20.07.2013 Views

Relativistic MHD Simulations of Relativistic Jets - LUTH

Relativistic MHD Simulations of Relativistic Jets - LUTH

Relativistic MHD Simulations of Relativistic Jets - LUTH

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

<strong>Relativistic</strong> <strong>MHD</strong> <strong>Simulations</strong><br />

<strong>of</strong> <strong>Relativistic</strong> <strong>Jets</strong><br />

Yosuke Mizuno<br />

NASA Marshall Space Flight Center (MSFC)<br />

National Space Science and Technology Center (NSSTC)<br />

University <strong>of</strong> Nevada, Las Vegas (UNLV)<br />

Co-authors and active collaborators:<br />

M. Takahashi (Aichi Univ. <strong>of</strong> Edu.), K. Shibata (Kwasan Obs/Kyoto Univ.), S. Yamada (Waseda<br />

Univ.), S. Koide (Kumamoto Univ.), S. Nagataki (Kyoto Univ./YITP), K.-I. Nishikawa<br />

(NSSTC/UAH), P. Hardee (Univ. <strong>of</strong> Alabama), G.J. Fishiman (NSSTC/NASA-MSFC),<br />

D. H. Hartmann (Clemson Univ.), B. Zhang (UNLV), D. Proga (UNLV), S.V. Fuerst (Stanford<br />

Univ.), K. Wu (UCL), Y. Lyubarsky (Ben-Gurion Univ.), K. Ghosh (NSSTC), C. Fendt (MPIA),<br />

P. Coppi (Yele Univ.), P. Biermann (MPIfR)


1. Introduction<br />

Context<br />

2. Development <strong>of</strong> 3D GR<strong>MHD</strong> code<br />

3. 2D GR<strong>MHD</strong> simulations <strong>of</strong> Jet Formation<br />

4. Stability <strong>of</strong> relativistic jets<br />

5. <strong>MHD</strong> boost mechanism <strong>of</strong> relativistic jets<br />

6. Summary and Future Research Plan


Astrophysical <strong>Jets</strong><br />

• Astrophysical jets: outflow <strong>of</strong> highly<br />

collimated plasma<br />

– Microquasars, Active Galactic Nuclei,<br />

Gamma-Ray Bursts, Jet velocity ~c,<br />

<strong>Relativistic</strong> <strong>Jets</strong>.<br />

– Generic systems: Compact object<br />

(White Dwarf, Neutron Star, Black<br />

Hole)+ Accretion Disk<br />

• Key Problems <strong>of</strong> Astrophysical <strong>Jets</strong><br />

– Acceleration mechanism and<br />

radiation processes<br />

– Collimation<br />

– Long term stability<br />

M87


Mirabel & Rodoriguez 1998<br />

<strong>Relativistic</strong> <strong>Jets</strong> in Universe


Modeling <strong>of</strong> Astrophysical <strong>Jets</strong><br />

Energy conversion from accreting matter is the most efficient<br />

mechanism<br />

• Gas pressure model<br />

– Jet velocity ~ sound speed (maximum is ~0.58c)<br />

– Difficult to keep collimated structure<br />

• Radiation pressure model<br />

– Can collimate by the geometrical structure <strong>of</strong> accretion disk (torus)<br />

– Difficult to make relativistic speed with keeping collimated structure<br />

• Magnetohydrodynamic (<strong>MHD</strong>) model<br />

– Magneto-centrifugal force and/or magnetic pressure<br />

• Jet velocity ~ Keplerian velocity <strong>of</strong> accretion disk<br />

– Can keep collimated structure by magnetic hoop-stress<br />

• Direct extract <strong>of</strong> energy from a rotating black hole (Blandford &<br />

Znajek 1977, force-free model)


Outflow (jet)<br />

<strong>MHD</strong> model<br />

• Acceleration<br />

– Magneto-centrifugal force (Blandford-Payne<br />

1982)<br />

• Like a force worked a bead when swing a<br />

wire with a bead<br />

– Magnetic pressure force<br />

• Like a force when stretch a spring<br />

– Direct extract a energy from a rotating black hole<br />

• Collimation<br />

– Magnetic pinch (hoop stress)<br />

• Like a force when the shrink a rubber<br />

band<br />

Magnetic<br />

field line<br />

Magnetic<br />

field line<br />

Magnetic<br />

field line<br />

outflow (jet)<br />

accretion<br />

Centrifugal<br />

force


Requirment <strong>of</strong> <strong>Relativistic</strong> <strong>MHD</strong><br />

• Astrophysical jets seen AGNs show the relativistic<br />

speed (~0.99c)<br />

• The central object <strong>of</strong> AGNs is suppermassive black<br />

hole (~10 5 -10 10 solar mass)<br />

• The jet is formed near black hole<br />

Require relativistic treatment (special or general)<br />

• In order to understand the time evolution <strong>of</strong> jet<br />

formation, propagation and other time dependent<br />

phenomena, we need to perform relativistic<br />

magnetohydrodynamic (<strong>MHD</strong>) simulations


Applicability <strong>of</strong> <strong>MHD</strong> Approximation<br />

• <strong>MHD</strong> describe macroscopic behavior <strong>of</strong> plasmas<br />

if<br />

– Spatial scale >> ion Larmor radius<br />

– Time scale >> ion Larmor period<br />

• But <strong>MHD</strong> can not treat<br />

– Particle acceleration<br />

– Origin <strong>of</strong> resistivity<br />

– Electromagnetic waves


Recent Work for <strong>Relativistic</strong> <strong>Jets</strong><br />

• Investigate the role <strong>of</strong> magnetic fields in relativistic jets against<br />

three key problems<br />

– Jet formation<br />

– Jet acceleration and radiation process<br />

• Acceleration <strong>of</strong> particles to very high energy<br />

– Jet stability<br />

• Recent research topics<br />

– Development <strong>of</strong> 3D general relativistic <strong>MHD</strong> (GR<strong>MHD</strong>) code “RAISHIN”<br />

– GR<strong>MHD</strong> simulations <strong>of</strong> jet formation and radiation from Black Hole<br />

magnetosphere<br />

– A relativistic <strong>MHD</strong> boost mechanism for relativistic jets<br />

– Stability analysis <strong>of</strong> magnetized spine-sheath relativistic jets<br />

– Particle-In-Cell (PIC) simulations <strong>of</strong> relativistic jets


1. Development <strong>of</strong> 3D GR<strong>MHD</strong><br />

Code “RAISHIN”<br />

Mizuno et al. 2006a, Astro-ph/0609004<br />

Mizuno et al. 2006, PoS, MQW6, 45


Numerical Approach to <strong>Relativistic</strong> <strong>MHD</strong><br />

• RHD: reviews Marti & Muller (2003) and Fonts (2003)<br />

• SR<strong>MHD</strong>: many authors<br />

• GR<strong>MHD</strong><br />

• Application: relativistic Riemann problems, relativistic jet propagation, jet<br />

stability, pulsar wind nebule, etc.<br />

– Fixed spacetime (Koide, Shibata & Kudoh 1998; De Villiers &<br />

Hawley 2003; Gammie, McKinney & Toth 2003; Komissarov 2004;<br />

Anton et al. 2005; Annios, Fragile & Salmonson 2005; Del Zanna et al.<br />

2007, Tchekhovskoy et al. 2008)<br />

• Application: The structure <strong>of</strong> accretion flows onto black hole and/or formation<br />

<strong>of</strong> jets, BZ process near rotating black hole, the formation <strong>of</strong> GRB jets in<br />

collapsars etc.<br />

– Dynamical spacetime (Duez et al. 2005; Shibata & Sekiguchi 2005;<br />

Anderson et al. 2006; Giacomazzo & Rezzolla 2007, Cedra-Duran et al.<br />

2008)


Propose to Make a New GR<strong>MHD</strong> Code<br />

• The Koide’s GR<strong>MHD</strong> Code (Koide, Shibata & Kudoh 1999;<br />

Koide 2003) has been applied to many high-energy<br />

astrophysical phenomena and showed pioneering results.<br />

• However, the code can not perform calculation in highly<br />

relativistic (γ>5) or highly magnetized regimes.<br />

• The critical problem <strong>of</strong> the Koide’s GR<strong>MHD</strong> code is the<br />

schemes can not guarantee to maintain divergence free<br />

magnetic field.<br />

• In order to improve these numerical difficulties, we have<br />

developed a new 3D GR<strong>MHD</strong> code RAISHIN (RelAtIviStic<br />

magnetoHydrodynamc sImulatioN, RAISHIN is the Japanese<br />

ancient god <strong>of</strong> lightning).


4D General <strong>Relativistic</strong> <strong>MHD</strong> Equation<br />

• General relativistic equation <strong>of</strong> conservation laws and Maxwell equations:<br />

∇ ν ( ρ U ν ) = 0 (conservation law <strong>of</strong> particle-number)<br />

∇ ν T µν = 0 (conservation law <strong>of</strong> energy-momentum)<br />

∂ µ F νλ + ∂ ν F λµ + ∂ λ F µν = 0<br />

∇ µ F µν = - J ν<br />

• Ideal <strong>MHD</strong> condition: F νµ U ν = 0<br />

• metric: ds 2 =g µν dx µ dx ν<br />

• Equation <strong>of</strong> state : p=(Γ-1) u<br />

ρ : rest-mass density. p : proper gas pressure. u: internal energy. c: speed <strong>of</strong> light.<br />

h : specific enthalpy, h =1 + u + p / ρ.<br />

Γ: specific heat ratio.<br />

U µυ : velocity four vector. J µυ : current density four vector.<br />

∇ µν : covariant derivative. g µν : 4-metric,<br />

(Maxwell equations)<br />

T µν : energy momentum tensor, T µν = ρ h U µ U ν +pg µν +F µσ F ν<br />

σ -g µνF λκ F λκ/4.<br />

F µν : field-strength tensor,


Metric:<br />

Conservative Form <strong>of</strong> GR<strong>MHD</strong><br />

Equations (3+1 Form)<br />

U (conserved variables) F i (numerical flux) S (source term)<br />

α: lapse function,<br />

β i : shift vector,<br />

γ ij: 3-metric<br />

(Particle number conservation)<br />

(Momentum conservation)<br />

(Energy<br />

conservation)<br />

(Induction equation)<br />

√-g : determinant <strong>of</strong> 4-metric<br />

√γ : determinant <strong>of</strong> 3-metric<br />

Detail <strong>of</strong> derivation <strong>of</strong><br />

GR<strong>MHD</strong> equations<br />

Anton et al. (2005) etc.


New 3D GR<strong>MHD</strong> Code “RAISHIN”<br />

Mizuno et al. (2006)<br />

• RAISHIN utilizes conservative, high-resolution shock<br />

capturing schemes (Godunov-type scheme) to solve the<br />

3D general relativistic <strong>MHD</strong> equations (metric is static)<br />

• Ability <strong>of</strong> RAISHIN code<br />

– Multi-dimension (1D, 2D, 3D)<br />

– Special (Minkowski spcetime) and General relativity (static metric;<br />

Schwarzschild or Kerr spacetime)<br />

– Different coordinates (R<strong>MHD</strong>: Cartesian, Cylindrical,<br />

Spherical and GR<strong>MHD</strong>: Boyer-Lindquist <strong>of</strong> non-rotating or<br />

rotating BH)<br />

– Use several numerical methods to solving each problem<br />

– Maintain divergence-free magnetic field by numerically<br />

– Use constant Gamma-law or variable equation <strong>of</strong> states<br />

– Parallelized by Open MP


Detailed Features <strong>of</strong> the Numerical<br />

Schemes<br />

Mizuno et al. 2006a, astro-ph/0609004<br />

• RAISHIN utilizes conservative, high-resolution shock<br />

capturing schemes (Godunov-type scheme) to solve the<br />

3D GR<strong>MHD</strong> equations (metric is static)<br />

* Reconstruction: PLM (Minmod & MC slope-limiter function),<br />

convex ENO, PPM<br />

* Riemann solver: HLL, HLLC approximate Riemann solver<br />

* Constrained Transport: Flux interpolated constrained transport<br />

scheme<br />

* Time evolution: Multi-step Runge-Kutta method (2nd & 3rd-order)<br />

* Recovery step: Koide 2 variable method, Noble 2 variable method,<br />

Mignore-McKinney 1 variable method


<strong>Relativistic</strong> <strong>MHD</strong> Shock-Tube Tests<br />

Exact solution: Giacomazzo & Rezzolla (2006)


<strong>Relativistic</strong> <strong>MHD</strong> Shock-Tube Tests<br />

Balsara Test1 (Balsara 2001)<br />

FR<br />

CD<br />

Black: exact solution, Blue: MC-limiter,<br />

Light blue: minmod-limiter, Orange: CENO,<br />

red: PPM<br />

400 computational zones<br />

SR<br />

SS<br />

FR<br />

• The results show good<br />

agreement <strong>of</strong> the exact solution<br />

calculated by Giacommazo &<br />

Rezzolla (2006).<br />

• Minmod slope-limiter and<br />

CENO reconstructions are more<br />

diffusive than the MC slopelimiter<br />

and PPM reconstructions.<br />

• Although MC slope limiter and<br />

PPM reconstructions can resolve<br />

the discontinuities sharply, some<br />

small oscillations are seen at the<br />

discontinuities.


<strong>Relativistic</strong> <strong>MHD</strong> Shock-Tube Tests<br />

KO MC Min CENO PPM<br />

• Komissarov: Shock Tube Test1 △ ○ ○ ○ ○ (large P)<br />

• Komissarov: Collision Test × ○ ○ ○ ○ (large γ)<br />

• Balsara Test1(Brio & Wu) ○ ○ ○ ○ ○<br />

• Balsara Test2 × ○ ○ ○ ○ (large P & B)<br />

• Balsara Test3 × ○ ○ ○ ○ (large γ)<br />

• Balsara Test4 × ○ ○ ○ ○ (large P & B)<br />

• Balsara Test5 ○ ○ ○ ○ ○<br />

• Generic Alfven Test ○ ○ ○ ○ ○


2. 2D GR<strong>MHD</strong> Simulation <strong>of</strong> Jet<br />

Formation<br />

Mizuno et al. 2006b, Astro-ph/0609344<br />

Hardee, Mizuno, & Nishikawa 2007, ApSS, 311, 281<br />

Wu et al. 2008, CJAA, submitted


2D GR<strong>MHD</strong> Simulation <strong>of</strong> Jet Formation<br />

Initial condition<br />

– Geometrically thin Keplerian<br />

disk (ρ d /ρ c =100) rotates<br />

around a black hole (a=0.0,<br />

0.95)<br />

– The back ground corona is<br />

free-falling to a black hole<br />

(Bondi solution)<br />

– The global vertical magnetic<br />

field (Wald solution)<br />

Numerical Region and Mesh<br />

points<br />

– 1.1(0.75) r S < r < 20 r S , 0.03<<br />

θ < π/2, with 128*128 mesh<br />

points<br />

Schematic picture <strong>of</strong> the jet formation near<br />

a black hole


Time evolution (Density)<br />

non-rotating BH case (B 0=0.05,a=0.0)<br />

Parameter<br />

B 0=0.05<br />

a=0.0<br />

Color: density<br />

White lines: magnetic<br />

field lines (contour <strong>of</strong><br />

poloidal vector<br />

potential)<br />

Arrows: poloidal<br />

velocity


Time evolution (Density)<br />

rotating BH case (B 0=0.05,a=0.95)<br />

Parameter<br />

B 0=0.05<br />

a=0.95<br />

Color: density<br />

White lines: magnetic<br />

field lines (contour <strong>of</strong><br />

poloidal vector<br />

potential)<br />

Arrows: poloidal<br />

velocity


Non-rotating BH Fast-rotating BH<br />

ρρρρ<br />

ββββ<br />

v tot<br />

Bφ<br />

Results<br />

• The matter in the disk loses its angular<br />

momentum by magnetic field and falls to a black<br />

hole.<br />

• A centrifugal barrier decelerates the falling<br />

matter and make a shock around r=2rS.<br />

• The matter near the shock region is accelerated<br />

by the J×B force and the gas pressure gradient<br />

and forms jets.<br />

• These results are similar to previous work<br />

(Koide et al. 2000, Nishikawa et al. 2005).<br />

• In the rotating black hole case, additional inner<br />

jets form by the magnetic field twisted resulting<br />

from frame-dragging effect.<br />

White curves: magnetic field lines (density), toroidal<br />

magnetic field (plasma beta)<br />

vector: poloidal velocity


Results (Jet Properties)<br />

Non-rotating BH<br />

Fast-rotating BH<br />

W EM : Lorentz force<br />

W gp : gas pressure gradient<br />

• Outer jet: toroidal velocity<br />

is dominant. The magnetic<br />

field is twisted by rotation <strong>of</strong><br />

Keplerian disk. It is<br />

accelerated mainly by the<br />

gas pressure gradient (inner<br />

part <strong>of</strong> it may be accelerated<br />

by the Lorentz force).<br />

• Inner jet: toroidal velocity<br />

is dominant (larger than<br />

outer jet). The magnetic field<br />

is twisted by the framedragging<br />

effect. It is<br />

accelerated mainly by the<br />

Lorentz force


<strong>Relativistic</strong> Radiation Transfer<br />

• We have calculated the thermal free-free<br />

emission and thermal synchrotron emission<br />

from a relativistic flows in black hole<br />

systems based on the results <strong>of</strong> our 2D<br />

GR<strong>MHD</strong> simulations (rotating BH cases).<br />

• We consider a general relativistic radiation<br />

transfer formulation (Fuerst & Wu 2004,<br />

A&A, 424, 733) and solve the transfer<br />

equation using a ray-tracing algorithm.<br />

• In this algorithm, we treat general<br />

relativistic effect (light bending, gravitational<br />

lensing, gravitational redshift, framedragging<br />

effect etc.).<br />

α<br />

u em<br />

Wu et al., 2008, CJAA, submitted<br />

Image <strong>of</strong> Emission, absorption &<br />

scattering<br />

Accretion Disk<br />

Distribution <strong>of</strong> Absorbing Clouds<br />

Black Hole<br />

α<br />

ucl α<br />

uab u p α<br />

Photon<br />

Observer


Radiation images <strong>of</strong> black hole-disk system<br />

• We have calculated the thermal freefree<br />

emission and thermal synchrotron<br />

emission from a relativistic flows in<br />

black hole systems (2D GR<strong>MHD</strong><br />

simulation, rotating BH cases).<br />

• We consider a GR radiation transfer<br />

formulation and solve the transfer<br />

equation using a ray-tracing algorithm.<br />

• The radiation image shows the front<br />

side <strong>of</strong> the accretion disk and the other<br />

side <strong>of</strong> the disk at the top and bottom<br />

regions because the GR effects.<br />

• We can see the formation <strong>of</strong> twocomponent<br />

jet based on synchrotron<br />

emission and the strong thermal<br />

radiation from hot dense gas near the<br />

BHs.<br />

Radiation image seen from<br />

θ=85 (optically thin)<br />

Radiation image seen from<br />

θ=45 (optically thick)<br />

Radiation image seen from<br />

θ=85 (optically thick)


3. Stability Analysis <strong>of</strong> Magnetized<br />

Spine-Sheath <strong>Relativistic</strong> <strong>Jets</strong><br />

Mizuno, Hardee & Nishikawa, 2007, ApJ, 662, 835<br />

Hardee, 2007, ApJ, 664, 26<br />

Hardee, Mizuno & Nishikawa, 2007, ApSS, 311, 281


Instability <strong>of</strong> <strong>Relativistic</strong> <strong>Jets</strong><br />

•When jets propagate outward, there are possibility to grow <strong>of</strong> two<br />

major instabilities<br />

• Kelvin-Helmholtz (KH) instability<br />

• Important at the shearing boundary flowing jet and external medium<br />

• Current-Driven (CD) instability<br />

• Important in twisted magnetic field<br />

• Interaction <strong>of</strong> jets with external<br />

medium caused by such<br />

instabilities leads to the formation<br />

<strong>of</strong> shocks, turbulence, acceleration<br />

<strong>of</strong> charged particles etc.<br />

• Used to interpret many jet<br />

phenomena<br />

– quasi-periodic wiggles and knots,<br />

filaments, limb brightening, jet<br />

disruption etc<br />

Limb brightening <strong>of</strong> M87 jets (observation)


Spine-Sheath <strong>Relativistic</strong> <strong>Jets</strong><br />

(observations)<br />

M87 Jet: Spine-Sheath (two-component) Configuration?<br />

HST Optical Image (Biretta, Sparks, & Macchetto 1999)<br />

Typical Proper<br />

Motions > c<br />

Optical ~ inside<br />

radio emission<br />

Jet Spine ?<br />

VLA Radio Image (Biretta, Zhou, & Owen 1995)<br />

Typical Proper<br />

Motions < c<br />

Radio ~ outside<br />

optical emission<br />

Sheath wind ?<br />

• Observations <strong>of</strong> QSOs show the evidence <strong>of</strong> high speed wind (~0.1-0.4c)(Pounds et<br />

al. 2003):<br />

•Related to Sheath wind<br />

• Spine-sheath configuration proposed to explain<br />

•limb brightening in M87, Mrk501jets (Perlman et al. 2001; Giroletti et al. 2004)<br />

•TeV emission in M87 (Taveccio & Ghisellini 2008)<br />

•broadband emission in PKS 1127-145 jet (Siemiginowska et al. 2007)


Spine-Sheath <strong>Relativistic</strong> <strong>Jets</strong><br />

• In many GR<strong>MHD</strong> simulation<br />

<strong>of</strong> jet formation (e.g., Hawley &<br />

Krolik 2006, McKinney 2006, Hardee<br />

et al. 2007), suggest that<br />

• a jet spine driven by the<br />

magnetic fields threading<br />

the ergosphere<br />

• may be surrounded by a<br />

broad sheath wind driven<br />

by the magnetic fields<br />

anchored in the accretion<br />

disk.<br />

(GR<strong>MHD</strong> <strong>Simulations</strong>)<br />

Non-rotating BH Fast-rotating BH<br />

Disk Jet/Wind<br />

BH Jet Disk Jet/Wind<br />

Total velocity distribution <strong>of</strong> 2D GR<strong>MHD</strong><br />

Simulation <strong>of</strong> jet formation<br />

(Hardee, Mizuno & Nishikawa 2007)


Key Questions <strong>of</strong> Jet Stability<br />

• When jets propagate outward, there are possibility to<br />

grow <strong>of</strong> two instabilities<br />

– Kelvin-Helmholtz (KH) instability<br />

– Current-Driven (CD) instability<br />

• How do jets remain sufficiently stable?<br />

• What are the Effects & Structure <strong>of</strong> KH / CD<br />

Instability in particular jet configuration (such as<br />

spine-sheath configuration)?<br />

• We investigate these topics by using 3D relativistic<br />

<strong>MHD</strong> simulations


3D <strong>Simulations</strong> <strong>of</strong> Spine-Sheath Jet Stability<br />

Initial condition<br />

Mizuno, Hardee & Nishikawa, 2007<br />

• Cylindrical super-Alfvenic<br />

jet established across the<br />

computational domain with a<br />

parallel magnetic field (stable<br />

against CD instabilities)<br />

• Solving 3D R<strong>MHD</strong> equations in Cartesian coordinates<br />

(using Minkowski spacetime)<br />

• Jet (spine): ujet = 0.916 c (γj =2.5), ρjet = 2 ρext (dense, cold jet)<br />

• External medium (sheath): uext = 0 (static), 0.5c (sheath wind)<br />

• Jet spine precessed to break the symmetry (frequency, ω=0.93)<br />

• RHD: weakly magnetized (sound velocity > Alfven velocity)<br />

• R<strong>MHD</strong>: strongly magnetized (sound velocity < Alfven velocity)<br />

• Numerical box and computational zones<br />

• -3 rj < x,y< 3rj , 0 rj < z < 60 rj (Cartesian coordinates) with 60*60*600 zones,<br />

(1rj =10 zones)<br />

Previous works: jet propagation simulation <strong>of</strong> Spine-Sheath jet model<br />

(e.g., Sol et al. 1989; Hardee & Rosen 2002)


Simulation results: global structure<br />

(nowind, weakly magnetized case)<br />

3D isovolume <strong>of</strong> density with B-field lines show the jet is<br />

disrupted by the growing KH instability<br />

y<br />

Longitudinal cross section<br />

z<br />

y<br />

Transverse cross section show the strong<br />

interaction between jet and external medium<br />

x


Effect <strong>of</strong> magnetic field and sheath wind<br />

vw =0.0 vw =0.5c vw =0.0<br />

vw =0.5c<br />

• Previous works: Study the effect <strong>of</strong> sheath wind on KH modes for non-rel HD<br />

R<strong>MHD</strong> and RHD simulations (Hanasaz & Sol 1996, 1998; Hardee & Rosen 2002)<br />

•The sheath flow reduces the growth rate <strong>of</strong> KH modes and slightly increases the<br />

wave speed and wavelength as predicted from linear stability analysis.<br />

•The magnetized sheath reduces growth rate relative to the weakly magnetized case<br />

•The magnetized sheath flow damped growth <strong>of</strong> KH modes.<br />

Criterion for damped KH modes:<br />

(linear stability analysis)<br />

1D radial velocity pr<strong>of</strong>ile along jet


4. <strong>MHD</strong> Boost mechanism <strong>of</strong><br />

<strong>Relativistic</strong> <strong>Jets</strong><br />

Mizuno, Hardee, Hartmann, Nishikawa & Zhang, 2008,<br />

ApJ, 672, 72


A <strong>MHD</strong> boost for relativistic jets<br />

• The acceleration mechanism boosting<br />

relativistic jets to highly-relativistic<br />

speed is not fully known.<br />

• Recently Aloy & Rezzolla (2006) have<br />

proposed a powerful hydrodynamical<br />

acceleration mechanism <strong>of</strong> relativistic<br />

jets by the motion <strong>of</strong> two fluid between<br />

jets and external<br />

– If the jet is hotter and at much higher<br />

pressure than a denser, colder external<br />

medium, and moves with a large velocity<br />

tangent to the interface, the relative motion<br />

<strong>of</strong> the two fluids produces a hydrodynamical<br />

structure in the direction perpendicular to the<br />

flow.<br />

– The rarefaction wave propagates into the jet<br />

and the low pressure wave leads to strong<br />

acceleration <strong>of</strong> the jet fluid into the<br />

ultrarelativistic regime in a narrow region<br />

near the contact discontinuity.<br />

Schematic picture <strong>of</strong> simulations


Motivation<br />

• This hydrodynamical boosting mechanism is<br />

very simple and powerful.<br />

• But it is likely to be modified by the effects <strong>of</strong><br />

magnetic fields present in the initial flow, or<br />

generated within the shocked outflow.<br />

• We investigate the effect <strong>of</strong> magnetic fields on<br />

the boost mechanism by using <strong>Relativistic</strong><br />

<strong>MHD</strong> simulations.


Initial Condition (1D R<strong>MHD</strong>)<br />

• Consider a Riemann problem consisting <strong>of</strong> two uniform initial states<br />

• Right (external medium): colder fluid with larger rest-mass density and<br />

essentially at rest.<br />

• Left (jet): lower density, higher temperature and pressure, relativistic velocity<br />

tangent to the discontinuity surface<br />

• To investigate the effect <strong>of</strong> magnetic fields, put the poloidal (Bz: <strong>MHD</strong>A) or<br />

toroidal (By: <strong>MHD</strong>B) components <strong>of</strong> magnetic field in the jet region (left state).<br />

• For comparison, HDB case is a high gas pressure, pure-hydro case (gas<br />

pressure = total pressure <strong>of</strong> <strong>MHD</strong> case)<br />

Simulation region<br />

-0.2 < x < 0.2 with 6400 grid<br />

Schematic picture <strong>of</strong> simulations


Hydro Case<br />

Solid line (exact solution), Dashed line (simulation)<br />

In the left going rarefaction region,<br />

the tangential velocity increases<br />

due to the hydrodynamic boost<br />

mechanism.<br />

jet is accelerated to γ~12 from an<br />

initial Lorentz factor <strong>of</strong> γ~7.


<strong>MHD</strong> Case<br />

HDA case (pure hydro) :<br />

dotted line<br />

<strong>MHD</strong>A case (poloidal)<br />

<strong>MHD</strong>B case (toroidal)<br />

HDB case (hydro, high-p)<br />

• When gas pressure becomes large, the normal velocity<br />

increases and the jet is more efficiently accelerated.<br />

• When a poloidal magnetic field is present, stronger<br />

sideways expansion is produced, and the jet can achieve<br />

higher speed due to the contribution from the normal<br />

velocity.<br />

• When a toroidal magnetic field is present, although the<br />

shock pr<strong>of</strong>ile is only changed slightly, the jet is more<br />

strongly accelerated in the tangential direction due to the<br />

Lorentz force.<br />

• The geometry <strong>of</strong> the magnetic field is a very important<br />

geometric parameter.


Dependence on Magnetic Field Strength<br />

Solid line: exact solution, Crosses: simulation<br />

Magnetic field strength is measured in fluid flame<br />

poloidal<br />

toroidal<br />

• When the poloidal magnetic field<br />

increases, the normal velocity<br />

increases and the tangential velocity<br />

decreases.<br />

• When the toroidal magnetic field<br />

increases, the normal velocity<br />

decreases and the tangential velocity<br />

increases.<br />

• In both <strong>of</strong> cases, when the magnetic<br />

field strength increases, maximum<br />

Lorentz factor also increases.<br />

• Toroidal magnetic field provides the<br />

most efficient acceleration.


Multi-dimensional <strong>Simulations</strong><br />

(Initial Condition)<br />

• 2D R<strong>MHD</strong> simulations <strong>of</strong> <strong>MHD</strong>A case (poloidal field).<br />

• Pre-existing jet flow is established across the computational<br />

domain.<br />

• Simulation region, 0.5 < x,r < 1.5, 0 < z < 5.0 with (Nx * Nz)<br />

= (2000 * 250)<br />

• In order to investigate a possible influence <strong>of</strong> the chosen<br />

coordinate system, we perform Cartesian and cylindrical<br />

coordinates.


Multi-dimensional Simulation<br />

(Results)<br />

• A thin surface is accelerated by<br />

the <strong>MHD</strong> boost mechanism to<br />

reach a maximum Lorentz factor<br />

g~15 from an initial Lorentz factor<br />

g~7.<br />

• The jet in cylindrical coordinates<br />

is slightly more accelerated than<br />

the jet in Cartesian coordinates,<br />

which suggests that different<br />

coordinate systems can affect<br />

sideways expansion, shock pr<strong>of</strong>ile,<br />

and acceleration (slightly).<br />

• The field geometry is an<br />

important factor.


Summary<br />

• We have developed a new 3D GR<strong>MHD</strong> code<br />

``RAISHIN’’by using a conservative, high-resolution<br />

shock-capturing scheme.<br />

• We have performed simulations <strong>of</strong> jet formation from a<br />

geometrically thin accretion disk near both non-rotating<br />

and rotating black holes. Similar to previous results (Koide<br />

et al. 2000, Nishikawa et al. 2005a) we find magnetically<br />

driven jets.<br />

• It appears that the rotating black hole creates a second,<br />

faster, and more collimated inner outflow. Thus, kinematic<br />

jet structure could be a sensitive function <strong>of</strong> the black hole<br />

spin parameter.


Summary (cont.)<br />

•We have investigated stability properties <strong>of</strong> magnetized<br />

spine-sheath relativistic jets by the theoretical work and<br />

3D R<strong>MHD</strong> simulations.<br />

• The most important result is that destructive KH modes<br />

can be stabilized even when the jet Lorentz factor<br />

exceeds the Alfven Lorentz factor. Even in the absence <strong>of</strong><br />

stabilization, spatial growth <strong>of</strong> destructive KH modes can<br />

be reduced by the presence <strong>of</strong> magnetically sheath flow<br />

(~0.5c) around a relativistic jet spine (>0.9c)


Summary (cont.)<br />

• We performed relativistic magnetohydrodynamic<br />

simulations <strong>of</strong> the hydrodynamic boosting mechanism<br />

for relativistic jets explored by Aloy & Rezzolla (2006)<br />

using the RAISHIN code.<br />

•We find that magnetic fields can lead to more efficient<br />

acceleration <strong>of</strong> the jet, in comparison to the purehydrodynamic<br />

case.<br />

• The presence and relative orientation <strong>of</strong> a magnetic<br />

field in relativistic jets can significant modify the<br />

hydrodynamic boost mechanism studied by Aloy &<br />

Rezzolla (2006).


Future Work<br />

• Code Development<br />

– Kerr-Schild Coordinates: long-term simulation in GR<strong>MHD</strong><br />

– Resistivity: extension to non-ideal <strong>MHD</strong>; (e.g., Watanabe &<br />

Yokoyama 2007; Komissarov 2007)<br />

– Couple with radiation transfer: link to observation<br />

• Research <strong>of</strong> Jet Formation and Propagation<br />

– Dependence on Magnetic field structure, BH spin parameter,<br />

disk structure and perturbation etc.<br />

• Research <strong>of</strong> Jet Stability<br />

– Dependence on EoS<br />

– Current-Driven instability<br />

• Apply to astrophysical phenomena in which relativistic<br />

outflows and/or GR essential (AGNs, microquasars,<br />

neutron stars, and GRBs etc.)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!