08.08.2013 Views

Folie 1 - Department of Aerospace Engineering

Folie 1 - Department of Aerospace Engineering

Folie 1 - Department of Aerospace Engineering

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

AE 462<br />

Design <strong>of</strong> <strong>Aerospace</strong> Structures<br />

Minimum weight structural<br />

design <strong>of</strong> a rectangular wing<br />

Ömer Anıl Türkkan<br />

Alexandra Balueva


Outline<br />

Problem description<br />

Aerodynamic load calculation<br />

Initial layout<br />

Approach to the problem<br />

Results assesment


Problem description<br />

Wing geometry:<br />

Straight<br />

Untapered<br />

Rectangular<br />

NACA 2412<br />

AR = 6<br />

Aircraft:<br />

General utility<br />

Single engine<br />

MTOM1460 kg<br />

Wing <strong>of</strong> minimum weight<br />

should be designed<br />

Design should:<br />

satisfy airworthiness req.<br />

be manufacturable


Flight envelope <strong>of</strong> the aircraft<br />

Point Vel.(m/s) Load fac.<br />

A 74.07 4.4<br />

D 120.7 4.4<br />

E 120.7 -2.2<br />

G 52.36 -2.2


35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

-500<br />

-1000<br />

-1500<br />

0<br />

Point A Point D<br />

Shear Force<br />

y(m)<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Bending Moment<br />

y (m)<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Pitching Moment<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

0.00<br />

-2000.00<br />

-3000.00<br />

-4000.00<br />

-5000.00<br />

Shear Force<br />

y(m)<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Bending Moment<br />

y (m)<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

y (m)<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

-1000.00<br />

Pitching Moment


Material chosen:<br />

Aluminium 7075-T651<br />

Property Value<br />

Density 2800 kg/m3<br />

Tensile Yield Strength 503MPa<br />

Shear Strength 331 MPa<br />

Modulus <strong>of</strong> Elasticity 71.7 GPa<br />

Shear Modulus 27 GPa<br />

Standard stiffener shapes are taken from the book by Bruhn<br />

Thicknesses <strong>of</strong> available aluminium plates were taken from<br />

www.matweb.com


Deciding on number <strong>of</strong> stiffeners<br />

Buckling constant for straight plate in shear<br />

After some trial and error it can be seen<br />

that for our geometry decreasing the<br />

width <strong>of</strong> the panels is as twice as effective<br />

as decreasing the length <strong>of</strong> the panels.


Initial layout:<br />

Both 3 and 4 bay configurations with step changes in properties are tested<br />

Each iteration goes as follows:


Procedure<br />

Spar locations were considered as fixed<br />

All geometrical properties are calculated in MathCad due to<br />

convenience<br />

For iteration purposes a C++ code was written<br />

Convergence criteria is the minimum weight point with a condition <strong>of</strong><br />

all MS being positive<br />

Iterations are performed for all thicknesses and stiffener areas values<br />

Both 3 and 4 bay configurations are checked<br />

Both codes in MathCad and C++ are used interchangeably for results<br />

verification


Rear spar location = 0.75*chord<br />

Front spar location = 0.25*chord<br />

START<br />

When all possible configurations are traced<br />

minimum weight is found.<br />

step


Results: 3 bays @ point D<br />

Bay 1<br />

Bay 2<br />

Bay 3<br />

***All areas in m2, all thicknesses in m<br />

As1<br />

As5 As3<br />

t3<br />

t1 t2 t5<br />

As2<br />

t4<br />

As6 As4<br />

BAY # As1 As2 As3 As4 As5 As6<br />

BAY 1 9.80643 e-4 1.29032 e-3 3.45161 e-5 6.4516 e-5 9.7677 e-5 3.45161 e-5<br />

BAY 2 4.77418 e-4 5.16128 e-4 3.45161 e-5 3.45161 e-5 3.45161 e-5 3.45161 e-5<br />

BAY 3 2.58064 e-4 1.93548 e-4 3.45161 e-5 3.45161 e-5 3.45161 e-5 3.45161 e-5<br />

BAY # t1 t2 t3 t4 t5<br />

BAY 1 0.001016 0.002286 0.001524 0.001524 0.000508<br />

BAY 2 0.001016 0.0018034 0.00127 0.00127 0.0004064<br />

BAY 3 0.000508 0.00127 0.0008128 0.001016 0.0004064<br />

55 KG


Margins <strong>of</strong> Safety: Bay 1@ point D<br />

<br />

0.176495<br />

0.0314091<br />

0.00300135<br />

0.0382938<br />

0.162106<br />

0.0576388<br />

0.197412 2.12591<br />

5.4585<br />

33.6149<br />

0.62967<br />

0.283007 0.348701 0.652871


Results: 4 bays @ point D<br />

We found that for 4 bay configuration weight is 53 kg<br />

For manufacturability we choose to have 3 bays


Results: 3 bays @ point A<br />

Bay 1<br />

Bay 2<br />

Bay 3<br />

***All areas in m2, all thicknesses in m<br />

As1<br />

As5 As3<br />

t3<br />

t1 t2 t5<br />

As2<br />

t4<br />

As6 As4<br />

BAY # As1 As2 As3 As4 As5 As6<br />

BAY 1 9.80643e-4 9.80643e-4 6.4516e-5 6.4516 e-5 9.7677 e-5 6.4516e-5<br />

BAY 2 4.77418 e-4 4.77418 e-4 3.45161 e-5 3.45161 e-5 3.45161 e-5 3.45161 e-5<br />

BAY 3 2.58064 e-4 1.93548 e-4 3.45161 e-5 3.45161 e-5 3.45161 e-5 3.45161 e-5<br />

BAY # t1 t2 t3 t4 t5<br />

BAY 1 0.001016 0.002286 0.00127 0.00127 0.000635<br />

BAY 2 0.0008128 0.0018034 0.001016 0.001016 0.000635<br />

BAY 3 0.0004064 0.00127 0.0006358 0.0008128 0.0004064<br />

47.5 KG


Divergence speed calculation:<br />

Shear modulus was calculated by two methods:<br />

Application <strong>of</strong> unit torque<br />

Formula by Fung<br />

Identical results were obtained<br />

For uniform untapered wing divergence speed can be calculated as:<br />

For our case a section at 75 % <strong>of</strong> the chord was taken:<br />

= 643 m/s


Concluding remarks<br />

Weight found is not necessarily the absolute minimum, to<br />

ensure minimum weight an optimization method should<br />

be applied<br />

Weight could be lower if spar locations were variable as<br />

well. But, 25% and 75 % chord are customary values (front<br />

spar close to a.c., rear spar close to hinge line)<br />

Aeroelastic stability <strong>of</strong> the wing is not ensured because<br />

flutter determinant is not checked<br />

All the calculations were accurately checked using two<br />

independent codes

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!