No physical singularity with appropriate slicing<br />

Horizon<br />

or throat<br />

Another spa'al infinity at “r=0”<br />

Our universe<br />

NS<br />

no inner boundary<br />

condi'ons at horizon


Ini'al condi'on<br />

• We solve constraint equa'ons for the metric within<br />

the moving-­‐puncture framework assuming<br />

-­‐ conformal flatness of 3-­‐metric<br />

-­‐ maximal slicing condi'on<br />

-­‐ (quasi-­‐)sta'onarity<br />

extended conformal thin-­‐sandwich method<br />

• Extrinsic curvature is decomposed in a similar way<br />

as in conformal transverse-­‐traceless decomposi'on<br />

-­‐ Bowen-­‐York extrinsic curvature is adopted for


Ini'al condi'on<br />

• Solve hydrosta'c equa'ons for maYer variables<br />

-­‐ a perfect fluid as<br />

-­‐ assume T=0 (cold) and adopt a PWP for the EOS<br />

-­‐ an irrota'<strong>onal</strong> velocity field and<br />

• We obtain 9 ellip'c equa'ons for<br />

and 1 algebraic equa'on for (<strong>from</strong> EOS )<br />

• Solved by mul'-­‐domain spectral-­‐method library<br />

LORENE developed by Meudon rela'vity group<br />

-­‐ We thank all the people developing LORENE


• Today we focus mainly on<br />

Models<br />

-­‐ for a larger mass ra'o (or a heavier BH), almost<br />

no 'dal disrup'on if the BH is nonspinning<br />

(show some results for diffenrent mass ra'os)<br />

• We use 8 models of two-­‐piece PWP (crust EOS fixed)<br />

-­‐ for a spinning BH case, we fix the core s'ffness<br />

• We fix ini'al values of (PN parameter)<br />

-­‐ typically ~5 orbits are tracked (dependent on BH spin)


Dynamical simula'on<br />

• BSSN formalism and moving-­‐puncture gauge<br />

-­‐ decompose<br />

-­‐ introduce an auxiliary variable<br />

-­‐ evolve and also<br />

• We never solve the Einstein constraints during<br />

the 'me evolu'on (“free evolu'on scheme”)<br />

• 4 th -­‐order finite difference in both 'me and space,<br />

with non-­‐centered difference for advec'on terms


Dynamical simula'on<br />

• Hydrodynamic equa'ons are solved with shock-­‐<br />

capturing scheme, 3 rd -­‐order difference in space<br />

• EOS: PWP for cold + ideal gas (rough) for thermal<br />

• <strong>Gravita</strong>'<strong>onal</strong> <strong>waves</strong> are extracted with<br />

• Adap've Mesh Refinement (AMR) code: SACRA<br />

(Yamamoto, Shibata, Taniguchi 2008)


AMR technique<br />

• WriYen by Masaru Shibata<br />

GW<br />

L >λ >> GM/c 2 l ∼ 4GM/c 2<br />

• Typically 113(x)*113(y)*57(z)*11(domain)<br />

• About 150 variables in SACRA<br />

• Required memory ~10 Gbytes<br />

• Feasible in desktop computers of ~2,000EURO


Results:<br />

nonspinning<br />

BH case


Anima'on: no 'dal disrup'on case<br />

• EOS is soo one<br />

(EOS is not so important<br />

in cases)<br />

• Disk mass is negligible


Anima'on: 'dal disrup'on case<br />

• EOS is typical one<br />

(EOS is important in<br />

cases)<br />

• Disk mass may be large<br />

enough for SGRB


GWs with different mass ra'os<br />

• EOS, NS mass fixed<br />

• (i.e. NS is the same)<br />

• -­‐> 'dal disrup'on<br />

• -­‐> ringdown waveform<br />

• (same as case)


GWs with different EOSs<br />

• only EOSs differ<br />

• soo EOS case<br />

• -­‐> ringdown waveform<br />

(very) s'ff EOS case<br />

-­‐> 'dal disrup'on


•<br />

GW spectrum<br />

quadrupole<br />

TaylorT4<br />

(PN)<br />

Larger radius


Extrac'ng “cutoff frequency”<br />

• Universal feature of the GW spectrum<br />

-­‐ Low frequency: same as the PN result<br />

-­‐ High frequency: “bump” is universal<br />

• Fit systema'cally with 7 free parameters<br />

Damped post-­‐Newton<br />

+<br />

Bump component


Cutoff frequency -­‐ compactness<br />

• Strong correla'on between the cutoff frequency<br />

('mes the total mass) and the NS compactness<br />

• Approximately,<br />

for<br />

• And changes<br />

for similar<br />

-­‐ C is differ only by ~1%,<br />

fcut can differ by ~20%


Why is the core adiaba'c index?<br />

• Smaller = sooer EOS, more centrally condensed<br />

and survives longer aoer the mass shedding<br />

• Or “s'ff things are fragile.” : Large<br />

(-­‐> imcompressible)<br />

: Small


Disk mass evolu'on<br />

• Mainly determined by the NS compactness<br />

• S'ffer EOS results in a more massive disk, since<br />

the 'dal disrup'on occurs at a more distant orbit<br />

(same as before)<br />

• long-­‐lived disks<br />

Larger radius


The disk mass -­‐ compactness<br />

• No'ce: not rescaleed by the ini'al NS mass<br />

• We again see<br />

the effect of


Results:<br />

spinning BH<br />

case


Effect of the BH spin<br />

• The BH spin changes the ISCO radius<br />

• For Schwarzschild BH,<br />

• For extreme Kerr, for a prograde orbit<br />

due to the spin-­‐orbit interac'on<br />

(prograde = parallel, aligned)<br />

• For a prograde case, the 'dal disrup'on is “easy”<br />

even for a heavy BH, or large mass ra'o Q<br />

-­‐ for a retrograde(an'-­‐parallel) case, very difficult


Ini'al data of spinning BH-­‐NS<br />

• Control by Bowen-­‐York extrinsic curvature<br />

• The BH spin is calculated within a so-­‐called<br />

isolated-­‐horizon framework with an approximate<br />

Killing vector (Cook&Whi'ng 2007)<br />

-­‐ thank a lot for Eric Gourgoulhon/Nicolas Vasset<br />

• Maximum spin is (drawback!)<br />

-­‐ Kerr BH cannot be conformal flat in 3-­‐space


Anima'on: retrograde spin case<br />

• Spin-­‐orbit aYrac'on<br />

• Less orbits than<br />

nonspinning case<br />

• Disk mass is<br />

negligible


Anima'on: prograde spin case<br />

• Spin-­‐orbit repulsion<br />

• More orbit than<br />

nonspinning case<br />

• Disk mass is large


GWs for different BH spin (Q=3)<br />

• Long, strong emissions <strong>from</strong> prograde BH spins


GW spectra for different BH spins<br />

• Amplitude is high at low frequency<br />

• “Cutoff” occurs also at lower frequency


Cutoff frequency -­‐ compactness<br />

• Slight change in defini'on<br />

• Cutoff frequency becomes lower with BH spin<br />

QNM for<br />

different<br />

BH spin


Massive disks are easily formed<br />

• Upper panels are with prograde BH spins


Disk mass -­‐ compactness<br />

• Rescaled to the ini'al NS mass<br />

• Heavy disks are universal for large BH spins


And even for a heavy BH<br />

• Test run with<br />

a low resolu'on<br />

• Scale changes<br />

during evolu'on<br />

• Disk mass is


Q=4, a=0.75 cases (preliminary)<br />

• Astrophysically more realis'c as the BH mass?<br />

• beYer for<br />

• GW observa'on<br />

SGRB sources?


Summary<br />

and future<br />

work


Summary<br />

• <strong>Gravita</strong>'<strong>onal</strong> <strong>waves</strong> <strong>from</strong> BH-­‐NS <strong>binaries</strong> tell<br />

us the informa'on of EOS at high density, such<br />

as NS compactness and possibly the s'ffness<br />

of the core, through the cutoff frequency.<br />

• The mass of the remnant disk is also sensi've<br />

to the EOS.<br />

• The BH spin significantly changes the final fate<br />

of the BH-­‐NS binary and the 'dal disrup'on of<br />

NS by a heavy BH becomes possible.


Future work<br />

• How accurately the EOS parameter can be<br />

determined? … with UWM group<br />

• More detailed treatment of finite temperature<br />

effects and microphysics … with Y. Sekiguchi<br />

• More rapidly spinning BH case, e.g.<br />

(overspinning?) … Now I am working on here<br />

• Effect of magne'c fields, e.g. Blandford-­‐Znajek<br />

process … just a plan


Merci !<br />

Arigato-­‐<br />

gozaimasu !


appendix


Forma'on paths of BH-­‐NS <strong>binaries</strong><br />

• No observa'<strong>onal</strong> constraints on BH-­‐NS<br />

Kalogera(2007)<br />

• Some possibility of “dynamical capture” in<br />

globular clusters (three-­‐body interac'on)


Gamma-­‐ray bursts a<br />

• Short 'mescale<br />

• Hard spectral index<br />

• Early type galaxies<br />

• SGRBs are rela'vely<br />

unknown than LGRBs<br />

Nakar (2007)


EOS Models<br />

• We use 8 models of two-­‐piece PWP (crust fixed)<br />

: s'ffness of the core<br />

: pressure at fiducial density


Binary simula'on @ home (office)<br />

• Core i7x, 3.33 GHz, 4 cores, 12 or 24 GB memory<br />

May be better than supercomp. 10 yrs ago<br />

• 111*111*56 *7 AMR levels 10 GB memory<br />

• About 50 days for 7 orbits by SACRA code<br />

• Parameter parallel by ~ 30 machines now


Baker et al. PRD, 2007<br />

BH-BH


Comment on cutoff frequency<br />

• Combina'on is useful irrespec've of<br />

mass of NS<br />

-­‐ not so for, e.g., combina'on<br />

• Quasinormal-­‐mode frequency or spin of the<br />

remnant BH is almost independent on the EOS<br />

• Approximately


Comment on rest-­‐mass density<br />

• Maximum density is correlated with the disk mass<br />

• If the massive disk is formed, -­‐trapping may occur<br />

• NDAF?


BH spin angular momentum<br />

• Surface term of the Hamiltonian (similar to ADM)<br />

• Approximate Killing vector: Cook&Whi'ng (2007)<br />

-­‐ minimize , (non-­‐Killing aspects)<br />

-­‐ two linear, ellip'c equa'ons on two-­‐surface<br />

-­‐ assured to be divergence free by construc'on<br />

(to be invariant under the boost transforma'on)


GW spectra for Q=2, a=0.75<br />

Large compactness

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!