02.08.2013 Views

KrF Laser Development

KrF Laser Development

KrF Laser Development

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>KrF</strong> <strong>Laser</strong> <strong>Development</strong><br />

1


Opening Remarks on <strong>KrF</strong> <strong>Laser</strong> <strong>Development</strong><br />

Many institutions have had programs in<br />

e-beam pumped <strong>KrF</strong> lasers<br />

Los Alamos National Laboratory<br />

Livermore National Laboratory<br />

Avco Textron<br />

Rutherford Appeleton Labs, UK<br />

ETL, Ministry of Technology and Industry, Japan<br />

Lebedev Institute, Russia<br />

The Naval Research Laboratory is the first to develop<br />

routine, high energy, efficient, and repetitive <strong>KrF</strong> capability<br />

2


NRL Progress in <strong>KrF</strong> <strong>Laser</strong> <strong>Development</strong><br />

Repetition rate<br />

(pulses/second)<br />

Predicted Efficiency<br />

(%)<br />

Durability<br />

(continuous shots)<br />

2001<br />

.00056<br />

1.9<br />

200<br />

2010<br />

2.5 to 5<br />

7.1<br />

90,000<br />

IFE<br />

5<br />

> 6.0<br />

300 M<br />

Most all of these advances have been made through<br />

understanding and controlling the relevant physics<br />

3


Elements of a Krypton Fluoride (<strong>KrF</strong>)<br />

electron beam pumped gas laser<br />

Energy + ( Kr+ F 2) ⇒ ( <strong>KrF</strong>)* + F ⇒ Kr + F 2 + hν (λ = 248 nm)<br />

Pulsed<br />

power<br />

Cathode<br />

Input <strong>Laser</strong><br />

(Front end)<br />

electron<br />

beam<br />

e-beam<br />

window<br />

(hibachi)<br />

Window<br />

<strong>Laser</strong> cell<br />

(Kr+F 2 +Ar)<br />

Typical e-beam: 500 -700 keV, 100 - 500 kA, 3000 – 12,000 cm 2<br />

<strong>Laser</strong> Gas<br />

Recirculator<br />

<strong>KrF</strong> laser<br />

Physics<br />

4


<strong>KrF</strong> developed with the NRL Electra and Nike <strong>Laser</strong>s<br />

Electra: (5 Hz)<br />

400-700 J laser light<br />

500 keV/100 kA/100 nsec<br />

30 cm x 100 cm e-beam<br />

Develop technologies for:<br />

Rep-Rate,<br />

Durability,<br />

Efficiency,<br />

Cost<br />

Nike: (Single Shot)<br />

3-5 kJ laser light<br />

750 keV, 500 kA, 240 nsec<br />

60 cm x 200 cm e-beam<br />

E-beam physics on full scale diode<br />

<strong>Laser</strong>-target physics<br />

5


Pulsed Power<br />

Pulsed<br />

power<br />

Cathode<br />

Input <strong>Laser</strong><br />

(Front end)<br />

electron<br />

beam<br />

e-beam<br />

window<br />

(hibachi)<br />

Window<br />

<strong>Laser</strong> cell<br />

(Kr+F 2 +Ar)<br />

<strong>Laser</strong> Gas<br />

Recirculator<br />

<strong>KrF</strong> laser<br />

Physics<br />

6


Existing “spark gap based” pulsed power system:<br />

Limited to 50,000 – 100,000 shots continuous<br />

Spark Gap<br />

Primary<br />

Switch<br />

Primary<br />

Energy<br />

Store<br />

(Capacitor<br />

Bank)<br />

NEW<br />

Pulse Forming Lines<br />

Discharge through the<br />

1:12 step-up transformer<br />

92,000 shots<br />

<strong>Laser</strong><br />

triggered<br />

Spark Gap<br />

main switch<br />

Lifetime<br />

limit is<br />

Electrode<br />

Erosion<br />

7


Solid State system should be durable and efficient<br />

♦ Concept for Electra, scalable to IFE size system<br />

♦ Basic elements tested to > 300 M shots<br />

Primary Energy Store<br />

Fast Marx<br />

Long Life capacitors<br />

Primary Switches<br />

New fast thyristors<br />

(Modified commercial units)<br />

Output Switch<br />

Saturable Magnetic Inductor<br />

Modeled system for Electra:<br />

Predict Efficiency > 82%<br />

(Wall plug to flat top pulsed power)<br />

PLEX, LLC<br />

8


All Solid State Pulsed Power demonstrator<br />

Continuous run: 11.5 M shots @ 10 Hz (319 hrs)<br />

Load<br />

200 kV, 4.5 kA, 250 ns,<br />

Marx > 80% efficiency<br />

Pulse Forming Line<br />

Marx<br />

Magnetic<br />

Switch<br />

PLEX, LLC<br />

9


Electron Beam -- Generation and Transport<br />

Pulsed<br />

power<br />

Cathode<br />

Input <strong>Laser</strong><br />

(Front end)<br />

electron<br />

beam<br />

e-beam<br />

window<br />

(hibachi)<br />

Window<br />

<strong>Laser</strong> cell<br />

(Kr+F 2 +Ar)<br />

<strong>Laser</strong> Gas<br />

Recirculator<br />

<strong>KrF</strong> laser<br />

Physics<br />

10


ELECTRON BEAM GENERATION<br />

Need cold cathodes: simplicity, efficiency, durability<br />

Best so far: Carbon Fibers pyrolized to aluminum<br />

Robust (> 250,000 shots)<br />

Low cost ($15 k Electra)<br />

Easy to make to patterned<br />

cathodes<br />

Cathode dimensions:<br />

30 cm x 100 cm<br />

11


ELECTRON BEAM TRANSPORT<br />

Two innovations gave high hibachi transmission:<br />

1. Eliminate anode foil<br />

2. Pattern the beam to “miss” the ribs<br />

Emitter<br />

Vacuum<br />

Anode<br />

Foil<br />

(.001” Ti)<br />

e-beam<br />

Rib<br />

<strong>Laser</strong> Gas<br />

Kr + F 2 + Ar<br />

Pressure<br />

Foil<br />

(.001” SS)<br />

Energy<br />

Deposited in gas<br />

Before: ∼ 35%<br />

After: ∼ 76 - 81%<br />

12


Simulations and experiments show iron bars can<br />

efficiently guide electron beam past the hibachi ribs<br />

B z<br />

foil<br />

iron<br />

rib<br />

laser gas<br />

emitter<br />

13


3-D LSP Simulations (Voss Scientific/Albuquerque)<br />

♦ Prescribe the emitter topology<br />

♦ Predict observed electron beam deposition into the gas<br />

Efficiency ≡ Energy deposited in laser gas/energy flat portion of e- beam<br />

Deposition Efficiency<br />

Efficiency ≡ Energy deposited in laser gas/energy flat top portion of beam)<br />

E-beam Voltage<br />

Pressure Foil<br />

Experiments<br />

Simulation<br />

500 keV<br />

2 mil (Ti)<br />

67%<br />

66%<br />

500 keV<br />

1 mil (Ti)<br />

75%<br />

76%<br />

800 keV<br />

1 mil (SS)<br />

N/A<br />

> 81%*<br />

*1-D modeling for<br />

800 keV full size<br />

IFE system<br />

14


Hibachi Foil: Cooling and Durability<br />

Pulsed<br />

power<br />

Cathode<br />

Input <strong>Laser</strong><br />

(Front end)<br />

electron<br />

beam<br />

e-beam<br />

window<br />

(hibachi)<br />

Window<br />

<strong>Laser</strong> cell<br />

(Kr+F 2 +Ar)<br />

<strong>Laser</strong> Gas<br />

Recirculator<br />

<strong>KrF</strong> laser<br />

Physics<br />

15


FOIL COOLING<br />

Needed to avoid metal fatigue (470 °C for SS 304)<br />

and minimize unwanted chemistry<br />

Two previous concepts we evaluated:<br />

“V” plate<br />

Foil Temp = 220 °C @ 2.5 Hz<br />

Predict 440 °C @ 5 Hz. (A bit warm)<br />

E-beam<br />

“V” plate<br />

Foils<br />

E-beam<br />

gas flow<br />

“Mist Cooling”<br />

Foil Temp < 140 °C @ 5Hz<br />

Electron<br />

Emitter<br />

e-beam<br />

Rib<br />

Rib<br />

<strong>Laser</strong> Gas<br />

Kr + Ar + F 2<br />

Anode<br />

Foil<br />

He (air) water<br />

mist + film on<br />

foils<br />

Pressure<br />

Foil<br />

16


"Jet" cooling technique developed by Georgia Tech:<br />

Effective, efficient, and scalable to large apertures<br />

TOP VIEW<br />

VIEW FROM GAS<br />

INTO THE DIODE<br />

Main<br />

Gas<br />

Flow<br />

Rib<br />

foil<br />

Tube<br />

Jets<br />

foil<br />

Tube Jets<br />

e-beam<br />

<strong>Laser</strong> Gas<br />

17


tem p (C )<br />

Jets cool foil while maintaining laser quality<br />

with minimal power consumption<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

<strong>Laser</strong><br />

average foil temperature < 370° C<br />

(Fatigue Reprate=5Hz, limit Blower=30 ∼480 Hz, ° GT=80 C) cfm<br />

0 2 4 6 8 10 12 14<br />

time (s)<br />

Intenstiy (Counts)<br />

100000<br />

90000<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

Jets cool foil<br />

Do not perturb laser gas<br />

no decline in energy in focus<br />

at 5 Hz for 50 shots<br />

0 10 20 30 40 50<br />

Shot #<br />

9 x 9 pixel<br />

18<br />

Georgia Institute of Technology & Matt Wolford


FOIL DURABILITY<br />

One key: Control late time voltage in e - beam diode.<br />

Increasing diode impedance 10%, lowering charge voltage 15%:<br />

Eliminates voltage reversal, and hence damaging foil emission<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

-500<br />

-600<br />

Diode Voltage (kV) vs time<br />

time (nsec)<br />

Voltage reverses<br />

< 10,000 shot runs<br />

Foil fails due to pinhole.<br />

(“Cathode spots”)<br />

No Voltage reversal<br />

∼ 100,000 shot runs<br />

80 µm<br />

pinhole<br />

19


Electra now capable of ∼100 k shot runs<br />

90,000 laser shots (10 hrs) continuous @ 2.5 Hz<br />

150,000 laser shots on same foils @ 2.5 Hz<br />

50,000 laser shots on same foils @ 5 Hz<br />

300,000 laser shots in 8 days of operation<br />

Electra Cell after 30,000 shot continuous laser run<br />

20


A video starring Electra<br />

21


<strong>KrF</strong> Physics: Simulations and Modeling<br />

Pulsed<br />

power<br />

Cathode<br />

Input <strong>Laser</strong><br />

(Front end)<br />

electron<br />

beam<br />

e-beam<br />

window<br />

(hibachi)<br />

Window<br />

<strong>Laser</strong> cell<br />

(Kr+F 2 +Ar)<br />

<strong>Laser</strong> Gas<br />

Recirculator<br />

<strong>KrF</strong> laser<br />

Physics<br />

22


<strong>KrF</strong> PHYSICS<br />

“Orestes” Code includes all relevant phenomena<br />

1-D & 2-D Electron Deposition Plasma Chemistry<br />

3-D <strong>Laser</strong> Transport 3-D Amplified Spontaneous Emission<br />

24 species, 146 reactions, 53 vibrational states<br />

Good<br />

Bad<br />

Neutral<br />

Channel<br />

Kr *<br />

e-beam<br />

Kr<br />

F 2<br />

e -<br />

F -<br />

e-beam<br />

harpoon Kr ion-ion rec<br />

F 2<br />

γ, Ar, Kr, F 2 , e -<br />

Kr,Ar,F 2<br />

Ar* Ar +<br />

exchange<br />

ArF *<br />

<strong>KrF</strong>*<br />

F -<br />

Kr<br />

GAIN, go 2Ar 2Kr<br />

γ, Ar, Kr, F 2 , e -<br />

Ar<strong>KrF</strong> * Kr 2F *<br />

Kr,Ar,F<br />

γ, F 2 , e -<br />

Kr +<br />

Ion<br />

Channel<br />

absorption, σ = σ F2 η F2 + σ F- η F- + σ <strong>KrF</strong>2 η <strong>KrF</strong>2 + σ ArF2 η ArF2<br />

23


Orestes accurately predicts Electra Main Amplifier<br />

<strong>Laser</strong> Pulse<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 50 100 150 200 250<br />

P e-beam (expt)<br />

I <strong>Laser</strong> (expt)<br />

P e-beam (Orestes)<br />

I <strong>Laser</strong> (Orestes)<br />

Shot OSC080404_11<br />

E <strong>Laser</strong> = 731 Joules<br />

24


Orestes predicts performance of many <strong>KrF</strong> <strong>Laser</strong>s<br />

operating over a wide range of parameters<br />

(a) Keio Univ.'s<br />

single pass amp<br />

I out -I in (MW/cm 2 )<br />

P beam<br />

=1730 kW/cc<br />

Orestes<br />

(b) NRL's NIKE<br />

double pass amp<br />

E(laser) out (kJ)<br />

no ASE<br />

Orestes<br />

I<br />

in<br />

=52.5 kW/cm 2<br />

(c) Lebedev's Garpun<br />

single pass amp<br />

P beam =1.3 MW/ cc<br />

no ASE<br />

I out (MW/cm 2 )<br />

Orestes<br />

0.62 MW/cc<br />

no ASE<br />

[Suda, et.al., Appl.Phys. Lett., 51, 218 (1987)]. [McGeoch, et.al., Fusion Tech., 32, 610 (1997)]. [Zvorykin, et.al., Final Report,<br />

Lebedev Institute (2002)].<br />

25


Electra: ∼ 10% intrinsic efficiency as oscillator<br />

expect ∼ 12 % as an amplifier<br />

P E-beam (GW)<br />

<strong>Laser</strong> energy<br />

Intrinsic Efficiency ≡ (in flat part of pulse)<br />

e-beam energy<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Efficiency (9.8%)=<br />

E <strong>Laser</strong> (71.5 J)/<br />

E e-Beam (730 J)<br />

Total laser energy 730 Joules<br />

0 50 100 150 200<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

P <strong>Laser</strong> (GW)<br />

26


Based on our research, an IFE-sized <strong>KrF</strong> system<br />

should have a wall plug efficiency > 7%<br />

Pulsed Power All solid state 82%<br />

(wall plug- flat top e-beam)<br />

Hibachi No Anode, Pattern Beam 81%<br />

(e-beam in diode into gas)<br />

<strong>KrF</strong> Electra Experiments 12%<br />

(e-beam to laser) (literature ∼ 14%)<br />

Optics to target Estimate 95%<br />

Ancillaries Pumps, recirculator 95%<br />

Total 7.1%<br />

For fusion energy want ηG > 10.<br />

with <strong>KrF</strong> and advanced targets: ηG = 7.1% x 300 ~ 21<br />

27


18 kJ, 5 Hz, <strong>KrF</strong> laser amplifier:<br />

Extrapolate Nike, using Electra Technologies<br />

Window<br />

<strong>Laser</strong><br />

Nike - 5000 J<br />

650 keV, 500 kA, 240 nsec<br />

60 cm x 60 cm window<br />

60 cm x 200 cm each beam<br />

Monolithic Cathode<br />

15<br />

10<br />

5<br />

250 nsec<br />

Iout [MW/cm2 Iout [MW/cm ] 2 ]<br />

electron beam<br />

P Pe-beam e-beam [MW/cc x 10]<br />

Iin [MW/cm2 Iin [MW/cm ] 2 ]<br />

0 0 100 200 300 400<br />

time (nsec)<br />

Mirror<br />

FTF - 18,000 J<br />

800 keV, 500 kA, 250 nsec<br />

60 cm x 100 cm window<br />

60 cm x 250 cm each beam<br />

Strip cathode<br />

efficiency ∼ 12%<br />

28


Summary of Achievements.<br />

• Durable, efficient, all solid state pulsed power<br />

• Generation, transport, efficient deposition of electron beam<br />

• Jet foil cooling<br />

• Should meet efficiency, based on experiments<br />

• Meets pulse shaping, zooming, uniformity requirements<br />

• Orestes <strong>KrF</strong> physics code to design future systems<br />

29


Main outstanding issue: >> 1M shot durability<br />

SHORT TERM<br />

• Windows (now quartz):<br />

• Exploring degradation mechanisms<br />

• Can use Calcium Fluoride, as in commercial units<br />

•Foils:<br />

• Improve pulsed power durability<br />

• Mitigate all late time voltage<br />

LONG TERM<br />

• Long term integrated demonstration at IFE class size<br />

30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!