17.10.2012 Views

Design and Simulation of Power Converters using the Ansoft Power ...

Design and Simulation of Power Converters using the Ansoft Power ...

Design and Simulation of Power Converters using the Ansoft Power ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

“<strong>Design</strong> <strong>and</strong><br />

<strong>Simulation</strong> <strong>of</strong><br />

<strong>Power</strong> <strong>Converters</strong><br />

<strong>using</strong> <strong>the</strong> Ans<strong>of</strong>t<br />

<strong>Power</strong> Suite”<br />

Presenter: Roberto Prieto<br />

Universidad Politécnica de Madrid (UPM). Spain


The application: Interleaved converters<br />

Outline<br />

<strong>Design</strong> <strong>of</strong> magnetic components for power conv erters <strong>using</strong><br />

converters <strong>using</strong> PExprt<br />

Advantages <strong>of</strong> Integrated magnetics in Interleaved<br />

<strong>Converters</strong><br />

Integrated magnetics component design <strong>using</strong> PExprt<br />

Converter design, including regulation loop: from PExprt to<br />

PExprt to Simplorer<br />

Digital control implementation with Simplorer<br />

System design: from <strong>the</strong> circuit level to <strong>the</strong> system level<br />

level


Ans<strong>of</strong>t <strong>Power</strong> Suite


Paralleling<br />

+<br />

Shift<br />

+<br />

Packaging<br />

Interleaved <strong>Converters</strong> Features<br />

Load


Advantages <strong>of</strong> Interleaved <strong>Converters</strong> (I)<br />

L 1<br />

L 2<br />

IL1 L1<br />

IL2 L2<br />

Ripple cancellation<br />

Small C OUT<br />

IL1 L1<br />

IL2 L2<br />

IL1 L1<br />

IL2 L2<br />

2 converters d = 50%<br />

4 converters d = 25%<br />

I C<br />

I C


Advantages <strong>of</strong> Interleaved <strong>Converters</strong> (II)<br />

V s = 9V, I s = 10A<br />

V s = 24V, I s = 10A


Advantages <strong>of</strong> Interleaved <strong>Converters</strong> (III)<br />

Load<br />

I IN /N


<strong>Power</strong> Converter<br />

Control<br />

Application <strong>of</strong> Interleaved <strong>Converters</strong><br />

Filter<br />

Amp<br />

RF


High Low<br />

Interleaved converters: Automotive<br />

application<br />

DC-DC<br />

42V<br />

400V<br />

DC-DC<br />

DC-DC<br />

12V<br />

12V


Automotive Application: Multi-phase converters.<br />

36 phases<br />

Very small size<br />

SMD<br />

Output components capacitors<br />

Phase currents (A)<br />

Efficiency (%)<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

100.00<br />

97.50<br />

95.00<br />

92.50<br />

90.00<br />

87.50<br />

85.00<br />

82.50<br />

Only power stage<br />

<strong>Power</strong> stage + control<br />

Phase currents<br />

-0.5<br />

0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05 2.5E-05<br />

t (s)<br />

SMD is possible<br />

80.00<br />

0 10 20 30 40 50 60 70<br />

Output current (A)


Interleaved <strong>Converters</strong> design with<br />

Simplorer (I)<br />

SMPS Library elements


SMPS library contains a<br />

wide list <strong>of</strong> averaged<br />

<strong>and</strong> switch level models<br />

Simplorer SMPS library


1.00<br />

500.00m<br />

0<br />

6.00<br />

5.00<br />

2.50<br />

0<br />

2.00<br />

Efficiency ~86%<br />

0 5.00<br />

10.00<br />

Output Voltage<br />

0 500.00u<br />

1.02m<br />

Interleaved <strong>Converters</strong> design with<br />

Simplorer (II)<br />

Current at each phase (1.6A p-p)<br />

5.00<br />

4.00<br />

3.00<br />

2.00<br />

9.95m 9.96m 9.98m<br />

10.00m


Magnetic Component design with PExprt (I)


<strong>Design</strong> with PExprt. Step 1: <strong>Design</strong>


PExprt. Step 2: Select & Compare


PExprt. Step 2: Select & Compare


PExprt. Step 3: Optimize


PExprt. Step 4: Circuit level simulation with<br />

Simplorer


Comparison <strong>of</strong> models at circuit level with Simplorer<br />

1.00<br />

500.00m<br />

5.00<br />

4.00<br />

3.00<br />

86%<br />

0<br />

0 5.00<br />

10.00<br />

1.6A p-p<br />

2.00<br />

9.95m 9.96m 9.98m<br />

10.00m<br />

Efficiency<br />

1.00<br />

500.00m<br />

0<br />

0 5.00<br />

10.00<br />

1.00<br />

-1.00<br />

Current at each phase<br />

0<br />

max 84%<br />

Efficiency<br />

Decrease due to<br />

parasitic effects<br />

Phase Currents<br />

1.5A p-p<br />

949.27u 960.00u 980.00u<br />

999.90u


Integrated Magnetics<br />

5.23<br />

4.00<br />

2.00<br />

0<br />

2.00<br />

0<br />

-2.00<br />

Output Voltage<br />

0 500.00u 800.00u<br />

Phase Currents<br />

360.08u 370.00u 380.00u 390.00u 400.00u<br />

Integrated Magnetics vs Discrete<br />

Components<br />

4.94<br />

4.00<br />

2.00<br />

0<br />

13.98<br />

10.00<br />

0<br />

-12.27<br />

Discrete Components<br />

Output Voltage<br />

0 500.00u 800.00u<br />

Phase Currents<br />

360.05u 370.00u 380.00u 390.00u 400.00u


Multiphase<br />

converters<br />

Integrated Magnetics Features in Interleaved<br />

<strong>Converters</strong> (I)<br />

v 1<br />

v 2<br />

v 3<br />

Magnetic<br />

integration<br />

i 1<br />

i 2<br />

i 3<br />

i 4<br />

i 0<br />

Load<br />

Coupling<br />

Multiphase transformer<br />

(several implementations)


Integrated Magnetics Features in Interleaved<br />

<strong>Converters</strong> (II)<br />

v 1<br />

v 2<br />

v 3<br />

i 2<br />

i 3<br />

i O Load<br />

St<strong>and</strong>ard cores


Core A Core B<br />

Winding<br />

phase 2<br />

Phase 3<br />

Core B<br />

Integrated Magnetics Features in Interleaved<br />

<strong>Converters</strong> (III)<br />

Winding<br />

phase 4<br />

Phase 2<br />

Phase 4<br />

Core A<br />

Phase 1<br />

Core B<br />

Winding phase 3<br />

125%<br />

100%<br />

Winding phase 4<br />

75%<br />

50%<br />

25%<br />

0%<br />

Volume comparison<br />

Decoupled<br />

inductor<br />

Core A<br />

Winding phase 1<br />

Integrated Integrated<br />

transformer transformer +<br />

additional inductor


<strong>Design</strong> <strong>of</strong> Integrated Magnetics with PExprt<br />

Features<br />

Frequency dependent<br />

Capacitive effects<br />

Nonlinear core


Simple procedure to define Integrated Magnetics in<br />

PExprt


Flexible Winding Setup Definition for each core leg


PExprt Model: Simplorer link


Different bobbins can be assigned to each core leg


Planar Integrated can also be defined


Circuit level simulation with Simplorer<br />

E1<br />

pwm<br />

pwm1<br />

pwm<br />

pwm2<br />

pwm<br />

pwm3<br />

M1<br />

p<br />

MOSFET_LEG<br />

M2<br />

M1<br />

n<br />

p<br />

MOSFET_LEG<br />

M2<br />

M1<br />

n<br />

p<br />

MOSFET_LEG<br />

M2<br />

n<br />

m<br />

m<br />

m<br />

A<br />

AM1<br />

A<br />

AM2<br />

A<br />

AM3<br />

PExprtLink1<br />

PEX<br />

STEP1<br />

R1<br />

C1


Comparison <strong>of</strong> models at circuit level with Simplorer<br />

1.00<br />

500.00m<br />

0<br />

0 5.00<br />

10.00<br />

1.00<br />

0<br />

-1.00<br />

6.00<br />

5.00<br />

2.50<br />

0<br />

MOSFET_LEG<br />

pwm<br />

m<br />

A<br />

pwm1<br />

M2<br />

AM1<br />

PExprtLink1<br />

n<br />

p<br />

M1<br />

Discrete Integrated<br />

MOSFET_LEG<br />

Efficiency<br />

pwm<br />

m<br />

A<br />

M2<br />

Efficiency<br />

pwm2<br />

AM2<br />

1.00<br />

n<br />

max 84%<br />

1.5A p-p<br />

949.27u 960.00u 980.00u<br />

999.90u<br />

2.00<br />

0 500.00u<br />

1.02m<br />

E1<br />

pwm<br />

pwm3<br />

M1<br />

M1<br />

MOSFET_LEG<br />

m<br />

M2<br />

p<br />

p<br />

n<br />

A<br />

AM3<br />

PEX<br />

500.00m<br />

STEP1<br />

84%<br />

More stable behavior<br />

0<br />

0 5.00<br />

10.00<br />

2.00<br />

0<br />

2.00<br />

6.00<br />

5.00<br />

2.50<br />

0<br />

R1<br />

C1<br />

Integrated<br />

2.2A p-p<br />

949.27uThe 960.00u currents are 980.00u in phase 999.90u<br />

Faster than <strong>the</strong> uncoupled version<br />

2.00<br />

0 500.00u<br />

1.02m


Particular geometries might require Maxwell 3D<br />

2D is feasible<br />

3D is necessary


Automotive Application: Multi-phase converters.<br />

36 phases<br />

Digital control is m<strong>and</strong>atory


1<br />

2<br />

3<br />

Control Implementation: Alternatives<br />

Analog<br />

Continuous blocks: S-Transfer function<br />

Digital<br />

Discrete blocks: Z-Transfer function<br />

Discrete Fixed-Point : Syn<strong>the</strong>sized VHDL code<br />

G(z)<br />

G(s)<br />

Discrete_PID


Digital Control for multiphase <strong>Converters</strong><br />

f = 3kHz


Duty Cycle<br />

Digital Control Implementation<br />

Analog PID<br />

Simplorer blocks<br />

Analog<br />

Implementation<br />

Output Voltage<br />

S<strong>of</strong>t Start<br />

(Electric circuit)


Digital Control Implementation<br />

Discrete PID<br />

(VHDL-AMS block)<br />

Duty Cycle<br />

Digital<br />

Implementation<br />

Output Voltage<br />

Simplorer blocks<br />

S<strong>of</strong>t Start<br />

(Electric circuit)


3.50<br />

3.00<br />

2.50<br />

3.50<br />

3.00<br />

2.50<br />

Digital Control Implementation: Simplorer Results<br />

Output Voltage<br />

250.00u 300.00u 400.00u 450.00u<br />

Output Voltage<br />

250.00u 300.00u 400.00u 450.00u<br />

Continuous time PID (Analog)<br />

20.00<br />

10.00<br />

0<br />

-10.00<br />

Discrete time PID (Digital): sampling = 600kHz<br />

20.00<br />

10.00<br />

0<br />

-10.00<br />

Phase Currents<br />

250.00u300.00u 400.00u450.00u<br />

Phase Currents<br />

250.00u 300.00u 400.00u 450.00u


Digital Control Implementation: Simplorer based<br />

design<br />

Overshot <strong>and</strong> settling time<br />

measurement<br />

Performance evaluation<br />

(better when settling time is short)<br />

Initial simulations<br />

Tendency <strong>of</strong><br />

<strong>the</strong> parameters<br />

Fitness function


Complete system <strong>Power</strong> system<br />

The power system can not be<br />

modeled as an ideal system<br />

The power system inv olves:<br />

involves:<br />

Losses<br />

Dynamic limitations<br />

Temperature issues<br />

Failures<br />

System <strong>and</strong> Sub-System levels


Switch level models<br />

Are based directly on <strong>the</strong> structure<br />

Provide information for each<br />

component in every switching<br />

cycle<br />

Averaged models<br />

Switching information is lost but<br />

structure is kept<br />

There are several techniques like:<br />

State space averaging<br />

Averaged switch modeling<br />

Behavioral models<br />

Based on <strong>the</strong> input-output<br />

behavior<br />

The model is a black box, <strong>the</strong> real<br />

structure is lost<br />

Modeling approaches


SubsistemaGenerad<br />

Vp<br />

+<br />

V<br />

Vm<br />

VMin<br />

Vinp<br />

Vinm<br />

Vinp<br />

Vinm<br />

Vp<br />

Buck<br />

Regulado<br />

42V/28V<br />

Buck<br />

Regulado<br />

42V/28V<br />

Vop A<br />

+<br />

AMbat<br />

V<br />

VMbat<br />

Vom<br />

Vop<br />

Vom<br />

+<br />

V<br />

Vm<br />

SubsistemaCargasNoRe<br />

Vp<br />

VM28<br />

Vm<br />

SubsistemaCargasNoReg2<br />

Vinp<br />

Vinn<br />

Vinp<br />

Vinn<br />

Vinp<br />

Vinn<br />

SubsistemaBaterias<br />

Vinp<br />

Vinm<br />

Half Bridge<br />

Regulado<br />

28V/1.8V<br />

Half Bridge<br />

Regulado<br />

28V/1.8V<br />

Half Bridge<br />

Regulado<br />

28V/1.8V<br />

Voutp<br />

Voutn<br />

Voutp<br />

Voutn<br />

Voutp<br />

Voutn<br />

+<br />

V<br />

+<br />

Vp<br />

V<br />

VMc<br />

Vm<br />

SubsistCargasReg<br />

VMc2<br />

Vp<br />

Vm<br />

SubsistCargasReg2<br />

<strong>Simulation</strong> time<br />

<strong>Simulation</strong> time<br />

-Averaged models -> 157 seconds<br />

-Behavioral models -> 29 seconds<br />

43.00<br />

30.00<br />

20.00<br />

10.00<br />

0<br />

5 times faster!!!<br />

0 25.00m 50.00m 75.00m 100.00m 150.00m


Problems designing power systems<br />

The lack <strong>of</strong> models for each DC/DC converter<br />

The lack <strong>of</strong> information on commercial converters<br />

Difficulty to develop <strong>the</strong> models<br />

Long simulation time<br />

SMPS Library: PTool<br />

All above problems multiplied by <strong>the</strong> number <strong>of</strong> converters<br />

Get optimized VHDL-AMS VHDL AMS models for DC/DC<br />

converters in minutes


PTool converter’s converter s features:<br />

•Input Input characteristics<br />

•Output Output characteristics<br />

•Dynamic Dynamic response<br />

•Static Static response<br />

•Remote Remote control<br />

•Thermal Thermal behavior<br />

•Protections<br />

Protections<br />

•<strong>Power</strong> <strong>Power</strong> sharing<br />

•Cross Cross regulation<br />

SMPS Library: PTool


Simplorer System Level Models<br />

vi_p<br />

vi_n<br />

vo1_p<br />

Behavioral<br />

vo1_n


100.00<br />

50.00<br />

0<br />

Efficiency comparison<br />

Behavioral<br />

Switch level<br />

0 5.00<br />

10.00<br />

Simplorer System Level Models<br />

3.40<br />

2.00<br />

0<br />

vi_p<br />

vi_n<br />

vo1_p<br />

Behavioral<br />

vo1_n<br />

System Level <strong>and</strong> Switch<br />

Total simulation time: 700us<br />

0 200.00u 400.00u 520.00u<br />

Behavioral: 0.992s Switch level: 352.54s

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!