Contact structures on from Trkalian fields and Maxwell's equations
Contact structures on from Trkalian fields and Maxwell's equations
Contact structures on from Trkalian fields and Maxwell's equations
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
<str<strong>on</strong>g>C<strong>on</strong>tact</str<strong>on</strong>g> <str<strong>on</strong>g>structures</str<strong>on</strong>g> <strong>on</strong> ¢¡ <strong>from</strong> <strong>Trkalian</strong> <strong>fields</strong><br />
<strong>and</strong> Maxwell’s equati<strong>on</strong>s<br />
1 Introducti<strong>on</strong><br />
Matias Dahl<br />
July 2001<br />
The Beltrami equati<strong>on</strong> £¥¤§¦©¨¦ states that the rotati<strong>on</strong> of ¦ is everywhere parallel to<br />
the field. Due to this c<strong>on</strong>diti<strong>on</strong>, a characteristic feature of all Beltrami <strong>fields</strong> is a c<strong>on</strong>stant<br />
twisting. Such <strong>fields</strong> are found in many areas of physics. For instance, particle movement in<br />
tornadoes <strong>and</strong> waterspouts can be approximated by Beltrami <strong>fields</strong> [8]. Also, with suitable<br />
boundary c<strong>on</strong>diti<strong>on</strong>s, the magnetic field inside a fusi<strong>on</strong> reactor can be modeled as a Beltrami<br />
field [4]. Beltrami <strong>fields</strong> are also used to solve Maxwell’s equati<strong>on</strong>s in bi-isotropic media<br />
[7, 8].<br />
In reference [1] a corresp<strong>on</strong>dence between Beltrami <strong>fields</strong> <strong>and</strong> c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> <strong>on</strong> -<br />
manifolds is established. Here, this result is used to derive c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> <strong>on</strong> <strong>from</strong><br />
a special class of Beltrami <strong>fields</strong>, namely <strong>Trkalian</strong> vector <strong>fields</strong>. In Secti<strong>on</strong>s 2 <strong>and</strong> 3 of<br />
this study, we give the necessary definiti<strong>on</strong>s for Beltrami <strong>fields</strong>, <strong>Trkalian</strong> <strong>fields</strong>, <strong>and</strong> c<strong>on</strong>tact<br />
<str<strong>on</strong>g>structures</str<strong>on</strong>g>. The rest of the study is divided into two parts. In the Secti<strong>on</strong> 4, we combine the<br />
above corresp<strong>on</strong>dence with a result about <strong>Trkalian</strong> vector <strong>fields</strong> <strong>on</strong> [3]. As a result, we<br />
obtain Propositi<strong>on</strong> 4.2 <strong>from</strong> which c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> <strong>on</strong> can be generated. As a special<br />
case, it follows that every analytic functi<strong>on</strong> <strong>on</strong> generates a c<strong>on</strong>tact structure ¤ <strong>on</strong> (Co-<br />
rollary 4.5.) We also show that all the st<strong>and</strong>ard c<strong>on</strong>tact forms , <br />
<strong>and</strong> <strong>on</strong> can be generated <strong>from</strong> Propositi<strong>on</strong> 4.2. In the sec<strong>on</strong>d part (Secti<strong>on</strong><br />
5), the result of Secti<strong>on</strong> 4 is used to derive a c<strong>on</strong>tact structure <strong>on</strong> <strong>from</strong> Maxwell’s<br />
equati<strong>on</strong>s in isotropic medium. The c<strong>on</strong>clusi<strong>on</strong>s <strong>and</strong> suggesti<strong>on</strong>s for further work are given<br />
in Secti<strong>on</strong> 6.<br />
,<br />
Throughout this study, we assume that the underlying space is a real -dimensi<strong>on</strong>al manifold<br />
as defined in reference [15]; an -dimensi<strong>on</strong>al manifold, denoted by , is a topological<br />
Hausdorff space with countable base that is locally homeomorphic to . The space of<br />
differential -forms <strong>on</strong> is denoted by , <strong>and</strong> the tangent space at a point <br />
is denoted by . All functi<strong>on</strong>s, -forms <strong>and</strong> vector <strong>fields</strong> are assumed -smooth.<br />
The Einstein summing c<strong>on</strong>venti<strong>on</strong> is used throughout this work. By <strong>and</strong> we<br />
denote the real <strong>and</strong> imaginary parts of a complex number . The complex unit is denoted<br />
by ¨ .<br />
1
2 <strong>Trkalian</strong> <strong>fields</strong><br />
For completeness, we next define both Beltrami <strong>fields</strong> <strong>and</strong> <strong>Trkalian</strong> <strong>fields</strong>. In this work we<br />
shall, however, <strong>on</strong>ly study <strong>Trkalian</strong> <strong>fields</strong>.<br />
¦ ¡<br />
possibly complex comp<strong>on</strong>ent functi<strong>on</strong>s.) £ ¤§¦¨ ¦ If<br />
Definiti<strong>on</strong> 2.1 [1, 3] Let be a Riemann manifold, <strong>and</strong> let be a vector field (with<br />
for some functi<strong>on</strong> ¡£¢<br />
, ¥¤ <br />
¦ then is said to be a Beltrami vector field. If ¡<br />
¦ is a n<strong>on</strong>-zero real scalar, then is said to<br />
be a <strong>Trkalian</strong> vector field.<br />
In the above definiti<strong>on</strong>, the Riemann metric plays a crucial role. Unfortunately this ¡<br />
metric<br />
dependence is not explicitly seen <strong>from</strong> £ ¤ ¦ ¨ ¦ the equati<strong>on</strong> (a statement for the<br />
¦ vector field .) For this reas<strong>on</strong>, we shall use differential forms [9, 11, 14, 15].<br />
With differential forms all the traditi<strong>on</strong>al differential operators £ , £ ¤ , <strong>and</strong> £§¦ can be expressed<br />
using <strong>on</strong>ly two operators: the Hodge star operator ¨ <strong>and</strong> the exterior derivative .<br />
The Hodge star operator, defined below, depends <strong>on</strong>ly <strong>on</strong> the Riemann metric. The exterior<br />
derivative, <strong>on</strong> the other h<strong>and</strong>, is purely topological in the sense that it does not depend <strong>on</strong><br />
the metric.<br />
Definiti<strong>on</strong> 2.2 [13] Let be a -dimensi<strong>on</strong>al manifold with a © ¨<br />
Riemann metric<br />
<br />
¢<br />
. The Hodge star operator is the linear operator ¨ ¤ <br />
<br />
©<br />
that maps the basis elements of as<br />
where <br />
©<br />
¨ <br />
<br />
<br />
<br />
<br />
¦¦¦<br />
<br />
¨© <strong>and</strong> <br />
<br />
<br />
¨<br />
<br />
<br />
<br />
¨<br />
<br />
<br />
<br />
©<br />
<br />
©<br />
<br />
¦¦¦©<br />
<br />
<br />
<br />
§ <br />
is the Levi-Civita permutati<strong>on</strong> symbol,<br />
¨<br />
<br />
¦¦¦<br />
<br />
when <br />
<br />
¦¦¦ is an even permutati<strong>on</strong>,<br />
<br />
when <br />
<br />
¦¦¦ is an odd permutati<strong>on</strong>,<br />
<br />
<br />
¨ <br />
<br />
¨<br />
when<br />
for some<br />
To transform vectors into 1-forms <strong>and</strong> vice-versa, we use the st<strong>and</strong>ard isomorphism induced<br />
by the Riemann ©¨©<br />
metric [11]: By c<strong>on</strong>tracting the metric with the vector<br />
<br />
<br />
¦ ¨¢¦<br />
<br />
field , we obtain the ¦§¨© ¦<br />
<br />
¦ §¨©¦<br />
<br />
<br />
<br />
1-form . This -mapping<br />
transforms vector <strong>fields</strong> into 1-forms. © Since is positive definite, the mapping also has an<br />
inverse, a -mapping. ©<br />
<br />
Let denote the elements of © the . For the ¨ <br />
<br />
1-form ,<br />
¨©<br />
<br />
<br />
<br />
.<br />
<br />
Definiti<strong>on</strong> 2.3 [11] Let be a Riemann manifold with a metric tensor © . The curl of the<br />
vector field is £ the £ ¤¦ ¨¨ ¦ vector field for which . The ¦ gradient of ¤¦ a<br />
functi<strong>on</strong> ¡¢<br />
£<br />
¨ £<br />
¤ is the vector field for which .<br />
¡<br />
From the definiti<strong>on</strong> of curl, we see that if ¦ is a <strong>Trkalian</strong> vector field, then ¨ ¦ ¨ ¦£ .<br />
Reading this as an equati<strong>on</strong> for the 1-form ¦ , it will be motivated (in Secti<strong>on</strong> 4) to call ¦<br />
a <strong>Trkalian</strong> 1-form.<br />
Definiti<strong>on</strong> 2.4 Let be a Riemann manifold. A (possibly complex valued) 1-form <strong>on</strong><br />
is a <strong>Trkalian</strong> 1-form if ¨ ¨ for some n<strong>on</strong>-zero § .<br />
2<br />
¡
For easy reference, we end this secti<strong>on</strong> with some useful properties of the Hodge star operator.<br />
¢<br />
¡ Id£ ¢<br />
¥¤<br />
Generally [13]. In three ¨¨§¨ Id£ ¦ ¢<br />
¥¤<br />
dimensi<strong>on</strong>s, ¨<br />
<br />
for ¨¨§¨ <br />
. In cartesian coordinates, the metric tensor is ©¨ <br />
<br />
<br />
<br />
<br />
<br />
,<br />
<br />
¦¦¦<br />
<br />
<strong>and</strong> the Hodge star operator is<br />
¨ ¨ <br />
3 <str<strong>on</strong>g>C<strong>on</strong>tact</str<strong>on</strong>g> Structures<br />
<br />
<br />
<br />
¨ ¨ <br />
<br />
<br />
<br />
¨ ¨ <br />
Suppose each that for in we associate in a smooth manner a<br />
§<br />
two-dimensi<strong>on</strong>al subspace<br />
of . We then say that §<br />
is a plane field <strong>on</strong> . An integral surface of §<br />
is a<br />
§<br />
two<br />
¨ dimensi<strong>on</strong>al ¥ submanifold of such that for all , ¨© <br />
we have [14]. An<br />
integral surface to §<br />
is, in other words, a set of smooth surfaces everywhere tangential to § .<br />
An arbitrary plane field usually does not have an integral surface. If the planes twist, the<br />
planes can not be “stitched” together to form smooth surfaces. A plane field §<br />
that has no<br />
integral surfaces, not even at a single point, is called a c<strong>on</strong>tact structure <strong>on</strong> [1, 5].<br />
For the remainder of this study, we <strong>on</strong>ly c<strong>on</strong>sider plane <strong>fields</strong> §<br />
<br />
that globally can be written<br />
as the kernel of a (real valued) 1-form , i.e., §<br />
¨ . The plane field §<br />
<br />
is<br />
then said to be transversally orientable, <strong>and</strong> is said to be a c<strong>on</strong>tact form for §<br />
[5]. The<br />
reas<strong>on</strong> for this restricti<strong>on</strong> is given by Frobenius theorem below, which gives a sufficient <strong>and</strong><br />
necessary c<strong>on</strong>diti<strong>on</strong> for §<br />
to be a c<strong>on</strong>tact structure in terms of .<br />
Theorem 3.1 (Frobenius theorem [11, 14]) Let be a 1-form <strong>on</strong> a 3-manifold. The plane<br />
field §<br />
<br />
.<br />
<br />
is a c<strong>on</strong>tact structure if <strong>and</strong> <strong>on</strong>ly if <br />
¨<br />
Clearly, rescaling by a n<strong>on</strong>-vanishing functi<strong>on</strong> does not modify the actual c<strong>on</strong>tact struc-<br />
ture . It should also be pointed out that a c<strong>on</strong>tact structure does not require a metric<br />
structure.<br />
Here, we have <strong>on</strong>ly defined c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> in three dimensi<strong>on</strong>s. However, the definiti<strong>on</strong><br />
of a c<strong>on</strong>tact structure <strong>and</strong> the Frobenius theorem both generalize to manifolds of odd<br />
dimensi<strong>on</strong>s [5, 11, 14].<br />
The important corresp<strong>on</strong>dence between Beltrami <strong>fields</strong> <strong>and</strong> c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> is established<br />
in reference [1]. Here we are <strong>on</strong>ly interested in the result that Beltrami <strong>fields</strong> induce c<strong>on</strong>tact<br />
<str<strong>on</strong>g>structures</str<strong>on</strong>g>. The related result for <strong>Trkalian</strong> 1-forms reads:<br />
Propositi<strong>on</strong> 3.2 Let be a Riemann manifold, <strong>and</strong> let be a real valued <strong>Trkalian</strong> 1-form<br />
<strong>on</strong> . If is identically n<strong>on</strong>-vanishing, then is a c<strong>on</strong>tact form <strong>on</strong> .<br />
Proof: Since is a <strong>Trkalian</strong> ¨ ¨ 1-form, for some n<strong>on</strong>-zero . <br />
<br />
Then<br />
<br />
¨ , which is the pointwise norm of [11]. Since is n<strong>on</strong>-vanishing, <br />
<br />
<br />
<br />
by Frobenius theorem, is a c<strong>on</strong>tact form. <br />
3<br />
<br />
<br />
<br />
¨<br />
<strong>and</strong>,
4 <str<strong>on</strong>g>C<strong>on</strong>tact</str<strong>on</strong>g> <str<strong>on</strong>g>structures</str<strong>on</strong>g> <strong>from</strong> <strong>Trkalian</strong> vector <strong>fields</strong><br />
In reference [3] it is shown that <strong>Trkalian</strong> <strong>fields</strong> <strong>on</strong> either have a cartesian symmetry or<br />
a spherical symmetry. Moreover, general expressi<strong>on</strong>s are given <strong>from</strong> which every <strong>Trkalian</strong><br />
vector field <strong>on</strong> can be derived; either in cartesian coordinates, or in spherical coordinates.<br />
In this secti<strong>on</strong>, we will use Propositi<strong>on</strong> 3.2 to derive a c<strong>on</strong>tact structure for <strong>Trkalian</strong> <strong>fields</strong><br />
with a cartesian symmetry. We begin by presenting the result of reference [3] in more detail.<br />
The main result of this secti<strong>on</strong> is Propositi<strong>on</strong> 4.2.<br />
In reference [3] it is shown, by means of M<strong>on</strong>ge potentials, that an arbitrary real vector field<br />
<strong>on</strong> can be written as the real part of a complex vector field of the form<br />
£ ¢<br />
where<br />
classificati<strong>on</strong> of £<br />
equati<strong>on</strong><br />
¢¡<br />
¨ £ ¦<br />
¢<br />
¤ . The main result of reference [3] is the complete<br />
¤ <br />
¦ , , <strong>and</strong> of the Riemann metric of when is a soluti<strong>on</strong> to the <strong>Trkalian</strong><br />
<strong>and</strong><br />
¦©¨£¥¤¦<br />
It is shown that there are <strong>on</strong>ly two possible cases:<br />
or<br />
a) There are Cartesian coordinates <br />
<br />
<br />
such that £<br />
functi<strong>on</strong> of , is independent of , <strong>and</strong><br />
¦ ¨<br />
¨§©<br />
b) There are ¦<br />
spherical coordinates<br />
©<br />
tanh <br />
§<br />
arc , <strong>and</strong><br />
of <br />
¦ ¨<br />
¥¤<br />
<br />
¨ , <br />
¢<br />
¤ is an analytic<br />
£ (1)<br />
such that £<br />
¨¦ , <br />
¢<br />
<br />
<br />
¤ is functi<strong>on</strong><br />
© <br />
<br />
§<br />
tanh<br />
¦<br />
arc<br />
For to be single valued in the spherical geometry, must be either a periodic<br />
functi<strong>on</strong> of © or a complex scalar multiple of the identity functi<strong>on</strong> [3].<br />
£ <br />
(2)<br />
<strong>Trkalian</strong> vector <strong>fields</strong> <strong>and</strong> 1-forms are closely related. Suppose ¦ is a complex <strong>Trkalian</strong><br />
vector field. ¨ ¦ Then is a complex <strong>Trkalian</strong> ¨ ¨ 1-form, , <strong>and</strong> is a real<br />
<br />
, then, by Propositi<strong>on</strong> 3.2, is a c<strong>on</strong>tact<br />
<br />
<strong>Trkalian</strong> 1-form. Furthermore, if<br />
form <strong>on</strong> . We next use this observati<strong>on</strong> to derive a c<strong>on</strong>tact structure for <strong>Trkalian</strong> <strong>fields</strong><br />
with cartesian symmetry.<br />
A. Cartesian coordinates<br />
We assume the vector field has the slightly more general form<br />
<br />
<br />
<br />
<br />
where are the cartesian coordinates of , is n<strong>on</strong>-zero, <strong>and</strong><br />
¦©¨<br />
¢¤<br />
<br />
<br />
<br />
<br />
<br />
<br />
£<br />
Furthermore, we assume that is equipped with the st<strong>and</strong>ard cartesian metric.<br />
¢<br />
¤ .<br />
Next, we derive c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> for ¨ ¦ to be a <strong>Trkalian</strong> 1-form, i.e., for ¨ ¨ .<br />
From Definiti<strong>on</strong> 2.3, we have<br />
¨ ¦ <br />
¢¤<br />
¨<br />
4
Here we can make an important observati<strong>on</strong>. Even though the gradient <strong>and</strong> the -operator<br />
both depend <strong>on</strong> the Riemann metric, the 1-form £ ¨ does not depend <strong>on</strong> the<br />
metric. In c<strong>on</strong>sequence, the <strong>Trkalian</strong> 1-forms corresp<strong>on</strong>ding to the vector <strong>fields</strong> 1 <strong>and</strong> 2 do<br />
not depend <strong>on</strong> the metric. This motivates our choice to work with <strong>Trkalian</strong> 1-forms <strong>and</strong><br />
not with <strong>Trkalian</strong> vector <strong>fields</strong>. In fact, the above observati<strong>on</strong> shows that the gradient of a<br />
functi<strong>on</strong> should be defined as the 1-form <strong>and</strong> not as the vector field [11].<br />
Using the properties of the Hodge star operator in cartesian coordinates,<br />
¨ ¨<br />
¨<br />
¢¤<br />
¢¤<br />
<br />
¨ ¡ ¨ <br />
<br />
¡ <br />
<br />
<br />
where partial derivatives are written as £¢ ¨ ¨ ¨ . From we have<br />
¤ ¨<br />
<br />
<strong>and</strong> ¨ . From the first c<strong>on</strong>diti<strong>on</strong>, we see that must not depend <strong>on</strong> . Also, by multiplying<br />
the third c<strong>on</strong>diti<strong>on</strong> by , we see that the sec<strong>on</strong>d <strong>and</strong> third c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />
Then, writing ¨¥¤ §¦ (¤ ,¦ real), the sec<strong>on</strong>d c<strong>on</strong>diti<strong>on</strong> reads<br />
¨ ¡ <br />
¡ ¨<br />
¨¦ §¤¨©¤ ¡ §¦ ¡ <br />
These are the Cauchy-Riemann equati<strong>on</strong>s for ¤ <strong>and</strong> ¦ , i.e., should be an analytic functi<strong>on</strong><br />
of .<br />
Propositi<strong>on</strong> 4.1 <br />
<br />
Let<br />
operator derived <strong>from</strong> the cartesian metric. Furthermore, let<br />
¨ ¢<br />
<br />
¤ <br />
¨<br />
<br />
¤<br />
<br />
<br />
<br />
¨ ¨ <br />
be the cartesian coordinates of , <strong>and</strong> let be the Hodge star<br />
functi<strong>on</strong> of , <strong>and</strong> let be independent of . If is n<strong>on</strong>-zero, then<br />
be an analytic<br />
is<br />
a complex <strong>Trkalian</strong> 1-form, .<br />
<br />
<br />
¤<br />
is a c<strong>on</strong>tact<br />
<br />
<br />
¤ <br />
<br />
<br />
The above propositi<strong>on</strong>, together with Propositi<strong>on</strong> 3.2, shows that<br />
form <strong>on</strong> provided that . The next propositi<strong>on</strong> gives sufficient c<strong>on</strong>diti<strong>on</strong>s<br />
<br />
<br />
<br />
<br />
<br />
¤<br />
<br />
<br />
<strong>on</strong> for to be a c<strong>on</strong>tact form <strong>on</strong> . In particular, it shows that for<br />
to be a c<strong>on</strong>tact form, can depend <strong>on</strong> .<br />
<br />
<br />
Propositi<strong>on</strong> <br />
<br />
<br />
<br />
¢<br />
4.2 Let be the cartesian coordinates of , <strong>and</strong> let<br />
a functi<strong>on</strong> whose real <strong>and</strong> imaginary ¤ parts ¦ are <strong>and</strong> . If the Jacobian of the mapping<br />
is identically n<strong>on</strong>-vanishing, <strong>and</strong> § if is n<strong>on</strong>-zero, then<br />
<br />
<br />
<br />
¤<br />
¤ <br />
<br />
<br />
<br />
<br />
<br />
¦ <br />
<br />
<br />
<br />
<br />
<br />
<br />
is a c<strong>on</strong>tact form <strong>on</strong> .<br />
<br />
<br />
¤<br />
The proof is based <strong>on</strong> the following lemma.<br />
<br />
<br />
¦ ¤ ¨<br />
Lemma 4.3 Let<br />
real <strong>and</strong> imaginary parts are <strong>and</strong> . If<br />
<br />
<br />
¨¤<br />
<br />
¦<br />
Proof of lemma: From<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
¤<br />
<br />
¤ be<br />
¢<br />
<br />
<br />
<br />
<br />
be coordinates of , <strong>and</strong> let<br />
, where is n<strong>on</strong>-zero, then<br />
.<br />
¨ ¤ ¦<br />
5<br />
<br />
¤<br />
<br />
¤ be a functi<strong>on</strong> whose
<strong>and</strong> <strong>from</strong><br />
it follows that<br />
<br />
<br />
¨ <br />
<br />
¤<br />
¨ <br />
¨ ¤<br />
<br />
¦<br />
<br />
<br />
Proof of Propositi<strong>on</strong> 4.2: Let ¨©¤ §¦ (¤<br />
<br />
<br />
<br />
¦<br />
¨ ¤ <br />
<br />
¤ ¤ ¡ ¤ ¤ <br />
¨<br />
<br />
<br />
<br />
<br />
<br />
¤ <br />
<br />
¦ <br />
<br />
¦<br />
<br />
¦<br />
¦ real). By the lemma,<br />
<br />
<br />
<br />
<br />
<br />
¦ ¦ ¡ ¦ ¤ <br />
¤ ¦ ¡ ¤ ¡ ¦ <br />
<br />
<br />
¨<br />
The last parenthesis is the Jacobian of the ¤<br />
¤ <br />
<br />
<br />
<br />
<br />
<br />
¦ <br />
<br />
<br />
<br />
mapping . By<br />
assumpti<strong>on</strong>, it is identically n<strong>on</strong>-vanishing, <strong>and</strong>, by Frobenius theorem, is a c<strong>on</strong>tact form<br />
<strong>on</strong> <br />
.<br />
By the <br />
<br />
<br />
<br />
¤<br />
<br />
<br />
identificati<strong>on</strong> , the above propositi<strong>on</strong> gives a c<strong>on</strong>tact structure<br />
¤ <strong>on</strong> . It is then natural to ask whether Propositi<strong>on</strong> 4.2 generalizes to higher dimensi<strong>on</strong>s.<br />
. In view of <br />
<br />
¡<br />
dimensi<strong>on</strong>al £¢ ¤ space with For instance, c<strong>on</strong>sider the ¡¥¤<br />
¦¢ Propositi<strong>on</strong> ¤ 4.2, it ¨ would <br />
be natural to define a c<strong>on</strong>tact form <strong>on</strong> by<br />
for a suitable functi<strong>on</strong><br />
theorem for<br />
¡<br />
dimensi<strong>on</strong>s.<br />
<br />
<br />
<br />
¢<br />
¤¢ . To show that this is a c<strong>on</strong>tact form we need Frobenius<br />
§¢<br />
Theorem 4.4 (Frobenius theorem, [11, 14]) Let <br />
manifold, <strong>and</strong> let be a 1-form <strong>on</strong><br />
if <strong>and</strong> <strong>on</strong>ly <br />
¡<br />
if <br />
<br />
the -form<br />
From ¨<br />
<br />
( ¢©¨ ¡<br />
<br />
. The hyperplane ¢©¨ §<br />
<br />
<br />
<br />
¦¦¦<br />
<br />
¤<br />
<br />
<br />
) be an odd dimensi<strong>on</strong>al<br />
is a c<strong>on</strong>tact structure <br />
¨<br />
. ¢©¨<br />
is identically n<strong>on</strong>-vanishing <strong>on</strong> <br />
¤<br />
<br />
<br />
<br />
¤<br />
. Therefore <br />
<br />
<strong>and</strong> Propositi<strong>on</strong> 4.2 does not, as such, generalize to higher dimensi<strong>on</strong>s.<br />
<br />
<br />
, we see that ¨ <br />
<br />
<br />
<br />
<br />
<br />
¤<br />
,<br />
Propositi<strong>on</strong> 4.2 is stated in the most general form. However, if we assume that is an<br />
(n<strong>on</strong>-c<strong>on</strong>stant) analytic functi<strong>on</strong> with respect of , then the Jacobian in the assumpti<strong>on</strong><br />
is identically n<strong>on</strong>-vanishing. This gives the following corollary of Propositi<strong>on</strong> 4.2.<br />
<br />
<br />
¢<br />
¤¢<br />
with respect of for all values of . If <br />
Corollary 4.5 Let be a n<strong>on</strong>c<strong>on</strong>stant<br />
analytic functi<strong>on</strong> is n<strong>on</strong>-zero,<br />
then ¨ <br />
<br />
<br />
¤<br />
be the cartesian coordinates of , <strong>and</strong> let <br />
<br />
is a c<strong>on</strong>tact form <strong>on</strong> .<br />
<br />
¦ <br />
<br />
<br />
<br />
<br />
B. Spherical coordinates<br />
To model the spherical symmetry of the vector field 2, it is necessary to introduce coordinate<br />
functi<strong>on</strong>s , § <br />
<br />
<br />
<strong>and</strong> © <br />
<br />
<br />
<br />
<br />
<br />
¨<br />
¦ <br />
. These are <strong>on</strong>e-to-<strong>on</strong>e <strong>on</strong>ly when the point<br />
is removed. One then obtains the space , which no l<strong>on</strong>ger can be covered by<br />
<strong>on</strong>ly <strong>on</strong>e chart. As noted in reference [12], the transiti<strong>on</strong> functi<strong>on</strong>s for the above coordinate<br />
functi<strong>on</strong> are complicated. Since the analysis seems to be quite involved, we shall not study<br />
c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> induced by spherical <strong>Trkalian</strong> <strong>fields</strong>.<br />
is the unit sphere in <strong>and</strong><br />
<br />
<br />
<br />
The space can be ¨ ¤ ¨ identified with ¨ , where <br />
is the radial coordinate. By Propositi<strong>on</strong> 3.2, <strong>Trkalian</strong> <strong>fields</strong> with spherical <br />
¨ symmetry are<br />
. ¨ ¤<br />
then seen to generate c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> <strong>on</strong> ¨<br />
6
4.1 St<strong>and</strong>ard <str<strong>on</strong>g>structures</str<strong>on</strong>g> <strong>on</strong> ¢¡ .<br />
We next show that the st<strong>and</strong>ard c<strong>on</strong>tact <br />
<br />
<br />
<br />
forms <strong>and</strong> the<br />
overtwisted c<strong>on</strong>tact form <strong>on</strong> can all be generated <strong>from</strong> the above<br />
propositi<strong>on</strong>s.<br />
Finding expressi<strong>on</strong>s for for which <br />
<br />
¤<br />
<br />
above c<strong>on</strong>tact forms involves some algebra best d<strong>on</strong>e with a computer. Omitting the details,<br />
we here <strong>on</strong>ly give expressi<strong>on</strong>s for <strong>and</strong> verify that these indeed generate the sought c<strong>on</strong>tact<br />
forms.<br />
<br />
, <br />
<br />
of for all . By Corollary 4.5 with ¨ ,<br />
¡<br />
, or <br />
<br />
<br />
<br />
equals the<br />
To obtain , let <br />
<br />
<br />
<br />
¨ <br />
<br />
. Then is an analytic functi<strong>on</strong><br />
£<br />
is a c<strong>on</strong>tact form.<br />
<br />
<br />
<br />
<br />
¨ <br />
<br />
<br />
<br />
¨<br />
<br />
¨<br />
¨<br />
analytic. However, the real <strong>and</strong> imaginary parts of are<br />
To obtain <br />
<br />
let <br />
<br />
<br />
<br />
¨ <br />
¡<br />
<br />
£<br />
¨ ¤ <br />
<br />
¨<br />
whence the Jacobian of the mapping <br />
¤ ¤ ¦ ¤ ¦ ¤ ¨ <br />
<br />
<br />
¨ <br />
¦<br />
<br />
¨<br />
<br />
<br />
<br />
¤<br />
¤ <br />
<br />
<br />
<br />
<br />
<br />
¡<br />
. Now is not<br />
<br />
<br />
<br />
<br />
<br />
¦ <br />
<br />
<br />
<br />
equals<br />
<br />
<br />
¨ <br />
We can therefore use Propositi<strong>on</strong> 4.2 with ¨ . It follows that<br />
<br />
<br />
¡<br />
¨ <br />
<br />
is a c<strong>on</strong>tact form.<br />
¨ <br />
¨ <br />
¤<br />
¤<br />
¡<br />
<br />
<br />
<br />
<br />
<br />
<br />
¡<br />
<br />
<br />
<br />
¦¥<br />
¨§ <br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
©<br />
<br />
¥<br />
To obtain the overtwisted c<strong>on</strong>tact form , let <br />
<br />
<br />
<br />
¨ .<br />
£<br />
Then, by Corollary 4.5 ¨ with ,<br />
is a c<strong>on</strong>tact form.<br />
<br />
<br />
<br />
<br />
¤<br />
¨ <br />
7
5 <str<strong>on</strong>g>C<strong>on</strong>tact</str<strong>on</strong>g> <str<strong>on</strong>g>structures</str<strong>on</strong>g> <strong>from</strong> Maxwell’s equati<strong>on</strong><br />
<br />
In this secti<strong>on</strong>, we show that soluti<strong>on</strong>s to £ ¤ £ ¤¦ ¨ ¦ Helmholtz’s equati<strong>on</strong> induce<br />
soluti<strong>on</strong>s to the £¤ ¦ ¨¦ <strong>Trkalian</strong> equati<strong>on</strong> . As a c<strong>on</strong>sequence <strong>from</strong> the previous<br />
secti<strong>on</strong>, soluti<strong>on</strong>s to Helmholtz’s equati<strong>on</strong> then induce c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> <strong>on</strong> . Since the<br />
electric <strong>and</strong> magnetic <strong>fields</strong> in Maxwell’s equati<strong>on</strong>s both solve Helmholtz’s equati<strong>on</strong>, we<br />
obtain two c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g>, <strong>on</strong>e related to the electric field, <strong>and</strong> <strong>on</strong>e related to the magnetic<br />
field.<br />
5.1 Helmholtz’s equati<strong>on</strong>s<br />
¦<br />
¦<br />
To apply the theory <strong>from</strong> the previous secti<strong>on</strong>, Helmholtz’s equati<strong>on</strong> must first be written<br />
using differential forms. For this reas<strong>on</strong>, let be a vector field (with possibly complex<br />
comp<strong>on</strong>ent functi<strong>on</strong>s,) <strong>and</strong> let be n<strong>on</strong>-zero. Helmholtz’s equati<strong>on</strong> for then reads<br />
<br />
¤ £ ¤ ¦ ¨ ¦ . From Definiti<strong>on</strong> 2.3, we find that £ ¤ £ ¤ ¦ ¨ ¨ £©¤<br />
£ <br />
¨¨ ¨ ¦ . We then say that the (possibly complex valued) 1-form is a soluti<strong>on</strong> to<br />
¦ <br />
<br />
Helmholtz’s ¨ ¨ ¨ equati<strong>on</strong> if for § some n<strong>on</strong>-zero .<br />
In reference [2] it is shown that <strong>Trkalian</strong> vector <strong>fields</strong> <strong>and</strong> soluti<strong>on</strong>s to Helmholtz equati<strong>on</strong><br />
are closely related. Translated into differential forms we have the following:<br />
Propositi<strong>on</strong> 5.1 [2] Let be a Riemann manifold. Furthermore, let be a possibly<br />
complex valued 1-form <strong>on</strong> , <strong>and</strong> let § be n<strong>on</strong>-zero.<br />
a) If is a <strong>Trkalian</strong> ¨ ¡ ¨ ¢ 1-form, , then is a soluti<strong>on</strong> to Helmholtz’s <br />
equati<strong>on</strong>s<br />
.<br />
¨ ¨ ¨¡<br />
<br />
b) If is a soluti<strong>on</strong> to ¨ ¥¨¡ ¨ <br />
Helmholtz’s equati<strong>on</strong><br />
¨ ¨ <strong>Trkalian</strong> 1-form, .<br />
Proof: If ¨ ¡ ¨¢ , then ¨ ¨£ ¨ ¨ ¢ ¨ <br />
5.2 Maxwell’s equati<strong>on</strong>s<br />
¨ ¨ ¨£ ¨ ¢<br />
¨<br />
¨£ ¢ <br />
¨<br />
¨ <br />
<br />
. C<strong>on</strong>versely, if ¨ ¨£ ¨ <br />
, then ¨ ¨ ¡ ¢ is a<br />
<br />
, then<br />
Traditi<strong>on</strong>ally Maxwell’s equati<strong>on</strong>s are written using vectors <strong>fields</strong> in the inner product space<br />
. They can, however, equivalently be formulated using differential forms, the external<br />
derivative, <strong>and</strong> the Hodge star operator. The main advantage of the latter formalism is<br />
that Maxwell’s equati<strong>on</strong>s split into two sets of equati<strong>on</strong>s: One, which is purely topological<br />
depending <strong>on</strong>ly <strong>on</strong> the exterior derivative, <strong>and</strong> another, which is purely metrical depending<br />
<strong>on</strong>ly <strong>on</strong> the Hodge star operator. With differential forms, the different physical <strong>fields</strong> also<br />
divide into forms of different degrees with different geometrical interpretati<strong>on</strong>s [9, 10].<br />
8
¡ £¢ ¤ <br />
<br />
Here, we <strong>on</strong>ly c<strong>on</strong>sider the source-less Maxwell’s equati<strong>on</strong>s. We also assume time harm<strong>on</strong>ic<br />
<strong>fields</strong> with time c<strong>on</strong>venti<strong>on</strong> , where is the angular frequency of the soluti<strong>on</strong> [6].<br />
Maxwell’s equati<strong>on</strong>s then read<br />
<br />
¤<br />
¨ ¦¥<br />
¨ ¦© ¨§ <br />
In the above,<br />
(4)<br />
¤<br />
§ ¥ ©<br />
electric <strong>and</strong> magnetic flux 2-forms. The forms<br />
<strong>and</strong> are the electric <strong>and</strong> magnetic field 1-forms, <strong>and</strong> <strong>and</strong> are the<br />
¤ <br />
© §<br />
<br />
¥<br />
<br />
<strong>and</strong> are all complex valued <strong>on</strong><br />
depending <strong>on</strong>ly <strong>on</strong> the spatial variables.<br />
Equati<strong>on</strong>s 3-4 are purely topological <strong>and</strong> do not depend <strong>on</strong> the metric of the underlying<br />
space. The c<strong>on</strong>stitutive equati<strong>on</strong>s, <strong>on</strong> the other h<strong>and</strong>, are purely metrical <strong>and</strong> describe the<br />
electrical properties of the medium. In the most simple medium, the homogeneous linear<br />
n<strong>on</strong>-dispersive isotropic medium [6], they read<br />
We also assume that <br />
¤ <strong>and</strong> <br />
¤ .<br />
¨ ¨§<br />
¥<br />
¤<br />
© ¨ ¨<br />
From equati<strong>on</strong>s 3 <strong>and</strong> 5, <strong>and</strong> <strong>from</strong> ¨¨¨ , it follows that<br />
¤<br />
¨ ¨ ¨<br />
¨¨§ ¨ ¨<br />
<br />
<br />
(3)<br />
(5)<br />
(6)<br />
§<br />
i.e., ¤<br />
¤<br />
<strong>and</strong> satisfy Helmholtz ¨ <br />
equati<strong>on</strong>. § Here,<br />
¨<br />
is the wave-number. We<br />
also define the intrinsic impedance of free space, . By Propositi<strong>on</strong> 5.1,<br />
¨ ¨ <br />
¨<br />
¤<br />
¤<br />
<br />
¤ <br />
<br />
£§ <br />
¨ ¨ ¨§¥ §<br />
<br />
are both complex <strong>Trkalian</strong> 1-forms: ¨ ¨ , <strong>and</strong> ¨ ¨ . Since is a real<br />
number, <br />
¨ § <br />
¤<br />
¤<br />
is a real ¤ <br />
<br />
¤<br />
<strong>Trkalian</strong> 1-form. If £§ <br />
£§ <br />
¤<br />
¥ <br />
<br />
¤<br />
, then § <br />
¤<br />
¥ §¥ <br />
¨ <br />
is a c<strong>on</strong>tact form <strong>on</strong> . Similarly, if is a c<strong>on</strong>-<br />
, then<br />
, both c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> c<strong>on</strong>tain essentially the same<br />
tact form <strong>on</strong> . Since <br />
“informati<strong>on</strong>.”<br />
5.3 Plane-wave in isotropic medium<br />
<br />
<br />
¤<br />
¤<br />
<br />
<br />
<br />
§ <br />
We next study the c<strong>on</strong>tact structure for the special case of a plane-wave soluti<strong>on</strong> to<br />
Maxwell’s equati<strong>on</strong>s in cartesian <br />
<br />
coordinates with corresp<strong>on</strong>ding cartesian metric.<br />
We assume the electric field is of the form<br />
¤<br />
¨ ¥ <br />
9<br />
<br />
<br />
¤
where ¨ <strong>and</strong> ¥ ¨ ¥ ¥ are complex c<strong>on</strong>stants determining the polarizati<strong>on</strong><br />
of the wave. The corresp<strong>on</strong>ding magnetic field is<br />
The c<strong>on</strong>tact form is then<br />
¨ <br />
¤<br />
¨ <br />
§ ¨<br />
¤<br />
¨<br />
<br />
<br />
<br />
<br />
§ <br />
¨<br />
¤<br />
¥ <br />
<br />
<br />
§ ¥ ¥ <br />
¥ <br />
¥<br />
¥ <br />
©<br />
We now see that can be interpreted as a plane-wave since it has the same form as ¤<br />
§<br />
<strong>and</strong><br />
. We next show that independent <strong>on</strong> the polarizati<strong>on</strong> of ¤<br />
§ <br />
polarized. In traditi<strong>on</strong>al vector notati<strong>on</strong> the plane-wave<br />
<strong>and</strong> , is always circulary<br />
¨ X X <br />
¤<br />
X <br />
<br />
real vectors) is said to be circulary polarized X ¨ if X<br />
<br />
(X<br />
readily seen that satisfies these c<strong>on</strong>diti<strong>on</strong>s.<br />
Lemma 4.3 yields<br />
¨ ¥ ¥ <br />
<br />
In particular we see that the c<strong>on</strong>tact <br />
<br />
c<strong>on</strong>diti<strong>on</strong><br />
parameters <strong>and</strong> .<br />
<br />
The energy of the plane-wave 7 is defined as<br />
<br />
<br />
<br />
<br />
X<br />
<br />
<br />
<br />
¤<br />
<br />
<br />
X<br />
<br />
<br />
<br />
<br />
¤<br />
<strong>and</strong> X ¦ X ¨<br />
<br />
(7)<br />
. It is<br />
<br />
does not involve the medium<br />
<br />
X<br />
<br />
<br />
¥ <br />
<br />
<br />
<br />
If <strong>and</strong> are real, the c<strong>on</strong>diti<strong>on</strong><br />
not be zero. For a plane-wave, this is not very interesting. However, it does suggests that<br />
the c<strong>on</strong>tact c<strong>on</strong>diti<strong>on</strong> is related to the n<strong>on</strong>-vanishing of the electromagnetic<br />
energy also for more general soluti<strong>on</strong>s.<br />
If we take ¨ , ¥ ¨<br />
<br />
states that the energy of plane-wave should<br />
, we obtain the overtwisted c<strong>on</strong>tact structure<br />
¨ <br />
<br />
<br />
<br />
¨ ¡ <br />
The c<strong>on</strong>tact form can be interpreted as a point in<br />
-axis with an angular frequency . If we assume that<br />
order approximati<strong>on</strong>s for <strong>and</strong> , we obtain<br />
space rotating around the<br />
<br />
in , <strong>and</strong> use first<br />
¤ <br />
<br />
<br />
which resembles the st<strong>and</strong>ard c<strong>on</strong>tact form <strong>on</strong> [5]. It is straightforward to show that the<br />
approximati<strong>on</strong> of is a c<strong>on</strong>tact form, but not a <strong>Trkalian</strong> 1-form. In other words, in the<br />
approximati<strong>on</strong>, the c<strong>on</strong>tact property is preserved, <strong>and</strong> the <strong>Trkalian</strong> property is lost.<br />
In reference [1] Beltrami <strong>fields</strong> are qualitatively described as being highly unstable to perturbati<strong>on</strong>s.<br />
<str<strong>on</strong>g>C<strong>on</strong>tact</str<strong>on</strong>g> <str<strong>on</strong>g>structures</str<strong>on</strong>g>, <strong>on</strong> the other h<strong>and</strong>, are described as structurally stable. Since<br />
Beltrami <strong>fields</strong> involve both the metric <strong>and</strong> the topology of the underlying space, <strong>and</strong> since<br />
c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> <strong>on</strong>ly depend <strong>on</strong> the topology of the space, this descripti<strong>on</strong> seems natural.<br />
10
6 C<strong>on</strong>clusi<strong>on</strong>s<br />
In Secti<strong>on</strong> 4, we combined results <strong>from</strong> references [1] <strong>and</strong> [3]. As a result, we obtained<br />
Propositi<strong>on</strong> 4.2 <strong>from</strong> which c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> <strong>on</strong> can be generated. We have also shown<br />
that all the usual st<strong>and</strong>ard <str<strong>on</strong>g>structures</str<strong>on</strong>g> <strong>on</strong> can be generated <strong>from</strong> the propositi<strong>on</strong>. A natural<br />
way to extend the propositi<strong>on</strong> would be to prove, or disprove, that every c<strong>on</strong>tact structure<br />
<strong>on</strong> can be generated by the propositi<strong>on</strong>.<br />
Propositi<strong>on</strong> 4.2 was derived <strong>from</strong> <strong>Trkalian</strong> vector <strong>fields</strong> with cartesian symmetry. In reference<br />
[3], it was, however, shown that there also exists another class of <strong>Trkalian</strong> <strong>fields</strong> with<br />
spherical symmetry. In this work, these have not been studied. It would, of course, be<br />
interesting to derive a similar propositi<strong>on</strong> to 4.2 for these <strong>fields</strong>.<br />
With differential forms Maxwell’s equati<strong>on</strong>s split into a topological part (depending <strong>on</strong> the<br />
exterior derivative) <strong>and</strong> a metrical part (depending <strong>on</strong> medium parameters <strong>and</strong> the Hodge<br />
star operator.) In Secti<strong>on</strong> 5, we have shown that soluti<strong>on</strong>s to Maxwell’s equati<strong>on</strong>s generate<br />
c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> <strong>on</strong> . Since c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> do not require a metric structure, we<br />
could, at least in some sense, claim that the induced c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> extract a topological<br />
comp<strong>on</strong>ent <strong>from</strong> the soluti<strong>on</strong>s. In Secti<strong>on</strong> 5.3 we have shown that for plane waves in isotropic<br />
medium, the c<strong>on</strong>tact structure does not depend <strong>on</strong> the medium parameters <strong>and</strong> .<br />
Instead, it is related to the polarizati<strong>on</strong> <strong>and</strong> the energy of the wave. One would expected<br />
that for more general soluti<strong>on</strong>s to Maxwell’s equati<strong>on</strong>s, the c<strong>on</strong>tact structure is also related<br />
to polarizati<strong>on</strong> <strong>and</strong> energy.<br />
Here, we have <strong>on</strong>ly studied Maxwell’s equati<strong>on</strong>s in isotropic media. We can therefore not<br />
deduce that in a more general medium, the c<strong>on</strong>tact <str<strong>on</strong>g>structures</str<strong>on</strong>g> would not depend <strong>on</strong> the<br />
medium parameters. A natural way to c<strong>on</strong>tinue would therefore be to calculate the c<strong>on</strong>tact<br />
<str<strong>on</strong>g>structures</str<strong>on</strong>g> for more general media [6, 7, 8]. If <strong>on</strong>e would find media for which the c<strong>on</strong>tact<br />
structure depends <strong>on</strong> the medium’s parameters, it could be possible to gain further insight<br />
<strong>on</strong> these parameters.<br />
References<br />
[1] J. Etnyre, R. Ghrist, <str<strong>on</strong>g>C<strong>on</strong>tact</str<strong>on</strong>g> topology <strong>and</strong> hydrodynamics. I. Beltrami <strong>fields</strong> <strong>and</strong> the<br />
Seifert c<strong>on</strong>jecture, N<strong>on</strong>linearity 13 (2000), no. 2, 441–458, Preprint arXiv:dgga/9708011<br />
accessed.<br />
[2] D. Reed, Foundati<strong>on</strong>al Electrodynamics <strong>and</strong> Beltrami <strong>fields</strong>, in Advanced Electromagnetism:<br />
Foundati<strong>on</strong>s, Theory <strong>and</strong> Applicati<strong>on</strong>s, edited by T.W. Barret, D.M. Grimes,<br />
World Scientific, 1995.<br />
[3] P.R. Baldwin, G.M. Townsend, Complex <strong>Trkalian</strong> <strong>fields</strong> <strong>and</strong> soluti<strong>on</strong>s to Euler’s equati<strong>on</strong>s<br />
for the ideal fluid, Physical Review E, Vol. 51, Nr. 3, 1995, 2059-2068.<br />
[4] P.M. Bellan, Spheromaks, A practical applicati<strong>on</strong> of Magnetohydrodynamic Dynamos<br />
<strong>and</strong> Plasma Self-Organizati<strong>on</strong>, Imperial College Press, 2000.<br />
[5] D. McDuff, D. Salam<strong>on</strong>, Introducti<strong>on</strong> to Symplectic Topology, Clarend<strong>on</strong> Press, 1997.<br />
[6] I.V. Lindell, Methods for Electromagnetic Field Analysis, Clarend<strong>on</strong> Press, 1992.<br />
11
[7] I.V. Lindell, A.H. Sihvola, S.A. Tretyakov, A.J. Viitanen, Electromagnetic Waves in<br />
Chiral <strong>and</strong> Bi-Isotropic Media, Artech House, 1994.<br />
[8] A. Lakhtakia, Beltrami <strong>fields</strong> in Chiral Media, World Scientific, 1994.<br />
[9] K.F. Warnick, D.V. Arnold, R.H. Selfridge, Differential forms in electromagnetic field<br />
theory, Antennas <strong>and</strong> Propagati<strong>on</strong> Society Internati<strong>on</strong>al Symposium, 1474 -1477, Vo l<br />
2 , 1996.<br />
[10] D. Baldomir, P. Hamm<strong>on</strong>d, Geometry of Electromagnetic Systems, Clarend<strong>on</strong> Press,<br />
1996.<br />
[11] T. Frankel, Geometry of physics, Cambridge University press, 1997.<br />
[12] B. Schutz, Geometrical methods of mathematical physics, Cambridge University<br />
press, 1980.<br />
[13] W. Thirring, A Course in Mathematical Physics 2: Classical Field Theory, Springer-<br />
Verlag, 1978.<br />
[14] W.M. Boothby, An introducti<strong>on</strong> to Differentiable Manifolds <strong>and</strong> Riemannian Geometry,<br />
Academic Press, 1986.<br />
[15] I. Madsen, J. Tornehave, From Calculus to Cohomology, Cambridge University press,<br />
1997.<br />
12