25.07.2013 Views

Introduction to silicon detectors and radiation ... - IRTG Heidelberg

Introduction to silicon detectors and radiation ... - IRTG Heidelberg

Introduction to silicon detectors and radiation ... - IRTG Heidelberg

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Fall School of the <strong>IRTG</strong> “Development <strong>and</strong><br />

Application of Intelligent Detec<strong>to</strong>rs”<br />

<strong>Heidelberg</strong>, November 1–5, 2010<br />

<strong>Introduction</strong> <strong>to</strong><br />

Silicon Detec<strong>to</strong>rs <strong>and</strong><br />

Radiation Damage<br />

Ulrich Husemann<br />

Deutsches Elektronen-Synchrotron DESY


<strong>Introduction</strong><br />

Introduc<strong>to</strong>ry Lectures: Outline<br />

How <strong>and</strong> where are <strong>silicon</strong> detec<strong>to</strong>rs employed at hadron colliders?<br />

Which detec<strong>to</strong>r components suffer from <strong>radiation</strong> damage?<br />

Part I: Radiation Damage in Silicon Sensors (UH)<br />

What are typical sensor defects caused by <strong>radiation</strong>?<br />

Which operational parameters are affected?<br />

How can <strong>radiation</strong> damage be measured in the lab <strong>and</strong> how can it be modeled?<br />

Part II: Radiation Damage in Silicon Readout Electronics (Ketil Røed)<br />

What is <strong>radiation</strong> environment responsible for inducing single event upsets (SEUs)<br />

in FPGAs?<br />

How do SEUs affect SRAM memory cells <strong>and</strong> FPGAs?<br />

How can SEU failures be tested, predicted, <strong>and</strong> reduced?<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

2


<strong>Introduction</strong>


Hadron Collider Experiments<br />

Silicon detec<strong>to</strong>rs employed in<br />

many particle physics experiments<br />

Fixed target<br />

Hadron colliders<br />

Lep<strong>to</strong>n <strong>and</strong> ep colliders,<br />

… <strong>and</strong> for various purposes<br />

Charged particle tracking & vertexing<br />

Calorimetry<br />

This lecture: restricted <strong>to</strong> <strong>silicon</strong>based<br />

tracking <strong>and</strong> vertexing<br />

detec<strong>to</strong>rs at hadron colliders, e.g.<br />

SppS: pp at √s = 630 GeV<br />

Tevatron: pp at √s = 1.8–1.96 TeV<br />

LHC: pp at √s = 7–14 TeV<br />

Fermi National Accelera<strong>to</strong>r Labora<strong>to</strong>ry – Aerial View<br />

LHC<br />

ALICE<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

Tevatron<br />

2 km<br />

[Fermilab Visual Media Service]<br />

CMS<br />

ATLAS<br />

4<br />

LHCb


Detec<strong>to</strong>r Example: ATLAS<br />

Muon Detec<strong>to</strong>r Calorimeter<br />

Tracking Detec<strong>to</strong>rs<br />

ATLAS Fact Sheet:<br />

Length: 45 m, height: 25 m<br />

Weight: 7000 metric <strong>to</strong>ns<br />

100 million readout channels<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

5


LHC Tracking & Vertexing Challenges<br />

Physics goals: find (something like) the Higgs <strong>and</strong>/or New Physics<br />

Production cross sections expected <strong>to</strong> be small (fb)<br />

Need high instantaneous luminosity (now: 2×10 32 cm –2 s –1 , design 10 34 cm –2 s –1 )<br />

Tracking detec<strong>to</strong>r requirements are a challenge<br />

High bunch crossing rate (40 MHz) → fast readout electronicss<br />

Large flux of charged <strong>and</strong> neutral particles per collision<br />

→ highly granular detec<strong>to</strong>rs <strong>to</strong> keep channel occupancies below 1–2%<br />

Many physics signature (e.g. tagging of b-quark jets) require excellent vertexing<br />

→ transverse impact parameter resolution better than 15 µm<br />

Particle production in hadronic interactions: lots of hadrons produced (pions, kaons,<br />

pro<strong>to</strong>ns, neutrons, …) → <strong>radiation</strong> hard detec<strong>to</strong>rs <strong>and</strong> electronics (>100 kGy/year)<br />

Tracking detec<strong>to</strong>r technology of choice at the LHC<br />

Small radial distance from beam pipe (


The ATLAS Inner Detec<strong>to</strong>r<br />

Transition Radiation Tracker (TRT)<br />

350,000 straw drift tubes<br />

Transition <strong>radiation</strong> for e/π separation<br />

Semiconduc<strong>to</strong>r Tracker (SCT)<br />

Strip pitch: 80 µm<br />

6.3 million readout channels<br />

Silicon Pixel Detec<strong>to</strong>r<br />

Pixel size: 400×50 µm 2<br />

80 million readout channel<br />

Innermost layer: 50.5 mm from beam<br />

Slice of ATLAS Inner Detec<strong>to</strong>r Barrel<br />

Figure 4.2: Drawing showing the sensors <strong>and</strong> structural elements traversed by a charged track of<br />

10 GeV pT in the barrel inner detec<strong>to</strong>r (η = 0.3). The track traverses successively the beryllium<br />

beam-pipe, the three cylindrical <strong>silicon</strong>-pixel layers with individual sensor elements of 50×400<br />

µm2 [2008 JINST 3 S08003]<br />

, the four cylindrical double layers (one axial <strong>and</strong> one with a stereo angle of 40 mrad) of<br />

barrel <strong>silicon</strong>-microstrip sensors (SCT) of pitch 80 µm, <strong>and</strong> approximately 36 axial straws of 4 mm<br />

diameter contained in the barrel transition-<strong>radiation</strong> tracker modules within their support structure.<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

7


[2008 JINST 3 S08003]<br />

ATLAS Pixel Module<br />

Typical hybrid pixel<br />

module built of<br />

Readout “flex” hybrid<br />

Sensor: 46k pixels<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

16 front-end (FE) chips<br />

Lots of electrical<br />

connections<br />

FE chips bump-bonded <strong>to</strong><br />

sensor, wire-bonded <strong>to</strong> flex<br />

In: chip <strong>and</strong> sensor power<br />

(low <strong>and</strong> high voltage), chip<br />

comm<strong>and</strong>s, trigger<br />

Out: digitized data (later<br />

transformed in<strong>to</strong> optical)<br />

Cooling system (not<br />

shown): remove heat<br />

dissipated by FE chips<br />

8<br />

2008 JINS


Radiation Damage in a Silicon Detec<strong>to</strong>r<br />

Radiation influences all detec<strong>to</strong>r components in experimental hall<br />

Detec<strong>to</strong>r modules: sensors, readout chips, control chips<br />

Parts of readout chain (electrical & optical data transmission)<br />

Parts of infrastructure in experimental hall: cooling system, power supplies/<br />

converters<br />

In general: damage depends on composition of <strong>radiation</strong> field<br />

Charged lep<strong>to</strong>ns <strong>and</strong> hadrons: large penetration, secondary interactions in material<br />

Pho<strong>to</strong>ns: pho<strong>to</strong>-effect, Comp<strong>to</strong>n effect, pair production<br />

Neutrons: hard <strong>to</strong> shield, low-energy neutrons w<strong>and</strong>er through hall “out of time”<br />

Composition of <strong>radiation</strong> field changes with distance from collision point,<br />

e.g. damage <strong>to</strong> ATLAS pixel detec<strong>to</strong>r dominated by charged hadrons (>85%), but<br />

50% of SCT damage caused by neutrons<br />

This pair of introduc<strong>to</strong>ry lectures;<br />

Part I: Radiation damage in <strong>silicon</strong> sensors<br />

Part II: Radiation damage in electronics, especially FPGAs<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

10


Part I: Radiation Damage<br />

in Silicon Sensors


Pure <strong>silicon</strong> is a semiconduc<strong>to</strong>r<br />

Doped Semiconduc<strong>to</strong>rs<br />

B<strong>and</strong> model: valence <strong>and</strong> conduction b<strong>and</strong>s<br />

B<strong>and</strong> gap in <strong>silicon</strong>: 1.12 eV<br />

Fermi level (at 0 K) inside b<strong>and</strong> gap, conductivity<br />

through thermal excitations<br />

Properties can be changed by doping<br />

Additional energy levels in b<strong>and</strong> gap<br />

Donors: creation of additional electrons<br />

Accep<strong>to</strong>rs: creation of additional holes<br />

E Conduction B<strong>and</strong> E<br />

Valence B<strong>and</strong><br />

E F<br />

electron<br />

hole<br />

Donor Level<br />

Accep<strong>to</strong>r Level<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

[hyperphysics.phy-astr.gsu.edu]<br />

12


[en.wikipedia.org]<br />

Semiconduc<strong>to</strong>r Diodes<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

Diode = interface of pdoped<br />

<strong>and</strong> n-doped<br />

semiconduc<strong>to</strong>rs:<br />

Electrons <strong>and</strong> holes recombine<br />

→ depletion<br />

zone<br />

Reverse bias voltage<br />

applied → depletion zone<br />

extended<br />

13


Silicon Detec<strong>to</strong>rs at a Glance<br />

Example: hybrid pixel detec<strong>to</strong>rs<br />

Detec<strong>to</strong>r = semiconduc<strong>to</strong>r diode with pn junction in reverse bias → depletion zone<br />

Charged particles ionize detec<strong>to</strong>r material → electron/hole pairs induce signal<br />

250 µm<br />

Electrical<br />

Signal<br />

–<br />

–<br />

+<br />

+<br />

–<br />

–<br />

Charged<br />

Particle<br />

+<br />

+<br />

Implants: n + doped<br />

pixels (400x50 µm 2 )<br />

Bulk (n doped)<br />

Backplane (p + doped)<br />

Readout Chip:<br />

Amplification<br />

Digitization<br />

PbSn or Indium Balls (“bump bond”)<br />

Reverse Bias Voltage<br />

approx. 150 V<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

14


Czochralski (Cz) <strong>silicon</strong>:<br />

Silicon Production Mechanisms<br />

Mono-crystal pulled out of <strong>silicon</strong> melt<br />

Cheap (st<strong>and</strong>ard for microelectronics)<br />

but low purity (e.g. high oxygen<br />

concentration)<br />

Float Zone (FZ) <strong>silicon</strong>:<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

Polycrystalline rod<br />

melted in<strong>to</strong> monocrystal<br />

High purity but<br />

expensive<br />

Poly-Silicon<br />

RF Heating Coil<br />

Single-Crystal<br />

Silicon<br />

15


Radiation & Performance Parameters<br />

Single hit resolution dominated by strip pitch or pixel size (plus<br />

improvements from charge sharing) → usually not affected by <strong>radiation</strong><br />

Signal-<strong>to</strong>-noise ratio (S/N): various <strong>radiation</strong> effects<br />

Large values desirable: S/N > 15–20<br />

Rule of thumb: problems for pattern recognition for S/N < 6<br />

→ many wrong track seeds formed from combinations of signal <strong>and</strong> noise hits<br />

Number of Events<br />

400<br />

300<br />

200<br />

100<br />

Signal<br />

Noise<br />

CDF II Preliminary<br />

0<br />

0 50 100<br />

ACD Counts<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

17


Charge Collection Efficiency<br />

Charge collection efficiency (CCE)<br />

Ionization required <strong>to</strong> create one electron/hole pair: 3.6 eV<br />

Energy loss via ionization in <strong>silicon</strong>: dE/dx of a MIP 3.88 MeV/cm (mean)<br />

Typical signal in 300 µm thick <strong>silicon</strong> bulk (using most probable energy loss =<br />

0.7×mean) 22500 electrons = 3.6 fC<br />

Radiation damage mechanism: trapping of parts of the electrons in sensor defects<br />

(details later) → smaller signal<br />

Collected Charge [ke]<br />

[A. Affolder, RD50 Workshop Freiburg, June 2009]<br />

n-in-p FZ <strong>silicon</strong><br />

Equivalent Fluence [10 14 cm –2 ]<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

18


N eff - effective doping concentration<br />

#<br />

U dep [V] (d = 300µm)<br />

V dep<br />

d<br />

2<br />

5000<br />

1000<br />

500<br />

100<br />

50<br />

10<br />

5<br />

1<br />

10 -1<br />

10 0<br />

10 1<br />

10 2<br />

! eq [ 1012 cm-2 ]<br />

Radiation <strong>and</strong> Bias Voltage<br />

• Neff positive - n-type <strong>silicon</strong> (e.g. Phosphorus doped - Donor)<br />

• Neff negative - p-type <strong>silicon</strong> (e.g. Boron doped - Accep<strong>to</strong>r)<br />

n - type<br />

Lab Environment HEP Experiment (CDF)<br />

• |N eff| proportional <strong>to</strong> depletion voltage <strong>and</strong> 1/(device thickness) 2<br />

type inversion<br />

"p - type"<br />

10 14 cm -2<br />

10 14 cm -2<br />

" 600 V<br />

[M. Moll after R. Wuns<strong>to</strong>rf,<br />

PhD Thesis, U Hamburg (1992)]<br />

10 3<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

| N eff | [ 10 11 cm -3 ]<br />

[Data from R. Wuns<strong>to</strong>rf 92]<br />

epletion Voltage (V)<br />

Michael Moll - CERN EP-TA1-SD Seminar - 14.2.2001 - 10 -<br />

800<br />

600<br />

Integrated Luminosity (pb –1 0<br />

0 2000 4000 6000 8000<br />

)<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

Depletion Voltage (V)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Depletion Voltage (V)<br />

Extrapolation from Linear Fits<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Inversion Point<br />

Ladder L00-f800<br />

0<br />

0 2000 4000<br />

Integrated Luminosity (pb –1)<br />

SGS Thomson Ladders (st<strong>and</strong>ard narrows)<br />

Hamamatsu Ladders (wides)<br />

Micron Ladders (oxygenated narrows)<br />

46 (out of 48) Ladders Plotted<br />

Ladder Breakdown<br />

Power Supply Limit<br />

21<br />

[UH, Proc. IEEE NSS 2008]<br />

1000 Extrapolation from Linea<br />

Depletion Voltage (V)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Inversion Point<br />

Ladder L00-f800<br />

0<br />

0 2000 4000<br />

Integrated Luminosity (pb –1)<br />

Ladder<br />

Power


Primary knock-on a<strong>to</strong>m (PKA)<br />

Basic process: displacement of<br />

Si a<strong>to</strong>ms in lattice<br />

Threshold for displacement<br />

damage: minimum recoil energy<br />

Classes of damage<br />

(depending on recoil energy)<br />

Isolated point defects<br />

→ minimum recoil energy<br />

ER > 15–25 eV<br />

Defect clusters = areas with large<br />

number defects → ER > 15 keV<br />

Defects are dynamic:<br />

Movement in crystal<br />

Recombination with other defects<br />

Annealing with high temperature<br />

Microscopic Picture<br />

[V.A.J. van Lint et al., Mechanisms of Radiation<br />

Effects in Electronic Materials, Wiley 1980]<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

22


D(E) / (95 MeV mb)<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

Displacement damage functions<br />

Displacement Damage Function<br />

4<br />

2<br />

0.8<br />

0.6<br />

1<br />

0.4<br />

neutrons<br />

10 0<br />

pions<br />

10 1<br />

pro<strong>to</strong>ns<br />

10 2<br />

10 3<br />

neutrons<br />

10 -10 10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4<br />

10<br />

particle energy [MeV]<br />

-5<br />

NIEL - Non Ionizing Energy Loss<br />

[M.Moll, PhD Thesis, U Hamburg (1999)]<br />

pro<strong>to</strong>ns<br />

electrons<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

10 4<br />

pions<br />

24<br />

For Silic<br />

100 Me<br />

= 2.14


=<br />

q [cm -2 ]<br />

Φ eq<br />

10 16<br />

Equivalent Fluences at Hadron Colliders<br />

!<br />

SUPER - LHC (5 years, 2500 fb -1 )<br />

5<br />

10 15<br />

5<br />

10 14<br />

5<br />

10 13<br />

Pixel (?) Ministrip (?)<br />

ATLAS Pixel<br />

Macropixel (?)<br />

<strong>to</strong>tal fluence Φ eq<br />

ATLAS SCT - barrel<br />

(microstrip detec<strong>to</strong>rs)<br />

0 10 20 30 40 50 60<br />

r [cm]<br />

neutrons t Φ Φeq pions Φ eq<br />

[M [M.Moll, M ll simplified, i lifi d scaled l d ffrom ATLAS TDR]<br />

other charged<br />

hadrons Φ eq<br />

[M. Moll, ATLAS/CMS Common<br />

Electronics Workshop, CERN, March 2007]<br />

Michael Moll – CERN, 20. March 2007 -2-<br />

Fluence Order of Magnitude Estimate<br />

Experiment Luminosity/<br />

Radius<br />

Tevatron<br />

(CDF)<br />

LHC<br />

(ATLAS)<br />

LHC-HL<br />

(ATLAS)<br />

10 fb –1 /<br />

3 cm<br />

10 fb –1 /<br />

3 cm<br />

10 fb –1 /<br />

3 cm<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

26<br />

Equiv.<br />

Fluence<br />

10 14 cm –2<br />

10 15 cm –2<br />

10 16 cm –2


Microscopic Picture: Point Defects<br />

Many classes of point defects<br />

Interstitials: Si (or non-Si) a<strong>to</strong>ms<br />

between lattice positions (“I”, “BI”)<br />

Substitution of lattice a<strong>to</strong>ms with non-Si,<br />

e.g. carbon (“CS”)<br />

Vacancies in lattice (“V”), also divacancies<br />

(“V2”)<br />

Combinations of the above, e.g. Frenkel<br />

defects, vacancy+oxygen (“V–O”)<br />

Interstitials <strong>and</strong> vacancies: mobile at<br />

room temperature<br />

Annealing via recombination<br />

Stable defects via recombination with<br />

certain impurities<br />

Some defects: electrically active<br />

More details: lecture by E. Monakhov<br />

non-Si a<strong>to</strong>m<br />

in lattice<br />

vacancy-a<strong>to</strong>m<br />

combinations<br />

vacancy<br />

di-vacancy<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, Figure 2010, U. 3.6: Husemann: Illustration of <strong>Introduction</strong> possible lattice (Part damage I) 27 caused by <strong>radiation</strong> [23]; <strong>to</strong>p<br />

Si-interstitials<br />

non-Siinterstitial<br />

[J. Große-Knetter, Habilitation<br />

Thesis, U Bonn (2008),<br />

after R. Wuns<strong>to</strong>rf]


E<br />

E<br />

Generation<br />

Point Defects in the B<strong>and</strong> Model<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

E<br />

Recombination<br />

“Deep” levels (~center of b<strong>and</strong> gap) → source of leakage current, e.g. V–B<br />

Trapping<br />

E<br />

Compensation<br />

“Shallow” levels (close <strong>to</strong> valence/conduction b<strong>and</strong>) → reduced charge collection efficiency<br />

28


Typical Labora<strong>to</strong>ry Setup<br />

Probe Station Electronics Setup<br />

precise (au<strong>to</strong>matic) positioning<br />

of probe needles on bond<br />

pads of sensors<br />

[H. Feick, PhD Thesis, U Hamburg (1997)]<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

30


Measuring Microscopic Defects<br />

Deep Level Transient Spectroscopy (DLTS)<br />

Introduce free charge carriers in<strong>to</strong> depleted sensors, e.g. by pulsing bias voltage<br />

(0 V or forward bias)<br />

Analyze system answer transient, e.g. capacitance over time<br />

→ defect concentration, activation energy, electron/hole capture cross section …<br />

More in lecture by Edouard Monakhov on Wednesday<br />

Thermally Stimulated Current<br />

(TSC) spectroscopy<br />

1. Cool down sensor under reverse<br />

bias, moni<strong>to</strong>r bulk generation current<br />

2. Inject free charge carriers at low<br />

temperature (e.g. 20 K): forward bias<br />

or illumination with laser that fits<br />

b<strong>and</strong> gap<br />

3. Heat sensor → trapped charges<br />

released at specific temperatures:<br />

characteristic current peaks<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

31<br />

[M. Moll, PhD Thesis, U Hamburg (1999)]


Defect annealing<br />

Annealing of Sensor Defects<br />

Above a certain temperature:<br />

migration of defects → defects<br />

can be gettered e.g. at surface<br />

or recombine with counterpart<br />

(e.g. SiI + V → SiS) or form new<br />

defects<br />

Lattice vibrational energy larger<br />

than binding energy: dissociation<br />

of complex defects<br />

Annealing studies: information<br />

on defects in addition <strong>to</strong><br />

activation energy <strong>and</strong> capture<br />

cross section<br />

Classification<br />

Short term beneficial annealing<br />

Stable damage<br />

Long term reverse annealing<br />

Systematic analysis of annealing data<br />

Example: oxygen enriched <strong>silicon</strong> after 24 GeV/c pro<strong>to</strong>n ir<strong>radiation</strong><br />

Instead of depletion voltage plot the<br />

change in the effective space charge !Neff !N eff [1/cm 3 ]<br />

2.0 . 10 13<br />

1.5 . 10 13<br />

1.0 . 10 13<br />

5.0 . 10 12<br />

5 10 1 5 10 2 5 10 3 5 10 4 5 10 5<br />

annealing time at 60 o C [min]<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

0.0<br />

24 GeV/c pro<strong>to</strong>n ir<strong>radiation</strong><br />

10.3 . 10 14 p/cm 2<br />

6.2 . 10 14 p/cm 2<br />

4.2 . 10 14 p/cm 2<br />

3.4 . 10 14 p/cm 2<br />

2.0 . 10 14 p/cm 2<br />

!<br />

1.2 . 10 14 p/cm 2<br />

5.9 . 10 13 p/cm 2<br />

2.9 . 10 13 p/cm 2<br />

1.6 . 10 13 p/cm 2<br />

( " t)<br />

= N # N (<br />

Neff eq,<br />

eff 0 eff " eq<br />

2.0 . 10 13<br />

1.5 . 10 13<br />

1.0 . 10 13<br />

5.0 . 10 12<br />

0.0<br />

[M. Moll]<br />

Michael Moll - CERN EP-TA1-SD Seminar - 14.2<br />

32


RD50<br />

Point defects<br />

• E i BD = Ec – 0.225 eV<br />

• ! n BD =2.3"10 -14 cm 2<br />

• E i I = Ec – 0.545 eV<br />

• ! n I =2.3"10 -14 cm 2<br />

• !p I =2.3"10 -14 cm 2<br />

Cluster related centers<br />

• E i 116K = Ev + 0.33eV<br />

• ! p 116K =4"10 -14 cm 2<br />

• E i 140K = Ev + 0.36eV<br />

• ! p 140K =2.5"10 -15 cm 2<br />

• E i 152K = Ev + 0.42eV<br />

• ! p 152K =2.3"10 -14 cm 2<br />

• E i 30K = Ec - 0.1eV<br />

• ! n 30K =2.3"10 -14 cm 2<br />

Summary – defects with strong impact on the<br />

device properties at operating temperature<br />

0 charged<br />

at RT<br />

VO<br />

V 2<br />

-/0<br />

C iO i +/0<br />

-/0 P 0/+<br />

BD 0/++<br />

I p<br />

B 0/-<br />

0/-<br />

Point defects<br />

+/- charged at RT<br />

E30K 0/+<br />

H152K 0/-<br />

H140K 0/-<br />

H116K 0/-<br />

extended defects<br />

Mara Bruzzi <strong>and</strong> Michael Moll on behalf of RD50 – LHCC, February 18, 2010 – Slide 8<br />

positive charge<br />

(higher introduction after<br />

pro<strong>to</strong>n ir<strong>radiation</strong> than after<br />

neutron ir<strong>radiation</strong>)<br />

positive charge<br />

(high concentration in oxygen<br />

rich material)<br />

leakage current<br />

+ neg. charge<br />

(current after # ir<strong>radiation</strong>)<br />

Reverse<br />

annealing<br />

(neg. charge)


• Columns etched from opposite sides of<br />

substrate <strong>and</strong> don't pass through full<br />

thickness<br />

Current CERN planning: run LHC<br />

until about 2030 (“LHC-HL”)<br />

→ integrated luminosity: 3000 fb –1<br />

• All fabrication done in-house<br />

• ICP is a reliable <strong>and</strong> repeatable process<br />

(many successful runs)<br />

R&D on detec<strong>to</strong>rs for very high<br />

equivalent fluences > 1016 cm –2<br />

Electrode fabrication:<br />

1. ICP<br />

3D<br />

etching<br />

<strong>silicon</strong><br />

of<br />

sensors<br />

the holes: Bosch<br />

process, Strip sensors ALCATEL with 601-E p-bulk<br />

2. Holes partially filled with 3 µm LPCVD<br />

poly 3D <strong>silicon</strong> sensors at a glance:<br />

3. Doping with P or B<br />

4. Holes Instead passivated of strips: with narrow TEOS (10 SiOµm) 2<br />

columns along sensor thickness<br />

A Look in<strong>to</strong> the Future<br />

!"#$%&'()*&*+,!+-.+/01<br />

!"#$%& ()*&*+,!+-.+/01<br />

Advantage: decouple charge collection<br />

<strong>and</strong> Hole sensor aspect thickness ratio 25:1<br />

Shorter 10µm charge diameter, collection 250µm deep distance:<br />

lower P- <strong>and</strong> depletion N-type substrates, voltage, faster 285µm signal, thick<br />

less trapping → <strong>radiation</strong> hard<br />

C. Fleta, 16th RD50 Workshop, 02/06/2010<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

35<br />

[C. Fieta, RD50 Workshop, Barcelona 2010]


t<br />

p-in-n Sensor after Type Inversion<br />

depleted<br />

un-depleted<br />

p-on-n geometry (after type inversion)<br />

n-in-p Sensor<br />

(or n-in-n after type inversion)<br />

depleted<br />

h<br />

un-depleted<br />

n-on-p geometry<br />

n-on-n geometry ( after type inversion)<br />

Sensors with p-Type Bulk<br />

p+<br />

p-<br />

n+<br />

[S. Seidel, Vienna Conference on Instrumentation 2010]<br />

e<br />

n+<br />

p-<br />

p+<br />

n-bulk (after type inversion)<br />

depleted<br />

Majority charge carriers: holes<br />

(smaller mobility e than electrons)<br />

Depletion zone builds from<br />

(unsegmented) back side<br />

→ sensor must be fully depleted<br />

un-depleted<br />

p-bulk<br />

p+<br />

n-on-p geometry<br />

n-on-n geometry ( after type inversion)<br />

No type inversion via <strong>radiation</strong><br />

Majority charge carriers: electrons<br />

Depletion zone builds from<br />

segmented side<br />

→ can run underdepleted<br />

Simpler single-sided processing<br />

n-in-p sensors serious c<strong>and</strong>idate<br />

for ATLAS <strong>silicon</strong> strip detec<strong>to</strong>r<br />

upgrade<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5,<br />

!"#<br />

2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

36<br />

n+<br />

p-<br />

!"


Sensors with p-Type Bulk<br />

Good performance of planar sensors at high fluence<br />

Further (surprising) advantage of n-in-p FZ <strong>silicon</strong><br />

• Why do planar <strong>silicon</strong> sensors with n-strip readout give such high<br />

CCE<br />

signals<br />

shows<br />

after<br />

not<br />

high<br />

reverse<br />

levels<br />

annealing,<br />

(>10<br />

even when underdepleted<br />

15 cm-2 p/cm2 ) of ir<strong>radiation</strong>?<br />

RD50<br />

Current • Extrapolation interpretation: of charge charge trapping multiplication parameters obtained effects at (not described by Hamburg<br />

model), lower even fluences CCE would > 1 for predict very much high lower bias voltage signal! (1700 V)<br />

→ feasible in LHC experiments?<br />

• Assumption: ‘Charge multiplication effects’ as even CCE > 1 was observed<br />

Collected Charge [10 3 electrons]<br />

25<br />

20<br />

15<br />

10<br />

5<br />

p-in-n-FZ (500V)<br />

n-in-p-Fz (800V)<br />

500V<br />

10 14 5 10 15 5 10 16<br />

! eq [cm -2 ]<br />

n-in-p-Fz (1700V)<br />

800V<br />

1700V<br />

n-in-p-Fz (500V)<br />

M.Moll - 09/2009<br />

FZ Silicon Strip Sensors<br />

Mara Bruzzi <strong>and</strong> Michael Moll on behalf of RD50 – LHCC, February 18, 2010 – Slide 15<br />

n-in-p (FZ), 300µm, 500V, 23GeV p [1]<br />

n-in-p (FZ), 300µm, 500V, neutrons [1,2]<br />

n-in-p (FZ), 300µm, 500V, 26MeV p [1]<br />

n-in-p (FZ), 300µm, 800V, 23GeV p [1]<br />

n-in-p (FZ), 300µm, 800V, neutrons [1,2]<br />

n-in-p (FZ), 300µm, 800V, 26MeV p [1]<br />

n-in-p (FZ), 300µm, 1700V, neutrons [2]<br />

p-in-n (FZ), 300µm, 500V, 23GeV p [1]<br />

p-in-n (FZ), 300µm, 500V, neutrons [1]<br />

References:<br />

[1] G.Casse, VERTEX 2008<br />

(p/n-FZ, 300µm, (-30 o C, 25ns)<br />

[2] I.M<strong>and</strong>ic et al., NIMA 603 (2009) 263<br />

(p-FZ, 300µm, -20 o C <strong>to</strong> -40 o C, 25ns)<br />

• Which voltage can be applied?<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

37


Summary<br />

Radiation damage <strong>to</strong> <strong>silicon</strong> sensors at hadron colliders<br />

Equivalent fluences up <strong>to</strong> 10 16 1 MeV n per cm 2 in LHC high-luminosity phase<br />

Major challenge for operating <strong>silicon</strong> detec<strong>to</strong>rs at hadron colliders<br />

Macroscopic consequences:<br />

Change of effective charge carrier concentration → increased depletion voltage<br />

Increase leakage current → more noise, thermal runaway<br />

Reduced charge collection efficiency → smaller signals<br />

Microscopic underst<strong>and</strong>ing:<br />

Point defects <strong>and</strong> clusters, some are electrically active<br />

Labora<strong>to</strong>ry measurements: I–V <strong>and</strong> C–V characteristics, DLTS, TSC, annealing<br />

Phenomenological Hamburg model<br />

Active field of research: exploring new sensor types, production methods,<br />

<strong>and</strong> behavior at very high fluences<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

38


The Hamburg connection<br />

Additional Material<br />

R. Wuns<strong>to</strong>rf,<br />

Systematische Untersuchungen zur Strahlenresistenz von Silizium-Detek<strong>to</strong>ren für<br />

die Verwendung in Hochenergiephysik-Experimenten,<br />

PhD Thesis, U Hamburg 1992<br />

M. Moll,<br />

Radiation Damage in Silicon Particle Detec<strong>to</strong>rs,<br />

PhD Thesis, U Hamburg 1999<br />

CERN RD50 collaboration: http://www.cern.ch/rd50<br />

Books:<br />

G. Lutz, Semiconduc<strong>to</strong>r Radiation Detec<strong>to</strong>rs, Springer, 2007<br />

L. Rossi, P. Fischer, T. Rohe, N. Wermes, Pixel Detec<strong>to</strong>rs, Springer, 2006<br />

S.M. Sze, Physics of Semiconduc<strong>to</strong>r Devices, Wiley, 1985<br />

<strong>IRTG</strong> Fall School 2010, <strong>Heidelberg</strong>, November 1–5, 2010, U. Husemann: <strong>Introduction</strong> (Part I)<br />

39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!