02.08.2013 Views

x - Epsilen

x - Epsilen

x - Epsilen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

!<br />

A. Limits - L’Hopital’s Rule<br />

What you are finding: L’Hopital’s Rule is used to find limits of the form<br />

f ( x)<br />

lim where lim f ( x)<br />

= limg( x)<br />

= 0 or lim f ( x)<br />

= limg( x)<br />

= # .<br />

x "c g( x)<br />

x "c<br />

x "c<br />

x "c<br />

x "c<br />

0 "<br />

How to find it: Try and find limits by traditional methods (plugging in). If you get or<br />

0 "<br />

!<br />

, apply<br />

f ( x)<br />

f # ( x)<br />

L’Hopital’s rule, which says that lim = lim . L’Hopital’s rule can be applied whenever plugging<br />

x "c g( x)<br />

x "c g # ( x)<br />

0<br />

in creates an indeterminate form:<br />

0<br />

!<br />

!<br />

,"<br />

" ,0# "," $ ",1" ,0 0 , and " 0 . A limit involving 0" # or # $ # is found by<br />

creating a quotient out of that expression. A limit involving exponents ( 1<br />

!<br />

!<br />

" ,0 0 , or " 0 ) involves taking a<br />

natural log of the expression to “move the exponent down.”<br />

e<br />

1. Find lim<br />

x "0<br />

x + cos x # x # 2<br />

x 4 # x 3<br />

!<br />

A.<br />

" 1<br />

30<br />

!<br />

B.<br />

" 1<br />

24<br />

!<br />

C.<br />

" 1<br />

6<br />

D. 0 E. nonexistent<br />

_______________________________________________________________________________________<br />

!<br />

2. Find<br />

lim<br />

x "1 + x 2 ( #1)ln(<br />

x #1)<br />

A. 0 B.<br />

!<br />

"1<br />

2<br />

!<br />

C.<br />

1<br />

2<br />

D. -1 E. nonexistent<br />

© 2011 www.mastermathmentor.com - 7 - Demystifying the BC Calculus MC Exam


!<br />

!<br />

3. Find<br />

lim<br />

x "2<br />

e t 2 x<br />

#1<br />

$ dt<br />

2<br />

x 3 # 4x<br />

A. 0 B.<br />

!<br />

e 4<br />

12<br />

!<br />

C.<br />

e 3<br />

8<br />

© 2011 www.mastermathmentor.com - 8 - Demystifying the BC Calculus MC Exam<br />

!<br />

D.<br />

"e<br />

6<br />

E. nonexistent<br />

_______________________________________________________________________________________<br />

4. A particle moves in the xy-plane so that the position of the particle at any time t is given by<br />

x( t)<br />

= cost and y( t)<br />

= sin 2 dy<br />

4t. Find lim<br />

t "0 dx .<br />

A. -32 B. -16 C. -8 D. -4 E. 0<br />

!<br />

_______________________________________________________________________________________<br />

5. A population of bacteria is growing and at any time t, the population is given by 500 1+ 2<br />

t<br />

" %<br />

$ ' . Find the<br />

# t &<br />

maximum limit of the population.<br />

A. 500 B. 500 + e C. 500e D. 2 + ln500 E.<br />

!<br />

!<br />

!<br />

!<br />

!<br />

500e 2


!<br />

!<br />

B1. Integration by Parts<br />

What you are finding: When you attempt to integrate an expression, you try all the rules you have been<br />

given to that point - typically power, substitution, and the like. But if these don’t work, integration by parts<br />

may do the trick. Integration by parts is usually used when you are need to find the integral of a product.<br />

How to find it: Integration by parts states that # u dv = uv " # v du + C.<br />

To perform integration by parts,<br />

u = v =<br />

set up:<br />

. You need to fill in the u and the dv from the original problem. Determine<br />

du = dv =<br />

du and v, then substitute into the formula. You are replacing one integration problem with another that<br />

might more easily be done with simple ! methods. The trick is to determine the u and the dv. Functions that<br />

can be “powered down” are typically the u and functions that have repetitive derivatives (exponential and<br />

!<br />

trig) are typically the dv.<br />

!<br />

!<br />

!<br />

6.<br />

"<br />

2x cos4x dx =<br />

A.<br />

x<br />

sin4x + cos4x + C B.<br />

2<br />

!<br />

© 2011 www.mastermathmentor.com - 9 - Demystifying the BC Calculus MC Exam<br />

x<br />

2<br />

1<br />

sin4x + cos4x + C<br />

8<br />

C. 8x sin4x + 32cos4x + C D. 8x sin4x " 32cos4x + C<br />

E.<br />

x<br />

sin4x " cos4x + C<br />

2<br />

!<br />

_______________________________________________________________________________________<br />

!<br />

!<br />

7.<br />

"<br />

x 2 e 2x dx =<br />

A. e 2x 2x 2 ( " 8x +16)<br />

+ C B. e<br />

!<br />

2x 2x 2 ( " 8x + 2)<br />

+ C<br />

C. e 2x x 2 # x 1&<br />

% " " ( + C<br />

$ 2 2 2'<br />

D. e 2x x 2 # x 1 &<br />

% " + ( + C<br />

$ 2 2 4 '<br />

E.<br />

!<br />

!<br />

" %<br />

$ ' + C<br />

# 3 &<br />

e 2x x 3


!<br />

!<br />

!<br />

8. Let R be the region bounded by the graph of y = 2x ln x, the x-axis and<br />

the line x = e, as shown by the figure to the right. Find the area of R.<br />

e<br />

A.<br />

!<br />

2 +1<br />

2 B.<br />

e 2 "1<br />

2<br />

e<br />

C.<br />

2<br />

2 D. 2e E. 2e +1<br />

!<br />

!<br />

_______________________________________________________________________________________<br />

!<br />

!<br />

9. The shaded region between the graph of y = 2tan "1 x and the x-axis for<br />

0 ≤ x ≤ 1 as shown in the figure is the base of a solid whose cross-sections<br />

perpendicular to the x-axis are squares. Find the volume of the solid.<br />

"<br />

A. + ln2 #1<br />

4<br />

!<br />

B. " + e # ln2<br />

C. " # ln2<br />

!<br />

"<br />

D. # ln2<br />

4<br />

"<br />

E. # ln2<br />

2<br />

!<br />

_______________________________________________________________________________________<br />

10. The function f is twice-differentiable and its derivatives are continuous. The table below gives the<br />

value of<br />

x f x<br />

f , f " and f " for x = 0 and x = 2. Find the value of<br />

( ) f " ( x)<br />

f " ( x)<br />

0 3 6 2<br />

!<br />

2 #5 #1 4<br />

© 2011 www.mastermathmentor.com - 10 - Demystifying the BC Calculus MC Exam<br />

!<br />

!<br />

# x f " ( x)<br />

dx .<br />

A. -10 B. -8 C. 6 D. 14 E. 16<br />

!<br />

2<br />

0


!<br />

!<br />

!<br />

B2. Integration using Partial Fractions<br />

What you are finding: When you attempt to integrate a fraction, typically you let u be the expression in the<br />

denominator and hope that du will be in the numerator. When this doesn’t happen, the technique of partial<br />

dx<br />

fractions may work. One form of this type of problem is<br />

x<br />

!<br />

2 " where x<br />

+ mx + n<br />

!<br />

2 + mx + n factors into two<br />

non-repeating binomials.<br />

dx<br />

How to find it: Use the “Heaviside method.” Factor your denominator to get "<br />

. You need to<br />

( x + a)<br />

( x + b)<br />

1<br />

write<br />

( x + a)<br />

( x + b)<br />

!<br />

as<br />

x + a<br />

!<br />

+ . To find the numerator of the x + a expression, cover up the x + a in<br />

x + b<br />

1<br />

expression, and plug in x = "a. To find the numerator of the x + b expression, cover up the<br />

( x + a)<br />

( x + b)<br />

1<br />

x + b in<br />

expression, and plug in x = "b. From there, each expression can be integrated.<br />

( x + a)<br />

( x + b)<br />

!<br />

!<br />

!<br />

11.<br />

"<br />

A.<br />

4x + 2<br />

x 2 dx =<br />

+ 4x + 3<br />

1<br />

2 ln x 2 + 4 x + 3 + C B.<br />

D. ln x +1 " 5ln x + 3 + C E. ln<br />

!<br />

!<br />

!<br />

2ln x 2 + 4x + 3 + C C. 5ln x + 3 " ln x +1 + C<br />

5<br />

x + 3<br />

+ C<br />

x +1<br />

_______________________________________________________________________________________<br />

!<br />

!<br />

12. Use the substitution<br />

u = cos x to find<br />

sin x<br />

#<br />

cos x( cos x "1)<br />

A. lncos x ! "1 + C B. "lncos x "1 + C C.<br />

1" cos x<br />

D. ln + C<br />

cos x<br />

!<br />

!<br />

cos x<br />

E. ln + C<br />

cos x "1<br />

!<br />

!<br />

© 2011 www.mastermathmentor.com - 11 - Demystifying the BC Calculus MC Exam<br />

dx.<br />

!<br />

cos x "1<br />

"ln + C<br />

cos x


!<br />

!<br />

!<br />

!<br />

13.<br />

#<br />

x 3<br />

x 2 dx =<br />

"1<br />

x<br />

A.<br />

2<br />

2 + 2ln x 2 "1 + C<br />

x<br />

B.<br />

!<br />

2 x +1<br />

+ ln<br />

x "1<br />

+ C<br />

2<br />

C.<br />

x<br />

D.<br />

!<br />

2 x "1<br />

+ ln<br />

x +1<br />

+ C<br />

2<br />

5<br />

x + 3<br />

E. ln + C<br />

x +1<br />

!<br />

x 2<br />

2 " 2ln x 2 "1 + C<br />

_______________________________________________________________________________________<br />

14. Region R is defined as the region between the graph of<br />

9<br />

y =<br />

x 2 , x = 2 and the x-axis as shown in the<br />

+ x " 2<br />

figure to the right. Find the area of region R.<br />

!<br />

!<br />

A. ln12 B. 1+ 3ln4<br />

C.<br />

3ln 1<br />

4<br />

!<br />

E. infinite<br />

!<br />

D. 6ln2<br />

© 2011 www.mastermathmentor.com - 12 - Demystifying the BC Calculus MC Exam


!<br />

C. Improper Integrals<br />

What you are finding: An improper integral is in the form<br />

be in the form<br />

continuous.<br />

b<br />

!<br />

# f ( x)<br />

dx or # f ( x)<br />

dx or # f ( x)<br />

dx. It also can<br />

" f ( x)<br />

dx where there is at least one value c such that a ≤ c ≤ b for which<br />

a<br />

"<br />

b<br />

!<br />

How ! to find it: Improper integrals are just limit problems in disguise: # f ( x)<br />

dx = lim # f ( x)<br />

dx or<br />

b<br />

"#<br />

b<br />

a %"#<br />

a<br />

b<br />

© 2011 www.mastermathmentor.com - 13 - Demystifying the BC Calculus MC Exam<br />

"<br />

a<br />

a<br />

a<br />

$"<br />

"<br />

$"<br />

b $"<br />

a<br />

f ( x)<br />

is not<br />

$ f ( x)<br />

dx = lim $ f ( x)<br />

dx . In the case where there is a discontinuity at x = c, the improper integral is split<br />

into two pieces:<br />

!<br />

" f ( x)<br />

dx = lim " f ( x)<br />

dx + lim " f ( x)<br />

dx. Improper integrals usually go hand-in-hand<br />

a<br />

k #c $<br />

with area and volume problems.<br />

!<br />

15. Which of the following are convergent?<br />

!<br />

I.<br />

"<br />

1<br />

# dx II.<br />

x<br />

1<br />

!<br />

k<br />

a<br />

k #c +<br />

b<br />

k<br />

1<br />

1<br />

" dx III.<br />

x<br />

0<br />

!<br />

"<br />

1<br />

1<br />

# dx<br />

A. I only B. II only C. III only D. II and III only E. I, II and III<br />

_______________________________________________________________________________________<br />

!<br />

16.<br />

#<br />

$<br />

0<br />

A.<br />

xe<br />

"4 x<br />

" 1<br />

16<br />

dx =<br />

!<br />

B.<br />

1<br />

16<br />

C. -16 D. 16 E. infinite<br />

x 3


!<br />

17. The region bounded by the graph of<br />

Find the volume of the solid.<br />

y = 4<br />

, the line x = 4 and the x - axis is rotated about the x-axis.<br />

x<br />

A. π B. 2π C. 4π D. 16π E. infinite<br />

!<br />

_______________________________________________________________________________________<br />

!<br />

18.<br />

"<br />

#<br />

1<br />

A.<br />

1<br />

dx =<br />

x ( x +1)<br />

"<br />

4<br />

!<br />

!<br />

B.<br />

"<br />

2<br />

C. π D. 2π E. infinite<br />

_______________________________________________________________________________________<br />

4<br />

1<br />

19. To the right is a graph of f ( x)<br />

= . Find the value of<br />

3 # f ( x)<br />

dx .<br />

( x "1)<br />

"2<br />

A. 0<br />

1<br />

B.<br />

3<br />

!<br />

!<br />

C. " 1<br />

3<br />

1<br />

D.<br />

6<br />

E. Divergent<br />

!<br />

!<br />

© 2011 www.mastermathmentor.com - 14 - Demystifying the BC Calculus MC Exam


!<br />

D. Euler’s Method<br />

What you are finding: Euler’s Method provides a numerical procedure to approximate the solution of a<br />

differential equation with a given initial value.<br />

How to find it: 1) Start with a given initial point (x, y) on the graph of the function and a given "x = dx.<br />

2) Calculate the slope using the DEQ at the point.<br />

3) Calculate the value of dy using the fact that dy "<br />

!<br />

dy<br />

#x .<br />

dx<br />

4) Find the new values of y and x: ynew = yold + dy and xnew = xold + "x<br />

5) Repeat the process at step 2).<br />

There are calculator programs available to perform Euler’s<br />

!<br />

Method. Typically, Euler Method problems occur<br />

in the non-calculator section where only one ! or two steps of the method need to be performed.<br />

!<br />

20. Let<br />

y = f ( x)<br />

be the solution to the differential equation<br />

( ) = "1. What is the approximation for<br />

f 3<br />

size of 0.5?<br />

f 4<br />

dy<br />

dx = x + y 2 with the initial condition that<br />

( ) if Euler’s Method is used, starting at<br />

!<br />

A. 2.25 B. 3.25 C. 4.5 D. 5.5<br />

!<br />

!<br />

E. 12.5<br />

x = 3 with a step<br />

_______________________________________________________________________________________<br />

dy<br />

21. Let y = f ( x)<br />

be a solution to the differential equation<br />

dx<br />

!<br />

!<br />

= y x with initial condition f ( 0)<br />

= k ,<br />

k a constant, k " 0. If Euler’s method with 3 steps of equal size starting at x = 0 gives the<br />

approximation f ( 3)<br />

" 0, find the value of k.<br />

!<br />

A. ! "<br />

!<br />

1<br />

2<br />

B.<br />

1<br />

C. 1 D. -1 E. "<br />

2 3<br />

2<br />

!<br />

!<br />

© 2011 www.mastermathmentor.com - 15 - Demystifying the BC Calculus MC Exam<br />

!


dy y<br />

22. Consider the differential equation = with initial condition f ( 2)<br />

= "4. Find the difference between<br />

dx x<br />

the exact value of f ( 8)<br />

and an Euler approximation of f ( 8)<br />

using a step of 0.5.<br />

A. 0 B. 1<br />

!<br />

C. 2 ! D. 25 E. 50<br />

!<br />

!<br />

_______________________________________________________________________________________<br />

dy<br />

23. (Calc) Consider the differential equation = cos x with initial condition f ( 0)<br />

= 0. Find the difference<br />

dx<br />

between the exact value of f<br />

!<br />

!<br />

" #<br />

%<br />

$ 2<br />

&<br />

( and an Euler approximation of f<br />

'<br />

" #<br />

%<br />

$ 2<br />

&<br />

( using two equal steps.<br />

'<br />

A. 0 B. 0.230 C. 0.341 D. 0.555 E. 0.707<br />

!<br />

© 2011 www.mastermathmentor.com - 16 - Demystifying the BC Calculus MC Exam<br />

!


!<br />

E. Logistic Curves<br />

What you are finding: Logistic curves occur when a quantity is growing at a rate<br />

proportional to itself and the room available for growth. This room available is called<br />

the carrying capacity. The curve has a distinctive “S-shape” where the initial stage of<br />

growth is exponential, then slows, and eventually the growth essentially stops.<br />

How to find it: Logistic growth is signaled by the differential equation<br />

( ) =<br />

C<br />

© 2011 www.mastermathmentor.com - 17 - Demystifying the BC Calculus MC Exam<br />

dP<br />

dt<br />

= kP( P " t).<br />

While this DEQ<br />

can be solved into P t<br />

, students are not responsible for that equation. They need to know how to<br />

"Ckt<br />

1+ de<br />

d<br />

determine the time when the logistic growth is the fastest. This ! is accomplished by<br />

!<br />

2 P<br />

= 0. Also students<br />

2<br />

dt<br />

need to know that the curve has a horizontal asymptote meaning limP(<br />

t)<br />

= C ( the carrying capacity).<br />

t "#<br />

24. A population of students having contracted the flu in a school year ! is modeled by a function P that<br />

dP P # P &<br />

satisfies the logistic differential equation with ! = % 2 " ( . If P( 0)<br />

=100, find limP(<br />

t).<br />

dt 600 $ 800'<br />

t "#<br />

A. 400 B. 800 C. 1,600 D. 2,400 E. 4,800<br />

!<br />

_______________________________________________________________________________________<br />

25. A population is modeled by a function G that satisfies the logistic differential equation<br />

dG G # G &<br />

= % 1" ( . If G( 0)<br />

=1, for what value of G is the population growing the fastest?<br />

dt e $ 4e'<br />

A. 4 B. e C. 2e D. 4e E. 4e 2<br />

!<br />

_______________________________________________________________________________________<br />

dy<br />

26. Consider the differential equation = ky( L " y).<br />

Let y = f ( x)<br />

be the particular solution to the<br />

dx<br />

differential equation with f ( 0)<br />

= 2. If x " 0, find the range of f ( x).<br />

A. ( 0,L)<br />

B. ( 0,2)<br />

C. ( L,2]<br />

D. [ 2,L)<br />

E. [ 2,kL)<br />

!<br />

!<br />

! !<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!


F. Arc Length<br />

What you are finding: Given a function on an interval [a, b], the arc length is defined as the total length of<br />

the function from x = a to x = b. For this section, we will only concentrate on curves that are defined in<br />

function form. Functions defined parametrically, in polar or in vector-valued forms have their own formulas.<br />

How to find it: The arc length of a continuous function<br />

b<br />

!<br />

f ( x)<br />

over an interval [a, b] is given by<br />

L = 1+ [ f " ( x)<br />

] 2<br />

# dx. Most problems involving arc length need calculators because of the difficulty of<br />

a<br />

integrating the expression.<br />

27. (Calc) An ant walks around the first quadrant region R bounded by the<br />

y-axis, the line y = 2x and the curve f ( x)<br />

= 6 " 4x 3 2 as shown in the<br />

figure to the right. Find the distance the ant walked.<br />

!<br />

!<br />

A. 4.149 B. 10.312 C. 11.485 D. 11.881 E. 12.385<br />

_______________________________________________________________________________________<br />

28. If the length of a curve from<br />

!<br />

!<br />

x = 2 to x = 8 is given by<br />

point (-1, 4), which of the following could be the equation for the curve?<br />

1+ 81x 4<br />

dx , and the curve passes through the<br />

!<br />

A. y =13" 9x<br />

!<br />

2 B. y = 4 " 3x 3 C. y = 7 + 3x 3<br />

D. y = "1" 3x 3 E. y = 9x 2 " 5<br />

!<br />

!<br />

© 2011 www.mastermathmentor.com - 18 - Demystifying the BC Calculus MC Exam<br />

8<br />

"<br />

2<br />

!


29. (Calc) The yellow bird in the popular game<br />

Angry Birds flies along the path y = 4 + 3x "<br />

!<br />

1 2<br />

x<br />

2<br />

when x ≥ 0. When x = 4 (the point on the figure to the<br />

right), the player touches the screen and the bird leaves the<br />

path and travels along the line tangent to the path at that<br />

point. If the bird crashes into the x-axis, find the total<br />

distance the bird flies.<br />

A. 6.800 B. 11.314 C. 12.000<br />

D. 15.461 E. 18.114<br />

_______________________________________________________________________________________<br />

30. (Calc) The graphs of i) y = x 2 , ii) y = x and iii) y = 2 x "1 all pass through the points (0,0) and<br />

(1,1). Find the difference in arc length from the largest arc length to the shortest arc length of these<br />

functions on the interval [0,1].<br />

A. 0.058 ! B. 0081 !<br />

C. ! 0.284 D. 0.361 E. 0.419<br />

_______________________________________________________________________________________<br />

31. Find the arc length of the graph of<br />

x = 1<br />

3 y 2 3 2<br />

( + 2)<br />

for<br />

0 " y " 3.<br />

A. 12 B. 10 C. 6 D. 3 3 E.<br />

!<br />

!<br />

© 2011 www.mastermathmentor.com - 19 - Demystifying the BC Calculus MC Exam<br />

!<br />

!<br />

3


!<br />

!<br />

G. Parametric Equations<br />

What you are finding: Parametric equations are continuous functions of t in the form x = f ( t)<br />

and y = g( t).<br />

Taken together, the parametric equations create a graph where the points x and y are independent of each<br />

other and both dependent on the parameter t (which is usually time). Parametric curves when graphed do not<br />

have to be functions. Typically, it is necessary to take derivatives of parametrics. Since the study of vectors<br />

parallels the study of parametrics, in this section we will only analyze the very ! few problems that are not<br />

associated with motion in the plane.<br />

How to find it: If a smooth curve C is given by the parametric equations x = f ( t)<br />

and y = g( t),<br />

then the<br />

dy<br />

slope of C at the point (x, y) is given by<br />

dx<br />

!<br />

!<br />

=<br />

dy<br />

dt ,dx<br />

dx dt<br />

" 0.<br />

dt<br />

The 2 nd d<br />

derivative of the curve is given by<br />

!<br />

2 d " dy %<br />

$ '<br />

y d " dy % dt # dx &<br />

= 2 $ ' = .<br />

dx dx # dx & dx<br />

dt<br />

2<br />

" dx %<br />

The arc length is given by L = $ ' +<br />

# dt &<br />

!<br />

dy<br />

t= b<br />

2<br />

" %<br />

( $ ' dt. The curve must be smooth and may not intersect itself.<br />

# dt &<br />

t= a<br />

32. What is the area under the curve described by the parametric equations x = 2cost and y = 3sin 2 t for<br />

0 " t " #?<br />

A. 4 B. 8 C.<br />

!<br />

11<br />

4<br />

© 2011 www.mastermathmentor.com - 20 - Demystifying the BC Calculus MC Exam<br />

!<br />

! D.<br />

11<br />

2<br />

_______________________________________________________________________________________<br />

33. A position of a particle moving in the xy-plane is given by x = t 3 " 6t 2 + 9t +1 and<br />

y = 2t 3 " 9t 2 " 2. For what values of t is the particle at rest?<br />

A. 0 only B. 1 only C. 3 only<br />

!<br />

D. 0 and 1 only E. 0, 1 and 3<br />

!<br />

E.<br />

4<br />

3


!<br />

34. A curve C is defined by the parametric equations x = t 2 " t " 4 and y = t 3 " 7t " 2. Which of the<br />

following is the equation of the line tangent to the graph of C at the point (2, 4) ?<br />

!<br />

!<br />

A. y = 6 " x B. x " 4y +14 = 0 C. 5x " 3y + 2 = 0<br />

!<br />

D.<br />

y = 4x " 4 E. No tangent line at (2, 4)<br />

!<br />

_______________________________________________________________________________________<br />

35. Describe the behavior of curve C defined by the parametric equations<br />

at t = 1.<br />

A. Increasing, concave up B. Decreasing, concave up<br />

C. Increasing, concave down D. Decreasing, concave ! down<br />

E. Increasing, no concavity<br />

© 2011 www.mastermathmentor.com - 21 - Demystifying the BC Calculus MC Exam<br />

!<br />

x =1+ 1<br />

t and y = t 3 + 2t 2 " t "1<br />

_______________________________________________________________________________________<br />

36. Find the expression which represents the length L of the path described by the parametric equations<br />

!<br />

!<br />

!<br />

x = sin 2 ( 2t)<br />

and y = cos( 3t)<br />

for<br />

# 2<br />

0 " t " #<br />

2 .<br />

A. L = $<br />

0<br />

2sin2t cos2t " 3sin3t dt<br />

!<br />

B. L = 4 sin 2 4t 2 + 9sin 2 9t 2 #<br />

0<br />

dt<br />

C. L = 16sin 2 4t 2 cos 2 4t 2 + 9sin 2 9t 2 " 2<br />

# dt<br />

D. L = 4sin 2 2t cos 2 2t + 9sin 2 " 2<br />

#<br />

3t dt<br />

E.<br />

0<br />

" 2<br />

#<br />

L = 16sin 2 2t cos 2 2t + 9sin 2 3t dt<br />

0<br />

!<br />

!<br />

" 2<br />

0


H. Vector-Valued Functions<br />

What you are finding: While concepts like unit vectors, dot products, and angles between vectors are<br />

important for multivariable calculus, vectors in BC calculus are little more than parametric equations in<br />

disguise.<br />

How to find it: Typically, you will be given a situation where an object is moving in the plane. You could be<br />

given either its position vector x( t)<br />

and y( t),<br />

its velocity vector x " ( t)<br />

and y " ( t)<br />

or its acceleration vector<br />

x " ( t)<br />

and y " ( t)<br />

and use the basic derivative or integral relationships that have been taught in AB calculus to<br />

find the other vectors. The one formula that students should know is that the speed of the object is defined<br />

as the absolute value ! of the velocity: v t<br />

[ ] 2<br />

( ) = x " ( t)<br />

[ ( ) ] 2<br />

+ ! y " t<br />

. The speed is a scalar, not a vector.<br />

37. A particle moves on a plane curve such that at any time t > 0, its x-coordinate is<br />

y-coordinate is 2 " ! t 2 ( ) 2<br />

. Find the magnitude of the particle’s acceleration at t = 1.<br />

A. 4 B.<br />

!<br />

!<br />

2 C. 2 2 D. 3 2 ! E. 4 2<br />

!<br />

t " t 2 + t 3 while its<br />

_______________________________________________________________________________________<br />

38. The position of an object moving in the xy-plane with position function<br />

t ≥ 0. What is the maximum speed attained by the object?<br />

A. 1 B.<br />

!<br />

© 2011 www.mastermathmentor.com - 22 - Demystifying the BC Calculus MC Exam<br />

!<br />

2 C. 2 D. 4 E. 2 2<br />

!<br />

!<br />

r( t)<br />

= 1+ sint,t + cost ,<br />

_______________________________________________________________________________________<br />

39. A xy-plane has both its x and y-coordinates measured in inches. An ant is walking along this plane with<br />

its position vector as 2t 3 2 ,3t "1 , t measured in minutes. What is the average speed of the ant<br />

measured in inches per minute from t = 0 to t = 3 minutes?<br />

A. 1 ! B.<br />

!<br />

14<br />

3<br />

!<br />

C.<br />

3 "1 D. 3 E. 9<br />

!


40. An object moving in the xy-plane has position function<br />

the motion of the object.<br />

r( t)<br />

=<br />

1<br />

( t +1)<br />

2 ,t 2 " 6ln t + 2<br />

( ) , t ≥ 0. Describe<br />

A. Left and up B. Left and down C. Right and up<br />

D. Right and down E. Depend ! on the value of t<br />

_______________________________________________________________________________________<br />

41. An object moving along a curve in the xy-plane has position ( x( t),y<br />

( t)<br />

) at time t with<br />

dx<br />

dy<br />

= 8t + 2 and = sin2t for t " 0.<br />

dt dt<br />

At time t = 0, the object is at position (5, π). Where ! is the object at t =<br />

!<br />

!<br />

"<br />

2 ?<br />

A. " 2 ( + " + 5," ) B. " 2 + " + 5," +1<br />

D. 2", 1 # &<br />

% ( E. ( 2" + 5," )<br />

$ 2'<br />

!<br />

!<br />

!<br />

!<br />

( ) C.<br />

© 2011 www.mastermathmentor.com - 23 - Demystifying the BC Calculus MC Exam<br />

!<br />

( 2" + 5," +1)<br />

_______________________________________________________________________________________<br />

( ) at time t with<br />

42. (Calc) An object moving along a curve in the xy-plane has position x( t),y<br />

( t)<br />

dx<br />

dt<br />

!<br />

= x 2 + 3x +1 and dy<br />

dt = et 2 "1<br />

for t # 0.<br />

At time t = 0, the object is at position (-6, -7). Find the position of the object at t = 2.<br />

A. (4.667, 13.053) B. (-3.683, 12.718) C. (2.317, 19.718)<br />

D. (4.427, 6.053) !<br />

E. (-1.573, -0.947)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!