06.08.2013 Views

Problems and Solutions in - Mathematics - University of Hawaii

Problems and Solutions in - Mathematics - University of Hawaii

Problems and Solutions in - Mathematics - University of Hawaii

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1.7 2007 November 16 1 REAL ANALYSIS<br />

1.7 2007 November 16<br />

Notation: R is the set <strong>of</strong> real numbers <strong>and</strong> R n is n-dimensional Euclidean space. Denote by m Lebesgue measure on<br />

R <strong>and</strong> mn n-dimensional Lebesgue measure. Be sure to give a complete statement <strong>of</strong> any theorems from analysis that<br />

you use <strong>in</strong> your pro<strong>of</strong>s below.<br />

1. Let µ be a positive measure on a measure space X. Assume that E1, E2, . . . are measurable subsets <strong>of</strong> X with the<br />

property that for n = m, µ(En ∩ Em) = 0. Let E be the union <strong>of</strong> these sets. Prove that<br />

µ(E) =<br />

∞<br />

µ(En)<br />

Solution: Def<strong>in</strong>e F1 = E1, F2 = E2 \ E1, F3 = E3 \ (E1 ∪ E2), . . . , <strong>and</strong>, <strong>in</strong> general,<br />

n=1<br />

n−1 <br />

Fn = En \ Ei (n = 2, 3, . . . ).<br />

i=1<br />

If M is the σ-algebra <strong>of</strong> µ-measurable subsets <strong>of</strong> X, then Fn ∈ M for each n ∈ N, s<strong>in</strong>ce M is a σ-algebra. Also,<br />

Fi ∩ Fj = ∅ for i = j, <strong>and</strong> F1 ∪ F2 ∪ · · · ∪ Fn = E1 ∪ E2 ∪ · · · ∪ En for all n ∈ N. Thus,<br />

<strong>and</strong>, by σ-additivity <strong>of</strong> µ,<br />

∞<br />

n=1<br />

Fn =<br />

n=1<br />

∞<br />

En E,<br />

n=1<br />

∞<br />

∞<br />

µ(E) = µ( Fn) = µ(Fn).<br />

Therefore, if we can show µ(En) = µ(Fn) holds for all n ∈ N, the pro<strong>of</strong> will be complete.<br />

Now, for each n = 2, 3, . . . ,<br />

<strong>and</strong><br />

n=1<br />

n−1 <br />

Fn = En ∩ ( Ei) c<br />

i=1<br />

n−1 <br />

µ(En) = µ(En ∩ ( Ei) c n−1 <br />

) + µ(En ∩ ( Ei)). (24)<br />

Equation (24) holds because n−1<br />

i=1 Ei is a measurable set for each n = 2, 3, . . . . F<strong>in</strong>ally, note that<br />

which implies<br />

i=1<br />

n−1 <br />

En ∩ ( Ei) =<br />

i=1<br />

n−1 <br />

µ(En ∩ ( Ei)) ≤<br />

i=1<br />

<br />

(En ∩ Ei),<br />

n−1<br />

i=1<br />

i=1<br />

n−1 <br />

µ(En ∩ Ei),<br />

by σ-subadditivity. By assumption, each term <strong>in</strong> the last sum is zero, <strong>and</strong> therefore, by (23) <strong>and</strong> (24),<br />

n−1 <br />

µ(En) = µ(En ∩ ( Ei) c ) = µ(Fn) holds for each n = 2, 3, . . . .<br />

i=1<br />

For n = 1, we have F1 = E1, by def<strong>in</strong>ition. This completes the pro<strong>of</strong>. ⊓⊔<br />

32<br />

i=1<br />

(23)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!