Shear center in beams (Strength of Materials - II, Midterm Exam-42-7 ...
Shear center in beams (Strength of Materials - II, Midterm Exam-42-7 ...
Shear center in beams (Strength of Materials - II, Midterm Exam-42-7 ...
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
Problem :<br />
<strong>Shear</strong> <strong>center</strong> <strong>in</strong> <strong>beams</strong><br />
(<strong>Strength</strong> <strong>of</strong> <strong>Materials</strong> - <strong>II</strong>, <strong>Midterm</strong> <strong>Exam</strong>-<strong>42</strong>-7)<br />
(a) Locate the shear <strong>center</strong> S <strong>of</strong> the hat section by determ<strong>in</strong><strong>in</strong>g the eccentricity, e. (b) If a vertical<br />
shear V =10kips acts through the shear <strong>center</strong> <strong>of</strong> this hat what are the values <strong>of</strong> the shear stresses τ A<br />
and τ B at the locations and directions <strong>in</strong>dicated <strong>in</strong> Figure.<br />
Solution :<br />
The centroidal pr<strong>in</strong>cipal moment <strong>of</strong> <strong>in</strong>ertia <strong>of</strong> the beam section is<br />
µ Ã<br />
3 0.5 × 3 3 × 0.25<br />
Izz = 2× +(0.5 × 3) × 4.52 +2×<br />
12<br />
3<br />
+(3× 0.25) ×<br />
12<br />
Izz = 86. 656 <strong>in</strong> 4<br />
The first moment areas <strong>of</strong> the locations shown <strong>in</strong> figure are<br />
³<br />
(Qz) 1 =(0.5 × s1) × 6 − s1<br />
´<br />
µ<br />
2<br />
(Qz) 2 =(0.25 × s2) × 3+ 0.25<br />
<br />
+(3× 0.5) × 4.5<br />
2<br />
µ<br />
3+ 0.25<br />
!<br />
2<br />
+<br />
2<br />
0.5 × 63<br />
12<br />
Dr. M. Kemal Apalak 1
(Qz) 2 =0.781 25s2 +6. 75<br />
µ<br />
(Qz) 3 = (0.5 × 3) × (1.5) + (0.25 × 3) × 3+ 0.25<br />
<br />
+(3× 0.5) × 4.5<br />
2<br />
(Qz) 3 = 11. 344 <strong>in</strong> 3<br />
The shear stresses at these locations are<br />
µ <br />
Vy ×<br />
³<br />
³<br />
Qz Vy<br />
τ 1 =<br />
=<br />
(0.5 × s1) × 6 −<br />
t × Izz 1 0.5 × Izz<br />
s1<br />
´´<br />
2<br />
τ 1 = Vy<br />
³<br />
6 −<br />
Izz<br />
s1<br />
´<br />
s1<br />
2<br />
µ <br />
Vy × Qz Vy<br />
τ 2 =<br />
= (0.781 25s2 +6. 75)<br />
t × Izz 0.25 × Izz<br />
The moment about po<strong>in</strong>t A is<br />
the resultant forces are<br />
τ 2 = Vy<br />
Izz<br />
2<br />
(3.125s2 + 27)<br />
τ B =<br />
10 × 103<br />
(3.125 × 3 + 27)<br />
86.66<br />
τ B = 4197. 4 psi<br />
τ 3 =<br />
µ <br />
Vy × Qz<br />
t × Izz<br />
Vy<br />
= (11. 344)<br />
0.5 × Izz<br />
τ A = 22. 688 Vy<br />
τ A = 2618 psi<br />
F1 =<br />
Izz<br />
3<br />
=22. 688 ×<br />
10 × 103<br />
86.66<br />
Vy × e =6× F2 − 3 × (2 × F1)<br />
Z Z 3<br />
τ 1dA1 =<br />
A1<br />
s1=0<br />
Vy<br />
Izz<br />
³<br />
6 − s1<br />
2<br />
´<br />
s1 (0.5 × ds1)<br />
Dr. M. Kemal Apalak 2
F2 =<br />
F1 = 0.5 Vy<br />
Z 3 µ<br />
F1 = 0.5 Vy<br />
Izz<br />
s1=0<br />
Izz<br />
F1 = 11. 25 Vy<br />
6s1 − s2 1<br />
2<br />
µ<br />
3 × 9 − 27<br />
<br />
6<br />
Izz<br />
Z Z 3<br />
τ 2dA2 =<br />
A2<br />
s2=0<br />
Vy<br />
Izz<br />
<br />
ds1 =0.5 Vy<br />
Izz<br />
(3.125s2 +27)(0.25 × ds2)<br />
F2 = 0.25 Vy<br />
Z 3<br />
(3.125s2 + 27) ds2 =0.25<br />
Izz<br />
s2=0<br />
Vy<br />
µ<br />
3.125<br />
Izz 2<br />
F2 = 0.25 Vy<br />
µ <br />
3.125<br />
× 9+27× 3<br />
2<br />
Izz<br />
F2 = 23. 766 Vy<br />
Izz<br />
Vy × e = 6× 23. 766 Vy<br />
e =<br />
75. 096<br />
86.66<br />
Izz<br />
=0.866 56 <strong>in</strong><br />
µ<br />
3s 2 1 − s3 ¯3 ¯¯¯<br />
1<br />
6 0<br />
µ<br />
− 6 × 11. 25 Vy<br />
<br />
Izz<br />
s 2 2 +27s2<br />
Dr. M. Kemal Apalak 3<br />
¯3 ¯¯¯<br />
0