21.07.2013 Views

Shear center in beams (Strength of Materials - II, Midterm Exam-42-7 ...

Shear center in beams (Strength of Materials - II, Midterm Exam-42-7 ...

Shear center in beams (Strength of Materials - II, Midterm Exam-42-7 ...

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

Problem :<br />

<strong>Shear</strong> <strong>center</strong> <strong>in</strong> <strong>beams</strong><br />

(<strong>Strength</strong> <strong>of</strong> <strong>Materials</strong> - <strong>II</strong>, <strong>Midterm</strong> <strong>Exam</strong>-<strong>42</strong>-7)<br />

(a) Locate the shear <strong>center</strong> S <strong>of</strong> the hat section by determ<strong>in</strong><strong>in</strong>g the eccentricity, e. (b) If a vertical<br />

shear V =10kips acts through the shear <strong>center</strong> <strong>of</strong> this hat what are the values <strong>of</strong> the shear stresses τ A<br />

and τ B at the locations and directions <strong>in</strong>dicated <strong>in</strong> Figure.<br />

Solution :<br />

The centroidal pr<strong>in</strong>cipal moment <strong>of</strong> <strong>in</strong>ertia <strong>of</strong> the beam section is<br />

µ Ã<br />

3 0.5 × 3 3 × 0.25<br />

Izz = 2× +(0.5 × 3) × 4.52 +2×<br />

12<br />

3<br />

+(3× 0.25) ×<br />

12<br />

Izz = 86. 656 <strong>in</strong> 4<br />

The first moment areas <strong>of</strong> the locations shown <strong>in</strong> figure are<br />

³<br />

(Qz) 1 =(0.5 × s1) × 6 − s1<br />

´<br />

µ<br />

2<br />

(Qz) 2 =(0.25 × s2) × 3+ 0.25<br />

<br />

+(3× 0.5) × 4.5<br />

2<br />

µ<br />

3+ 0.25<br />

!<br />

2<br />

+<br />

2<br />

0.5 × 63<br />

12<br />

Dr. M. Kemal Apalak 1


(Qz) 2 =0.781 25s2 +6. 75<br />

µ<br />

(Qz) 3 = (0.5 × 3) × (1.5) + (0.25 × 3) × 3+ 0.25<br />

<br />

+(3× 0.5) × 4.5<br />

2<br />

(Qz) 3 = 11. 344 <strong>in</strong> 3<br />

The shear stresses at these locations are<br />

µ <br />

Vy ×<br />

³<br />

³<br />

Qz Vy<br />

τ 1 =<br />

=<br />

(0.5 × s1) × 6 −<br />

t × Izz 1 0.5 × Izz<br />

s1<br />

´´<br />

2<br />

τ 1 = Vy<br />

³<br />

6 −<br />

Izz<br />

s1<br />

´<br />

s1<br />

2<br />

µ <br />

Vy × Qz Vy<br />

τ 2 =<br />

= (0.781 25s2 +6. 75)<br />

t × Izz 0.25 × Izz<br />

The moment about po<strong>in</strong>t A is<br />

the resultant forces are<br />

τ 2 = Vy<br />

Izz<br />

2<br />

(3.125s2 + 27)<br />

τ B =<br />

10 × 103<br />

(3.125 × 3 + 27)<br />

86.66<br />

τ B = 4197. 4 psi<br />

τ 3 =<br />

µ <br />

Vy × Qz<br />

t × Izz<br />

Vy<br />

= (11. 344)<br />

0.5 × Izz<br />

τ A = 22. 688 Vy<br />

τ A = 2618 psi<br />

F1 =<br />

Izz<br />

3<br />

=22. 688 ×<br />

10 × 103<br />

86.66<br />

Vy × e =6× F2 − 3 × (2 × F1)<br />

Z Z 3<br />

τ 1dA1 =<br />

A1<br />

s1=0<br />

Vy<br />

Izz<br />

³<br />

6 − s1<br />

2<br />

´<br />

s1 (0.5 × ds1)<br />

Dr. M. Kemal Apalak 2


F2 =<br />

F1 = 0.5 Vy<br />

Z 3 µ<br />

F1 = 0.5 Vy<br />

Izz<br />

s1=0<br />

Izz<br />

F1 = 11. 25 Vy<br />

6s1 − s2 1<br />

2<br />

µ<br />

3 × 9 − 27<br />

<br />

6<br />

Izz<br />

Z Z 3<br />

τ 2dA2 =<br />

A2<br />

s2=0<br />

Vy<br />

Izz<br />

<br />

ds1 =0.5 Vy<br />

Izz<br />

(3.125s2 +27)(0.25 × ds2)<br />

F2 = 0.25 Vy<br />

Z 3<br />

(3.125s2 + 27) ds2 =0.25<br />

Izz<br />

s2=0<br />

Vy<br />

µ<br />

3.125<br />

Izz 2<br />

F2 = 0.25 Vy<br />

µ <br />

3.125<br />

× 9+27× 3<br />

2<br />

Izz<br />

F2 = 23. 766 Vy<br />

Izz<br />

Vy × e = 6× 23. 766 Vy<br />

e =<br />

75. 096<br />

86.66<br />

Izz<br />

=0.866 56 <strong>in</strong><br />

µ<br />

3s 2 1 − s3 ¯3 ¯¯¯<br />

1<br />

6 0<br />

µ<br />

− 6 × 11. 25 Vy<br />

<br />

Izz<br />

s 2 2 +27s2<br />

Dr. M. Kemal Apalak 3<br />

¯3 ¯¯¯<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!