Eccentric loading of columns, Secant formula (Strength of Materials ...
Eccentric loading of columns, Secant formula (Strength of Materials ...
Eccentric loading of columns, Secant formula (Strength of Materials ...
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
Problem :<br />
<strong>Eccentric</strong> <strong>loading</strong> <strong>of</strong> <strong>columns</strong>, <strong>Secant</strong> <strong>formula</strong><br />
(<strong>Strength</strong> <strong>of</strong> <strong>Materials</strong> - II, Final Exam-43-2)<br />
A brass pipe having the cross section shown has an axial load P applied 5 mm from its geometric<br />
axis. Using E = 120 GPa, determine (a) the load P for which the horizontal deflection at the midpoint<br />
C is 5 mm, (b) the corresponding maximum stress in the column.<br />
Solution :<br />
The moment <strong>of</strong> inertia <strong>of</strong> the beam section is<br />
I = π ¡ 4<br />
r0 − r<br />
4<br />
4¢ π ¡ 4 4<br />
i = 60 − 54<br />
4<br />
¢ =3. 500 5 × 10 6 mm 4<br />
The effective length <strong>of</strong> the column is<br />
The critical load is<br />
Pcr = π2 EI<br />
l 2<br />
le = l =2.8 m<br />
= π2 × 120 × 10 3 × ¡ 3. 500 5 × 10 6¢<br />
2800 2<br />
Pcr = 528.8 × 10 3 N<br />
The maximum deflection occurs at the midpoint C<br />
" Ã r<br />
π P<br />
ymax = e sec<br />
2<br />
! #<br />
− 1<br />
à r !<br />
π P<br />
sec<br />
2 Pcr<br />
à r !<br />
π P<br />
cos<br />
2<br />
Pcr<br />
P<br />
Pcr<br />
Pcr<br />
= ymax + e<br />
e<br />
=<br />
=<br />
e<br />
ymax + e<br />
∙<br />
2<br />
π arccos<br />
µ ¸2 5<br />
5+5<br />
Dr. M. Kemal Apalak 1
The maximum bending moment is<br />
P = 0.444 44Pcr<br />
P = 0.444 44 × 528.8<br />
P = 235. 02 kN<br />
Mmax = P (ymax + e) = 235. 02 × 10 3 × (5 + 5) × 10 −3<br />
Mmax = 2350.2 N.m<br />
The cross-sectional area is<br />
A = π ¡ r 2 0 − r 2¢ ¡ 2 2<br />
i = π 60 − 54 ¢<br />
A = 2148. 8 mm 2<br />
The maxium normal stress is<br />
σmax = P<br />
A + Mmax × c<br />
I<br />
σmax =<br />
235. 02 × 103<br />
2148. 8<br />
σmax = 149. 66 MPa<br />
+ 2350.2 × 103 × 60<br />
3. 500 5 × 10 6<br />
Dr. M. Kemal Apalak 2