20.07.2013 Views

Exchangeable Sequences, Laws of Large Numbers, and the ...

Exchangeable Sequences, Laws of Large Numbers, and the ...

Exchangeable Sequences, Laws of Large Numbers, and the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Exchangeable</strong> <strong>Sequences</strong>,<br />

<strong>Laws</strong> <strong>of</strong> <strong>Large</strong> <strong>Numbers</strong>,<br />

<strong>and</strong> <strong>the</strong> Mortgage Crisis.<br />

Myung Joo Song<br />

Advisor: Pr<strong>of</strong>. Jan M<strong>and</strong>el<br />

May 1 2009


Introduction<br />

The law <strong>of</strong> large numbers for i.i.d. sequence gives convergence<br />

<strong>of</strong> sample means to a constant, i.e., a deterministic quantity.<br />

The yield from a mortgage can be understood as a r<strong>and</strong>om variable.<br />

If a bank can make a large number <strong>of</strong> mortgages such <strong>the</strong>ir yields<br />

are i.i.d., <strong>the</strong> average yield will converge to a deterministic quantity.<br />

But events that appear to be independent may in fact be only exchangeable.<br />

In a real financial market, <strong>the</strong>re is always a fundamental factor which<br />

can affect all <strong>the</strong> events at <strong>the</strong> same time, such as a war, or an economic<br />

crisis which ruins <strong>the</strong> assumption <strong>of</strong> independence.


Independence <strong>of</strong> r<strong>and</strong>om variables<br />

Definition:<br />

( Ω Y P)<br />

Let , , be a probability space. Then, <strong>the</strong> function<br />

X : Ω → ℜ is a (real - valued) r<strong>and</strong>om variable if<br />

( )<br />

{ ω ω }<br />

: X ≤ r ∈Y ∀r ∈ℜ.<br />

Two r<strong>and</strong>om variables X <strong>and</strong> Y are independent iff<br />

( ) ( ) ( )<br />

( XY ) = X ⋅ Y<br />

P X ≤ a, Y ≤ b = P X ≤ a ⋅P Y ≤ b ∀a,<br />

b<br />

{ } { } { }<br />

<strong>the</strong>n also, E E E<br />

( X Y )<br />

note: independent ⇒ uncorrelated (cov , =<br />

0)<br />

but <strong>the</strong> converse is not true.


<strong>Laws</strong> <strong>of</strong> <strong>Large</strong> <strong>Numbers</strong><br />

Weak Law <strong>of</strong> <strong>Large</strong> <strong>Numbers</strong>:<br />

( 1 2 L)<br />

( ) µ µ<br />

Given X , X , an infinite sequence <strong>of</strong> i. i. d.<br />

r.v.s with<br />

E X = < ∞ , ∀ i ∈ Ν ,<br />

i<br />

1<br />

P<br />

X n = ( X 1 + L<br />

+ X n ) → µ as n → ∞<br />

n<br />

( )<br />

n<br />

That is, lim P X − µ < ε = 1 for any ε .<br />

n→∞


<strong>Laws</strong> <strong>of</strong> <strong>Large</strong> <strong>Numbers</strong><br />

Strong Law <strong>of</strong> <strong>Large</strong> <strong>Numbers</strong>:<br />

( 1 2 L)<br />

( ) µ µ<br />

Given X , X , an infinite sequence <strong>of</strong> i. i. d.<br />

r.v.s with<br />

E X = < ∞ , ∀ i ∈ Ν ,<br />

i<br />

1<br />

a. s.<br />

X n = ( X 1 + L<br />

+ X n ) → µ as n → ∞<br />

n<br />

( ) n µ<br />

That is, P lim X = = 1.<br />

n→∞


Exchangeability<br />

Definition:<br />

An infinite sequence <strong>of</strong> X , L , X , L <strong>of</strong> r<strong>and</strong>om<br />

variables is said to be exchangeable if ∀ n ≥ 2,<br />

D<br />

( ) ( )<br />

1 L n (1) L ( n )<br />

X , , X = X , , X ∀ ∈ S ( n),<br />

1<br />

π π π<br />

n<br />

{ L<br />

}<br />

where S ( n) is <strong>the</strong> group <strong>of</strong> permutations <strong>of</strong> 1, , n .


Exchangeability<br />

Example: Polya’s urn<br />

An urn has initially r red <strong>and</strong> b black balls. Draw a ball at r<strong>and</strong>om <strong>and</strong> note<br />

its color, <strong>and</strong> replace <strong>the</strong> ball back <strong>and</strong> add ano<strong>the</strong>r ball <strong>of</strong> <strong>the</strong> same color.<br />

th<br />

Let X =1 if <strong>the</strong> i draw yields a red ball <strong>and</strong> X =0 o<strong>the</strong>rwise.<br />

i<br />

Then,<br />

r r + 1 b r + 2<br />

P(<br />

1,1,0,1 ) = ⋅ ⋅ ⋅<br />

b + r b + r + 1 b + r + 2 b + r + 3<br />

r b r + 1 r + 2<br />

= ⋅ ⋅ ⋅ = P<br />

b + r b + r + 1 b + r + 2 b + r + 3<br />

Similarly for o<strong>the</strong>r cases.<br />

The sequence X , L, X , L<br />

is exchangeable.<br />

1<br />

n<br />

i<br />

( )<br />

1,0,1,1 .


Conditional Expectation<br />

( )<br />

{ ω : ω }<br />

( Ω )<br />

Let X be r.v. on probability space , S, P . Given ano<strong>the</strong>r<br />

σ -algebra Y ⊂ S, a r.v. Y is called conditional expectation<br />

<strong>of</strong> X given Y Y if Y is Y<br />

Y -measurable, that is,<br />

∈Ω Y ≤ a ∈Y ∀a ∈ℜ<br />

<strong>and</strong> YdP = XdP ∀A∈ .<br />

∫ ∫ Y<br />

A A<br />

( Y )<br />

( Y )<br />

In this case, denote Y = E X | .<br />

Roughly speaking, E X | is averaging <strong>of</strong> X to <strong>the</strong> granularity<br />

<strong>of</strong> Y Y (if YY<br />

Y is finite, averaging on <strong>the</strong> atoms<br />

<strong>of</strong> Y<br />

).


LLN for exchangeable sequences<br />

( ) n≥0<br />

( P)<br />

( )<br />

n σ Ω n ⊂ n+<br />

1<br />

Let Y be a sequence <strong>of</strong> -algebras on , Y Y , . Y Y Y<br />

Y<br />

∀n ≥ 0. Then, a sequence <strong>of</strong> r.v.s X is called a martingale if,<br />

{ n }<br />

( i) E X < ∞,<br />

each n;<br />

( ii) X is Y -measurable, each n;<br />

n n<br />

{ Y }<br />

n n≥0<br />

( iii )E X | Y = X a . s ., each m ≤ n .<br />

n m m<br />

Martingale Convergence Theorem:<br />

( X n ) { X n }<br />

Let be a martingale s.t. sup E < ∞.<br />

n≥1<br />

n<br />

1<br />

Then lim X n =<br />

X exists a. s. ( <strong>and</strong> is finite a. s.). Moreover, X is in L .<br />

n→∞


LLN for exchangeable sequences<br />

Recall<br />

{ }<br />

X i.i.d., Ε ⎡ X ⎤ < +∞<br />

i<br />

{ }<br />

⎣ 1 ⎦<br />

N 1<br />

⇒ ∑ X i → Ε X<br />

N<br />

Theorem:<br />

i=<br />

1<br />

[ ]<br />

X exchangeable, Ε ⎡ X ⎤ < +∞<br />

i<br />

1<br />

⇒ → Ε<br />

N<br />

1<br />

⎣ 1 ⎦<br />

a.s. , a deterministic number.<br />

N<br />

∑ X i<br />

i=<br />

1<br />

[ X1<br />

| Y Y ] a.s. , a r<strong>and</strong>om variable for some YY<br />

Y Y


LLN for exchangeable sequences<br />

pro<strong>of</strong> : Let an infinite sequence X = ( X , X , L)<br />

<strong>of</strong> r<strong>and</strong>om variables<br />

n n+<br />

1<br />

1 2<br />

be exchangeable <strong>and</strong> Let Y be <strong>the</strong> σ -algebra generated by all <strong>the</strong> n-<br />

symmetric functions <strong>of</strong> X.<br />

n<br />

Y Y ⊇ YY<br />

Y<br />

If f is a measurable function for<br />

which E ⎡⎣ X1 ⎤ ⎦ < +∞ , <strong>and</strong> if Y = g X<br />

is bounded n-symmetric r.v., <strong>the</strong>n for 1 ≤ j ≤ n ,<br />

{ f ( X ) ( ) } ( ) ( )<br />

j g X = f X1 g X j X 2 L X j− 1 X1 X j+<br />

1 L<br />

{ }<br />

E E , , , , , ,<br />

( ) ( )<br />

{ f X g X }<br />

E ,<br />

⎧ n 1 ⎫<br />

so that E ⎨ ∑ f ( X ) E { ( ) }<br />

j Y ⎬ = f X1 Y .<br />

n<br />

( continued<br />

)<br />

=<br />

⎩ j=<br />

1 ⎭<br />

1<br />

( )


LLN for exchangeable sequences<br />

pro<strong>of</strong> : ( continued )<br />

Then, take Y as <strong>the</strong> indicator <strong>of</strong> A,<br />

1 , so that<br />

1<br />

n<br />

∫ ∑ f ( X j ) dP = ∫ f ( X1 ) dP ( A∈<br />

Y n )<br />

n A j=<br />

1<br />

A<br />

Then, by <strong>the</strong> definition <strong>of</strong> conditional expectation,<br />

1<br />

n j=<br />

1<br />

( j ) = E { ( 1)<br />

| Y n}<br />

f X f X<br />

Since partial sums form a martingale, by <strong>the</strong> Martingale convergence<br />

<strong>the</strong>orem,<br />

n<br />

∑<br />

n<br />

∞<br />

1<br />

lim ∑ f ( X ) = E { f ( X1 ) | Y Y ∞} a. s.<br />

where Y Y ∞ = I Y<br />

Y .<br />

n→∞<br />

n<br />

A<br />

j n<br />

j= 1 n=<br />

1<br />

.<br />

.


De Finetti’s Theorem<br />

Definition :<br />

Let X be r.v.s <strong>and</strong> let Y be a σ -field.<br />

{ }<br />

i<br />

Say X is conditionally i . i . d . given Y if for A<br />

{ }<br />

i i<br />

P X ∈ A , 1 ≤ i ≤ n | Y = ∏ P X ∈ A | Y<br />

, <strong>and</strong><br />

( Y ) ( Y )<br />

i i i i<br />

i<br />

( ) ( )<br />

i Y Y j Y<br />

Y<br />

⊂ ℜ<br />

P X ∈ A | = P X ∈ A | a.s., for each A, i ≠ j.


De Finetti’s Theorem<br />

De Finetti's Theorem :<br />

{ X } { X }<br />

If is an exchangeable sequence <strong>the</strong>n is conditionally i.i.d.<br />

given<br />

Pro<strong>of</strong><br />

i i<br />

Y<br />

∞<br />

: By <strong>the</strong> LLN <strong>of</strong> exchangeable sequence,<br />

n<br />

∞<br />

1<br />

lim ∑ f ( X ) = E { f ( X1 ) | Y Y ∞} a. s.<br />

where Y Y ∞ = I Y<br />

Y .<br />

n→∞<br />

n<br />

j n<br />

j= 1 n=<br />

1<br />

Let f y<br />

⎧1<br />

⎩0<br />

y ≤ x<br />

y > x<br />

1<br />

n j=<br />

1<br />

f X<br />

1<br />

n<br />

j n X x<br />

n 1<br />

<strong>and</strong> lim ∑ f ( X j ) = E { f ( X1 ) | Y Y ∞} = P ( X1 ≤ x | Y<br />

Y ∞ ) = F ( x)<br />

,<br />

n→∞<br />

n<br />

n<br />

( ) = ⎨ . Then, ∑ ( j ) = # { ≤ ; j ≤ }<br />

j=<br />

1<br />

( ) { ≤ Y<br />

}<br />

where F x =P X x | is a r<strong>and</strong>om distribution function. ( cont.)<br />

1<br />


De Finetti’s Theorem<br />

Pro<strong>of</strong> : ( cont.) X , L X are i.i.d. ⇔ ∃ F distribution function s.t.<br />

1<br />

( ) ( ) ( )<br />

( X ≤ x ) = I ( X )<br />

P X ≤ x ∧L ∧ X ≤ x = F x ⋅L⋅ F x ∀x<br />

, L,<br />

x .<br />

1 1 n n 1 n 1 n<br />

{ }<br />

−∞ x<br />

Since P E ,<br />

1 1 ( , ] 1<br />

n<br />

1<br />

( ) ( 1 )<br />

= F ( x x1 ) ⋅ L ⋅ F ( x xk<br />

)<br />

( ) ( ) Y<br />

{ }<br />

k ∞<br />

P X ≤ x ∧L ∧ X ≤ x | ℑ = E I X ⋅L ⋅ I ( X ) | Y<br />

1 1 k k ∞ ( −∞, x ] 1 ( −∞,<br />

x ]<br />

∀x , L, x : ω a F ω, x ⋅L⋅ F ω, x is ∞ -measurable.<br />

1 k 1<br />

k<br />

{ { ( −∞, x ( 1]<br />

1 ) ⋅L⋅ ( −∞, x ( k ] k ) Y } ∞ } = ( 1)<br />

⋅L⋅ ( k )<br />

F ⊂ Y ∞ ( xi ) F urable ∀ i = 1,2, Lk.<br />

{ I( −∞, x ( ) ( )<br />

1]<br />

X1 ⋅L⋅ I( −∞,<br />

xk ] X k F} = ( x1 ) ⋅L⋅ ( xk<br />

)<br />

( X ≤ x ∧L ∧ X ≤ x F ) = ( x ) ⋅L⋅ ( x )<br />

k<br />

{ }<br />

E E I X I X | | F E F x F x | F<br />

where , <strong>and</strong> F is -meas<br />

Then, E | F F ,<br />

<strong>and</strong> thus, P | F F .<br />

1 1 k k 1<br />

k


Application to <strong>the</strong> mortgage mess<br />

Let a r.v. X be <strong>the</strong> pay<strong>of</strong>f from mortgage i <strong>and</strong> bank wants to spread<br />

i<br />

<strong>the</strong> risk by making a large number <strong>of</strong> such mortgages <strong>and</strong> create a mortgage<br />

pool with deterministic pay<strong>of</strong>f.<br />

However, if X are not i.i.d<br />

but only exchangeable, <strong>the</strong>re is some nontrivial<br />

i<br />

σσ -algebra Y Y Y Y that underlies <strong>the</strong>m all, i.e. X are conditionally i.i.d. on Y<br />

Y<br />

Y .<br />

Then <strong>the</strong> pay<strong>of</strong>f seems to be (asymtotically) deterministic but is actually<br />

r<strong>and</strong>om variable, Y -measurable, so its value changes depending on which<br />

set in Y , <strong>the</strong> event ω is in.<br />

Thus, <strong>the</strong>re are only exchangeable sequences in reality, <strong>the</strong>re is no such a<br />

thing as i.i.d. sequence<br />

since <strong>the</strong>re are always some underlying assumptions<br />

for which set S ∈Y we have ω ∈ S that can change .<br />

i<br />

a


References<br />

Aldous, D. (1985). Exchangeability <strong>and</strong> related topics. In: École d'Été<br />

de Probabilités de Saint-Flour XII— Hennequin P. L., ed. (1985)<br />

Berlin: Springer. 1–198. Lecture Notes in Ma<strong>the</strong>matics 1117<br />

Doob, J.L. The development <strong>of</strong> rigor in ma<strong>the</strong>matical probability (1900-<br />

1950). Amer. Math. Monthly, 103(7):586-595, 1996. Reprinted from<br />

Development <strong>of</strong> ma<strong>the</strong>matics 1900-1950, edited by J.P.Pier, pp.157-<br />

170, Birkhauser, Basel, 1994.<br />

Kingman, J.F.C. Uses <strong>of</strong> exchangeability. Ann. Probability, 6(2):183-<br />

197, 1978<br />

Jacod, J. <strong>and</strong> Protter, P. Probability essentials. Universitext. Springer-<br />

Verlag, Berlin, second edition, 2003<br />

Shiryaev, A.N. Probability, Vol 95 <strong>of</strong> Graduate Texts in Ma<strong>the</strong>matics.<br />

Springer-Verlag, New York, second edition, 1996.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!