23.07.2013 Views

Rubidium atomic hyperfine filter for amplitude manipulation of ...

Rubidium atomic hyperfine filter for amplitude manipulation of ...

Rubidium atomic hyperfine filter for amplitude manipulation of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

DAMOP08 Meeting <strong>of</strong> The American Physical Society<br />

<strong>Rubidium</strong> <strong>atomic</strong> <strong>hyperfine</strong> <strong>filter</strong> <strong>for</strong> <strong>amplitude</strong><br />

<strong>manipulation</strong> <strong>of</strong> femtosecond frequency comb<br />

Marin Pichler<br />

marin.pichler@goucher.edu<br />

Goucher College,<br />

Baltimore, MD 21204 U.S.A.<br />

Goran Pichler<br />

pichler@ifs.hr<br />

Ticijana Ban, Hrvoje Skenderović<br />

Nataša Vujičić, Damir Aumiler, Silvije Vdović,<br />

Institute <strong>of</strong> Physics<br />

P.O.Box 304, HR-10000Zagreb, Croatia<br />

http://Projekt2.ifs.hr<br />

1


Outline<br />

Femtosecond mode-locked laser pulse train excitation in rubidium 5 2 S 1/2 – 5 2 P 3/2<br />

transition is used <strong>for</strong> direct mapping <strong>of</strong> the optical frequency comb<br />

to rubidium atom velocity comb. The induced comb-like structure in<br />

the rubidium ground state <strong>hyperfine</strong> level populations is monitored by<br />

a weak cw scanning probe laser.<br />

By introducing an additional rubidium cell, a <strong>hyperfine</strong> <strong>atomic</strong> flter is realized which<br />

modifes the <strong>amplitude</strong> <strong>of</strong> the selected frequency comb lines.<br />

The <strong>hyperfine</strong> optical flter can be a pure isotope 85 Rb or 87 Rb cell, in which case only<br />

that isotope will affect the optical frequency comb.<br />

2


Time and Frequency Domain <strong>of</strong> Mode-locked Laser<br />

t<br />

t 1<br />

One pulse<br />

E(<br />

t)<br />

( t)<br />

e<br />

N pulses<br />

t<br />

i c<br />

Width: N / f(rep)<br />

3


Experimenal Set-up <strong>for</strong> Modified DFCS<br />

single-mode tuning range <strong>of</strong> up to 15 GHz<br />

0.3 GHz/ms scanning rate<br />

10 nm<br />

10 THz<br />

averaged power up to 700 mW<br />

Spectral charasteristic<br />

Intenzitet (rel. jed.)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

xc = (806.6 ± 0.05) nm<br />

w = (13.5 ± 0.1) nm<br />

700 750 800 850 900<br />

(nm)<br />

1<br />

P 0.44153 <br />

c<br />

P 2<br />

<br />

4<br />

p


Rb Atoms Interacting with a fs Pulse Train<br />

5


Absorption spectrum <strong>of</strong> rubidium D2 resonance line with <strong>hyperfine</strong> resolution<br />

Making multi-Bennett holes<br />

6


Rb Atoms Interacting with a fs Pulse Train<br />

Fg=2<br />

Fg=3<br />

Fg=2<br />

Experiment<br />

Fg=1<br />

7


Rb <strong>atomic</strong><br />

<strong>filter</strong><br />

Frequency comb modification<br />

8


-500 0 500 1000 1500 2000 2500 3000 3500<br />

Relative Frequency (MHz)<br />

T F =36 O C<br />

T F =30 O C<br />

T F =24 O C<br />

Transmission spectrum <strong>of</strong> two <strong>hyperfine</strong> lines<br />

when the femtosecond laser frequency comb<br />

was modified in the first Rb sapphire cell which<br />

served as an <strong>atomic</strong> <strong>filter</strong>. Temperatures <strong>of</strong> the<br />

first cell were 24 o C, 30 o C, and 34 o C.<br />

9


With a lock-in detetection method the sensitivity has increased by factor <strong>of</strong> 10<br />

Fotodioda 1<br />

Fotodioda 2<br />

11


12<br />

6<br />

0<br />

85,87<br />

Rb <strong>filter</strong>, 795 nm fs laser<br />

Frequency<br />

96 o<br />

C<br />

67 o<br />

C<br />

47 o<br />

C<br />

33 o<br />

C<br />

27 o<br />

C<br />

24 o<br />

C<br />

12


Conclusions<br />

-We observed velocity selective optical<br />

pumping. Velocity groups <strong>of</strong> Rb atoms in the<br />

ground levels are separated by repetition rate<br />

<strong>of</strong> the femtosecond laser oscillator.<br />

-We observed velocity selective population<br />

transfer into excited Rb <strong>atomic</strong> states<br />

(multi-Bennett holes).<br />

- We demonstrated imaging <strong>of</strong> optical<br />

frequency comb onto the atom velicity comb<br />

• very sensitive method probably appropriate to<br />

measure some fundamental physical and<br />

chemical features <strong>of</strong> Rb atoms in vapor phase<br />

- Rb-Rb resonance broadening<br />

- saturation processes<br />

- influence <strong>of</strong> external magnetic and electric field<br />

13


80 MHz<br />

Freq. comb<br />

Rb 795 nm D1 detection <strong>of</strong> ground state population<br />

D1<br />

OUTLOOK<br />

2<br />

812 MHz<br />

1<br />

2<br />

1<br />

267 MHz<br />

157 MHz<br />

72 MHz<br />

D2<br />

6835 MHz<br />

3<br />

2<br />

1<br />

0<br />

80 MHz<br />

Freq. comb<br />

14


<strong>Rubidium</strong> atom<br />

795nm<br />

780nm<br />

15


87 Rb - pure isotope cell<br />

Rb D1 795 nm<br />

Optical Thickness<br />

0,12<br />

0,11<br />

0,10<br />

0,09<br />

0,08<br />

0,07<br />

0,06<br />

0,05<br />

0,04<br />

0,03<br />

0,02<br />

0,01<br />

0,00<br />

D1<br />

2<br />

812 MHz<br />

1<br />

2<br />

1<br />

Frequency<br />

267 MHz<br />

157 MHz<br />

72 MHz<br />

D2<br />

6835 MHz<br />

3<br />

2<br />

1<br />

0<br />

16


Optical Thickness<br />

0,12<br />

0,11<br />

0,10<br />

0,09<br />

0,08<br />

0,07<br />

0,06<br />

0,05<br />

0,04<br />

0,03<br />

0,02<br />

0,01<br />

0,00<br />

87 Rb<br />

85 Rb<br />

85 Rb<br />

Frequency<br />

87 Rb<br />

17


Cancellation <strong>of</strong> the coherent accumulation in rubidium<br />

atoms excited by a train <strong>of</strong> femtosecond pulses<br />

PRA, 76 043410 (2007).<br />

Femtosecond laser pulse train effect on Doppler pr<strong>of</strong>ile<br />

<strong>of</strong> cesium resonance lines<br />

EPJD 41, 447 (2007).<br />

Mapping <strong>of</strong> the optical frequency comb to the atom<br />

velocity comb<br />

PRA 73, 043407 (2006).<br />

Velocity selective optical pumping <strong>of</strong> Rb <strong>hyperfine</strong> lines<br />

induced by a train <strong>of</strong> femtosecond pulses<br />

PRL 95, 233001 (2005).<br />

18


Thank you!<br />

Supported by the Ministry <strong>of</strong> Science <strong>of</strong><br />

the Republic <strong>of</strong> Croatia and<br />

the Alexander von Humbolt Stiftung,<br />

Germany<br />

Brijuni2009.ifs.hr<br />

FEMTO<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!