Relativistic MHD Simulations of Relativistic Jets - LUTH
Relativistic MHD Simulations of Relativistic Jets - LUTH
Relativistic MHD Simulations of Relativistic Jets - LUTH
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
<strong>Relativistic</strong> <strong>MHD</strong> <strong>Simulations</strong><br />
<strong>of</strong> <strong>Relativistic</strong> <strong>Jets</strong><br />
Yosuke Mizuno<br />
NASA Marshall Space Flight Center (MSFC)<br />
National Space Science and Technology Center (NSSTC)<br />
University <strong>of</strong> Nevada, Las Vegas (UNLV)<br />
Co-authors and active collaborators:<br />
M. Takahashi (Aichi Univ. <strong>of</strong> Edu.), K. Shibata (Kwasan Obs/Kyoto Univ.), S. Yamada (Waseda<br />
Univ.), S. Koide (Kumamoto Univ.), S. Nagataki (Kyoto Univ./YITP), K.-I. Nishikawa<br />
(NSSTC/UAH), P. Hardee (Univ. <strong>of</strong> Alabama), G.J. Fishiman (NSSTC/NASA-MSFC),<br />
D. H. Hartmann (Clemson Univ.), B. Zhang (UNLV), D. Proga (UNLV), S.V. Fuerst (Stanford<br />
Univ.), K. Wu (UCL), Y. Lyubarsky (Ben-Gurion Univ.), K. Ghosh (NSSTC), C. Fendt (MPIA),<br />
P. Coppi (Yele Univ.), P. Biermann (MPIfR)
1. Introduction<br />
Context<br />
2. Development <strong>of</strong> 3D GR<strong>MHD</strong> code<br />
3. 2D GR<strong>MHD</strong> simulations <strong>of</strong> Jet Formation<br />
4. Stability <strong>of</strong> relativistic jets<br />
5. <strong>MHD</strong> boost mechanism <strong>of</strong> relativistic jets<br />
6. Summary and Future Research Plan
Astrophysical <strong>Jets</strong><br />
• Astrophysical jets: outflow <strong>of</strong> highly<br />
collimated plasma<br />
– Microquasars, Active Galactic Nuclei,<br />
Gamma-Ray Bursts, Jet velocity ~c,<br />
<strong>Relativistic</strong> <strong>Jets</strong>.<br />
– Generic systems: Compact object<br />
(White Dwarf, Neutron Star, Black<br />
Hole)+ Accretion Disk<br />
• Key Problems <strong>of</strong> Astrophysical <strong>Jets</strong><br />
– Acceleration mechanism and<br />
radiation processes<br />
– Collimation<br />
– Long term stability<br />
M87
Mirabel & Rodoriguez 1998<br />
<strong>Relativistic</strong> <strong>Jets</strong> in Universe
Modeling <strong>of</strong> Astrophysical <strong>Jets</strong><br />
Energy conversion from accreting matter is the most efficient<br />
mechanism<br />
• Gas pressure model<br />
– Jet velocity ~ sound speed (maximum is ~0.58c)<br />
– Difficult to keep collimated structure<br />
• Radiation pressure model<br />
– Can collimate by the geometrical structure <strong>of</strong> accretion disk (torus)<br />
– Difficult to make relativistic speed with keeping collimated structure<br />
• Magnetohydrodynamic (<strong>MHD</strong>) model<br />
– Magneto-centrifugal force and/or magnetic pressure<br />
• Jet velocity ~ Keplerian velocity <strong>of</strong> accretion disk<br />
– Can keep collimated structure by magnetic hoop-stress<br />
• Direct extract <strong>of</strong> energy from a rotating black hole (Blandford &<br />
Znajek 1977, force-free model)
Outflow (jet)<br />
<strong>MHD</strong> model<br />
• Acceleration<br />
– Magneto-centrifugal force (Blandford-Payne<br />
1982)<br />
• Like a force worked a bead when swing a<br />
wire with a bead<br />
– Magnetic pressure force<br />
• Like a force when stretch a spring<br />
– Direct extract a energy from a rotating black hole<br />
• Collimation<br />
– Magnetic pinch (hoop stress)<br />
• Like a force when the shrink a rubber<br />
band<br />
Magnetic<br />
field line<br />
Magnetic<br />
field line<br />
Magnetic<br />
field line<br />
outflow (jet)<br />
accretion<br />
Centrifugal<br />
force
Requirment <strong>of</strong> <strong>Relativistic</strong> <strong>MHD</strong><br />
• Astrophysical jets seen AGNs show the relativistic<br />
speed (~0.99c)<br />
• The central object <strong>of</strong> AGNs is suppermassive black<br />
hole (~10 5 -10 10 solar mass)<br />
• The jet is formed near black hole<br />
Require relativistic treatment (special or general)<br />
• In order to understand the time evolution <strong>of</strong> jet<br />
formation, propagation and other time dependent<br />
phenomena, we need to perform relativistic<br />
magnetohydrodynamic (<strong>MHD</strong>) simulations
Applicability <strong>of</strong> <strong>MHD</strong> Approximation<br />
• <strong>MHD</strong> describe macroscopic behavior <strong>of</strong> plasmas<br />
if<br />
– Spatial scale >> ion Larmor radius<br />
– Time scale >> ion Larmor period<br />
• But <strong>MHD</strong> can not treat<br />
– Particle acceleration<br />
– Origin <strong>of</strong> resistivity<br />
– Electromagnetic waves
Recent Work for <strong>Relativistic</strong> <strong>Jets</strong><br />
• Investigate the role <strong>of</strong> magnetic fields in relativistic jets against<br />
three key problems<br />
– Jet formation<br />
– Jet acceleration and radiation process<br />
• Acceleration <strong>of</strong> particles to very high energy<br />
– Jet stability<br />
• Recent research topics<br />
– Development <strong>of</strong> 3D general relativistic <strong>MHD</strong> (GR<strong>MHD</strong>) code “RAISHIN”<br />
– GR<strong>MHD</strong> simulations <strong>of</strong> jet formation and radiation from Black Hole<br />
magnetosphere<br />
– A relativistic <strong>MHD</strong> boost mechanism for relativistic jets<br />
– Stability analysis <strong>of</strong> magnetized spine-sheath relativistic jets<br />
– Particle-In-Cell (PIC) simulations <strong>of</strong> relativistic jets
1. Development <strong>of</strong> 3D GR<strong>MHD</strong><br />
Code “RAISHIN”<br />
Mizuno et al. 2006a, Astro-ph/0609004<br />
Mizuno et al. 2006, PoS, MQW6, 45
Numerical Approach to <strong>Relativistic</strong> <strong>MHD</strong><br />
• RHD: reviews Marti & Muller (2003) and Fonts (2003)<br />
• SR<strong>MHD</strong>: many authors<br />
• GR<strong>MHD</strong><br />
• Application: relativistic Riemann problems, relativistic jet propagation, jet<br />
stability, pulsar wind nebule, etc.<br />
– Fixed spacetime (Koide, Shibata & Kudoh 1998; De Villiers &<br />
Hawley 2003; Gammie, McKinney & Toth 2003; Komissarov 2004;<br />
Anton et al. 2005; Annios, Fragile & Salmonson 2005; Del Zanna et al.<br />
2007, Tchekhovskoy et al. 2008)<br />
• Application: The structure <strong>of</strong> accretion flows onto black hole and/or formation<br />
<strong>of</strong> jets, BZ process near rotating black hole, the formation <strong>of</strong> GRB jets in<br />
collapsars etc.<br />
– Dynamical spacetime (Duez et al. 2005; Shibata & Sekiguchi 2005;<br />
Anderson et al. 2006; Giacomazzo & Rezzolla 2007, Cedra-Duran et al.<br />
2008)
Propose to Make a New GR<strong>MHD</strong> Code<br />
• The Koide’s GR<strong>MHD</strong> Code (Koide, Shibata & Kudoh 1999;<br />
Koide 2003) has been applied to many high-energy<br />
astrophysical phenomena and showed pioneering results.<br />
• However, the code can not perform calculation in highly<br />
relativistic (γ>5) or highly magnetized regimes.<br />
• The critical problem <strong>of</strong> the Koide’s GR<strong>MHD</strong> code is the<br />
schemes can not guarantee to maintain divergence free<br />
magnetic field.<br />
• In order to improve these numerical difficulties, we have<br />
developed a new 3D GR<strong>MHD</strong> code RAISHIN (RelAtIviStic<br />
magnetoHydrodynamc sImulatioN, RAISHIN is the Japanese<br />
ancient god <strong>of</strong> lightning).
4D General <strong>Relativistic</strong> <strong>MHD</strong> Equation<br />
• General relativistic equation <strong>of</strong> conservation laws and Maxwell equations:<br />
∇ ν ( ρ U ν ) = 0 (conservation law <strong>of</strong> particle-number)<br />
∇ ν T µν = 0 (conservation law <strong>of</strong> energy-momentum)<br />
∂ µ F νλ + ∂ ν F λµ + ∂ λ F µν = 0<br />
∇ µ F µν = - J ν<br />
• Ideal <strong>MHD</strong> condition: F νµ U ν = 0<br />
• metric: ds 2 =g µν dx µ dx ν<br />
• Equation <strong>of</strong> state : p=(Γ-1) u<br />
ρ : rest-mass density. p : proper gas pressure. u: internal energy. c: speed <strong>of</strong> light.<br />
h : specific enthalpy, h =1 + u + p / ρ.<br />
Γ: specific heat ratio.<br />
U µυ : velocity four vector. J µυ : current density four vector.<br />
∇ µν : covariant derivative. g µν : 4-metric,<br />
(Maxwell equations)<br />
T µν : energy momentum tensor, T µν = ρ h U µ U ν +pg µν +F µσ F ν<br />
σ -g µνF λκ F λκ/4.<br />
F µν : field-strength tensor,
Metric:<br />
Conservative Form <strong>of</strong> GR<strong>MHD</strong><br />
Equations (3+1 Form)<br />
U (conserved variables) F i (numerical flux) S (source term)<br />
α: lapse function,<br />
β i : shift vector,<br />
γ ij: 3-metric<br />
(Particle number conservation)<br />
(Momentum conservation)<br />
(Energy<br />
conservation)<br />
(Induction equation)<br />
√-g : determinant <strong>of</strong> 4-metric<br />
√γ : determinant <strong>of</strong> 3-metric<br />
Detail <strong>of</strong> derivation <strong>of</strong><br />
GR<strong>MHD</strong> equations<br />
Anton et al. (2005) etc.
New 3D GR<strong>MHD</strong> Code “RAISHIN”<br />
Mizuno et al. (2006)<br />
• RAISHIN utilizes conservative, high-resolution shock<br />
capturing schemes (Godunov-type scheme) to solve the<br />
3D general relativistic <strong>MHD</strong> equations (metric is static)<br />
• Ability <strong>of</strong> RAISHIN code<br />
– Multi-dimension (1D, 2D, 3D)<br />
– Special (Minkowski spcetime) and General relativity (static metric;<br />
Schwarzschild or Kerr spacetime)<br />
– Different coordinates (R<strong>MHD</strong>: Cartesian, Cylindrical,<br />
Spherical and GR<strong>MHD</strong>: Boyer-Lindquist <strong>of</strong> non-rotating or<br />
rotating BH)<br />
– Use several numerical methods to solving each problem<br />
– Maintain divergence-free magnetic field by numerically<br />
– Use constant Gamma-law or variable equation <strong>of</strong> states<br />
– Parallelized by Open MP
Detailed Features <strong>of</strong> the Numerical<br />
Schemes<br />
Mizuno et al. 2006a, astro-ph/0609004<br />
• RAISHIN utilizes conservative, high-resolution shock<br />
capturing schemes (Godunov-type scheme) to solve the<br />
3D GR<strong>MHD</strong> equations (metric is static)<br />
* Reconstruction: PLM (Minmod & MC slope-limiter function),<br />
convex ENO, PPM<br />
* Riemann solver: HLL, HLLC approximate Riemann solver<br />
* Constrained Transport: Flux interpolated constrained transport<br />
scheme<br />
* Time evolution: Multi-step Runge-Kutta method (2nd & 3rd-order)<br />
* Recovery step: Koide 2 variable method, Noble 2 variable method,<br />
Mignore-McKinney 1 variable method
<strong>Relativistic</strong> <strong>MHD</strong> Shock-Tube Tests<br />
Exact solution: Giacomazzo & Rezzolla (2006)
<strong>Relativistic</strong> <strong>MHD</strong> Shock-Tube Tests<br />
Balsara Test1 (Balsara 2001)<br />
FR<br />
CD<br />
Black: exact solution, Blue: MC-limiter,<br />
Light blue: minmod-limiter, Orange: CENO,<br />
red: PPM<br />
400 computational zones<br />
SR<br />
SS<br />
FR<br />
• The results show good<br />
agreement <strong>of</strong> the exact solution<br />
calculated by Giacommazo &<br />
Rezzolla (2006).<br />
• Minmod slope-limiter and<br />
CENO reconstructions are more<br />
diffusive than the MC slopelimiter<br />
and PPM reconstructions.<br />
• Although MC slope limiter and<br />
PPM reconstructions can resolve<br />
the discontinuities sharply, some<br />
small oscillations are seen at the<br />
discontinuities.
<strong>Relativistic</strong> <strong>MHD</strong> Shock-Tube Tests<br />
KO MC Min CENO PPM<br />
• Komissarov: Shock Tube Test1 △ ○ ○ ○ ○ (large P)<br />
• Komissarov: Collision Test × ○ ○ ○ ○ (large γ)<br />
• Balsara Test1(Brio & Wu) ○ ○ ○ ○ ○<br />
• Balsara Test2 × ○ ○ ○ ○ (large P & B)<br />
• Balsara Test3 × ○ ○ ○ ○ (large γ)<br />
• Balsara Test4 × ○ ○ ○ ○ (large P & B)<br />
• Balsara Test5 ○ ○ ○ ○ ○<br />
• Generic Alfven Test ○ ○ ○ ○ ○
2. 2D GR<strong>MHD</strong> Simulation <strong>of</strong> Jet<br />
Formation<br />
Mizuno et al. 2006b, Astro-ph/0609344<br />
Hardee, Mizuno, & Nishikawa 2007, ApSS, 311, 281<br />
Wu et al. 2008, CJAA, submitted
2D GR<strong>MHD</strong> Simulation <strong>of</strong> Jet Formation<br />
Initial condition<br />
– Geometrically thin Keplerian<br />
disk (ρ d /ρ c =100) rotates<br />
around a black hole (a=0.0,<br />
0.95)<br />
– The back ground corona is<br />
free-falling to a black hole<br />
(Bondi solution)<br />
– The global vertical magnetic<br />
field (Wald solution)<br />
Numerical Region and Mesh<br />
points<br />
– 1.1(0.75) r S < r < 20 r S , 0.03<<br />
θ < π/2, with 128*128 mesh<br />
points<br />
Schematic picture <strong>of</strong> the jet formation near<br />
a black hole
Time evolution (Density)<br />
non-rotating BH case (B 0=0.05,a=0.0)<br />
Parameter<br />
B 0=0.05<br />
a=0.0<br />
Color: density<br />
White lines: magnetic<br />
field lines (contour <strong>of</strong><br />
poloidal vector<br />
potential)<br />
Arrows: poloidal<br />
velocity
Time evolution (Density)<br />
rotating BH case (B 0=0.05,a=0.95)<br />
Parameter<br />
B 0=0.05<br />
a=0.95<br />
Color: density<br />
White lines: magnetic<br />
field lines (contour <strong>of</strong><br />
poloidal vector<br />
potential)<br />
Arrows: poloidal<br />
velocity
Non-rotating BH Fast-rotating BH<br />
ρρρρ<br />
ββββ<br />
v tot<br />
Bφ<br />
Results<br />
• The matter in the disk loses its angular<br />
momentum by magnetic field and falls to a black<br />
hole.<br />
• A centrifugal barrier decelerates the falling<br />
matter and make a shock around r=2rS.<br />
• The matter near the shock region is accelerated<br />
by the J×B force and the gas pressure gradient<br />
and forms jets.<br />
• These results are similar to previous work<br />
(Koide et al. 2000, Nishikawa et al. 2005).<br />
• In the rotating black hole case, additional inner<br />
jets form by the magnetic field twisted resulting<br />
from frame-dragging effect.<br />
White curves: magnetic field lines (density), toroidal<br />
magnetic field (plasma beta)<br />
vector: poloidal velocity
Results (Jet Properties)<br />
Non-rotating BH<br />
Fast-rotating BH<br />
W EM : Lorentz force<br />
W gp : gas pressure gradient<br />
• Outer jet: toroidal velocity<br />
is dominant. The magnetic<br />
field is twisted by rotation <strong>of</strong><br />
Keplerian disk. It is<br />
accelerated mainly by the<br />
gas pressure gradient (inner<br />
part <strong>of</strong> it may be accelerated<br />
by the Lorentz force).<br />
• Inner jet: toroidal velocity<br />
is dominant (larger than<br />
outer jet). The magnetic field<br />
is twisted by the framedragging<br />
effect. It is<br />
accelerated mainly by the<br />
Lorentz force
<strong>Relativistic</strong> Radiation Transfer<br />
• We have calculated the thermal free-free<br />
emission and thermal synchrotron emission<br />
from a relativistic flows in black hole<br />
systems based on the results <strong>of</strong> our 2D<br />
GR<strong>MHD</strong> simulations (rotating BH cases).<br />
• We consider a general relativistic radiation<br />
transfer formulation (Fuerst & Wu 2004,<br />
A&A, 424, 733) and solve the transfer<br />
equation using a ray-tracing algorithm.<br />
• In this algorithm, we treat general<br />
relativistic effect (light bending, gravitational<br />
lensing, gravitational redshift, framedragging<br />
effect etc.).<br />
α<br />
u em<br />
Wu et al., 2008, CJAA, submitted<br />
Image <strong>of</strong> Emission, absorption &<br />
scattering<br />
Accretion Disk<br />
Distribution <strong>of</strong> Absorbing Clouds<br />
Black Hole<br />
α<br />
ucl α<br />
uab u p α<br />
Photon<br />
Observer
Radiation images <strong>of</strong> black hole-disk system<br />
• We have calculated the thermal freefree<br />
emission and thermal synchrotron<br />
emission from a relativistic flows in<br />
black hole systems (2D GR<strong>MHD</strong><br />
simulation, rotating BH cases).<br />
• We consider a GR radiation transfer<br />
formulation and solve the transfer<br />
equation using a ray-tracing algorithm.<br />
• The radiation image shows the front<br />
side <strong>of</strong> the accretion disk and the other<br />
side <strong>of</strong> the disk at the top and bottom<br />
regions because the GR effects.<br />
• We can see the formation <strong>of</strong> twocomponent<br />
jet based on synchrotron<br />
emission and the strong thermal<br />
radiation from hot dense gas near the<br />
BHs.<br />
Radiation image seen from<br />
θ=85 (optically thin)<br />
Radiation image seen from<br />
θ=45 (optically thick)<br />
Radiation image seen from<br />
θ=85 (optically thick)
3. Stability Analysis <strong>of</strong> Magnetized<br />
Spine-Sheath <strong>Relativistic</strong> <strong>Jets</strong><br />
Mizuno, Hardee & Nishikawa, 2007, ApJ, 662, 835<br />
Hardee, 2007, ApJ, 664, 26<br />
Hardee, Mizuno & Nishikawa, 2007, ApSS, 311, 281
Instability <strong>of</strong> <strong>Relativistic</strong> <strong>Jets</strong><br />
•When jets propagate outward, there are possibility to grow <strong>of</strong> two<br />
major instabilities<br />
• Kelvin-Helmholtz (KH) instability<br />
• Important at the shearing boundary flowing jet and external medium<br />
• Current-Driven (CD) instability<br />
• Important in twisted magnetic field<br />
• Interaction <strong>of</strong> jets with external<br />
medium caused by such<br />
instabilities leads to the formation<br />
<strong>of</strong> shocks, turbulence, acceleration<br />
<strong>of</strong> charged particles etc.<br />
• Used to interpret many jet<br />
phenomena<br />
– quasi-periodic wiggles and knots,<br />
filaments, limb brightening, jet<br />
disruption etc<br />
Limb brightening <strong>of</strong> M87 jets (observation)
Spine-Sheath <strong>Relativistic</strong> <strong>Jets</strong><br />
(observations)<br />
M87 Jet: Spine-Sheath (two-component) Configuration?<br />
HST Optical Image (Biretta, Sparks, & Macchetto 1999)<br />
Typical Proper<br />
Motions > c<br />
Optical ~ inside<br />
radio emission<br />
Jet Spine ?<br />
VLA Radio Image (Biretta, Zhou, & Owen 1995)<br />
Typical Proper<br />
Motions < c<br />
Radio ~ outside<br />
optical emission<br />
Sheath wind ?<br />
• Observations <strong>of</strong> QSOs show the evidence <strong>of</strong> high speed wind (~0.1-0.4c)(Pounds et<br />
al. 2003):<br />
•Related to Sheath wind<br />
• Spine-sheath configuration proposed to explain<br />
•limb brightening in M87, Mrk501jets (Perlman et al. 2001; Giroletti et al. 2004)<br />
•TeV emission in M87 (Taveccio & Ghisellini 2008)<br />
•broadband emission in PKS 1127-145 jet (Siemiginowska et al. 2007)
Spine-Sheath <strong>Relativistic</strong> <strong>Jets</strong><br />
• In many GR<strong>MHD</strong> simulation<br />
<strong>of</strong> jet formation (e.g., Hawley &<br />
Krolik 2006, McKinney 2006, Hardee<br />
et al. 2007), suggest that<br />
• a jet spine driven by the<br />
magnetic fields threading<br />
the ergosphere<br />
• may be surrounded by a<br />
broad sheath wind driven<br />
by the magnetic fields<br />
anchored in the accretion<br />
disk.<br />
(GR<strong>MHD</strong> <strong>Simulations</strong>)<br />
Non-rotating BH Fast-rotating BH<br />
Disk Jet/Wind<br />
BH Jet Disk Jet/Wind<br />
Total velocity distribution <strong>of</strong> 2D GR<strong>MHD</strong><br />
Simulation <strong>of</strong> jet formation<br />
(Hardee, Mizuno & Nishikawa 2007)
Key Questions <strong>of</strong> Jet Stability<br />
• When jets propagate outward, there are possibility to<br />
grow <strong>of</strong> two instabilities<br />
– Kelvin-Helmholtz (KH) instability<br />
– Current-Driven (CD) instability<br />
• How do jets remain sufficiently stable?<br />
• What are the Effects & Structure <strong>of</strong> KH / CD<br />
Instability in particular jet configuration (such as<br />
spine-sheath configuration)?<br />
• We investigate these topics by using 3D relativistic<br />
<strong>MHD</strong> simulations
3D <strong>Simulations</strong> <strong>of</strong> Spine-Sheath Jet Stability<br />
Initial condition<br />
Mizuno, Hardee & Nishikawa, 2007<br />
• Cylindrical super-Alfvenic<br />
jet established across the<br />
computational domain with a<br />
parallel magnetic field (stable<br />
against CD instabilities)<br />
• Solving 3D R<strong>MHD</strong> equations in Cartesian coordinates<br />
(using Minkowski spacetime)<br />
• Jet (spine): ujet = 0.916 c (γj =2.5), ρjet = 2 ρext (dense, cold jet)<br />
• External medium (sheath): uext = 0 (static), 0.5c (sheath wind)<br />
• Jet spine precessed to break the symmetry (frequency, ω=0.93)<br />
• RHD: weakly magnetized (sound velocity > Alfven velocity)<br />
• R<strong>MHD</strong>: strongly magnetized (sound velocity < Alfven velocity)<br />
• Numerical box and computational zones<br />
• -3 rj < x,y< 3rj , 0 rj < z < 60 rj (Cartesian coordinates) with 60*60*600 zones,<br />
(1rj =10 zones)<br />
Previous works: jet propagation simulation <strong>of</strong> Spine-Sheath jet model<br />
(e.g., Sol et al. 1989; Hardee & Rosen 2002)
Simulation results: global structure<br />
(nowind, weakly magnetized case)<br />
3D isovolume <strong>of</strong> density with B-field lines show the jet is<br />
disrupted by the growing KH instability<br />
y<br />
Longitudinal cross section<br />
z<br />
y<br />
Transverse cross section show the strong<br />
interaction between jet and external medium<br />
x
Effect <strong>of</strong> magnetic field and sheath wind<br />
vw =0.0 vw =0.5c vw =0.0<br />
vw =0.5c<br />
• Previous works: Study the effect <strong>of</strong> sheath wind on KH modes for non-rel HD<br />
R<strong>MHD</strong> and RHD simulations (Hanasaz & Sol 1996, 1998; Hardee & Rosen 2002)<br />
•The sheath flow reduces the growth rate <strong>of</strong> KH modes and slightly increases the<br />
wave speed and wavelength as predicted from linear stability analysis.<br />
•The magnetized sheath reduces growth rate relative to the weakly magnetized case<br />
•The magnetized sheath flow damped growth <strong>of</strong> KH modes.<br />
Criterion for damped KH modes:<br />
(linear stability analysis)<br />
1D radial velocity pr<strong>of</strong>ile along jet
4. <strong>MHD</strong> Boost mechanism <strong>of</strong><br />
<strong>Relativistic</strong> <strong>Jets</strong><br />
Mizuno, Hardee, Hartmann, Nishikawa & Zhang, 2008,<br />
ApJ, 672, 72
A <strong>MHD</strong> boost for relativistic jets<br />
• The acceleration mechanism boosting<br />
relativistic jets to highly-relativistic<br />
speed is not fully known.<br />
• Recently Aloy & Rezzolla (2006) have<br />
proposed a powerful hydrodynamical<br />
acceleration mechanism <strong>of</strong> relativistic<br />
jets by the motion <strong>of</strong> two fluid between<br />
jets and external<br />
– If the jet is hotter and at much higher<br />
pressure than a denser, colder external<br />
medium, and moves with a large velocity<br />
tangent to the interface, the relative motion<br />
<strong>of</strong> the two fluids produces a hydrodynamical<br />
structure in the direction perpendicular to the<br />
flow.<br />
– The rarefaction wave propagates into the jet<br />
and the low pressure wave leads to strong<br />
acceleration <strong>of</strong> the jet fluid into the<br />
ultrarelativistic regime in a narrow region<br />
near the contact discontinuity.<br />
Schematic picture <strong>of</strong> simulations
Motivation<br />
• This hydrodynamical boosting mechanism is<br />
very simple and powerful.<br />
• But it is likely to be modified by the effects <strong>of</strong><br />
magnetic fields present in the initial flow, or<br />
generated within the shocked outflow.<br />
• We investigate the effect <strong>of</strong> magnetic fields on<br />
the boost mechanism by using <strong>Relativistic</strong><br />
<strong>MHD</strong> simulations.
Initial Condition (1D R<strong>MHD</strong>)<br />
• Consider a Riemann problem consisting <strong>of</strong> two uniform initial states<br />
• Right (external medium): colder fluid with larger rest-mass density and<br />
essentially at rest.<br />
• Left (jet): lower density, higher temperature and pressure, relativistic velocity<br />
tangent to the discontinuity surface<br />
• To investigate the effect <strong>of</strong> magnetic fields, put the poloidal (Bz: <strong>MHD</strong>A) or<br />
toroidal (By: <strong>MHD</strong>B) components <strong>of</strong> magnetic field in the jet region (left state).<br />
• For comparison, HDB case is a high gas pressure, pure-hydro case (gas<br />
pressure = total pressure <strong>of</strong> <strong>MHD</strong> case)<br />
Simulation region<br />
-0.2 < x < 0.2 with 6400 grid<br />
Schematic picture <strong>of</strong> simulations
Hydro Case<br />
Solid line (exact solution), Dashed line (simulation)<br />
In the left going rarefaction region,<br />
the tangential velocity increases<br />
due to the hydrodynamic boost<br />
mechanism.<br />
jet is accelerated to γ~12 from an<br />
initial Lorentz factor <strong>of</strong> γ~7.
<strong>MHD</strong> Case<br />
HDA case (pure hydro) :<br />
dotted line<br />
<strong>MHD</strong>A case (poloidal)<br />
<strong>MHD</strong>B case (toroidal)<br />
HDB case (hydro, high-p)<br />
• When gas pressure becomes large, the normal velocity<br />
increases and the jet is more efficiently accelerated.<br />
• When a poloidal magnetic field is present, stronger<br />
sideways expansion is produced, and the jet can achieve<br />
higher speed due to the contribution from the normal<br />
velocity.<br />
• When a toroidal magnetic field is present, although the<br />
shock pr<strong>of</strong>ile is only changed slightly, the jet is more<br />
strongly accelerated in the tangential direction due to the<br />
Lorentz force.<br />
• The geometry <strong>of</strong> the magnetic field is a very important<br />
geometric parameter.
Dependence on Magnetic Field Strength<br />
Solid line: exact solution, Crosses: simulation<br />
Magnetic field strength is measured in fluid flame<br />
poloidal<br />
toroidal<br />
• When the poloidal magnetic field<br />
increases, the normal velocity<br />
increases and the tangential velocity<br />
decreases.<br />
• When the toroidal magnetic field<br />
increases, the normal velocity<br />
decreases and the tangential velocity<br />
increases.<br />
• In both <strong>of</strong> cases, when the magnetic<br />
field strength increases, maximum<br />
Lorentz factor also increases.<br />
• Toroidal magnetic field provides the<br />
most efficient acceleration.
Multi-dimensional <strong>Simulations</strong><br />
(Initial Condition)<br />
• 2D R<strong>MHD</strong> simulations <strong>of</strong> <strong>MHD</strong>A case (poloidal field).<br />
• Pre-existing jet flow is established across the computational<br />
domain.<br />
• Simulation region, 0.5 < x,r < 1.5, 0 < z < 5.0 with (Nx * Nz)<br />
= (2000 * 250)<br />
• In order to investigate a possible influence <strong>of</strong> the chosen<br />
coordinate system, we perform Cartesian and cylindrical<br />
coordinates.
Multi-dimensional Simulation<br />
(Results)<br />
• A thin surface is accelerated by<br />
the <strong>MHD</strong> boost mechanism to<br />
reach a maximum Lorentz factor<br />
g~15 from an initial Lorentz factor<br />
g~7.<br />
• The jet in cylindrical coordinates<br />
is slightly more accelerated than<br />
the jet in Cartesian coordinates,<br />
which suggests that different<br />
coordinate systems can affect<br />
sideways expansion, shock pr<strong>of</strong>ile,<br />
and acceleration (slightly).<br />
• The field geometry is an<br />
important factor.
Summary<br />
• We have developed a new 3D GR<strong>MHD</strong> code<br />
``RAISHIN’’by using a conservative, high-resolution<br />
shock-capturing scheme.<br />
• We have performed simulations <strong>of</strong> jet formation from a<br />
geometrically thin accretion disk near both non-rotating<br />
and rotating black holes. Similar to previous results (Koide<br />
et al. 2000, Nishikawa et al. 2005a) we find magnetically<br />
driven jets.<br />
• It appears that the rotating black hole creates a second,<br />
faster, and more collimated inner outflow. Thus, kinematic<br />
jet structure could be a sensitive function <strong>of</strong> the black hole<br />
spin parameter.
Summary (cont.)<br />
•We have investigated stability properties <strong>of</strong> magnetized<br />
spine-sheath relativistic jets by the theoretical work and<br />
3D R<strong>MHD</strong> simulations.<br />
• The most important result is that destructive KH modes<br />
can be stabilized even when the jet Lorentz factor<br />
exceeds the Alfven Lorentz factor. Even in the absence <strong>of</strong><br />
stabilization, spatial growth <strong>of</strong> destructive KH modes can<br />
be reduced by the presence <strong>of</strong> magnetically sheath flow<br />
(~0.5c) around a relativistic jet spine (>0.9c)
Summary (cont.)<br />
• We performed relativistic magnetohydrodynamic<br />
simulations <strong>of</strong> the hydrodynamic boosting mechanism<br />
for relativistic jets explored by Aloy & Rezzolla (2006)<br />
using the RAISHIN code.<br />
•We find that magnetic fields can lead to more efficient<br />
acceleration <strong>of</strong> the jet, in comparison to the purehydrodynamic<br />
case.<br />
• The presence and relative orientation <strong>of</strong> a magnetic<br />
field in relativistic jets can significant modify the<br />
hydrodynamic boost mechanism studied by Aloy &<br />
Rezzolla (2006).
Future Work<br />
• Code Development<br />
– Kerr-Schild Coordinates: long-term simulation in GR<strong>MHD</strong><br />
– Resistivity: extension to non-ideal <strong>MHD</strong>; (e.g., Watanabe &<br />
Yokoyama 2007; Komissarov 2007)<br />
– Couple with radiation transfer: link to observation<br />
• Research <strong>of</strong> Jet Formation and Propagation<br />
– Dependence on Magnetic field structure, BH spin parameter,<br />
disk structure and perturbation etc.<br />
• Research <strong>of</strong> Jet Stability<br />
– Dependence on EoS<br />
– Current-Driven instability<br />
• Apply to astrophysical phenomena in which relativistic<br />
outflows and/or GR essential (AGNs, microquasars,<br />
neutron stars, and GRBs etc.)