21.07.2013 Views

Multi-dimensional stress and strain relations (Strength of Materials - I ...

Multi-dimensional stress and strain relations (Strength of Materials - I ...

Multi-dimensional stress and strain relations (Strength of Materials - I ...

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

Problem :<br />

<strong>Multi</strong>-<strong>dimensional</strong> <strong>stress</strong> <strong>and</strong> <strong>strain</strong> <strong>relations</strong><br />

(<strong>Strength</strong> <strong>of</strong> <strong>Materials</strong> - I, Final Exam-41-4)<br />

1. A differential element on the side <strong>of</strong> a large steel pressure vessel<br />

A 20-mm square was scribed on the side <strong>of</strong> a large steel pressure vessel. After pressurization, the<br />

biaxial <strong>stress</strong> condition <strong>of</strong> the square is as shown. Using the data available E = 200 GPa <strong>and</strong> υ =0.29,<br />

for structural steel, determine the change in length <strong>of</strong> (a) side AB, (b) side BC, (c) diagonal AC, (d)<br />

the percent change in the slope <strong>of</strong> diagonal DB, (e) if the plate thickness is 5 mm the new volume <strong>of</strong><br />

this plate portion <strong>and</strong> the material dilatation.<br />

Solution :<br />

The normal <strong>strain</strong>s (σzz =0, plane <strong>stress</strong>)<br />

εxx = 1<br />

E (σxx − υ (σyy + σzz))<br />

εxx =<br />

a)thechangeinlength<strong>of</strong>sideAB<br />

1<br />

εxx =<br />

(160 − 0.29 (80 + 0))<br />

200 × 103 6. 84 × 10 −4<br />

εyy = 1<br />

E (σyy − υ (σxx + σzz))<br />

εyy =<br />

1<br />

(80 − 0.29 (160 + 0))<br />

200 × 103 εyy = 1. 68 × 10 −4<br />

εzz = 1<br />

E (σzz − υ (σxx + σyy))<br />

εzz =<br />

1<br />

(0 − 0.29 (80 + 160))<br />

200 × 103 εzz = −3. 48 × 10 −4<br />

∆εAB = εxx × AB =6. 84 × 10 −4 × 20<br />

∆εAB<br />

b) the change in length <strong>of</strong> side BC<br />

= 0.013 68 mm<br />

∆εBC = εyy × BC =1. 68 × 10 −4 × 20<br />

∆εBC = 0.003 36 mm<br />

c) the change in length <strong>of</strong> diagonal AC<br />

q<br />

∆εAC = (20 + 0.013 68) 2 +(20+0.003 36) 2 − 20 √ 2<br />

∆εAC = 0.012 05 mm<br />

Dr. M. Kemal Apalak 1


d) the percent change in the slope <strong>of</strong> diagonal DB<br />

tan θDB = 20<br />

20 , θDB =45 ◦<br />

tan θ 0<br />

DB =<br />

20 + 0.003 36<br />

20 + 0.013 68<br />

∆θDB =<br />

44.985 − 45<br />

× 100<br />

45<br />

∆θDB<br />

e) the dilatation <strong>of</strong> material<br />

= −0.033%<br />

, θ0<br />

DB =44.985 ◦<br />

e = εxx + εyy + εzz =6. 84 × 10 −4 +1. 68 × 10 −4 − 3. 48 × 10 −4<br />

e = 5. 04 × 10 −4<br />

V = 20× 20 × 5 = 2000 mm 3<br />

∆V = eV =5. 04 × 10 −4 × 2000<br />

∆V = 1. 008 mm 3<br />

V 0 = 2000 + 1. 008 = 2001.008 mm 3<br />

Dr. M. Kemal Apalak 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!