03.08.2013 Views

“Influence of Si, Sb and Sr Additions on the Microstructure ...

“Influence of Si, Sb and Sr Additions on the Microstructure ...

“Influence of Si, Sb and Sr Additions on the Microstructure ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

iié»a'5<br />

INFLUENCE OF <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g> AND <str<strong>on</strong>g>Sr</str<strong>on</strong>g> ADDITIONS<br />

ON THE MICROSTRUCTURE,<br />

MECHANICAL PROPERTIES AND CORROSION<br />

BEHAVIOR OF AZ91 MAGNESIUM ALLOY<br />

Thesis submitted to<br />

Cochin University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology<br />

in partial fulfillment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> requirements<br />

for <strong>the</strong> Degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DOCTOR OF PHILOSOPHY<br />

in <strong>the</strong> Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

/ 1 ° 490 ,6 .,,,‘Z<br />

I<br />

BY '<br />

O. / A<br />

A<br />

\<br />

~<br />

~<br />

\<br />

A. SRINIVASAN t ’<br />

. _- Q’ ¢— T‘ 6" ha<br />

e .5fi$ ~"F’Y" "1-‘aI<br />

i» I ' '<br />

i"<br />

sj .<br />

‘<br />

-<br />

1<br />

:_-'<br />

3!<br />

- it-tr‘ ‘<br />

MATERIALS AND MINERALS DIVISION<br />

NATIONAL INSTITUTE FOR INTERDISCIPLINARY<br />

SCIENCE AND TECHNOLOGY (CSIR)<br />

THIRUVANANTHAPURAM - 695 019<br />

INDIA<br />

April 2008<br />

‘\<br />

av<br />

L)<br />

4


llllllllllll. INSTITUTE FUR lllTEllB|SGlP|.lllAllY SCIENCE llllll TE0l'|ll0l.0liY<br />

(Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Sclentific 8- Industrial Research] ::::°f‘c°::'m_" ""11"<br />

(fom1erly RGQIOHBT Research laboratory)<br />

zzfsguwr 3122 aw aw. f%nra=|-wgw 695 019.1111?-I<br />

Industrial Estate P.0., 'l'l\iru\-ananthapurarn 695 0|‘), India p-.i.=.-..1..'-.....i..4<br />

CERTIFICATE<br />

This is to certijy that <strong>the</strong> <strong>the</strong>sis entitled <str<strong>on</strong>g>“Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Additi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Microstructure</strong>, Mechanical Properties <str<strong>on</strong>g>and</str<strong>on</strong>g> Corrosi<strong>on</strong><br />

Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 Magnesium Alloy” that is being submitted by<br />

Mr. A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan for <strong>the</strong> award <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> Doctor <str<strong>on</strong>g>of</str<strong>on</strong>g> Philosophy<br />

in Technology, in <strong>the</strong> Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Cochin University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, Cochin, is a record <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>afide research work<br />

carried out by him under my guidance <str<strong>on</strong>g>and</str<strong>on</strong>g> supervisi<strong>on</strong>. The results<br />

embodied in this <strong>the</strong>sis have not been submitted to any o<strong>the</strong>r University<br />

or Institute for <strong>the</strong> award <str<strong>on</strong>g>of</str<strong>on</strong>g> any o<strong>the</strong>r degree or diploma.<br />

Dr. U. T. S. Pillai<br />

Scientist<br />

Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Minerals Divisi<strong>on</strong><br />

Nati<strong>on</strong>al Institute for Interdisciplinary<br />

Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology (CSIR)<br />

Triv<str<strong>on</strong>g>and</str<strong>on</strong>g>rum


DECLARATION<br />

I hereby declare that <strong>the</strong> <strong>the</strong>sis entitled <str<strong>on</strong>g>“Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> <str<strong>on</strong>g>Additi<strong>on</strong>s</str<strong>on</strong>g><br />

<strong>on</strong> <strong>the</strong> <strong>Microstructure</strong>, Mechanical Properties <str<strong>on</strong>g>and</str<strong>on</strong>g> Corrosi<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ 91<br />

Magnesium AlIoy” embodies <strong>the</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>afide research work d<strong>on</strong>e by me for<br />

<strong>the</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> Doctor <str<strong>on</strong>g>of</str<strong>on</strong>g> Philosophy in Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Cochin<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, Cochin under <strong>the</strong> guidance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Dr. U.T.S. Pillai, Nati<strong>on</strong>al Institute for Interdisciplinary Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology<br />

(CSIR), Triv<str<strong>on</strong>g>and</str<strong>on</strong>g>rum. l fur<strong>the</strong>r declare that this <strong>the</strong>sis or part <strong>the</strong>re<str<strong>on</strong>g>of</str<strong>on</strong>g> has not<br />

previously been formed <strong>the</strong> basis for <strong>the</strong> award <str<strong>on</strong>g>of</str<strong>on</strong>g> any degree or diploma.


;4c1(,WOW1;£gq~:9n£9v'1i9<br />

lt is indeed very much overwhelming feeling when a sailor in a deep sea<br />

senses <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> a tiringjoumey. He forgets all <strong>the</strong> obstacles that he has come across<br />

during <strong>the</strong> course <str<strong>on</strong>g>of</str<strong>on</strong>g> his joumey. He would like to express his sincere gratitude <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

thanks to all <strong>the</strong> crews who have been his source inspirati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> given enough<br />

strength <str<strong>on</strong>g>and</str<strong>on</strong>g> perseverance since <strong>the</strong> beginning. While doing this, he is bit wordless.<br />

l like to express my deep sense <str<strong>on</strong>g>of</str<strong>on</strong>g> respect <str<strong>on</strong>g>and</str<strong>on</strong>g> gratitude to my mentor,<br />

Dr. U. T. S. Pillai Scientist, Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Minerals Divisi<strong>on</strong>, Nati<strong>on</strong>al lnstitute for<br />

Interdisciplinary Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology (NllST), Triv<str<strong>on</strong>g>and</str<strong>on</strong>g>rum, for his invaluable<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> fruitful c<strong>on</strong>structive suggesti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> guidance that have enabled me to overcome<br />

all <strong>the</strong> problems <str<strong>on</strong>g>and</str<strong>on</strong>g> difficulties while carrying out multi-functi<strong>on</strong>aries <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present<br />

investigati<strong>on</strong>. He stayed al<strong>on</strong>g with me <str<strong>on</strong>g>and</str<strong>on</strong>g> motivated c<strong>on</strong>stantly <str<strong>on</strong>g>and</str<strong>on</strong>g> stimulated me to<br />

<strong>the</strong> fullest extent. l feel fortunate for <strong>the</strong> support, involvement <str<strong>on</strong>g>and</str<strong>on</strong>g> well wishes <str<strong>on</strong>g>of</str<strong>on</strong>g> my<br />

mentor <str<strong>on</strong>g>and</str<strong>on</strong>g> this is virtually impossible to express <strong>the</strong>m in words.<br />

l wish to thank my well wishers Dr. B.C. Pai, Senior Deputy Director, NIIST,<br />

Triv<str<strong>on</strong>g>and</str<strong>on</strong>g>rum <str<strong>on</strong>g>and</str<strong>on</strong>g> Dr. U. Kamachi Mudali, Head, Corrosi<strong>on</strong> Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology<br />

Secti<strong>on</strong>, Indira G<str<strong>on</strong>g>and</str<strong>on</strong>g>hi Center for Atomic Research, Kalpakkam for <strong>the</strong>ir persistent<br />

encouragement <str<strong>on</strong>g>and</str<strong>on</strong>g> advice during <strong>the</strong> course <str<strong>on</strong>g>of</str<strong>on</strong>g> this work.<br />

l thank Dr. R. M. Pillai Senior Deputy Director, Head, Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Minerals<br />

Divisi<strong>on</strong> for his valuable advice <str<strong>on</strong>g>and</str<strong>on</strong>g> encouragement.<br />

l am grateful to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. T.K. Ch<str<strong>on</strong>g>and</str<strong>on</strong>g>rashekar, Director, Nati<strong>on</strong>al lnstitute for<br />

lnterdisciplinary Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, Triv<str<strong>on</strong>g>and</str<strong>on</strong>g>rum <str<strong>on</strong>g>and</str<strong>on</strong>g> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. S. P. Mehrotra,<br />

Director, Nati<strong>on</strong>al Metallurgical Laboratory (NML), Jamshedpur for <strong>the</strong> support<br />

during <strong>the</strong> course <str<strong>on</strong>g>of</str<strong>on</strong>g> this research work.<br />

l am thankful to <strong>the</strong> Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific <str<strong>on</strong>g>and</str<strong>on</strong>g> Industrial Research (CSIR),<br />

New Delhi for granting Senior Research Fellowship to carry out this research work.<br />

i


_ _ Acknowledgements<br />

I am very much grateful to Mr. K. Sukumaran, <str<strong>on</strong>g>and</str<strong>on</strong>g> Mr. K.K. Ravikumar,<br />

NIIST for <strong>the</strong>ir help in mechanical testing, Mr. S.G.K. Pillai, NIIST for optical<br />

metallography, Dr. V. John <str<strong>on</strong>g>and</str<strong>on</strong>g> Mr. M.C. Shaji, NIIST for foundry facilities,<br />

Dr. M. Ravi, NIIST for image analysis, Dr. Peter Koshy, Dr. P. Prabhakar Rao <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Mr. M.R. Ch<str<strong>on</strong>g>and</str<strong>on</strong>g>ran, NIIST for SEM <str<strong>on</strong>g>and</str<strong>on</strong>g> EDS facilities <str<strong>on</strong>g>and</str<strong>on</strong>g> Dr. U. Syamprasad <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Mr. P. Gurusami, NIIST for <strong>the</strong> XRD work.<br />

I wish to place <strong>on</strong> record my sincere thanks to Dr. J. Swaminathan, Scientist,<br />

NML, Jamshedpur for his valuable help to carry out <strong>the</strong> creep testing <str<strong>on</strong>g>and</str<strong>on</strong>g> optical<br />

micrographs. It is worth to menti<strong>on</strong> that <strong>the</strong> <strong>the</strong>sis would not have come to <strong>the</strong> final<br />

shape with out his help.<br />

My sincere thanks also to Mr. S.K. Das <str<strong>on</strong>g>and</str<strong>on</strong>g> Mr. Manoj Kunjan, NML,<br />

Jamshedpur for <strong>the</strong>ir kind help in doing SEM <str<strong>on</strong>g>and</str<strong>on</strong>g> EDS work<br />

I am also grateful to Dr. Ningshen, Corrosi<strong>on</strong> Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology<br />

Secti<strong>on</strong>, Indira G<str<strong>on</strong>g>and</str<strong>on</strong>g>hi Center for Atomic Research (IGCAR), Kalpakkam for his help<br />

to c<strong>on</strong>duct corrosi<strong>on</strong> testing <str<strong>on</strong>g>and</str<strong>on</strong>g> Dr. (Mrs) Saroja Saibaba, Physical Metallurgy<br />

Dfrvis<strong>on</strong>, IGCAR, Kalpakkam for her kindness to provide <strong>the</strong> SEM-EDS facility.<br />

I wish to thank my colleagues in NML, Jamshedpur, Dr. Sukomal Ghosh,<br />

Mr. P. K. De, Dr. V. C. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>ivastava, Dr. K. L. Sahoo, Dr. D. M<str<strong>on</strong>g>and</str<strong>on</strong>g>al <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Mr. P. Poddar for <strong>the</strong>ir support during <strong>the</strong> course <str<strong>on</strong>g>of</str<strong>on</strong>g> this work.<br />

I express my sincere thanks to Dr. T.P.D. Rajan <str<strong>on</strong>g>and</str<strong>on</strong>g> Dr. S. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>eeja Kumari,<br />

NII ST for <strong>the</strong> technical discussi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> help given to me during <strong>the</strong> course <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

research work.<br />

My sincere thanks to Mr. T. Soman <str<strong>on</strong>g>and</str<strong>on</strong>g> Mr. V. Ant<strong>on</strong>y, NIIST for <strong>the</strong> help<br />

received from <strong>the</strong>m throughout <strong>the</strong> research work. I thank Mr. P. Balan,<br />

ii


Acknowledgements<br />

Mr. S. Ramakrishnan, Mr. N. Narayanan, Mr. T.A. Balakrishnan, Mr. P. <str<strong>on</strong>g>Si</str<strong>on</strong>g>supalan<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> P. Soman, NIIT for <strong>the</strong> machining, fabricati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r works at workshop.<br />

I am very much grateful to Mr. V.M. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>eekumar, Mr. K.R. Ravi,<br />

Mr. .M Suresh, Mr. K. Venkatesh, Mr. G. Jaganathan <str<strong>on</strong>g>and</str<strong>on</strong>g> Mr. M. Saravanan NIIST,<br />

Triv<str<strong>on</strong>g>and</str<strong>on</strong>g>rum for <strong>the</strong> technical discussi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir assistance in my work. I also thank<br />

all members <str<strong>on</strong>g>of</str<strong>on</strong>g> Light Metals, Alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> Composite Group, NIIST, Triv<str<strong>on</strong>g>and</str<strong>on</strong>g>rum for<br />

<strong>the</strong> help throughout my work.<br />

A special menti<strong>on</strong> is worth to Mr. N. Balasubramani, NIIST, Triv<str<strong>on</strong>g>and</str<strong>on</strong>g>rum for<br />

his tireless help throughout this work.<br />

I like to thank Dr. K. Venkateswarlu, Mr. M. Madan, Mr. V. Rajinikanth <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

all o<strong>the</strong>r friends in Jamshedpur for <strong>the</strong>ir help <str<strong>on</strong>g>and</str<strong>on</strong>g> encouragement.<br />

I would also like to recall <strong>the</strong> inspiring worrils <str<strong>on</strong>g>of</str<strong>on</strong>g> my Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor<br />

Dr. K. Raghuk<str<strong>on</strong>g>and</str<strong>on</strong>g>an, Head, Manufacturing Dept., Annamalai University, which<br />

always rejuvenate me.<br />

Heartfelt thanks to my parents <str<strong>on</strong>g>and</str<strong>on</strong>g> sister, who always c<strong>on</strong>cem about my<br />

progress, for <strong>the</strong>ir encouragement <str<strong>on</strong>g>and</str<strong>on</strong>g> untiring support. Special thanks to my wife<br />

J. Mohana Priya for <strong>the</strong> encouragement <str<strong>on</strong>g>and</str<strong>on</strong>g> support given to me. I also thank my s<strong>on</strong><br />

Akash <str<strong>on</strong>g>and</str<strong>on</strong>g> daughter Thendral, who I believe, bring happiness <str<strong>on</strong>g>and</str<strong>on</strong>g> luck to my life.<br />

Last but not least, I thank GOD for giving me <strong>the</strong> knowledge <str<strong>on</strong>g>and</str<strong>on</strong>g> helping me<br />

throughout my life.<br />

iii<br />

jl. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan


ABSTRACT<br />

_ Abstract<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium has grown c<strong>on</strong>siderably since early l990_ <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tinues<br />

to rise in <strong>the</strong> automotive industry. This is mainly attributed to <strong>the</strong> lightness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnesium-<strong>on</strong>e —third lighter than aluminum, three-fourth lighter than zinc, <str<strong>on</strong>g>and</str<strong>on</strong>g> four­<br />

fifths lighter than steel. Magnesium also has <strong>the</strong> highest strength-to- weight ratio<br />

compared to many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> structural metals comm<strong>on</strong>ly used. Although magnesium<br />

alloys have been developed <str<strong>on</strong>g>and</str<strong>on</strong>g> used widely during World War II, research <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium alloys significantly declined after I960 due to various<br />

reas<strong>on</strong>s. As a result, <strong>the</strong> metallurgical knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium <str<strong>on</strong>g>and</str<strong>on</strong>g> its alloys is<br />

immature compared to that <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum <str<strong>on</strong>g>and</str<strong>on</strong>g> its alloys, leaving a significant amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> work waiting for <strong>the</strong> attenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> researchers. AZ91, whose compositi<strong>on</strong> is<br />

Mg-9%Al-l%Zn-0.2%Mn is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> major alloy systems in magnesium alloys.<br />

This alloy <str<strong>on</strong>g>of</str<strong>on</strong>g>fers excellent mechanical, chemical <str<strong>on</strong>g>and</str<strong>on</strong>g> foundry properties. However,<br />

<strong>the</strong> major problem is with its high temperature properties. Its elevated temperature<br />

tensile <str<strong>on</strong>g>and</str<strong>on</strong>g> creep properties drops drastically, which restricts its usage above 120°C.<br />

The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> low temperature melting point intermetallic MgnAl;2 at <strong>the</strong> grain<br />

boundary is said to be <strong>the</strong> culprit for <strong>the</strong> above said problem. Introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

<strong>the</strong>rmally stable intermetallics in <strong>the</strong> microstructure through minor alloying additi<strong>on</strong>s<br />

is an old but still effective way <str<strong>on</strong>g>of</str<strong>on</strong>g> improving its high temperature behavior.<br />

Hence, <strong>the</strong> primary objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present research work, “INFLUENCE<br />

OF <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g> AND <str<strong>on</strong>g>Sr</str<strong>on</strong>g> ADDITIONS ON THE MICROSTRUCTURE,<br />

MECHANICAL PROPERTIES AND CORROSION BEHAVIOR OF AZ91<br />

MAGNESIUM ALLOY”, is to study <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> individual <str<strong>on</strong>g>and</str<strong>on</strong>g> combined<br />

additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>,'<str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity cast AZ91 alloy. In<br />

additi<strong>on</strong>, <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se elemental additi<strong>on</strong>s <strong>on</strong> <strong>the</strong> ageing behavior, tensile<br />

properties <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy is also studied. The <strong>the</strong>sis c<strong>on</strong>tains<br />

totally well organized five chapters with <strong>the</strong> following details.<br />

Chapter l gives <strong>the</strong> over all idea <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>the</strong>sis. The general introducti<strong>on</strong> to<br />

magnesium alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> its importance are given. The limiting properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy<br />

iv


____g pg _ _ Abstract<br />

for its wide applicati<strong>on</strong>s are identified as creep <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong>. Their creep <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

corrosi<strong>on</strong> mechanisms are briefly discussed. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> various minor alloying<br />

additi<strong>on</strong>s <strong>on</strong> <strong>the</strong> microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical properties are also brought out. The<br />

<strong>the</strong>me <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>the</strong>sis is given at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> chapter.<br />

A comprehensive review <strong>on</strong> <strong>the</strong> parameters influencing <strong>the</strong> structure <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al based alloys particularly AZ9l, is given in Chapter 2. A great<br />

attenti<strong>on</strong> is given to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> creep <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

its mechanisms. The informati<strong>on</strong> available in <strong>the</strong> literature about <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

alloying elements <strong>on</strong> <strong>the</strong> structure <str<strong>on</strong>g>and</str<strong>on</strong>g> properties, particularly <strong>the</strong> creep <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong><br />

is covered. Finally <strong>the</strong> areas are identified for <strong>the</strong> present research work <str<strong>on</strong>g>and</str<strong>on</strong>g> scope <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> investigati<strong>on</strong> is also given at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> chapter.<br />

Chapter 3 gives <strong>the</strong> details <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> materials <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> experimental methods<br />

used in <strong>the</strong> present investigati<strong>on</strong>. Magnesium alloys with various compositi<strong>on</strong>s were<br />

prepared under proper flux cover. To study <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> minor alloying additi<strong>on</strong>s,<br />

various amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> different alloying elements like <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> are added to AZ9l<br />

alloy in <strong>the</strong> form <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum master alloys. The microstructures were characterized<br />

using optical microscope (OM) <str<strong>on</strong>g>and</str<strong>on</strong>g> Scanning Electr<strong>on</strong> Microscopy (SEM) attached<br />

with EDS. To study <strong>the</strong> ageing behavior heat treatment studies were carried out at<br />

200°C. Tensile properties were evaluated at room as well as at 150°C temperatures<br />

using Instr<strong>on</strong> Universal Testing Machine. Creep properties were also evaluated at 150<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 200°C temperatures with an initial stress <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 MPa using 3 t<strong>on</strong> ‘MAYES’ creep<br />

testing machine. 100 h immersi<strong>on</strong> test in 3.5% NaCl soluti<strong>on</strong>, Potentiodynamic<br />

Polarizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Electrochemical Impedance Spectroscopy measurements in ASTM<br />

1384 soluti<strong>on</strong>, which c<strong>on</strong>tains 148 mg l" <str<strong>on</strong>g>of</str<strong>on</strong>g> Na;SO4, I38 mg 1" <str<strong>on</strong>g>of</str<strong>on</strong>g> NaHCO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 165<br />

mg 1" NaCl (pH==8.3), were carried out to estimate <strong>the</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l<br />

alloy with <str<strong>on</strong>g>and</str<strong>on</strong>g> without alloying additi<strong>on</strong>s.<br />

Chapter 4 presents <strong>the</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present investigati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> detailed<br />

discussi<strong>on</strong>s <strong>on</strong> <strong>the</strong> results with microstructural evidences <str<strong>on</strong>g>and</str<strong>on</strong>g> suitable <strong>the</strong>ories.<br />

V


A Abstract<br />

The microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> base alloy c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> or-Mg matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> [3-Mg17Al12<br />

intermetallic at <strong>the</strong> grain boundary. <str<strong>on</strong>g>Additi<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> to AZ9l introduce<br />

Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g>, Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; <str<strong>on</strong>g>and</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallics respectively. The morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

intermetallic is found to be a coarse Chinese script where as both Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; <str<strong>on</strong>g>and</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

have needle shape. Combined additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> with 0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.1% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> has modified<br />

<strong>the</strong> Chinese script morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic in to a fine polyg<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

rectangular shape. The reas<strong>on</strong> for <strong>the</strong> modificati<strong>on</strong> is that <strong>the</strong> added <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> has<br />

restricted <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic during solidificati<strong>on</strong>.<br />

During soluti<strong>on</strong> treatment at 410°C for 48 h, <strong>the</strong> Mg|7Al|2 intermetallic gets<br />

dissolved where as <strong>the</strong> o<strong>the</strong>r intermetallics such as Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g>, Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2 <str<strong>on</strong>g>and</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> are not<br />

affected due to <strong>the</strong>ir high <strong>the</strong>rmal stability. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, <strong>the</strong> <strong>the</strong>rmal stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mg;7Al;; intermetallic is improved to a certain extent by <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>. Ageing <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l<br />

alloy at 200°C leads to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al12 precipitates in two morphologies:<br />

disc<strong>on</strong>tinuous lamellar <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tinuous fine plate morphology. C<strong>on</strong>tinuous<br />

morphology is favorable for <strong>the</strong> age hardening. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g> suppresses <strong>the</strong><br />

disc<strong>on</strong>tinuous precipitati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>reby helps to form more c<strong>on</strong>tinuous precipitates.<br />

Due to this, <strong>the</strong> peak hardness increase c<strong>on</strong>siderably. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong><br />

slightly increases <strong>the</strong> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> disc<strong>on</strong>tinuous precipitates. Moreover, <strong>the</strong><br />

improvement in peak hardness with <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> is not much. This is due to <strong>the</strong><br />

availability <str<strong>on</strong>g>of</str<strong>on</strong>g> less amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Al for <strong>the</strong> precipitati<strong>on</strong> process during ageing. <str<strong>on</strong>g>Si</str<strong>on</strong>g>nce <strong>the</strong><br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mg17Al|; intermetallic is increased by <strong>the</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>, it is not<br />

completely dissolved during soluti<strong>on</strong> treatment. Moreover, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Al is in <strong>the</strong><br />

form <str<strong>on</strong>g>of</str<strong>on</strong>g> undissolved Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallics <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum available<br />

for <strong>the</strong> precipitati<strong>on</strong> process is less.<br />

Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> marginally reduces <strong>the</strong> tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Chinese script Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic but with <strong>the</strong> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong><br />

improves it for <strong>the</strong> room as well as at l50°C, which is due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> fine<br />

Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallics <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> grain refinement effect. However, 0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong><br />

reduces <strong>the</strong> tensile properties due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> more numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> needle shaped<br />

Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallics. Not much increase in UTS but significant improvement in<br />

vi


_ g Abstract<br />

yield strength is observed with <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>. Again optimum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> is<br />

restricted to 0.5%. Due to <strong>the</strong> refinement in grain size, yield strength is improved with<br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>s. However, not much improvement in UTS is seen with <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>s<br />

which are due to <strong>the</strong> fact that <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetailics reduces <strong>the</strong> volume<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al1; intermetallics, which is c<strong>on</strong>sidered as <strong>the</strong> streng<strong>the</strong>ning phase at room<br />

temperature. Both <strong>the</strong> combined additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> with <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> with <str<strong>on</strong>g>Sr</str<strong>on</strong>g> provide<br />

superior properties compared to <strong>the</strong> individual additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> due to <strong>the</strong> modificati<strong>on</strong><br />

in morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallics.<br />

At 150°C, substantial improvement in <strong>the</strong> creep properties with alloying<br />

additi<strong>on</strong>s is observed. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> greatly increases <strong>the</strong> total creep life <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AZ9l alloy. This is attributed to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> hard <str<strong>on</strong>g>and</str<strong>on</strong>g> stable Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g>, Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2<br />

intermetallics in <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloys respectively <str<strong>on</strong>g>and</str<strong>on</strong>g> more volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tinuous precipitates, which streng<strong>the</strong>n <strong>the</strong> grain boundary during creep. It is<br />

interesting to note that both Chinese script <str<strong>on</strong>g>and</str<strong>on</strong>g> polyg<strong>on</strong>al shaped Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intennetallic<br />

in <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloys exhibit similar creep properties. This is in c<strong>on</strong>trast to <strong>the</strong> tensile<br />

behavior where <strong>the</strong> tensile properties are reduced by <strong>the</strong> Chinese script morphology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g>. This indicates that Chinese script morphology is advantageous as far as <strong>the</strong><br />

creep property is c<strong>on</strong>cemed. The multiple arms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Chinese script extended to <strong>the</strong><br />

neighboring grain boundaries effectively hold <strong>the</strong> boundaries during creep <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

restricts it against sliding. The 500 h short term creep test has revealed that <strong>the</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

additi<strong>on</strong> also capable <str<strong>on</strong>g>of</str<strong>on</strong>g> improving <strong>the</strong> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l. However, <strong>the</strong> creep<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy at 200°C is not improved significantly by <strong>the</strong> additi<strong>on</strong>s. This<br />

is attributed to <strong>the</strong> fact that <strong>the</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening effect by <strong>the</strong> coarsening <str<strong>on</strong>g>of</str<strong>on</strong>g> Mgi7Al1;; is more<br />

predominant at 200°C due to <strong>the</strong> high mobility <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum atoms, which overcomes<br />

<strong>the</strong> streng<strong>the</strong>ning effect by <strong>the</strong> stable intermetallics.<br />

The post crept microstructural analyses indicate that dynamic c<strong>on</strong>tinuous<br />

precipitates <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al1;; occur during creep in all <strong>the</strong> alloys, which in tum improved<br />

<strong>the</strong> strength. These c<strong>on</strong>tinuous precipitates nucleate <strong>on</strong> <strong>the</strong> dislocati<strong>on</strong>s found near <strong>the</strong><br />

hard intermetallics. Cavities are noticed at <strong>the</strong> matrix-massive Mg17Al|2 intermetallic<br />

interface due to <strong>the</strong> incompatibility between <strong>the</strong>m. Multiple cracking <str<strong>on</strong>g>of</str<strong>on</strong>g> Mgl-;Al|2<br />

vii


_ _ 1 Abstract<br />

intermetallic are also observed. These cavities at <strong>the</strong> interface <str<strong>on</strong>g>and</str<strong>on</strong>g> cracking <str<strong>on</strong>g>of</str<strong>on</strong>g> massive<br />

Mg17A112 intermetallics al<strong>on</strong>g with <strong>the</strong> coarsening <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous precipitates due to<br />

<strong>the</strong> low melting point, lead to <strong>the</strong> final fracture in AZ9l alloy. lt is found that additi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> alloying elements promotes more number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous precipitates. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

alloying elements introduces various hard intermetallics which increases <strong>the</strong><br />

dislocati<strong>on</strong> density near <strong>the</strong> intermetallics during solidificati<strong>on</strong>, due to <strong>the</strong> difference<br />

in co-efficient <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>rmal expansi<strong>on</strong> between <strong>the</strong> intermetallic <str<strong>on</strong>g>and</str<strong>on</strong>g> matrix. These<br />

dislocati<strong>on</strong>s act as a heterogeneous nucleati<strong>on</strong> site for <strong>the</strong> c<strong>on</strong>tinuous precipitates.<br />

Fine precipitates al<strong>on</strong>g with <strong>the</strong> stable intermetallics (Mg;;<str<strong>on</strong>g>Si</str<strong>on</strong>g>, Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2 <str<strong>on</strong>g>and</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g>)<br />

streng<strong>the</strong>n <strong>the</strong> grain boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>reby improve <strong>the</strong> creep resistance.<br />

Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> reduces <strong>the</strong> corrosi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy whereas, <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

additi<strong>on</strong> increases it. Interesting result is observed with <strong>the</strong> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> combined<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> which results highest corrosi<strong>on</strong> resistance compared to all <strong>the</strong> alloys. Both<br />

<strong>the</strong> intermetallics Mg;;<str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> are less harmful to corrosi<strong>on</strong> compared to<br />

Mg17Al;2 whereas Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallic acts as an active cathode. Fine <str<strong>on</strong>g>and</str<strong>on</strong>g> evenly<br />

distributed Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic with <strong>the</strong> combined additi<strong>on</strong> provides c<strong>on</strong>tinuous<br />

protective layer to retard <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong> more effectively compared to <strong>the</strong><br />

massive sized particle.<br />

The summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> findings <str<strong>on</strong>g>of</str<strong>on</strong>g> this investigati<strong>on</strong> al<strong>on</strong>g with its c<strong>on</strong>tributi<strong>on</strong>s<br />

made to <strong>the</strong> knowledge <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> avenues for fur<strong>the</strong>r work are presented in Chapter 6.<br />

viii<br />

\


CONTENTS page NO<br />

ACKNOWLEDGEMENT --------------------------------------------------------- -- i<br />

ABSTRACT---------------------------------------------------------------------------» iv<br />

CONTENTS---------------------------------------------------------------------------» ix<br />

LIST OF TAB LES-------------------------------------------------------------------- xiv<br />

LIST OF FIGURES------------------------------------------------------------------- Xvi<br />

CHAPTER 1: INTRODUCTION --------------------------------------------- -- 001<br />

1.1 MAGNESIUM -------------------------------------------~---------- 001<br />

1.2 AZ91 MAGNESIUM ALLOY------------------------------------ 002<br />

1.3 CREEP BEHAVIOR OF AZ91 ALLOY------------------~---- 004<br />

1.4 CORROSION BEHAVIOR OF AZ91 ALLOY -------------- -- 005<br />

1.5 ROLE OF MINOR ALLOYING ADDITIONS -------------- -- 005<br />

1.6 THEME OF THE THESIS ---------------------------------------- 006<br />

CHAPTER 2: LITERATURE REVIEW ------------------------------------- -- 008<br />

2.1 INTRODUCTION—------------------------------------------------- 008<br />

2.2 ADVANTAGES ---------------------------------------------------- 010<br />

2.3 APPLICATIONS -------------------------------------------------- -- 010<br />

2.3.1 Aerospace Industries ------------------------------------- -- 010<br />

2.3.2<br />

2.3.3<br />

2.3.4<br />

2.3.5<br />

Defense Industries -------------------------------------- -- 011<br />

Automobile Industries --------------------------------- -- 011<br />

Nuclear Industry ---------------------------------------- —- 012<br />

Sporting <str<strong>on</strong>g>and</str<strong>on</strong>g> Electr<strong>on</strong>ic Industries --------------------- 012<br />

2.4 LIMITATIONS -------------------------------------------------- -- 013<br />

2.5 MELTING PRACTICE ----------------------------------------- -- 013<br />

2.5.1<br />

2.5.2<br />

Flux Melting <str<strong>on</strong>g>and</str<strong>on</strong>g> Refining —----------------------------- 013<br />

Flux-less Melting --------------------------------------- -- 015<br />

2.6 CASTING PROCESSES ---------------------------------------- -- 016<br />

2.7 MAJOR ALLOY SYSTEMS ----------------------------------- -- 017<br />

2.7.1 Zirc<strong>on</strong>ium C<strong>on</strong>taining Alloys ------------------------- -- 018<br />

ix


2.7.2<br />

Page No<br />

Zirc<strong>on</strong>ium Free Alloys (Mg-Al Alloys) ------------- -- 019<br />

2.7.2.1 AZ91 (Mg-9% Al-1% Zn-0.2% Mn) ------- -- 020<br />

Factor Influencing <strong>the</strong> Structure <str<strong>on</strong>g>and</str<strong>on</strong>g> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mg-Al Alloys ------------------------------------------------------ -- 021<br />

2.8.1<br />

2.8.2<br />

2.8.3<br />

2.8.4<br />

2.8.5<br />

2.8.6<br />

2.8.7<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Alloy Compositi<strong>on</strong>s ------------------------- -- 021<br />

2.8.1.1 Aluminum --------------------------------------- -- 021<br />

2.8.1.2 Zinc ---------------------------------------------- -- 021<br />

2.8.1.3 Manganese -------------------------------------- -- 023<br />

2.8.1.4 Impurities ---------------------------------------- -- 023<br />

Solidificati<strong>on</strong> -------------------------------------------- -- 023<br />

2.8.2.1 Eutectic Solidificati<strong>on</strong> ------------------------ —- 024<br />

2.8.2.2 Solid State Transformati<strong>on</strong> ------------------- -- O27<br />

Grain Refinement --------------------------------------- -- 027<br />

2.8.3.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g>Aluminum ---------------------------- -- O28<br />

2.8.3.2 Super Heating Treatment-------------------————- 028<br />

2.8.3.3 Elfinal Process ---------------------------------- -- 029<br />

2.8.3.4 Carb<strong>on</strong> Inoculati<strong>on</strong> ----------------------------- —~ 030<br />

2.8.3.5 Thermo Mechanical Treatment --------------- -- 031<br />

Heat Treatment ------------------------------------------ -- 032<br />

2.8.4.1 General Behavior ------------------------------- -- 032<br />

2.8.4.2 C<strong>on</strong>tinuous Precipitate ------------------------ —- 033<br />

2.8.4.3 Disc<strong>on</strong>tinuous Precipitate -------------------- -- 035<br />

Tensile Behavior-------—-—————------------------—----—---- O36<br />

2.8.5.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> Strain Rate ------ -- 037<br />

2.8.5.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Grain <str<strong>on</strong>g>Si</str<strong>on</strong>g>ze ---------------------------- -- 037<br />

Wear Behavior ------------------------------------------- -- 039<br />

Creep Behavior ------------------------------------------ -- 040<br />

2.8.7.1 Creep Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Pure Magnesium -------- -- 041<br />

2.8.7.2 Creep Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Die Cast AZ9l------------- 041<br />

2.8.7.3 Creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 against o<strong>the</strong>r<br />

Mg-Al alloys ----------------------------------- -- 042<br />

2.8.7.4 Creep Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g>lngot Cast AZ91 --------- -- 044<br />

X


2.9<br />

2.10<br />

2.11<br />

2.8.8<br />

2.9.1<br />

2.9.2<br />

2.9.3<br />

2.9.4<br />

2.9.5<br />

Page No<br />

Corrosi<strong>on</strong> Behavior ------------------------------------- -- 047<br />

2.8.8.1 Corrosi<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 ----------------- -- 048<br />

2.8.8.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Micro c<strong>on</strong>stituents-------------------- 049<br />

(i)


Page No<br />

3.4.4 Hardness --------------------------------------------------- -- 071<br />

3.5 Microstructural Observati<strong>on</strong> ------------------------------------ -- 072<br />

3.5.1 Sample Preparati<strong>on</strong> --------------------------------------- -- 072<br />

3.5.1.1 Polishing ----------------------------------------- -- 072<br />

3.5.1.2 Chemical Etching ------------------------------- -- 072<br />

3.5.2 Optical Microscope -------------------------------------- -- 073<br />

3.5.3 Image Analysis ------------------------------------------- -- 073<br />

3.5.4 Scanning Electr<strong>on</strong> Microscope (SEM) ---------------- -- 073<br />

3.6 X-Ray Diffracti<strong>on</strong> (XRD) --------------------------------------- -- 074<br />

3.7 Mechanical Properties -------------------------------------------- -- 074<br />

3.7.1 Tensile test ------------------------------------------------- -~ 074<br />

3.7.2 Creep testing ---------------------------------------------- -- 074<br />

3.8 Corrosi<strong>on</strong> testing --------------------------------------------------- -- 077<br />

3.8.1 Sample Preparati<strong>on</strong> --------------------------------------- -- 077<br />

3.8.2 Polarizati<strong>on</strong> Test ----------------------------------------- -- 077<br />

3.8.3 Electrochemical Impedance studies -------------------- -- 077<br />

3.8.4 Immersi<strong>on</strong> test -------------------------------------------- -- 079<br />

CHAPTER 4: RESULTS AND DISCUSSION-------------——---------—---—---- 080<br />

4.1 <strong>Microstructure</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Phase Identificati<strong>on</strong> ------------------------ -- 080<br />

4.1.1 AZ9l alloy ------------------------------------------------- -- 080<br />

4.1.2 AZ91+X<str<strong>on</strong>g>Si</str<strong>on</strong>g> alloys (X=0.2%, 0.5%) -------------------- -- 084<br />

4.1.3 AZ91+X <str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloys (X=0.2%, 0.5%, 0.7%) ----------- -- 088<br />

4.1.4 AZ91+X <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloys (X=0.2%, 0.5%, 0.7%) ----------- -- 091<br />

4.1.5 AZ9l+X<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> &AZ9l+X<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.1% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

alloys (X=0.2%, 0.5%) ---------------------------------- —- 094<br />

4.2 Grain refinement --------------------------------------------------- -- 101<br />

4.3 Heat treatment ------------------------------------------------------ -- 106<br />

4.3.1 Soluti<strong>on</strong> Treatment -------------------------------------- -- 106<br />

4.3.2 Ageing Behavior ------------------------------------------ -- 110<br />

4.3.3 Aged <strong>Microstructure</strong>s ----------------------------------- -- 113<br />

4.4 Tensile Properties -------------------------------------------------- -~ 119<br />

4.4.1 AZ9l alloy ------------------------------------------------- -- 119<br />

xii


Page No<br />

4.4.2 AZ9l+X<str<strong>on</strong>g>Si</str<strong>on</strong>g> alloys (X=0.2%, 0.5%) -------------------- -- 122<br />

4.4.3 AZ9l+X<str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloys (X=0.2%, 0.5%, 0.7%) ------------ -- 125<br />

4.4.4 AZ9l+X<str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloys (X=0.2%, 0.5%, 0.7%) ------------ -- 127<br />

4.4.5 AZ9l+X<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> & AZ91+X<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.1% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloys<br />

(X=0.2%, 0.5%) ------------------------------------------ —- 127<br />

4.4.6 Fractograph ------------------------------------------------ -- 131<br />

4.5 Creep Behavior ---------------------------------------------------- —— 138<br />

4.5.1 AZ91 Alloy ------------------------------------------------ -- 138<br />

4.5.2 AZ9l+X<str<strong>on</strong>g>Si</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%) ------------------- —- 139<br />

4.5.3 AZ91+X<str<strong>on</strong>g>Sb</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%, 0.7%) ----------- -- 143<br />

4.5.4 AZ91+X<str<strong>on</strong>g>Sr</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%, 0.7%) ----------- -- 145<br />

4.5.5 AZ9l+X<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%) -------- -- 146<br />

4.5.6 Creep Fractograph -------------------------------------- -- 149<br />

4.5.7 Post Creep Microstructural Analysis ----------------- -- 153<br />

4.5.7.1 AZ9l alloy --------------------------------------- -- 153<br />

4.5.7.2 AZ9l with alloying additi<strong>on</strong>s ------------------ -- 157<br />

4.6 Corrosi<strong>on</strong> Behavior ----------------------------------------------- -— 162<br />

4.6.1 lmmersi<strong>on</strong> test -------------------------------------------- -- 162<br />

4.6.2 Potentiodynamic polarizati<strong>on</strong> Test --------------------- -- 162<br />

4.6.3 Electrochemical impedance spectroscopy ------------ -- 164<br />

4.6.4 Corrosi<strong>on</strong> morphology ----------------------------------- —- 167<br />

4.6.5 XRD analysis --------------------------------------------- -- 170<br />

4.6.6 Corrosi<strong>on</strong> mechanism ---------------------------------- -- 170<br />

CHAPTER 5- CONCLUSIONS --------------------------------------------—-—---- 173<br />

5.1 <str<strong>on</strong>g>Si</str<strong>on</strong>g>gnificant C<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Present Investigati<strong>on</strong> to<br />

<strong>the</strong> Knowledge ----------------------------------------------------- -- 176<br />

5.2 Avenues for Future Work ---------------------------------------- -- 177<br />

REFERENCES -------------------------------------—--—-----------------—------------- 179<br />

PUBLICATIONS BASED ON THE PRESENT RESEARCH WORK---- 198<br />

xiii


J<br />

1 1<br />

J<br />

N0 No<br />

LIST OF TABLES<br />

Table ‘ Capti<strong>on</strong> if 1 “Piaget<br />

1.1 Major compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mg-Al based alloys 003<br />

1.2 Mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> different Mg-Al based alloys 003<br />

2.1 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physical <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium<br />

alloy with aluminum alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> plastic<br />

6653”<br />

2.2 Advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium alloys WW“ (ill 4<br />

2.3 Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> magnesium alloy automobile comp<strong>on</strong>ents 7" 012 0<br />

2.4 L1m1i"6{ii61i§6r magnesium alloys if mimi"mh_ 614<br />

2.5 Liquidus <str<strong>on</strong>g>and</str<strong>on</strong>g> solidus temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy at various cooling<br />

rates<br />

1 024<br />

2.6 Roomtemperature tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> as cast <str<strong>on</strong>g>and</str<strong>on</strong>g> hot extruded? 639<br />

AZ9l alloy<br />

3.1 Testing procedures used for wet analysis to find out various<br />

elements<br />

3.2 Analyzed chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various alloys used in <strong>the</strong><br />

present investigati<strong>on</strong><br />

l<br />

069<br />

0701“?<br />

4.1 Ens results taken at dirrééni locati<strong>on</strong>/phases in AZ9l alloy 083<br />

4.2 Grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> vériéfis alloys at soluti<strong>on</strong> treated c<strong>on</strong>diti<strong>on</strong> 1071<br />

4.3 Hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> various alloysiat different tempering c<strong>on</strong>diti<strong>on</strong>s 113 5<br />

4.4" Volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous precipitates formed in 120 min<br />

aged samples<br />

4.5 Property variati<strong>on</strong> al<strong>on</strong>g <strong>the</strong> wall thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> casting 12111<br />

4.6 Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> added AZ9lalloy in tabular form 1 2?<br />

4.7 Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ9 l alloy in tabular form 1 126<br />

xiv<br />

116


l<br />

l<br />

4.8 Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added AZ9lalloy in tabular form I29<br />

E 4.9 Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> ‘<str<strong>on</strong>g>Sr</str<strong>on</strong>g> added <str<strong>on</strong>g>Si</str<strong>on</strong>g> c<strong>on</strong>taining AZ9l alloys<br />

in tabular form<br />

l<br />

4.10 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> <strong>on</strong> <strong>the</strong> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy 141<br />

4.11 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> <strong>on</strong> <strong>the</strong> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy I43<br />

4.12 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> <strong>on</strong> <strong>the</strong> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy 146<br />

4.13 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> combined additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> creep properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy<br />

4.14 E60,, <str<strong>on</strong>g>and</str<strong>on</strong>g> lcorr <str<strong>on</strong>g>of</str<strong>on</strong>g> different alloys obtained from polarizati<strong>on</strong> curve i 64<br />

4.15 Corrosi<strong>on</strong> parameters obtain from EIS measurement for different<br />

alloys<br />

XV<br />

l<br />

l29<br />

i4s<br />

167


LIST OF FIGURES<br />

Figure . Page l<br />

N0. !<br />

W Capti<strong>on</strong> p N0.<br />

__. _. . _ -- .___ - _<br />

l 1.1 magnesium unit _ cell J J'<br />

T Schematic diagram showing principle planes <str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong>s in <strong>the</strong> 002 T l<br />

_;__ alloys . - _ ._ ~ _ l‘<br />

2.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> weight reducti<strong>on</strong> <strong>on</strong> <strong>the</strong> fuel efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> automobile r 010 l<br />

l<br />

2.2 Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> automobile comp<strong>on</strong>ents made up <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium y 013 l<br />

l<br />

it I <str<strong>on</strong>g>of</str<strong>on</strong>g> up l<br />

O22<br />

2.3 Magnesium parts used in communicati<strong>on</strong> engineering T 014<br />

2.4<br />

2.5 ‘ alloys E<br />

p Phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al binary alloy system<br />

. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum <strong>on</strong> <strong>the</strong> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al binary 022 1<br />

r<br />

12.6<br />

1 _ __ ,<br />

I <strong>Microstructure</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy showing (a) fully divorced eutectic A 025 *<br />

(b) partially divorced eutectic<br />

; morphologies <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al alloys l T<br />

2.7 l The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Al, Zn c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> cooling rate <strong>on</strong> <strong>the</strong> eutectic A 026<br />

M .. __.__ __ ., _ ~ __ ._ __ _ | Z1<br />

2.s y Mg-Al phase diagram showing <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Al <str<strong>on</strong>g>and</str<strong>on</strong>g> cooling rate <strong>on</strong> t 027 l<br />

<strong>the</strong> eutectic solidificati<strong>on</strong><br />

2.9 i Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al alloys showing <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum <strong>on</strong> 029 I<br />

1 grain refinement<br />

2.10 @ Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> holding time <strong>on</strong> <strong>the</strong> fading effect <str<strong>on</strong>g>of</str<strong>on</strong>g> T 031 ’<br />

Carb<strong>on</strong> inoculant in Mg melt<br />

2.11<br />

_ _ __ ___ _ __ '— . e __ ~ . .<br />

Typical ageing curve for AZ9l alloy at different temperatures 033<br />

2.12 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> cold work <strong>on</strong> <strong>the</strong> ageing behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy i 035 E<br />

2.13 t Schematic diagram showing disc<strong>on</strong>tinuous precipitati<strong>on</strong> process p 036 2<br />

2.14 T Typical tensile behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy at different temperature 038 *<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> strain rates (a) at strain rate l0'3 s"(b) at 103 s"<br />

.. __ ,__ _,. ___ . _____ ,_4<br />

2.15 Typical creep-strain versus time curve for metals l 04]<br />

xvi


_<br />

l___<br />

i l<br />

2.16 1 Micrograph showing grain boundary sliding in die cast AZ9l 1 alloy043<br />

2.17 l Stress dependency <strong>on</strong> sec<strong>on</strong>dary creep rates <str<strong>on</strong>g>of</str<strong>on</strong>g> different Mg-Aiili" i 043<br />

based alloys<br />

2.18 1 Maximum deformati<strong>on</strong>gresistaiicei <str<strong>on</strong>g>of</str<strong>on</strong>g> die cast Mg-Al alloys in Z-0 ii0M¢lfi5<br />

plot<br />

2.19 Creep CllI'V6S <str<strong>on</strong>g>of</str<strong>on</strong>g> as cast <str<strong>on</strong>g>and</str<strong>on</strong>g>isoluti<strong>on</strong> treated ASZ*§ll alloy at 150°C if 046<br />

2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 50 MPa<br />

2.20 S Creep curves <str<strong>on</strong>g>of</str<strong>on</strong>g> ingot<str<strong>on</strong>g>and</str<strong>on</strong>g>idie cast AZ9l alloy at 150°C Crm i<br />

2.21 1 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> creep behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy processed through 047<br />

A different Casting processes<br />

2.22 0 Schematic presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> surface compositi<strong>on</strong> during 05l C<br />

corrosi<strong>on</strong> (a) initial surface (b) final surface<br />

2.23 y Generalized curve showing <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> impurities <strong>on</strong> corrosi<strong>on</strong> 052<br />

i rate <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium<br />

2.24 y Schematic diagram illustrating <strong>the</strong> cathode-anode area change i 054<br />

during ageing <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy (a) T6-l 6h (b) T6-l9h<br />

2.25 TEM micrograph showing dislocati<strong>on</strong> pileups around <strong>the</strong> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2<br />

intermetallics in <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ9l alloy crept at 200°C ‘<br />

2 i<br />

i 056<br />

2.26 Effect oifiCa <strong>on</strong> <strong>the</strong> hot-cracl


5 3.7 it<br />

. — 7 ‘ 7 ——— —— 77“ T<br />

I 3.9<br />

Photograph showing <strong>the</strong> creep testing machine i 075<br />

3.8 i 2 1 ii“ S All 2<br />

l , . , _<br />

5 Schematic diagram showing st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard creep testing specimen l676<br />

Typical hot run graph showing elastic <str<strong>on</strong>g>and</str<strong>on</strong>g> plastic strain regi<strong>on</strong> i<br />

3.10 Typical polarizati<strong>on</strong> cell for c<strong>on</strong>ducting all <strong>the</strong> electrochemical<br />

Experiments<br />

078<br />

3.11 l Schematic diagram showing simple ‘equivalent circuit’ <str<strong>on</strong>g>and</str<strong>on</strong>g> its 1079<br />

4 elements<br />

4 Optical micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 etched in picric acid based etchant H<br />

4.1 1 showing its different c<strong>on</strong>stituents (a) Etched for 5 sec (b) Etched ’<br />

for 2 sec<br />

4.2 1 SEM photograph showing different phases in AZ91 (a) Low T<br />

magnificati<strong>on</strong> (b) Higher magnificati<strong>on</strong><br />

i 4.5 1 086<br />

E<br />

F<br />

4.3 <strong>Microstructure</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 showing both complete <str<strong>on</strong>g>and</str<strong>on</strong>g> partially 1<br />

4 divorced eutectic<br />

4.41 S XRD pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy showing peaks for Mg <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg17Al12<br />

Intermetallic<br />

Phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> binary Mg-<str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy system<br />

4.6 <strong>Microstructure</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloys (a) AZ9l+ 0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

1 (b) AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

l<br />

076<br />

082<br />

682<br />

“O84<br />

E its EDS spectrum ‘<br />

l<br />

4.7 . SEM photograph showing Chinese script Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic <str<strong>on</strong>g>and</str<strong>on</strong>g> 087<br />

4.8 XRD pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> treated AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy indicate <strong>the</strong> l<br />

1 1 presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mgg<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic<br />

4.9 l Optical microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> so added AZ91 alloys (a) Az91+0.2% 4<br />

A so ((b) AZ9l+0.5% so (c) AZ9l+0.7% so<br />

4.16 1 SEM photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91+0.5% so alloy showing Mgasba<br />

4 intermetal lic<br />

089<br />

4.11 Phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-<str<strong>on</strong>g>Sb</str<strong>on</strong>g> binary alloy system<br />

L 4.12 W <str<strong>on</strong>g>Si</str<strong>on</strong>g> SEMiphotograph <str<strong>on</strong>g>and</str<strong>on</strong>g> ESDSspectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>j intermetallic it 090<br />

xviii<br />

086<br />

087<br />

088<br />

089<br />

090


iIi _<br />

4.13<br />

XRD pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added {A1219 ‘lialloy showing peaks for<br />

Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intennetallic<br />

4.14 Binary phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-<str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloysystem 092<br />

4.15 SEM photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> addedii)\Z9l alloy (a) AZ9l+0.2%<str<strong>on</strong>g>Sr</str<strong>on</strong>g>allo“y<br />

1 (b) AZ9l+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy (c) AZ9l+0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

4.16 SEM photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9 1%-*FO.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy showing two kind <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

bearing phases<br />

4.17 * XRD spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g>_AZ9l+0.7%<str<strong>on</strong>g>Sr</str<strong>on</strong>g>a11oy c<strong>on</strong>firm <strong>the</strong> presence<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallic<br />

4.18<br />

2 EDS spectrum 6riMgi7A1,{ime1-metallic in AZ9 1 +0.79/}.sr alloy 096<br />

c<strong>on</strong>firms <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

4.19 Microstructtireioif)5.Z9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> showing modified“<br />

i Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermctallic (a) Lower magnificati<strong>on</strong> (b) Higher<br />

magnificati<strong>on</strong><br />

4.20 lfilivliicrostructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ§l“-iI¥Oi.5ii‘Vi>i <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.l% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy? showing<br />

modified Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic<br />

4.21 SEM photograph <str<strong>on</strong>g>and</str<strong>on</strong>g> EDS spectrum taken <strong>on</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> in <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added<br />

AZ9il+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy indicate <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> in it<br />

4.22 Line scanning taken across <strong>the</strong> modified Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates in <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

added AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy<br />

4.23 X- ray mapping taken <strong>on</strong> <strong>the</strong> modified Mgg<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates in <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

added AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy<br />

4.24 SEM photograph <str<strong>on</strong>g>and</str<strong>on</strong>g> EDS spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> modified Mgg<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

% intermetallic indicate <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> in it<br />

4.25 X- ray mapping taken <strong>on</strong> <strong>the</strong> modified Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates in <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

§ added AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy indicates <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> in<br />

Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic<br />

4.26 Optical microstructure showing grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> different alloys in<br />

soluti<strong>on</strong> treated c<strong>on</strong>diti<strong>on</strong> (a) AZ9l (b) AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

(c) AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.1% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

4.27 Schematic diagram illustrating <strong>the</strong> nucleati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth rates<br />

i during <strong>the</strong> early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> solidificati<strong>on</strong><br />

xix<br />

O90<br />

093<br />

094<br />

095<br />

‘O96<br />

6197<br />

099<br />

099<br />

100<br />

100<br />

101<br />

103<br />

“I205<br />

l<br />

il


; Intermetallic ‘ 4.23 <strong>Microstructure</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> treated AZ9l showing no Mg|1Al12 .107<br />

l<br />

I<br />

4.29 l*<strong>Microstructure</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> treated alloying element added AZ9l ‘ 108 %<br />

1 alloy showing Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g>, Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2, Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallics in<br />

. (a) AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> (b) AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> (c) AZ9l+0.5%<br />

’ <str<strong>on</strong>g>Sb</str<strong>on</strong>g> (d) AZ9l +0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> respectively<br />

5 4.30I .<br />

Soluti<strong>on</strong> treated microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added (AZ9l alloy T<br />

showing refinement in Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic =<br />

-l<br />

108‘<br />

4.31 ‘ Schematic diagram illustrating <strong>the</strong> refinement mechanism for<br />

Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic<br />

109<br />

34.32<br />

1 *' ' ' -— ' — —— '<br />

200°C 1ll2<br />

i Soluti<strong>on</strong> treated 0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy showing retained Mg|7Al|;<br />

intermetallic c<strong>on</strong>taining curvatures in boundaries<br />

4.33 3 Tl Ageing behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l with <str<strong>on</strong>g>and</str<strong>on</strong>g> without alloying additi<strong>on</strong>s at<br />

4.34 Aged microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l for different time showing<br />

5 disc<strong>on</strong>tinuous precipitates at <strong>the</strong> grain boundaries (a) 60 min<br />

' (b) 120 min (C) 240 min<br />

34.35 l 1200 min aged microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l showing both c<strong>on</strong>tinuous<br />

I <str<strong>on</strong>g>and</str<strong>on</strong>g> disc<strong>on</strong>tinuous precipitates<br />

4.36 T 120 min aged microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloys with different<br />

alloying additi<strong>on</strong>s showing disc<strong>on</strong>tinuous precipitates (a)<br />

AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> (b) AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> (c) AZ9l+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

(d) AZ9l+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

112<br />

117<br />

118<br />

113“<br />

5 4.37 Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy at different temperatures ‘ 121 1<br />

1 4.38 T Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> added AZ9l alloy (a) atRT (b) at l50°C<br />

4.39 : Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ9lalloys (a) RT(b) l50°C if 126<br />

4.40 Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added AZ91alloys (a) RT (b) 150°C<br />

4.41 Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.2fi% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloys modified by <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g>)<br />

(a) RT (b) l50°C<br />

4.42<br />

Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> A“Z*9l+0.5‘V~oi <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloys modified by<str<strong>on</strong>g>Sb</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> 3<br />

3 (a) RT (b) 150°C<br />

XX<br />

1 24“<br />

I’<br />

128 l<br />

130 S<br />

I 3303


4.43 Tensile fractorgraph <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy at (a) RT (b) 1fI)5C (A)<br />

1 sec<strong>on</strong>dary crack (B) cleavage plane (C) river pattem (D) pla stic<br />

1 deformati<strong>on</strong> (E) dimples<br />

4.44 Illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cleavage steps through(a) sec<strong>on</strong>dary<br />

cleavage (b) tearing<br />

4.45 Cross secti<strong>on</strong> near <strong>the</strong> tensile fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9] alloy<br />

showing severely cracked Mg|7Al|2 intermetallic particle<br />

4.46 Fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy: (A) Sec<strong>on</strong>dary crack<br />

(B) cleavage plane<br />

4.47 1 Tensilefc:sted AZ91+0.5%<str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy showing cracked Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

intermetallic<br />

4.48 Fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91+0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g>: (C) river pattern“<br />

(D) plastic deformati<strong>on</strong> (E) dimples (F) quasi-cleavage facet<br />

4.49<br />

i Schematic illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-cleavage fracture<br />

4.50 Fractograph <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> addedAZ9l alloy failed at RT<br />

(a) AZ9l+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> (b) AZ9l+0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> (A) sec<strong>on</strong>dary crack<br />

(B) cleavage plane (D) plastic deformati<strong>on</strong> (E) dimples<br />

(F) quasi-cleavage<br />

4.51 Fractorgraph <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added AZ9] alloys failed at RT<br />

1 (a) AZ9l +0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> (b) AZ9l+0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy<br />

4.52 1 Creep curves <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy tested at different temperature<br />

(a) 150°C (b) 200°C<br />

4.53 Creep curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> added A291 allaya 150°C (a) for 500 l1 (b) till<br />

‘ fracture<br />

132 l<br />

132<br />

S 135 ;<br />

ili35i<br />

I35<br />

l 36<br />

E136<br />

136<br />

I37<br />

I40<br />

4.54 Creep emeidr AZ9 I +0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy tested at 200°C C T 142 1<br />

4.55<br />

4.56<br />

Creep curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ91 alloys at l50°C (a) for 500 h<br />

(b) l<strong>on</strong>g term<br />

P Creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alley iar200°c<br />

l4l<br />

"T145<br />

4.57 Creep“ curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added AZ9! alloys at l§0“Ci rel 500 hi S 146<br />

4.58 Creep curves <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ9] alloys at l50°C (a) for<br />

I 500 h (b) till fracture<br />

xxi<br />

144<br />

l 147“<br />

l all<br />

l


at 200°C 4.59 Creep curves <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l +0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> with <str<strong>on</strong>g>and</str<strong>on</strong>g> with out 0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloy 6I49<br />

i‘_P2i.60 i Fractographs <str<strong>on</strong>g>of</str<strong>on</strong>g> creep ruptured AZ9l alloy at (a) l 50°C (b) 200°C Q 150<br />

C 4.61<br />

Fractographs <str<strong>on</strong>g>of</str<strong>on</strong>g> creep ruptured AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy at (a)&(b) I51<br />

150°C (c) 200°C<br />

4.62 Fractograph <str<strong>on</strong>g>of</str<strong>on</strong>g> creep ruptured AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> +0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloy at<br />

200°C (a) SE image lower mag. (b) SE image higher mag.<br />

(c) BSE image<br />

4.63 l L<strong>on</strong>gitudinal cross secti<strong>on</strong> near <strong>the</strong> fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy I55<br />

creep ruptured at '1 50°C showing c<strong>on</strong>tinuous precipitates (a) lower<br />

(b) higher magnificati<strong>on</strong><br />

| M ”* l . C *’ ° " 5* W.<br />

fine c<strong>on</strong>tinuous precipitates 4 156<br />

4.65 150°C Cavity at gain boundary triple point in AZ9l alloy ruptured 6156<br />

at<br />

5 4.64 Interrupted mrcrostructure <str<strong>on</strong>g>of</str<strong>on</strong>g> creep tested AZ9l alloy showing<br />

152 ‘<br />

I<br />

C 4.66<br />

from<br />

i 4.68<br />

2 5.69<br />

4.70<br />

|_,<br />

" 4."/2I C<strong>on</strong>tinuous precipitates occurred around <strong>the</strong> intennetallics during ‘ 159<br />

creep at 150°C (6) AZ91 (6) AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> (6) AZ9l+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

Photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> creep rupturedAZ9l§i-0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy at 150°C? S 160<br />

showing cracks arrested by Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic<br />

P Photograph or A°Z91+0T5%° <str<strong>on</strong>g>Sb</str<strong>on</strong>g> subjected :6 6.666 testing a{1s0°c 160<br />

up to 6000 h showing Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallics remain intact 0<br />

Corrosi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> different alloys calculated from I00 h immersi<strong>on</strong> i I63<br />

test in 3.5% NaC1<br />

l Polarizati<strong>on</strong> plot for AZ9l alloy with <str<strong>on</strong>g>and</str<strong>on</strong>g> without additi<strong>on</strong>s 1642<br />

Photograph showing <strong>the</strong> macrostructure <str<strong>on</strong>g>of</str<strong>on</strong>g> corroded iI68<br />

samples<br />

(a) AZ9l (b) AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> (c) AZ91+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> (d) AZ9l+0.5%<br />

<str<strong>on</strong>g>Sb</str<strong>on</strong>g> (e) AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

4.73 SEM photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> immersi<strong>on</strong> tested AZ9l alloy (a) 2 h S<br />

immersed surface showing pitting type corrosi<strong>on</strong> in <strong>the</strong> (1-Mg<br />

matrix (b) 100 h immersed surface showing unaffected massive<br />

169<br />

4.71 Electrochemical impedance spectroscopy measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> y<br />

different alloys (a) Nyquist plot (b) Bode plot = 166<br />

_ lj <str<strong>on</strong>g>and</str<strong>on</strong>g>dissqminuousMg11Al12Pf@9.iPi¢flt@. 6 Z‘ is _.<br />

xxii


\ 4.74 ‘ SEM photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> different alloys immersi<strong>on</strong> tested for l00h<br />

it showing stable intermetallics (a) AZ9l +0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> (b) AZ9]+0.5%<br />

; <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

ii 4.75 l XRD pattems <str<strong>on</strong>g>of</str<strong>on</strong>g> particles collected from l00 h immersi<strong>on</strong> test<br />

showing <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> different oxides <str<strong>on</strong>g>and</str<strong>on</strong>g> intermetallics<br />

xxiii


1.1 MAGNESIUM<br />

lllllI"l'IlI 1: IIITIIIIIIIIIITIIIII<br />

Increase in luxury <str<strong>on</strong>g>and</str<strong>on</strong>g> safety features in <strong>the</strong> modem cars have caused an<br />

increase in vehicle weight translating into increased fuel c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> ultimately<br />

increased CO2 emissi<strong>on</strong>s [1]. Hence, <strong>the</strong> automotive industry is increasingly looking<br />

for str<strong>on</strong>ger <str<strong>on</strong>g>and</str<strong>on</strong>g> lightweight materials in order to meet <strong>the</strong>se emissi<strong>on</strong> regulati<strong>on</strong>s.<br />

Magnesium with a major advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> low density plays a dominant role in<br />

automobile industry to overcome this problem. With a density that is approximately<br />

two-third that <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum, <strong>the</strong> potential weight savings due to increase in<br />

magnesium usage has substantial envir<strong>on</strong>mental impact, including reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

greenhouse gas emissi<strong>on</strong>s. Fur<strong>the</strong>rmore magnesium also provides soluti<strong>on</strong> for <strong>the</strong><br />

global envir<strong>on</strong>mental problems like reusability <str<strong>on</strong>g>and</str<strong>on</strong>g> recyclability due to <strong>the</strong> fact that<br />

magnesium unlike many polymers is a recyclable [2].<br />

Magnesium is <strong>the</strong> sixth most abundant element <strong>on</strong> earth; <strong>on</strong>e cubic mile <str<strong>on</strong>g>of</str<strong>on</strong>g> sea<br />

water c<strong>on</strong>tains 6 milli<strong>on</strong> t<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium. The first commercial producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnesium was recorded in Germany in l9l 6 [3]; however, a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> markets caused<br />

<strong>the</strong> world producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium to be a meager <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 t<strong>on</strong>nes [4]. It was not until<br />

<strong>the</strong> Sec<strong>on</strong>d World War <strong>the</strong> magnesium industry developed significantly. By <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1945, magnesium producti<strong>on</strong> had increased to 237,000 t<strong>on</strong>nes worldwide [4]. Two<br />

years later, magnesium c<strong>on</strong>sumpti<strong>on</strong> had dropped dramatically to 50,000 t<strong>on</strong>nes [4]. It<br />

took ano<strong>the</strong>r 30 years for <strong>the</strong> annual producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium to recover to <strong>the</strong> I945<br />

level, <str<strong>on</strong>g>and</str<strong>on</strong>g> in <strong>the</strong> year 2000, 366,900 t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium were c<strong>on</strong>sumed. The<br />

worldwide primary magnesium producti<strong>on</strong> in 2004 was 584,000 metric t<strong>on</strong>s<br />

according to <strong>the</strong> U.S. Geological Survey Minerals Yearbook-2004 [5]. Recently, <strong>the</strong><br />

American Foundry Society Magnesium Divisi<strong>on</strong> has developed <strong>the</strong> Magnesium<br />

Casting Industry Technology Roadmap [6]. According to that report, in 2004, <strong>the</strong> U.S.<br />

magnesium casting industry culminated ten years <str<strong>on</strong>g>of</str<strong>on</strong>g> remarkable growth by shipping<br />

nearly 100,000 t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> castings to a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> markets [7]. During <strong>the</strong> last decade<br />

al<strong>on</strong>e, growth in magnesium castings for light vehicles has averaged 16% per year <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

l


_g Chapter 1: Introducti<strong>on</strong><br />

is predicted to grow at an annual rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 11.5% for <strong>the</strong> next decade. Even <strong>the</strong>n, it is<br />

believed that magnesium is not being utilized as should it be. This is mainly due to <strong>the</strong><br />

fact that <strong>the</strong> metallurgical knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium <str<strong>on</strong>g>and</str<strong>on</strong>g> its alloys is immature<br />

compared to that <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum <str<strong>on</strong>g>and</str<strong>on</strong>g> its alloys, leaving a significant amount <str<strong>on</strong>g>of</str<strong>on</strong>g> work<br />

waiting for <strong>the</strong> attenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> researchers.<br />

As far as <strong>the</strong> crystal structure is c<strong>on</strong>cerned, magnesium has a hexag<strong>on</strong>al<br />

crystal structure, with a cza ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.6236, very close to <strong>the</strong> ideal value <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.633 for<br />

<strong>the</strong> atomic packing <str<strong>on</strong>g>of</str<strong>on</strong>g> spheres. [8]. Figure l.l shows <strong>the</strong> planes <str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong>s in <strong>the</strong><br />

magnesium unit cell. At room temperature <strong>on</strong>ly three slip systems are active all<br />

parallel to <strong>the</strong> basal plane (0001) [9]. However, at higher temperatures, both prismatic<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> pyramidal slip planes are also become active leading to <strong>the</strong> work hardening. Its<br />

alloying behavior because <str<strong>on</strong>g>of</str<strong>on</strong>g> a favorable size factor (atomic diameter 0.320 nm), is<br />

characterized by an ability to form a solid soluti<strong>on</strong> with a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> elements<br />

particularly those which are <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial importance including Al, Zn, Sn, Li, Ce,<br />

Ag, Zr <str<strong>on</strong>g>and</str<strong>on</strong>g> Th [10]<br />

,/ i 1 ­<br />

-~-~,\ (10331) \_f (1 151) mom]<br />

(1032)<br />

_,- (1150) mm, . Q iioicri W I yllul<br />

0, ii _ ­<br />

’ ‘Z puoio) i E _|0110| it H1001<br />

(1122) M \c W74‘: 2.<br />

, rziéo; ijnoror Um]<br />

G1 G1 1Y<br />

Figure 1.1: Schematic diagram showing principal planes <str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong>s in <strong>the</strong><br />

magnesium unit cell [8]<br />

.0... 4..,|i;,am; -,r. "*<br />

1.2 AZ9l MAGNESIUM ALLOY<br />

i<br />

Am<strong>on</strong>g <strong>the</strong> various magnesium alloy systems, Mg-Al alloys are <strong>the</strong> most<br />

important alloy systems since aluminum provide better castability. Table 1.1 shows<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> major alloy systems in this group (Mg-Al) <str<strong>on</strong>g>and</str<strong>on</strong>g> its major compositi<strong>on</strong>s<br />

[1 1]. Mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloys are also provided in Table 1.2 [12].<br />

2


H Chapter 1: Introducti<strong>on</strong><br />

AZ9l alloy, which c<strong>on</strong>tains 9% Al-1% Zn-0.2% Mn is <strong>the</strong> most widely <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

commercially used Mg alloy in automotive industries. This alloy provides very good<br />

room temperature tensile properties, excellent casting properties <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong><br />

resistance [13]. Aluminum in this alloy <str<strong>on</strong>g>of</str<strong>on</strong>g>fer better castability, strength <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong><br />

properties. Zinc improves <strong>the</strong> solid soluti<strong>on</strong> streng<strong>the</strong>ning whereas Mn provides<br />

corrosi<strong>on</strong> resistance. Due to this, am<strong>on</strong>g 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg alloy comp<strong>on</strong>ents used in<br />

transport industries are made from AZ9l alloy [l4]. However, AZ9l alloy does not<br />

exhibit good creep resistance which is a major setback [15].<br />

Table 1.1: Major compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mg-Al based alloys [11]<br />

,<br />

Alloy Al 4 Zn <str<strong>on</strong>g>Si</str<strong>on</strong>g> i Mn Cu Y Fe Ni o<strong>the</strong>rs<br />

4.5-6.3 \<br />

AM20 1.7-2.2§


1.3 CREEP BEHAVIOR OF AZ91 ALLOY<br />

Chapter 1: Introducti<strong>on</strong><br />

Creep is a special kind <str<strong>on</strong>g>of</str<strong>on</strong>g> plastic deformati<strong>on</strong> which takes place when <strong>the</strong><br />

material is loaded at high temperature for a prol<strong>on</strong>ged time. The load is very much<br />

low compared to its yield strength. So, <strong>the</strong> deformati<strong>on</strong> is not mainly due to <strong>the</strong><br />

applied load but temperature plays a major role. Based <strong>on</strong> applied stresses <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

operating temperatures, <strong>the</strong> creep deformati<strong>on</strong> mechanisms for most engineering<br />

materials classified into main groups: <strong>the</strong> dislocati<strong>on</strong> creep <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> diffusi<strong>on</strong> creep.<br />

They can also be fur<strong>the</strong>r subdivided into dislocati<strong>on</strong> glide, dislocati<strong>on</strong> climb, grain<br />

boundary sliding, boundary diffusi<strong>on</strong> (Nebrro~Herror creep) <str<strong>on</strong>g>and</str<strong>on</strong>g> bulk diffusi<strong>on</strong> (Coble<br />

creep) [16].<br />

Very little is known about <strong>the</strong> high temperature properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy.<br />

Only few elaborative creep studies were c<strong>on</strong>ducted <strong>on</strong> die cast AZ9l [17-27]. Most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> literature suggests that <strong>the</strong> dislocati<strong>on</strong> climb is <strong>the</strong> major creep mechanism in <strong>the</strong><br />

temperature range <str<strong>on</strong>g>of</str<strong>on</strong>g> 100-300°C with an initial load 20-100 MPa. However, some<br />

literature proposed a grain boundary sliding mechanism at <strong>the</strong> low stress levels <str<strong>on</strong>g>of</str<strong>on</strong>g> 20­<br />

40 MPa [28]. Dynamic disc<strong>on</strong>tinuous precipitates occur at <strong>the</strong> grain boundary during<br />

creep is said to be resp<strong>on</strong>sible for such sliding. Detailed creep studies <strong>on</strong> gravity cast<br />

AZ91 alloy is lack in literature. lt is said that dislocati<strong>on</strong> creep is <strong>the</strong> <strong>on</strong>ly dominant<br />

mechanism at all temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> stress ranges in ingot gravity casting [29].<br />

Structural instability is observed during creep exposures in both die cast <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

gravity cast AZ91 alloy [29-31]. However, this effect is more pr<strong>on</strong>ounced in die cast<br />

alloy where <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Al supersaturated Mg matrix is large due to <strong>the</strong> faster<br />

solidificati<strong>on</strong>. All <strong>the</strong> literature supports <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic precipitati<strong>on</strong><br />

during creep but it is still inc<strong>on</strong>clusive about its influence <strong>on</strong> <strong>the</strong> creep behavior.<br />

Occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> more dynamic disc<strong>on</strong>tinuous precipitates at <strong>the</strong> grain boundary in <strong>the</strong><br />

die cast AZ91 alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> grain boundary sliding due to <strong>the</strong> precipitate formati<strong>on</strong> is<br />

reported [28]. In c<strong>on</strong>trast, it is also observed that <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous<br />

precipitates in die cast AZ91 provides precipitati<strong>on</strong> hardening [29]. Streng<strong>the</strong>ning due<br />

c<strong>on</strong>tinuous precipitates in ingot cast AZ91 is also reported [29].<br />

4


_ Chapter 1: Introducti<strong>on</strong><br />

In summary, both diffusi<strong>on</strong> c<strong>on</strong>trolled dislocati<strong>on</strong> climb <str<strong>on</strong>g>and</str<strong>on</strong>g> grain boundary<br />

sliding are reported as creep mechanisms depending up<strong>on</strong> <strong>the</strong> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> stress<br />

levels. The poor <strong>the</strong>rmal stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg|1Al1; <str<strong>on</strong>g>and</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic<br />

disc<strong>on</strong>tinuous precipitati<strong>on</strong> (DP) can result in substantial grain boundary deformati<strong>on</strong><br />

at elevated temperatures. Higher diffusivity <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum in magnesium matrix <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong> self-diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium at elevated temperature are also c<strong>on</strong>tributing to high<br />

creep rate in AZ91 alloy.<br />

1.4 CORROSION BEHAVIOR OF AZ91 Alloy<br />

Ano<strong>the</strong>r hurdle in <strong>the</strong> potential use <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 is <strong>the</strong>ir susceptibility to corrosi<strong>on</strong>.<br />

Its corrosi<strong>on</strong> resistance depends <strong>on</strong> two different factors: <strong>the</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> impurity<br />

elements <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> microstructure. Fe, Ni, Co, Cu is c<strong>on</strong>sidered as impurity elements<br />

which have negative effect <strong>on</strong> corrosi<strong>on</strong> resistance. The tolerance limits for <strong>the</strong>se<br />

elements are defined by <strong>the</strong> ASTM st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards [32]. As far as <strong>the</strong> microstructure is<br />

c<strong>on</strong>cerned, <strong>the</strong> aluminum level <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> [3 phase in <strong>the</strong> microstructure<br />

are vital [33-37]. When <strong>the</strong> B —lVlgi7Al1; phase is fine <str<strong>on</strong>g>and</str<strong>on</strong>g> distributed evenly al<strong>on</strong>g <strong>the</strong><br />

grain boundary, it acts as a barrier for corrosi<strong>on</strong>, <strong>on</strong> <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g> it acts as an<br />

effective cathode for corroding 0. matrix when it is in bulk form <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> inter particle<br />

distance is large [36]. In general, <strong>the</strong> corrosi<strong>on</strong> start from <strong>the</strong> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> matrix<br />

where <strong>the</strong> aluminum c<strong>on</strong>tent is less compared to near <strong>the</strong> grain boundary [37].<br />

1.5 ROLE OF MINOR ALLOYING ADDITIONS<br />

Many new Mg-Al based alloy systems are developed for high temperature<br />

applicati<strong>on</strong>s [38-40]. However, n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>m are commercialized so far due to <strong>the</strong><br />

very fact that those alloy systems does not have <strong>the</strong> die castability as like AZ91 alloy.<br />

Later <strong>the</strong> idea <str<strong>on</strong>g>of</str<strong>on</strong>g> modifying <strong>the</strong> alloy chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> existing AZ91 by additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> minor<br />

alloying elements is found to <strong>the</strong> effective way <str<strong>on</strong>g>of</str<strong>on</strong>g> improving <strong>the</strong> creep resistance <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

it has become popular.<br />

It is well established that <strong>the</strong> B-Mg]?/kl]; phase in AZ91 alloy is <strong>the</strong> reas<strong>on</strong> for<br />

<strong>the</strong> poor creep properties. Coarsening <str<strong>on</strong>g>of</str<strong>on</strong>g> B at high temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> disc<strong>on</strong>tinuous form<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> B phase are said to be <strong>the</strong> culprit for such behavior. Altering <strong>the</strong> alloy compositi<strong>on</strong><br />

5


_ Chapter 1: Introducti<strong>on</strong><br />

by minor alloying additi<strong>on</strong>s suppress <strong>the</strong> disc<strong>on</strong>tinuous precipitates <str<strong>on</strong>g>and</str<strong>on</strong>g> slow down<br />

<strong>the</strong> coarsening <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg11Al1; intermetallic during <strong>the</strong> high temperature exposure. More<br />

over, additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alloying elements forms hard <str<strong>on</strong>g>and</str<strong>on</strong>g> stable intermetallics at <strong>the</strong> grain<br />

boundaries which act as barriers for both dislocati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> grain boundary sliding.<br />

Surface active elements like Ca, Bi, <str<strong>on</strong>g>Sb</str<strong>on</strong>g>, RE etc., are added to AZ9l alloy to<br />

improve <strong>the</strong> creep resistance [41-47]. Reducti<strong>on</strong> in <strong>the</strong> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg11Al;2<br />

intermetallic <str<strong>on</strong>g>and</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>rmally stable A1;Ca intermetallic is observed with<br />

Ca additi<strong>on</strong> which improves <strong>the</strong> high temperature properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy [41]. Bi<br />

additi<strong>on</strong> also capable <str<strong>on</strong>g>of</str<strong>on</strong>g> forming stable intermetallic Mg3Bi (melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> 823 °C)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>reby improving <strong>the</strong> high temperature properties [42]. When <str<strong>on</strong>g>Sb</str<strong>on</strong>g> is added to<br />

AZ91 alloy a favorable microstructure is obtained which c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>rmally stable<br />

Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallics (melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> l228° C) at <strong>the</strong> grain boundary al<strong>on</strong>g with <strong>the</strong><br />

refined Mg17Al|2 intermetallics [43, 44]. RE additi<strong>on</strong> like La, Ce, etc., are also found<br />

to improve <strong>the</strong> creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy by reducing <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al;;<br />

intermetallic as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al-RE compounds [45-47].<br />

lmprovement in corrosi<strong>on</strong> behavior is also noticed with <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

alloying elements like La, Ce, Ca, Ho <str<strong>on</strong>g>and</str<strong>on</strong>g> Er to AZ91 [46-50]. Such improvement is<br />

attributed to <strong>the</strong> following reas<strong>on</strong>s (i) <strong>the</strong> added elements refine <strong>the</strong> B- phase <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

forms more c<strong>on</strong>tinuous network (ii) <strong>the</strong> added element suppresses <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B­<br />

phase by forming o<strong>the</strong>r intermetallics with Al which has less harmful to corroding (1­<br />

Mg matrix (iii) <strong>the</strong> added alloying elements may be incorporated into <strong>the</strong> protective<br />

film <str<strong>on</strong>g>and</str<strong>on</strong>g> increases <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> it.<br />

1.6 THEME OF THE THESIS<br />

All <strong>the</strong> exciting work <strong>on</strong> developing new <str<strong>on</strong>g>and</str<strong>on</strong>g> better alloys has led older alloys,<br />

such as AZ9l , being ab<str<strong>on</strong>g>and</str<strong>on</strong>g><strong>on</strong>ed by researchers. lt is believed that <strong>the</strong> full potential <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AZ9l in automotive design has not been realized. Whatever works have been carried<br />

out <strong>on</strong> AZ9lalloy to improve its mechanical properties are insufficient in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

potential usage in auto industries. Due to <strong>the</strong> fact that AZ91 <str<strong>on</strong>g>of</str<strong>on</strong>g>fers high room<br />

temperature mechanical properties <str<strong>on</strong>g>and</str<strong>on</strong>g> good castability, still this alloy is a primary<br />

6


Chapter 1: Introducti<strong>on</strong><br />

choice for <strong>the</strong> auto comp<strong>on</strong>ent manufactures. Small improvement in its creep<br />

properties will have a huge impact in <strong>the</strong> transportati<strong>on</strong> industries. Hence, in <strong>the</strong><br />

present work, <str<strong>on</strong>g>“Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> <str<strong>on</strong>g>Additi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Microstructure</strong>,<br />

Mechanical Properties <str<strong>on</strong>g>and</str<strong>on</strong>g> Corrosi<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 Magnesium Alloy”, an<br />

attempt has been made to improve <strong>the</strong> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy through minor<br />

alloying elemental additi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> its streng<strong>the</strong>ning mechanisms. The<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> alloying additi<strong>on</strong>s <strong>on</strong> <strong>the</strong> ageing <str<strong>on</strong>g>and</str<strong>on</strong>g> tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l is also<br />

studied. In additi<strong>on</strong> to that, role <str<strong>on</strong>g>of</str<strong>on</strong>g> various intermetallics formed due to <strong>the</strong> alloying<br />

additi<strong>on</strong>s <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy is investigated.<br />

7


2.1 INTRODUCTION<br />

llllll"l'ElI 2: lll'ElllTll|II IIEIIEW<br />

The weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> average family car has increased by 20% over <strong>the</strong> last 20<br />

years [51]. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> increased weight is a result <str<strong>on</strong>g>of</str<strong>on</strong>g> increased average engine size<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> safety features. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, customer’s awareness <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel<br />

efficiency has been made more acute by increasing fuel prices <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> popularity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

envir<strong>on</strong>mental issues. So, weight reducti<strong>on</strong> is an imperative task for automobile<br />

producers. The attractive benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> reducti<strong>on</strong> in automobile weight can be seen in<br />

temis <str<strong>on</strong>g>of</str<strong>on</strong>g> improved fuel efficiency as shown in Figure 2.1 [52]. “C<strong>on</strong>cept cars”<br />

produced in recent years have been lightweight, for example, <strong>the</strong> Ford P2000, which<br />

weighs <strong>on</strong>ly 544.3 Kg [53]. The weight reducti<strong>on</strong>s have been made possible by <strong>the</strong><br />

replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> steel by light metal alloys, usually aluminum or magnesium. ln<br />

producti<strong>on</strong> vehicles, <strong>the</strong> weight is saved through <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> lightweight metals, which<br />

have reduced <strong>the</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> cars by 10% since 1978, without compromising safety<br />

[54]. Earlier, aluminum alloys replaced most <str<strong>on</strong>g>of</str<strong>on</strong>g> steel or cast ir<strong>on</strong> comp<strong>on</strong>ents in<br />

automobiles. But at this moment, <strong>the</strong> major aim <str<strong>on</strong>g>and</str<strong>on</strong>g> task <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> researchers is to find<br />

suitable material, which is more efficient than aluminum so as to reduce <strong>the</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

automobile fur<strong>the</strong>r. Magnesium <str<strong>on</strong>g>and</str<strong>on</strong>g> its alloys are <strong>on</strong>e such promising material, whose<br />

lightweight advantage could be used for <strong>the</strong> above said purpose.<br />

Magnesium, with a density <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.7 g/cc is <strong>the</strong> lightest <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> structural<br />

materials. It is two third <str<strong>on</strong>g>of</str<strong>on</strong>g> its counterpart aluminum density (2.7 g/cc) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e third<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> steel density (7 g/cc). So, it has high specific strength properties over aluminum<br />

alloys. However, <strong>the</strong> total annual world c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium at around 250<br />

thous<str<strong>on</strong>g>and</str<strong>on</strong>g> t<strong>on</strong>es is a fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 20 milli<strong>on</strong> t<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum used. Both metals<br />

were discovered in <strong>the</strong> early 19“ century <str<strong>on</strong>g>and</str<strong>on</strong>g> industrial refining processes for each<br />

metal were announced in 1886. So, <strong>the</strong> lower usage <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium is due to different<br />

complex <str<strong>on</strong>g>of</str<strong>on</strong>g> factors. However, developments in magnesium refining <str<strong>on</strong>g>and</str<strong>on</strong>g> processing<br />

technology have coincided with new dem<str<strong>on</strong>g>and</str<strong>on</strong>g>s from many industries for high<br />

precisi<strong>on</strong> light-weight die-castings. Now <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium is growing at a faster<br />

8


60 -.­<br />

50 _..z<br />

I<br />

1' %1 ­<br />

' Passenger Vehicle in Japan<br />

Etlhmapter 2: Literature Review<br />

­lL L .<br />

10­<br />

0* 1000 | l 2000 e---"W 3000 4000 l l<br />

Vehicle Weigth, Lb<br />

Figure 2.1: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> weight reducti<strong>on</strong> <strong>on</strong> <strong>the</strong> fuel efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> automobile [52]<br />

2.2 ADVANTAGES<br />

Magnesium alloys has several advantages. Table 2.2 lists some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> key<br />

attributes <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium alloys that make <strong>the</strong>m more attractive to automotive,<br />

aerospace <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r industries [12]. The most important <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se is lightweight. This<br />

leads to relatively high specific stiffness <str<strong>on</strong>g>and</str<strong>on</strong>g> specific strength for magnesium alloys.<br />

Ano<strong>the</strong>r very important advantage is <strong>the</strong> design flexibility <str<strong>on</strong>g>and</str<strong>on</strong>g> manufacturability.<br />

Typical magnesium die-casting alloys such as AZ9l, AM50 <str<strong>on</strong>g>and</str<strong>on</strong>g> AM60 can be cast<br />

into larger, more complex shapes with thinner secti<strong>on</strong>s. Thus <strong>the</strong>y lend <strong>the</strong>mselves to<br />

produce large die cast comp<strong>on</strong>ents that, in a single-shot die casting, integrate <strong>the</strong><br />

functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> structure that would o<strong>the</strong>rwise be fabricated from a large number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pieces in several manufacturing steps.<br />

2.3 APPLICATIONS<br />

2.3.1 Aerospace Industries<br />

Magnesium is employed extensively in aircraft engines, air frames <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g>ing<br />

wheels [56]. The main factors dictating <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium in aircraft have been<br />

strength/density ratio in castings <str<strong>on</strong>g>and</str<strong>on</strong>g> stiffness/density ratio in wrought forms,<br />

combined, as required, with factors such as good elevated temperature, fatigue <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

impact properties, always with good machinability. Alloys such as ZE4l (Mg-4.2%<br />

10


H Chapter2: Literature Review<br />

Zn-0.7% Zr-1.3% MM), QE22 (Mg-0.7% Zr-2.5% Nd-2.5% Ag) <str<strong>on</strong>g>and</str<strong>on</strong>g> particularly<br />

WE43 (Mg-4% Y—3.25% Nd-0.5% Zr) are comm<strong>on</strong>ly used for aircraft applicati<strong>on</strong>s<br />

due to <strong>the</strong>ir improved corrosi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> creep resistance.<br />

2.3.2 Defense Industries<br />

High specific strength <str<strong>on</strong>g>and</str<strong>on</strong>g> rigidity coupled with ease <str<strong>on</strong>g>of</str<strong>on</strong>g> fabricati<strong>on</strong> are<br />

important for missile <str<strong>on</strong>g>and</str<strong>on</strong>g> space applicati<strong>on</strong>s. EZ33 (Mg-2.7% Zn-0.7% Zr-3.2% MM)<br />

s<str<strong>on</strong>g>and</str<strong>on</strong>g> castings are used in <strong>the</strong> “Skylark” research rockets. ZK5l (Mg-4.5% Zn-0.7%<br />

Zr) <str<strong>on</strong>g>and</str<strong>on</strong>g> ZE41 castings have been used extensively for structural parts in British<br />

missiles [57].<br />

2.3.3 Automobile Industries<br />

Automobile industries are <strong>the</strong> latest beneficiary <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium, currently<br />

exploring its maximum usage. Table 2.3 gives a number <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium<br />

that are currently being addressed by <strong>the</strong> automotive industry. Comp<strong>on</strong>ents at <strong>the</strong> top<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this list, such as steering wheel armatures, cylinder head covers <str<strong>on</strong>g>and</str<strong>on</strong>g> instrument<br />

panel beams are already in significant producti<strong>on</strong>, while items at <strong>the</strong> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> list<br />

require several years <str<strong>on</strong>g>of</str<strong>on</strong>g> intensive development before <strong>the</strong>y can be implemented [12].<br />

Figure 2.2 gives some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> automobile comp<strong>on</strong>ents made from magnesium<br />

alloys [58].<br />

Table 2.2: Advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium alloys [56]<br />

1. Strength/Weight ratio<br />

i2.ilLiExcellentidamping capacity) A i<br />

l 3. l N<strong>on</strong>-magnetic, EMF shielding<br />

lGood heatdissipati<strong>on</strong> A A<br />

is. “High castability A A it<br />

6. l Complex, thin walled castings<br />

__- l_. , . .<br />

F 7. l Excellent machinabiltiy<br />

ll


qChapter 2: Literature Review<br />

Table 2.3: Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> magnesium alloy automobile comp<strong>on</strong>ents [12]<br />

2.3.4 Nuclear Industry<br />

§ l. Steering wheels<br />

2. Cylinderlhelad covers<br />

3. ; lnstrument panel beams<br />

4. Sear frames<br />

Door frames<br />

6. Transmissi<strong>on</strong> housings<br />

E 7. Grill opening reinforcements<br />

‘ 8. Structural supports l<br />

8. Rear deck lid/engine hood<br />

it 10. wiser; I i<br />

1 1. Engine blocks<br />

12. Steering wheels<br />

With natural uranium as a fuel, it is essential to c<strong>on</strong>serve neutr<strong>on</strong>s by using<br />

materials in <strong>the</strong> reactor, which will not absorb <strong>the</strong>m readily. Natural uranium plants<br />

with operating temperatures suitable for power producti<strong>on</strong> essentially determine <strong>the</strong><br />

general reactor design <str<strong>on</strong>g>and</str<strong>on</strong>g> limit <strong>the</strong> canning material to magnesium <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> coolant<br />

gas to magnesium dioxide [57]. The advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium as a canning material<br />

over competing materials are: (a) low tendency to absorb neutr<strong>on</strong>s, (b) does not alloy<br />

with uranium, (c) adequate resistance to carb<strong>on</strong> dioxide up to <strong>the</strong> highest service<br />

temperatures envisi<strong>on</strong>ed, <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) good <strong>the</strong>rmal c<strong>on</strong>ductivity [57].<br />

2.3.5 Sporting <str<strong>on</strong>g>and</str<strong>on</strong>g> Electr<strong>on</strong>ic Industries<br />

Apart from transport <str<strong>on</strong>g>and</str<strong>on</strong>g> missile comp<strong>on</strong>ents magnesium also finds<br />

applicati<strong>on</strong> in electr<strong>on</strong>ics <str<strong>on</strong>g>and</str<strong>on</strong>g> house holding items. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> examples are<br />

computer housing <str<strong>on</strong>g>and</str<strong>on</strong>g> mobile teleph<strong>on</strong>e cases, where lightness, suitability for thin<br />

wall casting <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetic shielding are <strong>the</strong> particular<br />

advantages [57]. Figure 2.3 shows some <str<strong>on</strong>g>of</str<strong>on</strong>g> such applicati<strong>on</strong>s [58].<br />

12


2.4 LIMITATIONS<br />

Chapter 2: Literature Review<br />

In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> above said advantages <str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong>s, <strong>the</strong>re are some<br />

limitati<strong>on</strong>s, which restrict its full utilizati<strong>on</strong> for industry applicati<strong>on</strong>s. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

challenges that are facing magnesium in order for its wholesale acceptance for<br />

industrial applicati<strong>on</strong>s are summarized in Table 2.4 [12].<br />

5°?" 5°! Steering wheel<br />

|\°ll$i"9 frame<br />

Sealing flange 9‘e°'_i"9 ¢°'"m" |°"‘ Gear box seat movement<br />

housing<br />

Figure 2.2: Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> automobile comp<strong>on</strong>ents made up <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg alloys [58]<br />

2.5 MELTING PRACTICE<br />

2.5.1 Flux Melting <str<strong>on</strong>g>and</str<strong>on</strong>g> Refining<br />

When magnesium <str<strong>on</strong>g>and</str<strong>on</strong>g> its alloys are melted, <strong>the</strong>y tend to oxidize <str<strong>on</strong>g>and</str<strong>on</strong>g> explode,<br />

unless care is taken to protect <strong>the</strong> molten metal surface against oxidati<strong>on</strong>. Molten<br />

magnesium alloys behave differently from aluminium alloys, which tend to form a<br />

c<strong>on</strong>tinuous, impervious oxide skin <strong>on</strong> <strong>the</strong> molten bath <str<strong>on</strong>g>and</str<strong>on</strong>g> limits fur<strong>the</strong>r oxidati<strong>on</strong>.<br />

Magnesium alloys, <strong>on</strong> <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, form a loose, permeable oxide coating <strong>on</strong> <strong>the</strong><br />

molten metal surface. This allows oxygen to pass through <str<strong>on</strong>g>and</str<strong>on</strong>g> support buming <str<strong>on</strong>g>of</str<strong>on</strong>g> melt<br />

below <strong>the</strong> oxide surface. The two main reas<strong>on</strong>s that lead to <strong>the</strong> igniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium<br />

during melting process are given below [S9];<br />

l3


Chapter 2: Literature Review<br />

5¢l¢°|\ ho‘-l$i|\£I Units for mobile h<str<strong>on</strong>g>and</str<strong>on</strong>g>set<br />

Figure 2.3: Magnesium parts used in communicati<strong>on</strong> engineering [58]<br />

Table 2.4: Limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium alloys [12]<br />

1. High metal cost<br />

2. Small supply base<br />

3. High cost <str<strong>on</strong>g>of</str<strong>on</strong>g> recycling<br />

4. Replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> SP6 cover gas (melting difficulties)<br />

5. Low high temperature properties<br />

6. Corrosi<strong>on</strong> problem<br />

7. Lack <str<strong>on</strong>g>of</str<strong>on</strong>g> joining technologies<br />

8. Poor workability<br />

l. The volume <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium shrinks after it is oxidized, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnesia (MgO) is loose <str<strong>on</strong>g>and</str<strong>on</strong>g> many small holes appear <strong>on</strong> <strong>the</strong> surface thus become<br />

porous. So it cannot prevent <strong>the</strong> passage <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inner<br />

magnesium.<br />

2. The heat formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesia is too large so that <strong>the</strong> local area<br />

temperatures can even reach 2850°C by <strong>the</strong> heat generated in <strong>the</strong> oxidati<strong>on</strong> process.<br />

l4


E Qhgapter 2: Literature Review<br />

Two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> fluxes such as melting <str<strong>on</strong>g>and</str<strong>on</strong>g> refining fluxes are normally used<br />

during melting <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg to over come <strong>the</strong> above said problems [59, 60]. Melting flux is<br />

used to prevent <strong>the</strong> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium during melting. It is added throughout <strong>the</strong><br />

melting when ever <strong>the</strong> local buming occurs. The melting flux normally c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

various chloride <str<strong>on</strong>g>and</str<strong>on</strong>g> fluorides like MgCl;, KC], NaCl, Cal’; etc. The requirements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a melting flux are: lt should have a liquidus temperature below <strong>the</strong> solidus<br />

temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy to be melted <str<strong>on</strong>g>and</str<strong>on</strong>g> sufficient fluidity <str<strong>on</strong>g>and</str<strong>on</strong>g> wetting power above<br />

this temperature to enable <strong>the</strong> flux to spread out <strong>on</strong> melt so as to form a complete<br />

protective layer over <strong>the</strong> metal. The flux melts first <str<strong>on</strong>g>and</str<strong>on</strong>g> form a protective chloride<br />

layer over <strong>the</strong> solid as well <strong>the</strong> liquid metal during melting [59-61].<br />

Many n<strong>on</strong> metallic inclusi<strong>on</strong>s suspends in <strong>the</strong> molten metal <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium.<br />

These inclusi<strong>on</strong>s have to be removed before pouring o<strong>the</strong>rwise, would enter in to <strong>the</strong><br />

casting <str<strong>on</strong>g>and</str<strong>on</strong>g> reduces <strong>the</strong> casting quality [60]. For this purpose an inspissated flux<br />

(Refining flux) is used. The removal <str<strong>on</strong>g>of</str<strong>on</strong>g> oxides by inspissated flux is known as<br />

“refining process”. In this process, <strong>the</strong> flux is added into <strong>the</strong> melt while it is rigorously<br />

stirrered. The refining flux disintegrates into globules, <str<strong>on</strong>g>and</str<strong>on</strong>g> is able to wet <str<strong>on</strong>g>and</str<strong>on</strong>g> absorb<br />

particles <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended oxides, <strong>the</strong>reby becoming denser, so that <strong>the</strong>y readily settle to<br />

<strong>the</strong> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crucible [59, 60]. 10-30 minutes, depend up<strong>on</strong> <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> melt,<br />

should be given for settling inspissated impurities. The essential c<strong>on</strong>stituent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

inspissated flux is MgCl;.<br />

2.5.2 F lux-less Melting<br />

Although extremely effective in c<strong>on</strong>trolling oxidati<strong>on</strong>, fluxes create corrosive<br />

fumes in <strong>the</strong> foundry <str<strong>on</strong>g>and</str<strong>on</strong>g> are difficult to separate from <strong>the</strong> metal, c<strong>on</strong>tributing to a<br />

high incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosive inclusi<strong>on</strong>s in magnesium casting parts. The quest for<br />

technology to protect magnesium from oxidizing without <strong>the</strong> negative ramificati<strong>on</strong>s<br />

associated with flux lead to flux-less melting. It is very effective way <str<strong>on</strong>g>of</str<strong>on</strong>g> melting in<br />

which, inert gases are used to protect <strong>the</strong> molten metal. The most comm<strong>on</strong> gas used in<br />

flux-less melting is SF6 mixed with dry air <str<strong>on</strong>g>and</str<strong>on</strong>g> CO2 [62]. To maintain an adequate<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> homogenous level <str<strong>on</strong>g>of</str<strong>on</strong>g> SP6 at all area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> melt surface it is usually desirable to<br />

supply <strong>the</strong> protective atmosphere through a manifold with several outlets so as <strong>the</strong> gas<br />

l5


M Chapter 2: Literature Review<br />

to spread out over <strong>the</strong> melt surface. The gas mixtures take away <strong>the</strong> oxygen out <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

melting area <str<strong>on</strong>g>and</str<strong>on</strong>g> hence, provide an oxygen free atmosphere for melting.<br />

The SF6 based shielding gas is n<strong>on</strong>-toxic, odourless <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong> free.<br />

However, SP6 is having a heavy green house effect. Its Global Warming Potential<br />

(GWP) is 23900 times higher than CO; <str<strong>on</strong>g>and</str<strong>on</strong>g> will be banned from industrial use [63].<br />

Therefore, researchers in magnesium industries are trying to find <strong>the</strong> altematives.<br />

Recently Internati<strong>on</strong>al Magnesium Associati<strong>on</strong> (IMA) found out suitable substitutes<br />

for SF6. These are HFC-134, HFE-7100 <str<strong>on</strong>g>and</str<strong>on</strong>g> HFE-7200, Novecm 612 (FKS) [64].<br />

These altematives are all fluorides <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir protective effects are no less than that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

SP6 but <strong>the</strong>ir GWP values much less tat that <str<strong>on</strong>g>of</str<strong>on</strong>g> SP6 [65].<br />

2.6 CASTING PROCESSES<br />

N<strong>on</strong>nally <strong>the</strong> magnesium alloys are cast by die casting method. This is to<br />

overcome <strong>the</strong> material cost disadvantages compared to aluminium alloys [66]. All<br />

magnesium alloys development activities for different mechanical properties are thus<br />

also focused with die-castability. Magnesium alloy c<strong>on</strong>taining Al as a major alloying<br />

element has high die castability compared to o<strong>the</strong>r Mg alloys. The most commercial<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> widely used die cast magnesium alloys are AZ91, AM60, <str<strong>on</strong>g>and</str<strong>on</strong>g> AE42 etc.<br />

The choice <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular casting method depends up<strong>on</strong> many factors, e.g., <strong>the</strong><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> castings required, <strong>the</strong> properties required, dimensi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> part<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> castabiltiy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy [67]. Although pressure die casting is predominantly<br />

used to produce many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> magnesium alloy comp<strong>on</strong>ents, o<strong>the</strong>r casting processes<br />

such as gravity <str<strong>on</strong>g>and</str<strong>on</strong>g> low pressure castings using s<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> permanent moulds are also<br />

familiar. Investment casting process has also presently become popular in producing<br />

Mg alloy comp<strong>on</strong>ents. Mg-Al <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg-Al-Zn alloys are also easy to cast in gravity s<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

casting method; however <strong>the</strong>y are limited in certain respects. They exhibit micro<br />

shrinkage when <strong>the</strong>y are s<str<strong>on</strong>g>and</str<strong>on</strong>g>-cast, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> alloy is not suitable for applicati<strong>on</strong>s in<br />

temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> above 120°C. Magnesium alloys c<strong>on</strong>taining RE as a major alloying<br />

element are mainly produced in s<str<strong>on</strong>g>and</str<strong>on</strong>g> casting route for this purpose <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>y are used in<br />

l6


_ Chapter 2: Literature Review<br />

aerospace applicati<strong>on</strong>s. However <strong>the</strong>se alloys are not suitable for die-casting applicati<strong>on</strong><br />

due to <strong>the</strong> poor die castability.<br />

In additi<strong>on</strong>, developments are well advanced with squeeze casting <str<strong>on</strong>g>and</str<strong>on</strong>g> semi<br />

solid processing like Reho casting <str<strong>on</strong>g>and</str<strong>on</strong>g> thixo casting [68-74]. Comp<strong>on</strong>ents produced<br />

through <strong>the</strong>se casting methods show less defects <str<strong>on</strong>g>and</str<strong>on</strong>g> porosity <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>y can be heat<br />

treated to get maximum mechanical properties. These casting methods are also<br />

suitable for thick <str<strong>on</strong>g>and</str<strong>on</strong>g> thin secti<strong>on</strong>s. Low Pressure Casting (LPC) is ano<strong>the</strong>r casting<br />

technique used to produce magnesium castings with improved mechanical properties<br />

[75-77]. Uniform filling rate throughout <strong>the</strong> casting in LPC eliminates turbulence <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

cold shut, which are inherent defects in gravity castings while making thin wall<br />

comp<strong>on</strong>ent castings [75].<br />

2.7 MAJOR ALLOY SYSTEMS<br />

The alloy designati<strong>on</strong> system has been st<str<strong>on</strong>g>and</str<strong>on</strong>g>ardized by <strong>the</strong> American Society<br />

for Testing Materials (ASTM). In this system <strong>the</strong> first two letters indicate <strong>the</strong><br />

principal alloying elements according to <strong>the</strong> following code:<br />

A- Aluminum<br />

E- Rare earth metals<br />

H- Thorium<br />

l(- Zirc<strong>on</strong>ium<br />

L- Lithium<br />

M- Manganese<br />

Q- <str<strong>on</strong>g>Si</str<strong>on</strong>g>lver<br />

T- Tin<br />

Z- Zinc<br />

The letters corresp<strong>on</strong>ding to <strong>the</strong> element present in <strong>the</strong> greater quantities in <strong>the</strong><br />

alloy is given first followed by number which represents <strong>the</strong> nominal compositi<strong>on</strong>s in<br />

weight percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> principal alloying elements. Magnesium casting alloys may be<br />

classified in to two major groups: zirc<strong>on</strong>ium free alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> zirc<strong>on</strong>ium c<strong>on</strong>taining<br />

alloys. Zr is an effective grain refiner for Mg alloys. However, in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Al, <strong>the</strong><br />

l7


T Chapter 2: Literature Review<br />

efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> Zr reduces because Al removes Zr from <strong>the</strong> solid soluti<strong>on</strong> to form Al-Zr<br />

based intermetallics. Hence in zirc<strong>on</strong>ium free alloys, Al presence as <strong>the</strong> major<br />

alloying element al<strong>on</strong>g with zinc <str<strong>on</strong>g>and</str<strong>on</strong>g> manganese (Mg-Al-Zn, Mg-Al-<str<strong>on</strong>g>Si</str<strong>on</strong>g>, Mg-Al-RE,<br />

etc.,) where as alloy systems like Mg-Zn-Zr, Mg-RE-Zr all are examples for<br />

zirc<strong>on</strong>ium c<strong>on</strong>taining alloys.<br />

2.7.1 Zirc<strong>on</strong>ium C<strong>on</strong>taining Alloys<br />

The maximum solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> zirc<strong>on</strong>ium in molten magnesium is 0.6%. As<br />

binary Mg-Zr alloys are not sufficiently str<strong>on</strong>g for commercial applicati<strong>on</strong>s, <strong>the</strong><br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r elements is necessary. The ability to refine <strong>the</strong> grains in Mg-Zn<br />

alloys with zirc<strong>on</strong>ium led to <strong>the</strong> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temary alloys such as ZKSI (Mg­<br />

4.5Zn-0.7Zr). However, <strong>the</strong>se alloys are susceptible to micro porosity <str<strong>on</strong>g>and</str<strong>on</strong>g> are not<br />

weldable, <strong>the</strong>y have found little practical applicati<strong>on</strong> [78, 79]. However, Zn al<strong>on</strong>g<br />

with RE additi<strong>on</strong> provides high strength <str<strong>on</strong>g>and</str<strong>on</strong>g> finds many applicati<strong>on</strong>s.<br />

Magnesium forms solid soluti<strong>on</strong>s with a number <str<strong>on</strong>g>of</str<strong>on</strong>g> RE elements. The additi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cheaper mischmetal based <strong>on</strong> cerium or neodymium to magnesium gives good<br />

casting characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical properties. These properties are improved by<br />

adding Zr to refine grain size <str<strong>on</strong>g>and</str<strong>on</strong>g> fur<strong>the</strong>r increases in strength occur if zine is added as<br />

well. EZ33 (Mg-3RE-2.5Zn-0.6Zr) is <strong>on</strong>e such alloy, which retains strength <str<strong>on</strong>g>and</str<strong>on</strong>g> creep<br />

resistance at temperatures up to 250°C [80].<br />

Recently Mg-Y age hardenable alloy systems are developed to utilize <strong>the</strong><br />

benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> high solid solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> yttrium in magnesium. Series <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Y~Nd-Zr alloys<br />

have been produced, which provides high strength at ambient temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> good<br />

creep resistance up to 300°C temperature [81, 82]. Maximum strength combined with<br />

an adequate level <str<strong>on</strong>g>of</str<strong>on</strong>g> ductility is found to occur in an alloy c<strong>on</strong>taining approximately<br />

6% Y <str<strong>on</strong>g>and</str<strong>on</strong>g> 2%Nd <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> commercially available alloy in this category is WE54 (Mg­<br />

5.25Y-3.5RE-0.45Zr).<br />

Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thorium also c<strong>on</strong>fers to increase creep resistance in magnesium<br />

alloys, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>se alloys have been used in service temperatures up to 350°C. Ternary<br />

18


Z g _ U Chapter 2: Literature Review<br />

compositi<strong>on</strong>s such as HK3l (Mg-3Th-0.7Zr) is developed for high temperature<br />

applicati<strong>on</strong>s. However, in spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir applicati<strong>on</strong> in missiles <str<strong>on</strong>g>and</str<strong>on</strong>g> spacecraft, <strong>the</strong><br />

alloy usage is reduced because <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental c<strong>on</strong>siderati<strong>on</strong>s. <str<strong>on</strong>g>Si</str<strong>on</strong>g>lver is also added<br />

to magnesium <str<strong>on</strong>g>and</str<strong>on</strong>g> M g-Ag-RE-Zr alloys are developed with improved room <str<strong>on</strong>g>and</str<strong>on</strong>g> high<br />

temperature mechanical properties [83]. The alloy QE22 (Mg-2.5Ag-ZRE-0.7Zr) has<br />

been used for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> aerospace applicati<strong>on</strong>s including l<str<strong>on</strong>g>and</str<strong>on</strong>g>ing wheels, gear box<br />

housings <str<strong>on</strong>g>and</str<strong>on</strong>g> rotor heads for helicopters.<br />

2.7.2 Zirc<strong>on</strong>ium Free Alloys (Mg-Al Alloys)<br />

Aluminium is <strong>the</strong> principal alloying element to magnesium. The binary Mg-Al<br />

system is <strong>the</strong> basis for <strong>the</strong> first magnesium casting alloys but most current<br />

compositi<strong>on</strong>s also c<strong>on</strong>tain small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc <str<strong>on</strong>g>and</str<strong>on</strong>g> manganese. The most widely<br />

used alloys in this group are AZ9l <str<strong>on</strong>g>and</str<strong>on</strong>g> AM50 [78]. These alloys have a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mechanical properties <str<strong>on</strong>g>and</str<strong>on</strong>g> good castability <str<strong>on</strong>g>and</str<strong>on</strong>g> mostly used in die casting applicati<strong>on</strong>.<br />

However, <strong>the</strong> draw back <str<strong>on</strong>g>of</str<strong>on</strong>g> using <strong>the</strong>se alloys is its poor elevated temperature tensile<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> creep properties above 150°C. [l5].<br />

Alloys like AS2l, AS41 (Mg-Al-<str<strong>on</strong>g>Si</str<strong>on</strong>g>), which c<strong>on</strong>tain <str<strong>on</strong>g>Si</str<strong>on</strong>g> in it are developed for<br />

better creep properties compared to AZ9l [66]. Later <strong>on</strong>, solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> rare earth (RE)<br />

in magnesium led to <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> AE alloys systems, which c<strong>on</strong>tain less<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium <str<strong>on</strong>g>and</str<strong>on</strong>g> small percent <str<strong>on</strong>g>of</str<strong>on</strong>g> RE [84]. One such alloy system, AE42<br />

(Mg-4Al-3RE-0.3Mn)) has a good combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> properties including creep strength,<br />

which is superior to <strong>the</strong> Mg-Al-<str<strong>on</strong>g>Si</str<strong>on</strong>g> alloys [85]. The major drawback <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se alloys is<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RE increase <strong>the</strong> alloy cost drastically [66]. Recently, it is also found that<br />

<strong>the</strong> <strong>the</strong>rmal stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Al4RE intermetallic in RE c<strong>on</strong>taining Mg alloys does not<br />

extend bey<strong>on</strong>d 150°C <str<strong>on</strong>g>and</str<strong>on</strong>g> hence <strong>the</strong> AE42 alloy loses creep strength above this<br />

temperature.<br />

The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium to Mg-Al based alloys for improved creep resistance<br />

is reported in a British patent [86]. This patent disclosed that calcium additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5­<br />

3% provide creep resistance to magnesium alloys c<strong>on</strong>taining up to l0% Al. However,<br />

<strong>the</strong> patent also revealed that calcium c<strong>on</strong>taining alloys pr<strong>on</strong>e to hot cracking.<br />

l9


_ g _ Chapter 2:Literature Review<br />

Volkswagen attempted <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al-Ca alloys in <strong>the</strong> l970’s <str<strong>on</strong>g>and</str<strong>on</strong>g> claimed an<br />

improvement in creep resistance with <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about l% Ca to magnesium<br />

alloy AZ8l. However, <strong>the</strong> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this alloy to die casting was not possible<br />

owing to die sticking <str<strong>on</strong>g>and</str<strong>on</strong>g> hot cracking. Later, a through investigati<strong>on</strong> <strong>on</strong> <strong>the</strong> optimum<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca additi<strong>on</strong> to Mg~Al alloy to avoid <strong>the</strong>se problems was carried out by<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Magnesium Technology (ITM) in Canada <str<strong>on</strong>g>and</str<strong>on</strong>g> General Motor [87, 88]. It<br />

is found that Mg-A1-Ca based alloys, which c<strong>on</strong>tain Ca more than 1%, are susceptible<br />

to <strong>the</strong> hot cracking problem.<br />

Mg-Al-<str<strong>on</strong>g>Sr</str<strong>on</strong>g> (AJ) alloys are new additi<strong>on</strong> to <strong>the</strong> creep-resistant Mg-Al based<br />

magnesium alloys [89]. Various alloy compositi<strong>on</strong>s such as AJ5l (Mg-5Al-1<str<strong>on</strong>g>Sr</str<strong>on</strong>g>),<br />

AJ52 (Mg-5Al-2<str<strong>on</strong>g>Sr</str<strong>on</strong>g>) <str<strong>on</strong>g>and</str<strong>on</strong>g> AJ62 (Mg-6Al-2<str<strong>on</strong>g>Sr</str<strong>on</strong>g>) have been developed. The creep<br />

resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ses alloys is found to be better than many Mg-Al alloys [90, 91].<br />

However still, <strong>the</strong> microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> its creep mechanism are not fully understood.<br />

2.7.2.1 AZ91 (Mg-9% Al-1% Zn-0.2% Mn) alloy<br />

AZ91 alloy is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> old but most commercially used Mg-Al based alloys.<br />

Am<strong>on</strong>g 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg alloy comp<strong>on</strong>ents used in transport industries are made from<br />

AZ91 alloy [14]. Currently, this alloy is being used in manufacturing instrumental<br />

panels, steering column, steering wheel, seat frame etc in automotive vehicles. This<br />

alloy provides wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> properties <str<strong>on</strong>g>and</str<strong>on</strong>g> eastability. Of course, AZ9l is <strong>the</strong> bench<br />

mark alloy for castability compare to all Mg alloys.<br />

AZ91 alloy c<strong>on</strong>tain 8.1-9.3% Al, 0.4—l% Zn, 0.3 % max Mn, o<strong>the</strong>r impurities<br />

like <str<strong>on</strong>g>Si</str<strong>on</strong>g>, Fe, Cu <str<strong>on</strong>g>and</str<strong>on</strong>g> Ni. Aluminum in this alloy <str<strong>on</strong>g>of</str<strong>on</strong>g>fers mechanical, corrosi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

foundry properties like castability. Zinc <str<strong>on</strong>g>of</str<strong>on</strong>g>fers little solid soluti<strong>on</strong> streng<strong>the</strong>ning <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

corrosi<strong>on</strong> resistance. Manganese neutralizes <strong>the</strong> ill effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Fe <str<strong>on</strong>g>and</str<strong>on</strong>g> hence provides<br />

corrosi<strong>on</strong> resistance. However, AZ91 alloy does not exhibit good creep resistance,<br />

which is a major setback [15].<br />

20


Chapter 2: Literature Review<br />

2.8 FACTOR INFLUENCING THE STRUCTURE AND PROPERTIES OF<br />

Mg-Al ALLOYS<br />

The physical <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical properties attainable in <strong>the</strong>se alloys are str<strong>on</strong>gly<br />

influenced by <strong>the</strong> alloy compositi<strong>on</strong>, impurity elements, solidificati<strong>on</strong> characteristics,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> heat treatment.<br />

2.8.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Alloy Compositi<strong>on</strong>s<br />

2.8.1.1 Aluminum<br />

Aluminum is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> major alloying elements to magnesium. Aluminum<br />

has a very good solid solubility in magnesium. The Mg-Al binary phase diagram is<br />

given in Figure 2.4 shows that <strong>the</strong> maximum solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> Al in Mg at 437°C (eutectic<br />

temperature) is around l2.7% [92]. Figure 2.5 illustrates <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Al additi<strong>on</strong> <strong>on</strong><br />

<strong>the</strong> tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al alloys [93]. The yield strength increases with additi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Al whereas UTS increase up to 6% <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n decreases. However <strong>the</strong> ductility<br />

increases initially up to 3% <str<strong>on</strong>g>of</str<strong>on</strong>g> Al additi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n start to decrease steeply [93]. The<br />

solid solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum in magnesium at room temperature is around 2%. So <strong>the</strong><br />

excess aluminum forms Mg17Al12 intermetallic with Mg. This phase is hard <str<strong>on</strong>g>and</str<strong>on</strong>g> brittle<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> hence, acts as a streng<strong>the</strong>ning element at room temperature. Al in this alloy also<br />

improves <strong>the</strong> castabiltiy [94]. However, Al also increases <strong>the</strong> tendency for shrinkage<br />

micro porosity up to 9% <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n reduces it [95]. The reas<strong>on</strong> <strong>the</strong> peak porosity at 9%<br />

can be related to <strong>the</strong> worst combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mushy z<strong>on</strong>e size, interdendritic feeding,<br />

permeability <str<strong>on</strong>g>and</str<strong>on</strong>g> eutectic volume fricti<strong>on</strong>. Aluminum also increases <strong>the</strong> corrosi<strong>on</strong><br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al alloys.<br />

2.8.1.2 Zinc<br />

Zinc has very good solubility in Mg. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc in AZ9l alloy is to<br />

improve <strong>the</strong> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> alloy by solid soluti<strong>on</strong> streng<strong>the</strong>ning. Zinc also improves <strong>the</strong><br />

fluidity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy. But higher amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Zn to Mg-Al alloys can lead to hot<br />

cracking problem. It is fur<strong>the</strong>r reported that <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc reduces <strong>the</strong> ductility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy. Zinc str<strong>on</strong>gly affects solidificati<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>reby<br />

forming micro-porosity. Studies report that additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2% Zn increases micro<br />

porosity in s<str<strong>on</strong>g>and</str<strong>on</strong>g>-cast magnesium alloys c<strong>on</strong>taining 2, 4, 8 <str<strong>on</strong>g>and</str<strong>on</strong>g> 10% Al [96]. The<br />

21


_ Chapter 2: Literature Review<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc decides <strong>the</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> eutectic (completely or partially divorced) during<br />

final stage <str<strong>on</strong>g>of</str<strong>on</strong>g> solidificati<strong>on</strong>.<br />

'31} 4 n ‘\- P<br />

ii­i \ /<br />

--><br />

j<br />

\ \<br />

i 310 J i ‘ l I<br />

F<br />

1<br />

5<br />

\1umim|1l'll. .a=. --1<br />

13 20 11 242' .5<br />

:3; .._._._ _...-......_.,._ _._-, .i.__.__...r_._-. ... _.-- .-.J. . --...--_-....___,,...---.<br />

_ 3 i<br />

_ | 1<br />

\ Al“ \<br />

l l<br />

13:. I \ La," \"‘#_,__ “Mi {#1 K __<br />

Q-I : I ' '1;' Ir‘ ~ e V — /'<br />

? f<br />

-mo<br />

1: --<br />

r I?<br />

4‘ l<br />

P l[ .._.-=.._._... ’<br />

5 if i t<br />

l<br />

— ;- . \ -. U<br />

mu D g 1'1 1 ..-....,.....,.-.__-_._lL--.,.....-.....-.._-.;I_|l..-. ‘C1 ‘ill ‘K N3 UK "M 5- 7"! ..- .. Ir ll 4<br />

'\i9= itmnirmr-.-ni. \ :<br />

Figure 2.4: Phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al binary alloy system<br />

|P “<br />

1<br />

=<br />

T<br />

100<br />

_m­<br />

0 2 4 6 8 10 "<br />

% Aluninum<br />

Figure 2.5: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum <strong>on</strong> <strong>the</strong> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al binary<br />

alloys [reproduced from refi 93]<br />

22<br />

—+- %Ei0nga<br />

ti<strong>on</strong><br />

-1- Yield<br />

$lr6r‘|gtl‘l;<br />

——a=—— Tensile<br />

strength]


_g pg Chapter2: Literature Review<br />

2.8.1.3 Manganese<br />

The main purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn to AZ91 alloy is to improve <strong>the</strong> corrosi<strong>on</strong><br />

properties. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> manganese in <strong>the</strong> improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong> resistance is<br />

tw<str<strong>on</strong>g>of</str<strong>on</strong>g>old.<br />

1. When manganese is added to Mg-Al alloys several types <str<strong>on</strong>g>of</str<strong>on</strong>g> AlMnFe<br />

intermetallic particles are formed [97]. These particles settle at <strong>the</strong> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> melt, by which <strong>the</strong> ir<strong>on</strong> c<strong>on</strong>tent in <strong>the</strong> melt is reduced.<br />

2. Manganese also renders <strong>the</strong> ir<strong>on</strong> c<strong>on</strong>taining particles left in <strong>the</strong> melt during<br />

solidificati<strong>on</strong> less harmful by making <strong>the</strong>m less efficient as cathodes,<br />

compared to <strong>the</strong> Al-Fe intermetallics, which are formed in Mn-free Mg-Al<br />

alloys.<br />

2.8.1.4 Impurities<br />

The heavy metal impurities like ir<strong>on</strong>, nickel <str<strong>on</strong>g>and</str<strong>on</strong>g> copper in AZ9l alloy mainly<br />

affects <strong>the</strong> corrosi<strong>on</strong> behavior. These elements form particles, which are highly<br />

cathodic to <strong>the</strong> matrix, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus, leading to micro-galvanic corrosi<strong>on</strong>. So, <strong>the</strong>re exists<br />

a tolerance limit for <strong>the</strong>se elements, above which <strong>the</strong> corrosi<strong>on</strong> rate increases rapidly<br />

[98].<br />

Nickel <str<strong>on</strong>g>and</str<strong>on</strong>g> copper are usually not create much problem due to <strong>the</strong> very low<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se elements in alloys from primary producti<strong>on</strong>. Ir<strong>on</strong> is <strong>the</strong> most<br />

troublesome element in high purity alloys, as <strong>the</strong>re always is a risk <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> pick-up<br />

form crucibles made <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> steel.<br />

2.8.2 Solidificati<strong>on</strong><br />

The solidificati<strong>on</strong> sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al alloys starts with nucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> primary<br />

magnesium (a- Mg) in <strong>the</strong> temperature range <str<strong>on</strong>g>of</str<strong>on</strong>g> 650-600°C, i.e. ranging from <strong>the</strong><br />

melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> pure magnesium to <strong>the</strong> liquidus temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-9A1, covering <strong>the</strong><br />

various aluminum c<strong>on</strong>tents used in commercial alloys. Later solidificati<strong>on</strong> reacti<strong>on</strong>s<br />

involve <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutectic phases, with Mg-Mg;-,~Al1; eutectic reacti<strong>on</strong><br />

occurring at 437°C [99]. Both <strong>the</strong>se liquidus <str<strong>on</strong>g>and</str<strong>on</strong>g> eutectic (solidus) temperatures are<br />

cooling rate dependent. According to <strong>the</strong> phase diagram with equilibrium<br />

23


Chapter 2: Literature Review<br />

solidificati<strong>on</strong> <strong>the</strong> liquidus <str<strong>on</strong>g>and</str<strong>on</strong>g> solidus temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 is ~600°C <str<strong>on</strong>g>and</str<strong>on</strong>g> ~500°C<br />

respectively. But, in most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> casting practice <strong>the</strong> solidificati<strong>on</strong> never approach <strong>the</strong><br />

equilibrium. Luo [99] reports <strong>the</strong> change in liquidus <str<strong>on</strong>g>and</str<strong>on</strong>g> solidus temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91<br />

at wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> cooling rate <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> data is presented in Table 2.5. The eutectic [Mg<br />

(0) +Mg17Al12 (B)] <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 is a divorced eutectic. In a slow cooled alloy, when<br />

casting cools from eutectic to <strong>the</strong> room temperature, <strong>the</strong> solid deformati<strong>on</strong> takes place,<br />

in which <strong>the</strong> highly super saturated eutectic Mg decompose into altemative layers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

solute deployed Mg <str<strong>on</strong>g>and</str<strong>on</strong>g> M811Al12 phase.<br />

2.8.2.1 Eutectic solidificati<strong>on</strong><br />

The eutectic solidificati<strong>on</strong> c<strong>on</strong>trols <strong>the</strong> size, shape <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> more<br />

brittle Mg17Al1; phase in <strong>the</strong> final microstructure, which, in turn, is likely to influence<br />

mechanical properties particularly ductility <str<strong>on</strong>g>and</str<strong>on</strong>g> creep strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy. Moreover<br />

eutectic growth affects feedability at a crucial stage when feeding is interdendritic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

large pressure differentials are required to draw liquid through <strong>the</strong> dendritic network.<br />

[96]. The Mg-Mg17Al12 eutectic in Mg-Al alloy, exhibits a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

morphologies depending <strong>on</strong> <strong>the</strong> alloy compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> cooling c<strong>on</strong>diti<strong>on</strong>s. The Mgl<br />

|<br />

33% Al (eutectic compositi<strong>on</strong>) alloy, exhibits a lamellar morphology <str<strong>on</strong>g>and</str<strong>on</strong>g> at low<br />

growth rates <str<strong>on</strong>g>and</str<strong>on</strong>g> a fibrous morphology at higher growth rates. However, in low<br />

aluminum c<strong>on</strong>tent Mg-Al alloys such as AZ91 <str<strong>on</strong>g>and</str<strong>on</strong>g> AM6O, <strong>the</strong> eutectic has different<br />

morphologies, described as ei<strong>the</strong>r completely or partially divorced [96].<br />

Table 2.5: Liquidus <str<strong>on</strong>g>and</str<strong>on</strong>g> solidus temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy at various<br />

cooling rates [99]<br />

C0Olillg (dT/dt, R3“? l E "c/S) 0.03 0.06 0.4 if 7.8 if 20.6 , W . 41.1 9 , , _____ ><br />

' ~—*’—— — ‘i ————’ |<br />

Liquidus (TL, °C) 600.2 600 5 599.5 " 598 ; 595.5 593.8<br />

Solidus (TS,°C) 435 435 430 2 328 - , ­<br />

Both fully <str<strong>on</strong>g>and</str<strong>on</strong>g> partial divorced eutectic morphology is shown in Figure 2.6. ln<br />

fully divorced morphology, as shown in Figure 2.6 (a), <strong>the</strong> two eutectic phases are<br />

24


Chapter 2: Literature Review<br />

completely separated in microstructure. Each interdendritic regi<strong>on</strong> c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a single<br />

B- Mg17Al|2 particle surrounded by eutectic <strong>on</strong>-Mg. A partially divorced eutectic<br />

morphology, as shown in Figure 2.6 (b), is characterized by an ‘isl<str<strong>on</strong>g>and</str<strong>on</strong>g>s’ <str<strong>on</strong>g>of</str<strong>on</strong>g> eutectic or­<br />

Mg within <strong>the</strong> [-3- Mg|7Al1; phase, but <strong>the</strong> bulk <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> (1-Mg is still outside <strong>the</strong><br />

Mg|7Al12 particle, i.e. <strong>the</strong> volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oi-Mg within <strong>the</strong> Mg17Al|2 particle is<br />

much lower than <strong>the</strong> proporti<strong>on</strong> by <strong>the</strong> equilibrium phase diagram [96].<br />

Figure 2.6: <strong>Microstructure</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy showing (a) fully divorced eutectic<br />

(b) partially divorced eutectic [16]<br />

M.D. Nave et al [100] have shown that as <strong>the</strong> aluminum c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al<br />

alloy increases, <strong>the</strong> eutectic progresses through <strong>the</strong> morphological sequence: fully<br />

divorced—partially divorced---granular---fibrous---lamellar. They also dem<strong>on</strong>strated<br />

that increase in cooling rates, increase <strong>the</strong> tendency towards divorced eutectic<br />

formati<strong>on</strong> in a particular alloy. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum c<strong>on</strong>tent, zinc c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

cooing rate <strong>on</strong> eutectic morphology in permanent mould cast alloys are shown<br />

schematically in Figure 2.7 [96]. Hence <strong>the</strong> eutectic tends to become less divorced<br />

with increasing aluminum c<strong>on</strong>tent, but more divorced with increases zinc c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

cooling rate.<br />

25


; l It L .r .<br />

_ 1 Chapter L2: Literature Review<br />

l V 5. |§ v.<br />

Increasing Aluminium C<strong>on</strong>tent<br />

----—-———-—-——><br />

,; — — — _ ' —_-_=:—* - 10:1: ' -—:—a_ _ 7 ; __>;o- W ~_-4;-< w-' __;ct —~ *;'—:->2!‘ V V _::'_-'+- ~—— 171;‘<br />

v<br />

l<br />

r<br />

F<br />

_ — —— _ - _ 7 . -......?___-.._.. V ­<br />


E _ g_ _pChapter<br />

L<br />

2:<br />

.<br />

Literature Review<br />

H __,-I’ ///H<br />

gt. ,; I \<br />

1 “' n _P' if -I _,./<br />

,~ J ‘<br />

Q<br />

i'”"* 2 AAAAA i _}L'?T’i""“‘"W*"““iii ‘<br />

/" . I . \. ~. .. _ .| \<br />

’ _,, ' »-*' ‘s ' T1, ii‘. \ ._ ‘ Laminar<br />

r I \;/'<br />

\ Pi<br />

\.\_ xix-‘\. _<br />

,_ _;' L ypoLhet.i~:al'-._ _ i P tkvorctd it tail’; ‘;- _<br />

_; to1.1pled..-<strong>on</strong>e ~.\ 5<br />

Figure 2.8: Mg-Al phase diagram showing <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Al <str<strong>on</strong>g>and</str<strong>on</strong>g> cooling rate <strong>on</strong><br />

<strong>the</strong> eutectic solidificati<strong>on</strong> [reproduced from ref. 96]<br />

Like aluminum c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> cooling rate, zinc also affects <strong>the</strong> morphology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eutectic in Mg-Al alloys as shown in Figure 2.7 [I01]. There are a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

possible ways in which zinc may affect <strong>the</strong> growth morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eutectic. Zn,<br />

with a partiti<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.l in Mg at 600°C, segregates more str<strong>on</strong>gly to <strong>the</strong><br />

liquid than aluminum (whose partiti<strong>on</strong> coefficient is 0.33 at 600°C). This increases <strong>the</strong><br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stituti<strong>on</strong>al under cooling ahead <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> solid-liquid interface during <strong>the</strong><br />

early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> primary dendrite growth. The dendrites are <strong>the</strong>refore likely to grow<br />

with a more highly branched morphology. A more divorced eutectic is <strong>the</strong>n favored<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reduced size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> interdendritic spaces [l0l].<br />

2.8.2.2 Solid state transformati<strong>on</strong><br />

Solid state reacti<strong>on</strong> takes place after <strong>the</strong> eutectic reacti<strong>on</strong> when <strong>the</strong> cooling rate<br />

is slow. Normally this happens in gravity casting like s<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> permanent mould cast<br />

AZ91 alloy. During this, <strong>the</strong> highly supersaturated eutectic or-Mg rejects <strong>the</strong> excess Al<br />

in <strong>the</strong> form <str<strong>on</strong>g>of</str<strong>on</strong>g> laminar kind <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17A112 at grain boundary, known as disc<strong>on</strong>tinuous<br />

precipitates. An alternative layer <str<strong>on</strong>g>of</str<strong>on</strong>g> depleted or-Mg <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg17Al|2 precipitates form<br />

from <strong>the</strong> super saturated eutectic or- Mg during this reacti<strong>on</strong>.<br />

2.8.3 Grain Refinement<br />

Grain refinement is an important practice used to improve <strong>the</strong> mechanical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> castings. It is an essential <str<strong>on</strong>g>and</str<strong>on</strong>g> fundamental approach since grain size<br />

significantly influences <strong>the</strong> strength properties without compromising <strong>the</strong> ductility<br />

27


-- ChaPt°l-2LLil°'3t"'° Review<br />

much, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> grain size is usually determined at an early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> solidificati<strong>on</strong> by<br />

nucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dendrites.<br />

2.8.3.1 Eflect <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum<br />

Figure 2.9 shows <strong>the</strong> grain size change with increasing aluminum c<strong>on</strong>tent in<br />

Mg-Al alloys [96]. A small additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum to pure magnesium leads to a<br />

morphological change <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> primary phase from a cellular to a dendritic structure.<br />

Rosette-like globular equiaxed grains form with aluminum-rich solid soluti<strong>on</strong><br />

between <strong>the</strong> dendrite arms. As <strong>the</strong> aluminum c<strong>on</strong>tent increases fur<strong>the</strong>r to 5%,<br />

dendrites with pools <str<strong>on</strong>g>of</str<strong>on</strong>g> eutectic phase between <strong>the</strong> dendrite arms start to develop <str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

when <strong>the</strong> aluminum c<strong>on</strong>tent is fur<strong>the</strong>r increase, a fully developed dendritic structure<br />

with sharp tips is observed.<br />

The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> alloying elements such as zinc, manganese<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> rare-earths to Mg-Al alloys has little effect <strong>on</strong> nucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> primary phase<br />

since <strong>the</strong>se elements are mostly segregated to form sec<strong>on</strong>dary phases well after <strong>the</strong><br />

primary phase has nucleated [99].<br />

2.8.3.2 Super healing treatment<br />

Several methods <str<strong>on</strong>g>of</str<strong>on</strong>g> grain refinement have been developed. The first method <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

grain refinement is by a simple <strong>the</strong>rmal treatment prior to casting, known as<br />

‘superheating treatment’. This method involves rapid cooling <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> melt to <strong>the</strong><br />

desired casting temperature after short holding time at an elevated temperature,<br />

generally between 150°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 260°C above <strong>the</strong> equilibrium liquidus temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

alloy [I02]. This method is <strong>on</strong>ly useful for Mg-Al alloys like AZ9l, where as in o<strong>the</strong>r<br />

magnesium alloys refinement by <strong>the</strong> means described is marginal [I 03, 104]. Usually,<br />

superheating treatment is not much effective, owing to <strong>the</strong> small number <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleati<strong>on</strong><br />

sites forms during this treatment [I05]. It is assumed that superheating <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al<br />

alloys facilitate <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many intermetallic compounds, which serves as <strong>the</strong><br />

nucleati<strong>on</strong> site for or-Mg. One hypo<strong>the</strong>sis is that hexag<strong>on</strong>al Al4Mn forms as a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> manganese c<strong>on</strong>tent in <strong>the</strong> commercial alloys <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> AZ series [I06]. According to<br />

ano<strong>the</strong>r <strong>the</strong>ory <strong>the</strong> compound is <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> type Al4C3_, or ir<strong>on</strong> Aluminide, both <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

28


Chapter 2: Literature Review<br />

has been observed experimentally [I07]. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se compounds can be<br />

justified with <strong>the</strong> fact that superheated Mg-Al alloy melt str<strong>on</strong>gly dissolves crucibles<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> or steel. Such dissoluti<strong>on</strong>, or <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> organic impurities, could be<br />

<strong>the</strong> source <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ir<strong>on</strong> or carb<strong>on</strong> necessary for inoculati<strong>on</strong>. Despite <strong>the</strong> successful<br />

grain refinement achieved by <strong>the</strong> superheating method, this techniques has several<br />

practical problems, mainly related to <strong>the</strong> higher operating temperatures involved<br />

[I08].<br />

l<br />

':s Q .<<br />

¢ 1 - ?__‘ > V ~ '?‘&1__ ~' .' @O 0<br />

.3, . $'i‘l‘¥La ..~»\.,_¢ ~~ - - <<br />

¢ - *“l"'§ - :<br />

-» ,<br />

3L’, _"‘1,.!‘i,.\.,.'..1<br />

o'~.<br />

~. r _. .<br />

l ;§.,_.-:__ '_ -1<br />

.' ~.._*' -. *1-“ f‘<br />

~ '. ’l;“»*:."‘;‘-¢;":‘<br />

l» J3. ., v-Q<br />

~.<br />

I<br />

=?= 1; .r~‘_~.; "-3 ?f~?'§":‘T­<br />

‘\"" ‘F-ILIKI V “'\f“‘;>.\"-'<br />

.~-2»: .~ . "~‘~"<br />

‘"4? ‘i:>‘z-:2 K q?'~‘!.'§‘~:\§‘:":'<br />

. < ""~ - --~> 5 7?<br />

3..."._ r ' . - : F \ ... i £5’; v 1‘; -' I 1-(:’=£ V 1<br />

~ ‘_.. '.»~' . »<br />

__ -v. ~ - u.. ... \ -~.-_-we-'<br />

V ‘ 1, _ "3' __f­<br />

Figure 2.9: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al alloys showing <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum <strong>on</strong><br />

grain refinement [96]<br />

2.8.3.3 Elfinal process<br />

Successful grain refinement has been reported by <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ferric<br />

chloride (Elfinal process) in magnesium alloys c<strong>on</strong>taining aluminum <str<strong>on</strong>g>and</str<strong>on</strong>g> manganese<br />

[l09, ll0]. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> grain refinement achieved by <strong>the</strong> Elfinal process is<br />

somewhat similar to that achieved by superheating. The mechanism by which <strong>the</strong><br />

grain refinement takes place by Elfinal process is still not clear. Partridge [1 l l] has<br />

reported that a rusty mild steel crucible that loosely adherents rusty ir<strong>on</strong> produced<br />

grain refining effect. Nels<strong>on</strong> et al [103] have pointed out that <strong>the</strong> Elfinal process did<br />

not work for Mg-Al alloys c<strong>on</strong>taining no manganese. Emley apparently preferred <strong>the</strong><br />

Al4C3 hypo<strong>the</strong>sis for <strong>the</strong> grain refinement [I07]. Recent studies by Cao et al [112]<br />

have rec<strong>on</strong>firmed that <strong>the</strong> Elfinal process has lead to grain refinement when high­<br />

29


H _ g Chapter2: Literature Review<br />

purity Mg-Al alloys melted in carb<strong>on</strong> free aluminum titanite crucibles <str<strong>on</strong>g>and</str<strong>on</strong>g> suggesting<br />

that <strong>the</strong> Elfinal process has little to do with <strong>the</strong> Al4C3 hypo<strong>the</strong>sis proposed by Emley.<br />

However, due to <strong>the</strong> detrimental effect <strong>on</strong> corrosi<strong>on</strong> resistance from <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fe, <strong>the</strong> Elfinal process has not attracted industrial attenti<strong>on</strong>.<br />

2.8.3.4 Carb<strong>on</strong> inoculati<strong>on</strong><br />

The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> to <strong>the</strong> melt (carb<strong>on</strong> inoculati<strong>on</strong>) <str<strong>on</strong>g>of</str<strong>on</strong>g>fers more practical<br />

advantages accompanied by lower operating temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> less fading. Various<br />

carb<strong>on</strong>-c<strong>on</strong>taining agents such as organic materials like C2Cl6, CCI4, <str<strong>on</strong>g>Si</str<strong>on</strong>g>C particles or<br />

granular graphite <str<strong>on</strong>g>and</str<strong>on</strong>g> carb<strong>on</strong> in <strong>the</strong> form <str<strong>on</strong>g>of</str<strong>on</strong>g> wax-fluorspar-carb<strong>on</strong> compound have<br />

been reported to produce successful grain refinement in Mg-Al alloys [1 1 l,l I3, I I4].<br />

<str<strong>on</strong>g>Si</str<strong>on</strong>g>milar to superheating, carb<strong>on</strong> inoculati<strong>on</strong> is effective <strong>on</strong>ly to magnesium alloys that<br />

c<strong>on</strong>tain aluminum [I15-118].<br />

A number <str<strong>on</strong>g>of</str<strong>on</strong>g> hypo<strong>the</strong>ses have been proposed to explain <strong>the</strong> mechanism by<br />

which carb<strong>on</strong> inoculati<strong>on</strong> methods cause grain refinement. Once such mechanism is<br />

that aluminum carbide, Al4C3 is <strong>the</strong> compound resp<strong>on</strong>sible for <strong>the</strong> refining effect<br />

[I03]. But <strong>the</strong>re are some literatures, which suggest that Al-C-O particles, probably in<br />

<strong>the</strong> form <str<strong>on</strong>g>of</str<strong>on</strong>g> Al;OC, could be a much more potent nucleant than Al4C3 in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lattice match [119-122]. Qinglin Jin et al [123] have proposed a different <strong>the</strong>ory for<br />

<strong>the</strong> grain refinement by C additi<strong>on</strong>. The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> in <strong>the</strong> Mg-Al melt,<br />

segregate during <strong>the</strong> solidificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> provide c<strong>on</strong>stituti<strong>on</strong>al super cooling. This<br />

restricts <strong>the</strong> grain growth. However, recently, M. Qian et al [I18] have rejected this<br />

hypo<strong>the</strong>sis. Moreover, <strong>the</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> grain refinement with Carb<strong>on</strong> inoculati<strong>on</strong><br />

process is depending up<strong>on</strong> <strong>the</strong> holding time <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> melt. Extending<br />

<strong>the</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong> between inoculant <str<strong>on</strong>g>and</str<strong>on</strong>g> melt adversely affects <strong>the</strong> refinement, as<br />

illustrated in Figure 2.10 [I24]. According to <strong>the</strong> figure, inoculati<strong>on</strong> produces finer<br />

grains after much shorter holding times <str<strong>on</strong>g>and</str<strong>on</strong>g> at lower temperatures.<br />

30


_ M Chapter 2: Literature Revievv<br />

0.2 l<br />

025 . .__.__i_ ..<br />

- —e—15m'n<br />

l<br />

l<br />

’\ . ,_.._<br />

_-a—1hr<br />

I —A—2hr<br />

—)(—4hr<br />

0 os T-----_-­<br />

610 690 710 730 750 770<br />

Tenverature (00) 5<br />

Figure 2.10: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> holding time <strong>on</strong> <strong>the</strong> fading effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Carb<strong>on</strong> inoculant in Mg melt [reproduced from refi 124]<br />

It is also shown that <strong>the</strong> grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 varies substantially depending <strong>on</strong><br />

<strong>the</strong> purity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ingots used to make <strong>the</strong> alloy [l25]. lt is found that <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> high purity alloys is finer than that <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary alloys both with <str<strong>on</strong>g>and</str<strong>on</strong>g> without<br />

superheating. The reas<strong>on</strong> for <strong>the</strong> grain refinement in <strong>the</strong> high purity alloys is <strong>the</strong><br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> manganese, ir<strong>on</strong>, carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> oxygen, which o<strong>the</strong>rwise canceling <strong>the</strong><br />

refining effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Al-C compounds [125].<br />

2.8.3.5 T hermo mechanical treatment<br />

Mechanical working like rolling, extrusi<strong>on</strong>, forging are o<strong>the</strong>r potential way <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

achieving grain refinement. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> publicati<strong>on</strong>s is available <strong>on</strong> <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se<br />

processes <strong>on</strong> <strong>the</strong> grain refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al based alloys particularly wrought alloy<br />

AZ31 [126-128]. Ravikumar et al [129] have reported that 5 um grain size is obtained<br />

in AZ91 using hot extrusi<strong>on</strong> at a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 335°C. There are o<strong>the</strong>r studies,<br />

which reports <strong>on</strong> grain refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ alloys by severe plastic deformati<strong>on</strong><br />

processes like Equal Channel Angular Pressing (ECAP), Accumulative Roll B<strong>on</strong>ding<br />

(ARB), Large Strain Rolling (LSR) <str<strong>on</strong>g>and</str<strong>on</strong>g> hot multiple forging [I30-I33].<br />

31


2.8.4 Heat Treatment<br />

2.8.4.1 General behavior<br />

M Chapter 2:] Literature Review<br />

The maximum solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum at eutectic temperature (437°C) is<br />

around 12%, which reduces down to around 2% at <strong>the</strong> room temperature. This<br />

solubility variati<strong>on</strong> provides AZ91 alloy system to be age hardenable. The<br />

precipitati<strong>on</strong> processes in AZ91al1oy have been studied extensively [134, 135]. The<br />

precipitati<strong>on</strong> in this alloy system is relatively simple; plates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> equilibrium phase,<br />

Mg1~;Al12, are formed without any interventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a transiti<strong>on</strong> phase. No evidence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

G.P z<strong>on</strong>es is so far reported in this alloy. The normal sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> heat treatment is<br />

soluti<strong>on</strong> treatment at 410°C for 48 h <str<strong>on</strong>g>and</str<strong>on</strong>g> ageing at a temperature range from 150 to<br />

250°C. During soluti<strong>on</strong> treatment, dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutectic Mg17Al|2 phase is slow<br />

mainly due to its massive size. With 24 h <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> treatment, complete dissoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this phase take places, however, 48 h <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> treatment is normally required to<br />

get completely homogenous microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> Al in Mg matrix [I34]. Cold water<br />

quenching is followed by soluti<strong>on</strong> treatment to retain <strong>the</strong> aluminum in solid soluti<strong>on</strong>.<br />

A typical ageing curve at different temperatures for AZ91 alloy after soluti<strong>on</strong><br />

treatment is shown in Figure 2.11 [134]. In general, <strong>the</strong> ageing curve can be divided in<br />

to four distinct regi<strong>on</strong>s as follows [136]:<br />

1. A incubati<strong>on</strong> period where <strong>the</strong> hardness is not increased with time<br />

2. A rapid increase in hardness with respect to time<br />

3. Slow down in <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> hardening nearer to <strong>the</strong> peak hardness<br />

4. Leveling <str<strong>on</strong>g>of</str<strong>on</strong>g>f at <strong>the</strong> peak hardness<br />

It can be seen from Figure 2.11 that a large decrease in peak hardness when<br />

<strong>the</strong> ageing temperature increases from 100 to 150°C <str<strong>on</strong>g>and</str<strong>on</strong>g> ano<strong>the</strong>r large decrease in<br />

peak hardness observed between 250 <str<strong>on</strong>g>and</str<strong>on</strong>g> 300°C. The hardness for ageing at 200 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

150°C remained at <strong>the</strong> maximum value for a significant period before gradually<br />

decreasing. Ageing kinetic is increased with increases in ageing temperature. The<br />

ageing kinetic also increases with <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum in <strong>the</strong> solid soluti<strong>on</strong>. S.<br />

Celotto et al [134] have reported that <strong>the</strong> higher peak hardness in shorter time<br />

obtained in AZ91 alloy compared with Mg-6A1 alloy is due to <strong>the</strong> difference in<br />

32


Chapter 2: Literature Review<br />

aluminum c<strong>on</strong>tent. He also observed that <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc in <strong>the</strong> AZ9l alloy<br />

improves <strong>the</strong> hardness <str<strong>on</strong>g>and</str<strong>on</strong>g> ageing kinetics over its counter part Mg-9Al by reducing<br />

<strong>the</strong> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum in magnesium matrix [I34].<br />

1°" E ll;-T-iosc ‘j =-I-~ p 1001?; h<br />

~ --0--1so*c'<br />

Q<br />

- -+- 2001' ,<br />

__ " ‘ '?;:3?<br />

_. '1' -- 2501" I’<br />

I -9-300°C l__.__a_ .. .. /-.0<br />

- .' ° I'<br />

iw t - '<br />

9. -' J<br />

P ‘O,<br />

.- 1 _' i<br />

I m 9 dqar - JO i’ 0<br />

.. O<br />

so 7<br />

‘: ::___A>-0-*6’ I - . 0<br />

-I --c- -cl -,.,.--~50‘.<br />

AQ 0.! l 10 100 HID 10.0!!! 100.010<br />

.-\geing'l‘ime(hours)<br />

Figure 2.11: Typical ageing curve for AZ9l alloy at different temperatures [134]<br />

2.8.4.2 C<strong>on</strong>tinuous precipitate<br />

The microstructural development <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al binary alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg-Al-Zn<br />

temary alloys for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> ageing temperatures has been investigated in a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

studies [l34, 135]. During ageing <strong>the</strong> Mg17Al12 precipitates out in two forms:<br />

disc<strong>on</strong>tinuous (cellular) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tinuous (intragranular) form. Disc<strong>on</strong>tinuous<br />

precipitati<strong>on</strong> (DP) is <strong>the</strong> cellular growth <str<strong>on</strong>g>of</str<strong>on</strong>g> altemating layers <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al|; phase <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

near equilibrium magnesium matrix at high angle grain boundaries. Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

disc<strong>on</strong>tinuous precipitates regi<strong>on</strong>s ceases relatively early in <strong>the</strong> precipitati<strong>on</strong> process.<br />

Then, c<strong>on</strong>tinuous precipitati<strong>on</strong> (CP) takes place in <strong>the</strong> remaining regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> matrix<br />

that are not already occupied by disc<strong>on</strong>tinuous precipitati<strong>on</strong>.<br />

Clark [135] <str<strong>on</strong>g>and</str<strong>on</strong>g> Crawley <str<strong>on</strong>g>and</str<strong>on</strong>g> Lagowski [137] have reported that <strong>the</strong><br />

c<strong>on</strong>tinuous precipitates c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively large plates <strong>on</strong> <strong>the</strong> basal plane <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

matrix. The predominant orientati<strong>on</strong> relati<strong>on</strong>ship (OR) between <strong>the</strong> [3-phase plates <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong> magnesium matrix is reported to be <strong>the</strong> Burgers OR, namely: (00Ol)m//(1 l0)p <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

[l2’l0]m//[l l’l]p [l37, 138]. Some precipitates have also been observed<br />

perpendicular to <strong>the</strong> basal plane <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> matrix [I39]. Two different ORs have been<br />

33


Chapter 2: Literature Review<br />

reported for <strong>the</strong>se precipitates: (000l)m//(I l0)p, [l2’l0]m//[I I’2’]p by Crawley <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Lagowski [I37] <str<strong>on</strong>g>and</str<strong>on</strong>g> Crawley <str<strong>on</strong>g>and</str<strong>on</strong>g> Milliken [I37]; <str<strong>on</strong>g>and</str<strong>on</strong>g> (l2’ll)m//(lI’0)p,<br />

[l2’l0]m//[ll’2’]p from Poter reported by Duly et al [I39]. It is also found that<br />

dislocati<strong>on</strong>s acts as a nucleati<strong>on</strong> site for c<strong>on</strong>tinuous precipitati<strong>on</strong> [l35, I40]. Clark<br />

[I35] has observed that introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong>s by cold work prior to aging<br />

markedly improve <strong>the</strong> ageing kinetics <str<strong>on</strong>g>and</str<strong>on</strong>g> increase <strong>the</strong> peak hardness. Figure 2.12<br />

shows <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> I% prior strain by cold work <strong>on</strong> <strong>the</strong> age hardening <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-9A1<br />

alloy. He found <strong>the</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous precipitates for a given time <str<strong>on</strong>g>of</str<strong>on</strong>g> aging in <strong>the</strong><br />

pre strained by <strong>the</strong> cold working is higher. He also observed that nucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tinuous precipitates occurs most rapidly in <strong>the</strong> interfaces <str<strong>on</strong>g>of</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> within,<br />

{I012} twins.<br />

It is c<strong>on</strong>tinuous, not disc<strong>on</strong>tinuous precipitate, which is resp<strong>on</strong>sible for most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> age hardening in AZ9l alloy [I41]. Lagowski <str<strong>on</strong>g>and</str<strong>on</strong>g> Crewley [l 38] have carried out<br />

a double stage (96 h for 100°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 192 h at 140°C) ageing <strong>on</strong> AZ9I after soluti<strong>on</strong><br />

treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> observed increase in strength. It is found that <strong>the</strong> double stage aging<br />

leads to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> higher amount <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous precipitati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> decrease<br />

in inter precipitates spacing. The hardening mechanism explained by Clark [135]<br />

suggested that <strong>the</strong> c<strong>on</strong>tinuous precipitati<strong>on</strong> suppresses <strong>the</strong> basal slip <str<strong>on</strong>g>and</str<strong>on</strong>g> {IOI’2}<br />

twinning <str<strong>on</strong>g>and</str<strong>on</strong>g> promotes cross slip in <strong>the</strong> prismatic plane. This generates complex<br />

dislocati<strong>on</strong> tangle, which harden <strong>the</strong> alloy. However, <strong>the</strong> hardening resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l<br />

is generally less than that observed in many heat-treatable aluminum alloys. There are<br />

two reas<strong>on</strong>s suggested for <strong>the</strong> poor hardening resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l. The order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnitude difference in <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous precipitates per unit volume<br />

compared with many age-hardenable aluminum alloys. Ano<strong>the</strong>r reas<strong>on</strong> is <strong>the</strong><br />

orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> precipitates with respect to <strong>the</strong> predominant slip plane <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> matrix.<br />

The effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> a single precipitate as an obstacle to dislocati<strong>on</strong>s is improved if it<br />

is oriented such that it intersects more operating slip plane. According to Celotto<br />

[I34], <strong>the</strong> c<strong>on</strong>tinuous precipitati<strong>on</strong>, rod or lath-shaped precipitates lying perpendicular<br />

or at an angle to <strong>the</strong> basal plane are more effective than symmetric lozenge or lath­<br />

shaped precipitates lying parallel to <strong>the</strong> basal plane in preventing slip in <strong>the</strong><br />

magnesium matrix.<br />

34


_ Chapter 2: Literature Review<br />

_ ’ 4 200°C Page<br />

_ 1“ I - I ~<br />

.K _ * =<br />

,,.4-"""_f' __ :—::— ‘"2<br />

H’. .1’/ /' ._— ‘P-Pp 0 _,-A<br />

' / -r’ 15° C “~%i.w"*<br />

_—_- ,4-” _"'___.--‘Ti -_- sT+ Age<br />

—— — sr+ S-tHIit'|+Age<br />

" i ‘—i—' I l ‘I i‘ ‘I<br />

U10 20 30 40 50 60 7E1 BU 9010<br />

Aging Time. Hrs<br />

Figure 2.12: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> cold work <strong>on</strong> <strong>the</strong> ageing behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy [135]<br />

2.8.4.3 Disc<strong>on</strong>tinuous precipitate<br />

Disc<strong>on</strong>tinuous precipitati<strong>on</strong> (DP) is a heterogeneous reacti<strong>on</strong>, which leads to<br />

<strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a lamellar structure behind a moving grain boundary [I42]. The<br />

schematic diagram representing <strong>the</strong> disc<strong>on</strong>tinuous precipitati<strong>on</strong> process is shown in<br />

Figure 2.13 [I43]. Two phases (or, B) forms simultaneously from a supersaturated<br />

single 0.0 matrix. The moving grain boundary, called reacti<strong>on</strong> fr<strong>on</strong>t (RF), act as a short<br />

circuit path for <strong>the</strong> diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> solute atoms [144-147]. DP is arrested when CP<br />

relives <strong>the</strong> solute super-saturati<strong>on</strong> in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> advancing nodule. The nucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disc<strong>on</strong>tinuous precipitates are mainly depends up<strong>on</strong> grain size, initial solute c<strong>on</strong>tent,<br />

temperature. Three main nucleati<strong>on</strong> mechanisms have been identified for<br />

disc<strong>on</strong>tinuous precipitati<strong>on</strong>:<br />

1. A precipitate first nucleates at <strong>the</strong> grain boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n acts to pull it from<br />

its initial positi<strong>on</strong>; <strong>the</strong> movement is associated with a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interfacial<br />

energy as proposed by Tu <str<strong>on</strong>g>and</str<strong>on</strong>g> Tumbull [I48-150]<br />

2. The initial displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> grain boundary is due to chemical forces<br />

(similar to <strong>the</strong> DIGM (diffusi<strong>on</strong> induced grain boundary migrati<strong>on</strong>) driving<br />

force) as for steady state growth, as proposed by Purdy <str<strong>on</strong>g>and</str<strong>on</strong>g> Lange [151]<br />

35


_ _ _ Chapter 2: Literature Review<br />

3. The force resp<strong>on</strong>sible for <strong>the</strong> initial grain boundary moti<strong>on</strong> are capillarity<br />

forces, identical to those that act during grain growth or recrystallizati<strong>on</strong>, as<br />

proposed by Foumelle <str<strong>on</strong>g>and</str<strong>on</strong>g> Clark [152]<br />

/GB .<br />

xjlllllll/_ B<br />

\


K Chapter 2; Literature Review<br />

major factor, which affects <strong>the</strong> tensile properties much [157-160]. The tensile<br />

properties are also sensitive to temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> strain rate.<br />

2.8.5.1 Eflect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> strain rate<br />

The tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy at high temperatures are well documented<br />

in literature. A drastic reducti<strong>on</strong> in both yield <str<strong>on</strong>g>and</str<strong>on</strong>g> Ultimate strength occurs while <strong>the</strong><br />

ductility improves c<strong>on</strong>siderably. As far as AZ9l alloy is c<strong>on</strong>cerned <strong>the</strong> main room<br />

temperature streng<strong>the</strong>ning element is Mg17Al1; intermetallics. But this intermetallic<br />

has a low melting point (4370C) <str<strong>on</strong>g>and</str<strong>on</strong>g> has a tendency to become coarsen at elevated<br />

temperature i.e. above 100°C <str<strong>on</strong>g>and</str<strong>on</strong>g> no l<strong>on</strong>ger act as a barrier for dislocati<strong>on</strong>s [I61].<br />

More over Mg11Al;2 has a cubic crystal structure, which is incoherent with <strong>the</strong> hcp<br />

magnesium matrix. Therefore this phase leads to <strong>the</strong> poor elevated temperature<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy. lt is also important to note that temperature has a great<br />

effect <strong>on</strong> <strong>the</strong> tensile properties at lower strain rate whereas at higher strain rate, <strong>the</strong><br />

temperature effect is less significant [1 62].<br />

Figure 2.14 shows <strong>the</strong> variati<strong>on</strong> in flow stress <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

deformati<strong>on</strong> temperature for various strain rates. The flow stress for each strain rate is<br />

determined at a fixed strain <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1. It is noted that <strong>the</strong> decrease in flow stress with<br />

temperature at strain rate at l0'3 S" is far grater than that at a strain rate <str<strong>on</strong>g>of</str<strong>on</strong>g> I03 S". It<br />

is suggested that climb c<strong>on</strong>trolled dislocati<strong>on</strong> creep could be a dominant deformati<strong>on</strong><br />

process in <strong>the</strong> low strain rate range. However, <strong>the</strong> operating deformati<strong>on</strong> mechanisms<br />

at high strain rates are suggested to be dislocati<strong>on</strong> glide <str<strong>on</strong>g>and</str<strong>on</strong>g> twinning even at elevated<br />

temperatures [1 62] .<br />

2.8.5.2 Eflect <str<strong>on</strong>g>of</str<strong>on</strong>g> grain size<br />

Several studies have been made <str<strong>on</strong>g>of</str<strong>on</strong>g> grain size streng<strong>the</strong>ning in magnesium <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

in several <str<strong>on</strong>g>of</str<strong>on</strong>g> its alloys. Due to <strong>the</strong> fact magnesium is basically a HCP materials, it is<br />

more sensitive to <strong>the</strong> grain size. In general, <strong>the</strong> yield strength as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> grain<br />

size can be represented as Hall-Petch equati<strong>on</strong>;<br />

37


Chapter 2: Literature Review<br />

*1"<br />

m<br />

400rF—v-HI-V-1-—wv'—I-iv-viii:-I-|f—v—r--V-1-1<br />

0<br />

. i210"; -<br />

0<br />

an 1<br />

3"‘ x<br />

-(bl ?9fi*< an _<br />

AZ91­ T<br />

296K<br />

: 5734 a<br />

' 5<br />


_ Chapter 2: Literature Review<br />

Table 2.6: RT tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> as cast <str<strong>on</strong>g>and</str<strong>on</strong>g> hot extruded AZ91 alloy [164]<br />

0.2% Pro<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Materials UTS, MPa , El<strong>on</strong>gati<strong>on</strong>, %<br />

T stress (MPa)<br />

As cast * AZ91 (F) I31 72 l-3<br />

4 AZ91 (T6) 235 108 5 3<br />

Extruded AZ91 341 244 13 5<br />

The fine grained AZ91 alloy not <strong>on</strong>ly shows high strength <str<strong>on</strong>g>and</str<strong>on</strong>g> ductility at<br />

room temperatures, but also superplasticity at elevated temperatures. Recently, it has<br />

been reported that an extruded AZ91 exhibits a maximum el<strong>on</strong>gati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 425% at<br />

a testing temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 250°C with a strain rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 X l0'4 sil [I66]. Y.H. Wei et al<br />

[167] have also reported that <strong>the</strong> rolled AZ91 shows excellent super plasticity with <strong>the</strong><br />

maximum el<strong>on</strong>gati<strong>on</strong> to failure <str<strong>on</strong>g>of</str<strong>on</strong>g> 455% tested at 350°C <str<strong>on</strong>g>and</str<strong>on</strong>g> a strain rate <str<strong>on</strong>g>of</str<strong>on</strong>g> l0'3 s‘l.<br />

The dominant deformati<strong>on</strong> mechanism in high strain rate superaplasticity is reported<br />

as grain boundary sliding (GBS). Moreover, recently it is reported that <strong>the</strong> AZ91<br />

processed by ECAE (Equal Channel Angular Extrusi<strong>on</strong>), shows superplastic behavior<br />

at even low temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 175-200°C [I68]. This is attributed to a very small grain<br />

size in order <str<strong>on</strong>g>of</str<strong>on</strong>g> l pm.<br />

2.8.6 Wear Behavior<br />

Wear properties are important especially when magnesium alloys are to be<br />

applied for critical automobile applicati<strong>on</strong>s. Wear, in <strong>the</strong> broadest sense, may be<br />

defined as <strong>the</strong> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> surface material <str<strong>on</strong>g>of</str<strong>on</strong>g> a comp<strong>on</strong>ent. There are several<br />

mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> wear, which include seizure, melting, oxidati<strong>on</strong>, adhesi<strong>on</strong>, abrasi<strong>on</strong>,<br />

delaminati<strong>on</strong>, fatigue, frettling, corrosi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> erosi<strong>on</strong> [l69, 170]. Wear may normally<br />

be reduced by using a lubricant with appropriate anti-wear additives or changing <strong>the</strong><br />

materials <str<strong>on</strong>g>and</str<strong>on</strong>g>/or <strong>the</strong> operati<strong>on</strong> parameters affecting <strong>the</strong> wear rate. There are few<br />

studies available <strong>on</strong> wear behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy. H. Chen et al [l7l] have carried<br />

out a dry sliding wear testing <strong>on</strong> AZ91 alloy against AISI 52100 steel ring within a<br />

load range <str<strong>on</strong>g>of</str<strong>on</strong>g> 1-350 N <str<strong>on</strong>g>and</str<strong>on</strong>g> a sliding velocity range <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1 -— 2 m/s. They observed two<br />

main wear regimes, namely a mild wear regime <str<strong>on</strong>g>and</str<strong>on</strong>g> a severe wear regime. ln <strong>the</strong> mild<br />

39


_p g Chapter 2: Literature Review<br />

wear regimes, it is found that <strong>the</strong> volume loss due to sliding wear increased linearly<br />

with <strong>the</strong> sliding distance where as in <strong>the</strong> severe wear regimes, it is no l<strong>on</strong>ger linear.<br />

Oxidati<strong>on</strong>al wear <str<strong>on</strong>g>and</str<strong>on</strong>g> delaminati<strong>on</strong> wear is reported in mild wear regime. Sever<br />

plastic deformati<strong>on</strong> induced wear <str<strong>on</strong>g>and</str<strong>on</strong>g> melt wear is observed in sever wear regime.<br />

Recently, S<strong>on</strong>g et al [172] have investigated wear mechanism <str<strong>on</strong>g>and</str<strong>on</strong>g> wear rate <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

magnesium alloys, AS2l <str<strong>on</strong>g>and</str<strong>on</strong>g> AZ9lD under c<strong>on</strong>stant sliding <str<strong>on</strong>g>and</str<strong>on</strong>g> dry loading<br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>cluded that <strong>the</strong> wear rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy mainly depends <strong>on</strong> <strong>the</strong> alloy<br />

hardness. D.S Mehta et al [173] also have reports that ASZI alloy shows higher wear<br />

rate than <strong>the</strong> AZ91 D alloy due to its lesser hardness. Peter et al [174] have c<strong>on</strong>ducted<br />

both unidirecti<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> reciprocati<strong>on</strong> sliding moti<strong>on</strong> wear test <strong>on</strong> die cast <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

thixomolded AZ9lD alloy. In reciprocating tests, <strong>the</strong> thixomolded specimens have<br />

slightly lower wear rates than die cast specimens where as in unidirecti<strong>on</strong>al sliding,<br />

both have similar wear rates, indicating that <strong>the</strong> microstructural differences do not<br />

have a pr<strong>on</strong>ounced effect <strong>on</strong> wear when <strong>the</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface shearing remained <strong>the</strong><br />

same for each pass <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> slider [I74].<br />

2.8.7 Creep Behavior<br />

Creep is time-dependent deformati<strong>on</strong> occur at high temperature normally<br />

above 0.5Tm (Tm — melting temperature). While elastic-plastic deformati<strong>on</strong>, strain is a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stress <strong>on</strong>ly whereas, creep strain is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stress, time <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

temperature [I75]. Figure 2.15 shows a typical creep-strain versus time curve for a<br />

metal, where three distinct regi<strong>on</strong>s can be observed [I76]. Afier an initial <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

instantaneous restructuring <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> metal, primary stage creep occurs with decreasing<br />

creep rate. Here, <strong>the</strong> work hardening is higher than <strong>the</strong> stress recovery (work<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening). In <strong>the</strong> sec<strong>on</strong>dary creep stage (stead~state) <strong>the</strong> metal experiences a two—-way<br />

balance between work-hardening <str<strong>on</strong>g>and</str<strong>on</strong>g> stress recovery resulting in steady-state creep<br />

(c<strong>on</strong>stant creep-rate). The tertiary creep stage exhibits increasing creep rate due to<br />

necking <str<strong>on</strong>g>and</str<strong>on</strong>g> cracking resulting finally in fracture.<br />

40


_ M Chapter 2: Literature Review<br />

' c<br />

!<br />

~ Sccorrdarry single<br />


Chapter 2: Literature Review<br />

fracture is to be at least 1.5 times higher than <strong>the</strong> pure magnesium. Regev [183] also<br />

reported a stress exp<strong>on</strong>ent ‘n’ value <str<strong>on</strong>g>of</str<strong>on</strong>g> 6.9 at 150°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.4 at 180 °C <str<strong>on</strong>g>and</str<strong>on</strong>g> related <strong>the</strong><br />

creep mechanism to dislocati<strong>on</strong> creep. Blum [184] c<strong>on</strong>ducted a compressive creep<br />

testing <strong>on</strong> AZ9l die casting in <strong>the</strong> temperature range <str<strong>on</strong>g>of</str<strong>on</strong>g> 70-150°C <str<strong>on</strong>g>and</str<strong>on</strong>g> reported that<br />

<strong>the</strong> dislocati<strong>on</strong> creep is <strong>the</strong> dominant mechanism <str<strong>on</strong>g>and</str<strong>on</strong>g> no grain boundary sliding<br />

c<strong>on</strong>tribute to <strong>the</strong> deformati<strong>on</strong>. William K. Miller [185] has found that AZ91 alloy is<br />

creeping even at room temperature under <strong>the</strong> stress level <str<strong>on</strong>g>of</str<strong>on</strong>g> 60-120 MPa. The<br />

measured stress dependency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sec<strong>on</strong>dary creep rate suggests that diffusi<strong>on</strong> driven<br />

dislocati<strong>on</strong> climb may be <strong>the</strong> rate c<strong>on</strong>trolling creep mechanism.<br />

M.S. Dargusch [28] observed grain boundary sliding in AZ9l alloy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

suggested that it play a dominant role at least in low stress levels. Creep testing <str<strong>on</strong>g>of</str<strong>on</strong>g> die<br />

cast AZ91at stresses in <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> 20-60 MPa <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature in <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> 125­<br />

l75°C, gives an ‘n’ value <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> a ‘Q’ value <str<strong>on</strong>g>of</str<strong>on</strong>g>44 KJ/mol [28]. This value <str<strong>on</strong>g>of</str<strong>on</strong>g>Q is<br />

close to 30 Kl/mol determined for <strong>the</strong> apparent activati<strong>on</strong> energy for <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disc<strong>on</strong>tinuous B precipitati<strong>on</strong> in Mg-9A1 alloy. As it is evident that DP normally forms<br />

at a grain boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> migrates in to <strong>the</strong> nearby grains, it damages <strong>the</strong> grain<br />

boundary. This will lead to <strong>the</strong> grain boundary sliding <str<strong>on</strong>g>and</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cavities <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

subsequent failure. Indeed <strong>the</strong>y observed grain boundary sliding in AZ91 alloy as<br />

shown in Figure 2.16 in which <strong>the</strong> splitting <str<strong>on</strong>g>of</str<strong>on</strong>g> marked line across <strong>the</strong> grain boundary<br />

is clearly seen.<br />

2.8. 7.3 Creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 against o<strong>the</strong>r Mg-Al alloys<br />

The creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91, AS21, AS41 alloys are compared by Dargusch et<br />

a1 [28, 186] <str<strong>on</strong>g>and</str<strong>on</strong>g> have found that under all stress c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> temperatures, <strong>the</strong><br />

relative behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloys is similar with <strong>the</strong> creep strength <str<strong>on</strong>g>of</str<strong>on</strong>g> AE42 <str<strong>on</strong>g>and</str<strong>on</strong>g> AS21<br />

being c<strong>on</strong>siderably better than AZ91. The comparis<strong>on</strong> creep curves <str<strong>on</strong>g>of</str<strong>on</strong>g> three alloys at<br />

150°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 50 MPa is shown in Figure 2.17.<br />

42


Chapter 2: Literature Review<br />

Figure 2.16: Micrograph showing grain boundary sliding in die cast<br />

AZ91 alloy [28]<br />

Q<br />

i<br />

1|:-0<br />

/~*<br />

1:-1 /4 » 8<br />

1:-0/{.70. ,‘<br />

‘F,<br />

1!-O _ +<br />

12-10 | 20 40 I0 80 100<br />

. Etna (MP1)<br />

Figure 2.17: Stress dependency <strong>on</strong> sec<strong>on</strong>dary creep rates <str<strong>on</strong>g>of</str<strong>on</strong>g> different Mg-Al<br />

based alloys [186]<br />

The superior creep resistance by o<strong>the</strong>r alloys over AZ91 alloy is explained by<br />

<strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic B precipitates form during high temperature exposure<br />

[28, 186]. The cast microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AS2l <str<strong>on</strong>g>and</str<strong>on</strong>g> AE42 c<strong>on</strong>tain less amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

supersaturated a Mg because <str<strong>on</strong>g>of</str<strong>on</strong>g> less aluminum c<strong>on</strong>tent compared to AZ91 alloy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

as a result, <strong>the</strong>ir microstructures are much more stable <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>siderably less<br />

disc<strong>on</strong>tinuous precipitates occurs during exposure at elevated temperatures. Moreover<br />

<strong>the</strong>se alloys also c<strong>on</strong>tain str<strong>on</strong>g stable intergranular phases, Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g>, in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

A821 <str<strong>on</strong>g>and</str<strong>on</strong>g> Al4RE in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> AE42, which can be expected to pin grain boundaries<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> hinder both grain boundary movement.<br />

43<br />

‘I’


_ Chapter 2: Literature Review<br />

On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g> W.Blum [30, 31, 184, ] compared <strong>the</strong> creep behavior AZ9l<br />

die cast alloys with <strong>the</strong> o<strong>the</strong>r Mg-Al alloys like AS4l, AS2l <str<strong>on</strong>g>and</str<strong>on</strong>g> AE42. From stress­<br />

strain curve obtained under compressive loading <strong>the</strong>y found that AZ9l alloy has<br />

highest work hardening <str<strong>on</strong>g>and</str<strong>on</strong>g> has higher yield stress at all <strong>the</strong> testing temperature. They<br />

measured <strong>the</strong> maximum deformati<strong>on</strong> resistance during compressive creep <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

represented in Z-0 plot, which is shown in Figure 2.18. AZ9l has a higher maximum<br />

deformati<strong>on</strong> resistance at stress above 150 MPa <str<strong>on</strong>g>and</str<strong>on</strong>g> inferior to AS2l below this stress<br />

level. Apart from this, <strong>the</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l <str<strong>on</strong>g>and</str<strong>on</strong>g> AM60 lie <strong>on</strong> <strong>the</strong> <strong>on</strong>e h<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> AS2l<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> AE42 <strong>on</strong> <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>. They showed that AZ9l alloy has <strong>the</strong> highest creep<br />

resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> all alloys in <strong>the</strong> whole investigated range, with <strong>the</strong> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AS4l<br />

which becomes more creep resistant than AZ9l at stresses below 130 MPa. They<br />

attributed this behavior to high rate <str<strong>on</strong>g>of</str<strong>on</strong>g> work hardening <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l, combined with <strong>the</strong><br />

precipitati<strong>on</strong> hardening due to <strong>the</strong> dynamic precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al|2. AZ91 alloy is<br />

expected to have highest super saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequent precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B<br />

during creep, streng<strong>the</strong>ning <strong>the</strong> alloy. At low stresses, <strong>the</strong> alloys like AS2l, AS4l<br />

exhibits good creep behavior because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mgg<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates, which is more stable<br />

than M817Al1;; phase. The same author has proved this precipitati<strong>on</strong> hardening in<br />

AZ9l alloy by c<strong>on</strong>ducting creep test <strong>on</strong> annealed, which exhibited higher creep<br />

resistance [ 187].<br />

2.8. 7.4 Creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> ingot cast AZ91<br />

There is not much creep studies are available <strong>on</strong> <strong>the</strong> gravity cast AZ9l alloy.<br />

However, a detailed work <strong>on</strong> <strong>the</strong> creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> ingot AZ9l alloy carried out by<br />

Regev et al [29, 188] suggested that no grain boundary sliding c<strong>on</strong>tribute to <strong>the</strong> creep<br />

deformati<strong>on</strong>. The creep mechanism observed is ei<strong>the</strong>r dislocati<strong>on</strong> creep or dislocati<strong>on</strong><br />

glide. Dynamic precipitati<strong>on</strong> is also observed in ingot casting. It is suggested that<br />

creep induced precipitates are streng<strong>the</strong>ning <strong>the</strong> alloy against creep.<br />

44


.<br />

IChapter 2: Literature Review<br />

A52! u<br />

:0"<br />

AZ‘)! ;- -10%<br />

A541 0 Q ' 1~.-~=(;.<br />

wt. M12 ANEQO + - tn 1; w ?°<br />

— ? .. ‘ 0“ +<br />

e<br />

+/1<br />

I‘<br />

I<br />

'1<br />

.-9'! ..=


Ii |<br />

‘I<br />

I<br />

Chapter<br />

U<br />

2: Literature IReview<br />

Qwl 100 ].\".[PIrl<br />

-'-KS C33‘<br />

"' Soluti<strong>on</strong> treated<br />

T an 4 4<br />

°a> O.lO.20304050$O.70.80.9I.O<br />

t/if<br />

Figure 2.19: Creep curves <str<strong>on</strong>g>of</str<strong>on</strong>g> as cast <str<strong>on</strong>g>and</str<strong>on</strong>g> soluti<strong>on</strong> treated AZ9l alloy at 150°C<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 50 MPa [reproduced from ref 188]<br />

While comparing <strong>the</strong> creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> die <str<strong>on</strong>g>and</str<strong>on</strong>g> ingot cast AZ91, Regev et al<br />

[189] have found that <strong>the</strong> minimum creep rate was reached approximately two thirds<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> time to rupture in <strong>the</strong> ingot specimen compared to <strong>on</strong>e third <str<strong>on</strong>g>of</str<strong>on</strong>g> that time in <strong>the</strong><br />

pressure die-casting as shown in Figure 2.20. Apart from that, <strong>the</strong> minimum creep rate<br />

at given test parameter is much higher in <strong>the</strong> pressure die casting than in ingot. These<br />

behaviors are related to <strong>the</strong> difference in hardening mechanisms due to <strong>the</strong> dynamic<br />

precipitati<strong>on</strong> process involved during creep. Due to <strong>the</strong> faster cooling rate, <strong>the</strong> die cast<br />

alloy c<strong>on</strong>tains more amount <str<strong>on</strong>g>of</str<strong>on</strong>g> eutectic [3- Mgr?/XI]; <str<strong>on</strong>g>and</str<strong>on</strong>g> less amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Al in<br />

0- matrix. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, due to <strong>the</strong> slow cooling rate in gravity ingot casting,<br />

more amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Al goes into <strong>the</strong> or-Al matrix. The higher c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> Al in <strong>the</strong> matrix<br />

leading to prol<strong>on</strong>ged precipitati<strong>on</strong> until steady state is reached in ingot casting. This<br />

leads to <strong>the</strong> slow creep rate in ingot casting. ln c<strong>on</strong>trast <strong>the</strong> precipitati<strong>on</strong> process<br />

comes to end at earlier in <strong>the</strong> die casting <str<strong>on</strong>g>and</str<strong>on</strong>g> coarsening <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitates takes places,<br />

which degrade <strong>the</strong> microstructure [1 89, 190].<br />

S.Spigarelli [191] also compared <strong>the</strong> creep behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy processed<br />

by die casting <str<strong>on</strong>g>and</str<strong>on</strong>g> thixo casting with <strong>the</strong> ingot casting at 150°C with an initial stress <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

100 MPa. <str<strong>on</strong>g>Si</str<strong>on</strong>g>milar kind <str<strong>on</strong>g>of</str<strong>on</strong>g> results are observed as <strong>the</strong> creep behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> die-cast <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong> thixo-formed samples exhibited a similar resp<strong>on</strong>se, characterized by a relatively<br />

short primary stage followed by a short minimum-creep-rate range ra<strong>the</strong>r than by a<br />

sec<strong>on</strong>dary regime, <str<strong>on</strong>g>and</str<strong>on</strong>g> by a prol<strong>on</strong>ged tertiary regi<strong>on</strong>. The ingot exhibited a l<strong>on</strong>ger<br />

46


E Chapter 2: Literature Review<br />

primary stage. Rupture in this case occurred abruptly after a short tertiary stage <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

exhibited <strong>the</strong> greatest creep strength as shown in Figure 2.21. The higher creep<br />

resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ingot alloy is attributed to <strong>the</strong> extended precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fine particles<br />

during creep exposure <str<strong>on</strong>g>and</str<strong>on</strong>g> marked difference in grain size with <strong>the</strong> die <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

thix<str<strong>on</strong>g>of</str<strong>on</strong>g>ormed alloy samples.<br />

'[_ ' Die casring/<br />

obri---U -.... -' LL31: '1-—IllIli"b1IIIiIIi'-'1 .~. .. ._,,_ __.____.__<br />

=:1:'.~<br />

_ I, .- - | | . l. \\\ ix //<br />

'-re<br />

/<br />

l><br />

I l<br />

it<br />

I.<br />

l<br />

., 1.<br />

l ‘I $2,‘):-‘-:_:1»,% 00 MP0 / it<br />

\._ \_\_.-‘Q . N, /I_.<br />

3 2 .&<br />

-—' _ __ .__ -—" . r\<br />

.' 0 _ "-..______ \ as N‘-Po,» _./' _. 5


_ _ W pp Chapter 2: LiteratureReview<br />

envir<strong>on</strong>ments where magnesium alloys <str<strong>on</strong>g>of</str<strong>on</strong>g>ten serve as sacrificial anodes <strong>on</strong> structures<br />

such as ships’ hulls, buried pipelines, <str<strong>on</strong>g>and</str<strong>on</strong>g> steel piles [192].<br />

The st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard electrochemical potential <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium is -2.4 V (NHE), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

even though in aqueous soluti<strong>on</strong>s it shows a potential <str<strong>on</strong>g>of</str<strong>on</strong>g> -1.5 V due to <strong>the</strong> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mg(OH); film. C<strong>on</strong>sequently, magnesium dissolves rapidly in aqueous soluti<strong>on</strong>s by<br />

evolving hydrogen below pH I 1.0, <strong>the</strong> equilibrium pH value for Mg(OH)_-Z [l93, 194].<br />

The reacti<strong>on</strong> is relatively insensitive to <strong>the</strong> oxygen c<strong>on</strong>centrati<strong>on</strong>. The overall reacti<strong>on</strong><br />

is described as<br />

Mg+2H20 —> Mg (<strong>on</strong>), + H;<br />

As corrosi<strong>on</strong> proceeds, <strong>the</strong> metal surface experiences a local pH increase because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg (OH)2, whose equilibrium pH is about ll. The protecti<strong>on</strong><br />

supplied by this film is highly dependent <strong>on</strong> <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure. For example,<br />

magnesium is very resistant to corrosi<strong>on</strong> in small volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> water that are free <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

species aggressive to <strong>the</strong> film. In <strong>the</strong> atmosphere, Mg reacts fur<strong>the</strong>r with carb<strong>on</strong><br />

dioxide, forming magnesium carb<strong>on</strong>ate, which acts as a sealer for <strong>the</strong> hydroxide film.<br />

High purity magnesium <strong>the</strong>refore has <strong>the</strong> potential to be extremely better in <strong>the</strong><br />

atmosphere than ir<strong>on</strong> [I95]. Problems arise when impurity elements are present at<br />

levels that promote micro galvanic cell acti<strong>on</strong>, when <strong>the</strong> metal or alloy is galvanically<br />

coupled to an effective cathode materials, or when <strong>the</strong> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> envir<strong>on</strong>ment<br />

prevents formati<strong>on</strong> or maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> a protective film.<br />

2.8.8.1 Corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91<br />

The corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy is very sensitive to <strong>the</strong> microstructure.<br />

As menti<strong>on</strong>ed already <strong>the</strong> AZ9l alloy c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> three microstructural c<strong>on</strong>stituents in<br />

<strong>the</strong> cast microstructure. These are primary (1, eutectic or <str<strong>on</strong>g>and</str<strong>on</strong>g> I3-Mg];/XI]; intermetallic.<br />

The primary or phase normally c<strong>on</strong>tains much less aluminum compared to that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

eutectic or <str<strong>on</strong>g>and</str<strong>on</strong>g> B phase. The [3 phase reported to have more cathodic potential than that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> oz phase [33]. Thus, or <str<strong>on</strong>g>and</str<strong>on</strong>g> [3 phases when in c<strong>on</strong>tact will easily cause galvanic<br />

corrosi<strong>on</strong>. S<strong>on</strong>g et al [34] by examining <strong>the</strong> individual phases, have shown that in<br />

48


W Chapter, 2: Literature Review<br />

chloride soluti<strong>on</strong>, <strong>the</strong> rest potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> B phase (-1.6 V) is some 300 mV positive to<br />

0 phase (potential, -1.3V). Lunder et al [33] also found that <strong>the</strong> positive drift <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

rest potential <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg|7Al|2, which could be attributed to <strong>the</strong> passivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this phase.<br />

That way in AZ9l alloys, size <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> [3 phase toge<strong>the</strong>r with <strong>the</strong><br />

coring <str<strong>on</strong>g>of</str<strong>on</strong>g> or phase makes <strong>the</strong> alloy surface electrochemically heterogeneous. The<br />

corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> material thus depends <strong>on</strong> how <strong>the</strong>se microc<strong>on</strong>stituents<br />

interact when it is exposed to aqueous envir<strong>on</strong>ment. The above said parameters<br />

changes with processing route, gives rise <str<strong>on</strong>g>of</str<strong>on</strong>g> different corrosi<strong>on</strong> behaviors for<br />

materials prepared by different processing routes.<br />

2.8.8.2 Eflect <str<strong>on</strong>g>of</str<strong>on</strong>g> micro c<strong>on</strong>stituents<br />

(i) 5%. Hehmann et al [199] studied corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> rapidly solidified<br />

ribb<strong>on</strong>s with aluminum c<strong>on</strong>centrati<strong>on</strong> varying between 9 <str<strong>on</strong>g>and</str<strong>on</strong>g> 62.3%. They observed a<br />

decrease in <strong>the</strong> corrosi<strong>on</strong> rate <str<strong>on</strong>g>and</str<strong>on</strong>g> Ec<strong>on</strong>, from 9.6 to 23.4% Al in aerated 0.01 M<br />

sodium chloride soluti<strong>on</strong>. Daloz et al [197] have reported that <strong>the</strong> increase in<br />

aluminum c<strong>on</strong>tent in <strong>the</strong> material shifts <strong>the</strong> potential towards anodic side. But many<br />

authors find <strong>the</strong> corrosi<strong>on</strong> initiates in or — Mg where <strong>the</strong> aluminum c<strong>on</strong>tent is lesser.<br />

49


_ _WChapter 2: Literature Review<br />

This discriminati<strong>on</strong> is explained by <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc in <strong>the</strong> solid soluti<strong>on</strong>. It is also<br />

reported that in Mg-Al alloys, presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Zn influences <strong>the</strong> Eco" <str<strong>on</strong>g>of</str<strong>on</strong>g> both matrix <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

precipitates <str<strong>on</strong>g>and</str<strong>on</strong>g> has a beneficial effect <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloys [I97].<br />

(ii) [3-Mg17Al1;<br />

The [3-Mg17Al1g phase is cathodic with respect to <strong>the</strong> matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> exhibits a<br />

passive behavior over a wider pH range than ei<strong>the</strong>r <str<strong>on</strong>g>of</str<strong>on</strong>g> its comp<strong>on</strong>ents Al <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg. B­<br />

Mg17Al1; is found to be inert in chloride soluti<strong>on</strong>s in comparis<strong>on</strong> with <strong>the</strong> surrounding<br />

Mg matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> could act as a corrosi<strong>on</strong> barrier [200]. It is reported that <strong>the</strong> resistance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> [3-Mg17Al1;; to corrosi<strong>on</strong> is due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a thin passive film <strong>on</strong> its surface.<br />

However, literature also suggests that B phase serves dual role in corrosi<strong>on</strong>;<br />

<strong>the</strong> B phase can acts ei<strong>the</strong>r as a barrier or as a galvanic cathode [37, 201-203]. if it is<br />

present as a small fracti<strong>on</strong>, it serves mainly as a galvanic cathode, <str<strong>on</strong>g>and</str<strong>on</strong>g> accelerates <strong>the</strong><br />

overall corrosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0. matrix. However, if its fracti<strong>on</strong> is high, <strong>the</strong>n it may act mainly<br />

as an anodic barrier [35].<br />

If <strong>the</strong> (1 grains are very fine, <strong>the</strong> B phase fracti<strong>on</strong> is not too low, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> B<br />

phase is nearly c<strong>on</strong>tinuous like a net over <strong>the</strong> a matrix, <strong>the</strong>n <strong>the</strong> [3 phase particles d<strong>on</strong><br />

not easily fall out by undermining. Instead, in this case <strong>the</strong> or matrix is much more<br />

easily corroded <str<strong>on</strong>g>and</str<strong>on</strong>g> even undem1ined because many more or grains are completely<br />

separated by <strong>the</strong> B phase net. Therefore, it can be expected that [3 fracti<strong>on</strong> increase<br />

with time during corrosi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> finally <strong>the</strong> fracti<strong>on</strong> becomes high enough to make <strong>the</strong><br />

flphase become nearly c<strong>on</strong>tinuous. The corrosi<strong>on</strong> rate should be low after this steady<br />

state surface c<strong>on</strong>diti<strong>on</strong> is reached. Hence, if or grains are fine, <strong>the</strong> gaps between [3<br />

precipitates are narrow <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> B phase is nearly c<strong>on</strong>tinuous, <strong>the</strong> corrosi<strong>on</strong> is greatly<br />

retarded [20l, 202]. Figure 2.22 provides a schematic illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> surface<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> die cast during corrosi<strong>on</strong>. This kind <str<strong>on</strong>g>of</str<strong>on</strong>g> behavior normally observed<br />

with die cast AZ9l alloy.<br />

On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, if


Chapter 2: Literature Review<br />

phase is not effectively blocked ei<strong>the</strong>r by [3 phase or by <strong>the</strong> corrosi<strong>on</strong> products<br />

deposited between <strong>the</strong> B phase <str<strong>on</strong>g>and</str<strong>on</strong>g> or phase. In an even worse case, <strong>the</strong> B can be<br />

undermined instead <str<strong>on</strong>g>of</str<strong>on</strong>g> or phase. In this case B fracti<strong>on</strong> decreases with time during<br />

corrosi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> corrosi<strong>on</strong> rate increases with time. This is what happens during<br />

corrosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity cast AZ9l [37].<br />

’l E3 (1 ‘T ‘fa < A i - 5‘ D U‘<br />

'___<br />

"l<br />

' . : , ‘ ._ ..;!1~':s'3, :5" - V 1}“ p _ 4_ __ -§ .1. . ’ 1; _~' J‘ V '-3' ,_7 “ . ‘N ~ ;- S: - _ [L<br />

. -., . " _ -. ‘~.:r=~’1g..:?f;;j-a-_. . . ~, M*-' 32$ _-* - * . .1 __ ' _ $2. ' ;<br />

‘ . -if *~" 01 ‘ll '2 1 ~ Y "1 . 1:. "I" -.¢ rt. ' ° ‘b " Y §»'~‘ - If ' .. ‘ ~ “. if . *“ . _ » - .2 F’ ~:-1. 3'. '14.:-"‘ 9- ‘ - ,_ -J» i ac ."' rt: r; '5'<br />

_ V ‘<br />

_<br />

V. ; . ’ ..,. ...;'_:_- ; ‘_<br />

,-_.,..<br />

-7 _‘____2;:: , V<br />

____.<br />

cl», -;_ v A 8 7<br />

,. _\, _W___<br />

_ $0 ‘aw q : 1. ".‘f:V; . _, r -.4‘ _._,.f )1-V V .<br />

I ‘ _ _ __ W’ _ .7.‘ ;_ _,‘;:,__. ; V _. :3.<br />

Figure 2.22: Schematic presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> surface compositi<strong>on</strong> during<br />

corrosi<strong>on</strong> (a) initial surface (b) final surface [201]<br />

2. 8. 8.3 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> impurities<br />

Ano<strong>the</strong>r important factor, which affects <strong>the</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy,<br />

is <strong>the</strong> kind <str<strong>on</strong>g>and</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> impurities presence in <strong>the</strong> alloy. Fe, Ni, Co, Cu are <strong>the</strong><br />

impurity elements that have negative effect <strong>on</strong> corrosi<strong>on</strong> resistance [204]. The<br />

tolerance limits for <strong>the</strong>se elements are defined by <strong>the</strong> ASTM st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards [205]. Ir<strong>on</strong> is<br />

<strong>the</strong> most critical element since it reacts with aluminum forming a binary intermetallic<br />

compound Al3Fe. This compound segregates at grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> it acts as an<br />

active cathodic phase relative to <strong>the</strong> magnesium rich matrix. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first<br />

observati<strong>on</strong>s by Hanawalt <str<strong>on</strong>g>and</str<strong>on</strong>g> co workers [98] was <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> purity <strong>on</strong> <strong>the</strong><br />

corrosi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> pure magnesium, as measured by weight loss in 3% sodium chloride.<br />

The commercially pure metal (99.9%) has a corrosi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 5-100 mg/cmz/d (410­<br />

8300 mpy), while <strong>the</strong> corresp<strong>on</strong>ding rate for high purity magnesium (99.994%) is<br />

about 0.15 mg/cm/d (l2mpy). The generalized curve in Figure 2.23 illustrates<br />

schematically <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> impurity elements observed in <strong>the</strong> Hanawalt<br />

study [98]. The curve shows a well defined impurity level, above which <strong>the</strong> corrosi<strong>on</strong><br />

rate increases dramatically. For high purity magnesium, <strong>the</strong>se values are 170, 1000,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 5 ppm for ir<strong>on</strong>, copper <str<strong>on</strong>g>and</str<strong>on</strong>g> nickel respectively.<br />

51<br />

V


1 _ Chapter 2W:Litegrature Review<br />

Reichek et al [206] also showed that <strong>the</strong> salt water corrosi<strong>on</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> AZ9l alloy is a direct functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy purity. They are able to define <strong>the</strong><br />

specific tolerance limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> three comm<strong>on</strong> c<strong>on</strong>taminants <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg alloys, i.e., Fe, Ni<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Cu with respect to corrosi<strong>on</strong> behavior. By keeping <strong>the</strong> respective limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se<br />

c<strong>on</strong>taminants to values below <strong>the</strong> defined values (Fe=3.2%Mn max.; Ni=50 ppm<br />

max.; <str<strong>on</strong>g>and</str<strong>on</strong>g> Cu=400 ppm max.), <strong>the</strong>y found that AZ9l c<strong>on</strong>sistently exhibited a better<br />

salt spray corrosi<strong>on</strong> performance than pressure die cast SAE 380 (Al-4.5% Cu-2.5%<br />

<str<strong>on</strong>g>Si</str<strong>on</strong>g>) <str<strong>on</strong>g>and</str<strong>on</strong>g> cold rolled steel. [206].<br />

0­ . - II<br />

H<br />

tolerance limit ' 50 ppm<br />

0 1 |— . V - I —-5 - r I Il<br />

0 20 40 so B0<br />

C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> impurities, ppm<br />

Figure 2.23: Generalized curve showing <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> impurities <strong>on</strong> corrosi<strong>on</strong> rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium [98]<br />

To reduce <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> in Mg-Al alloys, manganese is generally used.<br />

Manganese, combine with ir<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> improve <strong>the</strong> corrosi<strong>on</strong> behavior in two possible<br />

ways: ei<strong>the</strong>r removing ir<strong>on</strong> by settling at <strong>the</strong> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> melt, or forming<br />

intermetallic compounds with ir<strong>on</strong>, which apparently have no negative effects. It has<br />

been shown by several authors that <strong>the</strong> corrosi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al castings is better<br />

correlated to <strong>the</strong> Fe/Mn ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy, ra<strong>the</strong>r than <strong>the</strong> absolute Fe c<strong>on</strong>tent [I98].<br />

2.8.8.4 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> heat treatment<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> ageing <strong>on</strong> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> die cast AZ9l also reported in<br />

literature. Suman [207] showed that ageing at temperatures up to 230°C for 36 h has<br />

little effect <strong>on</strong> corrosi<strong>on</strong> resistance. However, ageing at a temperature above 230°C<br />

significantly reduces <strong>the</strong> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> die cast AZ9l under a salt spraying<br />

52


Chapter 2: Literature Review<br />

c<strong>on</strong>diti<strong>on</strong>. Lunder et al [33] reported that <strong>the</strong> alloy exhibits an improved corrosi<strong>on</strong><br />

resistance in <strong>the</strong> artificially aged c<strong>on</strong>diti<strong>on</strong> (T6) compared to as cast <str<strong>on</strong>g>and</str<strong>on</strong>g> homogenized<br />

(T4) state.<br />

Recently S<strong>on</strong>g et al [208] have carried out a detailed study <strong>on</strong> <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ageing at 160°C <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> die cast AZ9l alloy. It was found that<br />

tl1e corrosi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy decreases with ageing time in <strong>the</strong> initial stages <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n<br />

increases again at ageing times greater than 45 h. The dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> corrosi<strong>on</strong><br />

rate <strong>on</strong> ageing time is related to <strong>the</strong> changes in microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> local compositi<strong>on</strong><br />

change during ageing. The B precipitates occurred during ageing treatment at <strong>the</strong> grain<br />

boundary acts as a barrier, resulting in a decreasing corrosi<strong>on</strong> rate in <strong>the</strong> initial stages<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ageing. in <strong>the</strong> later stages, <strong>the</strong> decreasing aluminum c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> or grain makes <strong>the</strong><br />

matrix more active, causing an increase in <strong>the</strong> corrosi<strong>on</strong> rate. They also reported that<br />

<strong>the</strong> c<strong>on</strong>tinuous rod shaped precipitates, which occur in <strong>the</strong> later stage in <strong>the</strong> grain, do<br />

not act as an effective barrier for <strong>the</strong> corrosi<strong>on</strong>.<br />

In c<strong>on</strong>trast, <str<strong>on</strong>g>Si</str<strong>on</strong>g>ngh Raman [209] studied <strong>the</strong> ageing effect <strong>on</strong> corrosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gravity cast AZ9l <str<strong>on</strong>g>and</str<strong>on</strong>g> reported that T4 (soluti<strong>on</strong> treated) treated specimen exhibit<br />

superior corrosi<strong>on</strong> resistance. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, <strong>the</strong> aged specimen (l6h <str<strong>on</strong>g>and</str<strong>on</strong>g> 19h)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> as cast shows higher corrosi<strong>on</strong> rates. He observed that <strong>the</strong> corrosi<strong>on</strong> is highly<br />

localized in <strong>the</strong> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> [5 phase <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> surrounding eutectic or phase. It is said that<br />

<strong>the</strong> cathode to anode area ratio is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> prime factors goveming <strong>the</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> galvanic corrosi<strong>on</strong>. The increase in corrosi<strong>on</strong> rate with increase in ageing time is<br />

attributed to <strong>the</strong> increase in <strong>the</strong> precipitates volume, which in turn increases <strong>the</strong><br />

cathode to anode area ratio, leading to more galvanic corrosi<strong>on</strong> (ref Figure 2.24).<br />

2.8.8.5 Corrosi<strong>on</strong> protecti<strong>on</strong> coatings<br />

There are two different ways to improve <strong>the</strong> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnesium alloys. The first <strong>on</strong>e is to purify <strong>the</strong> alloy from impurities like Fe, Ni, Cu,<br />

etc. <strong>the</strong> sec<strong>on</strong>d method is to form a protective coating <strong>on</strong> <strong>the</strong> magnesium alloys.<br />

Various surface treatments have been used to generate protective films or surface<br />

coating [210-213]. These techniques basically classified as two types. The first <strong>on</strong>e is<br />

53


_ Chapter 2: Literature Review,<br />

to produce a protective film by chemical or electrochemical c<strong>on</strong>versi<strong>on</strong> treatments.<br />

The sec<strong>on</strong>d <strong>on</strong>e is a coating usually c<strong>on</strong>taining organic materials like paint. Chemical<br />

c<strong>on</strong>versi<strong>on</strong> coating, electrochemical anodizing, chemical plating, electro plating are<br />

comes under <strong>the</strong> first type. The chemical treatments usually involve <strong>the</strong> dipping <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

magnesium alloy into acidic or nearly neutral soluti<strong>on</strong>s c<strong>on</strong>taining Cr compounds,<br />

which form a passive oxide layer <strong>on</strong> <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> metal. In electrochemical<br />

process like anodizing, film composed <str<strong>on</strong>g>of</str<strong>on</strong>g> MgO c<strong>on</strong>taining Cr compounds are<br />

produced <strong>on</strong> <strong>the</strong> surface [2l4].<br />

Al rich 0. (Cathode)<br />

i3'1\"‘1S1'r-l"\112 (Anode)<br />

{$1} (bl<br />

‘ Figure 2.24: Schematic diagram illustrating <strong>the</strong> cathode-anode area change<br />

during ageing <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy (a) T6-16h (b) T6-19h [reproduced<br />

from refi 209]<br />

Am<strong>on</strong>g <strong>the</strong> various electrochemical techniques, anodizing treatment is become<br />

most promising methods for magnesium even though this treatment is quite expansive<br />

compared to <strong>the</strong> chemical treatment [2l5]. Different process like DOW 17, HAE <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

MGZ has been developed. These coating has envir<strong>on</strong>mental problem as most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

electrolyte used in <strong>the</strong>se process c<strong>on</strong>tain dichromate <str<strong>on</strong>g>and</str<strong>on</strong>g> phosphoric acid [216].<br />

Recently, due to <strong>the</strong> health <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental pressure, some new coatings such as<br />

Anomag <str<strong>on</strong>g>and</str<strong>on</strong>g> Tagnite have been developed [2l0, 211, 217]. These coating methods<br />

have less hazards <str<strong>on</strong>g>and</str<strong>on</strong>g> more effective in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong> resistance over HAE <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

DOW17 [2l8].<br />

Laser treatment is ano<strong>the</strong>r surface modificati<strong>on</strong> technique in which, formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> metastable solid soluti<strong>on</strong>s as promoted at metal surfaces by laser annealing where<br />

cooling rates as high as I010 Ks". This is also a kind <str<strong>on</strong>g>of</str<strong>on</strong>g> rapid solidificati<strong>on</strong> technique<br />

54


pg _ H Chapter 2: Literature Review<br />

in which <strong>on</strong>ly surface layer melt <str<strong>on</strong>g>and</str<strong>on</strong>g> solidifies [2l4]. Akavipat et al [219] studied <strong>the</strong><br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> thin layers <str<strong>on</strong>g>of</str<strong>on</strong>g> Al, Cr, Cu, Fe <str<strong>on</strong>g>and</str<strong>on</strong>g> Ni <strong>on</strong> <strong>the</strong> pitting resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9lC <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

found that improved breakdown potential for all cases. This improvement is attributed<br />

to <strong>the</strong> surface structure c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> amorphous mixed oxides. C.<br />

Padmavathi et al. [220] have reported that pulsed Nd:YAG laser melting treatment <strong>on</strong><br />

AZ9lC alloy improve its corrosi<strong>on</strong> behavior because <str<strong>on</strong>g>of</str<strong>on</strong>g> its fine microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

redistributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> [3- phase.<br />

2.9 ROLE OF MINOR ALLOYING ADDITIONS<br />

Surface active elements like <str<strong>on</strong>g>Sb</str<strong>on</strong>g>, Ca, Bi, <str<strong>on</strong>g>Sr</str<strong>on</strong>g>, RE, etc., are added to <strong>the</strong> AZ91<br />

alloy to improve its mechanical <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong> properties [221-224]. These elements<br />

mainly form intermetailics ei<strong>the</strong>r with Mg, or with Al, which is high <strong>the</strong>rmally stable<br />

than <strong>the</strong> Mg|7Al|2, <strong>the</strong>reby improve <strong>the</strong> creep properties. Some elements like Ca <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> are effective in refine <strong>the</strong> grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy. Ca <str<strong>on</strong>g>and</str<strong>on</strong>g> RE is also found to<br />

improve <strong>the</strong> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy.<br />

2.9.1 Antim<strong>on</strong>y<br />

Qud<strong>on</strong>g Wang et al [42] <str<strong>on</strong>g>and</str<strong>on</strong>g> Guangyin et al [44] studied <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <strong>on</strong><br />

<strong>the</strong> microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> (0.5 to2%) lead to <strong>the</strong> microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy with needle shaped<br />

Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; particles at <strong>the</strong> grain boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al12 precipitates to<br />

some extent [221]. <str<strong>on</strong>g>Si</str<strong>on</strong>g>nce <strong>the</strong> melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>;> is around l228°C, it is<br />

<strong>the</strong>rmally stable at high temperature. Maximum tensile properties are observed with<br />

0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy. Improved creep properties at 150°C with 50 MPa initial stress is<br />

also observed [221]. With additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.4% <str<strong>on</strong>g>Sb</str<strong>on</strong>g>, <strong>the</strong> minimum creep rate <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy<br />

is reduced from 5.6>


Chapter 2: Literature Review<br />

increases <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> needle shape morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> this intermetallic brings down <strong>the</strong><br />

properties.<br />

» “ ‘1<br />

400115<br />

Figure 2.25: TEM micrograph showing dislocati<strong>on</strong> pileups around <strong>the</strong> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>;<br />

intermetallics in <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ9l alloy crept at 200°C[22l]<br />

2.9.2 Calcium<br />

Wang Qud<strong>on</strong>g et at [41] added up to 2% Ca to AZ9l alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> studied its<br />

microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical properties. Ca additi<strong>on</strong> found to refine <strong>the</strong><br />

microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> reduce <strong>the</strong> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg|7Al12 phase by forming new Al;Ca<br />

phase. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca is also effective in reducti<strong>on</strong> in grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l. Hirai et al<br />

[222] reported that <strong>the</strong> initial grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> as cast AZ9l alloy is reduced from 65 um<br />

to 20 um when 1% <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca is added. However, when <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> added Ca is more<br />

than 1%, no change in grain size is observed. Peijie Li <str<strong>on</strong>g>and</str<strong>on</strong>g> S.S. Li also [223, 224]<br />

reported that <strong>the</strong> grain refinement efficiency is high with initial additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca up to<br />

0.4% <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n <strong>the</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> grain size reducti<strong>on</strong> decreases with fur<strong>the</strong>r additi<strong>on</strong>s.<br />

The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca improves <strong>the</strong> ambient temperature yield strength but<br />

ultimate tensile strength <str<strong>on</strong>g>and</str<strong>on</strong>g> ductility are found to reduced [41, 223]. The<br />

improvement in yield strength is attributed to <strong>the</strong> grain refinement effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca but <strong>the</strong><br />

Al2Ca phase forms at grain boundaries is brittle <str<strong>on</strong>g>and</str<strong>on</strong>g> face centered cubic structure that<br />

may deteriorate <strong>the</strong> b<strong>on</strong>d strength <str<strong>on</strong>g>and</str<strong>on</strong>g> result in worse UTS <str<strong>on</strong>g>and</str<strong>on</strong>g> el<strong>on</strong>gati<strong>on</strong> [223].<br />

However, Ca additi<strong>on</strong> c<strong>on</strong>fers elevated temperature streng<strong>the</strong>ning <str<strong>on</strong>g>of</str<strong>on</strong>g> this alloy<br />

because at high temperature, <strong>the</strong> Al2Ca phase is <strong>the</strong>rmally stable compared to<br />

56


g Chapter 2: Literature Review<br />

Mg11Al12 precipitates <str<strong>on</strong>g>and</str<strong>on</strong>g> acts as an effective dislocati<strong>on</strong> barrier [41]. In additi<strong>on</strong> to<br />

that, increase in <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> MgnAl12 intermetallic is also observed with Ca<br />

additi<strong>on</strong>. Part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> added Ca dissolves into <strong>the</strong> Mg17Al12 phase, which raises its<br />

<strong>the</strong>rmostability, c<strong>on</strong>sequently, streng<strong>the</strong>n <strong>the</strong> alloy at elevated temperatures [225].<br />

Improvement in corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy with Ca additi<strong>on</strong> is also reported<br />

[48]. This is due to <strong>the</strong> reducti<strong>on</strong> in volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al,;; phase <str<strong>on</strong>g>and</str<strong>on</strong>g> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> less harmful Al2Ca intermetallic.<br />

Hot-crack problem is noticed with Ca additi<strong>on</strong>. Figure 2.26 shows <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ca <strong>on</strong> <strong>the</strong> hot-crack grade <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy [223]. It could be understood from <strong>the</strong> figure<br />

that 1% <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca additi<strong>on</strong> greatly affects <strong>the</strong> hot-crack property <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91. Bi Tang [226]<br />

studied <strong>the</strong> hot crack mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca added AZ91 alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> reported that <strong>the</strong> Ca<br />

additi<strong>on</strong> elevates <strong>the</strong> tendency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> divorce eutectic <str<strong>on</strong>g>and</str<strong>on</strong>g> forming <strong>the</strong> new Al;Ca<br />

phase, which is distributed as a net-shape <strong>on</strong> <strong>the</strong> grain boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> debases <strong>the</strong><br />

boundary tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> liquid film, deteriorating <strong>the</strong> filling capacity <str<strong>on</strong>g>and</str<strong>on</strong>g> lowering <strong>the</strong><br />

hot-crack property <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium alloy [224].<br />

3 250- 300<br />

.<br />

~ —<br />

t .<br />

2 2 .. "I<br />

200 "' i "‘—. -N 1<br />

I150<br />

-4­<br />

O 0.1 0.3 0.4 0.6 0.8 1.0<br />

Ca c<strong>on</strong>tent, wt. %<br />

Figure 2.26: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca <strong>on</strong> <strong>the</strong> hot-crack grade <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy [223]<br />

2.9.3 Bismuth<br />

Bi additi<strong>on</strong> to AZ91 alloy f<strong>on</strong>ns a hard compound Mg3Bi, which has a melting<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> 823°C. Compared to <str<strong>on</strong>g>Sb</str<strong>on</strong>g>, Bi additi<strong>on</strong> has, <strong>on</strong>ly little effect <strong>on</strong> <strong>the</strong><br />

improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg alloy. But when it combines with <str<strong>on</strong>g>Sb</str<strong>on</strong>g>, <strong>the</strong><br />

effect is appreciable [43]. <strong>Microstructure</strong> observati<strong>on</strong>s reveal that <strong>the</strong> additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

57


_ H Chapter 2: Literature Review<br />

bismuth refines <strong>the</strong> Mg|7Al12 precipitate in <strong>the</strong> as cast alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> effectively<br />

suppresses <strong>the</strong> disc<strong>on</strong>tinuous [5-Mg17Al12 precipitati<strong>on</strong> during <strong>the</strong> aging process [43].<br />

2.9.4 Rare earth<br />

Rear earths are important alloying elements to magnesium alloys, which can<br />

improve casting characteristics, high temperature properties <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong> resistance<br />

[227-230]. With additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rare earth elements a rod-like All IRE; intermetallic forms<br />

at <strong>the</strong> grain boundary. Due to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AIHRE3, <strong>the</strong> Al available for <strong>the</strong><br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> MgnAl|2 phase reduces. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> RE additi<strong>on</strong> <strong>on</strong> <strong>the</strong> tensile<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy is scatter in <strong>the</strong> literature. Y. Lu [45] has reported that RE<br />

has little effect <strong>on</strong> <strong>the</strong> UTS <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l at ambient temperature but greatly increase <strong>the</strong><br />

high temperature tensile strength <str<strong>on</strong>g>and</str<strong>on</strong>g> el<strong>on</strong>gati<strong>on</strong>. Fan [46, 47] has reported a sharp<br />

increase in both UTS <str<strong>on</strong>g>and</str<strong>on</strong>g> ductility with <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> La <str<strong>on</strong>g>and</str<strong>on</strong>g> Ce to AZ9l alloy. On<br />

<strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, G. H. Wu et al [48] have found that with increasing RE additi<strong>on</strong>s, <strong>the</strong><br />

UTS increases but <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> decreases. S. Lee et al [231] have reported that<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Y <str<strong>on</strong>g>and</str<strong>on</strong>g> Nd improves hardness <str<strong>on</strong>g>and</str<strong>on</strong>g> fracture toughness <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l. He observes<br />

planer slip b<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> transgranular crack propagati<strong>on</strong> al<strong>on</strong>g <strong>the</strong>se slip b<str<strong>on</strong>g>and</str<strong>on</strong>g>s. When<br />

planer slip b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are forms, a heavier load is requires for fracture than in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

intergranular fracture, <strong>the</strong>reby yielding an overall improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical<br />

properties [231 ].<br />

G. Pettersen [232] indicates that RE could reduce <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallizati<strong>on</strong><br />

temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium alloy, <str<strong>on</strong>g>and</str<strong>on</strong>g> hence <strong>the</strong> Mg-RE eutectic has good fluidity.<br />

However, Y. Lu [45] has reported a decrease in fluidity up to 2% RE additi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong>n it increase with higher percentage additi<strong>on</strong> to AZ9l alloy. Qud<strong>on</strong>g et al [233]<br />

observed <strong>the</strong> fluidity <str<strong>on</strong>g>of</str<strong>on</strong>g> RE added alloy is depending <strong>on</strong> <strong>the</strong> mould secti<strong>on</strong> thickness<br />

also. The fluidity decreases with increase in RE additi<strong>on</strong> in mould secti<strong>on</strong> thickness<br />

under 2 mm whereas it decrease first with secti<strong>on</strong> thickness above 2 mm when RE<br />

c<strong>on</strong>tent increases from l to 2% <str<strong>on</strong>g>and</str<strong>on</strong>g> increase when RE c<strong>on</strong>tent increases from 2 to 3%<br />

to AZ91 alloy.<br />

58


_ Chapter 2: Literature Review<br />

Wang et al [234] studied <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> RE <strong>on</strong> hot tearing susceptibility. Small<br />

quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> RE additi<strong>on</strong>s have little effect <strong>on</strong> <strong>the</strong> hot susceptibility coefficient (HSC)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-9Al alloy, while RE c<strong>on</strong>tent is exceeded 1.6%, HSC increases notably. The<br />

increase in HSC is attributed to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rod-like Al4RE precipitates, which<br />

has high latent heat. During <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this phase, much heat is given out, which<br />

slow down <strong>the</strong> temperature decease at <strong>the</strong> initial stage <str<strong>on</strong>g>of</str<strong>on</strong>g> solidificati<strong>on</strong>.<br />

Rear earth additi<strong>on</strong> has a significant role <strong>on</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg alloys.<br />

Lunder [235] found that <strong>the</strong> Al] ‘MM; (MM refers to misch metals, a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> rare<br />

earth metals) intermetallic phase in AE42 magnesium alloy is nobler than pure Mg. Its<br />

micro-galvanic corrosi<strong>on</strong> is not severe since <strong>the</strong> AIHMM3 phase behaves as a passive<br />

cathode over a wide pH range. As a result, it is not expected to have a detrimental<br />

effect <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy. Mercer [236] c<strong>on</strong>sidered that <strong>the</strong><br />

advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> RE in magnesium alloys can be attributed to trapping deleterious<br />

elements <str<strong>on</strong>g>and</str<strong>on</strong>g> decreasing <strong>the</strong> activity <str<strong>on</strong>g>of</str<strong>on</strong>g> cathode. Nordlien er al. [237] indicated that<br />

<strong>the</strong> coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum with RE is an essential c<strong>on</strong>diti<strong>on</strong> for improving <strong>the</strong><br />

passivity <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al-RE alloy, suggesting a synergistic effect between <strong>the</strong>se elements.<br />

Recently Fan et al. [46, 47] studied <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Ce <str<strong>on</strong>g>and</str<strong>on</strong>g> La additi<strong>on</strong> <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong><br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> found improved corrosi<strong>on</strong> behavior. They attributed <strong>the</strong><br />

improvement is <strong>the</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se elements to refine <strong>the</strong> B phase <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>reby forming<br />

a c<strong>on</strong>tinuous B network al<strong>on</strong>g <strong>the</strong> grain boundaries. Rosalbino et al [50] added erbium<br />

(Er) to AM50 alloy to improve it corrosi<strong>on</strong> behavior. Electo chemical investigati<strong>on</strong>s<br />

revealed that <strong>the</strong> surface layers formed <strong>on</strong> Mg-Al-Er provide a better protective layer<br />

than <strong>the</strong> magnesium hydroxide or aluminum hydroxide layer normally form <strong>on</strong> AM60<br />

in borate buffer soluti<strong>on</strong>. Zhou Xuehua et al [49] studied <strong>the</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

holmium (Ho) added AZ9l alloy in 3.5% NaCl soluti<strong>on</strong> saturated with Mg(OH)2 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

reported that Ho enhanced <strong>the</strong> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l. The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ho<br />

reduces <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> [3 phase by forming Ho c<strong>on</strong>taining phase with Al <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong>y are easily oxidized <str<strong>on</strong>g>and</str<strong>on</strong>g> passivated. They also reported that <strong>the</strong> corrosi<strong>on</strong> product<br />

films <strong>on</strong> Ho added alloys c<strong>on</strong>tain more Al, which is more compact <str<strong>on</strong>g>and</str<strong>on</strong>g> stable [49].<br />

59


2.9.5 Str<strong>on</strong>tium<br />

_- ChaPl°F..2.?_i:lF?'at"'° Review<br />

Not much studies available <strong>on</strong> <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> to AZ91 alloy. S. Lee [231] has<br />

reported a grain reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 82 pm to 48 um with additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> to AZ91. The<br />

grain refinement obtained is attributed to <strong>the</strong> modified precipitati<strong>on</strong> behavior observed<br />

with <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> [238]. With <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>, it is found that more amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al12<br />

phase are precipitates al<strong>on</strong>g <strong>the</strong> grain boundary. This can hinder <strong>the</strong> movement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> subsequent grain growth leading to <strong>the</strong> greater effect <str<strong>on</strong>g>of</str<strong>on</strong>g> grain<br />

refinement. K. Hirai et al. [222] have noticed a grain reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly 65 um to 40<br />

pm with 0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> to AZ91 alloy. Moreover, when it is added al<strong>on</strong>g with 1% Ca, <strong>the</strong><br />

grain size greatly reduced to I7 um. It is also reported that <strong>the</strong> combined additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Ca improves <strong>the</strong> room <str<strong>on</strong>g>and</str<strong>on</strong>g> high temperature properties due to <strong>the</strong> reducti<strong>on</strong> in<br />

stacking fault energy [222]. However, low hardness <str<strong>on</strong>g>and</str<strong>on</strong>g> fracture toughness is<br />

obtained with 0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added AZ91 alloy by S. Lee et al. [23]]. This is due to <strong>the</strong><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse needle-shaped <str<strong>on</strong>g>Sr</str<strong>on</strong>g> based precipitates, which is mainly distributed <strong>on</strong><br />

grain boundaries, beside <strong>the</strong> disc<strong>on</strong>tinuous Mg17Al12 precipitates. When load is<br />

applied, micro cracks are formed initially in <strong>the</strong>se particles, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n are immediately<br />

c<strong>on</strong>nected to grain boundaries, causing intergranular facture. Thus its mechanical<br />

properties are reduces despite <strong>the</strong> fine grain size.<br />

P. Zhao et al [239] studied <strong>the</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> effects <strong>on</strong> <strong>the</strong> tensile <str<strong>on</strong>g>and</str<strong>on</strong>g> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AM50 alloy. It is observed that trace additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> to <strong>the</strong> alloy has a beneficial<br />

influence <strong>on</strong> <strong>the</strong> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-5A1 alloy, especially <strong>on</strong> UTS <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

el<strong>on</strong>gati<strong>on</strong>. The tensile properties increases with increasing <str<strong>on</strong>g>Sr</str<strong>on</strong>g> c<strong>on</strong>tent when <strong>the</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

additi<strong>on</strong> is lower than 0.1%. However, greater amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g>, deceases <strong>the</strong> UTS <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

el<strong>on</strong>gati<strong>on</strong> whereas increases <strong>the</strong> yield strength. He also observed <strong>the</strong> creep properties<br />

are increased with increase in <str<strong>on</strong>g>Sr</str<strong>on</strong>g> c<strong>on</strong>tent.<br />

2.10 SHORTCOMIN GS IN LITERATURE<br />

The creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> die cast AZ91 alloy is extensively dealt in literature. ln<br />

general two c<strong>on</strong>tradictory findings are reported: (i) dynamic disc<strong>on</strong>tinuous precipitate<br />

forms during creep leads to <strong>the</strong> sliding at low stress level. (ii) in c<strong>on</strong>trast, c<strong>on</strong>tinuous<br />

fine precipitates occurred at <strong>the</strong> same temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> stress regi<strong>on</strong> provides<br />

60


_ Chapter 2: Literature Review<br />

precipitati<strong>on</strong> hardening <str<strong>on</strong>g>and</str<strong>on</strong>g> finally, coarsening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se precipitates at <strong>the</strong> later stage<br />

is <strong>the</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening mechanism. Moreover, not much literature is available <strong>on</strong> <strong>the</strong> ingot<br />

cast alloy. Available literature, which deals <strong>the</strong> creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> ingot AZ9l alloy,<br />

suggests dislocati<strong>on</strong> creep is <strong>the</strong> dominant mechanism <str<strong>on</strong>g>and</str<strong>on</strong>g> no substantial grain<br />

boundary sliding c<strong>on</strong>tributes to <strong>the</strong> creep. In additi<strong>on</strong>, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> literature, which<br />

deals improvement in creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity cast AZ9l alloy by minor alloying<br />

additi<strong>on</strong> suggests that <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>rmally stable intermetallics <str<strong>on</strong>g>and</str<strong>on</strong>g> suppressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinues precipitates due to <strong>the</strong> additi<strong>on</strong>s are <strong>the</strong> reas<strong>on</strong>s for <strong>the</strong> improvement.<br />

However, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> studies are not provided <strong>the</strong> microstructural evidence for such a<br />

claim. Detailed post creep microstructural examinati<strong>on</strong> is hence, needed to underst<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong> deformati<strong>on</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity cast AZ9l alloy added with various elements.<br />

Moreover, most <str<strong>on</strong>g>of</str<strong>on</strong>g> work <strong>on</strong> AZ9l alloy is focused <strong>on</strong> its creep behavior <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>siderable effect has been put to improve its creep properties, particularly modify<br />

<strong>the</strong> alloy compositi<strong>on</strong> slightly through different alloying additi<strong>on</strong>. While, c<strong>on</strong>sidering<br />

<strong>the</strong> industrial applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium alloys, particularly AZ9l, creep is not <strong>the</strong><br />

<strong>on</strong>ly c<strong>on</strong>cern. There are o<strong>the</strong>r properties like ageing behavior, tensile properties <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

corrosi<strong>on</strong> properties, which are all important in practical applicati<strong>on</strong>s. In specific, <strong>the</strong><br />

corrosi<strong>on</strong> behavior is ano<strong>the</strong>r major c<strong>on</strong>cem, which restricts it wide spread applicati<strong>on</strong><br />

as a structural material. AZ9l alloy exhibit excellent corrosi<strong>on</strong> resistance due to <strong>the</strong><br />

high percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> Al in <strong>the</strong> alloy. When alloy modificati<strong>on</strong> takes place to improve its<br />

high temperature performance, <strong>the</strong> microstructure changes c<strong>on</strong>siderably. Mainly <strong>the</strong>se<br />

additi<strong>on</strong>s introduce various high temperature stable interrnetallics in <strong>the</strong><br />

microstructure. <str<strong>on</strong>g>Si</str<strong>on</strong>g>nce <strong>the</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> this alloy is highly sensitive to<br />

microstructure, <strong>the</strong>se intermetallics definitely play an important role. Hence studies <strong>on</strong><br />

corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy with different alloying additi<strong>on</strong>s are more valuable.<br />

Even though <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> elements like <str<strong>on</strong>g>Sb</str<strong>on</strong>g>, Ca, Bi, <str<strong>on</strong>g>and</str<strong>on</strong>g> RE additi<strong>on</strong> <strong>on</strong> <strong>the</strong><br />

tensile <str<strong>on</strong>g>and</str<strong>on</strong>g> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l is studied to certain extend <str<strong>on</strong>g>and</str<strong>on</strong>g> reported, <strong>the</strong>re<br />

are o<strong>the</strong>r elements like <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sr</str<strong>on</strong>g> whose influence <strong>on</strong> above said properties are not<br />

investigated in detail.<br />

61


2.11 SCOPE OF THE WORK<br />

Chapter 2: Literature Review<br />

The increase in <strong>the</strong> dem<str<strong>on</strong>g>and</str<strong>on</strong>g> to reduce <strong>the</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> a passenger car <strong>the</strong>reby<br />

increase <strong>the</strong> fuel efficiency oblige <strong>the</strong> auto industries to paying more attenti<strong>on</strong> to<br />

discover <strong>the</strong> lighter material with high specific properties. It is not surprise that<br />

magnesium is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential c<str<strong>on</strong>g>and</str<strong>on</strong>g>idates as it is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lightest structural<br />

materials with a density <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.77 g/cc. <str<strong>on</strong>g>Si</str<strong>on</strong>g>nce <strong>the</strong> material cost <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium is slightly<br />

higher than aluminum, die casting is always preferred for magnesium alloy castings.<br />

The magnesium alloys c<strong>on</strong>taining c<strong>on</strong>siderable amount <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum (6-9%) provides<br />

excellent die castability. AZ9l alloy, which c<strong>on</strong>taining 8-9%Al in it, is c<strong>on</strong>sidered as<br />

a bench mark alloy for castabiltiy <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg alloys. More over this alloy <str<strong>on</strong>g>of</str<strong>on</strong>g>fer wide range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> room temperature properties. In <strong>the</strong> as cast c<strong>on</strong>diti<strong>on</strong>, <strong>the</strong> streng<strong>the</strong>ning phase is <strong>the</strong><br />

massive Mg17Al,2, which is known as eutectic phase. However in <strong>the</strong> aged alloys, a<br />

fine <str<strong>on</strong>g>and</str<strong>on</strong>g> evenly distributed c<strong>on</strong>tinuous form <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al1;; precipitates in <strong>the</strong> basal<br />

plane streng<strong>the</strong>n <strong>the</strong> material according to Orow<strong>on</strong> <strong>the</strong>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> hardening.<br />

However, this alloy does not have adequate high temperature tensile <str<strong>on</strong>g>and</str<strong>on</strong>g> creep<br />

properties, which hamper its usage above 100°C. Literature said that <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

higher amount <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum in this alloy not <strong>on</strong>ly increase <strong>the</strong> brittleness but also<br />

impair <strong>the</strong> creep properties. The coarsening <str<strong>on</strong>g>of</str<strong>on</strong>g> B-Mg11Al| 2 at elevated temperature,<br />

due to its low melting point (437°C), is said to be <strong>the</strong> cause for <strong>the</strong> poor creep<br />

properties. Due to this fact, it is believed that it does not act as a barrier for dislocati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> grain boundary movement. Moreover, it is found that <strong>the</strong> structure is not stable at<br />

high temperature. Dynamic precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mgn/X112 occurs at <strong>the</strong> grain boundary.<br />

Hence, alloys with less amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Al are developed for high temperature applicati<strong>on</strong>s.<br />

These alloys c<strong>on</strong>taining <strong>on</strong>ly 2-4%Al al<strong>on</strong>g with third element results in no or fewer<br />

Mg11Al|2 precipitates, in additi<strong>on</strong> to <strong>the</strong> <strong>the</strong>rmally stable intermetallics. Hence <strong>the</strong>se<br />

alloys exhibit superior creep resistance over c<strong>on</strong>venti<strong>on</strong>al AZ91. However, fewer<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum <str<strong>on</strong>g>and</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> certain o<strong>the</strong>r elements like Ca <str<strong>on</strong>g>and</str<strong>on</strong>g> RE create die<br />

casting problem for <strong>the</strong>se alloys.<br />

<str<strong>on</strong>g>Si</str<strong>on</strong>g>nce AZ9l is still a work horse magnesium alloy system for automobile<br />

industries, even a slight improvement in its mechanical properties, particularly <strong>the</strong><br />

creep, would be very much appreciated. Previous studies proved that additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

62


_ _ pg Chapter 2: Literature Review<br />

minor alloying elements to AZ91 alloy is a successful way <str<strong>on</strong>g>of</str<strong>on</strong>g> improving its<br />

mechanical behavior. Surface active elements like <str<strong>on</strong>g>Sb</str<strong>on</strong>g>, Ca, Bi, RE <str<strong>on</strong>g>and</str<strong>on</strong>g> etc are added to<br />

Mg-Al alloys like AM60 <str<strong>on</strong>g>and</str<strong>on</strong>g> AZ91 alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> noticed improvement in high<br />

temperature tensile <str<strong>on</strong>g>and</str<strong>on</strong>g> creep properties. This improvement is attributed to following<br />

reas<strong>on</strong>s:<br />

1. Introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intermetallics like Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>;, Al2Ca, Mg3Bi, <str<strong>on</strong>g>and</str<strong>on</strong>g> AlRE<br />

2. Suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous Mg17Al12 precipitates at <strong>the</strong> grain boundaries<br />

3. Increase <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al12 precipitates<br />

Corrosi<strong>on</strong> is ano<strong>the</strong>r c<strong>on</strong>cem <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg alloys, which has been a major obstacle to<br />

its growth in structural applicati<strong>on</strong>s. Magnesium with a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard electrochemical<br />

potential <str<strong>on</strong>g>of</str<strong>on</strong>g> -2.4 V (NHE), dissolves rapidly in aqueous soluti<strong>on</strong>s by evolving<br />

hydrogen below pH 11.0, <strong>the</strong> equilibrium pH value for Mg (OH); As a c<strong>on</strong>sequence,<br />

researchers all over <strong>the</strong> world have shown much interest to study <strong>the</strong> corrosi<strong>on</strong><br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> to develop protective measures. The corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AZ91 is highly sensitive to <strong>the</strong> microstructural features like, volume fracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> size<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mgn/X112 phase, amount <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al in <strong>the</strong> matrix, grain size, porosity<br />

etc. The alloying elements, which are added with <strong>the</strong> intenti<strong>on</strong> to improve <strong>the</strong> creep<br />

properties might changes <strong>the</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91. Hence it is imperative to<br />

study <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> intennetallics <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy. So, <strong>the</strong><br />

objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present research work are:<br />

1. To study <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> individual <str<strong>on</strong>g>and</str<strong>on</strong>g> combined additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> <strong>on</strong><br />

<strong>the</strong> microstructure, aging behavior <str<strong>on</strong>g>and</str<strong>on</strong>g> tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy<br />

2. To investigate <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>s <strong>on</strong> <strong>the</strong> creep behavior <str<strong>on</strong>g>and</str<strong>on</strong>g> underst<str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

streng<strong>the</strong>ning mechanism.<br />

3. To estimate <strong>the</strong> change in corrosi<strong>on</strong> resistance <str<strong>on</strong>g>and</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> existing<br />

AZ9lalloy in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> various intermetallics.<br />

63


l}llll"l'IlI 3: lll'l'IlIl|llS lllll PIIIIIITII llI'l'lllS<br />

H e' '11: .. _._ _..- 1'; -" " V if "i__i7i—-¢A1_:e_-—;;<br />

3.1 MATERIALS<br />

3.1.1 Metals <str<strong>on</strong>g>and</str<strong>on</strong>g> Master Alloys<br />

The base alloy selected for <strong>the</strong> present study was AZ9l magnesium alloy. It<br />

was prepared by melting toge<strong>the</strong>r <strong>the</strong> following metals.<br />

l. Pure Magnesium ingots<br />

2. Pure Aluminum ingots<br />

3. Pure Zinc flaks<br />

4. Al-10% Mn master alloy<br />

The required alloying elements like <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> were added in <strong>the</strong> form <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

master alloys to have effective recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> elements. The following master alloys<br />

were used to prepare <strong>the</strong> required alloy systems.<br />

1. Al-20% <str<strong>on</strong>g>Si</str<strong>on</strong>g> master alloy (for <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong>s)<br />

2. Al-10% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> master alloy (for <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong>s)<br />

3. Al-1O<str<strong>on</strong>g>Sr</str<strong>on</strong>g> master alloy (for <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>s)<br />

3.1.2 Melting <str<strong>on</strong>g>and</str<strong>on</strong>g> Refining Flux<br />

The flux ‘Magrex-60’ supplied by FOSICO industries was used for covering<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> refining <strong>the</strong> molten metal during melting. MgCl, MgF, MgO, etc. are <strong>the</strong> major<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> flux. Fine sulfur powder was used for dusting around <strong>the</strong> melt jet<br />

to remove <strong>the</strong> oxygen so as to avoid oxidizati<strong>on</strong> during pouring <str<strong>on</strong>g>of</str<strong>on</strong>g> molten metal in to<br />

<strong>the</strong> mould.<br />

3.1.3 Mould<br />

Cast ir<strong>on</strong> mould shown in Figure 3.1 was used throughout <strong>the</strong> experiments.<br />

Initially, <strong>the</strong>re was no pouring basin attachment with <strong>the</strong> sprue, which led to a<br />

restricti<strong>on</strong> in pouring speed as higher pouring speed led to <strong>the</strong> spilling <str<strong>on</strong>g>of</str<strong>on</strong>g> molten metal<br />

into <strong>the</strong> floor. Moreover, since <strong>the</strong> fluidity <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium is less compared to<br />

64


_ Chapter 3: Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Experimental Details<br />

3.2 MELTING AND POURING<br />

3.2.1 Cleaning <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials<br />

In order to remove <strong>the</strong> oxides sticking <strong>on</strong> <strong>the</strong> wall <str<strong>on</strong>g>and</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crucible<br />

from <strong>the</strong> previous melting <strong>the</strong> crucible was filled with water <str<strong>on</strong>g>and</str<strong>on</strong>g> kept for <strong>on</strong>e day for<br />

-oxides to get dissolved. Then it was cleaned with MS wire brush. All <strong>the</strong> steel tools<br />

used for melting <str<strong>on</strong>g>and</str<strong>on</strong>g> pouring purpose like skimmer, starrier etc <str<strong>on</strong>g>and</str<strong>on</strong>g> metal ingots were<br />

cleaned by metal wire brush. Metal ingots were <strong>the</strong>n, cleaned with acet<strong>on</strong>e. All <strong>the</strong><br />

tools <str<strong>on</strong>g>and</str<strong>on</strong>g> metal ingots were preheated before use. The properly cleaned mould was<br />

given a graphite coat <str<strong>on</strong>g>and</str<strong>on</strong>g> preheated to 250°C in a heating oven for 1 h just before <strong>the</strong><br />

casting.<br />

3.2.2 Melting<br />

The melting arrangement for magnesium alloys is presented in Figure 3.2.<br />

Resistance box fumace was used for melting. The preheated flux was sprinkled in <strong>the</strong><br />

bottom <str<strong>on</strong>g>and</str<strong>on</strong>g> side <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cleaned crucible <str<strong>on</strong>g>and</str<strong>on</strong>g> kept inside <strong>the</strong> fumace. After <strong>the</strong> crucible<br />

reached <strong>the</strong> red hot c<strong>on</strong>diti<strong>on</strong>, <strong>the</strong> preheated ingots were charged in to <strong>the</strong> crucible.<br />

Initially part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total magnesium ingots were charged. After melting <str<strong>on</strong>g>of</str<strong>on</strong>g> charged<br />

ingots completed, <strong>the</strong> remaining ingots were <strong>the</strong>n immersed into <strong>the</strong> molten metal.<br />

This kind <str<strong>on</strong>g>of</str<strong>on</strong>g> charging practice <str<strong>on</strong>g>of</str<strong>on</strong>g> metal ingots avoids <strong>the</strong> excessive oxidati<strong>on</strong> during<br />

melting. Crucible was covered with fumace lid to minimize <strong>the</strong> air c<strong>on</strong>tact with <strong>the</strong><br />

molten metal. Flux was sprinkled over <strong>the</strong> metal throughout <strong>the</strong> melting. Before<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alloying elements, <strong>the</strong> top layer <str<strong>on</strong>g>of</str<strong>on</strong>g> oxides was completely removed <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fresh layer <str<strong>on</strong>g>of</str<strong>on</strong>g> flux applied. The required amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> master alloys were weighed <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

wrapped in aluminum foil <str<strong>on</strong>g>and</str<strong>on</strong>g> were slowly immersed into <strong>the</strong> melt. After additi<strong>on</strong>s,<br />

<strong>the</strong> melt was gently stirred for dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> added elements. Again <strong>the</strong> top oxide<br />

layer was removed <str<strong>on</strong>g>and</str<strong>on</strong>g> fresh layer <str<strong>on</strong>g>of</str<strong>on</strong>g> flux was applied. The melt was held for 10 min<br />

to ensure <strong>the</strong> complete dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elements in to <strong>the</strong> melt.<br />

66


Chapter 3: Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Experimental Details<br />

_ \_ C’ - .. Funmce<br />

if it Fumac e<br />

Cmcible lid g » M If TIT Resismme<br />

. ~ 7>0 ° . ­<br />

layel O0 §<br />

Crucible<br />

Magnesimn<br />

melt<br />

Ondf’ L’ c<strong>on</strong>trol<br />

Steel<br />

Figure 3.2: Schematic diagram showing <strong>the</strong> melting arrangement for magnesium<br />

3.2.3 Refining<br />

After <strong>the</strong> complete melting <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> metals in <strong>the</strong> crucible, <strong>the</strong> refining <str<strong>on</strong>g>of</str<strong>on</strong>g> melt<br />

was carried out at a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> =720°C. Initially, <strong>the</strong> top layer (oxide layer) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

melt was removed <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> melt was rigorously stirred for 2-3 min. Flux was applied<br />

during stirring. This stirring helps to mix <strong>the</strong> added flux with <strong>the</strong> melt unif<strong>on</strong>nly.<br />

After thorough mixing, <strong>the</strong> top surface <str<strong>on</strong>g>of</str<strong>on</strong>g> molten melt was removed <str<strong>on</strong>g>and</str<strong>on</strong>g> a fresh layer<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> flux was applied. Then <strong>the</strong> melt was held for 10- 15 min without distributing,<br />

which enabled <strong>the</strong> added flux react with oxides inclusi<strong>on</strong>s presents in <strong>the</strong> melt <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

become heavier <str<strong>on</strong>g>and</str<strong>on</strong>g> settled down in <strong>the</strong> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crucible.<br />

3.2.4 Pouring <str<strong>on</strong>g>and</str<strong>on</strong>g> Casting<br />

After <strong>the</strong> refining <str<strong>on</strong>g>and</str<strong>on</strong>g> settling process was over, <strong>the</strong> molten metal was poured<br />

in to <strong>the</strong> pre heated moulds. During pouring much care was taken to avoid <strong>the</strong><br />

breakage <str<strong>on</strong>g>of</str<strong>on</strong>g> top flux protective layer. The pouring was carried out gently without any<br />

jerk in <strong>the</strong> melt, since excessive jerk disturbs <strong>the</strong> settled oxide inclusi<strong>on</strong>s in <strong>the</strong><br />

bottom. The flux layer near <strong>the</strong> lip <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crucible was pulled back gently by using a<br />

skimmer for smooth flow <str<strong>on</strong>g>of</str<strong>on</strong>g> molten metal. Sulfur powder dusting was carried out to<br />

remove <strong>the</strong> oxygen around <strong>the</strong> melt jet. Three fourth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> melt in <strong>the</strong> crucible was<br />

poured into <strong>the</strong> preheated mould. The remaining metal was poured separately as a<br />

scrap. Figure 3.3 shows a photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e such casting. Figure 3.4 shows a<br />

schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> casting <str<strong>on</strong>g>and</str<strong>on</strong>g> indicating <strong>the</strong> locati<strong>on</strong>s from where sample for<br />

different testing were taken.<br />

67


@0­<br />

-3<br />

Chapter 3: Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Experimental Details<br />

1; ea:<br />

D<br />

A-:6<br />

Mr-. '<br />

whee<br />

E.<br />

4<br />

Figure 3.3: Photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> magnesium alloy castings<br />

ck Q<br />

‘ti 5*"<br />

Figure 3.4: Schematic diagram showing <strong>the</strong> magnesium alloy casting <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

sample locati<strong>on</strong>s<br />

68<br />

l


Chapter 3: Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Experimental Details<br />

3.3 ALLOYS PREPARED AND CHEMICAL ANALYSES<br />

Using above described casting procedure, different alloys were presented<br />

prepared for <strong>the</strong> present study <str<strong>on</strong>g>and</str<strong>on</strong>g> given in Figure 3.5. To find out <strong>the</strong> actual<br />

elemental compositi<strong>on</strong>s in <strong>the</strong> alloys prepared, chemical analysis were carried out.<br />

Chemical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> elements in <strong>the</strong> prepared alloys was carried out using<br />

c<strong>on</strong>venti<strong>on</strong>al wet analysis technique based <strong>on</strong> <strong>the</strong> procedures given in <strong>the</strong> ASTM<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards (Table 3.1). However, some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy compositi<strong>on</strong>s were found out using<br />

inductively coupled plasma spectrometer (ICP Plasmascan, model LABTAM 8410).<br />

The major elements like Al, Zn, Mn, etc. in all <strong>the</strong> prepared castings were carried out;<br />

however, <strong>on</strong>ly few alloys, which were selected for <strong>the</strong> corrosi<strong>on</strong> studies were<br />

subjected for <strong>the</strong> impurities (Fe, Cu, Ni) analyzes. The analyzed alloy compositi<strong>on</strong>s<br />

are presented in <strong>the</strong> Table 3.2.<br />

AZ91-I-0.2% so AZ91-I-0.2% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

Az91"°-2°/° 5‘ Azs-|+o.s% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> Az91+o 5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

A291”-5% 5‘ AZ91-I-0.7% so AZ91-I-0 1% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

AZ91'l'0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> 40.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> AZ91-I-0_2% si -I-0,1% 5|­<br />

AZ91'l'0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> AZ91-I-0,5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> +0,1% $|'<br />

Figure 3.5: Flow chart showing various alloys prepared for <strong>the</strong> present study<br />

Table 3.1: Testing procedures used for wet analysis to find out various elements<br />

Elements Test method<br />

Aluminum ASTM E 35, Sec 13-17<br />

<str<strong>on</strong>g>Si</str<strong>on</strong>g>lic<strong>on</strong> ASTM E 35, Sec 88-92<br />

Antim<strong>on</strong>y X(og§l’s quantitative inorganic analysis Part F, Chapter XVIII, 13, Page<br />

Str<strong>on</strong>tium Vogel’s textbook <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative chemical analysis, 5"‘ editi<strong>on</strong>, chapter<br />

11.42, page no. 468<br />

69


_ Chapter 3: Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Experimental Details<br />

3.4 HEAT TREATMENT<br />

3.4.1 Sample Preparati<strong>on</strong><br />

To avoid <strong>the</strong> variati<strong>on</strong> in microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> properties al<strong>on</strong>g <strong>the</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> casting <str<strong>on</strong>g>and</str<strong>on</strong>g> maintain <strong>the</strong> uniformity in microstructure, all <strong>the</strong> samples were taken<br />

from <strong>the</strong> wall side <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> castings. Cylindrical pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> 15mm (D X 10mm height were<br />

machined out from <strong>the</strong> castings as shown in Figure 3.4. The surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample,<br />

which was nearer to <strong>the</strong> wall surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> castings was selected for fur<strong>the</strong>r<br />

characterizati<strong>on</strong> (microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> hardness measurement).<br />

3.4.2 Soluti<strong>on</strong> Treatment<br />

Soluti<strong>on</strong> heat treatment was carried out in a muffle furnace. Machined samples<br />

to be heat treated were placed <str<strong>on</strong>g>Si</str<strong>on</strong>g>n a mild steel tray in such way that no piece touches<br />

o<strong>the</strong>rs. A s<str<strong>on</strong>g>and</str<strong>on</strong>g> bed prepared using carb<strong>on</strong> char coal <str<strong>on</strong>g>and</str<strong>on</strong>g> dry s<str<strong>on</strong>g>and</str<strong>on</strong>g> with a volume ratio<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 20:80 was placed in <strong>the</strong> fumace. This helped to evacuate oxygen present in <strong>the</strong><br />

furnace during heat treatment. To have a c<strong>on</strong>tinuous protecti<strong>on</strong>, <strong>the</strong> s<str<strong>on</strong>g>and</str<strong>on</strong>g> bed was<br />

replaced in <strong>the</strong> time interval <str<strong>on</strong>g>of</str<strong>on</strong>g> every 5 h. This procedure was found satisfactory to<br />

avoid <strong>the</strong> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium samples during <strong>the</strong> heat treatment. The samples<br />

were soluti<strong>on</strong> heat treated for 48 h followed by water quenching at room temperature<br />

without much delay <str<strong>on</strong>g>and</str<strong>on</strong>g> kept in desiccators for subsequent ageing treatment.<br />

3.4.3 Ageing Treatment<br />

The soluti<strong>on</strong> treated samples were aged at 200°C for 100 h in a heat treatment<br />

oven to study <strong>the</strong> ageing behavior. <str<strong>on</strong>g>Si</str<strong>on</strong>g>nce <strong>the</strong> ageing temperature was less than 350°C<br />

(<strong>the</strong> temperature, at which magnesium starts to oxidize), ageing was carried out in an<br />

open atmosphere. Samples were taken out from <strong>the</strong> furnace at regular interval <str<strong>on</strong>g>and</str<strong>on</strong>g> air<br />

cooled to room temperature for hardness measurements.<br />

3.4.4 Hardness<br />

INTENDEC hardness machine was used for brinell hardness measurement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

as cast <str<strong>on</strong>g>and</str<strong>on</strong>g> heat treated samples. The samples faces were leveled <strong>on</strong> both sides. One<br />

side <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> specimen, <strong>on</strong> which hardness was measured was polished up to 600 fine<br />

7]


f W _ _ Chapter 3g:lVlaterials <str<strong>on</strong>g>and</str<strong>on</strong>g> Experimental Details<br />

emery paper to remove <strong>the</strong> oxide <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r scales in order to see <strong>the</strong> edges <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

indentati<strong>on</strong> mark clearly. 2.5 mm ball was used to make indentati<strong>on</strong>. Load was fixed<br />

at 66.5 Kg with a dwell time <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 sec. On an average 5 indentati<strong>on</strong>s were made <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

average value is reported.<br />

3.5 MICROSTRUCTURAL OBSERVATION<br />

3.5.1 Sample Preparati<strong>on</strong><br />

3.5.1.1 Polishing<br />

Initially <strong>the</strong> samples (l5mm (D X 10mm height cylindrical sample) were<br />

polished using different grade <str<strong>on</strong>g>of</str<strong>on</strong>g> emery papers <str<strong>on</strong>g>of</str<strong>on</strong>g> progressively fine grades <str<strong>on</strong>g>of</str<strong>on</strong>g> 80,<br />

220, 400 <str<strong>on</strong>g>and</str<strong>on</strong>g> 600 grits. During paper polishing water was used as a cleaning agent.<br />

After completing <strong>the</strong> paper polishing, <strong>the</strong> samples were polished in a rotating disc <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

proprietary cloth (Selvyte cloth) charged with a diam<strong>on</strong>d paste <str<strong>on</strong>g>of</str<strong>on</strong>g> 6, 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.25 pm<br />

particle size in sequence. Filtered kerosene was used as lubricant during cloth<br />

polishing. Samples were gently pressed against <strong>the</strong> rotati<strong>on</strong> wheel. <str<strong>on</strong>g>Si</str<strong>on</strong>g>nce magnesium<br />

is a s<str<strong>on</strong>g>of</str<strong>on</strong>g>t material much care was taken during polishing to avoid sketches <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

excessive surface c<strong>on</strong>taminati<strong>on</strong>. Cleaning <strong>the</strong> samples with water (even with distilled<br />

water) found inefficient to remove surface c<strong>on</strong>taminants <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> polished samples. So,<br />

after <strong>the</strong> finial polishing over, <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> samples was cleaned using ultras<strong>on</strong>ic<br />

cleaner in ethanol.<br />

3.5.1.2 Chemical etching<br />

Different kind <str<strong>on</strong>g>of</str<strong>on</strong>g> etchants were tried to get a clear microstructure. After<br />

various trails, picric acid based etchant was found to be an efficient <strong>on</strong>e, which clearly<br />

revealed <strong>the</strong> microc<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium alloys. The chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> etchant used in <strong>the</strong> present study is given below.<br />

Picric acid - 6 grams<br />

Acetic acid — 5 ml<br />

Ethanol — 100ml<br />

Distilled water — 10 ml<br />

72


_ Chapter 3: Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Experimental Details<br />

The etching time was found to be optimum with 2~3 sec<strong>on</strong>ds. Much care was taken<br />

during etching to avoid over etching o<strong>the</strong>rwise, which would spoil <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

samples.<br />

3.5.2 Optical Microscope<br />

Microstructural specimens (after polishing <str<strong>on</strong>g>and</str<strong>on</strong>g> etching) were observed under a<br />

Leitz-Metalloplan optical microscope. Photographs were taken at different locati<strong>on</strong><br />

with various magnificati<strong>on</strong>s.<br />

3.5.3 Image Analysis<br />

Quantitative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> microstructure was carried out using a Leica 2001<br />

Image Analyzer in c<strong>on</strong>juncti<strong>on</strong> with <strong>the</strong> optical microscope. <str<strong>on</strong>g>Si</str<strong>on</strong>g>ze <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

intermetallics <str<strong>on</strong>g>and</str<strong>on</strong>g> grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> various castings were measured by linear intercept<br />

method. The fields <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s were selected r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly at different locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> sample. The size <str<strong>on</strong>g>of</str<strong>on</strong>g> Chinese script Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic phase was measured<br />

manually since its shape is complicated. In each case, at least ten fields were analyzed<br />

from a single specimen <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> average value is reported.<br />

3.5.4 Scanning Electr<strong>on</strong> Microscope (SEM)<br />

To identify <strong>the</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitates in various castings <str<strong>on</strong>g>and</str<strong>on</strong>g> to study <strong>the</strong> micro­<br />

mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> fracture during tensile <str<strong>on</strong>g>and</str<strong>on</strong>g> creep, samples were cleaned in ethanol<br />

using an ultras<strong>on</strong>ic vibrator <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> surface were examined in a JEOL, JSM 35C<br />

Scanning Electr<strong>on</strong> Microscope operating at an accelerating voltage <str<strong>on</strong>g>of</str<strong>on</strong>g> l5-30 KeV.<br />

Same optical microstructural samples were used for SEM studies. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

various phases <str<strong>on</strong>g>and</str<strong>on</strong>g> intermetallics were analyzed using Energy Dispersive<br />

Spectroscope (EDS) attached with SEM. An average <str<strong>on</strong>g>of</str<strong>on</strong>g> ten EDS measurement was<br />

used to approximate <strong>the</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phases. For fracture studies, 5 mm height<br />

samples cut near from <strong>the</strong> fractured surface were used. Most SEM images were taken<br />

using sec<strong>on</strong>dary electr<strong>on</strong> (SE) although some images have been acquired form back<br />

scattered electr<strong>on</strong>s (B SE).<br />

73


3.6 X-RAY DIFFRACTION (XRD)<br />

Chapter 3: Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Experimental Details<br />

The various microstructural c<strong>on</strong>stitutes <str<strong>on</strong>g>of</str<strong>on</strong>g> castings were identified using XRD.<br />

15 mm


Chapter 3: Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Experimental Details<br />

<strong>on</strong> <strong>the</strong> gauge length (GL) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> test specimen. The required load was calculated<br />

according to <strong>the</strong> specimen diameter <str<strong>on</strong>g>and</str<strong>on</strong>g> lever ratio. The sample was heated using a<br />

three z<strong>on</strong>e coil fumace. Specimen temperature was c<strong>on</strong>trolled with in :l= 2° C <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> set<br />

point temperature using a Euro<strong>the</strong>rm make three z<strong>on</strong>e temperature c<strong>on</strong>troller. Two<br />

<strong>the</strong>rmocouples were attached, <strong>on</strong>e near <strong>the</strong> top ridge <str<strong>on</strong>g>and</str<strong>on</strong>g> ano<strong>the</strong>r near <strong>the</strong> bottom<br />

ridge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> test specimen, to ensure uniform temperature throughout <strong>the</strong> GL<br />

(ref. Figure 3.8). The testing temperature was obtained around lh <str<strong>on</strong>g>and</str<strong>on</strong>g> 30 min was<br />

given for <strong>the</strong> stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature. Both <strong>the</strong> displacement <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature was<br />

m<strong>on</strong>itored <str<strong>on</strong>g>and</str<strong>on</strong>g> recorded at regular intervals (30 min) automatically through a<br />

Yokogawa make data logger.<br />

Figure 3.7: Photograph showing <strong>the</strong> creep testing machine<br />

Cold run was carried out to check <strong>the</strong> sample alignment with <strong>the</strong> loading axis,<br />

during which <strong>the</strong> loading <str<strong>on</strong>g>and</str<strong>on</strong>g> unloading was d<strong>on</strong>e in an increment <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 kg up to 80 %<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> elastic limit. The incremental displacement during loading <str<strong>on</strong>g>and</str<strong>on</strong>g> unloading steps<br />

were plotted to check for equal displacement during loading <str<strong>on</strong>g>and</str<strong>on</strong>g> unloading. In case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

any difference occurred (more than 10%), <strong>the</strong> alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> test sample was<br />

adjusted.<br />

75


_ Chapter 3: Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Experimental Details<br />

11-3 Q‘ 10 ca R50 (Typ)<br />

1i::*~-~_~_~\ i \\<br />

5 ‘U ii‘ ‘ it ‘T<br />

i -| i—<br />

'<br />

2<br />

l<br />

so: s as a_a a»­ 25—:<br />

_ I<br />

a<br />

I<br />

--_.<br />

1 Elastic strain p|a$ti¢ strain<br />

20-" I<br />

||<br />

5 -#f'f 1 WW it I it ~.\\<br />

i 21 W14 at _ , i‘14+ 21,<br />

so<br />

Figure 3.8: Schematic diagram showing st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard creep testing specimen<br />

10­<br />

120<br />

5 Elastic Strain 460 mV I<br />

Plastic Strain 107 mV T<br />

T * I“ - I * refi | ii" | * e :---1<br />

0 1oo 200 300 400 soo soo<br />

Displacement, mV<br />

Figure 3.9: Typical hot run graph showing elastic <str<strong>on</strong>g>and</str<strong>on</strong>g> plastic strain regi<strong>on</strong><br />

Once <strong>the</strong> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> specimen was stabilized <strong>the</strong> hot run was carried<br />

out. During hot run, loads were applied in a small possible increment to get a required<br />

finial load <strong>on</strong> pan. The total loading was carried out within 5 min. The LVDT<br />

readings were noted down immediately after every stage <str<strong>on</strong>g>of</str<strong>on</strong>g> loading <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

displacement data were plotted against to <strong>the</strong> corresp<strong>on</strong>ding loads. Figure 3.9 shows a<br />

typical hot run graph from which elastic <str<strong>on</strong>g>and</str<strong>on</strong>g> plastic strain was calculated. The elastic<br />

strain thus obtained was deducted from <strong>the</strong> total incremental strain recorded during<br />

76


Chapter 3: Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Experimental Details<br />

creep testing to obtain exact creep strain. immediately after <strong>the</strong> completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> loading,<br />

strain readings were taken for 30 min in <strong>the</strong> time interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 min to have more data<br />

points for getting smooth primary stage creep curve, where <strong>the</strong> creep rate changes<br />

very fast. From <strong>the</strong> displacement data obtained from data logger, strain was calculated<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> plotted against time.<br />

3.8 CORROSION TESTING<br />

3.8.1 Sample Preparati<strong>on</strong><br />

15mm (D X 10mm height specimens were cut from <strong>the</strong> castings <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n<br />

polished up to 600 grit <str<strong>on</strong>g>Si</str<strong>on</strong>g>C emery paper <strong>on</strong> all sides priorto mounting in an epoxy<br />

resin using a brass rod for electrical c<strong>on</strong>necti<strong>on</strong> for electrochemical corrosi<strong>on</strong> test.<br />

This procedure avoided <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bubbles <str<strong>on</strong>g>and</str<strong>on</strong>g> crevices at <strong>the</strong> specimen/epoxy<br />

interface, which could have affected <strong>the</strong> electrochemical measurements.<br />

3.8.2 Polarizati<strong>on</strong> Test<br />

The electrochemical tests were carried out using potentiodynamic anodic<br />

polarizati<strong>on</strong> method in ASTM D 1384 soluti<strong>on</strong>. The ASTM D 1384 soluti<strong>on</strong> c<strong>on</strong>tain<br />

148 mg 1" <str<strong>on</strong>g>of</str<strong>on</strong>g> Na;SO4, 138 mg 1'] <str<strong>on</strong>g>of</str<strong>on</strong>g>NaHCO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 165 mg 1" NaCl (pH=8.3). All <strong>the</strong><br />

corrosi<strong>on</strong> test experiments were carried out at room temperature using l liter, five<br />

neck ASTM electrochemical cell c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> three electrodes; working electrode,<br />

reference electrode (Ag/AgCl-Sat) <str<strong>on</strong>g>and</str<strong>on</strong>g> counter electrodes (Pt). The typical<br />

polarizati<strong>on</strong> cell arrangement for c<strong>on</strong>ducting all <strong>the</strong> electrochemical experiments is<br />

shown in Figure 3.10. Solartr<strong>on</strong> 1287 Electrochemical Interface was in <strong>the</strong><br />

polarizati<strong>on</strong> experiments. During electrochemical corrosi<strong>on</strong> test, <strong>the</strong> electrode<br />

potential was anodically scanned at a scan rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 mV/min from a potential <str<strong>on</strong>g>of</str<strong>on</strong>g> ­<br />

1400 mV. All <strong>the</strong> electrode potential was measured against Ag/AgC1 (in saturated<br />

KCI) reference electrode.<br />

3.8.3 Electrochemical Impedance Studies<br />

Electrochemical impedance spectroscopy (EIS) measurements were carried<br />

out using Solartr<strong>on</strong> 1255 Frequency Resp<strong>on</strong>se Analyzer (FRA) <str<strong>on</strong>g>and</str<strong>on</strong>g> Solartr<strong>on</strong> 1287<br />

Electrochemical Interface. The experiments were carried out in <strong>the</strong> frequency range<br />

77


_ _ Chapter 3: Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Experimental Details<br />

from 0.01 Hz to 100 kHz by superimposing an AC voltage <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 mV amplitude at<br />

different potential. Data were presented as Nyquist <str<strong>on</strong>g>and</str<strong>on</strong>g> Bode plots. The Zplot/Zview<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware versi<strong>on</strong> 2.6 (Scribner Associates; Charlottesville, USA) was used for data<br />

acquisiti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> fitting <str<strong>on</strong>g>of</str<strong>on</strong>g> impedance spectra. The BIS results were interpreted using an<br />

“equivalent circuit” based <strong>on</strong> <strong>the</strong> electro physical model to ascribe a sub­<br />

electrochemical interface. The circuit descripti<strong>on</strong> c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> an arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> ([Rs<br />

(CDL II Rp)] elements, where Rs is <strong>the</strong> soluti<strong>on</strong> resistance, CDL is <strong>the</strong> double layer<br />

capacitance in parallel c<strong>on</strong>necti<strong>on</strong> with RP, which is <strong>the</strong> polarizati<strong>on</strong> resistance at <strong>the</strong><br />

interface (Figure 3.11). The selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this circuit was a compromise between a<br />

reas<strong>on</strong>able fitting <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experimental values <str<strong>on</strong>g>and</str<strong>on</strong>g> a minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ents in <strong>the</strong><br />

equivalent circuit. The characteristic parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se elements values are <strong>the</strong>n<br />

obtained directly by fitting <strong>the</strong> experimental impedance curves, it was apparent that<br />

this approach provide reas<strong>on</strong>ably accurate values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> circuit parameters between<br />

<strong>the</strong> impedance data obtained experimentally <str<strong>on</strong>g>and</str<strong>on</strong>g> those calculated from <strong>the</strong> circuit<br />

parameters. The reproducibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data obtained with repeated measurements <strong>on</strong> a<br />

series <str<strong>on</strong>g>of</str<strong>on</strong>g> electrodes was within 1% 5% for each measured impedance point.<br />

Tr-£R!CI€TER '~ 4<br />

_0<br />

GAS OUTLE T<br />

BRIDGE<br />

..<br />

-.-. 5=<br />

I33: T - 1 '/P G‘ AUXILIARY<br />

Q___) suscmooe ro.0eR<br />

sat<br />

sclggvccrxou m '3 um “*5 “LU<br />

Figure 3.10: Typical polarizati<strong>on</strong> cell for c<strong>on</strong>ducting all <strong>the</strong> electrochemical<br />

experiments<br />

78


_ Chapter 3: Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Experimental Details<br />

R. e ll­ .gCd1<br />

——|:l<br />

RP<br />

Figure 3.11: Schematic diagram showing simple ‘equivalent circuit’ <str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

elements<br />

3.8.4 Immersi<strong>on</strong> Test<br />

For carrying out <strong>the</strong> c<strong>on</strong>stant immersi<strong>on</strong> testing, samples <str<strong>on</strong>g>of</str<strong>on</strong>g> size l5mm (D X<br />

l0mm height were polished with 80, 220, 400 <str<strong>on</strong>g>and</str<strong>on</strong>g> 600 grit emery papers <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n<br />

polished with 0.25 um diam<strong>on</strong>d paste <str<strong>on</strong>g>and</str<strong>on</strong>g> cleaned with acet<strong>on</strong>e. The cleaned samples<br />

were weighed <str<strong>on</strong>g>and</str<strong>on</strong>g> exposed to a soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.5% NaCl in a beaker for 100 h. After <strong>the</strong><br />

immersi<strong>on</strong> test, <strong>the</strong> samples were cleaned in a soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 200g/l CrO3 + 19 g/l AgNO3<br />

at room temperature for l0 min to remove <strong>the</strong> corrosi<strong>on</strong> products. Finally, it was<br />

again washed with distilled water <str<strong>on</strong>g>and</str<strong>on</strong>g> weighted. The weight loss was calculated from<br />

<strong>the</strong> different between <strong>the</strong> initial <str<strong>on</strong>g>and</str<strong>on</strong>g> final weights. Form weight loss, corrosi<strong>on</strong> rate<br />

was calculated using <strong>the</strong> formula given below:<br />

where,<br />

mpy (miles per year) = 534W/DAT<br />

W — Weight loss during immersi<strong>on</strong> in grams<br />

D — Density <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample in g/cc<br />

A — Surface area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample exposed to <strong>the</strong><br />

corrosive media in square inch<br />

T — Immersi<strong>on</strong> time in hours.<br />

79


BIIIFIEII ll: IISBITS llll IIISIBIISSIIIN<br />

4.1 MICROSTRUCTURE AND PHASE IDENTIFICATION<br />

This secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> chapter deals <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different alloying additi<strong>on</strong>s <strong>on</strong><br />

<strong>the</strong> microstructural features <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy. Both optical <str<strong>on</strong>g>and</str<strong>on</strong>g> scanning electr<strong>on</strong><br />

microscope was used to examine <strong>the</strong> microstructural features <str<strong>on</strong>g>of</str<strong>on</strong>g> various alloys. Picric<br />

acid base etchant was used to etch <strong>the</strong> polished specimens. In additi<strong>on</strong> to EDS<br />

analysis to identify <strong>the</strong> phases, XRD analysis was also used to c<strong>on</strong>firm <strong>the</strong> type <strong>the</strong><br />

phases. Grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> castings was measured at soluti<strong>on</strong> treated c<strong>on</strong>diti<strong>on</strong> using<br />

image analyzer s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware attached with optical microscope.<br />

4.1.1 AZ9l Alloy<br />

Etching <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg alloys with picric acid based etchant (6g picric acid, 5 ml acetic<br />

acid, 100 ml ethanol <str<strong>on</strong>g>and</str<strong>on</strong>g> 10 ml H20) is a complicated task. Slight change in <strong>the</strong><br />

compositi<strong>on</strong> particularly, <strong>the</strong> acetic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> water c<strong>on</strong>tent in <strong>the</strong> etchant, spoil <strong>the</strong><br />

surface. The etching time should also be maintained accurately i.e., 2-3 sec. Even<br />

slight extra etching time (5-6 sec) leads to <strong>the</strong> eutectic area <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy sample<br />

become black. This is due to <strong>the</strong> fact that <strong>the</strong> aluminium rich areas are etching faster<br />

than <strong>the</strong> o<strong>the</strong>r regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample. Even <strong>the</strong>n, it is found during this course <str<strong>on</strong>g>of</str<strong>on</strong>g> study<br />

that picric acid based etchant is more effective to reveal <strong>the</strong> microstructural features<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al based alloys compared to o<strong>the</strong>r etchants proposed in literature [240]. The<br />

optical microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy etched with picric acid based etchant for 5 sec<br />

(slightly over etching) <str<strong>on</strong>g>and</str<strong>on</strong>g> 7- sec (optimum etching) is shown in Figure 4.1. The<br />

slightly over etched microstructure in Figure 4.1(a) shows three different phases:<br />

primary 01- Mg (Hexag<strong>on</strong>al crystal structure, space group p63/mmc, a=0.32094 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c=0.52l05 nm) which is marked as A, massive precipitates at <strong>the</strong> grain boundary<br />

(marked as B), which is known as B-M811/\l|2 intermetallic (cubic crystal structure,<br />

space group I43, a=l.056 nm) <str<strong>on</strong>g>and</str<strong>on</strong>g> a dark area surrounding <strong>the</strong> massive sized particles,<br />

which is eutectic o.- Mg (marked as C) [24l]. Both <strong>the</strong> massive [3-Mg17Al12<br />

intermetallic <str<strong>on</strong>g>and</str<strong>on</strong>g> dark phase toge<strong>the</strong>r is known as ‘eutectic’. The primary phase i.e.,<br />

80


_ E g Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

0.- Mg is a solid soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al <str<strong>on</strong>g>and</str<strong>on</strong>g> Zn. The eutectic observed at <strong>the</strong> grain boundary is<br />

divorced in nature, which is an irregular shaped particle with different sizes. As<br />

menti<strong>on</strong>ed earlier, due to <strong>the</strong> higher amount <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium c<strong>on</strong>tent in eutectic a- Mg<br />

compared to primary ot- Mg, it etches faster <str<strong>on</strong>g>and</str<strong>on</strong>g> hence become darker. Figure 4.1 (b)<br />

shows <strong>the</strong> microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy etched with optimum time (1 $212.). The<br />

l<br />

boundary (eutectic) regi<strong>on</strong> is clearly seen now. The dark area c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> lot <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lamellar kind <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitates. These lamellar precipitates form during <strong>the</strong> last stage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

solidificati<strong>on</strong>. Micro c<strong>on</strong>stitutes <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy are filr<strong>the</strong>r clearly seen in SEM<br />

photograph given in Figure 4.2.<br />

Solidificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9lalloy is invoked to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> microstructural<br />

features. During cooling, primary or-Mg forms from <strong>the</strong> super heated liquid at around<br />

600°C. Then eutectic solidificati<strong>on</strong> takes place at around 400°C [96, 99]. The eutectic<br />

phase c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> massive [3-MgnAl12 <str<strong>on</strong>g>and</str<strong>on</strong>g> aluminum rich or-Mg, known as eutectic ot­<br />

Mg. Eutectic occurs through divorced solidificati<strong>on</strong> reacti<strong>on</strong>, not through coupled<br />

solidificati<strong>on</strong> as happens in most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eutectic alloy systems like Al-<str<strong>on</strong>g>Si</str<strong>on</strong>g> alloys where<br />

both <strong>the</strong> eutectic phases solidifies simultaneously [99, 100]. In divorced eutectic<br />

solidificati<strong>on</strong>, <strong>the</strong> two eutectic phases solidify separately. Hence bulk <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mgl-;Al|;<br />

solidifies separately <str<strong>on</strong>g>and</str<strong>on</strong>g> eutectic or-Mg solidifies around it [100]. After <strong>the</strong> eutectic<br />

reacti<strong>on</strong>, a solid state transformati<strong>on</strong> known as peritectic reacti<strong>on</strong> takes place at <strong>the</strong><br />

eutectic regi<strong>on</strong>. The eutectic 01- Mg is highly supersaturated in Al compared to <strong>the</strong><br />

primary o- Mg due to <strong>the</strong> fact it solidifies last <str<strong>on</strong>g>and</str<strong>on</strong>g> solidificati<strong>on</strong> never reach<br />

equilibrium. Due to this supersaturati<strong>on</strong>, when alloy cools from eutectic temperature<br />

to <strong>the</strong> room temperature, <strong>the</strong> excess amount <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum in <strong>the</strong> solid soluti<strong>on</strong><br />

precipitates out as Mg17Al12 <str<strong>on</strong>g>and</str<strong>on</strong>g> leaves aluminum depleted or- Mg. Hence this reacti<strong>on</strong><br />

leads to <strong>the</strong> f<strong>on</strong>nati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alternative layers <str<strong>on</strong>g>of</str<strong>on</strong>g> or- Mg <str<strong>on</strong>g>and</str<strong>on</strong>g> B phase as shown in<br />

Figure 4.2 (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> known as disc<strong>on</strong>tinuous precipitates or sec<strong>on</strong>dary precipitates<br />

[l44, 242, 243].<br />

81


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.1: Optical micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 etched in picric acid based etchant<br />

showing its different c<strong>on</strong>stituents (a) Etched for 5 sec (b) Etched<br />

for 2 sec<br />

Figure 4.2: SEM photograph showing different phases in AZ91 (a) Low<br />

magnificati<strong>on</strong> (b) Higher magnificati<strong>on</strong><br />

82


_ Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

The quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different alloying elements presents (Mg, Al <str<strong>on</strong>g>and</str<strong>on</strong>g> Zn) at<br />

different locati<strong>on</strong>s in AZ91 alloy microstructure is obtained from EDS analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> is<br />

presented Table 4.1. It is seen that both massive <str<strong>on</strong>g>and</str<strong>on</strong>g> disc<strong>on</strong>tinuous lamellar Mg17Al1;<br />

has almost similar compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> hence has difference <strong>on</strong>ly in morphology.<br />

Interestingly, <strong>the</strong> EDS analysis also shows <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Zinc in MgnAl,;,<br />

intermetallic. Accommodati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc atoms in Mg17Al1; intermetallic during<br />

solidificati<strong>on</strong> is reported in literature [244]. Even though, <strong>the</strong> supersaturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al is<br />

relived by <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DP reacti<strong>on</strong> during solidificati<strong>on</strong>, it is also observed at<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areas near to <strong>the</strong> DP fr<strong>on</strong>t that <strong>the</strong> Al <str<strong>on</strong>g>and</str<strong>on</strong>g> Zn c<strong>on</strong>tent are still slightly<br />

higher.<br />

Table 4.1: EDS results taken at different locati<strong>on</strong>/phases in AZ91 alloy<br />

( , or 5 " 5‘ Ellements,% wt 5<br />

_, Locati<strong>on</strong> g _ Mg Al Zn_ H_<br />

. Matrix near <strong>the</strong> pi<br />

1, center <str<strong>on</strong>g>of</str<strong>on</strong>g> grain i<br />

Matrix near <strong>the</strong><br />

92.24<br />

80.14<br />

5.45<br />

14.42<br />

2.31<br />

5.44<br />

_ eutectic area,<br />

MflS<str<strong>on</strong>g>Si</str<strong>on</strong>g>VQ Mg|7Al12 57.46 37.34 5.20<br />

.— 11 55.15 37.50 6.75<br />

The eutectic observed in <strong>the</strong> microstructure c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> mostly fully divorced<br />

eutectic. However <strong>the</strong>re are some partially divorced eutectic is also seen. A fully<br />

divorced eutectic is <strong>on</strong>e, in which <strong>the</strong> two eutectic phases are completely separated as<br />

eutectic a- Mg <str<strong>on</strong>g>and</str<strong>on</strong>g> massive [3-Mg17Al12. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, in partial divorced<br />

eutectic, ‘isl<str<strong>on</strong>g>and</str<strong>on</strong>g>s’ <str<strong>on</strong>g>of</str<strong>on</strong>g> eutectic O.- Mg present within <strong>the</strong> B-Mg17Al1; <str<strong>on</strong>g>and</str<strong>on</strong>g> still bulk <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

eutectic ot- Mg present out side <strong>the</strong> B-Mg17Al12. Both <strong>the</strong> eutectics are shown in<br />

Figure 4.3. There are different factors like aluminium, zinc c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> cooling rate,<br />

which decides <strong>the</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> eutectics [l0O, 101, 245, 246]. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>siderable<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc (up to 1%) <str<strong>on</strong>g>and</str<strong>on</strong>g> comparatively faster cooling in permanent mould<br />

(compared to s<str<strong>on</strong>g>and</str<strong>on</strong>g> casting) leads to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fully divorced eutectic [100, 101,<br />

245]. The mechanisms behind <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> partial <str<strong>on</strong>g>and</str<strong>on</strong>g> complete divorced<br />

morphologies are already discussed in chapter 2.<br />

83


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.3: <strong>Microstructure</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 showing both complete <str<strong>on</strong>g>and</str<strong>on</strong>g> partially<br />

divorced eutectic<br />

Apart from <strong>the</strong> major phases, <strong>the</strong>re are some AlMn intermetallic is also seen in<br />

<strong>the</strong> microstructure, which is identified as Al3Mn5 [24l]. The morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> this phase<br />

is round <str<strong>on</strong>g>and</str<strong>on</strong>g> very fine compared to <strong>the</strong> massive eutectic Mg|1Al1; phase. However,<br />

<strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> this precipitates is very less. This is because <strong>the</strong> added amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn is<br />

very low (0.2% max) <str<strong>on</strong>g>and</str<strong>on</strong>g> most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mn is utilized to remove <strong>the</strong> Fe by forming<br />

heavy intermetallics, which normally settle down in <strong>the</strong> crucible.<br />

Figure 4.4 shows <strong>the</strong> XRD pattem <str<strong>on</strong>g>of</str<strong>on</strong>g> base alloy, which shows peaks for <strong>on</strong>ly<br />

two phases: 01- Mg <str<strong>on</strong>g>and</str<strong>on</strong>g> [3-Mg17Al|;. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peaks for [3 phase, which appears in<br />

<strong>the</strong> JCPDS s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware, are not revealed [247]. But, <strong>the</strong> major peak for B phase at 20<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> 36.5, which represent (411) planes, is clearly seen. Even though A|3Mfl5<br />

intermetallic is seen in <strong>the</strong> microstructure, <strong>the</strong>re are no X-ray peaks corresp<strong>on</strong>ding to<br />

this phase. This is due to <strong>the</strong> fact that <strong>the</strong> volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phase is very much<br />

below to <strong>the</strong> detectable level in XRD.<br />

4.1.2 AZ91+X <str<strong>on</strong>g>Si</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%)<br />

As per <strong>the</strong> Mg-<str<strong>on</strong>g>Si</str<strong>on</strong>g> phase diagram, (shown in Figure 4.5) <str<strong>on</strong>g>Si</str<strong>on</strong>g> has negligible solid<br />

solubility in magnesium at room temperature [248]. Hence all <strong>the</strong> added <str<strong>on</strong>g>Si</str<strong>on</strong>g> combines<br />

with Mg to form Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallics. Figure 4.6 shows <strong>the</strong> microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

added AZ91 alloys. When 0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> is added to AZ91 alloy, black coloured Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

84


g Chapter 4:Res,ults, <str<strong>on</strong>g>and</str<strong>on</strong>g>Discussi<strong>on</strong><br />

intermetallics appears at <strong>the</strong> grain boundary in additi<strong>on</strong> to <strong>the</strong> massive Mg17Al1;<br />

particles. With 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloy, <strong>the</strong> <strong>on</strong>ly microstructural change observed is <strong>the</strong><br />

increase in <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;;<str<strong>on</strong>g>Si</str<strong>on</strong>g> phase <str<strong>on</strong>g>and</str<strong>on</strong>g> it has well defined Chinese script<br />

morphology. This phase is very coarse <str<strong>on</strong>g>and</str<strong>on</strong>g> has multiple arms extended al<strong>on</strong>g many <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> neighbouring grain boundaries. The morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates observed in<br />

this study is in c<strong>on</strong>sistence with <strong>the</strong> reported <strong>on</strong>e in literature [183, 249-251]. A close<br />

inspecti<strong>on</strong> <strong>on</strong> <strong>the</strong> microstructure reveals that <strong>the</strong> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic<br />

varies from needle shape to massive Chinese script. More needle shaped precipitates<br />

is noticed with 0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> whereas with higher percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> (0.5%), more<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> Chinese script Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> appears in <strong>the</strong> microstructure. This is due to <strong>the</strong><br />

segregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> to <strong>the</strong> solidifying Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> particles during slower<br />

solidificati<strong>on</strong> in gravity cast process (compared to die casting).<br />

Figure 4.7 shows <strong>the</strong> SEM photograph focusing <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> Chinese script<br />

intermetallic <str<strong>on</strong>g>and</str<strong>on</strong>g> its EDS pattern, which indicate that it c<strong>on</strong>tains <strong>on</strong>ly Mg <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>.<br />

However, variati<strong>on</strong> in <strong>the</strong> compositi<strong>on</strong> al<strong>on</strong>g its arms is noticed. Higher c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> is noticed at <strong>the</strong> tip <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> arm. For fur<strong>the</strong>r c<strong>on</strong>firmati<strong>on</strong>, X- ray analysis was<br />

also carried out in <strong>the</strong> soluti<strong>on</strong> treated sample (410°C for 48 h), which shows peaks<br />

for Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic in additi<strong>on</strong> to peaks for or-Mg (Figure 4.8).<br />

There is no appreciable change in grain size observed with <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong>. The<br />

grain size measured for 0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloys read almost similar as<br />

around 70 pm (<strong>the</strong> base alloy grain size is 80 um). It is fur<strong>the</strong>r noticed from <strong>the</strong><br />

microstructure that <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> to AZ91 alloy does not change <strong>the</strong> quantity as<br />

well as <strong>the</strong> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> massive [3-Mg17Al12 phase. The 0- Mg11Al|;;<br />

intennetallic quantity is not changed since <strong>the</strong> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> forming <str<strong>on</strong>g>of</str<strong>on</strong>g> any o<strong>the</strong>r<br />

phase between Al <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> is nil. So, all <strong>the</strong> aluminium is available for <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mg|1A112 phase. In additi<strong>on</strong>, EDS analysis performed across <strong>the</strong> Mg|1Al1;<br />

intermetallic indicates that <strong>the</strong>re is no <str<strong>on</strong>g>Si</str<strong>on</strong>g> in it. This c<strong>on</strong>firms that <str<strong>on</strong>g>Si</str<strong>on</strong>g> does not act as a<br />

modifier or refiner for Mg|1Al1; phase.<br />

85


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

-1 4I<br />

|<br />

1<br />

3000 - 4 ‘<br />

3500 4 _~<br />

I I Mg i<br />

" l O Mg"A|1zI |<br />

'5 2000- \<br />

.... 500- * '<br />

000 -+. I<br />

,_ I<br />

600 - ' i<br />

0<br />

20 1 ',.~._Jb | 00 I * 40 r - 50<br />

JLJLJ1\1_A 1 * 00 0 1- 70 F 00|<br />

26<br />

° no no<br />

A1. 1'. <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

Figure 4.4: XRD pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy showing peaks for Mg <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg,-,Al|;<br />

lntermetallic<br />

, ‘ . I f ‘I 5‘ I<br />

8&1; _ _[~ sq ‘O ‘ ,0 1? ::‘I‘___ ’—‘;\:<br />

1:oo;>~4~~~4 s—~ —~— ~ ~@~ ~ 4 ~¢~~~—:<br />

1? ‘ !~ Ll'§V}d j = !<br />

/1aa;+':>>-;- 7 4--4::-4» *1 7 ~‘ ~ ii 0- ,~:=-=-—05** "l“*~—s~=><br />

0005+ _ ff A — L v—<br />

0 ___J;‘___ I” i§ . 1 __ 3:____ .._.- ii ___.=_i__ ____<br />

‘O00 ’ "_?OW ”z'—j0 **”_36**‘?0 H 00 BO I00<br />

W1} <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

Figure 4.5: Phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> binary Mg-<str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy system [248]<br />

86


_ _ _ Chaptor4_:Res1ts <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

1<br />

\<br />

Figure 4.6: <strong>Microstructure</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloys (a) AZ9l+ 0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

(h) AZ9l+0.5%<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

‘F i<br />

‘ts.<br />

I<br />

¢<br />

­<br />

i I ~<br />

1<br />

v<br />

.1‘ §.4 \<br />

1.70 2.60 350<br />

Figure 4.7: SEM photograph showing Chinese script Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic <str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

EDS spectrum<br />

87


L Chapter 4; Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

asoo J I \<br />

l<br />

l so<strong>on</strong> - ' I M9<br />

' Q Mgz<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

-<br />

2600 ­<br />

‘ ||<br />

1-1­<br />

1500 ­<br />

-6­, .. 1ooo 4* ._ ‘A §. ‘1 I i g . I I __ g I<br />

‘°° " 0 I rt 0<br />

zo so 4o so so 1o so<br />

2o<br />

° r I - be F - n F--F‘ | ~ - ­<br />

Figure 4.8: XRD pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> treated AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy indicates <strong>the</strong><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic<br />

4.1.3 AZ9l+X <str<strong>on</strong>g>Sb</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%, 0.7 %)<br />

Figure 4.9 shows <strong>the</strong> optical microstmcture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ9l alloys. With<br />

0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong>, <strong>the</strong> microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy does not change much. However,<br />

a black colored phase is seen al<strong>on</strong>g with massive Mgr/All; at <strong>the</strong> grain boundaries in<br />

0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy as shown in Figure 4.9 (b). When <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> increases to 0.7%,<br />

<strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> black phase also increases, which is evidenced in Figure 4.9 (c).<br />

Reducti<strong>on</strong> in grain size to certain extend is also noticed with 0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong>. <str<strong>on</strong>g>Si</str<strong>on</strong>g>ze<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> bearing intermetallic compound is clearly seen in <strong>the</strong> SEM<br />

photograph shown in Figure 4.10, which reveals that <strong>the</strong> morphology is a needle or<br />

plate shape. According to <strong>the</strong> Mg-<str<strong>on</strong>g>Sb</str<strong>on</strong>g> phase diagram (Figure 4.11) it is underst<str<strong>on</strong>g>and</str<strong>on</strong>g>able<br />

that <str<strong>on</strong>g>Sb</str<strong>on</strong>g> does not have any solubility in Mg at room temperature [252] <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> possible<br />

intermetallic present at room temperature is Mg;;<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2. So, all <strong>the</strong> added <str<strong>on</strong>g>Sb</str<strong>on</strong>g> needs to<br />

form Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2 intermetallic. It is fur<strong>the</strong>r noticed from <strong>the</strong> microstmcture that almost all<br />

<strong>the</strong> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallics appears toge<strong>the</strong>r with Mg17Al12 at <strong>the</strong> grain boundaries.<br />

Figure 4.12 shows <strong>the</strong> SEM photograph focusing Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallic <str<strong>on</strong>g>and</str<strong>on</strong>g> EDS<br />

spectrum taken at <strong>the</strong> phase, which indicates <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly Mg <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g>. Based<br />

<strong>on</strong> <strong>the</strong> quantitative analysis, <strong>the</strong> phase is identified as Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>;. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mg;<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallics is also c<strong>on</strong>firmed by XRD analysis carried out <strong>on</strong> soluti<strong>on</strong><br />

treated AZ9l + 0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy as shown in Figure 4.13.<br />

88


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.9: Optical microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ9l alloys (a) AZ9l+0.2 % <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

(b) AZ9l+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> (c) AZ9l+0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

Figure 4.10: SEM photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloy showing Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>;<br />

intermetallic


ll<br />

Ii<br />

l<br />

I­<br />

A<br />

Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

a 11.1111 _ _<br />

... 1 t III. Q 0 v ­<br />

_ , . . . - - ­<br />

Figure 4.11: Phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-<str<strong>on</strong>g>Sb</str<strong>on</strong>g> binary alloy system [252]<br />

Figure 4.12: SEM photograph <str<strong>on</strong>g>and</str<strong>on</strong>g> EDS spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;Sh; intermetallic<br />

aooo<br />

.1~<br />

I M9<br />

l git: .­<br />

mo oMg,<str<strong>on</strong>g>Sb</str<strong>on</strong>g>,<br />

‘av: Sgg l I soo ' ' ­<br />

1ooo- »~»-—~<br />

'1 COO<br />

w<br />

oT_—1 I 1 -"I -1<br />

zo so 4o so so 1o so<br />

26<br />

Figure 4.13: XRD pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ9l alloy showing peaks for<br />

Mg;Sh; intermetallic<br />

90


4.1.4 AZ91+X <str<strong>on</strong>g>Sr</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%, 0.7%)<br />

g _ Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

From Mg-<str<strong>on</strong>g>Sr</str<strong>on</strong>g> phase diagram given in Figure 4.14, it is clear that <strong>the</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong><br />

has little solid solubility with Mg [253]. Hence <strong>the</strong> added <str<strong>on</strong>g>Sr</str<strong>on</strong>g> needs to form an<br />

intermetallic with ei<strong>the</strong>r Mg or Al, since aluminum is also presented in <strong>the</strong> alloy. The<br />

microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-A1-<str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy system is well analyzed due to <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> c<strong>on</strong>taining Mg-Al based alloys (Mg-5% Al-1% <str<strong>on</strong>g>Sr</str<strong>on</strong>g>, Mg-5% Al-2% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg-6%<br />

A1-2% <str<strong>on</strong>g>Sr</str<strong>on</strong>g>) for high creep resistance [66, 239, 254-259]. However, <strong>the</strong> key obstacle is<br />

<strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> a well defined Mg-A1-<str<strong>on</strong>g>Sr</str<strong>on</strong>g> temary diagram. At present <strong>the</strong> phases have been<br />

identified based <strong>on</strong> three binary diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> Al-Mg, A1-<str<strong>on</strong>g>Sr</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg-<str<strong>on</strong>g>Sr</str<strong>on</strong>g> [260]. In <strong>the</strong><br />

Al-<str<strong>on</strong>g>Sr</str<strong>on</strong>g> system, in additi<strong>on</strong> to solid soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Al, 7-<str<strong>on</strong>g>Sr</str<strong>on</strong>g> (bcc) <str<strong>on</strong>g>and</str<strong>on</strong>g> (1-<str<strong>on</strong>g>Sr</str<strong>on</strong>g> (fcc), <strong>the</strong>re are<br />

o<strong>the</strong>r three intermetallic compounds present: A14<str<strong>on</strong>g>Sr</str<strong>on</strong>g>, A1;<str<strong>on</strong>g>Sr</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> A1-,<str<strong>on</strong>g>Sr</str<strong>on</strong>g>3 [261]. The Mg­<br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> system also c<strong>on</strong>tains, in additi<strong>on</strong> to solid soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg, 7-<str<strong>on</strong>g>Sr</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> or-<str<strong>on</strong>g>Sr</str<strong>on</strong>g>, four<br />

intermetallic compounds: Mg|7<str<strong>on</strong>g>Sr</str<strong>on</strong>g>2, Mg3g<str<strong>on</strong>g>Sr</str<strong>on</strong>g>9, Mg23<str<strong>on</strong>g>Sr</str<strong>on</strong>g>6 <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg<str<strong>on</strong>g>Sr</str<strong>on</strong>g>; [36].<br />

Different phases are reported in ternary alloy system (Mg-Al-<str<strong>on</strong>g>Sr</str<strong>on</strong>g>) by different<br />

authors. Peng Zhao et al [239] have reported that A14<str<strong>on</strong>g>Sr</str<strong>on</strong>g> is <strong>the</strong> <strong>on</strong>ly intermetallic<br />

present in AM50+x<str<strong>on</strong>g>Sr</str<strong>on</strong>g> (0.02-1%<str<strong>on</strong>g>Sr</str<strong>on</strong>g>) alloy. But in ano<strong>the</strong>r study Bai Jing et a1 [256]<br />

have reported two types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> phases in Mg-4A1: network kind <str<strong>on</strong>g>of</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> with body<br />

centered tetrag<strong>on</strong>al structure (D13 with a=4.46 A0 <str<strong>on</strong>g>and</str<strong>on</strong>g> C=l 1.07 A0), a bulky Mg-Al­<br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> temary intermetallic with a chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 12.4% A1-9.6% <str<strong>on</strong>g>Sr</str<strong>on</strong>g>-Mg.<br />

Gzerwinski et a1 [259] have observed different kind <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> bearing phases like A14<str<strong>on</strong>g>Sr</str<strong>on</strong>g>,<br />

Mg11<str<strong>on</strong>g>Sr</str<strong>on</strong>g>2 in <str<strong>on</strong>g>Sr</str<strong>on</strong>g> c<strong>on</strong>taining Mg-Al alloy.<br />

Recently, Pekguleryuz et al [176] have reported that <strong>the</strong> Mg-A1 alloys<br />

c<strong>on</strong>taining <str<strong>on</strong>g>Sr</str<strong>on</strong>g> exhibit different microstructures based <strong>on</strong> <strong>the</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g>/Al ratio. For <str<strong>on</strong>g>Sr</str<strong>on</strong>g>/Al ratio<br />

below about 0.3, Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallic is <strong>the</strong> <strong>on</strong>ly sec<strong>on</strong>d phase seen in <strong>the</strong> structure.<br />

When <strong>the</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g>/Al ratio is higher than 0.3%, a sec<strong>on</strong>d intermetallic phase, a temary Mg­<br />

Al-<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallic, also appears al<strong>on</strong>g with binary phase.<br />

91


_ pg Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

=<br />

ac WISSI<br />

M910<br />

$1<br />

M ____ WI ,___ ;_ -C_;..s<br />

_<br />

an l‘ — w ' Z: ' \ — _599‘C fi ‘ Tj 1 !1 *­<br />

i, K ii ' ji<br />

$@p ' ~——~i~* "Ff e T “ ‘ i 1<br />

aw .é gv E 5-(PC<br />

mm 2; v ii ~426'c i * __+._ T i. L T _..--._.....___ T‘ _<br />

I l<br />

max 1 _.,(;._ l ls- >,o;;jTi; 1'<br />

aw __ _,_,_ ___ .._. .. . . ­<br />

APKSI<br />

Figure 4.14: Binary phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-<str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy system [253]<br />

Figure 4.15 shows <strong>the</strong> SEM photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added AZ91 alloys. With 0.2%<br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>, <strong>the</strong>re is no intermetallic, o<strong>the</strong>r <strong>the</strong>n Mg11Al|2, is found in <strong>the</strong><br />

microstructure. However, this <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> slightly refines <strong>the</strong> grain size. With little<br />

higher percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong> i.e., 0.5%, few white-colored needle like precipitates are<br />

seen al<strong>on</strong>g with Mg17Al,2 intermetallic at <strong>the</strong> grain boundary. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, <strong>the</strong><br />

microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy shows more number <str<strong>on</strong>g>of</str<strong>on</strong>g> white needle shaped<br />

precipitates. The grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> both 0.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloys are not differed<br />

much (around 50 um). A closer inspecti<strong>on</strong> with 0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy, shown in<br />

Figure 4.16, indicate that <strong>the</strong>re are two different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitates appear at <strong>the</strong><br />

grain boundary: <strong>on</strong>e is a l<strong>on</strong>g needle shaped particle, which is presented in large<br />

number (marked as 1) <str<strong>on</strong>g>and</str<strong>on</strong>g> ano<strong>the</strong>r <strong>on</strong>e is a bulky precipitate (marked as 2) which<br />

appears rarely. The EDS analysis <strong>on</strong> <strong>the</strong> bulky precipitate indicate that it is a temary<br />

precipitate <str<strong>on</strong>g>of</str<strong>on</strong>g> Al, Mg <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g>. Moreover, it is found that <strong>the</strong> bulky precipitate is not a<br />

general feature. No such intermetallic is found in 0.2% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>s,<br />

which might be due to very low c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> to fomi temary intermetallic.<br />

In <strong>the</strong> present work, according to <str<strong>on</strong>g>Sr</str<strong>on</strong>g>/Al ratio, <strong>on</strong>ly Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallic is<br />

observed in <strong>the</strong> microstructure, which is c<strong>on</strong>firmed by XRD studies. The XRD<br />

spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> treated 0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy is given in Figure 4.17, which shows<br />

peaks for both Mg <str<strong>on</strong>g>and</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intemetallic. But no peaks are observed for any temary<br />

phases since <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> ternary intermetallic present is very much low.<br />

92


Cha_pter Q: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.15: SEM photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added AZ91 alloy (a) AZ9l+0.2% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy<br />

(b) AZ9l+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy (c) AZ9l+0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

93


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.16: SEM photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy showing two kind <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> bearing phases<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>Sr</str<strong>on</strong>g> c<strong>on</strong>taining phases, presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg11Al1; intermetallic is also<br />

observed with <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy microstructure. <str<strong>on</strong>g>Si</str<strong>on</strong>g>nce added <str<strong>on</strong>g>Sr</str<strong>on</strong>g> amount is low (0.7%<br />

max) <str<strong>on</strong>g>and</str<strong>on</strong>g> Al c<strong>on</strong>tent is very high (9%), <strong>the</strong>re would be insufficient amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> to<br />

bind all Al <str<strong>on</strong>g>and</str<strong>on</strong>g> hence <strong>the</strong> excess Al is solidified as MgnAl|2 intermetallic. However,<br />

from <strong>the</strong> microstmctures presented in Figure 4.15, it can also be seen that <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> [5-Mg|7Al1; phase is refined to some extent. The massive shaped [3-Mg|1Al1; phase<br />

changes into a finer <strong>on</strong>e as <strong>the</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> c<strong>on</strong>tent increases from 0.2% to 0.7%. <str<strong>on</strong>g>Si</str<strong>on</strong>g>milar kind<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> refinement is reported in literature previously with <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> to AM50 alloy<br />

[Z39]. The EDS spectrum taken at Mg17Al12 intermetallic, presented in Figure 4.18,<br />

c<strong>on</strong>firms <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> in it. This indicates that little amount <str<strong>on</strong>g>of</str<strong>on</strong>g> added <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

dissolved into <strong>the</strong> [3 phase <str<strong>on</strong>g>and</str<strong>on</strong>g> restrict its growth during solidificati<strong>on</strong>.<br />

4.1.5 AZ9l+X<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> AZ9l+X<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.l% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%)<br />

Morphological modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic is needed to improve <strong>the</strong><br />

mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity cast <str<strong>on</strong>g>Si</str<strong>on</strong>g> c<strong>on</strong>taining Mg-Al alloys. 0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.1%<br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> is added to <str<strong>on</strong>g>Si</str<strong>on</strong>g> c<strong>on</strong>taining AZ9l alloy in this present study to investigate its<br />

modificati<strong>on</strong> efficiency. Figures 4.19 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4.20 show <strong>the</strong> microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 0.1% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added AZ9l alloy c<strong>on</strong>taining 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>. The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> leads to<br />

an interesting microstructural change by changing <strong>the</strong> massive Chinese script<br />

morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> phase to a well define fine polyg<strong>on</strong>al shape besides distributing<br />

94


k g Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

<strong>the</strong>m evenly al<strong>on</strong>g <strong>the</strong> grain boundaries. However, <strong>the</strong>re are few Mg;;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallics<br />

are also seen within <strong>the</strong> grain. From <strong>the</strong> figure 4.20, it is found that <str<strong>on</strong>g>Sr</str<strong>on</strong>g> is also found to<br />

be capable <str<strong>on</strong>g>of</str<strong>on</strong>g> modifying <strong>the</strong> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic but to lesser extend<br />

compared to <strong>the</strong> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong>. In this case, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> modified particles are in<br />

irregular shape <str<strong>on</strong>g>and</str<strong>on</strong>g> few particles are in rectangular shape. Moreover, it is fur<strong>the</strong>r<br />

observed that <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates in <str<strong>on</strong>g>Sr</str<strong>on</strong>g> modified alloy is bigger than that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> modified alloy. it is difficult to measure <strong>the</strong> exact size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

intermetallics because <str<strong>on</strong>g>of</str<strong>on</strong>g> its complex nature. However, <strong>the</strong> average size (in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

area) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> intermetallic measured before modificati<strong>on</strong> is 320 umz <str<strong>on</strong>g>and</str<strong>on</strong>g> after modified<br />

with <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> is 30 <str<strong>on</strong>g>and</str<strong>on</strong>g> 75 umz respectively. Due to this size difference in <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

modificati<strong>on</strong>, <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> in two additi<strong>on</strong>s is also differed. The Mg;;<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

particles are more or less evenly distributed throughout <strong>the</strong> microstructure in case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> compared to <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>.<br />

5000 -~ - ­<br />

I<br />

4000 ­<br />

0 Al‘<str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

2000 - I I<br />

3000 —<br />

I<br />

1000 - LT A<br />

0 I I-‘-*1 --— i*"=-~'r._ ~_- '- . -*—-=­<br />

'1“ ‘I I I I I _' I r I ** I<br />

20 so 40 so so 70 00<br />

26<br />

Figure 4.17: XRD spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91+0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy c<strong>on</strong>firm <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> Intermetallic<br />

95


_ _ _ _ _ Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

no Mglt<br />

M<br />

M 33H? ;"U3IZF**U1I62<br />

so1‘;m1" u ‘i<br />

no _ i L = IE<br />

lK¢<br />

M0 811.4: “V1<br />

Figure 4.18: EDS spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg|7A]|; intermetallic in AZ91+0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy<br />

c<strong>on</strong>firms <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

Figure 4.19: <strong>Microstructure</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>-I-0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> showing modified Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

intermetallic (a) Lower magnificati<strong>on</strong> (b) Higher magnificati<strong>on</strong><br />

96<br />

I<br />

i


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.20: <strong>Microstructure</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.l% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy showing modified<br />

Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic<br />

Modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Chinese script Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic in gravity cast Mg-Al is<br />

already in practice [262-264]. AS2l <str<strong>on</strong>g>and</str<strong>on</strong>g> AS4l alloys, which c<strong>on</strong>tain 2% <str<strong>on</strong>g>and</str<strong>on</strong>g> 4% Al<br />

respectively, have Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates in larger volumes. These alloys provide higher<br />

creep resistance due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>rmally stable Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic<br />

[24, 262, 263]. However, <strong>the</strong>se alloys are restricted <strong>on</strong>ly to die-casting. In s<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

casting, <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic solidifies as a coarse Chinese script, which reduces<br />

<strong>the</strong> mechanical properties [17, 22]. Normally P, Ca is added to modify this<br />

intermetallic into fine sized particles [249, 264, 265]. In <strong>the</strong> present study, it is found<br />

that both <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> are also capable <str<strong>on</strong>g>of</str<strong>on</strong>g> modifying <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates.<br />

The possible mechanisms for <strong>the</strong> refinement might be <strong>the</strong> added <str<strong>on</strong>g>Sr</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

ei<strong>the</strong>r acted as a nucleati<strong>on</strong> site for <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates or suppresses <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> precipitates during solidificati<strong>on</strong>. Jae Jo<strong>on</strong>g Kim et al [249] have carried out<br />

extensive TEM studies <strong>on</strong> Ca <str<strong>on</strong>g>and</str<strong>on</strong>g> P added <str<strong>on</strong>g>Si</str<strong>on</strong>g> c<strong>on</strong>taining Mg-Al alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> found <strong>the</strong><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca<str<strong>on</strong>g>Si</str<strong>on</strong>g>2 <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg3(PO4)2 compounds respectively in Ca <str<strong>on</strong>g>and</str<strong>on</strong>g> P added alloys,<br />

which act as a nucleati<strong>on</strong> site for <strong>the</strong> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> particles. Recently <strong>the</strong>re are some studies,<br />

which report that <str<strong>on</strong>g>Sb</str<strong>on</strong>g> is also capable <str<strong>on</strong>g>of</str<strong>on</strong>g> refine <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> Chinese script intermetallic<br />

[266, 267]. However, <strong>the</strong> mechanism for such refinement is not yet clear. Yuan et al<br />

[266] have suggested that <strong>the</strong> added <str<strong>on</strong>g>Sb</str<strong>on</strong>g> forms Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallic <str<strong>on</strong>g>and</str<strong>on</strong>g> acts as a<br />

nucleati<strong>on</strong> site for <strong>the</strong> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates. They have verified <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>;<br />

97


T 1 H Cghapter4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

precipitates using XRD. In <strong>the</strong> present study no such peaks corresp<strong>on</strong>ding to Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>;<br />

precipitate is observed in XRD studies. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, <strong>the</strong> EDS analysis carried<br />

out <strong>on</strong> <strong>the</strong> Mg;;<str<strong>on</strong>g>Si</str<strong>on</strong>g> particle indicate <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> in it as shown in Figure 4.21. In<br />

order to have more informati<strong>on</strong> <strong>on</strong> <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> over <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic,<br />

line scan across <strong>the</strong> particle <str<strong>on</strong>g>and</str<strong>on</strong>g> X-ray mapping was also carried out <str<strong>on</strong>g>and</str<strong>on</strong>g> given in<br />

Figures 4.22 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4.23 respectively. These studies c<strong>on</strong>firm no <str<strong>on</strong>g>Sb</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> in <strong>the</strong><br />

Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> particles, ra<strong>the</strong>r distributed evenly throughout <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic.<br />

Elements like Ca. P <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> are normally added to Al-<str<strong>on</strong>g>Si</str<strong>on</strong>g> alloys to modify <strong>the</strong><br />

eutectic <str<strong>on</strong>g>and</str<strong>on</strong>g> primary <str<strong>on</strong>g>Si</str<strong>on</strong>g> particles. <str<strong>on</strong>g>Sr</str<strong>on</strong>g> is also a well-known modifier for <str<strong>on</strong>g>Si</str<strong>on</strong>g> in<br />

hypoeutectic Al-<str<strong>on</strong>g>Si</str<strong>on</strong>g> alloys [268, 269]. Based <strong>on</strong> this, it is believed that <str<strong>on</strong>g>Sr</str<strong>on</strong>g> can also<br />

change <strong>the</strong> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic. However, studies <strong>on</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> modificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic in Mg alloys is not reported in literature. In <strong>the</strong> present study,<br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic in AZ9l alloy is carried out <str<strong>on</strong>g>and</str<strong>on</strong>g> found that <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

changes <strong>the</strong> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g>. <str<strong>on</strong>g>Si</str<strong>on</strong>g>milar to <str<strong>on</strong>g>Sb</str<strong>on</strong>g> modified alloy <strong>the</strong> XRD pattem<br />

taken <strong>on</strong> <strong>the</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> modified alloy does not show any peaks for <str<strong>on</strong>g>Sr</str<strong>on</strong>g> c<strong>on</strong>taining comp<strong>on</strong>ent.<br />

However, EDS spectrum taken at <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates shown in Figure 4.24<br />

indicates <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> in it. X-ray mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> modified Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

intermetallic (Figure 4.25) also indicates <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> in Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic<br />

IS even.<br />

From <strong>the</strong>se results, it is more logical to c<strong>on</strong>clude that both <strong>the</strong> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

additi<strong>on</strong> restrict <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic during solidificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> change<br />

<strong>the</strong> morphology ra<strong>the</strong>r than act as a nucleant. Uneven size <str<strong>on</strong>g>and</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> modified<br />

Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> particles are also support this modificati<strong>on</strong> mechanism. However, more<br />

rigorous TEM studied are needed to c<strong>on</strong>firm <strong>the</strong> modificati<strong>on</strong> mechanism, which is<br />

included in <strong>the</strong> future course <str<strong>on</strong>g>of</str<strong>on</strong>g> work.<br />

98


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

'T55’b<br />

\<br />

. .,_ mu $.00 2.00 1.60<br />

Figure 4.21: SEM photograph <str<strong>on</strong>g>and</str<strong>on</strong>g> EDS spectrum taken <strong>on</strong> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> in <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added<br />

AZ914-0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy indicates <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> in it<br />

i<br />

Figure 4.22: Line scanning taken across <strong>the</strong> modified Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitate in <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

added AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy<br />

99<br />


I.<br />

Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.23: X- ray mapping taken <strong>on</strong> <strong>the</strong> modified Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitate in <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

added AZ9l-i-0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy<br />

i ii ""jMg1


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.25: X- ray mapping taken <strong>on</strong> <strong>the</strong> modified Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitate in <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

added AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy indicates <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> in<br />

Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic<br />

4.2 GRAIN REFINEMENT<br />

This secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> chapter deals <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> alloying additi<strong>on</strong>s <strong>on</strong> <strong>the</strong> grain<br />

refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy. Apart from forming intermetallics, some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> elements<br />

added refine <strong>the</strong> base alloy grain size. With as cast microstructure, <strong>the</strong> grain<br />

boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al alloys are not revealed properly. The normal procedure to<br />

visualize <strong>the</strong> grain boundary is to soluti<strong>on</strong> treat <strong>the</strong> alloy at 410°C h for 28 h <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

ageing it at 200°C for lh. [l24, 270-272]. Ageing treatment enhances <strong>the</strong> delineati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> grain boundaries. The boundaries can be <strong>the</strong>n seen under microscope in etched<br />

c<strong>on</strong>diti<strong>on</strong>. In <strong>the</strong> present study, <strong>the</strong> grain size was mainly measured by linear intersect<br />

method using image analyzer attached with <strong>the</strong> optical microscope. However, in some<br />

cases <strong>the</strong> grain sizes were measured by manually as well. The grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l<br />

alloy with <str<strong>on</strong>g>and</str<strong>on</strong>g> without different alloying elements in soluti<strong>on</strong> treated c<strong>on</strong>diti<strong>on</strong> is<br />

presented in Table 4.2. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy microstructures are also presented in Figure<br />

4.26. All <strong>the</strong> microstructures show variati<strong>on</strong> in grain sizes. Due to <strong>the</strong> large variati<strong>on</strong><br />

in grain sizes difficulties were encountered during <strong>the</strong> measurement. Minimum 5<br />

measurements were carried out <str<strong>on</strong>g>and</str<strong>on</strong>g> average grain size is reported. It could be seen<br />

101


i.<br />

i<br />

l<br />

_ _ g Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Table 4.2: Grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> various alloys at soluti<strong>on</strong> treated c<strong>on</strong>diti<strong>on</strong><br />

l<br />

I<br />

r<br />

l Alloy 7 Grain size, Alloy Grain size, l<br />

s<br />

pm<br />

l<br />

lm<br />

, AZ91 80¢10 AZ91+0.2% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> 65 =b 6<br />

o to<br />

l<br />

AZ9l+0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> 7018 AZ9l+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> 555:4<br />

til<br />

l AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> 73110 AZ9l+0.7%<br />

_ . 4<br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

_<br />

52 :l:<br />

,<br />

8<br />

l<br />

i<br />

AZ91+0.2 % <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

63¢12<br />

80¢ 5 AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2%<br />

l -<br />

<str<strong>on</strong>g>Sb</str<strong>on</strong>g> 60<br />

­<br />

:i: 20 l<br />

AZ9l+0.5 % <str<strong>on</strong>g>Sb</str<strong>on</strong>g> 70115 AZ91+0i.5% si+0.1°/Z <str<strong>on</strong>g>Sr</str<strong>on</strong>g> 7 45 1 5<br />

if Az91+0.7% sb<br />

L 7<br />

result in enhanced <str<strong>on</strong>g>and</str<strong>on</strong>g> persistent nucleati<strong>on</strong> with l<strong>on</strong>ger time for <strong>the</strong> initial grain<br />

growth. From <strong>the</strong> Figure 4.27 it could be seen that when <strong>the</strong> growth rate G’ < G <strong>the</strong><br />

nucleati<strong>on</strong> rate would be N’ > N [275].<br />

Grain refinement due to <strong>the</strong> elemental additi<strong>on</strong>s in Mg alloys is reported in<br />

literature. [22], 222, 224, 231, 239, 276, 277]. Guangyin et al [221] noticed a grain<br />

size reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 115 um to 80 um with 0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> to AZ91 alloy. Lee et al [231] have<br />

reported that <str<strong>on</strong>g>Si</str<strong>on</strong>g> is also capable <str<strong>on</strong>g>of</str<strong>on</strong>g> refining <strong>the</strong> grain in Mg—<str<strong>on</strong>g>Si</str<strong>on</strong>g> binary alloys. Shuanug<br />

Shou et al. [224] also have reported that Ca additi<strong>on</strong> to AZ91 alloy act as an effective<br />

refiner <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> mechanism behind is that <strong>the</strong> added Ca segregates at <strong>the</strong> grain<br />

boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> hence increases <strong>the</strong> c<strong>on</strong>stituti<strong>on</strong>al super cooling. However, in this<br />

present study not much refinement is observed with <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong>. One possible reas<strong>on</strong><br />

for this is <strong>the</strong> purity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> melt. it is shown in literature that <strong>the</strong> grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91<br />

varies substantially depending <strong>on</strong> <strong>the</strong> purity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ingots used to make <strong>the</strong> alloy<br />

[24l]. It <strong>the</strong>refore appears that aluminium in combinati<strong>on</strong> with impurity elements<br />

affects <strong>the</strong> potency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nucleants in <strong>the</strong> melt. This might be <strong>the</strong> reas<strong>on</strong> for <strong>the</strong> low<br />

efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> in AZ91 alloy as a grain refiner in <strong>the</strong> present study.<br />

104


H _ Chapter 4:[Resu|ts <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

N, N’ - Nucleati<strong>on</strong> Rates<br />

y G, G’ - Growth Rates G G,<br />

‘L ____~ Y<br />

___'I- i|§<br />

I i f_ §~=@@ I"<br />

I §t§g=('iJ_W_g <str<strong>on</strong>g>Si</str<strong>on</strong>g>igeul<br />

Figure 4.27: Schematic diagram illustrating <strong>the</strong> nucleati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth rates<br />

during <strong>the</strong> early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> solidificati<strong>on</strong> [274]<br />

There are some ambiguities over <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> <strong>on</strong> <strong>the</strong> grain<br />

refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al alloys. Hirai et al [222] have reported that <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> refines <strong>the</strong><br />

grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy. However, Peng Zhao et al. [239] have found that <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong><br />

has little effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> grain refinement <strong>on</strong> AM50 alloy. Y.C. Lee ct al [277] also<br />

have reported that <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> has a significant grain refining effect <strong>on</strong>ly in low Al<br />

c<strong>on</strong>taining alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> particularly in pure magnesium not with higher aluminium<br />

c<strong>on</strong>taining alloy like AZ9l. The GRF parameters [m=-3.53, k=0.006 <str<strong>on</strong>g>and</str<strong>on</strong>g> m (k-l) =<br />

3.51] values found in <strong>the</strong> literature [277] also indicate that <strong>the</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> has little effect <strong>on</strong><br />

grain refinement. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, S.Lee et al [231] have found that <str<strong>on</strong>g>Sr</str<strong>on</strong>g> has a great<br />

effect <strong>on</strong> grain refinement (more than 50% reducti<strong>on</strong> in grain size) in AZ9l alloy.<br />

They argued that <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> alters <strong>the</strong> precipitati<strong>on</strong> process <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>reby restrict <strong>the</strong><br />

grain growth. More Al is precipitated as Mg]-,Al1;> at <strong>the</strong> grain boundaries without<br />

growing into <strong>the</strong> matrix, which al<strong>on</strong>g with Mg-Al-<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallics hinders <strong>the</strong><br />

movement <str<strong>on</strong>g>of</str<strong>on</strong>g> grain boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> subsequent grain growth leading to <strong>the</strong> greater<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> grain refinement [23 l]. In <strong>the</strong> present study also it is observed during ageing<br />

treatment that more number <str<strong>on</strong>g>of</str<strong>on</strong>g> grain boundaries are seen with disc<strong>on</strong>tinuous Mgl-;Al|;<br />

intermetallic in <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added AZ9l alloy.<br />

105


_ H Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

4.3 HEAT TREATMENT<br />

As cast microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> many high aluminum rich<br />

eutectic regi<strong>on</strong>s apart from disc<strong>on</strong>tinuous precipitates at <strong>the</strong> grain boundary<br />

(ref. Table 4.1). During high temperature exposure, sec<strong>on</strong>dary precipitates (both<br />

c<strong>on</strong>tinuous <str<strong>on</strong>g>and</str<strong>on</strong>g> disc<strong>on</strong>tinuous) form from <strong>the</strong> supersaturated areas [278]. It is believed<br />

that presence <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous precipitates is detrimental to mechanical properties,<br />

particularly <strong>the</strong> creep [279]. Hence reduce <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous precipitate is<br />

essential to improve its mechanical properties. In order to study <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> alloying<br />

additi<strong>on</strong>s <strong>on</strong> DP reacti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> also its influence <strong>on</strong> <strong>the</strong> age hardening resp<strong>on</strong>se, heat<br />

treatment studies were c<strong>on</strong>ducted <strong>on</strong> selected samples <str<strong>on</strong>g>and</str<strong>on</strong>g> its soluti<strong>on</strong> as well as aged<br />

microstructures were examined.<br />

4.3.1 Soluti<strong>on</strong> Treatment<br />

Soluti<strong>on</strong> treatment was carried out <strong>on</strong> all <strong>the</strong> alloy samples at 410°C for 48 h.<br />

Normally <strong>the</strong> eutectic Mg|7Al|2 dissolves into <strong>the</strong> matrix slowly due to its massive<br />

size in gravity cast alloys. lt takes around 12 h for complete dissoluti<strong>on</strong> but for <strong>the</strong><br />

homogenizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al in <strong>the</strong> Mg matrix 48 h is required [I34]. The microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soluti<strong>on</strong> treated AZ9lalloy shown in Figure 4.28 c<strong>on</strong>tains no massive M811/X112 but<br />

some Al-Mn intermetallic particles still could be seen as <strong>the</strong>se particles are stable<br />

even at 410°C. Grain boundary is also seen but it is not completely revealed.<br />

Figure 4.29 shows <strong>the</strong> soluti<strong>on</strong> treated microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>,<br />

AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g>, AZ9l+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> AZ9l+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloys. It could be seen<br />

from <strong>the</strong> microstructures that all <strong>the</strong> intermetallics, Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g>, Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; <str<strong>on</strong>g>and</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> in <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloys respectively, are still appeared at <strong>the</strong> grain boundary even after 48<br />

h <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> treatment, which indicates that <strong>the</strong>se intermetallics are stable at high<br />

temperature. The main reas<strong>on</strong> for <strong>the</strong> stability is that <strong>the</strong>se intermetallics are having<br />

high melting point (Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> -ll20°C, Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2- l228°C <str<strong>on</strong>g>and</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g>-l040°C) <str<strong>on</strong>g>and</str<strong>on</strong>g> low<br />

diffusivity in Mg compared to Al [280]. However, <strong>the</strong>re are few undissolved Mgn/X112<br />

intemetallic also seen in <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy (Figure 4.29 (d)).<br />

106


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.28: <strong>Microstructure</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> treated AZ9l showing no Mg17Al1;<br />

intermetallic<br />

Even though <strong>the</strong> intermetallic is stable during soluti<strong>on</strong> treatment, refinement in<br />

Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> Chinese script morphology is observed in AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy. Figure 4.30<br />

shows a higher magnified view <str<strong>on</strong>g>of</str<strong>on</strong>g> Chinese script Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic after soluti<strong>on</strong><br />

treatment, which illustrate <strong>the</strong> linear branches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Chinese script phase become<br />

disc<strong>on</strong>nected <str<strong>on</strong>g>and</str<strong>on</strong>g> spheriodized due to <strong>the</strong> prol<strong>on</strong>ged treatment at 410°C for 48 h.<br />

Refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> Chinese script Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates during heat treatment in Mg-6Al-X<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

alloy at 420°C is observed in earlier study [28l]. Soluti<strong>on</strong> treatment principally<br />

influences <strong>the</strong> alloys in two ways (1) improving <strong>the</strong> vibrati<strong>on</strong> energy <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> diffusi<strong>on</strong><br />

coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> atoms, <str<strong>on</strong>g>and</str<strong>on</strong>g> (2) increasing <strong>the</strong> vacancies in <strong>the</strong> alloys. Due to this, <strong>the</strong><br />

solutes will dissolve into <strong>the</strong> matrix, resulting in <strong>the</strong> decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

intermetallic compounds. This mechanism is valid for Mg|1Al|; because <strong>the</strong> solubility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Al increases at <strong>the</strong> high temperature. From <strong>the</strong> Mg-<str<strong>on</strong>g>Si</str<strong>on</strong>g> phase diagram (ref Figure<br />

4.5), it could be seen that <str<strong>on</strong>g>Si</str<strong>on</strong>g> does not have much solubility in Mg matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> hence<br />

<strong>the</strong> refinement mechanism must be different.<br />

107<br />

l<br />

l


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.29: <strong>Microstructure</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> treated alloying element added AZ9l<br />

alloy showing Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g>, Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>;, Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallics in<br />

(a) AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> (b)AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> (c) AZ91+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

(d) AZ9l+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> respectively<br />

Figure 4.30: Soluti<strong>on</strong> treated microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added AZ9l alloy<br />

showing refinement in Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic<br />

108


H H Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Grain boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> interface between <strong>the</strong> phases <str<strong>on</strong>g>of</str<strong>on</strong>g> alloys are c<strong>on</strong>taining lot<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> defects like dislocati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> vacancies. Diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms through <strong>the</strong>se defects is<br />

easier <str<strong>on</strong>g>and</str<strong>on</strong>g> faster than <strong>the</strong> perfect matrix. So, it is obvious that <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g>/Mg interface<br />

plays an important role during <strong>the</strong> morphology changing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates. <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

atom movement within <strong>the</strong> precipitates is ruled out since Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> has c<strong>on</strong>gruent melting<br />

point <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly exists at stoichiometric compositi<strong>on</strong> [2 82]. Therefore it is reas<strong>on</strong>able to<br />

believe that <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g>/Mg interface is <strong>the</strong> possible <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly diffusi<strong>on</strong> way for <str<strong>on</strong>g>Si</str<strong>on</strong>g>. Y.S.<br />

Lu [281] has proposed a mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> process at <strong>the</strong> interface <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g>/Mg<br />

during high temperature exposure. The process is illustrated in Figure 4.31. There<br />

always exist c<strong>on</strong>caves <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>vexities <strong>on</strong> <strong>the</strong> particles al<strong>on</strong>g <strong>the</strong> interface, indicating<br />

different stress status as shown in Figure 4.31 (a). The interface tensi<strong>on</strong> made <strong>the</strong><br />

nearby <str<strong>on</strong>g>Si</str<strong>on</strong>g> atoms escape from <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> lattice <str<strong>on</strong>g>and</str<strong>on</strong>g> move coincidently. The <str<strong>on</strong>g>Si</str<strong>on</strong>g> atoms<br />

diffuse al<strong>on</strong>g <strong>the</strong> interfaces <str<strong>on</strong>g>and</str<strong>on</strong>g> enter <strong>the</strong> magnesium lattice in a new positi<strong>on</strong> to form<br />

Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> again, leading to <strong>the</strong> local decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> morphology changing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> particles. As a result, <strong>the</strong> atom at <strong>the</strong> tip will move toward <strong>the</strong> middle, <strong>the</strong><br />

c<strong>on</strong>caves will become more sunken <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>vexities become smooth as shown in<br />

Figure 4.31 (b). It is believed that <strong>the</strong> straight part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> particle keep stable because<br />

<strong>the</strong> diffusi<strong>on</strong> al<strong>on</strong>g <strong>the</strong> interface is homogeneous. Finally <strong>the</strong> linear particle will be<br />

broken near <strong>the</strong> c<strong>on</strong>caves <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> spheriodizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sub-particles c<strong>on</strong>tinues as<br />

shown in Figure 4.31 (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) [Z81].<br />

(aué Qi .. .7 - 3 "<br />

U­<br />

(b> < ' ­<br />

(c) Q<br />

-L1<br />

.. > C<br />

J1<br />

C3 I C<br />

Figure 4.31: Schematic diagram illustrating <strong>the</strong> refinement mechanism for Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

intermetallic [281]<br />

109


g Chapter 4; Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

In Figure 4.29(c), it could be seen that, in additi<strong>on</strong> to Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallic, <strong>the</strong>re<br />

are some eutectic Mg17Al12 (but become smaller in size) appeared at <strong>the</strong> grain<br />

boundary in <strong>the</strong> soluti<strong>on</strong> treated c<strong>on</strong>diti<strong>on</strong> (marked in <strong>the</strong> microstructure). Of course,<br />

<strong>on</strong>ly few particles <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg11Al1; phase is seen, which means that <strong>the</strong> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

phase is not completely prevented but its stability slightly increases with <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>.<br />

It is also seen from Figure 4.32, which shows <strong>the</strong> higher magnified view <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al12<br />

intermetallic in AZ9l+0.5%<str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy, that its boundary has many curvatures. This<br />

indicates <strong>the</strong> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phase into <strong>the</strong> matrix but slowly. This increase in<br />

stability is attributed to <strong>the</strong> fact that part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> added <str<strong>on</strong>g>Sr</str<strong>on</strong>g> dissolves in to <strong>the</strong> Mg11Al12<br />

intermetallic. The EDS taken <strong>on</strong> Mg17Al12 c<strong>on</strong>firms <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> in it. (ref<br />

Figure 4.18). The structure stability <str<strong>on</strong>g>of</str<strong>on</strong>g> intermetallic compound depends <strong>on</strong> its b<strong>on</strong>d<br />

energy. It is believed that dissolved <str<strong>on</strong>g>Sr</str<strong>on</strong>g> might increase <strong>the</strong> b<strong>on</strong>d energy <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;7Al1;<br />

intennetallic <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>reby increase its stability [239]. <str<strong>on</strong>g>Si</str<strong>on</strong>g>milar kind <str<strong>on</strong>g>of</str<strong>on</strong>g> results is reported<br />

with Ca additi<strong>on</strong> to AZ91 alloy [283, 284].<br />

4.3.2 Ageing Behavior<br />

The age hardening behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloys with <str<strong>on</strong>g>and</str<strong>on</strong>g> without alloying<br />

additi<strong>on</strong>s at 200°C is shown in Figure 4.33. The Brinell hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> heat treated alloys<br />

at different tempering c<strong>on</strong>diti<strong>on</strong>s is presented in Table 4.3. The as cast hardness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AZ91 alloy (63.9 BHN) reduces slightly (57.8 BHN) with soluti<strong>on</strong> treated c<strong>on</strong>diti<strong>on</strong>,<br />

which is due to <strong>the</strong> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hard Mgr‘/Al]; phase in to <strong>the</strong> matrix. But <strong>the</strong><br />

hardness is not reduced much since aluminium provides solid soluti<strong>on</strong> streng<strong>the</strong>ning<br />

[285]. There are some studies, which report even a slight increase in hardness as well<br />

as <strong>the</strong> strength with soluti<strong>on</strong> treated c<strong>on</strong>diti<strong>on</strong> due to <strong>the</strong> high percent <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium in<br />

solid soluti<strong>on</strong> compared to as cast c<strong>on</strong>diti<strong>on</strong> [286]. But most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data available in<br />

literature suggests soluti<strong>on</strong> treatment reduces <strong>the</strong> hardness [285, 287]. At peak aged<br />

c<strong>on</strong>diti<strong>on</strong> <strong>the</strong> hardness increases to 83.8 BHN due to <strong>the</strong> re precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> MgnAl1;<br />

phase as fine <str<strong>on</strong>g>and</str<strong>on</strong>g> evenly distributed c<strong>on</strong>tinuous precipitates in <strong>the</strong> grain <str<strong>on</strong>g>and</str<strong>on</strong>g> laminar<br />

coarse disc<strong>on</strong>tinuous precipitates at <strong>the</strong> grain boundary. Even though, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> age<br />

hardening is due to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fine c<strong>on</strong>tinuous precipitates, disc<strong>on</strong>tinues<br />

precipitates are also c<strong>on</strong>tributes to <strong>the</strong> hardness to certain extent [I36]. The peak<br />

hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> base alloy is reached around 900 min. The l<strong>on</strong>ger time taken to reach<br />

110


E _ Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

<strong>the</strong> peak hardness even at 200°C indicates that <strong>the</strong> precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al1;<br />

intermetallic is a sluggish process. Moreover, <strong>the</strong> maximum hardness obtained at peak<br />

aged c<strong>on</strong>diti<strong>on</strong> (<strong>the</strong> soluti<strong>on</strong> treated hardness increase from 57.8 BI-IN to<br />

83.8 Bl-IN at peak aged c<strong>on</strong>diti<strong>on</strong>) suggests that <strong>the</strong> hardening resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l is<br />

poorer than that <str<strong>on</strong>g>of</str<strong>on</strong>g> many heat-treatable aluminium alloys, where a great improvement<br />

in hardness could be expected in peak aged c<strong>on</strong>diti<strong>on</strong>. The major reas<strong>on</strong> for this poor<br />

hardening resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 is <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> less number <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitates, which can<br />

be favourably oriented to obstruct <strong>the</strong> basal slip. Celotto [134] reported that rod or<br />

lath-shaped precipitates lying perpendicular or at an angle to <strong>the</strong> basal plane are more<br />

effective in preventing <strong>the</strong> basal slip than symmetric lozenge or lath-shaped<br />

precipitates lying parallel to <strong>the</strong> basal plane. It is also reported that <strong>on</strong>ly few<br />

precipitates are favourably orientated to obstruct <strong>the</strong> basal slip in AZ9l alloy [I34].<br />

From Figure 4.33, it can be seen that with all alloying additi<strong>on</strong>s <strong>the</strong> trend <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> ageing curve is not changed to a large extent. <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> both individual <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

combined with <str<strong>on</strong>g>Sb</str<strong>on</strong>g> increase <strong>the</strong> peak aged hardness c<strong>on</strong>siderably. The highest peak<br />

hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> I02 BHN is obtained with AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloy. Even though<br />

<strong>the</strong> as cast <str<strong>on</strong>g>and</str<strong>on</strong>g> as soluti<strong>on</strong> treated hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy is higher than <strong>the</strong><br />

base alloy, at peak aged c<strong>on</strong>diti<strong>on</strong> <strong>the</strong> hardness is not varying much with <strong>the</strong> base<br />

alloy. Reas<strong>on</strong>able increase in hardness is noticed with 0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy.<br />

Increase in hardness at as cast <str<strong>on</strong>g>and</str<strong>on</strong>g> as soluti<strong>on</strong> treated c<strong>on</strong>diti<strong>on</strong> with elemental<br />

additi<strong>on</strong>s are due to <strong>the</strong> combined effect <str<strong>on</strong>g>of</str<strong>on</strong>g> two factors: presence <str<strong>on</strong>g>of</str<strong>on</strong>g> hard intermetallic<br />

phase <str<strong>on</strong>g>and</str<strong>on</strong>g> grain refinement. The intermetallics like Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g>, Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; <str<strong>on</strong>g>and</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> are<br />

known to be harder <str<strong>on</strong>g>and</str<strong>on</strong>g> stable than both Mg17Al12 <str<strong>on</strong>g>and</str<strong>on</strong>g> at-Mg. <str<strong>on</strong>g>Si</str<strong>on</strong>g>milarly, smaller <strong>the</strong><br />

grain sizes higher <strong>the</strong> hardness. When <strong>the</strong> grain refinement takes place, <strong>the</strong> area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

grain boundary increases <str<strong>on</strong>g>and</str<strong>on</strong>g> since at room temperature <strong>the</strong> grain boundary is str<strong>on</strong>ger<br />

than <strong>the</strong> matrix, <strong>the</strong> grain refinement provide higher hardness. Superior age hardening<br />

resp<strong>on</strong>se seen with AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloy over AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy is<br />

attributed to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> fine <str<strong>on</strong>g>and</str<strong>on</strong>g> evenly distributed Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitate <str<strong>on</strong>g>and</str<strong>on</strong>g> grain<br />

refinement noticed in <strong>the</strong> former alloy. When <strong>the</strong> precipitates are fine <str<strong>on</strong>g>and</str<strong>on</strong>g> evenly<br />

distributed throughout <strong>the</strong> microstructure <strong>the</strong> hardness greatly improves.<br />

Ill


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.32: Soluti<strong>on</strong> treated 0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy showing retained Mg]-;Al1;<br />

intermetallic c<strong>on</strong>taining curvatures in boundaries<br />

Q " §/' /<br />

J /<br />

' I Q _,_-.­<br />

J w T * +* ­<br />

5 ./<br />

0 500<br />

§ A .<br />

\_//.0; \§ /§\§<br />

p *1?/if *\% .L\:— §\,/’\ i‘ 2<br />

/E‘-F 3”<br />

-§/{LE/'§I"‘::;"i<br />

—I— AZ91 I<br />

_ --*— AZ91+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

— >— AZ91-o-0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

-0- AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

L -0- AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

1 000<br />

1500 2000 2500 3000<br />

Ageing<br />

time, min<br />

Figure 4.33: Ageing behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 with <str<strong>on</strong>g>and</str<strong>on</strong>g> without alloying additi<strong>on</strong>s at<br />

200°C<br />

112


W g_ Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Table 4.3: Hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> various alloys at different tempering c<strong>on</strong>diti<strong>on</strong>s<br />

.T¢mp@ring c<strong>on</strong>diti<strong>on</strong> e<br />

up g g H _ 8 llllll<br />

\ Alloy A As cast, Soluti<strong>on</strong> Peak aged, Time to reach<br />

BHN treated, BHN BHN peak “,g°i“g’<br />

up AZ91 63.9 5_7.8 85.8 ~900<br />

‘_gAz91+0.s% <str<strong>on</strong>g>Si</str<strong>on</strong>g> 68.1‘ 66.2 99.2 ~900<br />

Az91+o.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> 273.5 i“T6s.s 95.4T ~s4o<br />

T AZ91+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> 72.2 69.5" 89.54 ~600<br />

it AZ9l+0.5%<br />

<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2%<str<strong>on</strong>g>Sb</str<strong>on</strong>g> 76 W 102 K ~7so<br />

Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> hard intermetallies also leads to formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tinuous precipitates during ageing by changing <strong>the</strong> precipitati<strong>on</strong> process (as<br />

explained in secti<strong>on</strong> 4.3.3) <str<strong>on</strong>g>and</str<strong>on</strong>g> hence increases <strong>the</strong> peak aged hardness. The possible<br />

reas<strong>on</strong> for <strong>the</strong> poor ageing behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy is attributed to <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Al<br />

available for <strong>the</strong> precipitati<strong>on</strong> process during ageing. The microstmcture <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong><br />

treated alloy shows <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> some undissolved Mg11Al|2 massive<br />

intermetallics. These intermetallics retain <strong>the</strong> aluminum <str<strong>on</strong>g>and</str<strong>on</strong>g> hence <strong>on</strong>ly part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

total aluminum <strong>the</strong>n dissolves into <strong>the</strong> matrix during soluti<strong>on</strong> treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> involves<br />

in <strong>the</strong> precipitati<strong>on</strong> process during subsequent ageing. <str<strong>on</strong>g>Si</str<strong>on</strong>g>nce high hardness is<br />

associated with fine <str<strong>on</strong>g>and</str<strong>on</strong>g> evenly distributed precipitates occurred during ageing<br />

process (in this case, c<strong>on</strong>tinuous Mg;-;Al;2) compared to <strong>the</strong> massive phases occurred<br />

during solidificati<strong>on</strong>, <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy, despite it c<strong>on</strong>tain retained Mg]-,Al1; <str<strong>on</strong>g>and</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

intermetallics, does not exhibits higher hardness compared to o<strong>the</strong>r alloys at peak<br />

aged c<strong>on</strong>diti<strong>on</strong>.<br />

4.3.3 Aged <strong>Microstructure</strong>s<br />

The microstructural development <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l during ageing at a range <str<strong>on</strong>g>of</str<strong>on</strong>g> ageing<br />

temperatures is investigated <str<strong>on</strong>g>and</str<strong>on</strong>g> well documented in literature [l35, 153, 288]. During<br />

ageing process <strong>the</strong> aluminum in supersaturated matrix precipitates out as Mg17Al1;; in<br />

two forms: coarse disc<strong>on</strong>tinuous (cellular) <str<strong>on</strong>g>and</str<strong>on</strong>g> fine c<strong>on</strong>tinuous (transrgranular)<br />

precipitates. Disc<strong>on</strong>tinuous precipitates are a cellular growth <str<strong>on</strong>g>of</str<strong>on</strong>g> altemating layers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mg17Al12 phase <str<strong>on</strong>g>and</str<strong>on</strong>g> near equilibrium magnesium matrix at high angle grain<br />

boundaries. Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> disc<strong>on</strong>tinuous precipitati<strong>on</strong> regi<strong>on</strong>s ceases relatively early<br />

113


_ _g Chapter 4:Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

in <strong>the</strong> precipitati<strong>on</strong> process. C<strong>on</strong>tinuous precipitati<strong>on</strong> forms in <strong>the</strong> remaining regi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> matrix that are not already occupied by disc<strong>on</strong>tinuous precipitates [135, 153,<br />

288]. In <strong>the</strong> present study <strong>the</strong> microstructural changes during <strong>the</strong> ageing treatment at<br />

200°C is observed under light optical microscopy <str<strong>on</strong>g>and</str<strong>on</strong>g> SEM. Figure 4.34 shows <strong>the</strong><br />

microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy samples aged for 60, 120 <str<strong>on</strong>g>and</str<strong>on</strong>g> 240 min. In <strong>the</strong> beginning<br />

i.e. 60 min aging time, <strong>the</strong> grain boundary thickening takes place, which associated<br />

with <strong>the</strong> initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DP [Z89]. Due to this, <strong>the</strong> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy is clearly seen<br />

compared to <strong>the</strong> soluti<strong>on</strong> treated c<strong>on</strong>diti<strong>on</strong> (ref. Figure 4.28). Black appearance at<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> grain boundaries indicates that <strong>the</strong> DP process already started (marked in<br />

Figure 4.34 (a)). As <strong>the</strong> ageing time increases <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous phase is<br />

also increased. More number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> grain boundaries is seen with DP <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> already<br />

formed disc<strong>on</strong>tinuous phases are grown in to <strong>the</strong> adjusted grains as evident from <strong>the</strong><br />

microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> 120 <str<strong>on</strong>g>and</str<strong>on</strong>g> 240 min aged samples presented in Figure 4.34 (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> (c).<br />

The boundary c<strong>on</strong>diti<strong>on</strong> is important for <strong>the</strong> initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DP. Bradai et al. [145] have<br />

reported that DP initiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth occurs preferably at high angle grain<br />

boundaries. At <strong>the</strong> later stage <str<strong>on</strong>g>of</str<strong>on</strong>g> ageing, disc<strong>on</strong>tinuous precipitates are ceased <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>tinuous precipitates forms as <strong>the</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum supersaturati<strong>on</strong> reduced in<br />

<strong>the</strong> matrix. The microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> 1200 min aged AZ9l alloy sample given in<br />

Figure 4.35 clearly shows both well grown disc<strong>on</strong>tinuous precipitates at <strong>the</strong> grain<br />

boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> over aged coarse c<strong>on</strong>tinuous precipitates at <strong>the</strong> grain interior.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> alloying additi<strong>on</strong>s <strong>on</strong> <strong>the</strong> DP is seen from Figure 4.36, which<br />

shows 120 min aged microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> different alloys. From <strong>the</strong> microstructures it<br />

can be seen in general that <strong>the</strong> alloying additi<strong>on</strong>s reduce <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous<br />

precipitates at <strong>the</strong> grain boundary. The volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitates calculated<br />

using image analyzer for all <strong>the</strong> alloys aged for 120 min is given in Table 4.4. <str<strong>on</strong>g>Si</str<strong>on</strong>g>nce<br />

<strong>the</strong> DP is r<str<strong>on</strong>g>and</str<strong>on</strong>g>om al<strong>on</strong>g <strong>the</strong> grain boundaries in <strong>the</strong> microstructure, <strong>the</strong> calculated<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> is high. Ten microstructures taken at different locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

sample were used to calculate <strong>the</strong> volume fracti<strong>on</strong>s. In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> large variati<strong>on</strong> in<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong>, it is evident that additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> combined additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> reduces <strong>the</strong> DP greatly. However, <str<strong>on</strong>g>Sr</str<strong>on</strong>g> is not effective in suppressing <strong>the</strong> DP<br />

114


H ____M____p_=___ Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

compared to o<strong>the</strong>r elemental additi<strong>on</strong>s. In fact slightly higher volume <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous<br />

precipitates is noticed with AZ9l+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy as evident from Figure 4.36 (d).<br />

Disc<strong>on</strong>tinuous precipitati<strong>on</strong> is a solid-state decompositi<strong>on</strong> reacti<strong>on</strong> that<br />

c<strong>on</strong>verts <strong>the</strong> supersaturated solid soluti<strong>on</strong> oto, into two phases <strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> B aggregate<br />

behind a migrating reacti<strong>on</strong> fr<strong>on</strong>t. Unlike any o<strong>the</strong>r solid-state heterogeneous process,<br />

<strong>the</strong> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>current boundary migrati<strong>on</strong> in disc<strong>on</strong>tinuous<br />

precipitati<strong>on</strong> necessitates a ra<strong>the</strong>r complex reacti<strong>on</strong> mechanism to follow. Different<br />

kind <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanism such as precipitate-matrix misfit, solute-solvent atomic size<br />

difference, solute segregati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> diffusi<strong>on</strong> coherency strain <strong>the</strong>ory are proposed for<br />

disc<strong>on</strong>tinuous precipitati<strong>on</strong> [290-292]. However, still it is not very clear that which<br />

mechanism dominates in Mg-Al alloys. Recently Kashyap et al. <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan et al.<br />

[293, 294] have reported that additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pb reduces <strong>the</strong> grain boundary precipitates in<br />

term <str<strong>on</strong>g>of</str<strong>on</strong>g> volume fracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> it is suggested that additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pb segregates at <strong>the</strong> grain<br />

boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> reduces <strong>the</strong> grain boundary diffusi<strong>on</strong> coherency strain, which in results<br />

reduce <strong>the</strong> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> grain boundary. Bettles et al. [279] have also reported that<br />

gold additi<strong>on</strong> in AZ9l alloy greatly reduces <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous<br />

precipitates during ageing process. They have suggested <strong>the</strong> tiny (up to 5 nm) gold<br />

particles presented throughout <strong>the</strong> matrix might have inhibited <strong>the</strong> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> both<br />

atoms <str<strong>on</strong>g>and</str<strong>on</strong>g> grain boundaries.<br />

In <strong>the</strong> present case, both <strong>the</strong> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> have very low solubility in Mg <str<strong>on</strong>g>and</str<strong>on</strong>g> it<br />

forms Mg;><str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2 intermetallics respectively. Hence <strong>the</strong> mechanism for <strong>the</strong><br />

suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous precipitate due to <strong>the</strong>se additi<strong>on</strong>s must be different.<br />

Recently, Yizhen Lu et al [295] have reported that additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> to Mg-6Al alloy<br />

reduces <strong>the</strong> DP during ageing due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> hard Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates. It is<br />

suggested that <strong>the</strong> dislocati<strong>on</strong>s generated in <strong>the</strong> matrix around <strong>the</strong> hard Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

precipitates during cooling due to difference in co-efficient <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>rmal expansi<strong>on</strong><br />

between matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> precipitate act as a heterogeneous nucleati<strong>on</strong> sites for c<strong>on</strong>tinuous<br />

precipitates. By this process, <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> reduces <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous<br />

precipitate [295]. The same <strong>the</strong>ory could be evoked for <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> also. Hence <strong>the</strong><br />

ll5


ii<br />

A<br />

r<br />

I<br />

{I<br />

i<br />

L 1<br />

x Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

higher hardness obtained with <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> at peak aged c<strong>on</strong>diti<strong>on</strong> might also be<br />

attributed to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> more number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous precipitates.<br />

It is found from <strong>the</strong> aged microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy that more amounts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous precipitate forms in <strong>the</strong> initial stage <str<strong>on</strong>g>of</str<strong>on</strong>g> ageing. More number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

boundaries is seen with DP compared to o<strong>the</strong>r alloys as shown in Figure 4.36 (d). The<br />

volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous precipitates calculated is slightly higher / equal<br />

compared to <strong>the</strong> base alloy (ref. Table 4.4). It could be also seen from Table 4.3 that<br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy reaches <strong>the</strong> peak hardness little early than <strong>the</strong> base alloy. This is due to<br />

low amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Al available in <strong>the</strong> solid soluti<strong>on</strong>. Nussbaum et al [238] <str<strong>on</strong>g>and</str<strong>on</strong>g> Lee et al<br />

[231] reported that <str<strong>on</strong>g>Sr</str<strong>on</strong>g> modifies <strong>the</strong> precipitati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al alloys by<br />

promoting more precipitates al<strong>on</strong>g <strong>the</strong> grain boundaries. However, <strong>the</strong> reas<strong>on</strong> behind<br />

_ such occurrence is not known. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DP during ageing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al is a combined effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Al in <strong>the</strong> solid soluti<strong>on</strong>, grain size <str<strong>on</strong>g>and</str<strong>on</strong>g> ageing<br />

temperature [I46]. High amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Al, finer grain size (high angle grain boundary)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> medium ageing temperature (I50-250°C) leads to more DP in Mg-Al alloys.<br />

Hence, <strong>the</strong> boundary characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy is necessary to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

precipitati<strong>on</strong> mechanism.<br />

Table 4.4: Volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous precipitates formed in 120 min aged<br />

Samples<br />

Volume 4 i W<br />

fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

I<br />

ll<br />

.<br />

X.<br />

,.<br />

­ Allo AZ91 4 . ' 4 ' A AZ91+0.5%<str<strong>on</strong>g>Sr</str<strong>on</strong>g> ­<br />

L g Y ._ X %si _ . g <str<strong>on</strong>g>Sb</str<strong>on</strong>g> g i<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

disc<strong>on</strong>tinuous y 8.51:4 2.7i2.Z 4.l¢3.6 » l0.2¢5.2 3.5:l:2.8<br />

precipitates,<br />

% .<br />

4 AZ91+05 Az91+o 5% it 4 P Az91+o.5°/<br />

ll6


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.34: Aged microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 for different time showing<br />

disc<strong>on</strong>tinuous precipitates at <strong>the</strong> grain boundaries (a) 60 min<br />

(b) 120 min (c) 240 min<br />

I17


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.35: 1200 min aged microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l showing both c<strong>on</strong>tinuous<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> disc<strong>on</strong>tinuous precipitates<br />

Figure 4.36: 120 min aged microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloys with different alloying<br />

additi<strong>on</strong>s showing disc<strong>on</strong>tinuous precipitates (a) AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

(b) AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> (c) AZ91+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> (d) AZ91+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

118


[E my g Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Djscussi<strong>on</strong><br />

4.4 TENSILE PROPERTIES<br />

The alloying additi<strong>on</strong>s, apart from introducing various intermetallics <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

refining <strong>the</strong> grain size, refines also <strong>the</strong> Mg11Al1; intermetallics in some cases (like <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

additi<strong>on</strong>). These microstructural variati<strong>on</strong>s influence <strong>the</strong> tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91<br />

alloy. Hence, <strong>the</strong> tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy with <str<strong>on</strong>g>and</str<strong>on</strong>g> without additi<strong>on</strong>s were<br />

evaluated, compared <str<strong>on</strong>g>and</str<strong>on</strong>g> presented in this secti<strong>on</strong>. Tensile samples were prepared in<br />

accordance with ASTM E8 st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> tests were carried out at room as well as<br />

high temperatures (up to 200°C for base alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> at 1509C for all remaining alloys).<br />

Five samples were tested for each alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> average value was reported.<br />

Extensometer was used to get <strong>the</strong> % el<strong>on</strong>gati<strong>on</strong> during room temperature testing but<br />

for high temperature tests, <strong>the</strong> values were manually calculated from <strong>the</strong> markings <strong>on</strong><br />

<strong>the</strong> sample (25mm gauge length was used). Fractography studies were also carried out<br />

to identify <strong>the</strong> micro-fracture mechanism.<br />

4.4.1 AZ91 Alloy<br />

Figure 4.37 presents <strong>the</strong> ultimate tensile strength (UTS), yield strength (YS)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> el<strong>on</strong>gati<strong>on</strong> (%E) <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy measured from <strong>the</strong> tensile test<br />

carried out at different testing temperatures (RT, 100, 150, 200°C). The tensile<br />

properties obtained in <strong>the</strong> present investigati<strong>on</strong> are inline with <strong>the</strong> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard values<br />

reported in <strong>the</strong> Materials Science H<str<strong>on</strong>g>and</str<strong>on</strong>g> Book [296] <str<strong>on</strong>g>and</str<strong>on</strong>g> published by Intemati<strong>on</strong>al<br />

Magnesium Associati<strong>on</strong> (IMA), Canada [297]. In fact, <strong>the</strong> tensile properties obtained<br />

in <strong>the</strong> present study are higher than many published values in literature [41, 42, 48]. In<br />

general, <strong>the</strong> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9lalloy reported in literature are scatter in<br />

nature mainly due to <strong>the</strong> difference in <strong>the</strong> casting process variables, which alter <strong>the</strong><br />

microstructural features like grain size, eutectic volume fracti<strong>on</strong>, porosity <str<strong>on</strong>g>and</str<strong>on</strong>g> etc<br />

[298, 299]. Moreover, properties variati<strong>on</strong> within casting is also noticed by many<br />

researchers [43, 155, 300-304]. E. Aghi<strong>on</strong> et al [155] have reported that <strong>the</strong> tensile<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> die cast AZ91 alloy are highly sensitive to wall thickness. C<strong>on</strong>siderable<br />

change in UTS, YS <str<strong>on</strong>g>and</str<strong>on</strong>g> %E is noticed with samples tested from different locati<strong>on</strong><br />

al<strong>on</strong>g <strong>the</strong> wall thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> casting. Yang et al [43] have also reported <strong>the</strong> same in<br />

gravity cast AZ91 alloy.<br />

119


_ Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

In <strong>the</strong> present study also variati<strong>on</strong> in <strong>the</strong> tensile properties are noticed with <strong>the</strong><br />

samples taken at <strong>the</strong> different locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> casting. As shown in Figure 3.3 in<br />

chapter 3, <strong>the</strong> casting thickness obtained is around 40 mm. In order to check <strong>the</strong><br />

variati<strong>on</strong> in <strong>the</strong> tensile properties, samples from <strong>the</strong> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> casting are also<br />

evaluated <str<strong>on</strong>g>and</str<strong>on</strong>g> compared with <strong>the</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> samples taken near <strong>the</strong> wall <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

casting. These values are given in Table 4.5. AS pointed out, <strong>the</strong>se differences are<br />

owing to <strong>the</strong> change in <strong>the</strong> microstructural characteristics like grain size <str<strong>on</strong>g>and</str<strong>on</strong>g> %<br />

porosity, which are also given in Table 4.5. The higher tensile properties observed<br />

with <strong>the</strong> samples taken near <strong>the</strong> wall <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> casting are due to less volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pores <str<strong>on</strong>g>and</str<strong>on</strong>g> finer grain structure. Magnesium alloys are more pr<strong>on</strong>e to shrinkage<br />

porosity due to <strong>the</strong>ir poor fluidity <str<strong>on</strong>g>and</str<strong>on</strong>g> hence difiiculties are encountered to feed <strong>the</strong><br />

molten metal at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> solidificati<strong>on</strong> [299]. Hence it is not surprise to have<br />

more porosity at <strong>the</strong> centre porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> casting compared to <strong>the</strong> wall side <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

casting. Cooling rate is also different al<strong>on</strong>g <strong>the</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> casting: <strong>the</strong> metal near<br />

<strong>the</strong> wall side <str<strong>on</strong>g>of</str<strong>on</strong>g> mould would cool very fast compared to <strong>the</strong> liquid metal in <strong>the</strong><br />

middle. Hence variati<strong>on</strong> in <strong>the</strong> grin size is seen al<strong>on</strong>g <strong>the</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> casting.<br />

Porosity <str<strong>on</strong>g>and</str<strong>on</strong>g> grain size have a great influence <strong>on</strong> both <strong>the</strong> room <str<strong>on</strong>g>and</str<strong>on</strong>g> high temperature<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg alloys [298, 299]. Gutman et al. [299] have found a str<strong>on</strong>g<br />

relati<strong>on</strong>ship between % porosities <str<strong>on</strong>g>and</str<strong>on</strong>g> strength properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan et<br />

al. [77] also have reported an improvement in <strong>the</strong> strength properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy<br />

by improving <strong>the</strong> casting quality (finer microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> lesser porosities) using low<br />

pressure casting process.<br />

From Figure 4.37, it can be seen that that <strong>the</strong> strength properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy<br />

shows a drop <str<strong>on</strong>g>of</str<strong>on</strong>g>f as <strong>the</strong> testing temperature increases from room temperature to<br />

200°C, which shows that <strong>the</strong> tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy is highly sensitive to<br />

operating temperature. There is a sudden drop in strength properties above 150°C. At<br />

200°C test temperature, <strong>the</strong> UTS reduced to 135 MPa from a value <str<strong>on</strong>g>of</str<strong>on</strong>g> 210 MPa at<br />

room temperature, which indicates <strong>the</strong> limitati<strong>on</strong> <strong>on</strong> <strong>the</strong> usage <str<strong>on</strong>g>of</str<strong>on</strong>g> this alloy at high<br />

temperatures. In c<strong>on</strong>trast, increase in %E is noticed with increase in test temperatures.<br />

High percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> el<strong>on</strong>gati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 20% is seen at 200°C compared to 4% at RT.<br />

N<strong>on</strong>nally at room temperature magnesium alloys exhibit brittle failure due to <strong>the</strong><br />

120


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

limitati<strong>on</strong>s in number slip systems: <strong>on</strong>ly basal slip is active at room temperature.<br />

However, at high temperatures <strong>the</strong> alloy yields more ductility. This is due to <strong>the</strong> fact<br />

that additi<strong>on</strong>al slip systems such as prismatic <str<strong>on</strong>g>and</str<strong>on</strong>g> pyramidal slip planes are active in<br />

magnesium alloys at high temperatures. Cross slip takes place through <strong>the</strong>se planes at<br />

250 25<br />

200 - —- - ­<br />

- 150 _<br />

high temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> introduce more ductility [305].<br />

0 ~ o<br />

RT 100 150 200<br />

Testing temperature _ "Q<br />

—I— Y3. l\[Pa<br />

—£— °--""oE<br />

Figure 4.37: Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy at different temperatures<br />

locati<strong>on</strong><br />

Table 4.5: Property variati<strong>on</strong> al<strong>on</strong>g <strong>the</strong> wall<br />

pm<br />

thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> casting<br />

S““‘P'° YS,MPa UTS,MPa %1: G"‘i“<str<strong>on</strong>g>Si</str<strong>on</strong>g>’°’ % Porosity<br />

Cm?’ °f 92 173 2.8 110 2.35<br />

casting<br />

W3" <str<strong>on</strong>g>Si</str<strong>on</strong>g>d” “f 120 210 4 so 1.98<br />

casting<br />

l2l


_ pg Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

The major reas<strong>on</strong> for <strong>the</strong> poor high temperature properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy is <strong>the</strong><br />

microstructural degradati<strong>on</strong> takes place at elevated temperature. As far as AZ91 alloy<br />

is c<strong>on</strong>cemed, <strong>the</strong> principal room temperature streng<strong>the</strong>ning element is Mg17Al;;;<br />

intermetallics. But this intermetallic has low melting point (4370 C) <str<strong>on</strong>g>and</str<strong>on</strong>g> has higher<br />

diffusivity in Mg matrix. Hence, this coarsen at a faster rate <str<strong>on</strong>g>and</str<strong>on</strong>g> unstable at higher<br />

temperatures i.e. above l00°C <str<strong>on</strong>g>and</str<strong>on</strong>g> no l<strong>on</strong>ger acts as a barrier for dislocati<strong>on</strong>s [230,<br />

78]. Moreover, Mg17Al12 has a cubic crystal structure due to which it is incoherent<br />

with <strong>the</strong> hcp magnesium matrix [29]. Therefore, presence <str<strong>on</strong>g>of</str<strong>on</strong>g> this phase leads to poor<br />

elevated temperature properties. In additi<strong>on</strong>, <strong>the</strong> microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy is<br />

found to be unstable during high temperature exposure due to <strong>the</strong> dynamic<br />

precipitati<strong>on</strong> [28, 30, 31, 184, 186]. As seen earlier, <strong>the</strong> as cast microstructure has<br />

eutectic o-Mg which is highly supersaturated with Al. Even though, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

supersaturated Al in <strong>the</strong> matrix is precipitated out as disc<strong>on</strong>tinuous precipitates at<br />

grain boundaries during solidificati<strong>on</strong> itself, due to <strong>the</strong> slow cooling in gravity casting,<br />

still aluminum rich supersaturated areas are presented in <strong>the</strong> as cast microstructure<br />

(ref. Table 4.1). It is said that this supersaturated matrix decomposes into<br />

disc<strong>on</strong>tinuous precipitates during high temperature exposure [184, 186]. The nature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong>se dynamic precipitates is that <strong>the</strong>y forms at <strong>the</strong> grain boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> grows in to <strong>the</strong><br />

adjacent grains [l34, 135]. it is believed that <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous<br />

precipitate assists <strong>the</strong> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> grain boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> hence reduces <strong>the</strong> high<br />

temperature properties [96]. However, this problem is more severe during creep<br />

deformati<strong>on</strong>, where <strong>the</strong> material is exposed at high temperature for prol<strong>on</strong>ged time<br />

ra<strong>the</strong>r than in high temperature tensile testing, which is a short-term test.<br />

4.4.2 AZ91+X<str<strong>on</strong>g>Si</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%)<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> to <strong>the</strong> tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy is shown in<br />

Figure 4.38. The strength values are presented also in Table 4.6. At room temperature,<br />

<strong>the</strong> <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> reduces <strong>the</strong> tensile properties compared to <strong>the</strong> AZ91 base alloy.<br />

Marginal reducti<strong>on</strong> in both strength <str<strong>on</strong>g>and</str<strong>on</strong>g> el<strong>on</strong>gati<strong>on</strong> is observed with 0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong>.<br />

However, c<strong>on</strong>siderable reducti<strong>on</strong> is observed with 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse<br />

Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic in <strong>the</strong> <str<strong>on</strong>g>Si</str<strong>on</strong>g> added AZ91 alloys is <strong>the</strong> reas<strong>on</strong> for such reducti<strong>on</strong> in<br />

tensile properties, however substantial reducti<strong>on</strong> obtained in 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloy is<br />

122


_ pg Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse Chinese script Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic<br />

toge<strong>the</strong>r with Mg17Al|2. With 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> <strong>the</strong> UTS reduces fi'om 210 MPa (base<br />

alloy value) to 188 MPa <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> ductility reduces greatly from 4 to 1.8%. <str<strong>on</strong>g>Si</str<strong>on</strong>g>nce both<br />

Mg|1Al1; <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> are coarse <str<strong>on</strong>g>and</str<strong>on</strong>g> highly brittle in nature, <strong>the</strong> ductility gets affected<br />

greatly compared to <strong>the</strong> strength. It can also be observed that yield strength is not<br />

changed much with <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong>. At 150°C, as like base alloy, with <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> too both<br />

yield strength <str<strong>on</strong>g>and</str<strong>on</strong>g> UTS reduces with increase in ductility. However, it could be<br />

noticed that percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> reducti<strong>on</strong> in strength with 0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> is found to be<br />

less compared to <strong>the</strong> base alloy even though strength (YS, UTS) values obtained are<br />

lesser than <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy, which indicate that Mg;;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic even<br />

though in Chinese script improves <strong>the</strong> high temperature resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy to<br />

certain extent. This is due to <strong>the</strong> fact that Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> is hard <str<strong>on</strong>g>and</str<strong>on</strong>g> stable at high temperature<br />

compared to Mg17Al1; intermetallic.<br />

<str<strong>on</strong>g>Si</str<strong>on</strong>g> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> prime alloying elements to magnesium next to Al. Many alloys<br />

like AS21 <str<strong>on</strong>g>and</str<strong>on</strong>g> AS4l etc., based <strong>on</strong> Mg-Al-<str<strong>on</strong>g>Si</str<strong>on</strong>g> system are developed for high<br />

temperature applicati<strong>on</strong>s [66]. But <strong>the</strong>se alloys are normally suitable <strong>on</strong>ly for die<br />

casting. In gravity casting form <strong>the</strong>se alloys does not find applicati<strong>on</strong>s due to <strong>the</strong><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> unfavorable Chinese script Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic. Cooling rate has a great<br />

influence <strong>on</strong> <strong>the</strong> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic. ln gravity casting <strong>the</strong> cooling<br />

rate is slow <str<strong>on</strong>g>and</str<strong>on</strong>g> hence <str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates out in coarse Chinese script morphology [262­<br />

264]. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, due to a high cooling rate in pressure die casting more<br />

nucleati<strong>on</strong> site is available for Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> hence <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> precipitates is finer.<br />

The coarse Chinese script morphology reduces <strong>the</strong> mechanical properties particularly<br />

<strong>the</strong> ductility. This is due to <strong>the</strong> fact that crack will easily nucleate <str<strong>on</strong>g>and</str<strong>on</strong>g> develop at <strong>the</strong><br />

inter space between ductile Mg matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> coarse Chinese script Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates.<br />

This al<strong>on</strong>g with <strong>the</strong> weak interface between (1 -matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> [5 -Mg17Al|; phase<br />

reduces <strong>the</strong> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> due to this reas<strong>on</strong> <strong>the</strong> AS alloys are<br />

restricted to <strong>on</strong>ly die castings.<br />

123


250<br />

Chapter J4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

5<br />

zoo-I |_ - 4<br />

$0­<br />

200 ~<br />

1<br />

l1<br />

f<br />

T<br />

I<br />

AZ91 AZ91+__ AZ91-i-7“­<br />

0 .2 9»-5 <str<strong>on</strong>g>Si</str<strong>on</strong>g> 0.5 °./o <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

AZ91 —_ .'-\Z91+ AZ91+<br />

U .2 °.-"5 <str<strong>on</strong>g>Si</str<strong>on</strong>g> U.5°.-~“'o <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

-L<br />

i<br />

gn­<br />

in<br />

1<br />

ll<br />

14<br />

12<br />

8<br />

6<br />

4<br />

2<br />

0<br />

I YS, 1\-[Pa<br />

I %E<br />

[:1 UTS, MPa<br />

I YS,1\*IPa<br />

I %E<br />

El UTS, 1\-[Pa<br />

Figure 4.38: Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> added AZ91 alloy (a) at RT (b) at 150°C<br />

Table 4.6: Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> added AZ91alloy in tabular form<br />

Alloy<br />

RT<br />

At 150°C<br />

YS UTS %E YS UTS<br />

AZ91 I20 210 4 85 180 12<br />

AZ9l+0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> 115 195 3 78 174 7.5<br />

AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> 112 188 1.8 75 160 6<br />

1'74<br />

%E


W Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

4.4.3 AZ9l+X<str<strong>on</strong>g>Sb</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%, 0.7 %)<br />

Figure 4.39 presents <strong>the</strong> tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloys at room as well<br />

as 150°C temperature in bar chart <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir numerical values are given in Table 4.7<br />

for comparis<strong>on</strong>. With 0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong>, <strong>the</strong>re is no c<strong>on</strong>siderable improvement in<br />

tensile properties compared to AZ91 alloy. However, significant improvement in <strong>the</strong><br />

ultimate tensile strength <str<strong>on</strong>g>and</str<strong>on</strong>g> marginal increase in <strong>the</strong> yield strength is observed with<br />

0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy. C<strong>on</strong>versely, with high percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> i.e., 0.7%, both<br />

<strong>the</strong> yield strength as well as UTS gets reduced. With 0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> <strong>the</strong> UTS<br />

increases to a maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> 242 MPa <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n reduces to 206 MPa with 0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

additi<strong>on</strong>. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> ductility increases to 5% with 0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

reduces to 2.5% with 0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong>, which is lesser than <strong>the</strong> base alloy ductility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

4%. <str<strong>on</strong>g>Si</str<strong>on</strong>g>milar trend in properties is observed at 150°C testing temperature also. Grain<br />

refinement <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallic is <strong>the</strong> reas<strong>on</strong> for such improvement observed in<br />

0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy. However, high volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> needle shaped brittle Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2<br />

intermetallics in AZ91+0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloy reduces <strong>the</strong> properties [43]. The higher tensile<br />

strength observed with 0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> (ref Figure 4.39 (b)) at high temperature<br />

(150°C) is attributed to <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2 intermetallics, which is due to its<br />

higher melting point (l228°C).<br />

Even though <strong>the</strong> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallic improves <strong>the</strong> UTS greatly it does not<br />

improve <strong>the</strong> yield strength much. This is due to it massive size in nature. The<br />

interspacing between two intermetallics is too large to achieve any significant<br />

dispersi<strong>on</strong> -streng<strong>the</strong>ning effect. Normally during plastic deformati<strong>on</strong> due to <strong>the</strong><br />

hardness difference between <strong>the</strong> hard intermetallics <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> ductile matrix an internal<br />

stress develops which acts as a back stress for <strong>the</strong> dislocati<strong>on</strong> movement <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>tributes to <strong>the</strong> tensile stress [306-308].<br />

I25


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

sou 8<br />

$0<br />

49<br />

4<br />

D U1<br />

2<br />

.-\z91+ 4281+ 1-\z91+<br />

zso<br />

A291<br />

~-<br />

0.2‘/»<str<strong>on</strong>g>Sb</str<strong>on</strong>g> 0.58-88'»<br />

as<br />

0.-.1»/.<br />

18<br />

s1.<br />

o<br />

HT 12<br />

I<br />

AZ9l+ 4291+ 4291+<br />

A291 0.2'Ȣ<str<strong>on</strong>g>Sb</str<strong>on</strong>g> o.s~.sb I1-1% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

I YS. MP8<br />

I ‘=81?<br />

CJU'1‘S.I\[Pa<br />

YS, I\IPa<br />

I ‘J2<br />

DUTS. MPa<br />

Figure 4.39: Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ9l alloy (a) RT (b) 150°C<br />

Table 4.7: Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ9lalloy in tabular form<br />

Alloy RT At 150°C<br />

UTS YS °/oE UTS YS °/0E<br />

AZ9l 210 120 4 180 85 12<br />

AZ91S*;)'2% 218 120 4.5 184 90 10.8<br />

AZ9lS;°'5% 242 128 5 195 103 14<br />

AZ9l+0.7% 206<br />

<str<strong>on</strong>g>Sb</str<strong>on</strong>g> 120 2.5 177 90 9<br />

126


_ Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

4.4.4 AZ91+X<str<strong>on</strong>g>Sr</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%, 0.7%)<br />

Figure 4.40 <str<strong>on</strong>g>and</str<strong>on</strong>g> Table 4.8 provides <strong>the</strong> tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloys. In<br />

general <strong>the</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>s have little effect <strong>on</strong> tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy. Not<br />

appreciable change in properties is observed with 0.2% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>, since <strong>the</strong><br />

microstructural changes are minimum with low level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> c<strong>on</strong>tent, whereas slight<br />

improvement in properties is seen with 0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> is additi<strong>on</strong>. Fur<strong>the</strong>r additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

reduces <strong>the</strong> properties. Maximum UTS <str<strong>on</strong>g>of</str<strong>on</strong>g> 222 MPa is observed with 0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> it<br />

has come down to 200 MPa with 0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g>, which is less than <strong>the</strong> base alloy’s UTS<br />

value. However, c<strong>on</strong>siderable increase in yield strength with <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> is noticed.<br />

This is due to <strong>the</strong> significant grain refinement obtained by <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>s. Not much<br />

change in ductility is observed with all <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>s. The improvement obtained in<br />

UTS is due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> finer Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallic. However, not much<br />

improvement in UTS seen with <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> is due to <strong>the</strong> fact that <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallic reduces <strong>the</strong> volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg11Al12 phase, which is also<br />

c<strong>on</strong>sidered as <strong>the</strong> streng<strong>the</strong>ning phase at room temperature. The reducti<strong>on</strong> in strength<br />

properties with higher percentage (0.7%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> is due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> more<br />

volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> needle shaped Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> at <strong>the</strong> grain boundary, which acts as a stress<br />

raiser during loading. <str<strong>on</strong>g>Si</str<strong>on</strong>g>milar kind <str<strong>on</strong>g>of</str<strong>on</strong>g> results is observed at high temperature with <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

additi<strong>on</strong>s.<br />

4.4.5 AZ91+X<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> & AZ91+X<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.l% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%)<br />

Figure 4.41 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4.42 shows <strong>the</strong> tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91+X<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

AZ9l+X<str<strong>on</strong>g>Si</str<strong>on</strong>g>+ 0.1% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloys respectively. The tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> all alloys are<br />

c<strong>on</strong>solidated in Table 4.9. As menti<strong>on</strong>ed earlier, <strong>the</strong> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> to<br />

<strong>the</strong> <str<strong>on</strong>g>Si</str<strong>on</strong>g> c<strong>on</strong>taining alloys is to refine <strong>the</strong> Chinese script Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates. The change<br />

in <strong>the</strong> size <str<strong>on</strong>g>and</str<strong>on</strong>g> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates improves <strong>the</strong> mechanical properties<br />

particularly <strong>the</strong> ductility. The ultimate strength <str<strong>on</strong>g>and</str<strong>on</strong>g> ductility <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added<br />

AZ9l+O.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy are increased to 238 MPa <str<strong>on</strong>g>and</str<strong>on</strong>g> 6% respectively compared to <strong>the</strong><br />

AZ9l+0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy’s value <str<strong>on</strong>g>of</str<strong>on</strong>g> UTS- 195 MPa <str<strong>on</strong>g>and</str<strong>on</strong>g> el<strong>on</strong>gati<strong>on</strong>- 3%. Improved UTS<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ductility is also observed with 0.1% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> modified AZ91+0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> it is<br />

220 MPa <str<strong>on</strong>g>and</str<strong>on</strong>g> 4.5% respectively. Yield strength is also improved in both cases.<br />

Improved tensile properties are also noticed with 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloy "c<strong>on</strong>taining <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

127


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> due to <strong>the</strong> modificati<strong>on</strong> effect but <strong>the</strong> properties are lesser than that <str<strong>on</strong>g>of</str<strong>on</strong>g> modified<br />

0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy. The same trend is observed with high temperature properties also.<br />

However, in all cases, <strong>the</strong> properties are higher with <str<strong>on</strong>g>Sb</str<strong>on</strong>g> modificati<strong>on</strong> compared to <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

modificati<strong>on</strong>.<br />

250 ­<br />

0 0<br />

A191 AZ91+ AZ91+ A2914zoo<br />

0.2%<br />

1<br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> 0.5%<br />

e<br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> 0.7%<br />

14<br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

50<br />

. I MP2:<br />

I °»i>E<br />

. ElUTS.1\-[Pa<br />

[ 1= - I YS, l\’[Pa<br />

" I %E<br />

. El UTS. 1\-[Pa<br />

—g<br />

-2<br />

AZ91 AZ91-1' AZ91+ AZ91-F<br />

0.2% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> 0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

. .<br />

Figure 4.40: Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added AZ91alloy (a) RT (b) 150°C<br />

128


W Chapter 4:Resu|ts <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

PRT 1 ~<br />

Table 4.8: Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added AZ91all0y in tabular form<br />

lg At 150°C<br />

Alloy YS UTS %E YS UTS %1=;<br />

1“<br />

2<br />

AZ91<br />

174<br />

* 120 1 2210 2 4<br />

28<br />

85 1-<br />

5180 122”<br />

2<br />

“}\z91+0.2%sr 128 215 1 4.5 82 178 1" 10<br />

133 222 4.5 85 r<br />

“AZ91+0.7% sr“ 135 '1 200 1 3 i 578<br />

1"<br />

‘AZ91-10.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> 2 188 105 L<br />

1:.<br />

Table 4.9: Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added <str<strong>on</strong>g>Si</str<strong>on</strong>g> c<strong>on</strong>taining AZ91 alloys in<br />

tabular form<br />

Alloy<br />

AZ91<br />

AZ9 l+0.2 %<br />

<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2 0/0 <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

AZ91+0.5 %<br />

<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

AZ91+0.2 %<br />

<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.l% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

AZ9l+0.5%<br />

1YS<br />

120<br />

125<br />

123<br />

At RT<br />

UTS<br />

210<br />

238<br />

225 1<br />

At 150°C<br />

%E ,__ ~- .. _<br />

4 85 1 180 1 12<br />

6 100 198 16<br />

' i<br />

3.8 94 175 ‘ 12<br />

si+0.19{/9 <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

UTS %%E<br />

126 220 4.5 92 186 1 11.5<br />

130 215 3.5 W881 165 10<br />

129<br />

“'_'—1<br />

I<br />

1<br />

I<br />

I


250­<br />

ZN­<br />

0­<br />

Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.41: Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloys modified by <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

(a) RT (b) 150°C<br />

250­<br />

5<br />

-6<br />

0 - _<br />

A291 AZ91+ AZ9l+ .4z91+ -o<br />

1 250­<br />

1<br />

.9 0.. T, I I T, ,<br />

AZ91 ¥'\Z91+ AB“ Az91+_ A191 AD1+ ADl+ -'-\Z91+<br />

Figure 4.42: Tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloys modified by <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

(a) RT (b) 150°C<br />

zoo­<br />

50­<br />

0.2‘-"'o<str<strong>on</strong>g>Si</str<strong>on</strong>g> 0.2‘./o<str<strong>on</strong>g>Si</str<strong>on</strong>g>+ 0-2°/:0Sl+ g_;0/,gi g_20,/,3j+ 0.2‘./o<str<strong>on</strong>g>Si</str<strong>on</strong>g>+<br />

0.2!-"ash 0-l'4'~$r 0,1!/.31, 0.l°.-"¢<str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

I Y3. M.Pa I '/¢E IUTS. Bfia<br />

Q 5 200-4<br />

0..<br />

_ _ Iv Y _ AZ91 AZ9l+ .'-\D1+ AZ9l+<br />

0.2%<str<strong>on</strong>g>Sb</str<strong>on</strong>g> 0.1../es!‘ Q_20/‘<str<strong>on</strong>g>Sb</str<strong>on</strong>g> 0_lo,.'.<str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

U.$°'oS1 U.5"'o$1+ U.5"oS1+ 050,-‘<str<strong>on</strong>g>Si</str<strong>on</strong>g> |]_5o,.<str<strong>on</strong>g>Si</str<strong>on</strong>g>+ 050.--.Sl+<br />

I YS. M.Pa I °/BE IUTS. 1\IPa<br />

130<br />

-4<br />

-2<br />

-o<br />

14<br />

12<br />

2<br />

0


E Chapter 4: (Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

The improvements in tensile properties <str<strong>on</strong>g>of</str<strong>on</strong>g> combined additi<strong>on</strong>s are due to <strong>the</strong><br />

combinati<strong>on</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> following reas<strong>on</strong>s: reducti<strong>on</strong> in grain size <str<strong>on</strong>g>and</str<strong>on</strong>g> modificati<strong>on</strong> in<br />

<strong>the</strong> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic. It is well recognized that finer grain size is<br />

beneficial for mechanical properties in cast materials. That too, since magnesium is<br />

HCP structure, its mechanical properties are highly sensitive to <strong>the</strong> grain size [I64].<br />

Hence, even a small refinement in grain size increases <strong>the</strong> mechanical properties<br />

c<strong>on</strong>siderably. Fine microstructure provide large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> grain boundary areas. It is<br />

difficulty for <strong>the</strong> dislocati<strong>on</strong>s to do c<strong>on</strong>tinuous slip across <strong>the</strong>se grain boundaries<br />

during deformati<strong>on</strong> [309]. This streng<strong>the</strong>ns <strong>the</strong> material. Besides, <strong>the</strong> mechanical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> an alloy c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively ductile <str<strong>on</strong>g>and</str<strong>on</strong>g> hard brittle phase will<br />

depend <strong>on</strong> how <strong>the</strong> brittle phase is distributed in <strong>the</strong> microstructure. Optimum strength<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ductility is obtained when <strong>the</strong> brittle phase is presented as a fine dispersi<strong>on</strong><br />

unifomrly distributed throughout <strong>the</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>t matrix [3l0]. In <strong>the</strong> present case, fine <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

evenly distributed Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates due to <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

improves <strong>the</strong> mechanical properties. In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller grain size, <str<strong>on</strong>g>Sr</str<strong>on</strong>g> modified alloys<br />

exhibits lesser properties compared to <strong>the</strong> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> modified alloys, which is due to <strong>the</strong><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> bigger sized Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallics in <str<strong>on</strong>g>Sr</str<strong>on</strong>g> modified alloys.<br />

4.4.6 Fractography<br />

Fractography studies are useful tool to identify <strong>the</strong> micro-fracture mechanism.<br />

With hep structure, failure <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg alloys is expected to brittle through cleavage or<br />

quasi-cleavage fracture. Figure 4.43 (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) shows <strong>the</strong> SEM photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> tensile<br />

fractured surface <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy tested at room <str<strong>on</strong>g>and</str<strong>on</strong>g> 150°C respectively. In general <strong>the</strong><br />

fracture surface at room temperature shows cleavage type <str<strong>on</strong>g>of</str<strong>on</strong>g> failure with some<br />

sec<strong>on</strong>dary cracks (A in Figure 4.43 (a)). In cleavage fracture, micro-cracks develop<br />

al<strong>on</strong>g certain crystal planes, which is normally (0001) for Mg. In <strong>the</strong> fracture surface<br />

many cleavage planes (B in Figure 4.43 (a)) are seen with cleavage steps <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

sizes <str<strong>on</strong>g>and</str<strong>on</strong>g> river pattems (C in Figure 4.43 (a)). It represents steps between different<br />

local cleavage facets <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same general cleavage plane. River pattern steps are<br />

usually <strong>the</strong> result <str<strong>on</strong>g>of</str<strong>on</strong>g> cleavage al<strong>on</strong>g sec<strong>on</strong>d-order cleavage planes or tearing <str<strong>on</strong>g>and</str<strong>on</strong>g>, to<br />

minimize <strong>the</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> fracture, <strong>the</strong>y join like river tributaries in <strong>the</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crack propagati<strong>on</strong>. Schematic diagram given in Figure 4.44 illustrates <strong>the</strong> two mode<br />

131


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.43: Tensile fractorgraph <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy at (a) RT (b) 150°C:<br />

(A) sec<strong>on</strong>dary crack (B) cleavage plane (C) river pattern<br />

(D) plastic deformati<strong>on</strong><br />

4<br />

(E) dimples<br />

ii<br />

¢..,.....§.:~r.¢.: Clmmk f ——\| M g<br />

X (b)<br />

Figure 4.44: Illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cleavage steps through (a) sec<strong>on</strong>dary<br />

cleavage (b) tearing [45]<br />

132


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> steps formati<strong>on</strong> [45]. However, <strong>the</strong>re are some cleavage planes, which have less or<br />

no river pattern in fracture surface.<br />

In AZ9l alloy, <strong>the</strong> Mg17Al|2 intermetallics present as massive form <str<strong>on</strong>g>and</str<strong>on</strong>g> coarse<br />

lump shape disc<strong>on</strong>tinuous form <str<strong>on</strong>g>and</str<strong>on</strong>g> is very susceptible to fracture because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir<br />

brittleness [Z31]. When load is applied, micro cracks are initiated here <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>y are<br />

readily c<strong>on</strong>nected to grain boundaries, <strong>the</strong>reby making <strong>the</strong> AZ9l alloy brittle. The<br />

l<strong>on</strong>gitudinal cross secti<strong>on</strong> near <strong>the</strong> room temperature tensile fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l<br />

alloy was examined <str<strong>on</strong>g>and</str<strong>on</strong>g> its microstructure is shown in Figure 4.45. lt clearly shows<br />

that most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mg17Al|2 particles are got severely fractured, which indicates that<br />

<strong>the</strong>se particles <str<strong>on</strong>g>and</str<strong>on</strong>g> its interface play a major role during tensile deformati<strong>on</strong>.<br />

The improvement in ductility obtained during tensile test at 150°C can be<br />

correlated to <strong>the</strong> fracture surface, which shows more deformati<strong>on</strong> z<strong>on</strong>e (D in<br />

Figure 4.43 (b)). However, cleavage planes with sec<strong>on</strong>dary cracks noticed ensures<br />

still <strong>the</strong> fracture is a brittle kind. More cleavage facets c<strong>on</strong>nected with tearing ridges<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> shallow dimples is in agreement with <strong>the</strong> high el<strong>on</strong>gati<strong>on</strong> values obtained at<br />

150°C temperature. This is likely due to <strong>the</strong> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al slip planes like<br />

pyramid <str<strong>on</strong>g>and</str<strong>on</strong>g> prismatic planes through which cross slip takes place at elevated<br />

temperature [1 88].<br />

With 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong>, well defined cleavage planes with multiple sec<strong>on</strong>dary<br />

cracks are observed (Figure 4.46). Cleavage planes without river pattem observed<br />

indicate that <strong>the</strong> grain may have been orientated at a right angle to <strong>the</strong> main tensile<br />

axis, causing <strong>the</strong> fracture to propagate very easily <strong>on</strong> a single plane [31 1]. Moreover<br />

<strong>the</strong> plastic z<strong>on</strong>e is c<strong>on</strong>strained due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Chinese script Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> phase. The<br />

coarseness <str<strong>on</strong>g>and</str<strong>on</strong>g> unfavorable Chinese script morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> al<strong>on</strong>g with Mg17Al|;;<br />

increases <strong>the</strong> brittleness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> hence reduces <strong>the</strong> ductility greatly. The<br />

microstructure taken <strong>on</strong> <strong>the</strong> l<strong>on</strong>gitudinal secti<strong>on</strong> near <strong>the</strong> tensile fractured sample <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloy reiterate <strong>the</strong> claim, which shows multiple cracks <strong>on</strong> Chinese<br />

script Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates (ref Figure 4.47).<br />

133


H Kg Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;;<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates <str<strong>on</strong>g>and</str<strong>on</strong>g> grain refinement by <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong><br />

changes <strong>the</strong> fracture mode <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.5%<str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy from complete cleavage to partial<br />

quasi cleavage, which is evident from <strong>the</strong> fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.5%<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2%<str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

alloy. Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> plastic z<strong>on</strong>es spread throughout <strong>the</strong> fracture surface<br />

could be seen in Figure 4.48. In quasi-cleavage fracture, cracks come to being in<br />

local areas, grow locally <str<strong>on</strong>g>and</str<strong>on</strong>g> finally form pits. The quasi cleavage fracture procedure<br />

is schematically shown in Figure 4.49 [3l2]. lt is also a kind <str<strong>on</strong>g>of</str<strong>on</strong>g> brittle fracture but<br />

different from cleavage. It is ra<strong>the</strong>r complicated fracture pattem also. The planes <strong>on</strong><br />

<strong>the</strong> fracture surface are not coherent with certain crystal orientati<strong>on</strong> but formed<br />

through combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> locally formed micro cracks. During <strong>the</strong> combinati<strong>on</strong>, tearing<br />

ridges are formed. Hence, <strong>the</strong> bottoms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pits are not strict cleavage planes but<br />

c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> several somewhat sunken planes with sec<strong>on</strong>dary cracks [3l2]. Many quasi<br />

cleavage facets c<strong>on</strong>nected by tearing ridges <str<strong>on</strong>g>and</str<strong>on</strong>g> shallow dimples ensure <strong>the</strong> high<br />

ductility <str<strong>on</strong>g>and</str<strong>on</strong>g> strength obtained in this alloy compare to base as well <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloys.<br />

Figure 4.50 show <strong>the</strong> fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloys, which reflects <strong>the</strong><br />

tensile properties obtained in tensile test. The fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy<br />

shown in Figure 4.50 (a) exhibits cleavage fracture in general. But <strong>the</strong> fracture surface<br />

c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> more quasi-cleavage planes <str<strong>on</strong>g>and</str<strong>on</strong>g> deformati<strong>on</strong> z<strong>on</strong>e. These fracture features<br />

ensures ductility, even though it fails in a brittle manner. In c<strong>on</strong>trast, <strong>the</strong> fracture<br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy (Figure 4.50 (b)) c<strong>on</strong>tains lot <str<strong>on</strong>g>of</str<strong>on</strong>g> cleavages planes with<br />

multiple deep sec<strong>on</strong>dary cracks. This is inline with <strong>the</strong> lesser tensile properties<br />

observed with 0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy. Figure 4.51 shows <strong>the</strong> fracture surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5%<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloys. Fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy shows many well<br />

defined cleavages with multiple sec<strong>on</strong>dary cracks. But still some plastic deformati<strong>on</strong><br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> fine dimples are seen in <strong>the</strong> fracture surface. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, 0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

added alloy shows cleavage planes with lot <str<strong>on</strong>g>of</str<strong>on</strong>g> lengthy deep sec<strong>on</strong>dary cracks, which<br />

ensure brittle fracture. It possesses smallest deformati<strong>on</strong> z<strong>on</strong>e, exhibiting intergranular<br />

fracture feature. This is due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> more number <str<strong>on</strong>g>of</str<strong>on</strong>g> needle shaped<br />

intermetallics at <strong>the</strong> grain boundaries, which acts as a stress raiser during <strong>the</strong> loading<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> promotes cracking al<strong>on</strong>g <strong>the</strong> boundaries.<br />

134


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Fig. 4.45: Cross secti<strong>on</strong> near <strong>the</strong> tensile fractured surface <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy showing<br />

severely cracked Mg|7Al|2 intermetallic particle<br />

Fig. 4.46: Fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy: (A) Sec<strong>on</strong>dary crack<br />

(B) cleavage plane<br />

" -in<br />

~...<br />

‘K<br />

P‘ 4<br />

“’ . ~~ ' L<br />

in-'1<br />

“J<br />

Figure 4.47: Tensile tested AZ91+0.5%<str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy showing cracked Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

intermetallic


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.48: Fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g>: (C) river pattern<br />

(D) plastic deformati<strong>on</strong> (E) dimples (F) quasi-cleavage facet<br />

Figure 4.49; Schematic illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-cleavage fracture [45]<br />

Figure 4.50: Fractograph <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ91 alloy failed at RT<br />

(a) AZ9l+0.5°/c <str<strong>on</strong>g>Sb</str<strong>on</strong>g> (b) AZ9l+0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g>: (A) sec<strong>on</strong>dary<br />

crack (B) cleavage plane (D) plastic deformati<strong>on</strong><br />

(E) dimples (F) quasi-cleavage<br />

136


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.51: Fractorgraph <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> addedAZ9l alloys failed at RT<br />

(a) AZ9l+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> (b) AZ91+0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> alloy (A) sec<strong>on</strong>d<br />

crack (D) plastic deformati<strong>on</strong> (E) dimples<br />

137


4.5 CREEP BEHAIVOR<br />

i g Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g>Discussi<strong>on</strong><br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> different alloying additi<strong>on</strong>s to AZ91 alloy <strong>on</strong> its creep behavior is<br />

presented in this secti<strong>on</strong>. The creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> alloys was investigated at 150 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

200°C with an initial stress <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 MPa. Two type <str<strong>on</strong>g>of</str<strong>on</strong>g> creep testing was carried out in<br />

<strong>the</strong> present study: creep testing for 500 h (referred as short term test) <str<strong>on</strong>g>and</str<strong>on</strong>g> creep testing<br />

till fracture (referred as l<strong>on</strong>g term test). It is found that <strong>the</strong> base alloy’s creep life at<br />

150°C is around 6000 h, which means <strong>the</strong> creep testing is time c<strong>on</strong>suming at 150°C.<br />

Hence, all <strong>the</strong> alloys were initially creep tested at 150°C for 500 h. Based <strong>on</strong> <strong>the</strong> result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 500 h test, few samples were selected <str<strong>on</strong>g>and</str<strong>on</strong>g> creep test till fracture was carried out.<br />

But in <strong>the</strong> present investigati<strong>on</strong>, it is found that, in most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cases, <strong>the</strong> steady stage<br />

creep is not reached even at 500 h. Variati<strong>on</strong> in minimum creep rate is observed<br />

between 500 h test <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>g term testing. For example, <strong>the</strong> minimum creep rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

base alloy AZ91 at 150°C in short term test (500 h test) is 9.348 x 10*‘ % h" whereas<br />

during l<strong>on</strong>g term test (till fracture) it is 5.9239 X 104 % h". <str<strong>on</strong>g>Si</str<strong>on</strong>g>milarly, <strong>the</strong> minimum<br />

creep rate <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy in short term testing is 5.0825 X 10'4 % h" compare<br />

to <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.5803 X 10"“ % h" during l<strong>on</strong>g term testing. This indicates that<br />

sec<strong>on</strong>dary steady state creep reaches <strong>on</strong>ly after 500 h. However, it is interesting to<br />

note that <strong>the</strong> creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> any two alloys, when compared to each o<strong>the</strong>r, exhibits<br />

similar trend in both testing i.e., <strong>the</strong> alloy showed lesser creep resistant in 500 h (in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> minimum creep rate) compared to <strong>the</strong> o<strong>the</strong>r alloy, also showed lesser creep<br />

resistance in l<strong>on</strong>g time testing too. Moreover, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> literature suggests that 100<br />

h creep behavior could be taken as a comparative tool while comparing <strong>the</strong> creep<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> different alloys [22], 313, 314]. Hence, in <strong>the</strong> present study, 500 h test<br />

was c<strong>on</strong>sidered as a tool to select samples for l<strong>on</strong>g term creep testing. This procedure<br />

minimized <strong>the</strong> total testing time. Alloys, which exhibit good creep resistance at<br />

150°C, were fur<strong>the</strong>r subjected to creep testing at 200°C.<br />

4.5.1 AZ91 Alloy<br />

Figure 4.52 (a) show <strong>the</strong> creep curve <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 base alloy obtained at 150°C<br />

with an initial stress <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 MPa. It resembles a typical creep curve, which has a short<br />

primary <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>g sec<strong>on</strong>dary regi<strong>on</strong> followed by an extended tertiary creep regi<strong>on</strong>. The<br />

creep rate c<strong>on</strong>tinuously decreases during primary stage to reach a c<strong>on</strong>stant creep rate<br />

138


: Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> is stabilized for l<strong>on</strong>ger time during sec<strong>on</strong>dary creep regi<strong>on</strong>. Finally <strong>the</strong> rate is<br />

increased drastically till failure during tertiary stage. The c<strong>on</strong>stant creep rate is known<br />

as sec<strong>on</strong>dary creep rate or minimum creep rate. Both sec<strong>on</strong>dary creep rate <str<strong>on</strong>g>and</str<strong>on</strong>g> creep<br />

extensi<strong>on</strong> is calculated from <strong>the</strong> creep curve <str<strong>on</strong>g>and</str<strong>on</strong>g> is presented in Figure 4.52 (a). The<br />

creep curve <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy tested at 200°C is presented in Figure 4.52 (b). It shows a<br />

"short primary stage, sec<strong>on</strong>dary stage <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>g tertiary stage <str<strong>on</strong>g>of</str<strong>on</strong>g> creep. Comparing <strong>the</strong><br />

creep behavior at both <strong>the</strong> temperatures, it is clear that <strong>the</strong> creep resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91<br />

alloy is drastically reduced with increase in testing temperature. The sec<strong>on</strong>dary creep<br />

rate increases from 5.9239 x 10*‘ %h'1at 150°C to 4.871 x 10"’ %h"at 200°C, which<br />

is almost two-fold increase. Creep extensi<strong>on</strong> also increases from 8.29% to 14.306%.<br />

Most importantly <strong>the</strong> total creep life is greatly reduced as <strong>the</strong> testing temperature<br />

increases from 150 to 200°C. A sample showed a creep life <str<strong>on</strong>g>of</str<strong>on</strong>g> 5817 h at 150°C<br />

withst<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong>ly up to 131 h at 200°C. These results reflect <strong>the</strong> poor creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AZ91 alloy above 150°C.<br />

4.5.2 AZ9l+X<str<strong>on</strong>g>Si</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%)<br />

Figure 4.53 shows <strong>the</strong> short term <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>g term creep curves <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> added<br />

AZ91 alloys at 150°C with an initial stress <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 MPa. The creep properties like<br />

steady state creep rate, creep strain <str<strong>on</strong>g>and</str<strong>on</strong>g> creep rupture life <str<strong>on</strong>g>of</str<strong>on</strong>g> tested alloys are listed in<br />

Table 4.10. The creep cun/es <str<strong>on</strong>g>of</str<strong>on</strong>g> base alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloy up to 300 h are<br />

similar at 150°C. After <strong>the</strong>n, <strong>the</strong> curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloy is started moving down from<br />

<strong>the</strong> base alloy curve indicating <strong>the</strong> alloy become hardening due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stable Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic at grain boundary. However, lower creep rate is observed<br />

with 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> right from <strong>the</strong> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> creep testing. The minimum<br />

creep rate is reduced from 9.348 X 104 to 5.0825 X 10'4 % h'1 with 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong><br />

in <strong>the</strong> short term test. This result c<strong>on</strong>tradicts with <strong>the</strong> tensile properties observed in <strong>the</strong><br />

present study. It is found from <strong>the</strong> present study that with 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> <strong>the</strong> tensile<br />

properties are c<strong>on</strong>siderably decreased due to <strong>the</strong> unfavorable size <str<strong>on</strong>g>and</str<strong>on</strong>g> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic. The improved creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91+0.5%<str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy with same<br />

microstructure indicates that <strong>the</strong> deformati<strong>on</strong> modes in both cases are different. In<br />

tensile testing, <strong>the</strong> load is applied at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> =10'° to 10'4 s", which is very high<br />

compared to <strong>the</strong> strain rate normally encountered in creep (Z108 to 10° s'l). This<br />

139


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

difference in strain rate makes deformati<strong>on</strong> mode different in two cases. Superior<br />

creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloy over 0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloy is attributed to <strong>the</strong><br />

high work hardening effect in 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloy, which is due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

higher volume <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates.<br />

9<br />

8<br />

7<br />

6<br />

3<br />

2<br />

1<br />

0<br />

16<br />

14 1<br />

12<br />

10<br />

8<br />

6<br />

4 1<br />

2 1<br />

Sec<strong>on</strong>dary creep rate I<br />

5.0239 x 10'“ ".4, n '“<br />

Creep extensi<strong>on</strong><br />

8.29 °.»'o<br />

Sec<strong>on</strong>dary stage Ternary $139?<br />

Primary stage<br />

_.fl<br />

Creep life<br />

5817 h<br />

Sec<strong>on</strong>dary Creep rate<br />

lliiiiiliiililliiillllllillliiil<br />

0 1000 2000 3000 4000 5000 6000<br />

I­<br />

' Sec<strong>on</strong>dary creep rate<br />

- 4.171 x 10" %n"<br />

.. Creep extensi<strong>on</strong><br />

_ 14.306 %<br />

i Creep life<br />

131.15 h<br />

an<br />


08­<br />

07­<br />

0.6­ Q<br />

3 0.5­<br />

.5 '<br />

B 0.4­<br />

OI’<br />

GD<br />

0.3­<br />

02­<br />

01­<br />

00­<br />

Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

1 4<br />

I AZ91<br />

I AZ914-0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

I i I<br />

I AZ91+0.5°/QSLI<br />

1 1 1 1 1 1<br />

0 100 200 300 400 500<br />

Time, h<br />

1...<br />

.1 - A251 1<br />

- - - AZ91+O.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> I<br />

4..<br />

3-.<br />

2..<br />

1..<br />

0 1<br />

0<br />

1 1 I 1 I1<br />

1<br />

2000 4000 6000 0000 10000<br />

Time, h<br />

Figure 4.53: Creep curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> added AZ91 alloy at 150°C (a) for 500 h (b) till<br />

fracture<br />

Table 4.10: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> <strong>on</strong> <strong>the</strong> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy<br />

Testing Minimum Creep<br />

c<strong>on</strong>diti<strong>on</strong> Alloy creozplfitg’ extensi<strong>on</strong>, °/0 Creep life’ h<br />

AZ9 1 9.348 x 10*‘ 0.76228<br />

150°C, 500 h AZ91+0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> 6.6101x10“‘ 0.66396<br />

AZ91+O.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> 5.0825 x 10*‘ 0.50521<br />

150°C, l<strong>on</strong>g AZ91 5.9239 X 10*‘ 8.2908 5817<br />

term AZ91+O.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> 3.5303 x 10"‘ 8.46176 10400<br />

200°C<br />

AZ9 1<br />

4.371 x 10" 14.306 131.15<br />

AZ91+O.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> 3.542 x 10"’ 10.388 133.46<br />

141<br />

1


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloy was subjected to l<strong>on</strong>g term creep testing <str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

creep curve is presented in Figure 4.53 (b). At <strong>the</strong> first instant itself, it could be seen<br />

that <strong>the</strong> creep properties are greatly improved with 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong>. The minimum<br />

creep rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloy reads as 3.5803 X 104 against 5.9239 X 104 % h'1<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> base alloy. The total creep life has extended to 10.400 h compared to 5,817 h <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

base alloy. The most important observati<strong>on</strong> with <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> is <strong>the</strong> extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sec<strong>on</strong>dary steady state creep regi<strong>on</strong>, which result in delay in start <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tertiary state<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> creep. The tertiary creep regi<strong>on</strong> for 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloy starts after 5,700 h, which<br />

is almost equal to <strong>the</strong> total creep life <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> base alloy, which indicates that <strong>the</strong> alloy<br />

become str<strong>on</strong>ger with 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> hard <str<strong>on</strong>g>and</str<strong>on</strong>g> stable Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

intermetallic.<br />

Even though <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> to AZ9lalloy shows large improvement in creep<br />

O<br />

properties over <strong>the</strong> base alloy at 150 C, such kind <str<strong>on</strong>g>of</str<strong>on</strong>g> improvement is not seen at<br />

200°C (ref Figure 4.54). The minimum creep rate is reduced <strong>on</strong>ly marginally in case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy compared to AZ9l alloy, where as no difference is noticed in<br />

total creep life between <strong>the</strong> two alloys. However, AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy shows slightly<br />

lesser creep extensi<strong>on</strong> to failure compared to AZ9 1.<br />

1s 4<br />

14­<br />

12-»<br />

- AZ91<br />

_ r - AZ91+0.5%<str<strong>on</strong>g>Si</str<strong>on</strong>g>f ­<br />


4.5.3 AZ9l+X<str<strong>on</strong>g>Sb</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%, 0.7%)<br />

Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.55 shows <strong>the</strong> creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloys at 150°C. The 500 h<br />

test indicates that <strong>the</strong> creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy exhibits almost similar<br />

creep behavior whereas 0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy shows superior behavior to <strong>the</strong> base<br />

alloy. The creep properties given in Table 4.11 reads as <strong>the</strong> minimum creep rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy is 3.8693 X 104 % h" <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> creep extensi<strong>on</strong> is <strong>on</strong>ly 0.411 %.<br />

The stable Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2 intermetallic is <strong>the</strong> reas<strong>on</strong> <strong>the</strong> improvement in creep behavior. On<br />

<strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, poor creep perf<strong>on</strong>nance is observed with 0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy. Indeed<br />

<strong>the</strong> creep rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy is higher than <strong>the</strong> base alloy. Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> more<br />

volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> needle shaped brittle intermetallic Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>;, which act as a stress<br />

raiser is <strong>the</strong> reas<strong>on</strong> for <strong>the</strong> poor creep performance <str<strong>on</strong>g>of</str<strong>on</strong>g> high percentage <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy.<br />

Figure 4.55 (b) shows <strong>the</strong> l<strong>on</strong>g-term creep test curves <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy with <str<strong>on</strong>g>and</str<strong>on</strong>g> with out<br />

0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong>. The minimum creep rate is greatly reduces to 1.8487 X 104 % h"<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> its creep extensi<strong>on</strong> is <strong>on</strong>ly 5.16 % compared to <strong>the</strong> base alloy extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 8.2 %.<br />

Extended sec<strong>on</strong>dary creep regi<strong>on</strong>s al<strong>on</strong>g with low creep strain indicate <strong>the</strong> alloy<br />

exhibits excellent creep resistance due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>rmally stable Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2<br />

intermetallic.<br />

Table 4.11: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> <strong>on</strong> <strong>the</strong> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy<br />

T°s“"g Allo Cm” Cree 1110 11<br />

c<strong>on</strong>diti<strong>on</strong> y %ph-1 ’ extensi<strong>on</strong>, °/0 P ’<br />

150°C, 500 h<br />

AZ9 1 9.348 x 10*‘ 0.76228<br />

AZ91+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> 9.57 x 10*‘ 0.71299<br />

AZ9l+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> 3.8693 x 10*‘ 0.41159<br />

AZ91+0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> 1.05 x 10" 0.85954<br />

150°C, I<strong>on</strong>8<br />

AZ9 1 5.9239 x 10*‘ 8.2908 5817<br />

term<br />

200°C<br />

AZ9l+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> 1.3487 x 104 5.169 11264<br />

AZ9 1 4.871 x 10" 14.306 131.15<br />

AZ9l+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> 2.357 x 10"’ 5.61 134.08<br />

143


0.9 - ‘_ g<br />

o.a - ' AZ91 i<br />

- I AZ91-t-0.2% $b<br />

o_7 .. I AZ91+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

- l I AZ91-0-0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

0.6 - 0<br />

3 0.5:­<br />

­0.1<br />

QC ­<br />

E 0.4m ­<br />

L<br />

0.3 ­<br />

0.2<br />

0.0 ­"<br />

Ii ­<br />

Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

l | 1 * I ' l * | '<br />

0 100 zoo aoo 400 soo<br />

8_<br />

7" - A2910 ‘<br />

6' - AZ91+0.5%<str<strong>on</strong>g>Sb</str<strong>on</strong>g>l<br />

3..<br />

Time, h<br />

2..<br />

0 ' I ' 1 ' l * | ' I ' I<br />

0 2®0 4000 0000 0000 10000 12000<br />

Time, h<br />

Figure 4.55: Creep curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ91 alloys at 150°C (a) for 500 h<br />

(b) till fracture<br />

Creep test <strong>on</strong> AZ9l+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloy at 200°C was carried out <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> creep<br />

curve is presented in Figure 4.56. Interestingly, 0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> shows improved<br />

creep properties at 200°C. Even though both base <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloys exhibit<br />

almost same creep life, significant reducti<strong>on</strong> in minimum creep rate <str<strong>on</strong>g>and</str<strong>on</strong>g> total creep<br />

extensi<strong>on</strong> is observed with <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong>. Almost 50% reducti<strong>on</strong> in minimum creep rate<br />

is seen with <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong>.<br />

144


16<br />

14­<br />

12­<br />

10- W 1 A291 l<br />

- y_- AZ91+0.5% so f<br />

4...<br />

2..<br />

Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

ll'l'l‘l'l'l'l‘<br />

020406080100120140<br />

‘Fume, h<br />

Figure 4.56: Creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy at 200°C<br />

4.5.4 AZ9l+X<str<strong>on</strong>g>Sr</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%, 0.7%)<br />

Figure 4.57 presents <strong>the</strong> creep curves <str<strong>on</strong>g>of</str<strong>on</strong>g> various <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added AZ9l alloys at<br />

150°C c<strong>on</strong>ducted up to 500 h. The creep properties are given in Table 4.12. With<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2% <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g>, no change in creep behavior is observed. Both<br />

minimum creep rate <str<strong>on</strong>g>and</str<strong>on</strong>g> creep extensi<strong>on</strong> are almost same. However, improvement is<br />

observed with higher amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>. 0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> reduces <strong>the</strong> minimum<br />

creep rate to 4.222 X 104 % h". The creep extensi<strong>on</strong> for 500 h also greatly reduces to<br />

0.4 ll mm with 0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>. These improvements are attributed to <strong>the</strong> presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stable Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallic, which replaced <strong>the</strong> low melting point Mg17Al12<br />

intermetallic. When 0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> is added, <strong>the</strong> tensile properties got reduced due to <strong>the</strong><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> more number <str<strong>on</strong>g>of</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intennetallic, but it exhibits higher creep<br />

resistance. This shows that <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> intermetallics present in <strong>the</strong><br />

microstructure is more important in creep.<br />

145


1.0- e<br />

4|<br />

1 - AZ91 I<br />

08- * - AZ91+0.2%<str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

- AZ91+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> A<br />

- AZ91+O.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g>i<br />

Time, h<br />

Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.57: Creep curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added AZ91 alloys at 150°C for 500 h<br />

. Minimum<br />

Table 4.12: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> <strong>on</strong> <strong>the</strong> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy<br />

c<strong>on</strong>diti<strong>on</strong> Testing Allo y p -1 cree ’ extensi<strong>on</strong> % rate Creep h ’ °/0<br />

150°C, 500 h<br />

AZ91 9.348 x 10*‘ 0.76228<br />

AZ91+O.2% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> 1.02 X l0'3 0.7779<br />

AZ91+O.5 % <str<strong>on</strong>g>Sr</str<strong>on</strong>g> 9.3184 X I04 0.5976<br />

AZ9l+O.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> 4.222 x 10*‘ 0.4115<br />

4.5.5 AZ91+X<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> Alloys (X=0.2%, 0.5%)<br />

Creep testing was also carried out <strong>on</strong> combined additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloys.<br />

Figure 4.58 show <strong>the</strong> creep curves <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91+O.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

AZ9l~H).5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>H).2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloy tested at 150°C for 500 h. Creep curves <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

individual additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> to AZ91 alloys are also presented in <strong>the</strong> figure for<br />

comparis<strong>on</strong>. The creep properties measured from <strong>the</strong> curves are presented in<br />

Table 4.13. From <strong>the</strong> results, it could be seen that additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> to <strong>the</strong> <str<strong>on</strong>g>Si</str<strong>on</strong>g> c<strong>on</strong>taining<br />

alloys does not make much difference in creep behavior. For both <strong>the</strong> 0.2% <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> added alloys, <strong>the</strong> creep rate values marginally differ with its counterpart


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

alloys AZ9l+0.2%<str<strong>on</strong>g>Si</str<strong>on</strong>g>+O.2%<str<strong>on</strong>g>Sb</str<strong>on</strong>g>, AZ9l-H).5%<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2%<str<strong>on</strong>g>Sb</str<strong>on</strong>g> respectively. This suggests<br />

that modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates does not improve <strong>the</strong> creep properties. This<br />

observati<strong>on</strong> is in c<strong>on</strong>trast with <strong>the</strong> tensile results obtained in this present investigati<strong>on</strong>,<br />

which shows higher tensile properties with combined additi<strong>on</strong> due to morphological<br />

modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallics. The reas<strong>on</strong> behind this would be discussed in<br />

secti<strong>on</strong> 4.5.7.2.<br />

0.1-L<br />

0.6 ­<br />

0.5 —<br />

'“ 0.4­<br />

”II<br />

A - Az91+o.2°/.'si<br />

o_;_ - AZ91+0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% so<br />

- AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

0 1 _ AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

-1 | 1 | I | 1 | | | I | |<br />

0 100 200 300 400 500<br />

Time, h<br />

8<br />

1<br />

­<br />

Q ...<br />

1 - l - AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> ,<br />

6 - - A2914-0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

..5_<br />

-u<br />


_ _ u Chapter 4; Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Table 4.13: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> combined additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AZ91<br />

1<br />

alloy<br />

9 1<br />

Testing 5 Minimum — Creep it .<br />

c<strong>on</strong>diti<strong>on</strong> { Alloy °'°;P}:.?‘°’ ii extensi<strong>on</strong>, % Creep hfe’h<br />

AZ9l+0.2%<str<strong>on</strong>g>Si</str<strong>on</strong>g> 6.6101 >{10*"‘ 0.66396 ‘ - 5<br />

AZ9l+0.5% s1 " 55.0825 x"10“” 0.50521 ­<br />

l AZ9l+0.2% _4 it 5<br />

150°C, 500 s1+0.2% 11 _ 6.4988 X <str<strong>on</strong>g>Sb</str<strong>on</strong>g> 10 . 0.6052 1 ; ­<br />

1 _ 4.178] AZ91-I-0.5% X10 4 ‘S0.4178<br />

­<br />

S1+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

, <strong>on</strong>g 4-. -2 . ­<br />

150°C I AZ9l+0.5% s1 A 3.5803 x 10" 8.46176 10400<br />

term AZ91+0.5% 3.4280 x 10 6.8114 <str<strong>on</strong>g>Si</str<strong>on</strong>g> 5" 9612.5 4 5 5 8<br />

4 +0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

T “A2:91+0.5% sf 3.545816-2 10.388 133.46<br />

200°C 6 AZ91+0.5% 1 4.056 x <str<strong>on</strong>g>Si</str<strong>on</strong>g> 10" 2” 12.257 153<br />

5 +02% <str<strong>on</strong>g>Sb</str<strong>on</strong>g>I<br />

L<strong>on</strong>g term creep test was carried out <strong>on</strong> AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

creep behavior is compared with that <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+ 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy (Figure 4.58 (b)). It is<br />

again realized that <strong>the</strong> modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Chinese script Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> into polyg<strong>on</strong>al shape in<br />

combined additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> does not make much improvement in creep behavior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <strong>on</strong>ly c<strong>on</strong>taining alloy.<br />

Creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.5%<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2%<str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloy at 200°C was compared with<br />

AZ91 <str<strong>on</strong>g>and</str<strong>on</strong>g> AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy (ref Figure 4.59). As like individual additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>,<br />

combined additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> also does not improve <strong>the</strong> creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91<br />

alloy at 200°C. Almost same creep rate <str<strong>on</strong>g>and</str<strong>on</strong>g> creep life <str<strong>on</strong>g>of</str<strong>on</strong>g> modified <str<strong>on</strong>g>and</str<strong>on</strong>g> unmodified <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

alloy again c<strong>on</strong>firm that <strong>the</strong> modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitati<strong>on</strong> is not much effective<br />

as far as <strong>the</strong> creep properties are c<strong>on</strong>cerned.<br />

148


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

The creep fracture surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy tested at both 150 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

200°C is presented in Figure 4.61. The fractograph exhibits ductile features with large<br />

number dimples. The size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dimples is similar with AZ9l alloy<br />

(ref figure 4.54 (a)). However, still <strong>the</strong>re are some cleavages observed in <strong>the</strong> fracture<br />

surface (marked in <strong>the</strong> figure). The cleavage facets are clearly shown in <strong>the</strong> Figure<br />

4.61 (b), which is mainly due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> brittle coarse Chinese script Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

precipitates. Figure 4.61 (c) present <strong>the</strong> fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+O.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy failed<br />

at 200°C. Coarse dimples are evident from <strong>the</strong> figure al<strong>on</strong>g with cleavage facets. The<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dimples is bigger than <strong>the</strong> dimples observed at 150°C but smaller than <strong>the</strong><br />

O<br />

dimples observed in <strong>the</strong> base alloy failed at 200 C.<br />

The fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloy creep ruptured at 200°C<br />

is presented in Figure 4.62. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse Chinese script Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

morphology is reflected in <strong>the</strong> fracture surface, which exhibits lot dimples <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

sizes. Mainly two sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> dimples are present: fine dimples observed in matrix <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

relatively coarse dimples initiated at <strong>the</strong> grain boundary. Figure 4.62 (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> (c)<br />

shows <strong>the</strong> magnified sec<strong>on</strong>dary <str<strong>on</strong>g>and</str<strong>on</strong>g> back-scattered SEM image <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> fractured surface. It clearly shows that most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dimples are originated at Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

precipitates. There are some fine eutectic Mg11Al12 particles are also seen under<br />

dimples with or without fracture. Cracking <str<strong>on</strong>g>and</str<strong>on</strong>g> deb<strong>on</strong>ding <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates are<br />

observed in some areas. Never<strong>the</strong>less, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> particles are still firmly bounded in<br />

<strong>the</strong> matrix. Several matrix cracks around <strong>the</strong> particles are also seen.<br />

Figure 4.60: Fractographs <str<strong>on</strong>g>of</str<strong>on</strong>g> creep ruptured AZ9l alloy at (a) 150°C (b) 200°C<br />

150


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.61: Fractographs <str<strong>on</strong>g>of</str<strong>on</strong>g> creep ruptured AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy at<br />

(a) &(b) 150°C (c) 200°C<br />

151


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.62: Fractograph <str<strong>on</strong>g>of</str<strong>on</strong>g> creep ruptured AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> +0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloy at<br />

200°C (a) SE image lower mag. (b) SE image higher mag.<br />

(c) BSE image


4.5.7 Post Creep Microstructural Analysis<br />

4.5.7.1 AZ91 alloy<br />

Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

The microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> as cast AZ9l alloy is unstable at high temperature due<br />

to <strong>the</strong> supersaturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum in <strong>the</strong> solid soluti<strong>on</strong> [28, 30, 31, 184, 186]. In <strong>the</strong><br />

present study also many high aluminum c<strong>on</strong>centrated areas are found in <strong>the</strong> as cast<br />

AZ9l microstructure (ref. Table 4.1). In <strong>the</strong> initial stage <str<strong>on</strong>g>of</str<strong>on</strong>g> creep <strong>the</strong> aluminum in<br />

solid soluti<strong>on</strong> provides solid soluti<strong>on</strong> streng<strong>the</strong>ning against moving dislocati<strong>on</strong>s. Then<br />

sec<strong>on</strong>dary precipitates forms from <strong>the</strong> solid soluti<strong>on</strong> during creep exposure [l84,<br />

186]. Many literatures reported that <strong>the</strong> dynamic precipitati<strong>on</strong> (c<strong>on</strong>tinuous <str<strong>on</strong>g>and</str<strong>on</strong>g>/or<br />

disc<strong>on</strong>tinuous Mg11Al1;) takes places during creep but it is still inc<strong>on</strong>clusive that how<br />

<strong>the</strong>se precipitates influence <strong>the</strong> creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> this alloy. Dargusch et al [186] have<br />

reported that <strong>the</strong> dynamic disc<strong>on</strong>tinuous precipitati<strong>on</strong> occurred at <strong>the</strong> grain boundary<br />

in <strong>the</strong> die cast AZ9l alloy leads to <strong>the</strong> grain boundary sliding whereas Regev et al<br />

[29] have reported that <strong>the</strong> c<strong>on</strong>tinuous sec<strong>on</strong>dary precipitates occurred from <strong>the</strong><br />

supersaturate eutectic matrix streng<strong>the</strong>ns <strong>the</strong> ingot cast AZ9l alloy against creep<br />

deformati<strong>on</strong>. The result <str<strong>on</strong>g>of</str<strong>on</strong>g> Blum et al [184] also suggest that c<strong>on</strong>tinuous precipitates<br />

dominate during creep exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> die cast AZ9l alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> provide streng<strong>the</strong>ning<br />

against creep.<br />

In <strong>the</strong> present study, a detailed post creep test microstructural analyses were<br />

carried out to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> structural changes due to <strong>the</strong> high temperature exposure.<br />

Figure 4.63 shows <strong>the</strong> microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gitudinal cross secti<strong>on</strong> near <strong>the</strong> fracture<br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy creep ruptured at 150°C, which c<strong>on</strong>tain lot <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse c<strong>on</strong>tinuous<br />

precipitates. Higher magnified view <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same sample (Figure 4.63) clearly shows<br />

<strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous precipitates with r<str<strong>on</strong>g>and</str<strong>on</strong>g>om orientati<strong>on</strong>, which occurred<br />

during creep. <str<strong>on</strong>g>Si</str<strong>on</strong>g>milar kind <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic c<strong>on</strong>tinuous precipitates are observed in all <strong>the</strong><br />

tested alloys. These c<strong>on</strong>tinuous precipitates would have formed at <strong>the</strong> initial stage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

creep <str<strong>on</strong>g>and</str<strong>on</strong>g> become coarsen during <strong>the</strong> c<strong>on</strong>tinuous exposure to high temperature. The<br />

interrupted microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l creep tested at 150°C for 2000 h (sec<strong>on</strong>dary creep<br />

regi<strong>on</strong>) shown in Figure 4.64 c<strong>on</strong>tains finer c<strong>on</strong>tinuous precipitates. These<br />

precipitates, in earlier stage <str<strong>on</strong>g>of</str<strong>on</strong>g> creep, block dislocati<strong>on</strong> moti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> encourage cross<br />

slip leading to streng<strong>the</strong>ning [3l5]. Hence, hardening mechanism is changed from<br />

153


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

solid soluti<strong>on</strong> streng<strong>the</strong>ning to precipitati<strong>on</strong> hardening. Then prol<strong>on</strong>ged exposure<br />

leads to <strong>the</strong> coarsening <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitates <str<strong>on</strong>g>and</str<strong>on</strong>g> it looses its ability to pin both <strong>the</strong><br />

dislocati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> boundary. As it is clear that <strong>the</strong> Mg17Al12 precipitates has low<br />

melting point (43 7°C) <str<strong>on</strong>g>and</str<strong>on</strong>g> aluminum has higher diffusivity in magnesium, coarsening<br />

takes place very easily <str<strong>on</strong>g>and</str<strong>on</strong>g> faster. Moreover <strong>the</strong> decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;7Al|; at grain<br />

boundary during elevated temperature exposure increases <strong>the</strong> aluminum c<strong>on</strong>tent in<br />

local areas. Subsequently this reduces <strong>the</strong> solidus temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> hence increases <strong>the</strong><br />

homologous temperature [3l6]. This represents <strong>the</strong> tertiary stage <str<strong>on</strong>g>of</str<strong>on</strong>g> creep. As l<strong>on</strong>g as<br />

<strong>the</strong> hardening mechanism dominates <strong>the</strong> creep rate decreases. Whereas, when<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening mechanisms become dominant, <strong>the</strong> creep rate increases. The minimum<br />

creep rate measured is <strong>the</strong> point <str<strong>on</strong>g>of</str<strong>on</strong>g> balance between hardening <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening<br />

mechanisms, which happens during sec<strong>on</strong>dary stage <str<strong>on</strong>g>of</str<strong>on</strong>g> creep.<br />

Apart from <strong>the</strong> coarsening effect, <strong>the</strong> massive Mg|-,Al12 particles are also<br />

involved in cavity formati<strong>on</strong>. Figure 4.63 also shows most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mg]-;Al1;> particles<br />

suffer from sever cracking <str<strong>on</strong>g>and</str<strong>on</strong>g> cavity formati<strong>on</strong> at <strong>the</strong> matrix — precipitate interface.<br />

These cavities develop al<strong>on</strong>g <strong>the</strong> grain boundary since more coarse disc<strong>on</strong>tinuous<br />

precipitates are present in <strong>the</strong> grain boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> finally introduce matrix cracking.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> major reas<strong>on</strong>s for <strong>the</strong> formati<strong>on</strong> cavity is <strong>the</strong> weak interface between<br />

matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg17Al12 intermetallic. It is well known that <strong>the</strong> crystallographic lattices<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mg matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg17Al|2 are different: <strong>the</strong> magnesium matrix has an hcp lattice,<br />

while <strong>the</strong> |3-MgnAl12 precipitates have a cubic lattice. It is also known that<br />

dislocati<strong>on</strong>s cannot pass as easily through hard precipitates as through <strong>the</strong> matrix. ln<br />

such cases pileups <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong>s near <strong>the</strong> precipitates lead to increase in local stress<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> resulted in cracking. Moreover cavity may forms at <strong>the</strong> grain<br />

boundary triple points. One such cavity at triple point in creep ruptured AZ91 alloy at<br />

150°C is shown in <strong>the</strong> Figure 4.65. According to Regev [29], <strong>the</strong> intergranular<br />

cavitati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> cracking also indirectly c<strong>on</strong>tributes to <strong>the</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening process during<br />

creep. From dislocati<strong>on</strong> <strong>the</strong>ory, it is well known that cavitati<strong>on</strong> enables dislocati<strong>on</strong>s to<br />

leave <strong>the</strong> bulk <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> grain to <strong>the</strong> free surface without being blocked by obstacles. This<br />

prevents <strong>the</strong> activity <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong> sources <str<strong>on</strong>g>and</str<strong>on</strong>g> hence, <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> pileups is<br />

reduced [29].<br />

154


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.63: L<strong>on</strong>gitudinal cross secti<strong>on</strong> near <strong>the</strong> fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy<br />

creep ruptured at 150°C showing c<strong>on</strong>tinuous precipitates<br />

(a) lower (b) higher magnificati<strong>on</strong><br />

155


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.64: Interrupted microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> creep tested AZ91 alloy showing fine<br />

c<strong>on</strong>tinuous precipitates<br />

Figure 4.65: Cavity at gain boundary triple point in AZ91 alloy ruptured at<br />

150°C


g Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Hence it is clear from <strong>the</strong> present investigati<strong>on</strong> that following microstructural<br />

changes lead to <strong>the</strong> poor creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9lalloy:<br />

l. Coarsening <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous Mg17Al1;; precipitates at <strong>the</strong> later stage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> creep, unable to block <strong>the</strong> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> grain boundary<br />

2. Incompatibility between <strong>the</strong> matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg17Al1; intermetallic leads to <strong>the</strong><br />

cavity <str<strong>on</strong>g>and</str<strong>on</strong>g> crack formati<strong>on</strong>, which propagate al<strong>on</strong>g <strong>the</strong> grain boundary<br />

4.5. 7.2 AZ91 with alloying additi<strong>on</strong>s<br />

As seen earlier, cavity formati<strong>on</strong> is generally observed feature <str<strong>on</strong>g>of</str<strong>on</strong>g> creep failure.<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cavity forms as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> stress c<strong>on</strong>centrati<strong>on</strong> at areas like grain<br />

boundary triple point juncti<strong>on</strong>s, which are <strong>the</strong> sites <str<strong>on</strong>g>of</str<strong>on</strong>g> greatest disorder <str<strong>on</strong>g>and</str<strong>on</strong>g> inherent<br />

weakness [3l7]. However, <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> stable <str<strong>on</strong>g>and</str<strong>on</strong>g> hard intermetallic at <strong>the</strong> grain<br />

boundary may inhibit <strong>the</strong> sliding <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e grain over ano<strong>the</strong>r by reducing <strong>the</strong> atom<br />

movements across <strong>the</strong> grain boundary, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>reby reduce <strong>the</strong> opportunities for cavity<br />

formati<strong>on</strong> at <strong>the</strong> triple points. lt is understood that <strong>the</strong> Mgr7Al|; intermetallic is not<br />

str<strong>on</strong>g enough to prevent <strong>the</strong> cavity f<strong>on</strong>rrati<strong>on</strong>; perhaps it facilitates it due to its<br />

incompatibility with <strong>the</strong> matrix. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> stable<br />

intcrmetallics like Mgg<str<strong>on</strong>g>Si</str<strong>on</strong>g>, Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; <str<strong>on</strong>g>and</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> at <strong>the</strong> grain boundary reduces <strong>the</strong> activity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> atom diffusi<strong>on</strong> al<strong>on</strong>g <strong>the</strong> grain boundary. In additi<strong>on</strong> to that, presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se<br />

intermetallics introduces many dislocati<strong>on</strong>s nearby during solidificati<strong>on</strong> due to <strong>the</strong><br />

difference in co-efficient <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>rmal expansi<strong>on</strong>. These dislocati<strong>on</strong>s act as a<br />

heterogeneous nucleati<strong>on</strong> site for <strong>the</strong> c<strong>on</strong>tinuous precipitates [295]. Figures 4.66 show<br />

<strong>the</strong> microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloys, which clearly indicates <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dense c<strong>on</strong>tinuous precipitates near <strong>the</strong> intermetallics. These finely distributed coherent<br />

precipitates near <strong>the</strong> boundaries are more effectively reduce <strong>the</strong> atom movement<br />

across <strong>the</strong> grain boundary by diffusi<strong>on</strong>. <str<strong>on</strong>g>Si</str<strong>on</strong>g>nce <strong>the</strong>se precipitates form al<strong>on</strong>g <strong>the</strong> grain<br />

boundary dislocati<strong>on</strong>s it also effectively pinning <strong>the</strong>m in place.<br />

Apart from that, <strong>the</strong>se intermetallics effectively obstruct <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

crack al<strong>on</strong>g <strong>the</strong> grain boundary, which already developed at <strong>the</strong> interface <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix<br />

l57


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Mg17Al12 as explained earlier. The SEM photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> cross secti<strong>on</strong> near <strong>the</strong><br />

fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> creep ruptured AZ9l+0.5<str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy is shown in Figure 4.67, it could<br />

be seen that many cracks are initiated from <strong>the</strong> massive as well as disc<strong>on</strong>tinuous<br />

precipitate <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg|7Al|2 <str<strong>on</strong>g>and</str<strong>on</strong>g> spreads throughout <strong>the</strong> matrix. These cracks are<br />

obstructed by <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates at <strong>the</strong> grain boundary. However, cavity<br />

formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> cracking at <strong>the</strong>se intermetallics (Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>;) is <strong>the</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening<br />

mechanism, which leads to <strong>the</strong> final fracture at last. Cracks <str<strong>on</strong>g>and</str<strong>on</strong>g> cavities at both Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallics are also seen in <strong>the</strong> crept microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added<br />

alloys (see Figures 4.66 & 4.67). However, <strong>the</strong> interrupted microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AZ9l+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy creep tested up to 6000 h at 150°C shown in Figure 4.68,<br />

indicate that <strong>the</strong> Mg;<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallic is intact. This gives rise to an extended<br />

sec<strong>on</strong>dary creep regi<strong>on</strong>. Hence, <strong>the</strong> final failure is decided by <strong>the</strong> intermetallics as<br />

how l<strong>on</strong>g it prevents <strong>the</strong> crack propagati<strong>on</strong>.<br />

ln <strong>the</strong> present study, it is also found that both <strong>the</strong> morphologies (Chinese script<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> polyg<strong>on</strong>al) <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic exhibits similar creep properties, despite <strong>the</strong><br />

tensile properties are sensitive with <strong>the</strong> morphology, which indicates that <strong>the</strong> Chinese<br />

script does not affect <strong>the</strong> creep properties. Recently, Dargush et al. [318] also reported<br />

that <strong>the</strong> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Chinese script Mg;;<str<strong>on</strong>g>Si</str<strong>on</strong>g> is effective to hold <strong>the</strong> grain<br />

boundary against sliding during creep. As shown in Figure 2c, it has multiple arms<br />

extended into neighboring grains <strong>the</strong>reby restrict <strong>the</strong> grain boundary movement<br />

effectively. Ano<strong>the</strong>r possible explanati<strong>on</strong> is <strong>the</strong> difference in type <str<strong>on</strong>g>of</str<strong>on</strong>g> load applied<br />

during tensile <str<strong>on</strong>g>and</str<strong>on</strong>g> creep testing. The normal strain rate used for tensile testing is much<br />

higher (103 to 104 S4) than <strong>the</strong> strain rate encountered during creep testing (in <strong>the</strong><br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> 10'? S"). At higher strain rate, accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong>s at <strong>the</strong> interface <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> hard intermetallic is at a faster rate, which increases <strong>the</strong> local stress level<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> leads to cracking. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, dislocati<strong>on</strong> pile up is at slower rate during<br />

creep <str<strong>on</strong>g>and</str<strong>on</strong>g> hence streng<strong>the</strong>ning effect due to its multiple arm morphology, as it<br />

restricts <strong>the</strong> grain boundary movement, dominates. Due to this, <strong>the</strong> creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AZ91 improves by <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> massive size Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> with Chinese script<br />

morphology even though it reduces tensile properties.<br />

158


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.66: C<strong>on</strong>tinuous precipitates occurred around <strong>the</strong> intermetallics during<br />

creep at 150°C (a) AZ9l (b) AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> (c) AZ91+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

159<br />

i


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.67: Photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> creep ruptured AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy at 150°C<br />

showing cracks arrested by Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic<br />

Figure 4.68: Photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> subjected to creep testing at 150°C<br />

up to 6000 h showing Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallics remain intact<br />

160


W Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Superior creep behavior is observed with 0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy compared to all<br />

alloys studied. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> intermetallics <strong>on</strong> <strong>the</strong> properties can be related to its<br />

stability, shape <str<strong>on</strong>g>and</str<strong>on</strong>g> b<strong>on</strong>ding with matrix. In general, <strong>the</strong> <strong>the</strong>rmal stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

intermetallics is related to <strong>the</strong>ir melting points, higher <strong>the</strong> melting point, higher is <strong>the</strong><br />

<strong>the</strong>rmal stability [325]. The melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallic (1228°C) is slightly<br />

higher than <strong>the</strong> melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic (l085°C) [43, 176]. Moreover,<br />

<strong>the</strong> lattice similarities exist between <strong>the</strong> Mg matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; intermetallic; both are<br />

hep lattice structures. In c<strong>on</strong>trast, Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> has cubic structure [3l6]. In that way Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2<br />

intermetallic is more effective compared to both Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg17Al12. Due to this<br />

reas<strong>on</strong> 0.5<str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy exhibit superior creep properties in <strong>the</strong> present study.<br />

However, in general, not much improvement in creep properties is observed with<br />

alloying additi<strong>on</strong>s at 200°C. This is attributed to <strong>the</strong> fact that <strong>the</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening effect by<br />

<strong>the</strong> coarsening <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al12 is more predominant at 200°C due to <strong>the</strong> high mobility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aluminum atoms.<br />

Even though l<strong>on</strong>g term test was not carried out for <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy, <strong>the</strong> 500 h<br />

test indicate that <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> are also capable <str<strong>on</strong>g>of</str<strong>on</strong>g> improving <strong>the</strong> creep resistance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AZ91 alloy. The above said intermetallic stability <strong>the</strong>ory could be invoked to explain<br />

<strong>the</strong> improvement, since <strong>the</strong> melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallic (1040°C) is higher<br />

than <strong>the</strong> Mg17Al1;. Moreover, from heat treatment studies it is found that <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong><br />

increases <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg]-;Al12 to certain extent. Many Mg|7Al;2 intermetallic is<br />

seen even after prol<strong>on</strong>ged soluti<strong>on</strong> treatment at 420°C. This will also play a role<br />

during creep. A detailed study <strong>on</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> is included in <strong>the</strong> future course <str<strong>on</strong>g>of</str<strong>on</strong>g> work.<br />

Hence, <strong>the</strong> improvement in creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy due to <strong>the</strong> alloying<br />

additi<strong>on</strong> is attributed to <strong>the</strong> following reas<strong>on</strong>s:<br />

o Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>rmally stable intermetallic, which pin <strong>the</strong> boundary<br />

against sliding<br />

o Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous precipitates <strong>the</strong>reby<br />

streng<strong>the</strong>n <strong>the</strong> grain boundary<br />

161


_ Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

4.6 CORROSION BEHAVIOR<br />

Normally, <strong>the</strong> minor alloying additi<strong>on</strong>s such as <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g>, <str<strong>on</strong>g>Sr</str<strong>on</strong>g>, RE <str<strong>on</strong>g>and</str<strong>on</strong>g> etc., are<br />

carried out to improve <strong>the</strong> mechanical properties. However, <strong>the</strong>se additi<strong>on</strong>s change<br />

<strong>the</strong> microstructure by introducing different intermetallics. From <strong>the</strong> literature, it is<br />

found that <strong>the</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy is influenced by its microstructure. lt<br />

is necessary <str<strong>on</strong>g>and</str<strong>on</strong>g> important to study <strong>the</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloying elements<br />

added AZ91 alloy. Corrosi<strong>on</strong> test were carried out <strong>on</strong> <strong>the</strong> selected samples <strong>on</strong> each<br />

alloying additi<strong>on</strong>s. AZ9l+O.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>, AZ9l+O.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g>, AZ9l+O.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> AZ9l+O.5%<br />

<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> samples were subjected to 100 h immersi<strong>on</strong> test <strong>on</strong> 3.5% NaCl in soluti<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> polarizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> impedance test in ASTM 1348 (148 mg 1" <str<strong>on</strong>g>of</str<strong>on</strong>g> Na;SO4, 138 mg 1"<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NaHCO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 165 mg l" NaCl (pH=8.3)) soluti<strong>on</strong>. Corrosi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> all alloys is<br />

found out from <strong>the</strong> immersi<strong>on</strong> test <str<strong>on</strong>g>and</str<strong>on</strong>g> its corrosi<strong>on</strong> behavior is also derived from<br />

polarizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> impedance test in ASTM 1348 soluti<strong>on</strong>.<br />

4.6.1 Immersi<strong>on</strong> Test<br />

Figure 4.69 presents <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g>, <str<strong>on</strong>g>Sr</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> combined additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Sb</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9lD in 3.5% NaCl soluti<strong>on</strong>. The 100 h immersi<strong>on</strong> test<br />

shows that alloying additi<strong>on</strong>s has different kind <str<strong>on</strong>g>of</str<strong>on</strong>g> influence <strong>on</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AZ91 alloy due to <strong>the</strong> difference in <strong>the</strong> microstructure. Individual additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> improve <strong>the</strong> corrosi<strong>on</strong> resistance marginally. Substantial improvement in corrosi<strong>on</strong><br />

resistance is obtained for <strong>the</strong> combined additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g>. The<br />

AZ9l+0.5%<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2%<str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloy shows a corrosi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 155 mpy against <strong>the</strong> base<br />

alloy’s value <str<strong>on</strong>g>of</str<strong>on</strong>g> 226 mpy. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> al<strong>on</strong>g added alloy shows slightly<br />

higher corrosi<strong>on</strong> rate (262 mpy) compared to <strong>the</strong> base alloy.<br />

4.6.2 Potentiodynamic Polarizati<strong>on</strong> Test<br />

The polarizati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy with <str<strong>on</strong>g>and</str<strong>on</strong>g> without alloying additi<strong>on</strong>s<br />

is presented in Figure 4.70. The polarizati<strong>on</strong> parameters measured from <strong>the</strong><br />

polarizati<strong>on</strong> curves are listed in Table 4.14. The results show apparent changes in<br />

corrosi<strong>on</strong> potential <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong> current density <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy with alloying<br />

additi<strong>on</strong>s. All <strong>the</strong> alloying additi<strong>on</strong>s shift <strong>the</strong> corrosi<strong>on</strong> potential more positive. At <strong>the</strong><br />

same time, <strong>the</strong> corrosi<strong>on</strong> current reducti<strong>on</strong> is also noticed with <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>s.<br />

162


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Compared to individual additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>, combined additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> shifts <strong>the</strong><br />

corrosi<strong>on</strong> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> base alloy more positive with less corrosi<strong>on</strong> current. The<br />

corrosi<strong>on</strong> potential shifts positive by 52 mV <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong> current reduced by 2 X 106<br />

A/cmz. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, even though <strong>the</strong> corrosi<strong>on</strong> potential is high with <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added<br />

alloy, <strong>the</strong> corrosi<strong>on</strong> current is also high, increased by 2.5X 106 A/cmz, which<br />

indicates that <strong>the</strong> corrosi<strong>on</strong> rate is high with <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong>. These results are inline with<br />

<strong>the</strong> immersi<strong>on</strong> test. From <strong>the</strong> cathodic regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> polarizati<strong>on</strong> curves<br />

(ref. Figure 4.70), it can be seen that at all <strong>the</strong> potential <strong>the</strong> cathodic current is high in<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy compared to o<strong>the</strong>r alloys, which suggests that <strong>the</strong> cathodic<br />

300 ­<br />

activity is high.<br />

‘\ . \ ' \ ' g;\" '<br />

>1” ,,¢;\~*‘ ,,


_‘ _“‘t<br />

-1.30<br />

Chapter<br />

,<br />

4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

_ - —AZ91<br />

1-35" ‘ — —AZ91+0.5<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

- 4 — —AZ91+0.5<str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

1_4o_ - —AZ91+0.2<str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

- —AZ91+0.5<str<strong>on</strong>g>Si</str<strong>on</strong>g>+O.2<str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

-1.45<br />

- _ ___‘-""‘<br />

- _ _‘;,7,-.-.- §'“" -Q‘ / /<br />

_ -1.ss- \ ~\ '<br />

-1 .50<br />

1E-8 1 E-7 1 E-6 1E-5 1 E-4 1E-3<br />

Log current density (Alcmz)<br />

Figure 4.70: Polarizati<strong>on</strong> plot for AZ9l alloy with <str<strong>on</strong>g>and</str<strong>on</strong>g> without additi<strong>on</strong>s<br />

Table 4.14: Eco" <str<strong>on</strong>g>and</str<strong>on</strong>g> Ic<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different alloys obtained from polarizati<strong>on</strong> curve<br />

Alloy (v) 1..., x10'6(A/cmz)<br />

AZ9l -1.497 5.8373<br />

AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> -1.490 4.4659<br />

AZ91+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> -1.480 4.5827<br />

AZ9l+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> -1.445 7.369<br />

-1.477 3.9276<br />

AZ9l+0.5%<br />

<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2 % <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

4.6.3 Electrochemical Impedance Spectroscopy<br />

Corrosi<strong>on</strong> damage results from electrochemical reacti<strong>on</strong>s, so electrochemical<br />

measurement can <str<strong>on</strong>g>of</str<strong>on</strong>g>ten reveal <strong>the</strong> corrosi<strong>on</strong> mechanism [220, 319]. Electrochemical<br />

impedance spectroscopy (EIS) is a useful technique in <strong>the</strong> study <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong>. The<br />

simple electrochemical system c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a double layer capacitance (Cdl), a soluti<strong>on</strong><br />

resistance (RS) <str<strong>on</strong>g>and</str<strong>on</strong>g> a charge-transfer resistance or polarizati<strong>on</strong> resistance (RP) as<br />

shown in Figure 3.10. These electrochemical parameters obtained are summarized in<br />

IKA


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Table 4.l5. The EIS results <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 with <str<strong>on</strong>g>and</str<strong>on</strong>g> without alloying additi<strong>on</strong>s are<br />

presented in Figure 4.71 as Nyquist plot <str<strong>on</strong>g>and</str<strong>on</strong>g> Bode plot. The Nyquist plot given in<br />

Figure 4.71 (a) shows that all <strong>the</strong> alloys exhibit <strong>on</strong>ly <strong>on</strong>e capacitive loop. According<br />

to previous studies <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91all0y, it is expected to observe<br />

two semi-circle loops in <strong>the</strong> impedance diagram, <strong>on</strong>e characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> passive film<br />

resistance (Rf) <str<strong>on</strong>g>and</str<strong>on</strong>g> capacity (Cf) at <strong>the</strong> high frequency range <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> o<strong>the</strong>r,<br />

characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> charge transfer resistance (Rot) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> double layer capacity (Cdl)<br />

in <strong>the</strong> low frequency range [200, 320,321]. In <strong>the</strong> present study, <strong>on</strong>ly <strong>on</strong>e semi-circle<br />

is observed, which may be related to <strong>the</strong> fact that <strong>the</strong> time c<strong>on</strong>stants for <strong>the</strong> surface<br />

film (Rcf) <str<strong>on</strong>g>and</str<strong>on</strong>g> for <strong>the</strong> electr<strong>on</strong> transfer process (R¢iCa1) are close [322]. <str<strong>on</strong>g>Si</str<strong>on</strong>g>milarities in<br />

all EIS spectrums except in diameter show that <strong>the</strong> corrosi<strong>on</strong> mechanism is same for<br />

all <strong>the</strong> alloys but with different rate. The diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> capacitive loop provides <strong>the</strong><br />

corrosi<strong>on</strong> rate [323]. The diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> capacitive loops <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

added alloy is almost same but slightly higher than <strong>the</strong> AZ91 base alloy, whereas it<br />

increases c<strong>on</strong>siderably with combined additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g>. As expected lesser<br />

diameter is observed with individual additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5%<str<strong>on</strong>g>Sb</str<strong>on</strong>g>, which shows that <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

additi<strong>on</strong> reduces <strong>the</strong> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91. The corrosi<strong>on</strong> rate is inversely<br />

related to Rp. Higher <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> Rp, higher <strong>the</strong> corrosi<strong>on</strong> resistance (lesser corrosi<strong>on</strong><br />

rate). Higher RP value obtains with combined additi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> lower value with <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

additi<strong>on</strong> also reflects <strong>the</strong> alloy behavior during corrosi<strong>on</strong>.<br />

In general, Cd] value for <strong>the</strong> magnesium alloys is low <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> reas<strong>on</strong> is<br />

attributed to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively thick <str<strong>on</strong>g>and</str<strong>on</strong>g> compact protective film <strong>on</strong> <strong>the</strong> metal<br />

surface [46, 324]. In this present investigati<strong>on</strong>, it can also be seen that <strong>the</strong> increase in<br />

Rp value is not accompanied by a breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Cdi values, indeed <strong>the</strong> Cd] values<br />

are increase with increase in Rp values. <str<strong>on</strong>g>Si</str<strong>on</strong>g>milar kind <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong> has been made<br />

with La additi<strong>on</strong> to AZ91 alloy by Yu Fan et al [46]. This shows that <strong>the</strong> alloys could<br />

not form an effective protective film in Cl envir<strong>on</strong>ment. The Bode plot in<br />

Figure 4.71 (b) shows <strong>the</strong> low frequency impedance values <str<strong>on</strong>g>of</str<strong>on</strong>g> different alloys. Higher<br />

impedance value is noticed with individual additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> combined<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g>. Again, lesser impedance value noticed with <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> is<br />

matching with immersi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> polarizati<strong>on</strong> test results.<br />

165


.. /‘__‘\<br />

- A/ \‘<br />

.--“' ‘<br />

D<br />

-1599<br />

1<br />

i<br />

'<br />

A/I ‘T<br />

\ 7 77$“<br />

-1000 — .»"<br />

10000<br />

_//<br />

A 1 \ \<br />

- s - — A291<br />

- — AZ91+0.5<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

~ — AZ91+0.5<str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

° — — - AZ91+0.5<str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

'|'|'|'|'|'|'|'<br />

_ — — AZ91+0.5<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2<str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

0100020003000400050006000<br />

Zrelohm.cm'<br />

Q‘ — _ ~ \\ .<br />

\__ K u \ \\><br />

_>\1~-__7 x" \_<br />

'\‘_* -_ \‘<br />

' A<br />

— - AZ91+0.5<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

I m " A291 ‘§‘:»\<br />

AZ91+0.5<str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

100 1<br />

— —AZ91+O.5<str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

\<br />

\\<br />

AZ91+0.5<str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2<str<strong>on</strong>g>Sb</str<strong>on</strong>g> \<br />

*:<br />

10 100<br />

Frequency Hz<br />

Figure 4.71: Electrochemical impedance spectroscopy measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

alloys (a) Nyquist plot (b) Bode plot<br />

I66


_ _ K Chapter 4; Results <str<strong>on</strong>g>and</str<strong>on</strong>g>liiiscussi<strong>on</strong><br />

Table 4.15: Corrosi<strong>on</strong> parameters obtain from EIS measurement for different<br />

alloys<br />

H Alloy |z| ohm cm’ RP ohm em’ “ c...x10‘ |1F/cm<br />

AZ91 A 2910 30159 1.25<br />

AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> 5 3450 3581 7.4<br />

AZ91+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> 3556 3950 7.2<br />

TiAZ91+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> 7<br />

; AZ9l+0.5%<br />

l si+o,g% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

2425 2502 8 87.4<br />

4.6.4 Corrosi<strong>on</strong> Morphology<br />

4987 4518 7 06 I<br />

Figure 4.72 shows <strong>the</strong> macrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 h immersi<strong>on</strong> tested samples in 3.5<br />

NaCl. From <strong>the</strong> macrostructure it is seen that almost all <strong>the</strong> samples are similar due to<br />

<strong>the</strong> l<strong>on</strong>ger immersi<strong>on</strong> time in aggressive Cl envir<strong>on</strong>ment. However, it is noticed that<br />

<strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong> in <strong>the</strong> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy is more severe. The entire surface is<br />

attacked by corrosi<strong>on</strong>. Large uncorroded areas are observed with combined additi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g>.<br />

Figure 4.73 exhibits <strong>the</strong> corroded microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91. From<br />

Figure 4.73 (a), which shows 2 h immersi<strong>on</strong> sample, it can be seen that <strong>the</strong> alloy<br />

exhibits pitting kind <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong>. These pits are mainly initiated at <strong>the</strong> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> ot­<br />

Mg matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy <str<strong>on</strong>g>and</str<strong>on</strong>g> spread towards <strong>the</strong> boundary. No corrosi<strong>on</strong> is observed<br />

<strong>on</strong> <strong>the</strong> [3 —Mg|7Al12 phase. Even under <strong>the</strong> pits many disc<strong>on</strong>tinuous Mgl7Al12<br />

intermetallics are seen. These results COI1fiI'I11 that during corrosi<strong>on</strong> process, both<br />

massive <str<strong>on</strong>g>and</str<strong>on</strong>g> lamellar Mg|1Al12 phases are stable. When immersi<strong>on</strong> time increases, <strong>the</strong><br />

corrosi<strong>on</strong> spread throughout <strong>the</strong> sample as seen from <strong>the</strong> figure 4.73 (b) which shows<br />

<strong>the</strong> corroded surface <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 h immersed sample. Many massive eutectic <str<strong>on</strong>g>and</str<strong>on</strong>g> lamellar<br />

[3-—Mg17Al1; phases at <strong>the</strong> grain boundary are still appears intact at grain boundary. It<br />

is observed in <strong>the</strong> present study that all o<strong>the</strong>r intermetallics like Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> (both in<br />

Chinese script <str<strong>on</strong>g>and</str<strong>on</strong>g> polyg<strong>on</strong>al), Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2 <str<strong>on</strong>g>and</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> are also stable even after 100 h<br />

exposure in <strong>the</strong> NaCl soluti<strong>on</strong> (ref. Figure 4.74).<br />

167


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.72: Photograph showing <strong>the</strong> macrostructure <str<strong>on</strong>g>of</str<strong>on</strong>g> corroded samples<br />

(a) AZ9l (b) AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> (c) AZ91+0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

(d) AZ91+0.5% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> (e) AZ91+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g><br />

168


Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 4.73: SEM photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> immersi<strong>on</strong> tested AZ9l alloy (a) 2 h immersed<br />

surface showing pitting type corrosi<strong>on</strong> in <strong>the</strong> a-Mg matrix<br />

(b) 100 h immersed surface showing unaffected massive <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

disc<strong>on</strong>tinuous Mg11Al1; precipitates<br />

Figure 4.74: SEM photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> diflerent alloys immersi<strong>on</strong> tested for l00h<br />

showing stable intermetallics (a) AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> alloy<br />

(b) AZ9l+0.5%<str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloy<br />

169


4.6.5 XRD Analysis<br />

g Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

XRD analysis was carried out <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> product collected from<br />

immersi<strong>on</strong> test c<strong>on</strong>ducted <strong>on</strong> various alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> is presented in Figure 4.75. All <strong>the</strong><br />

spectrums shows <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg(OH);, MgH2 <str<strong>on</strong>g>and</str<strong>on</strong>g> a mixed oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> aluminum which has fallen from <strong>the</strong> surface. The JCPDS card shows that <strong>the</strong><br />

MgO:Al;O3 ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> this mixed oxide is l:2.5 [325]. <str<strong>on</strong>g>Si</str<strong>on</strong>g>milar kind <str<strong>on</strong>g>of</str<strong>on</strong>g> oxides is<br />

observed in previous study [36]. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peaks for <strong>the</strong> intermetallics like B­<br />

Mg|7Al12, Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g>, Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2 <str<strong>on</strong>g>and</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> are also seen with respective alloys. This<br />

indicates that <strong>the</strong>se intermetallics are stable in Cl envir<strong>on</strong>mental. During l<strong>on</strong>g<br />

exposure, due to <strong>the</strong> undermining <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>-Mg matrix, <strong>the</strong>se intermetallics are removed<br />

from <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> samples.<br />

. D<br />

[1 0 MgAl0<br />

.<br />

6 lVlg2<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

o<br />

A AI‘<str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

I’<br />

1800<br />

H V M9(0H), D MgHz ® NaCI T<br />

1600 I MQWAI12 @935!!!<br />

V V s1+o s°/ s i<br />

1400 1200 "\.....--#'*') @ Ln,/tg-Jlsggw<br />

2U 30 40 50 50 70 30<br />

-—f- 1 | er‘ 1 a 1 {** 1 ~41 r‘* |* r .1‘" i<br />

Figure 4.75: XRD patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> particles collected from 100 h immersi<strong>on</strong> test<br />

showing <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> different oxides <str<strong>on</strong>g>and</str<strong>on</strong>g> intermetallics<br />

4.6.6 Corrosi<strong>on</strong> Mechanism<br />

29<br />

Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>d phases have a pr<strong>on</strong>ounced influence <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mg alloys, because most <str<strong>on</strong>g>of</str<strong>on</strong>g> elements <strong>on</strong>ly affect <strong>the</strong> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnesium alloys after <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>d phases [326]. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microstructure c<strong>on</strong>stitutes <strong>on</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al alloy is studied elaborately<br />

170


K Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

by various authors <str<strong>on</strong>g>and</str<strong>on</strong>g> well documented in literature [36, 202, 208, 326, 327]. As<br />

discussed in chapter 4.1, <strong>the</strong> as cast microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy mainly c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

o-Mg matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> B-Mg11Al1;;. This intermetallic is more corrosi<strong>on</strong> resistant compared<br />

to or-Mg matrix due to <strong>the</strong> higher amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Al in it. It is said that <strong>the</strong> B- Mg17Al12<br />

intermetallic has a dual role in corrosi<strong>on</strong>: effective barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> active cathode to 01- Mg<br />

matrix. lt acts as an effective barrier when its volume fracti<strong>on</strong> is high <str<strong>on</strong>g>and</str<strong>on</strong>g> inter­<br />

particle distance is not too large as like in die cast alloy. So <strong>the</strong> oxide film <strong>on</strong> <strong>the</strong><br />

phase is c<strong>on</strong>tinuous <str<strong>on</strong>g>and</str<strong>on</strong>g> hence <strong>the</strong> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> or-phase is inhibited. On <strong>the</strong> o<strong>the</strong>r<br />

h<str<strong>on</strong>g>and</str<strong>on</strong>g>, if <strong>the</strong> 13- phase is coarse <str<strong>on</strong>g>and</str<strong>on</strong>g> interparticle distance is very large, as like in gravity<br />

casting, <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> networking is not possible. In this case <strong>the</strong> corrosi<strong>on</strong> rate is<br />

increased by [3- phase since it acts as a cathode with respect to less aluminium c<strong>on</strong>tent<br />

or-Mg matrix. Moreover, undermining <str<strong>on</strong>g>of</str<strong>on</strong>g> B- phase occurred due to <strong>the</strong> corrosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

matrix near <strong>the</strong> phase [324].<br />

Improvement in corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy due to <strong>the</strong> alloying<br />

additi<strong>on</strong>s is reported in literature [46-50]. Elements like Ca <str<strong>on</strong>g>and</str<strong>on</strong>g> RE additi<strong>on</strong>s to Mg­<br />

Al alloys are beneficial to improve its corrosi<strong>on</strong> behavior. The reas<strong>on</strong>s attributed to<br />

such improvement are: (i) <strong>the</strong> added elements refine <strong>the</strong> |3- phase <str<strong>on</strong>g>and</str<strong>on</strong>g> forms more<br />

c<strong>on</strong>tinuous network, (ii) <strong>the</strong> added element suppresses <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B- phase by<br />

forming ano<strong>the</strong>r intermetallic with Al which is less harmful to corroding o- Mg<br />

matrix, (iii) alloy elements may incorporate into <strong>the</strong> protective film <str<strong>on</strong>g>and</str<strong>on</strong>g> increase its<br />

stability.<br />

In <strong>the</strong> present work, it can be seen from <strong>the</strong> microstructure that additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

to AZ9l alloy does not change <strong>the</strong> size <str<strong>on</strong>g>and</str<strong>on</strong>g> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> B- phase c<strong>on</strong>siderably. It is<br />

also seen that <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> does not form any ano<strong>the</strong>r comp<strong>on</strong>ent with Al but<br />

form a Chinese script Mg;><str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic at grain boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> when it is added<br />

al<strong>on</strong>g with <str<strong>on</strong>g>Sb</str<strong>on</strong>g>, fine polyg<strong>on</strong>al Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> which seems nobler than U.- Mg matrix <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

behaves as a passive cathode. The Ec<strong>on</strong> for Mg <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> are almost same (-1.65<br />

VSCE) [37]. Hence it is expected that Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic does not have a detrimental<br />

effect <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy. From <strong>the</strong> improved corrosi<strong>on</strong><br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> combined additi<strong>on</strong> over <strong>the</strong> individual additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>, it is understood<br />

171


pg Chapter 4: Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

that <strong>the</strong> morphology <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this phase has an influence <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong><br />

behaviour. When <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates in fine polyg<strong>on</strong>al shape <str<strong>on</strong>g>and</str<strong>on</strong>g> distributed<br />

evenly al<strong>on</strong>g with Mg17Al1; at <strong>the</strong> grain boundary, it helps to form a c<strong>on</strong>tinuous<br />

network which would help to inhibit <strong>the</strong> propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong> effectively from <strong>on</strong>e<br />

grain to ano<strong>the</strong>r grain <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>reby improve <strong>the</strong> corrosi<strong>on</strong> resistance greatly.<br />

However, <strong>the</strong> improvement noticed with <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy is attributed to<br />

different reas<strong>on</strong>s. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> to AZ9l refines <strong>the</strong> grain as well as <strong>the</strong> B- phase <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

reduces <strong>the</strong> volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B- phase by forming Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g>. It is well known that <strong>the</strong> B­<br />

phase is stable in NaC] soluti<strong>on</strong> due to <strong>the</strong> higher percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> Al in it but act as an<br />

effective cathode to magnesium matrix in gravity castings. Hence replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

phase with less cathodic intermetallics improves <strong>the</strong> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-Al<br />

alloys. So, <strong>the</strong> intermetallic Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> plays very important role in corrosi<strong>on</strong><br />

improvement. This al<strong>on</strong>g with <strong>the</strong> refined B- phase provides effective protective thin<br />

layer <strong>on</strong> <strong>the</strong> surface.<br />

It is seen that additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> to AZ9l alloy does not change <strong>the</strong> size,<br />

morphology <str<strong>on</strong>g>and</str<strong>on</strong>g> volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B- Mg17Al1; intermetallic, ra<strong>the</strong>r it forms Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>;<br />

intermetallic. From <strong>the</strong> figure <str<strong>on</strong>g>and</str<strong>on</strong>g> XRD analysis <strong>on</strong> <strong>the</strong> particle collected form <strong>the</strong><br />

immersi<strong>on</strong> test, it could be seen that Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; precipitates is also stable during<br />

corrosi<strong>on</strong> process. However, <strong>the</strong> high corrosi<strong>on</strong> rate observed with <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> in <strong>the</strong><br />

present work indicates that <strong>the</strong> Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>; phase seem to be an effective cathode al<strong>on</strong>g<br />

with 5- Mg17Al1; to 01- Mg matrix. This increases <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> galvanic sites <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong>reby increases <strong>the</strong> corrosi<strong>on</strong> rate.<br />

However, it is worth to menti<strong>on</strong> that a detailed investigati<strong>on</strong> particularly, <strong>the</strong><br />

role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se elements <strong>on</strong> <strong>the</strong> surface film characteristics is needed to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

role <strong>on</strong> corrosi<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l which is included in <strong>the</strong> future coarse <str<strong>on</strong>g>of</str<strong>on</strong>g> study.<br />

I72


IBIIIFIEII 5: IBIIIIBIISIIIIS<br />

In <strong>the</strong> present research work, individual <str<strong>on</strong>g>and</str<strong>on</strong>g> combined additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Sr</str<strong>on</strong>g> to gravity cast AZ9l have been carried out. Their effects <strong>on</strong> <strong>the</strong> microstructure,<br />

ageing characteristics, tensile <str<strong>on</strong>g>and</str<strong>on</strong>g> creep properties <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong> behaviour are<br />

studied. More emphasis has been given to <strong>the</strong> creep properties. Ageing treatment was<br />

carried out at 200°C. Tensile properties were evaluated both at room <str<strong>on</strong>g>and</str<strong>on</strong>g> high (150°C)<br />

temperatures. Creep testing has been carried out at 150 <str<strong>on</strong>g>and</str<strong>on</strong>g> 200°C. Initially all <strong>the</strong><br />

alloys have been subjected to creep testing at 150°C for 500 h <str<strong>on</strong>g>and</str<strong>on</strong>g> selected alloys<br />

have been subjected to creep testing till fracture. Immersi<strong>on</strong> test, polarizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

impedance measurement are carried out <strong>on</strong> selected samples to study <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

alloying additi<strong>on</strong>s <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy. This chapter summarizes<br />

all <strong>the</strong> major observati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>clusi<strong>on</strong>s drawn from this study as well as<br />

highlights <strong>the</strong> significant c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this <strong>the</strong>sis to <strong>the</strong> existing knowledge. The<br />

avenues for future work are also identified.<br />

1. The microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> as cast AZ9l alloy c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> u~Mg solid soluti<strong>on</strong>,<br />

massive B-Mg11Al12 intermetallic <str<strong>on</strong>g>and</str<strong>on</strong>g> disc<strong>on</strong>tinuous precipitates <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;1Al1;<br />

at <strong>the</strong> grain boundary.<br />

2. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2% <str<strong>on</strong>g>Si</str<strong>on</strong>g> introduces Chinese script Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic whereas<br />

0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>, additi<strong>on</strong> leads to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse Chinese script Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> in<br />

more volume. <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> does not change <strong>the</strong> size <str<strong>on</strong>g>and</str<strong>on</strong>g> volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

M817Al]2 phase <str<strong>on</strong>g>and</str<strong>on</strong>g> it does not change <strong>the</strong> grain size much.<br />

3. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> combines with Mg to form needle/plate shaped Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>;<br />

intermetallics at <strong>the</strong> grain boundary al<strong>on</strong>g with Mg17Al1; intermetallic.<br />

<str<strong>on</strong>g>Si</str<strong>on</strong>g>gnificant grain refinement is noticed with l%<str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong>. However, no<br />

change in volume <str<strong>on</strong>g>and</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al12 is observed with <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong>.<br />

173


_ E Chapter 5: C<strong>on</strong>clusi<strong>on</strong>s<br />

Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> leads to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> needle shaped Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

intermetallic at boundaries. Higher amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> intermetallic is seen with<br />

0.7% <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>. In <strong>the</strong> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added alloy, less amount <str<strong>on</strong>g>of</str<strong>on</strong>g> B- Mg17Al12 phase is<br />

noticed, which is due to c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more Al for <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g>. In<br />

additi<strong>on</strong>, refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> grains is also noticed with <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>.<br />

Additi<strong>on</strong> 0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> to <str<strong>on</strong>g>Si</str<strong>on</strong>g> c<strong>on</strong>taining alloy has refined <strong>the</strong> coarse Chinese script<br />

Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic into fine polyg<strong>on</strong>al shaped particles <str<strong>on</strong>g>and</str<strong>on</strong>g> distributes it<br />

evenly. Moreover, 0.l%<str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> also refines <strong>the</strong> Mg;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic but<br />

into a rectangular shape. <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> is found to be more effective in refining<br />

<strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic compared to <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>. Grain refinement is also<br />

observed with both <strong>the</strong> combined additi<strong>on</strong>s. Additi<strong>on</strong> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> with <str<strong>on</strong>g>Sr</str<strong>on</strong>g> has<br />

suppressed <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallics during solidificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> leads<br />

to <strong>the</strong> refinement<br />

Soluti<strong>on</strong> treatment at 410°C for 48 h leads to complete dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg11Al1;<br />

intermetallic in AZ9l alloy. During ageing at 200°C disc<strong>on</strong>tinuous precipitates<br />

are formed at <strong>the</strong> grain boundaries in <strong>the</strong> initial stage <str<strong>on</strong>g>and</str<strong>on</strong>g> later c<strong>on</strong>tinuous<br />

precipitates are occurred in <strong>the</strong> remaining regi<strong>on</strong>s.<br />

Even after 48 h <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> treatment, <strong>the</strong> intermetallic Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g>, Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Al4<str<strong>on</strong>g>Sr</str<strong>on</strong>g> are still appeared at <strong>the</strong> grain boundary. The coarse Chinese script<br />

Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> disintegrates into a fine round form. Dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> into Mg11Al12<br />

intermetallic increases its stability to certain extent <str<strong>on</strong>g>and</str<strong>on</strong>g> due to this still some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mg17AI,; particles are appeared after soluti<strong>on</strong> treatment.<br />

Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> suppresses <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous precipitates<br />

during ageing at 200°C whereas <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> slightly its volume. Higher<br />

hardness is observed with all alloying additi<strong>on</strong>s at all tempering c<strong>on</strong>diti<strong>on</strong>s.<br />

Individual additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> reduces <strong>the</strong> tensile properties, particularly <strong>the</strong><br />

ductility, due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse Chinese script Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic.<br />

174


Chapter 5: C<strong>on</strong>clusi<strong>on</strong>s<br />

However, <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5%<str<strong>on</strong>g>Sb</str<strong>on</strong>g> with O.5%<str<strong>on</strong>g>Sr</str<strong>on</strong>g> increases <strong>the</strong> properties due to<br />

<strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> intermetallics <str<strong>on</strong>g>and</str<strong>on</strong>g> refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> grains.<br />

Higher percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong>s (0.7%) reduces <strong>the</strong> properties due to<br />

<strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> more volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> needle shaped Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2 <str<strong>on</strong>g>and</str<strong>on</strong>g> A14<str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

intemietallics respectively, which acted as a stress raisers during loading.<br />

With 0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.1% <str<strong>on</strong>g>Sr</str<strong>on</strong>g>, <strong>the</strong> AZ9l+X<str<strong>on</strong>g>Si</str<strong>on</strong>g> (X= 0.2% <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5%) alloys exhibit<br />

improved tensile properties particularly <strong>the</strong> ductility due to <strong>the</strong> favorable<br />

morphological change <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic.<br />

Improved high temperature (150°C) tensile properties are also noticed with<br />

alloying additi<strong>on</strong>s. As like at room temperature, higher percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>s<br />

leads to <strong>the</strong> reducti<strong>on</strong> in properties.<br />

The alloying additi<strong>on</strong>s greatly improve <strong>the</strong> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy at<br />

150°C whereas such improvement is not observed at 200°C. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

(0.2%, 0.5%), <str<strong>on</strong>g>Sb</str<strong>on</strong>g> (0.5%) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> (0.5%, 0.7%) improves <strong>the</strong> creep resistance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AZ91 alloy c<strong>on</strong>siderably at 150°C whereas 0.7% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong>s reduce <strong>the</strong> creep<br />

properties. Am<strong>on</strong>g various additi<strong>on</strong>s, <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> has yielded higher creep<br />

properties.<br />

Both AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> AZ9l+0.5% <str<strong>on</strong>g>Si</str<strong>on</strong>g>+0.2% <str<strong>on</strong>g>Sb</str<strong>on</strong>g> alloys exhibit similar creep<br />

behavior suggesting morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic (Chinese script<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> polyg<strong>on</strong>al shape) does not have much effect <strong>on</strong> <strong>the</strong> creep properties.<br />

Dynamic c<strong>on</strong>tinuous precipitates from <strong>the</strong> supersaturated eutectic or-Mg solid<br />

soluti<strong>on</strong> occur during creep exposure. However, <strong>the</strong> additi<strong>on</strong>al intermetallics<br />

presented due to <strong>the</strong> alloying additi<strong>on</strong>s leads to <strong>the</strong> fomiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more amounts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> precipitates.<br />

175


_ Chapter 5: C<strong>on</strong>clusi<strong>on</strong>s<br />

Cavity formati<strong>on</strong> at <strong>the</strong> interface between <strong>the</strong> matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> B-Mg17Al|2<br />

intermetallic due to <strong>the</strong> incompatibility between <strong>the</strong>m <str<strong>on</strong>g>and</str<strong>on</strong>g> coarsening <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tinuous Mg17Al1; precipitates due to its low <strong>the</strong>rmal stability are identified<br />

as <strong>the</strong> reas<strong>on</strong>s for <strong>the</strong> poor creep resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy.<br />

The improvement in creep properties obtained due to <strong>the</strong> alloying additi<strong>on</strong>s is<br />

attributed to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>rmally stable intermetallics <str<strong>on</strong>g>and</str<strong>on</strong>g> more amounts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous precipitates, which effectively minimize <strong>the</strong> grain boundary<br />

damage.<br />

Marginal improvement in corrosi<strong>on</strong> resistance is noticed with <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

additi<strong>on</strong>s whereas combined additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> improves its corrosi<strong>on</strong><br />

behavior significantly. In c<strong>on</strong>trast, <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> al<strong>on</strong>e reduces <strong>the</strong> corrosi<strong>on</strong><br />

resistance.<br />

Both <strong>the</strong> morphology <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg;;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intennetallic have greater<br />

influence <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy. Fine <str<strong>on</strong>g>and</str<strong>on</strong>g> evenly distributed<br />

polyg<strong>on</strong>al shaped Mg;_><str<strong>on</strong>g>Si</str<strong>on</strong>g> intennetallic effectively inhibits <strong>the</strong> corrosi<strong>on</strong><br />

compared to <strong>the</strong> coarse Chinese script Mgg<str<strong>on</strong>g>Si</str<strong>on</strong>g>.<br />

The Mg3<str<strong>on</strong>g>Sb</str<strong>on</strong>g>2 intennetallic in <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added alloy increases <strong>the</strong> cathodic activity <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

hence decreases <strong>the</strong> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 alloy.<br />

5 l SIGNIFICANT CONTRIBUTIONS OF THE PRESENT INVESTIGATION<br />

TO THE KNOWLEDGE<br />

A detailed post creep test microstructural analyses <strong>on</strong> AZ9l alloy with <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

without alloying additi<strong>on</strong>s has facilitated to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

intermetallics during creep.<br />

Ca, P <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong>s are carried out to modify <strong>the</strong> coarse Chinese script<br />

Mg;;<str<strong>on</strong>g>Si</str<strong>on</strong>g> intermetallic in gravity cast magnesium alloys. In <strong>the</strong> present work it is<br />

176


3.<br />

4.<br />

Chapter 5: C<strong>on</strong>clusi<strong>on</strong>s<br />

found that <str<strong>on</strong>g>Sr</str<strong>on</strong>g> is also capable <str<strong>on</strong>g>of</str<strong>on</strong>g> modifying <strong>the</strong> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

intermetallic.<br />

It is well established that <strong>the</strong> Chinese script morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g><br />

intermetallic in magnesium alloys is detrimental to tensile properties.<br />

However, its effect <strong>on</strong> <strong>the</strong> creep properties is not known. Based <strong>on</strong> <strong>the</strong> results<br />

from <strong>the</strong> present investigati<strong>on</strong> it is found that <strong>the</strong> Chinese script morphology<br />

effective in reducing <strong>the</strong> grain boundary movement during creep.<br />

The improvement in <strong>the</strong> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy due to <strong>the</strong> additi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> RE elements is well known. In <strong>the</strong> present study, <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g>, <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g><br />

additi<strong>on</strong>s <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy are studied in detail.<br />

5.2 AVENUES FOR FUTURE WORK<br />

1<br />

2.<br />

3.<br />

The idea adopted by various researchers in <strong>the</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> developing new<br />

magnesium alloys for creep resistance is to reduce <strong>the</strong> aluminum c<strong>on</strong>tent in<br />

order to reduce <strong>the</strong> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg17Al|;; as well as by adding alloying<br />

elements, which introduce <strong>the</strong>rmally stable intemietallics. Many alloy systems<br />

like Mg-2% Al-1% <str<strong>on</strong>g>Si</str<strong>on</strong>g> (AS2l), Mg-4% Al-1% <str<strong>on</strong>g>Si</str<strong>on</strong>g> (AS4l), Mg-4% Al-2% RE<br />

(AE42), Mg-5% Al-0.8% Ca, Mg-5% Al-1.2% <str<strong>on</strong>g>Sr</str<strong>on</strong>g>, etc., are developed based<br />

<strong>on</strong> this c<strong>on</strong>cept. In <strong>the</strong> present investigati<strong>on</strong>, it is observed that <strong>the</strong> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong><br />

is also capable <str<strong>on</strong>g>of</str<strong>on</strong>g> improving both tensile <str<strong>on</strong>g>and</str<strong>on</strong>g> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l.<br />

Therefore it is worth to study <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> additi<strong>on</strong> <strong>on</strong> <strong>the</strong> low Al (i.e., 3%,<br />

6%, etc.,) c<strong>on</strong>taining Mg alloys to explore <strong>the</strong> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> developing cost<br />

effective high creep resistance magnesium alloys.<br />

On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> ill effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <strong>on</strong> corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium<br />

alloys is also need to be investigated in detail to find out <strong>the</strong> possible remedy.<br />

L<strong>on</strong>g term creep testing need to be carried out to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> streng<strong>the</strong>ning<br />

mechanism due to <str<strong>on</strong>g>Sr</str<strong>on</strong>g> additi<strong>on</strong> in AZ91 alloy<br />

177


4<br />

5<br />

_ Chapter 5: C<strong>on</strong>clusi<strong>on</strong>s<br />

A detailed TEM study is required to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> dislocati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> creep<br />

mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy with <str<strong>on</strong>g>and</str<strong>on</strong>g> without alloying additi<strong>on</strong>s<br />

Detailed microstructural investigati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> surface protective film<br />

characterizati<strong>on</strong> <strong>on</strong> <strong>the</strong> corroded sample <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ9l alloy is needed to underst<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> alloying elements <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> behavior.<br />

178


l.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

l0<br />

ll<br />

12<br />

l3<br />

l4<br />

Luo: JOM, 2002, vol. 54, pp. 42'<br />

Javaid, E. Essadiqi, S. Bell <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Davis: Proc. Magnesium Technology 2006,<br />

A. A. Luo, N. R. Neelameggham <str<strong>on</strong>g>and</str<strong>on</strong>g> R. S. Beals, eds., USA, March, 2006,<br />

pp. 7­<br />

Wils<strong>on</strong>, K. Clause, M. Earlam <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Hillis: “Magnesium <str<strong>on</strong>g>and</str<strong>on</strong>g> Magnesium<br />

alloys”, A Diges <str<strong>on</strong>g>of</str<strong>on</strong>g> useful Technical Data from Kirk-Othmer Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Chemical Technology, The Intemati<strong>on</strong>al Magnesium Associati<strong>on</strong>, McLean,<br />

PA, USA, l995, p.l.<br />

M. Henstock: The Recycling <str<strong>on</strong>g>of</str<strong>on</strong>g> N<strong>on</strong>-Ferrous Metals, Intemati<strong>on</strong>al Council <strong>on</strong><br />

Metals <str<strong>on</strong>g>and</str<strong>on</strong>g> Envir<strong>on</strong>ment, Ottawa, Ontario, Canada, 1966, p.213.<br />

U.S. Geological Survey, “Magnesium-2004”, Minerals Yearbook, 2004,<br />

46.1-46.6<br />

Katie Jereza, Ross Brindle, Steve Robis<strong>on</strong>, John N. Hryn, David J. Weiss <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Bruce M. Cox: Proc. Magnesium Technology 2006, A. A. Luo,<br />

N. R. Neelameggham <str<strong>on</strong>g>and</str<strong>on</strong>g> R. S. Beals, eds., USA, March, 2006, pp. 89-94.<br />

Statecasts, Incorporated, AFS Metal casting Forecast <str<strong>on</strong>g>and</str<strong>on</strong>g> Trends 2005,<br />

American Foundry Society, Schaumburg, IL, 2004.<br />

D. Eliezer, E. Aghi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> F. H. Froes: Proc. Magnesium 97, E. Aghi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

D. Eliezer eds., Dead Sea, Israel, Nov. 1997, pp.343-.i4s"'”~/'4.<br />

C. Sheld<strong>on</strong> Roberts: Magnesium <str<strong>on</strong>g>and</str<strong>on</strong>g> its alloys, John Wiley <str<strong>on</strong>g>and</str<strong>on</strong>g> S<strong>on</strong>s lnc.,<br />

l960,pp.85


References<br />

Per Bakke <str<strong>on</strong>g>and</str<strong>on</strong>g> Hak<strong>on</strong> Westengen: Adv. Eng. Mat., 2003, vol. 5, pp. 879- ' '<br />

Wole Soboyejo: Mechanical Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering Materials, 2003,<br />

Marcel Dekker, 1nc., chapter 15.8 (ISBN: 0-8247-8900-8).<br />

A. Luo <str<strong>on</strong>g>and</str<strong>on</strong>g> M.O. Pekguleryuzz J. Mater. Sci., 1994, vol. 29, pp. 5259- .<br />

W.E. Marcer ll: Technical Paper Series SAE Int. C<strong>on</strong>gr. And Exp., SAE,<br />

Detroit, M1, 1990, paper no. 900788.<br />

D.J. Sakkinen: Technical Paper Series SAE lnt. C<strong>on</strong>gr. And Exp., SAE,<br />

Detroit, M1, 1994, pp. 71<br />

H. Gjestl<str<strong>on</strong>g>and</str<strong>on</strong>g>, G. Nussbaum, G. Regazz<strong>on</strong>i, O. Lohne <str<strong>on</strong>g>and</str<strong>on</strong>g> Bauger:<br />

Mater. Sci. Eng., 1991, vol. A134, pp. 1197<br />

T. K. Anue <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Westengen: Proc. Magnesium alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir applicati<strong>on</strong>,<br />

B. L. Mordike <str<strong>on</strong>g>and</str<strong>on</strong>g> F. Hehamann, eds., 1992, DGM lnformati<strong>on</strong>sgeselschafl<br />

m.b.H.,pp.221 ‘ .<br />

M. O. Pekguleryuz <str<strong>on</strong>g>and</str<strong>on</strong>g> M.M. Avedesian: J. Jpn. Inst. Light Met., 1992,<br />

vol. 42, pp. 679<br />

M. O. Pekguleryuz, A. Luo, P. Vermette <str<strong>on</strong>g>and</str<strong>on</strong>g> M.M. Avedesian: Pro. 50"’<br />

Annual Meeting <str<strong>on</strong>g>of</str<strong>on</strong>g> IMA, IMA, Washingt<strong>on</strong>, D.C., 1993, pp. 20- .<br />

T.K. Aune <str<strong>on</strong>g>and</str<strong>on</strong>g> T.L. Ruden: Technical Paper Series SAE Int. C<strong>on</strong>gr. Exp.<br />

SAE, Detroit, Ml, 1992, paper no. 920070.<br />

C. Suman: Technical Paper Series SAE Int. C<strong>on</strong>gr. Exp. SAE, 1991,<br />

Paper no. 91046.<br />

L. Albright <str<strong>on</strong>g>and</str<strong>on</strong>g> T.K. Aune: Technical Paper Series SAE Int. C<strong>on</strong>gr. Exp.<br />

SAE, Detroit, MI, 1991, Paper no. 910412.<br />

K. Lovoidz Z Metalkd, 1976, vol. 67, pp 514<br />

M.S. Dargusch, G.L. Dunlop <str<strong>on</strong>g>and</str<strong>on</strong>g> K.Pettersen: Proc. Magnesium Alloys <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Their Applicati<strong>on</strong>, B.L. Mordike <str<strong>on</strong>g>and</str<strong>on</strong>g> K.V. Kainer, eds., 1998, Wolfsburg,<br />

German, pp. 277<br />

M. Regev, E. Aghoin, A. Rosen <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Bamberger: Metall. Trans. A, 2001,<br />

vol. 32A, pp. 1335­<br />

W. Blum, B. Watzinger <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Zhang: Adv. Eng. Mat, 2000, vol. 2,<br />

pp.349<br />

180


E References<br />

W. Blum, B. Watzinger <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Weidinger: Proc. Magnesium Alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> Their<br />

Applicati<strong>on</strong>, B.L. Mordike, K.V. Kainer, eds., 1998, Wolfsburg, German,<br />

pp. 49<br />

G. 1. Maker <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Kruger: Int. Mat. Rev., 1993, vol. 38, pp. 138- .<br />

O. Lunder, J .E. Lein, T.Kr. Aune <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Nisanciogluz Corrosi<strong>on</strong> 1989, vol. 45,<br />

p. 741<br />

G. S<strong>on</strong>g, A. Atrens, D.St. John <str<strong>on</strong>g>and</str<strong>on</strong>g> L. Zheng: Proc. Magnesium alloys <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong>ir applicati<strong>on</strong>s, K.U. Kainer, ed., Wiley-VCH, New York, NY, 2000,<br />

p.425.<br />

G. S<strong>on</strong>g, A. Atrens <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Dargusch: Corrosi<strong>on</strong> Science 1999, vol. 41,<br />

pp.249» \<br />

Rajan Ambat, Naing Naing Aung <str<strong>on</strong>g>and</str<strong>on</strong>g> W.Zh0u: Corrosi<strong>on</strong> Science, 2000,<br />

vol. 42, pp. 1433<br />

G. S<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Atrens: Adv. Eng. Mat., 2003, vol. 5, pp. 837 '<br />

A. A. Luo: Inter. Mater. Rev., 2004, vol. 49, pp. 13 '0<br />

E. Aghi<strong>on</strong>, B. Br<strong>on</strong>fin, F. V<strong>on</strong> Buch, S. Schumann <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Friedrich: JOM,<br />

2003, N0v., pp. 30 .<br />

Koray Ozturk, Yu Zh<strong>on</strong>g, Alan A. Luo <str<strong>on</strong>g>and</str<strong>on</strong>g> Zi-Kui Liu: JOM 2003, Nov.,<br />

pp. 40 ’<br />

Wang Qud<strong>on</strong>g, Chen Wenzhou, Zeng Xiaoqin, Lu Yizhen, Ding Wenjiang,<br />

Zhu Yaping <str<strong>on</strong>g>and</str<strong>on</strong>g> Xu Xiaoping: J Mater. Sci., 2001, vol. 36, pp. 3035- ' '<br />

Qud<strong>on</strong>g Wang, Wenzhou Chen, Wenjiang Ding, Yanping Zhu <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

M.Mabuchi: Metall. Mater. Trans., 2001, vol. 32A, pp. 787 '<br />

Yuan Guangyin, Sun Yangshan <str<strong>on</strong>g>and</str<strong>on</strong>g> Ding Wenjiang: Mater. Sci. Eng., 2001,<br />

vol. A308, pp. 38 !.<br />

Yuan Guangyin, Sun Yangshan <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhang Weiming: J Mater Sci Let, 1999,<br />

voL18,pp.2055 .<br />

Yizhen Lu, Qud<strong>on</strong>g Wang, Xiaoqin Zeng, Wenjiange Ding, Chunquan Zhai<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Yanping Zhu: Mat. Sci. Eng., 2000, vol. 278, pp. 66<br />

Yu Fan, Guohua Wu, H<strong>on</strong>gtao Gao, Guanqun Li <str<strong>on</strong>g>and</str<strong>on</strong>g> Chunquan Zhai:<br />

J Mater. Sci., 2006 vol. 41, pp. 5409- " ..<br />

181


References<br />

Yu Fan, Guohua Wu <str<strong>on</strong>g>and</str<strong>on</strong>g> Chunquan Zhai: Mater. Sci. Eng., 2006, vol. A433,<br />

pp. 208- 1-? ;i.<br />

Guohua Wu, Yu Fan, H<strong>on</strong>gtao Gao, Chunquan Zhai <str<strong>on</strong>g>and</str<strong>on</strong>g> Yan Ping Zhu:<br />

Mater. Sci. Eng. 2005, vol. A408 pp. 2551<br />

Zhou Xuehua, Huang Yuanwei, Wei Zh<strong>on</strong>gling, Chen Qiur<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Gan Fuxing: Corrosi<strong>on</strong> Science, 2006, vol. 48, pp. 4223'--51'.*Z


__ _ References<br />

M. O. Pekguleyuz: Mater. Sci. Forum, 2000, vol. 350-351, pp. 131- F.<br />

H. Friedrich <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Schumann: J Mater Proc Tech, 2001, vol. 117,<br />

pp. 276 J.-'-~ ..<br />

F. Czerwinski, A.Zielinska-Lipiec, P.J. Pinet <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Overbeeke:<br />

Acta Materialia, 2001, vol. 49, pp. 1225 % 7 "1 .<br />

Y. Wang, G. Liu <str<strong>on</strong>g>and</str<strong>on</strong>g> Z. Fan: Acta Materialia, 2006, vol. 54, pp. 689 -=" .<br />

Z. Fan, G. Liu <str<strong>on</strong>g>and</str<strong>on</strong>g> Y. Wang: J Mater Sci, 2006, vol. 41, pp. 3631»­<br />

Alfred Yu, Mohsen Masoumi, Naiyi Li <str<strong>on</strong>g>and</str<strong>on</strong>g> Henry l-lu: Proc. Magnesium<br />

Technology 2006, A. A. Luo, N. R. Neelameggham <str<strong>on</strong>g>and</str<strong>on</strong>g> R. S. Beals eds., TMS<br />

2006 Annual Meeting in Texas, USA, 2006, pp. 97-- ;-- .<br />

E. Cerri, P. Cavaliere, P. Leo <str<strong>on</strong>g>and</str<strong>on</strong>g> P. P. De Marco: Proc. Magnesium<br />

Technology 2006, A. A. Luo, N. R. Neelameggham <str<strong>on</strong>g>and</str<strong>on</strong>g> R. S. Beals eds., TMS<br />

2006 Annual Meeting in Texas, USA, 2006, pp. 109- - ­<br />

Li Xinggang, Xie Shuisheng, Jiang Yunxi <str<strong>on</strong>g>and</str<strong>on</strong>g> Li Lei: Mater. Forum, 2005,<br />

vols. 488-489, pp. 307 ' - .<br />

Yung Sen, Wang Wuxiao <str<strong>on</strong>g>and</str<strong>on</strong>g> Jiang Bailing: Mater. Forum, 2005,<br />

vols. 488-489, pp. 313 .<br />

F. J. Edler, G. Lagrene <str<strong>on</strong>g>and</str<strong>on</strong>g> R. <str<strong>on</strong>g>Si</str<strong>on</strong>g>epe: Proc. Magnesium <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir applicati<strong>on</strong>,<br />

2000, Wiley-VCH Verlag Gmbh, pp. 554 .<br />

A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, U. T. S. Pillai <str<strong>on</strong>g>and</str<strong>on</strong>g> B. C. Pai: Int. J. <strong>Microstructure</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Materials Properties, 2007, vol. 2, pp. 429<br />

A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, U. T. S. Pillai,J. Swaminathan <str<strong>on</strong>g>and</str<strong>on</strong>g> B. C. Pai: Int. J Cast Metal<br />

Res, 2006, vol. 19, pp. 265 .<br />

Polmear: Proc. Magnesium Alloys And Their Applicati<strong>on</strong>, B.L. Mordike <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

F. Hehmann, ed.,1992, Garmisch-Partenkirchen, Germany, pp. 201 '<br />

Smi<strong>the</strong>lls Light Metals h<str<strong>on</strong>g>and</str<strong>on</strong>g> book, E. A. Br<str<strong>on</strong>g>and</str<strong>on</strong>g>es, G. B. Brook, eds.,<br />

Butterworth-Heinemann, 1998, p86 (ISBN 0 7506 3625 4)<br />

Z. P. Luo, D. Y. S<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Q. Zhang: J Alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> Compounds, 1995,<br />

vol. 230, pp. 109<br />

M. Suzuki, H. Sato, K. Maruyama <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Oikawa: Mater. Sci. Eng., I998,<br />

vol. A 252, pp. 248<br />

183


References<br />

K. Maruyama, M. Suzuki <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Sato: Met. Trans A, 2002, vol. 33,<br />

pp.875<br />

P. Abachi, A. Masoudi <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Purazrang: Mater. Sci. Eng., 2006,<br />

vols. A435-439, pp. 653 ~<br />

G. Foersterz Pr0c., 7"’ Internati<strong>on</strong>al Die casting C<strong>on</strong>gress, paper 9372, 1972,<br />

SDCE<br />

B. R. Powell, V. Rezhets, M. Balogh <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Waldo: Proc. Magnesium<br />

technology 2001, J. N. Hryn ed., Warrendale, PA, TMS, 2001, pp. 175­<br />

H. J. Fuchs: UK Patent 847,992, published 1960.<br />

M. O. Pekguleryuz <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Luo: Patent Cooperative Treaty applicati<strong>on</strong><br />

WO 96/25529, 1996.<br />

B. R. Powell, V. Rezhets, A. A. Luo, J. J. Bommarito <str<strong>on</strong>g>and</str<strong>on</strong>g> B. L. Tiwari:<br />

US Patent 6,264,763, 24 July 2001.<br />

M. O. Pekguleryuz <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Baril: Proc. Magnesium Technology 2001,<br />

J. N. Hryn ed., Warrendale, PA, TMS, 2001, pp. l 19<br />

P. Labelle, M. O. Pekguleryuz, D. Argo, M. Dierks, T. Sparks <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

T. Waltmate: SAE Technical Paper 2001-01-0424, 2001, Warrendale, PA,<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Automotive Engineers.<br />

P. Labelle, M. O. Pekguleryuz, M. Lefebvre <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Bouchard: SAE Technical<br />

Paper 2002-01-0079, 2002, Warrendale, PA, Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Automotive<br />

Engineers.<br />

E.F.Em1ey, “Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> Magnesium Technology”, Pergam<strong>on</strong> press, First<br />

editi<strong>on</strong>, 1966, p925<br />

M. O. Pekguleryuz, M. M. Avedesiaan <str<strong>on</strong>g>and</str<strong>on</strong>g> Sainte-Foy: Proc. Magnesium<br />

alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir applicati<strong>on</strong>s, B.L. Mordike, F. Hehmann eds., April 1992,<br />

Germany, pp 213 '<br />

Qin Hua, Deming Gao, H<strong>on</strong>gjun Zhang, Yuhui Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Qijie Zhai: Mater.<br />

Sci. Eng., 2007, vol. 444, pp. 69<br />

P. L. Schaffer, Y. C. Lee, A. K. Dahle: Proc. Magnesium Technology 2001,<br />

J. Hryn ed., The Minerals, Metals <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Society, pp.8l<br />

A. K. Dahle, Young C. Lee, mark D. Nave, Paul L. Schaffer <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

David H. St John: J Light Metal, 2001, vol. 1, pp. 61<br />

184


References<br />

97.0. Lunder, T. Kr. Aune <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Nisanciogluz Corrosi<strong>on</strong>, 1987, vol. 43,<br />

pp 291 .<br />

98. J. D. Hanawalt, C. E. Nels<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> J. A. Peloubet: Trans. AIME, 1942, vol. 147,<br />

pp.273<br />

99. A. Luo: Proc. 3”’ Internati<strong>on</strong>al Magnesium C<strong>on</strong>ference, Manchester, UK,<br />

April 1996, pp449<br />

l00.M. D. Nave, A.K. Dahle <str<strong>on</strong>g>and</str<strong>on</strong>g> D.H. StJohn: Proc. Magnesium technology<br />

2000, H. l. Kaplan, J.N. Hryn, B. B. Clow eds., The Minerals Metals <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Materials Society (TMS), Warrendale, PA,USA, 2000, pp. 233<br />

l0l.M. D. Nave, A.K. Dahle <str<strong>on</strong>g>and</str<strong>on</strong>g> D.H. Stlohnz Proc. Magnesium technology<br />

2000, H. 1. Kaplan, J.N. Hryn, B. B. Clow eds., The Minerals Metals <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Materials Society (TMS), Warrendale, PA,USA, 2000, pp. 243 '<br />

102.1. G. Farbenindustrie: British Patent GB359,425, 1931.<br />

103.C. E. Nels<strong>on</strong>: Trans. AFS, 1948, vol. 56, pp. 1<br />

l04.N. Tiner: AIME Tech. Pub., 1945, vol. 12, pp. 1<br />

l05.P. D. Webster, “Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> foundry technology”, Redhill, Portcullis<br />

press, 1980, p190.<br />

l06.Y. Tamura, T. Haitani, E. Yano, T. Motegi, N. K<strong>on</strong>o <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Sato:<br />

Mater. Trans. A, 2002, vol. 33A, pp.2784<br />

107.E. F. Emleyz Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> Magnesium Technology, Pergam<strong>on</strong> Press, Oxford,<br />

United Kingdom, 1966, pp. 201 '<br />

108.D. H. St John, Ma Qian, M. A. East<strong>on</strong>, P.Cao <str<strong>on</strong>g>and</str<strong>on</strong>g> Z. Hildebr<str<strong>on</strong>g>and</str<strong>on</strong>g>:<br />

Mater. Trans. A, 2005, vol. 36A, 1669<br />

l09.R. T. Wood, The Foundryman, 1953, vol. 46, p98.<br />

110.1. G. Farbenindustrie, Belgian patent, 444757, 1942.<br />

111.G. B. Patridge, Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium technology, Oxford, Pergam<strong>on</strong><br />

press, 1966, p203.<br />

1 ]2.P. Cao, Ma Qian <str<strong>on</strong>g>and</str<strong>on</strong>g> D. H. StJ0hn: Scr. Mater., 2004, vol. 51, pp 125<br />

l13.R. Hultgren <str<strong>on</strong>g>and</str<strong>on</strong>g> D.W. Mitchell: Trans. AIME, 1945, vol. 161, pp. 323<br />

ll4.A. Luo: Scr. Meta1l.Mater., 1994, vol. 31, pp. 1253- '<br />

ll5.K. Achenbach, H. A. Nipper <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Piwowarsky: Die Giesserei, 1939,<br />

vol. 26, pp. 597-604 <str<strong>on</strong>g>and</str<strong>on</strong>g> 621<br />

185


References<br />

116.C. H. Mah<strong>on</strong>ey, A. L. Tarr <str<strong>on</strong>g>and</str<strong>on</strong>g> P. E. Le Gr<str<strong>on</strong>g>and</str<strong>on</strong>g>: Trans. AIME, 1945, vol. 26,<br />

pp.328­<br />

l17.J. A. Davis, L. W. Eastwood <str<strong>on</strong>g>and</str<strong>on</strong>g> J. De Haven: Trans. AFS, I945, vol. 53,<br />

pp.352<br />

1 l8.M. Qian <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Cao: Scr. Mater., 2005, vol. 52, pp. 415<br />

1l9.Tammura Y K<strong>on</strong>o, T. Motegi <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Sato: J Jpn Inst. Light Metals, 1998,<br />

vol. 48, p395.<br />

120.T. Haitani, Y. Tamura, E. Yano, T. Motegi, N. K<strong>on</strong>o <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Sato, J Jpn Inst.<br />

Light Metals, 200], vol. 5l,p403.<br />

l2l.Y. Liu, X. Liu <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Xiufang: Mater. Lett., 2004, vol. 58, pp. 1282­<br />

122.E. Yano, Y. Tamura, T. Motegi <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Sato: J. Jpn. Inst. Light Met., 2001,<br />

vol. 51, pp. 5949<br />

123.Qing]in J in, Je<strong>on</strong>g-Pil Eom, Su—Gun Lim, W<strong>on</strong>-Wook Park <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

B<strong>on</strong>g-Sun You: Scr. Mater., 2003, vol. 49, pp. 1129<br />

124.D. O. Karlsen, D. Oymo, H. Westengen, P. M. D. Pinfold, <str<strong>on</strong>g>and</str<strong>on</strong>g> Stromhaugz<br />

Proc. Light metals processing <str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong>s, 1993, pp. 397—408, M<strong>on</strong>treal,<br />

CIM.<br />

l25.T. Motegi, E. Yano, Y. Tamura <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Sato: Mater. Sci. Forum, 2000,<br />

vols. 350-351, pp. 191<br />

126.N. Ono, K. Nakamura <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Miura: Mater. Sci. Forum, 2003, vols. 419-422,<br />

pp. 195­<br />

127.R. Dawalla, N. Coung <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Stolnikov: Proc. 6”’ Int. C<strong>on</strong>f <strong>on</strong> Magnesium<br />

alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir applicati<strong>on</strong>, K. U. Kanier, ed., Wiley-VCH, Weinheim, 2004,<br />

pp.803<br />

128.R. K. Nadella, 1. Samajdar <str<strong>on</strong>g>and</str<strong>on</strong>g> G. Gottstein: Proc. 6”’ Int. C<strong>on</strong>f <strong>on</strong><br />

Magnesium alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir applicati<strong>on</strong>, K. U. Kanier, ed., Wiley-VCH,<br />

Weinheim, 2004, pp.l052<br />

129.N. V. Ravi kumar, J. J. Bl<str<strong>on</strong>g>and</str<strong>on</strong>g>in, C. Desrayaud, F. M<strong>on</strong><strong>the</strong>llet <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Suery:<br />

Mater. Sci. Eng., 2003, vol. A359, pp. 150 '<br />

l30.W. J. Kim <str<strong>on</strong>g>and</str<strong>on</strong>g> Y. K. Sa: Scr. Mater., 2006, vol. 54, pp. 1391<br />

l31.M.T. Perez-Prado, J .A. del. Valle <str<strong>on</strong>g>and</str<strong>on</strong>g> O.A. Ruanoz Scr Mater, 2004, vol. 51,<br />

pp.l093<br />

186


References<br />

l32.M.T. Perez-Prado, J .A. del. Valle <str<strong>on</strong>g>and</str<strong>on</strong>g> O.A. Ruano: Scr Mater, 2005, vol. 59,<br />

pp.3299 .<br />

133. Q. Guo, H. G. Yan, Z. H. Chen <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Zhang: Materials Characterizati<strong>on</strong>,<br />

2007, vol. 58, pp.l62 '<br />

l34.S.Cel0tt0: Acta Meta, 2000, vol. 48, pp.l 775<br />

l35.Clark J.B: Acta Meta, 1968, vol. 16 pp.l41<br />

136.]. Bettles, P. Humble <str<strong>on</strong>g>and</str<strong>on</strong>g> J. E. Nie: Proc. 3rd Internati<strong>on</strong>al Magnesium<br />

C<strong>on</strong>ference, G. W. Lorimer, ed., Manchester, UK, 1996, pp. 403­<br />

l37.A.F. crawley <str<strong>on</strong>g>and</str<strong>on</strong>g> 1


References<br />

1S3.D. Duly, J. P. <str<strong>on</strong>g>Si</str<strong>on</strong>g>m<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Y. Brechet: Acta Metall. Mater., 1995, vol. 43,<br />

pp.10l­<br />

154.M. Dargusch, M. Hisa, C.H. Cacares <str<strong>on</strong>g>and</str<strong>on</strong>g> G.C. Dunlop: Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Third<br />

Internati<strong>on</strong>al Magnesium C<strong>on</strong>ference, G.W. Lorimer, ed., 1996, Manchest,<br />

U.K., pp. 153<br />

155.E. Aghi<strong>on</strong>, N. Moscovitch <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Am<strong>on</strong>: Mater. Sci. Eng. A, 2007,<br />

vol. A447, pp. 341<br />

156.Ch00ng Do Lee: Mater. Sci. Eng. A, 2007, vol. 459, pp. 355<br />

157.C. H. Caceres: Scr. Metall., 1995, vol. 32, pp. 1851- .<br />

158.M. K. Surappa, E. Blank <str<strong>on</strong>g>and</str<strong>on</strong>g> J. C. Januet: Scr. Metall., 1986, vol. 20.<br />

pp. 1281 _1.;<br />

159.C. H. Caceres, B. l. Selling: Mater. Sci. Eng. A, 1996, vol. A220,<br />

pp.l09<br />

160.A. M. Gokhale <str<strong>on</strong>g>and</str<strong>on</strong>g> G. R. Patel: Scr. Mater., 2005, vol. 52, pp. 237<br />

l6l.S. Jayalakshmi, S. V. Kailas <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Seshan: J Mater. Sci., 2003, vol. 38,<br />

pp.1383<br />

162.K0ichi lshikawa, Hiroyuki Watanabe <str<strong>on</strong>g>and</str<strong>on</strong>g> Toshiji Mukai: Mater. Lett., 2005,<br />

vol. 59, pp. 1511 '<br />

l63.R. Armstr<strong>on</strong>g, 1. Codd, R. M. Douthwaite <str<strong>on</strong>g>and</str<strong>on</strong>g> N. J. Petch: Phill. Mag., 1962,<br />

vol. 7, p45.<br />

164.K. Kubota, M. Mabuchi <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Higashi: J Mater. Sci., 1999, vol. 34,<br />

pp.2255<br />

l65.T. Mohri, M. Mabuchi, N. Saito <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Nakamura: Mater. Sci. Eng., 1999,<br />

vol. A257, p287.<br />

166.M. Mabuchi, T. Asahina, H. Iwasaki <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Higashi: Mater. Sci. Technol.,<br />

1997, vol. 13, p825.<br />

167.Y. H. Wei, Q. D. Wang, Y. P. Zhu, W. J. Ding, Y. Chino <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Mabuchi:<br />

Mater. Sci. Eng., 2003, vol. 360, pp. 107 -'<br />

168.M. Mabuchi, H. lwasaki, K. Yanase <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Higashi: Scr. Mater., 1997,<br />

vol. 36, pp. 681<br />

169.K. Hiratsuka, A. Enomoto <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Sasada: Wear, 1992, vol. 153, pp. 361<br />

188


_ _ _ References<br />

l70.A. Alahelisten, F. Bergman, M. Olss<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> S I-Iogmark: Wear, 1993,<br />

vol. 165, pp. 221<br />

171.1-I. Chen <str<strong>on</strong>g>and</str<strong>on</strong>g> A.T. Alpas: Wear, 2000, vol. 246, pp.l06<br />

l72.W.Q. S<strong>on</strong>g, P. Bggs <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Br<str<strong>on</strong>g>and</str<strong>on</strong>g>t: Proc. Engineering Materials 2001, 23-26<br />

September 2001, Melbourne, pp. 78<br />

l73.D.S. Mehta, S.H. Masood <str<strong>on</strong>g>and</str<strong>on</strong>g> W.Q. S<strong>on</strong>g: J. Mater. Proc. Technol., 2004,<br />

vols. I55-I56, pp. I526<br />

l74.Peter J. Blau <str<strong>on</strong>g>and</str<strong>on</strong>g> Mat<strong>the</strong>w Walukas: Tribology Internati<strong>on</strong>al, 2000, vol. 33,<br />

pp.573<br />

l75.Introducti<strong>on</strong> to Creep: R. W. Evans <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Wilshire: The Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Materials, L<strong>on</strong>d<strong>on</strong>, 1993, p19.<br />

l76.M. O. Pekguleryuz <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Arslan Kaya: Adv. Eng. Mater., 2003, vol. 5,<br />

pp.866¥<br />

l77.W. J. MCG. Tegart: Acta Metall., 1961, vol. 9, p614.<br />

l78.R. B. J<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> J. H. Harrris: Proc. Joint Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Creep,<br />

L<strong>on</strong>d<strong>on</strong>, 1963, The Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineers, vol. 1, pl.<br />

l79.K. Milicka, J. Cadek <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Ris: Acta Metall., I970, vol. I8, p.l07l.<br />

l80.J. G. Crossl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> R. B. J<strong>on</strong>es: Mater. Sci., I972, vol. 6, p162.<br />

181 .S. S. Vegarali <str<strong>on</strong>g>and</str<strong>on</strong>g> T. G. L<str<strong>on</strong>g>and</str<strong>on</strong>g>g<strong>on</strong>: Acta Metall., 1981, vol. 29, pl969.<br />

l82.A. R. Chaudhuri, N. J. Grant <str<strong>on</strong>g>and</str<strong>on</strong>g> J.T. Nort<strong>on</strong>: Trans. AIME, I953, vol. I97,<br />

p712.<br />

l83.M. Regev, E. Aghi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Rosen: Mater. Sci. Eng., 1997, vols. 234-236,<br />

pp.l23 M<br />

184.W. Blum, P. Zhang, B. Watzinger, B.V. Grossmann <str<strong>on</strong>g>and</str<strong>on</strong>g> H.G. Haldenwanger:<br />

Mater. Sci. Eng., 200], vols. A319-321, pp.735<br />

l85.Willum K. Miller: Metall. Trans. A, 1991, vol. 22A, pp. 873­<br />

l86.M. S. Dargusch, G. L. Dunlop: Proc. Materials 98, Michael Feny ed.,<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Engineering, Woll<strong>on</strong>g<strong>on</strong>g, Australia, 1998, p.579.<br />

I87.P. Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Blum: Z. Metallkd., 2003, vol. 94, pp. 716»<br />

l88.M. Regev, E. Aghi<strong>on</strong>, A. Rosen <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Bamberger: Mater. Sci. Eng. A252,<br />

l998,pp.6 /Q<br />

189


_ References<br />

l89.M. Regev, M. Bamberger, A. Rosen <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Aghi<strong>on</strong>: Proc. Magnesium Alloys<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Their Applicati<strong>on</strong>, B.L. Mordike <str<strong>on</strong>g>and</str<strong>on</strong>g> K.V. Kainer, eds., 1998, Wolfsburg,<br />

German, pp. 283<br />

l90.A. Finkel, M. Regev, E. Aghi<strong>on</strong>, M. Bamberger <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Rosen:<br />

Proc. Magnesium 97, E. Aghi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> D. Eliezer eds., November, 1997, Dead<br />

Sea, Israel, pp.l21--Y<br />

191. S. Spigarelli, M. Cabibo, E. Evangelista, M. Regev <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Rosen: Proc. 2"d<br />

Internati<strong>on</strong>al C<strong>on</strong>ference in Magnesium Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, E. Aghi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> D. Eliezer eds., Feb. 2000, Dead Sea, Israel, 293 "<br />

l92.Corrosi<strong>on</strong> Engineering: M. G. F<strong>on</strong>tana, 3'd editi<strong>on</strong>, McGraw-Hill Book<br />

Company, 1986, pp. 294-­<br />

l93.H. H. Uhlig <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Winst<strong>on</strong> Revie: “Corrosi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong> c<strong>on</strong>trol”,<br />

Chap.20: 1985, New York, Wiley publisher.<br />

l94.C. H. Brun, J. Pagetti <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Talbot: Mem. Sci. Rev. Metall., 1976, vol. 73,<br />

pp. 659­<br />

l95.L. Whitby: “Corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> metals <str<strong>on</strong>g>and</str<strong>on</strong>g> alloys”, 2 edn, 1963, p169,<br />

New York, Reinhold.<br />

196.0. Khaselev <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Yahalom: Corrosi<strong>on</strong>. Science, 1998, vol. 40, pp. 1149.<br />

l97.D. Daloz, P. Steinmetz <str<strong>on</strong>g>and</str<strong>on</strong>g> G. Miehot: Corrosi<strong>on</strong>, I997, vol. 53, pp. 944.<br />

198.T. J. Warner, N. A. Thorne, G. Nussbaum <str<strong>on</strong>g>and</str<strong>on</strong>g> W. M. Stobbs: Surf. Interf.<br />

Anal, 1992, vol. 19, p386.<br />

l99.F. Hehmann, R. G J. Edyvean, H. J<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> F. Sommerz Proc. Int. C<strong>on</strong>f <strong>on</strong><br />

Powder Metallurgy Aerospace Materials, Luceme, Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g>, November<br />

2-4, 1987, p. 46 (Shrewsbury, UK: Metal Powder Report Publishing Services,<br />

I987)<br />

200.N. Pebere, C. Riera <str<strong>on</strong>g>and</str<strong>on</strong>g> F. Dabosi: Electrochemical Acta, 1990, vol. 35,<br />

pp.555.<br />

20l.G. S<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Atrens; Adv. Eng. Mat., 1999, vol. 1, pp. 11<br />

202.G. S<strong>on</strong>g: Adv. Eng. Mat., 2005, vol. 7, pp. 563-586.<br />

203.G. S<strong>on</strong>g, A. Atrens, X. Wu <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Zhang: Adv. Eng. Mat., 1998, vol. 40,<br />

pp. 1769- ..<br />

190


References<br />

204.M. R. Bothwell, H. P. Godard, W.B. Jeps<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.R. Kane: The corrosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Light Metals, Wiley <str<strong>on</strong>g>and</str<strong>on</strong>g> S<strong>on</strong>s., New York, 1967.<br />

205.R. Baboian <str<strong>on</strong>g>and</str<strong>on</strong>g> J.E. Hills: Corrosi<strong>on</strong> tests <str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard: applicati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

interpretati<strong>on</strong>, Rober Baboian, ed., ASTM Manual Series MNL 20,<br />

Philadelphia, 1995.<br />

206.K.N. Reichek, K.J. Clark <str<strong>on</strong>g>and</str<strong>on</strong>g> J .E. Hillisz SAE Technical paper series, 850417,<br />

1985.<br />

207.C. Suman: SAE Trans. 1990, vol. 19, pp.849—>“-“J<br />

208.G. S<strong>on</strong>g, A.l. Bowlers <str<strong>on</strong>g>and</str<strong>on</strong>g> David H. StJohn: Mater. Sci. Eng., 2004,<br />

vol. A366, pp. 74 ‘T-'=‘-.<br />

209.R.K. <str<strong>on</strong>g>Si</str<strong>on</strong>g>ngh Raman: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2525- }-"­<br />

210.D. E. Bartak, B. E. Lemieux <str<strong>on</strong>g>and</str<strong>on</strong>g> E. R. Woolsey, US Patent: 5470664, 1995.<br />

211.T. F. Bart<strong>on</strong>, US Patent: 5792335, 1998.<br />

2l2.T. F. Bart<strong>on</strong>, J. A. Macculloch <str<strong>on</strong>g>and</str<strong>on</strong>g> P. N. Ross, US Patent: 6280598, 2001.<br />

213.0. C. Fruchtnicht, US Patent: 3620939, 1971.<br />

214.G. L. Marker <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Kruger, Int. Mat. Rev., 1993, vol. 38, pp.138 "F<br />

215.M. Avedesin <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Baker,eds: Magnesium <str<strong>on</strong>g>and</str<strong>on</strong>g> Magnesium alloys, ASM<br />

Specialty H<str<strong>on</strong>g>and</str<strong>on</strong>g>book, ASM Intemati<strong>on</strong>al, Materials Park, OH, 1999.<br />

216.H. A. Evangelidesz Metal Finishing, 1951, vol. 7, p56.<br />

217.A. J. Zozulin, D. E. Bartak, Metal Finishing, 1994, vol. 92, pp. 39 '=<br />

2l8.Z. Shi, G. S<strong>on</strong>g, <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Atrens: Corrosi<strong>on</strong> Science, 2005, vol. 47,<br />

pp. 2760- P .-'.<br />

219.S. Akavipat, E. B. Hale, C. E. Habermann <str<strong>on</strong>g>and</str<strong>on</strong>g> P. L. Hagans: Mater. Sci. Eng.,<br />

1984, vol. 69, pp. 311-I ­<br />

220.C. Padmavathi, J. K. Sarin Sunder, S. V. Joshi <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Prasad Rao:<br />

Mater. Sci. Tech., 2006, vol. 22, pp. 583-.7.‘-.I;.‘.<br />

221.Yuan Guangyin, Qud<strong>on</strong>g Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> Wenjiang Ding: J Mater. Sci., 2002,<br />

vol. 37, pp. 127- ' F1<br />

222.Kinji Hirai, Hidetoshi Somekawa, Yorinobu Takigawa <str<strong>on</strong>g>and</str<strong>on</strong>g> Kenji Higashi:<br />

Mater. Sci. Eng. A, 2005, vol. 403, pp. 2764. .<br />

223.Peijie Li, Bin Tang <str<strong>on</strong>g>and</str<strong>on</strong>g> E. G. K<str<strong>on</strong>g>and</str<strong>on</strong>g>alovaz Mater. Lett., 2005, vol. 59,<br />

pp. 671-;.=: .<br />

191


References<br />

224.Shuang-Shou Li, Bin Tang <str<strong>on</strong>g>and</str<strong>on</strong>g> Da-Ben Zeng: J Alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> Compounds,<br />

2007, vol. 437, pp. 317-... .1.<br />

225.Xue Feng, Min Xuegang <str<strong>on</strong>g>and</str<strong>on</strong>g> Sun Yangshan: J Mater. Sci., 2006, vol. 41,<br />

pp.4725-3<br />

226.Bin Tang, Shuang Shou Li, Xi Shu Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> Da Ban Zeng R<strong>on</strong>g Wu:<br />

J Mater. Sci., 2005, vol. 40, pp. 2931- ­<br />

227.A. Sanschagrin, R. Tremblay <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Angers: Mater. Sci. Eng., 1996,<br />

vol. A220, pp. 69­<br />

228.. I.J. Polmear, Mater. Sci. Tech., 1994, vol. 10, pp. 1- -7<br />

229. Y. Li, H. J<strong>on</strong>es: Mater. Sci. Tech., 1996, vol. 12, p81.<br />

230. l.J. Polmear, Material Transacti<strong>on</strong> JIM, 1996, vol. 37, p12.<br />

231.8. Lee, S H Lee <str<strong>on</strong>g>and</str<strong>on</strong>g> D H Kim: Metall. Mater. Trans. A, 1998, vol. 29A,<br />

pp.1221 ;iJl<br />

232.G. Pettersen, H. Westengen, R. Hoter <str<strong>on</strong>g>and</str<strong>on</strong>g> O. Lohne: Mater. Sci. Eng., 1996,<br />

vol. A207, pp.l15­<br />

233.W Qud<strong>on</strong>g, Lu Yizhen, Z Xiaoqin, D Wenjiang, Z Yanping, Li Qinghua <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Lan Jie: Mater. Sci. Eng., 1999, vol. A271, pp. 109- .<br />

234.Y Wang, Q Wang, C Ma, W Ding <str<strong>on</strong>g>and</str<strong>on</strong>g> Y Zhu: Mater. Sci. Eng., 2003,<br />

vol. A342, pp. 178- ..<br />

235.0. Lunder <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Nisancioglu: Proc. Progress z'n <strong>the</strong> Underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Corrosi<strong>on</strong>, J . M. Costa, A. D. Mercer eds., Vol. 2, The Institute<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Materials, L<strong>on</strong>d<strong>on</strong>, 1993, pl249.<br />

236.W. E. Mercer <str<strong>on</strong>g>and</str<strong>on</strong>g> J . E. Hills: SAE Technical Paper No. 920073, 1992.<br />

237.]. H. Nordlien, K. Nisancioglu, S. Ono <str<strong>on</strong>g>and</str<strong>on</strong>g> N. Masukoz J Electrochemical<br />

Society, 1997, vol. 144, p461.<br />

238.G. Nussbaum, P. Bridot, T.J. Wamer, G. Regazz<strong>on</strong>i <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Charb<strong>on</strong>nier:<br />

Proc. Magnesium Alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> Their Applicai<strong>on</strong>ts, B. Mordike <str<strong>on</strong>g>and</str<strong>on</strong>g> F. Hehmann,<br />

eds., Garmisch-Partenkirchen, DGM lnformati<strong>on</strong>sgesellshaft, Oberursel, 1992,<br />

pp. 351- -'<br />

239.Peng Zhao, Qud<strong>on</strong>g Wang, Chunquan Zhai <str<strong>on</strong>g>and</str<strong>on</strong>g> Yanping Zhu:<br />

Mater. Sci. Eng., 2006, vol. 444, pp. 318-"1 .<br />

192


_ References<br />

240.Smi<strong>the</strong>lls Light Metals h<str<strong>on</strong>g>and</str<strong>on</strong>g> book, E. A. Br<str<strong>on</strong>g>and</str<strong>on</strong>g>es, G. B. Brook, eds.,<br />

Butterworth-Heinemann, 1998, pp. 168- (ISBN 0 7506 3625 4).<br />

24l.R. M. Wang, A. Eliezer <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Gutman: Mater. Sci. Engg. A, 2002,<br />

vol. A344, pp. 279- . .<br />

242.N. Ageew <str<strong>on</strong>g>and</str<strong>on</strong>g> G. Sachs: Z.Phys., 1930, vol. 66, pp. 293- .<br />

243.N. Ageew, M. Hansen <str<strong>on</strong>g>and</str<strong>on</strong>g>G. Sachs, Z. Phys., 1930, vol. 66, pp.350-1' .<br />

244.Je<strong>on</strong>g-Min Kim, B<strong>on</strong>g-Koo Park, Jo<strong>on</strong>g-Hwan Jun, Keesam Shin, Ki-Tae<br />

Kim <str<strong>on</strong>g>and</str<strong>on</strong>g> Wo<strong>on</strong>-Jae Jung: Mater. Sci. Eng. A, 2007, vols. 449-451,<br />

pp 326- .<br />

245.M. D. Nave, A. K. Dahle <str<strong>on</strong>g>and</str<strong>on</strong>g> D. H. St. John: Int. J. Cast Met. Res., 13, 2000,<br />

pp. 1- .<br />

246.H. Cao, M. Wessen: Met. Mater. Trans. A, 35A, 2004, pp. 309-.~~<br />

247. JCPDS File, V.1.30, 1997, Card No. 01-1128.<br />

248.E.F.Emley, “Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> Magnesium Technology”, Pergam<strong>on</strong> press, First<br />

editi<strong>on</strong>, 1966, p947<br />

249.1. J. Kim, D. H. Kim, K. S. Shin <str<strong>on</strong>g>and</str<strong>on</strong>g> N. J. Kim: Scr. Mater., 1999, vol. 41,<br />

pp.333-. u<br />

250.S. J. park, J. J. Kim, D. H. Kim, C. S. Shin <str<strong>on</strong>g>and</str<strong>on</strong>g> N. J. Kim: U. S. Patent<br />

6,146,584. Nov. 17, 2000.<br />

25l.S. Beer, G. Frommeyer <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Schmid: Proc. Magneisum Alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> Their<br />

Applicati<strong>on</strong>s, B. L. Mordike <str<strong>on</strong>g>and</str<strong>on</strong>g> F. Hehmann, eds., Frankfurt, , pp. 317/.' i<br />

252.E.F.Emley, “Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> Magnesium Technology”, Pergam<strong>on</strong> press, First<br />

editi<strong>on</strong>, 1966, p945<br />

253.ASM h<str<strong>on</strong>g>and</str<strong>on</strong>g> book, Volume~3, Alloy phase diagram, ASM Internati<strong>on</strong>al, 1992,<br />

p2.283<br />

254.M. Pekguleryuz <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Labelle: US patent No. 6322644, Nov 27*“ , 2001.<br />

255.D. Argo, M. O. Pekguleryuz, P. Labelle, M. Dierks, T. Sparks <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

T. Waltematte: Proc. Magnesium Technology 2001, J. Hryn, ed., TMS,<br />

New Orleans, March 2001, pp. 125- '<br />

256.Bai Jing, Sun Yangshan, Xun Shan, Xue Feng <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhu Tianbai:<br />

Mater. Sci. Eng., 2006, vol. A 419, pp. 181-: .<br />

257.M. O. Pekguleryuz <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Barilz Mater. Trans., 2001, vol. 42, pp.1258-.<br />

193


_ References<br />

258.E. Baril, P. Labelle <str<strong>on</strong>g>and</str<strong>on</strong>g> M. O. Pekguleryuz: JOM, 2003, vol. 55, pp. 34-. .<br />

259.F. Czerwinski <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Zielinska-Lipiec: Acta Materialia, 2005, vol. 53,<br />

pp.3433-.<br />

260.P. Chartr<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> A. D. Pelt<strong>on</strong>z J Phase Equilibria, 1994, vol. 15, p591<br />

261 .C. B. Alcock <str<strong>on</strong>g>and</str<strong>on</strong>g> V. P. ltkinz Bull. Alloy Phase Diag., 1989, vol. 10, p624.<br />

262.8. L. Couling: Met. Eng. Qtly, 1972, vol. 12, p7.<br />

263.G. S. Foerster, Proc. C<strong>on</strong>f 33'd Internati<strong>on</strong>al Magnesium Associati<strong>on</strong> (IMA)<br />

Annual Meeting, IMA, 1976, p35.<br />

264.M. O. Pekguleryuz, A. Luo <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Aliravci: Proc. Light Metals Processing<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Applicati<strong>on</strong>s, The Metallurgical Society <str<strong>on</strong>g>of</str<strong>on</strong>g> CIM, 1993, pp. 409- .<br />

265.M. S. Yoo, K.S. Shin <str<strong>on</strong>g>and</str<strong>on</strong>g> NJ. Kim: Mat tran A, 2004, vol. 35A,<br />

pp.1629-> -r ..<br />

266.G. Y. Yuan, Z. L. Liu, Q. D. Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> W. J. Ding, Mater. Lett., 2002,<br />

vol. 56, pp. 53-. .3.<br />

267.Lihua Liao, Xiuqing Zhang, Haowei Wang, Xianfeng Li <str<strong>on</strong>g>and</str<strong>on</strong>g> Naiheng Ma:<br />

J Alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> Compounds, 2007, vol. 430, pp. 292- .<br />

268.B. Closset <str<strong>on</strong>g>and</str<strong>on</strong>g> J.E. Gruzleski, Metall. <str<strong>on</strong>g>and</str<strong>on</strong>g> Mater. Trans. A, 1982, vol. 13A,<br />

p945.<br />

269.G.E. Byczynski <str<strong>on</strong>g>and</str<strong>on</strong>g> D.A. Cusinato, Int. J. Cast Metals Res., 2002, vol. 14,<br />

p315.<br />

270.G. Petzow, Metallographic etching, 2"‘! editi<strong>on</strong>, ASM lntemati<strong>on</strong>al, materials<br />

Park, Ohio, 1999, 114-. .<br />

271.M. Bamberger: Mater. Sci. Techn0l., 2001, vol. 17, pp.l 5­<br />

272.Fox FA, Lardner E: J. 1nstMet, 1945, vol. 71, pp. 1-"<br />

273.]. E. Hutt <str<strong>on</strong>g>and</str<strong>on</strong>g> D. H. St John: Mater. Sci. Technol, 1999, vol. 15, p495.<br />

274.]. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75-?<br />

275.A. Luo: Can. Metall. Q., 1996,vol. 35, pp. 375­<br />

276.Y. C. Lee, A. K. Dahle <str<strong>on</strong>g>and</str<strong>on</strong>g> D. H. St. John: Proc. Magnesium Technology<br />

2000, H. 1. Daplan, J. Hryn, B. Clow, eds., TMS, The Minerals, Metals &<br />

Materials Society, Warrendale, PA, 2000, pp. 21 1-. .<br />

277.Y. C. Lee, A. K. Dahle <str<strong>on</strong>g>and</str<strong>on</strong>g> D. H. St. John: Metall. Mater. Trans. 2000,<br />

vol. A31, pp. 2895­<br />

194


References<br />

278. P. Zhang, B. Watzinger <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Blum: Phys. Stat. Sol., 1999, vol. 175,<br />

pp.48l~<br />

279.C. J. Bettlesz Mater. Sci. Eng., 2003, vol. A348, pp. 280­<br />

280.Emley: ‘Principles <str<strong>on</strong>g>of</str<strong>on</strong>g> Magnesium Technology’, Pergam<strong>on</strong> press, L<strong>on</strong>d<strong>on</strong>,<br />

1966, p. 945 <str<strong>on</strong>g>and</str<strong>on</strong>g> 947.<br />

281.Y. Z. Lu, Q. D. Wang, X. Q. Zeng, Y. P. Zhu <str<strong>on</strong>g>and</str<strong>on</strong>g> W. J. Ding: Mat. Sci. Eng.,<br />

2001, vol. A301, pp. 255-’ .<br />

282.A. A. Nayeb-Hashemi <str<strong>on</strong>g>and</str<strong>on</strong>g> J. B. Clark: Bull. Alloy Phase Diagrams, 1984,<br />

vol. 5, p584.<br />

283.X. G. Min, Y. S. Sun, W. W. Du <str<strong>on</strong>g>and</str<strong>on</strong>g> X. Feng: D<strong>on</strong>gnan Daxue Xuebao,<br />

2002, vol. 32, pp. 409-414 (in Chinese).<br />

284.X. G. Min, W. W. Du, X. Feng <str<strong>on</strong>g>and</str<strong>on</strong>g> Y. S. Sun: Chin. Sci. Bul1., 2002, vol. 47,<br />

pp. 1082- .<br />

285.G. Nussbaum, P. Sainfort, G. Regazz<strong>on</strong>i <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Gjesl<str<strong>on</strong>g>and</str<strong>on</strong>g>: Scr. Metall., 1989,<br />

vol. 23, pl079.<br />

286.Foseco N<strong>on</strong>-Ferrous Foundryman’s h<str<strong>on</strong>g>and</str<strong>on</strong>g> book, John R. Brown, ed.,<br />

1 1"‘ editi<strong>on</strong>, Butterworth-Heinemann, p219.<br />

287.L. Cizek, M. Greger, L. Pawlica, L. A. Dobrzanski <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Tanski:<br />

J Mater. Process. Techn., 2004, vols. 157-158, pp. 466-- 1.<br />

288.J.P. Zhou, D.S. Zhao, R.H. Wang, Z.F. Sun, J.B. Wang, J.N. Gui <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

O. Zheng, Materials Letters, 2007, vol. 61, pp. 4707-= ' .<br />

289.C. J. Bettles <str<strong>on</strong>g>and</str<strong>on</strong>g> C. J. Rossouw: Micr<strong>on</strong>, 2000, vol. 31, p651.<br />

290.M. S. Sul<strong>on</strong>en: Acta Metall., 1964, vol. 12, pp. 749- .<br />

291.K. R. Lee, Y. J. Baik <str<strong>on</strong>g>and</str<strong>on</strong>g> D. N. Yo<strong>on</strong>: Acta Metall., 1987, vol. 35,<br />

pp.2l45- .<br />

292.M. Hillert: Acta Metall., 1982, vol. 30, pp. 1689- .<br />

293.K.T. Kashyap, C. Ramach<str<strong>on</strong>g>and</str<strong>on</strong>g>ra, M. Sujatha <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Chatterji:<br />

Bull. Mater. Sci. 2000, vol. 23, pp. 39- .<br />

294.A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, U.T.S. Pillai <str<strong>on</strong>g>and</str<strong>on</strong>g> B.C. Pai: Mater. Sci. Eng. A, 2007,<br />

vols. 452-453, pp. 87- .<br />

295.Yizhen Lu, Qud<strong>on</strong>g Wang, Xiaoqin Zeng, Wenjiang Ding <str<strong>on</strong>g>and</str<strong>on</strong>g> Yanping Zhu:<br />

J . Mater. Sci. Let., 2001, vol. 20, pp. 397--1.<br />

195


References<br />

296.Practical h<str<strong>on</strong>g>and</str<strong>on</strong>g> book <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science, Charles T. Lynch, ed., CRC. Press,<br />

1989, p473 (ISBN: 0-8493-3702-X).<br />

297.Robert S. Busk: Magnesium products design, lntemati<strong>on</strong>al Magnesium<br />

Associati<strong>on</strong>, Marcel Dekker Inc., 1987, pp. 267- .<br />

298.E.M. Gutman: J Mater. Sci. Let., I998, vol. 21, pp. 1787-' ' .<br />

299.E.M. Gutman, Ya Unigovski, M. Levkovich, Z.Koren, E. Aghi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

M. Dangur: Mater. Sci. <str<strong>on</strong>g>and</str<strong>on</strong>g> Eng. I997, vols. A234-236, pp. 880- .<br />

300.C. H. Caceres, W. J. Poole, A. L. Bowles <str<strong>on</strong>g>and</str<strong>on</strong>g> C. J. Davids<strong>on</strong>:<br />

Mater. Sci. Eng., 2005, vol. 42, pp. 269-L .<br />

30l.G. Schindelbacher, R. Rosch: Proc. Magnesium Alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> Their<br />

Applicati<strong>on</strong>s, B. L. Mordike <str<strong>on</strong>g>and</str<strong>on</strong>g> K. U. Kainer, eds., Frankfurt, 1998,<br />

pp.247­<br />

302.W. P. Sequeira, G. L. Dunlop, M. T. Murray: Proc. 3”’ Internati<strong>on</strong>al<br />

Magnesium C<strong>on</strong>ference, G. W. Lorimer, ed., L<strong>on</strong>d<strong>on</strong>, The Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals<br />

(L<strong>on</strong>d<strong>on</strong>), 1997, pp. 63- .<br />

303.A. L. Bowles, T. J. Bastow, J. R. Griffiths, P. D. D. Rodrigo: Proc.<br />

Magnesium Technology 2000, H. I. Kaplan <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Hryn, B. Clow, eds.,<br />

Warrendale, PA, 2000, pp. 295~<br />

304.A. Stich, H. G. Haldenwanger: Proc. Magnesium 2000, E. Aghi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

D. Eliezer, eds., Dead Sea, MRI, 2000, pp. 27<br />

305.Jayalakshmi, S.V. Kailas, S. Seshan, Composites part A, 2002, vol. 33,<br />

pp.ll35­<br />

306.E. Blank, M. Kaspar <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Rappaz: Proc. Strength <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals <str<strong>on</strong>g>and</str<strong>on</strong>g> Alloys,<br />

Vol. l, M<strong>on</strong>treal, Canada, Pergam<strong>on</strong> Press Ltd., Oxford, UK, 1985, pp. 87<br />

307.L. M. Brown <str<strong>on</strong>g>and</str<strong>on</strong>g> W. M. Stobbs: Phil. Mag., 1971, vol. 23, pp. 1185-. . .<br />

308.L. M. Brown <str<strong>on</strong>g>and</str<strong>on</strong>g> D. R. Clarke: Acta Metall., 1975, vol. 23, pp. 821­<br />

309.R. E. Smallman <str<strong>on</strong>g>and</str<strong>on</strong>g> R. J. Bishop: Metals <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials: Science, Processes<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Applicati<strong>on</strong>, Butterworth-Heinemann Ltd., Oxford, UK, 1995,<br />

pp.228­<br />

3l0.George E. Dieter: Mechanical Metallurgy, 2“d ed., McGraw-Hill, New York,<br />

NY, I976, pp. 218­<br />

196


References<br />

31 l.Metal H<str<strong>on</strong>g>and</str<strong>on</strong>g>book, vol. 9, Fractography <str<strong>on</strong>g>and</str<strong>on</strong>g> Atlas <str<strong>on</strong>g>of</str<strong>on</strong>g> Fractographs, 8th ed.,<br />

ASM, Metals Park, OH, l974, pp. 64- '<br />

3l2.L. Engel <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Klinger, Translated by X. M. Meng, An Atlas <str<strong>on</strong>g>of</str<strong>on</strong>g> Metal<br />

Damage, Mechanical Publishing House, Beijing, I990, pp. 30-31 (in Chinese).<br />

3l3.Jing Bai, Yangshan Sun, Feng Xue, Shan Xue, Jing Qiang <str<strong>on</strong>g>and</str<strong>on</strong>g> Tianbai Zhu:<br />

J Alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> Compounds, 2007, vol. 437, pp. 247<br />

3l4.Ye<strong>on</strong> Jun Chung <str<strong>on</strong>g>and</str<strong>on</strong>g> Kwang Se<strong>on</strong> Shin:Proc. Magnesium Technology 2005,<br />

N.R. Neelameggam, H.l. Kalpan <str<strong>on</strong>g>and</str<strong>on</strong>g> B. R. Powell, eds., TMS, 2005,<br />

pp.425<br />

3l5.M. Regev, 0. Botstein <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Rosen: Proc. Magnesium 2000, 2""<br />

Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Magnesium Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, E. Aghi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> D. Eliezer, eds., Dead Sea, Israel, 2000, pp. 301<br />

3l6.Norbert Hort, Yu<str<strong>on</strong>g>and</str<strong>on</strong>g>ing Huang <str<strong>on</strong>g>and</str<strong>on</strong>g> Karl Ulrich Kainer: Adv. Eng. Mater.,<br />

2006, vol. 8, pp. 235<br />

3 l 7.C. J. Bettles <str<strong>on</strong>g>and</str<strong>on</strong>g> M. A. Gibs<strong>on</strong>: Adv. Eng. Mater., 2003, vol. 5, pp. 859-865.<br />

3l8.M.S. Dargusch, A.L. Bowles, K. Pettersen, P. Bakke <str<strong>on</strong>g>and</str<strong>on</strong>g> G.L. Dunlop:<br />

Mater. Trans., 2004, vol. 35A, pp. 1905­<br />

3l9.N. N. Aung <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Zhu: J. Appl. Electrochem, 2002, vol. 32,<br />

pp.l397<br />

320. G. Baril, C. Deslouis, N. Pebere: Proc. Seventh symposium <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electrochemical methods in corrosi<strong>on</strong> research, CD-Rom paper no. 007; 2000.<br />

32l.G. Baril, C. Blane <str<strong>on</strong>g>and</str<strong>on</strong>g> N. Pebere: J Electrochem Soc, 2001, vol. 148, p489.<br />

322.G. G. Kumar <str<strong>on</strong>g>and</str<strong>on</strong>g> N. Munich<str<strong>on</strong>g>and</str<strong>on</strong>g>raiah: J Solid State Electrochem, 2001, vol. 5,<br />

p8.<br />

323.ASM h<str<strong>on</strong>g>and</str<strong>on</strong>g> book, Volume-13A, Corrosi<strong>on</strong>, ASM Internati<strong>on</strong>al, 2003,<br />

pp.453-J<br />

324.R. Udhayan <str<strong>on</strong>g>and</str<strong>on</strong>g> D.P. Bhatt: J Power Sources, 1996, vol. 63, pl 03.<br />

325.JCPDS File, V.1 .30, 1997, Card No. l0-0238.<br />

326.R. Ambat, N. N. Aung <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Zhou: J App. Electro chemistry, 2000, vol. 30,<br />

pp.865­<br />

327.8. Mathieu, C. Rapin, J. Steinmetz <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Steinmetz: Corrosi<strong>on</strong> Science,<br />

2003, vol. 45, pp. 2741<br />

197


PUBLICATIONS BASED ON THE PRESENT RESEARCH WORK<br />

Internati<strong>on</strong>al Journals<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

“<strong>Microstructure</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ91<br />

magnesium alloy” A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, U. T. S.Pillai, <str<strong>on</strong>g>and</str<strong>on</strong>g> B. C. Pai, Metallurgical<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Transacti<strong>on</strong> A, Vol 36A, N0. 8, 2005, 2235-2243.<br />

“Observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microstructural refinement in Mg-Al-<str<strong>on</strong>g>Si</str<strong>on</strong>g> alloys c<strong>on</strong>taining<br />

str<strong>on</strong>tium”, A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, U. T. S. Pillai, J. Swaminathan, S. K. Das <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

B. C. Pai, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Material Science, Vol 41, 2006, 6087-6089<br />

“Modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg2<str<strong>on</strong>g>Si</str<strong>on</strong>g> precipitates in <str<strong>on</strong>g>Si</str<strong>on</strong>g> added AZ91 magnesium alloy”,<br />

A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasn, U. T. S. Pillai <str<strong>on</strong>g>and</str<strong>on</strong>g> B. C. Pai, AFS Transacti<strong>on</strong>s, Vol. 114,<br />

2006, 737-746<br />

“Combined additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AZ91 magnesium alloy”, A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, J . Swaminathan, U. T. S. Pillai,<br />

G. Krishna <str<strong>on</strong>g>and</str<strong>on</strong>g> B. C Pai, Material Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering A (in press)<br />

“Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> alloying additi<strong>on</strong>s <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 magnesium<br />

alloy’, A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, S. Ningshen, U. Kamachi Mudali, U. T. S. Pillai, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

B. C. Pai, Intermetallics , 15, 2007, 1511-1517<br />

“Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> intermetallics <strong>on</strong> <strong>the</strong> creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 magnesium alloy”<br />

A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, J. Swaminathan, U.T.S. Pillai, G. Manoj <str<strong>on</strong>g>and</str<strong>on</strong>g> B.C. Pai,<br />

Metallurgical <str<strong>on</strong>g>and</str<strong>on</strong>g> Materials Transacti<strong>on</strong> A (communicated)<br />

Nati<strong>on</strong>al Journals<br />

1<br />

2<br />

3<br />

4<br />

“Role <str<strong>on</strong>g>of</str<strong>on</strong>g> minor alloying additi<strong>on</strong> to AZ91 magnesium alloy”,<br />

N. Balasubramani, K. Raghuk<str<strong>on</strong>g>and</str<strong>on</strong>g>an, U. T. S. Pillai, A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

B. C. Pai, Indian Foundry Journal, Vol 50, No.3, 2004, 19-25.<br />

“Magnesium cast alloys <str<strong>on</strong>g>and</str<strong>on</strong>g> its foundry practices” N. Balasubramani,<br />

A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, U. T. S. Pillai, K. Raghuk<str<strong>on</strong>g>and</str<strong>on</strong>g>an <str<strong>on</strong>g>and</str<strong>on</strong>g> B. C. Pai, Indian<br />

Foundry Journal, Vol. 50, No. 10, 2004, 30-35<br />

“Creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg-A1 alloys — An overview”, G. Venkatesan,<br />

A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, K. Raghuk<str<strong>on</strong>g>and</str<strong>on</strong>g>an, U. T. S. Pillai <str<strong>on</strong>g>and</str<strong>on</strong>g> B. C. Pai, Indian<br />

Foundry Journal, Vol. 51, No. 10, 2005, 31-38.<br />

“Improved mechanical properties <str<strong>on</strong>g>and</str<strong>on</strong>g> corrosi<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91<br />

magnesium alloy for automotive applicati<strong>on</strong>s”, A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, U.T.S. Pillai,<br />

J. Swaminathan, S. Ningshen, U. Kamachi mudali <str<strong>on</strong>g>and</str<strong>on</strong>g> B.C. Pai, Indian<br />

Foundry Journal, vol. 53, No. 7, 2007, 27-32<br />

198


Nat1<strong>on</strong>_al/Internati<strong>on</strong>al C<strong>on</strong>ference Presentati<strong>on</strong><br />

1 “High temperature behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Pb <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added AZ91 alloy”, A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>in\'\7”a§g);u1, _.¢§...<br />

u. T. s. Pillai, s. 0. K. Pillai, T. Soman <str<strong>on</strong>g>and</str<strong>on</strong>g> B. c. Pai, publishe flar_~=1=,&,~>1.i<br />

presented at Internati<strong>on</strong>al Symposium <strong>on</strong> Research Scholars (ISRS-2004),<br />

Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Chennai, Dec. 20 - 22, 2004.<br />

“Fracture behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 magnesium alloy”, A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, P. Prabahara<br />

rao, K. Sukumaran, U. T. S. Pillai, <str<strong>on</strong>g>and</str<strong>on</strong>g> B. C. Pai, presented at <strong>the</strong> Annual<br />

Technical Meeting <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals (NMD-ATM-2004),<br />

Triv<str<strong>on</strong>g>and</str<strong>on</strong>g>urm, India, Nov. 2004.<br />

“Investigati<strong>on</strong> <strong>on</strong> microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Sb</str<strong>on</strong>g> added<br />

AZ91 alloy”, A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, J. Swaminathan, T. Soman, U. T. S. Pillai, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

B. C. Pai, presented at <strong>the</strong> Annual Technical Meeting <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Metals (NMD-ATM-2004), Triv<str<strong>on</strong>g>and</str<strong>on</strong>g>urm, India, Nov. 2004.<br />

“Studies <strong>on</strong> ageing behavior <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sr</str<strong>on</strong>g> added AZ91<br />

alloy”, A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, U. T. S. Pillai <str<strong>on</strong>g>and</str<strong>on</strong>g> B. C. Pai, published <str<strong>on</strong>g>and</str<strong>on</strong>g> presented in<br />

lntemati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Advanced Materials Design & Development<br />

(ICAMDD), 14-16 Dec 2005, Goa, India<br />

“Improvement in creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 Alloy by Pb additi<strong>on</strong>”,<br />

A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, J. Swaminathan, U. T. S. Pillai <str<strong>on</strong>g>and</str<strong>on</strong>g> B. C. Pai, presented at<br />

Annual Technical Meeting <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals (NMD-ATM­<br />

2005), IIT Madras, Chennai from 14-l7 November 2005<br />

“Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Si</str<strong>on</strong>g> additi<strong>on</strong> <strong>on</strong> microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> creep properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91<br />

magnesium alloy”, A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, J.Swaminathan, U. T. S. Pillai, Krishna<br />

Gugloth, Manoj Gunjan <str<strong>on</strong>g>and</str<strong>on</strong>g> B. C. Pai, presented at Annual Technical Meeting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals (NMD-ATM- 2006), Jamshedpur, India,<br />

Nov. 13-16, 2006<br />

<str<strong>on</strong>g>“Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> alloying additi<strong>on</strong>s <strong>on</strong> microstructure, mechanical properties <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

corrosi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 magnesium alloy”, A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, S. Ningshen,<br />

J. Swaminathan, U. Kamachi Mudali, U. T. S. Pillai <str<strong>on</strong>g>and</str<strong>on</strong>g> B. C. Pai, presented at<br />

lntemati<strong>on</strong>al c<strong>on</strong>ference <strong>on</strong> Recent Advances in Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Processing<br />

(RAMP-2006), PSG Tech, Coimbatore, Dec.l 5-16, 2006<br />

“Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> intermetallics <strong>on</strong> <strong>the</strong> creep behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> AZ91 magnesium alloy”,<br />

A. <str<strong>on</strong>g>Sr</str<strong>on</strong>g>inivasan, G. Manoj, U. T. S. Pillai, J. Swaminathan, G. Krishna <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

B. C. Pai, presented at Nati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Advance Material for Hostile<br />

Envir<strong>on</strong>ments —Present Scenario <str<strong>on</strong>g>and</str<strong>on</strong>g> Future Prospects held at Regi<strong>on</strong>al<br />

Research Laboratory, Triv<str<strong>on</strong>g>and</str<strong>on</strong>g>unn, l-2 March, 2007<br />

199<br />

'\<br />

Q‘ \'\Q RA R Y ‘<br />

60;<br />

@ ‘_ ‘(sq “ft 3.1;’;Lb­<br />

.­<br />

~_',<br />

Q_ Q


ERRATUM<br />

Page 3: Table 1.1 The expansi<strong>on</strong> for <strong>the</strong> abbreviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

RE is “Rear Earth “ ‘=<br />

Page 57: Figure 2.26 The expansi<strong>on</strong> for <strong>the</strong> abbreviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

HSC is “Hot Crack Susceptibility C0­<br />

Page 5 : Para 2: Line 10<br />

efficient"<br />

Corrosi<strong>on</strong> starts from <strong>the</strong> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Grain<br />

Page 8: Para 2: Line 2 Magnesium density is <strong>on</strong>e forth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

steel density<br />

Page 21: Para 2: Line 6 The yield strength increases with ‘<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al whereas UTS increase up<br />

to 6% <str<strong>on</strong>g>and</str<strong>on</strong>g> become less sensitive to AI<br />

additi<strong>on</strong>.<br />

Page 22: Figure 2.5 % El<strong>on</strong>gati<strong>on</strong> axis is made in Figure 2.5 yl<br />

Page 24 Para 1: Line5 ln a slow cooled alloy, when casting<br />

cools from eutectic to <strong>the</strong> room *<br />

temperature, <strong>the</strong> solid transformati<strong>on</strong> I<br />

takes place, in which <strong>the</strong> highly super ~<br />

saturated eutectic Mg decompose into<br />

alternative layers <str<strong>on</strong>g>of</str<strong>on</strong>g> solute deployed ~<br />

Mg <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg17A|12 phase T<br />

Page 29 Para 2: Line 5 Explained to <strong>the</strong> Examiner during Viva­<br />

Voce examinati<strong>on</strong><br />

1 as A _ 1- l<br />

Voce examinati<strong>on</strong> ‘I<br />

Page 44 Para 1: Line 8 Explained to <strong>the</strong> Examiner during Viva­<br />

Page 45 Para 1: Line 4 Explained to <strong>the</strong> Examiner during Viva­<br />

Voce examinati<strong>on</strong><br />

Page S1 Figure 2.22 b Arrow mark is made to show corrosi<strong>on</strong> 5<br />

products g_ K y g it<br />

Page 64 The materials supplier is "Exclusive ‘<br />

Magnesium" Hyderabad, India I<br />

Page 70 Explained to <strong>the</strong> Examiner during Viva- l<br />

Voce examinati<strong>on</strong> W L y W T<br />

Page 77 Explained to <strong>the</strong> Examiner during Viva- i<br />

\/yoce examinati<strong>on</strong> N M<br />

Page 121 to 124 Explained to <strong>the</strong> Examiner during Viva- ll<br />

Voce examinati<strong>on</strong> A<br />

1


Page 125: Para 1 7 Explained to <strong>the</strong> Examiner duringViva­<br />

g g g Voce examinati<strong>on</strong><br />

Page 133: Para 4: Line 7 “F Arrow mark is made <strong>on</strong> Figure 4.47 to<br />

- indicate <strong>the</strong> cracks<br />

Page 144: Para 1: Line 3 ‘ g Explained to <strong>the</strong> Examiner during Vivai<br />

Voce examinati<strong>on</strong><br />

Page 145 ‘ A Expiained to <strong>the</strong> Examiner during Vivag<br />

g i Voce examinati<strong>on</strong> M<br />

J %pages<br />

Page 179 <strong>on</strong>wards Correcti<strong>on</strong> is made <strong>on</strong> <strong>the</strong> respective<br />

2<br />

T<br />

i<br />

i<br />

vi

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!