21.07.2013 Views

Simple Stress (Strength of Materials - I, Midterm Exam-40-1 ...

Simple Stress (Strength of Materials - I, Midterm Exam-40-1 ...

Simple Stress (Strength of Materials - I, Midterm Exam-40-1 ...

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

Problem :<br />

<strong>Simple</strong> <strong>Stress</strong><br />

(<strong>Strength</strong> <strong>of</strong> <strong>Materials</strong> - I, <strong>Midterm</strong> <strong>Exam</strong>-<strong>40</strong>-1)<br />

1. A steel structure<br />

In the steel structure shown, a 6-mm-diameter pin is used at C and 10-mm-diameter pins are used<br />

at B and D. The ultimate shearing stress is 150 MPa at all connections, and the ultimate normal stress<br />

is <strong>40</strong>0 MPa in link BD. Knowing that a factor <strong>of</strong> safety <strong>of</strong> 3 is desired, determine the largest load P<br />

which may be applied at A. Note that link BD is not reinforced around the pin holes.<br />

Solution :<br />

Theallowableshearstress<br />

Theallowablenormalstress<br />

Equilibrium equation<br />

i) BD link<br />

ii) Pin B<br />

τ al = τ ul 150<br />

= =50MPa (1)<br />

FS 3<br />

σal = σul<br />

FS<br />

= <strong>40</strong>0<br />

3<br />

X MC = 0, −120 × FBD + 280 × P =0<br />

P = 3<br />

7 FBD<br />

= 133.3 MPa (2)<br />

σal =<br />

µ <br />

F<br />

,<br />

A BD<br />

FBD = σal × ABD<br />

FBD = 133.3 × (18 − 10) × 6<br />

FBD = 6398. 4 N (4)<br />

P = 3<br />

× 6398. 4, P = 2742. 2 N (5)<br />

7<br />

Dr. M. Kemal Apalak 1<br />

(3)


iii) Pin C<br />

Equilibrium equation<br />

TheallowableloadP<br />

, FBD = τ al × AB<br />

FBD =<br />

³<br />

π<br />

50× × 102´<br />

4<br />

FBD = 3927.0 N (6)<br />

τ al = FBD<br />

AB<br />

P = 3<br />

× 3927.0, P = 1683.0 N (7)<br />

7<br />

τ al<br />

C<br />

=<br />

=<br />

C<br />

, C = τ al × 2AC<br />

2AC<br />

³<br />

π<br />

50× 2 × 62´<br />

4<br />

C = 2827. 4 N (8)<br />

X Fx = 0, Cx =0<br />

Cy = C = 2827. 4 N (9)<br />

X MB = 0, −120 × Cy + 160 × P =0<br />

P = 3<br />

4 Cy<br />

(10)<br />

P = 3<br />

× 2827. 4, P = 2120. 6 N (11)<br />

4<br />

P = 1683.0 N<br />

Dr. M. Kemal Apalak 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!