Multi-dimensional stress and strain relations (Strength of Materials - I ...
Multi-dimensional stress and strain relations (Strength of Materials - I ...
Multi-dimensional stress and strain relations (Strength of Materials - I ...
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
Problem :<br />
<strong>Multi</strong>-<strong>dimensional</strong> <strong>stress</strong> <strong>and</strong> <strong>strain</strong> <strong>relations</strong><br />
(<strong>Strength</strong> <strong>of</strong> <strong>Materials</strong> - I, Final Exam-41-4)<br />
1. A differential element on the side <strong>of</strong> a large steel pressure vessel<br />
A 20-mm square was scribed on the side <strong>of</strong> a large steel pressure vessel. After pressurization, the<br />
biaxial <strong>stress</strong> condition <strong>of</strong> the square is as shown. Using the data available E = 200 GPa <strong>and</strong> υ =0.29,<br />
for structural steel, determine the change in length <strong>of</strong> (a) side AB, (b) side BC, (c) diagonal AC, (d)<br />
the percent change in the slope <strong>of</strong> diagonal DB, (e) if the plate thickness is 5 mm the new volume <strong>of</strong><br />
this plate portion <strong>and</strong> the material dilatation.<br />
Solution :<br />
The normal <strong>strain</strong>s (σzz =0, plane <strong>stress</strong>)<br />
εxx = 1<br />
E (σxx − υ (σyy + σzz))<br />
εxx =<br />
a)thechangeinlength<strong>of</strong>sideAB<br />
1<br />
εxx =<br />
(160 − 0.29 (80 + 0))<br />
200 × 103 6. 84 × 10 −4<br />
εyy = 1<br />
E (σyy − υ (σxx + σzz))<br />
εyy =<br />
1<br />
(80 − 0.29 (160 + 0))<br />
200 × 103 εyy = 1. 68 × 10 −4<br />
εzz = 1<br />
E (σzz − υ (σxx + σyy))<br />
εzz =<br />
1<br />
(0 − 0.29 (80 + 160))<br />
200 × 103 εzz = −3. 48 × 10 −4<br />
∆εAB = εxx × AB =6. 84 × 10 −4 × 20<br />
∆εAB<br />
b) the change in length <strong>of</strong> side BC<br />
= 0.013 68 mm<br />
∆εBC = εyy × BC =1. 68 × 10 −4 × 20<br />
∆εBC = 0.003 36 mm<br />
c) the change in length <strong>of</strong> diagonal AC<br />
q<br />
∆εAC = (20 + 0.013 68) 2 +(20+0.003 36) 2 − 20 √ 2<br />
∆εAC = 0.012 05 mm<br />
Dr. M. Kemal Apalak 1
d) the percent change in the slope <strong>of</strong> diagonal DB<br />
tan θDB = 20<br />
20 , θDB =45 ◦<br />
tan θ 0<br />
DB =<br />
20 + 0.003 36<br />
20 + 0.013 68<br />
∆θDB =<br />
44.985 − 45<br />
× 100<br />
45<br />
∆θDB<br />
e) the dilatation <strong>of</strong> material<br />
= −0.033%<br />
, θ0<br />
DB =44.985 ◦<br />
e = εxx + εyy + εzz =6. 84 × 10 −4 +1. 68 × 10 −4 − 3. 48 × 10 −4<br />
e = 5. 04 × 10 −4<br />
V = 20× 20 × 5 = 2000 mm 3<br />
∆V = eV =5. 04 × 10 −4 × 2000<br />
∆V = 1. 008 mm 3<br />
V 0 = 2000 + 1. 008 = 2001.008 mm 3<br />
Dr. M. Kemal Apalak 2