01.08.2013 Views

Mirror symmetry in the character table of SL_n(F_q) - GEOM - EPFL

Mirror symmetry in the character table of SL_n(F_q) - GEOM - EPFL

Mirror symmetry in the character table of SL_n(F_q) - GEOM - EPFL

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Mirror</strong> <strong>symmetry</strong> <strong>in</strong> <strong>the</strong> <strong>character</strong> <strong>table</strong> <strong>of</strong><br />

<strong>SL</strong>n(Fq)<br />

jo<strong>in</strong>t work with M. Mereb and F. R. Villegas<br />

Tamás Hausel<br />

Chair <strong>of</strong> Geometry, EPF Lausanne<br />

http://geom.epfl.ch/Hausel/talks<br />

De la géométrie algébrique aux formes automorphes :<br />

une conférence en l’honneur de Gérard Laumon<br />

Université Paris-Sud, Orsay<br />

29 June 2012<br />

1 / 15


Quote from (Atiyah 2004)<br />

”I would like to make a rash prediction that ideas from physics<br />

will have a big impact on number <strong>the</strong>ory as <strong>the</strong> ideas flow<br />

across ma<strong>the</strong>matics - on one extreme number <strong>the</strong>ory, on <strong>the</strong><br />

o<strong>the</strong>r physics, and <strong>in</strong> <strong>the</strong> middle geometry: <strong>the</strong> w<strong>in</strong>d is<br />

blow<strong>in</strong>g, and it will eventually reach to <strong>the</strong> far<strong>the</strong>st extremities<br />

<strong>of</strong> number <strong>the</strong>ory and give us a new po<strong>in</strong>t <strong>of</strong> view.”<br />

2 / 15


Cartoon I<br />

∇ · E = 0 ∇ · B = 0<br />

Maxwell’s equations:<br />

∇ × E = − ∂B<br />

∂E<br />

∂t ∇ × B = ∂t<br />

electro-magnetic duality: (E, B) ↔ (B, −E)<br />

⇓<br />

S-duality for N = 4 SUSY Yang–Mills gauge groups G and G L<br />

(Montonen–Olive 1977)<br />

⇓<br />

MDol<br />

T-duality between σ-models with target MHitch<strong>in</strong> MDR<br />

MB<br />

(Bershadsky–Johanssen–Sadov–Vafa 1995)<br />

⇓<br />

3 / 15


Cartoon II<br />

(Strom<strong>in</strong>ger–Yau–Zaslow 1996) mirror <strong>symmetry</strong> for<br />

MDol(G)<br />

MDol(G<br />

<br />

<br />

χG <br />

<br />

L )<br />

χGL <br />

A<br />

(Hausel–Thaddeus 2003; Donagi–Pantev 2006 )<br />

⇓<br />

Homological mirror <strong>symmetry</strong> = Geometric Langlands<br />

D b (Coh(MDR(G))) ∼ D b (Fuk(MDR(G L )))<br />

(Kontsevich 1994; Laumon 1987)<br />

(Beil<strong>in</strong>son–Dr<strong>in</strong>feld 1995; Kapust<strong>in</strong>–Witten 2007)<br />

⇓<br />

semi-classical limit fiberwise Fourier-Mukai transform<br />

D b (Coh(MDol(G))) ∼ D b (Coh(MDol(G L )))<br />

(Ar<strong>in</strong>k<strong>in</strong> 2002, Donagi–Pantev 2009)<br />

⇓<br />

4 / 15


Cartoon III<br />

cohomological shadow <strong>of</strong> fiberwise Fourier–Mukai transform<br />

H ∗ str (MDol(G)) H ∗ str (MDol(G L ))<br />

(Hausel–Thaddeus 2003; Ngô 2010)<br />

⇓<br />

P = W conjecture <strong>of</strong> (de Cataldo–Hausel–Miglior<strong>in</strong>i, 2012) <br />

H ∗ str (MB(G)) H ∗ str (MB(G L ))<br />

(Hausel–Villegas 2004)<br />

⇓<br />

Frobenius formula identities <strong>in</strong> Irr(G(Fq)) and Irr(G L (Fq)) <br />

#str(MB(G)(Fq)) = #str(MB(G L )(Fq))<br />

(Hausel–Mereb–Villegas 2012)<br />

5 / 15


<strong>SL</strong>n & PGLn Higgs moduli spaces<br />

C smooth projective curve; G = <strong>SL</strong>n G L = PGLn; Λ ∈ Pic d (C)<br />

Λ-twisted <strong>SL</strong>n Higgs bundle (E, φ)<br />

φ ∈ H 0 (C; End0(E) ⊗ K) and det(E) = Λ<br />

MDol(<strong>SL</strong>n) moduli <strong>of</strong> semi-s<strong>table</strong> Λ-twisted <strong>SL</strong>n Higgs bundles<br />

(n, d) = 1 ⇒ MDol(<strong>SL</strong>n) non-s<strong>in</strong>gular quasi-projective<br />

Γ := Jac(C)[n] (Z/nZ) 2g acts by: (E, φ) ↦→ (E ⊗ L, φ)<br />

PGLn Higgs moduli space is <strong>the</strong> orbifold:<br />

MDol(PGLn) := MDol(<strong>SL</strong>n)/Γ<br />

6 / 15


Hitch<strong>in</strong> map and SYZ<br />

Hitch<strong>in</strong> map: χ<strong>SL</strong>n : MDol(<strong>SL</strong>n) → A := n<br />

i=2 H0 (C; K i )<br />

(E, φ) ↦→ charpol(φ)<br />

Theorem (Hitch<strong>in</strong> 1987,1989; Nitsure 1991; Falt<strong>in</strong>gs 1993)<br />

χ<strong>SL</strong>n<br />

is proper completely <strong>in</strong>tegrable system.<br />

Theorem (Hausel–Thaddeus 2003)<br />

MDol(<strong>SL</strong>n)<br />

MDol(PGLn)<br />

<br />

<br />

χ<strong>SL</strong>n<br />

<br />

χPGLn<br />

<br />

<br />

A<br />

satisfies (Strom<strong>in</strong>ger-Yau-Zaslow 1996) for mirror <strong>symmetry</strong>.<br />

7 / 15


Topological mirror <strong>symmetry</strong><br />

Conjecture (Hausel-Thaddeus 2003)<br />

H∗ str (MDol(<strong>SL</strong>n); Q) H∗ str,B (MDol(PGLn); Q)<br />

<br />

<br />

κ∈ˆΓ H∗ (MDol(<strong>SL</strong>n); Q)κ <br />

γ∈Γ H∗−codimMγ<br />

Results:<br />

n = 2, 3 by (Hausel, Thaddeus 2003)<br />

for all n <strong>in</strong> <strong>the</strong> middle degree ∗ = MDol(<strong>SL</strong>n)<br />

by (Garcia-Prada–He<strong>in</strong>loth–Schmidt, 2010)<br />

us<strong>in</strong>g (Laumon, 1987)<br />

for all n up to degree ∗ < m<strong>in</strong>γ∈Γ∗ codimMγ<br />

by (Hausel–Pauly 2012)<br />

us<strong>in</strong>g symmetries <strong>of</strong> Hitch<strong>in</strong> fibers (Ngô, 2006)<br />

(MDol(<strong>SL</strong>n) γ /Γ, L B γ )<br />

8 / 15


Perverse filtration<br />

for any proper map f : X → Y (de Cataldo-Miglior<strong>in</strong>i 2005)<br />

<strong>in</strong>troduce perverse filtration ⊂ Pi ⊂ Pi+1 ⊂ . . . Pk H k (X)<br />

from <strong>the</strong> study <strong>of</strong> <strong>the</strong> Beil<strong>in</strong>son-Bernste<strong>in</strong>-Deligne-Gabber<br />

decomposition <strong>the</strong>orem for f!(QX) <strong>in</strong>to perverse sheaves<br />

extend<strong>in</strong>g <strong>the</strong> geometric fundamental lemma <strong>of</strong> (Ngô, 2010)<br />

from Aell over A <br />

Conjecture (Ref<strong>in</strong>ed topological mirror test)<br />

Under <strong>the</strong> Weil pair<strong>in</strong>g Γ ∗ Γ given by κ ↔ γ<br />

Gr P<br />

k H∗ (MDol(<strong>SL</strong>n))κ Gr P<br />

k− F(γ) H<br />

2<br />

∗−F(γ) (MDol(<strong>SL</strong>n) γ /Γ, L B γ )<br />

9 / 15


Character varieties<br />

<strong>the</strong> <strong>SL</strong>n-<strong>character</strong> variety:<br />

MB(<strong>SL</strong>n) := {(Ai, Bi)i=1..g ∈ <strong>SL</strong> 2g<br />

n | [A1, B1] . . . [Ag, Bg] = ζ d n In}//PGLn<br />

non-s<strong>in</strong>gular, aff<strong>in</strong>e<br />

for PGLn note that Γ (Zn) 2g acts on MB(<strong>SL</strong>n)<br />

MB(PGLn) := MB(<strong>SL</strong>n)/Γ<br />

Theorem (Non-Abelian Hodge Theorem; Simpson, Corlette)<br />

MDol<br />

diff<br />

MB<br />

10 / 15


P = W and Betti <strong>Mirror</strong> Symmetry<br />

Conjecture (”P=W”, de Cataldo-Hausel-Miglior<strong>in</strong>i 2012)<br />

Pk (MDol) W2k (MB) under <strong>the</strong> isomorphism<br />

H ∗ (MDol) H ∗ (MB) from non-Abelian Hodge <strong>the</strong>ory.<br />

Conjecture (Hausel–Villegas 2004)<br />

Under <strong>the</strong> Weil pair<strong>in</strong>g Γ ∗ Γ given by κ ↔ γ<br />

Gr W<br />

k H∗ (MB(<strong>SL</strong>n))κ Gr W<br />

2k−F(γ) H∗−F(γ) (MB(<strong>SL</strong>n) γ /Γ, L B γ )<br />

<strong>in</strong> particular<br />

Eκ(MB(<strong>SL</strong>n)) :=<br />

<br />

<br />

<br />

E(MB(<strong>SL</strong>n) γ /Γ, L B γ )q F(γ) =<br />

k,i<br />

i,k<br />

|Gr W<br />

k Hi (MB(<strong>SL</strong>n))κ|q k (−1) i<br />

|Gr W<br />

2k Hi (MB(<strong>SL</strong>n) γ /Γ, L B γ )|q k+F(γ) (−1) i<br />

11 / 15


Arithmetic harmonic analysis<br />

Theorem (Katz, 2008)<br />

When X/Z has polynomial-count<br />

<br />

#(X(Fq)) = E(X/C, q) = |GrW k Hi (X/C)|qk (−1) i<br />

Theorem (Frobenius, 1896)<br />

For any f<strong>in</strong>ite group G:<br />

# a1, b1, . . . , ag, bg ∈ G| [ai, bi] = z =<br />

i,k<br />

<br />

χ∈Irr(G)<br />

|G| 2g−1<br />

χ(1) 2g−1 χ(z)<br />

for G = GLn(Fq) (Hausel–Letellier–Villegas, 2006–2012)<br />

have evaluated this and more general <strong>character</strong> formulas <br />

complete conjectures about <strong>the</strong> mixed Hodge polynomials<br />

<br />

i,k |GrW k Hi (MB(GLn))|qk ti us<strong>in</strong>g Macdonald polynomials<br />

for G = <strong>SL</strong>n(Fq) and z = exp( 2πid<br />

n ) <strong>the</strong> <strong>character</strong> formula was<br />

evaluated <strong>in</strong> (Mereb, 2010)<br />

12 / 15


Character formulas for ref<strong>in</strong>ed Betti mirror <strong>symmetry</strong><br />

κ ∈ ˆΓ and ɛ ∈ ˆF × q such that ord(κ) = ord(ɛ) = k<br />

Eκ(MB(<strong>SL</strong>n)) =<br />

<br />

|θ| −2g<br />

2g−2 |<strong>SL</strong>n(Fq)| θ(ζIn)<br />

θ(1) θ(1)<br />

when k = ord(γ)<br />

=<br />

θ∈Irr(<strong>SL</strong>n(Fq))<br />

k||θ|<br />

1<br />

(q−1) 2g−1<br />

E(MB(<strong>SL</strong>n) γ /Γ, L B γ )q F(γ) =<br />

<br />

s|k<br />

n2<br />

k−1<br />

µ(s)q k (g−1)<br />

k(q−1) 2g−1<br />

<br />

χ∈Irr(GLn/k (F q s ))<br />

χ=χ Frobq<br />

<br />

χ∈Irr(GLn(Fq))<br />

χ=ɛχ<br />

|GLn/k (F q s )|<br />

χ(1)<br />

2g−2 |GLn(Fq)| χ(ζIn)<br />

χ(1) χ(1)<br />

(2g−2)k/s k/s χ(ζn1)<br />

χ(1)<br />

13 / 15


Ma<strong>in</strong> result<br />

Theorem (Hausel–Mereb–Villegas 2012)<br />

When κ ∈ ˆΓ and γ ∈ Γ such that ord(κ) = ord(γ) = k<br />

E(MB(<strong>SL</strong>n) γ /Γ, L B γ )q F(γ) =<br />

<br />

<br />

= qn2 (g−1)<br />

k(q−1) 2g−2<br />

u|k ∞<br />

1<br />

u<br />

s|k<br />

= Eκ(MB(<strong>SL</strong>n)).<br />

(g−1)n2<br />

q− uk<br />

µ(s)<br />

(qus−1) 2 <br />

E<br />

M<br />

k ( s )<br />

B (GL n ); qus<br />

ku<br />

one can compute from this χ(MB(<strong>SL</strong>n)) = µ(n)n 4g−3<br />

match<strong>in</strong>g (Mereb 2010)<br />

this has a natural t-deformation giv<strong>in</strong>g a conjecture for <strong>the</strong><br />

mixed Hodge polynomial <strong>of</strong> MB(<strong>SL</strong>n) and <strong>in</strong> turn <strong>the</strong> mixed<br />

Hodge polynomial <strong>of</strong> MDol(<strong>SL</strong>n)<br />

<br />

=<br />

14 / 15


Betti mirror <strong>symmetry</strong> for generic reductive group G?<br />

let G be complex reductive<br />

(Hausel–Letellier–Villegas 2012) def<strong>in</strong>ition for<br />

H∗ str (T ∗V////G) for <strong>the</strong> str<strong>in</strong>gy cohomology <strong>of</strong> symplectic<br />

quotient attached to any representation G → GL(V)<br />

G<br />

µ :<br />

2g → G<br />

(Ai, Bi) g<br />

group valued moment map<br />

↦→ Πi[Ai, Bi] 1<br />

equivariant<br />

usual quotient MB(G) := µ −1 (1)//G<br />

C ⊂ G generic regular semisimple conjugacy class<br />

˜MB(G) := µ −1 (C)//G orbifold and <strong>the</strong> Weyl group W <strong>of</strong> G acts<br />

on H∗ str ( ˜ MB(G))<br />

∗+dim C<br />

H∗ str (MB(G)) := Hstr ( ˜ MB(G))ɛ where ɛ is <strong>the</strong> sign<br />

representation <strong>of</strong> W on Hmid (C)<br />

Conjecture<br />

H ∗ str (MB(G)) H ∗ str (MB(G L ))<br />

15 / 15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!