23.07.2013 Views

Incorporating Advanced Features in Large-Scale Noise and ... - HP

Incorporating Advanced Features in Large-Scale Noise and ... - HP

Incorporating Advanced Features in Large-Scale Noise and ... - HP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong><br />

<strong>Noise</strong> <strong>and</strong> Vibration Simulations


Overview<br />

<strong>Large</strong>-scale l<strong>in</strong>ear dynamics <strong>in</strong> Abaqus is fully<br />

<strong>in</strong>tegrated with our nonl<strong>in</strong>ear offer<strong>in</strong>g<br />

Abaqus l<strong>in</strong>ear dynamics is on par with best-<strong>in</strong>-class<br />

commercial l<strong>in</strong>ear dynamics solvers<br />

Includ<strong>in</strong>g many <strong>in</strong>dustry-unique l<strong>in</strong>ear dynamics features<br />

Current l<strong>in</strong>ear dynamics capabilities are:<br />

Scalable to extreme model <strong>and</strong> frequency ranges<br />

General<br />

Applicable across a wide variety of <strong>in</strong>dustries<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

2


L<strong>in</strong>ear Problems with Nonl<strong>in</strong>ear Preload<strong>in</strong>g


L<strong>in</strong>ear Problems with Nonl<strong>in</strong>ear Preload<strong>in</strong>g<br />

Exp<strong>and</strong><strong>in</strong>g on traditional Abaqus doma<strong>in</strong>s<br />

Tires<br />

Suspension<br />

Brakes<br />

Powertra<strong>in</strong><br />

More accurate solution due to<br />

Nonl<strong>in</strong>ear geometry<br />

Inertial effects<br />

Structural-acoustic coupl<strong>in</strong>g<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

4


Hear<strong>in</strong>g Aid Structural-Acoustic Analysis<br />

Goal is to underst<strong>and</strong> ―feedback path‖<br />

to optimize attenuation<br />

Nonl<strong>in</strong>ear preloads<br />

Viscoelastic components<br />

Structural-acoustic response<br />

Frequency range from 700–7,000 Hz<br />

800 modes < 7 kHz; 3,000 modes < 10.5 kHz<br />

Model size: 1.2 M degrees of freedom<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

5


Hear<strong>in</strong>g Aid Structural-Acoustic Analysis<br />

Analysis steps:<br />

Apply preloads<br />

Analyze frequency response<br />

Includ<strong>in</strong>g viscoelastic effects<br />

– Direct frequency response<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

6


Front Corner Module Modal Analysis<br />

Goal is to capture accurate stiffness <strong>and</strong> modes<br />

Nonl<strong>in</strong>ear:<br />

L<strong>in</strong>ear:<br />

Shock spr<strong>in</strong>g<br />

Shock damper<br />

Shock bush<strong>in</strong>g<br />

Brake l<strong>in</strong><strong>in</strong>g/pads/contact<br />

Upper <strong>and</strong> lower arms<br />

Knuckle<br />

Anti-sway bar<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

7


Front Corner Module Modal Analysis<br />

Nonl<strong>in</strong>ear <strong>and</strong> l<strong>in</strong>ear analysis vs. test<br />

Mode<br />

Shock spr<strong>in</strong>g assembly frequency (Hz)<br />

Test preload<br />

prescribed<br />

L<strong>in</strong>ear analysis<br />

no preload<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

Abaqus<br />

preload<br />

prescribed<br />

8<br />

Suspension<br />

system test<br />

(Hz)<br />

Spr<strong>in</strong>g first axial 70 34 70 70<br />

Spr<strong>in</strong>g second axial 130 100 132 131<br />

Spr<strong>in</strong>g third axial 190 164 192 192


<strong>Large</strong>-<strong>Scale</strong> L<strong>in</strong>ear Dynamics Offer<strong>in</strong>g <strong>in</strong> Abaqus


Key L<strong>in</strong>ear Dynamics Performance Improvements<br />

Development of new l<strong>in</strong>ear architecture<br />

Mode-based steady-state <strong>and</strong> transient dynamics<br />

Initial <strong>in</strong>troduction of user <strong>in</strong>terface features<br />

Creation of Abaqus AMS eigensolver<br />

Substructure redesign<br />

Built on top of new l<strong>in</strong>ear architecture<br />

Added methods for damp<strong>in</strong>g matrix reductions (viscous <strong>and</strong><br />

structural)<br />

Structural-acoustics for large-scale N&V problems<br />

Applicable for full vehicle <strong>in</strong>terior acoustics <strong>and</strong> exterior<br />

acoustics analyses<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

10


Abaqus AMS Eigensolver<br />

Uses multi-level substructur<strong>in</strong>g technique to reduce<br />

the system<br />

Automated approach to component modal synthesis<br />

Global eigenvectors computed only at requested output po<strong>in</strong>ts<br />

Damp<strong>in</strong>g operators projected very efficiently with<strong>in</strong> the<br />

eigensolver<br />

Dramatically improves performance for problems<br />

with many (thous<strong>and</strong>s) of modes<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

11


Full Car Body Frequency Response (Abaqus 6.9)<br />

8 M degrees of freedom structural model<br />

Frequency extraction up to 450 Hz (3,200 modes)<br />

Damp<strong>in</strong>g: Dashpots, connector damp<strong>in</strong>g<br />

Structural response solve time:<br />

4.5 hours AMS<br />

30 m<strong>in</strong>utes for load case with 300 frequency po<strong>in</strong>ts<br />

Coupled structural-acoustic frequency<br />

response analysis<br />

3,200 structural modes + 300 acoustic modes<br />

Structural-acoustic response solve time:<br />

4.5 hours AMS<br />

38 m<strong>in</strong>utes for load case with 300 frequency po<strong>in</strong>ts<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

12


Performance Improvements: AMS Eigensolver<br />

Fully trimmed car body model<br />

9.2 M degrees of freedom<br />

~10,000 modes<br />

Eigenvalue extraction:<br />

23 hours <strong>in</strong> Abaqus 6.8<br />

3 hours <strong>in</strong> Abaqus 6.9<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

13


Structural-Acoustic Frequency Response Analysis<br />

Trimmed car body model<br />

2.9 M degrees of freedom<br />

4,400 modes to 600 Hz (<strong>in</strong>clud<strong>in</strong>g 300 acoustic)<br />

Frequency response analysis<br />

to 400 Hz:<br />

Abaqus 6.8: 7.75 hours<br />

4.5 AMS<br />

3.25 SSD<br />

Abaqus 6.9: 4.0 hours<br />

2.25 AMS<br />

1.75 SSD<br />

For this model NASTRAN solves <strong>in</strong> ~4 hours<br />

us<strong>in</strong>g 4 CPUs<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

14


Frequency-Dependent Materials<br />

Frequency dependency is historically not solvable<br />

with modal approaches<br />

Abaqus readily h<strong>and</strong>les the relevant physics<br />

Typical application—a full vehicle with lam<strong>in</strong>ated<br />

steel panel<br />

Only a small portion of the operator (the frequencydependent<br />

material) needs to be computed <strong>and</strong><br />

projected<br />

Frequency dependency is projected at a few<br />

frequency po<strong>in</strong>ts, <strong>and</strong> results are <strong>in</strong>terpolated<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

15


System Model with Lam<strong>in</strong>ated Steel Component<br />

1.5 M degrees of<br />

freedom<br />

400 modes<br />

~0.05 mm rubber<br />

Operators computed at 10, 40, 100, 300 Hz<br />

Abaqus 6.7: Direct frequency response analysis—<br />

32 hours<br />

Abaqus 6.8: Eigenvalue extraction <strong>and</strong> modal response—<br />

20 m<strong>in</strong>utes<br />

~100× speed-up with mode-based approach<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

16<br />

~0.5 mm steel<br />

~0.5 mm steel


Frequency Response Results—Lam<strong>in</strong>ated Steel<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

Red: Direct response results<br />

Blue: Modal response results<br />

17


Body-<strong>in</strong>-Prime Model with Lam<strong>in</strong>ated Steel<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

10× greater response<br />

Red: Lam<strong>in</strong>ated steel panel<br />

Blue: Steel panel<br />

18


Unsymmetric Dynamic Substructures<br />

Stiffness matrix can be unsymmetric<br />

Viscous damp<strong>in</strong>g matrix can be unsymmetric<br />

Important use case: Substructure representation of roll<strong>in</strong>g<br />

tires<br />

Substructure generation for the base state obta<strong>in</strong>ed from the steadystate<br />

transport analysis of a rotat<strong>in</strong>g tire <strong>in</strong> contact with the road<br />

Stiffness matrix can be unsymmetric due to the contact friction<br />

Viscous damp<strong>in</strong>g matrix can be unsymmetric due to the Coriolis<br />

terms<br />

Abaqus workflow for tires:<br />

Nonl<strong>in</strong>ear static<br />

analysis of a stationary<br />

tire <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>flation<br />

<strong>and</strong> contact footpr<strong>in</strong>t<br />

calculation<br />

Steady-state<br />

transport analysis of<br />

a roll<strong>in</strong>g tire<br />

L<strong>in</strong>ear dynamic<br />

analysis of a s<strong>in</strong>gle<br />

tire<br />

Generation of an<br />

unsymmetric<br />

dynamic<br />

substructure for a<br />

rotat<strong>in</strong>g tire<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

19<br />

Us<strong>in</strong>g tire substructures<br />

<strong>in</strong> the full vehicle<br />

simulations


Example: Frequency Response of a Tire at 60 km/h<br />

FE model: 430 K degrees of freedom<br />

Substructure: 180 dynamic modes, 2 reta<strong>in</strong>ed nodes<br />

FE model compared with tire substructure models<br />

Significantly different results for rotat<strong>in</strong>g vs. stationary<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

20


Full Vehicle with Rotat<strong>in</strong>g Tire Effects<br />

3.4 M degrees of freedom<br />

Structural material damp<strong>in</strong>g<br />

3,200 modes extracted<br />

Rotat<strong>in</strong>g tire effect taken <strong>in</strong>to account us<strong>in</strong>g<br />

unsymmetric substructure<br />

AMS eigenvalue extraction <strong>and</strong> modal frequency<br />

response analysis<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

21


Rotat<strong>in</strong>g Tire Effects<br />

Stationary tire (blue) vs.<br />

roll<strong>in</strong>g tire (red)<br />

Roof vertical deflection<br />

Tire patch lateral<br />

response<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

Dramatic<br />

differences<br />

22


Body Model <strong>Incorporat<strong>in</strong>g</strong> Lam<strong>in</strong>ated Steel<br />

Structural-acoustic<br />

Mode-based frequency<br />

response<br />

Range to 300 Hz<br />

Comparison between steel <strong>and</strong> lam<strong>in</strong>ated steel parts<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

EXAMPLE: Lam<strong>in</strong>ated steel<br />

location/distribution<br />

23


Body Model <strong>Incorporat<strong>in</strong>g</strong> Lam<strong>in</strong>ated Steel<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

24


Summary of Capabilities<br />

Performance<br />

Currently best <strong>in</strong>tegrated offer<strong>in</strong>g<br />

Competitive with best multi-vendor solutions<br />

Functionality<br />

Full set of <strong>in</strong>dustrial l<strong>in</strong>ear dynamics capabilities<br />

<strong>Advanced</strong> mechanics<br />

Lead<strong>in</strong>g-edge capabilities that can be used with even the largest<br />

l<strong>in</strong>ear dynamics models<br />

This comb<strong>in</strong>ation of features readily <strong>in</strong>corporates<br />

nonl<strong>in</strong>ear effects not otherwise captured <strong>in</strong><br />

traditional NV analyses<br />

<strong>Incorporat<strong>in</strong>g</strong> <strong>Advanced</strong> <strong>Features</strong> <strong>in</strong> <strong>Large</strong>-<strong>Scale</strong> <strong>Noise</strong> <strong>and</strong> Vibration Simulations<br />

25


<strong>HP</strong> 8-server Workgroup System Rack<br />

Abaqus/St<strong>and</strong>ard (Structural Analysis)<br />

Server Options:<br />

4-8 ProLiant DL160 (Xeon) or DL165 (Opteron) server nodes, each us<strong>in</strong>g<br />

2 processors<br />

8-12 cores per compute node<br />

Four 72GB SAS drives per compute node<br />

Optional blade workstation with <strong>HP</strong> RGS for pre/post process<strong>in</strong>g<br />

Optional head node with extra memory for very large jobs<br />

Total Memory for Cluster:<br />

Nonl<strong>in</strong>ear dynamics jobs – multiple compute node jobs:<br />

2GB/core suitable for runn<strong>in</strong>g jobs:<br />

Less than 2.5MDOF on 2 nodes<br />

2.5MDOF to 5MDOF on 4 nodes<br />

Greater than 5MDOF on 8 nodes<br />

4GB/core for above jobs, if runn<strong>in</strong>g on fewer nodes<br />

L<strong>in</strong>ear dynamics jobs - s<strong>in</strong>gle compute node jobs: 4GB/core<br />

Optional head node or blade workstation: up to 4GB/core<br />

Cluster Interconnect: Integrated Gigabit Ethernet or Inf<strong>in</strong>iB<strong>and</strong><br />

(recommended for jobs us<strong>in</strong>g more than 2 nodes)<br />

Storage:<br />

4 <strong>in</strong>ternal 72GB SAS drives striped RAID0 on each node<br />

Optional <strong>HP</strong> SFS G3 Cluster File System<br />

Operat<strong>in</strong>g Environment: 64-bit L<strong>in</strong>ux OR Microsoft <strong>HP</strong>C Server 2008<br />

Workloads: Ideally suited for one model greater than 5MDOF or 2-4<br />

simultaneous models less than 5MDOF<br />

26


Thank you

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!