Torsion of statically indeterminate circular shafts (Strength of ...
Torsion of statically indeterminate circular shafts (Strength of ...
Torsion of statically indeterminate circular shafts (Strength of ...
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
Problem :<br />
<strong>Torsion</strong> <strong>of</strong> <strong>statically</strong> <strong>indeterminate</strong> <strong>circular</strong> <strong>shafts</strong><br />
(<strong>Strength</strong> <strong>of</strong> Materials - II, Final Exam-39-4, 14-06-2005)<br />
The solid cylinders AB and BC are bonded together at B and attached to fixed supports at A and<br />
C. Knowing that AB is made <strong>of</strong> steel (G =77GPa) and BC <strong>of</strong> brass (G =39GPa), determine for<br />
the loading shown (a) the reaction at each support, (b) the maximum shearing stress in AB, (c) the<br />
maximum shearing stress in BC.<br />
Solution :<br />
Equilibrium equation<br />
The compatibility condition<br />
The polar moment od each section<br />
and the internal torques<br />
1. Statically <strong>indeterminate</strong> <strong>circular</strong> <strong>shafts</strong><br />
µ <br />
TL<br />
+<br />
GJ AB<br />
TA + TC =12.5 (1)<br />
φ B/A + φ C/B = 0<br />
µ TL<br />
GJ<br />
<br />
BC<br />
JAB = π<br />
32 (0.125)4 =2.3968 × 10 −5 m 4<br />
JCD = π<br />
32 (0.075)4 =3.1063 × 10 −6 m 4<br />
TAB = TA<br />
= 0 (2)<br />
TBC = −TC<br />
The compatibility condition becomes<br />
µ<br />
0.3<br />
TA<br />
77 × 109 × 2.3968 × 10−5 µ<br />
0.2<br />
− TC<br />
39 × 109 × 3.1063 × 10−6 <br />
= 0<br />
1. 625 5 × 10 −7 TA − 1. 650 9 × 10 −6 TC = 0<br />
TA = 10.156TC (3)<br />
Dr. M. Kemal Apalak 1
TA + TC = 12.5<br />
10.156TC + TC = 12.5<br />
TC = 1.12 kN.m<br />
TA = 10.156 × 1.12<br />
TA = 11.375 kN.m<br />
The maximum shear stress between A and B<br />
µ <br />
T × c<br />
(τ AB)<br />
max =<br />
J<br />
= 11.375 × 103 × ¡ ¢<br />
0.125<br />
2<br />
2.3968 × 10−5 (τ AB)<br />
max =<br />
AB<br />
29.66 MPa (4)<br />
The maximum shear stress between B and C<br />
µ <br />
T × c<br />
(τ BC)<br />
max =<br />
J<br />
= 1.12 × 103 × ¡ ¢<br />
0.075<br />
2<br />
3.1063 × 10−6 (τ BC)<br />
max =<br />
BC<br />
13.52 MPa (5)<br />
Dr. M. Kemal Apalak 2