Folie 1 - Department of Aerospace Engineering
Folie 1 - Department of Aerospace Engineering
Folie 1 - Department of Aerospace Engineering
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
AE 462<br />
Design <strong>of</strong> <strong>Aerospace</strong> Structures<br />
Minimum weight structural<br />
design <strong>of</strong> a rectangular wing<br />
Ömer Anıl Türkkan<br />
Alexandra Balueva
Outline<br />
Problem description<br />
Aerodynamic load calculation<br />
Initial layout<br />
Approach to the problem<br />
Results assesment
Problem description<br />
Wing geometry:<br />
Straight<br />
Untapered<br />
Rectangular<br />
NACA 2412<br />
AR = 6<br />
Aircraft:<br />
General utility<br />
Single engine<br />
MTOM1460 kg<br />
Wing <strong>of</strong> minimum weight<br />
should be designed<br />
Design should:<br />
satisfy airworthiness req.<br />
be manufacturable
Flight envelope <strong>of</strong> the aircraft<br />
Point Vel.(m/s) Load fac.<br />
A 74.07 4.4<br />
D 120.7 4.4<br />
E 120.7 -2.2<br />
G 52.36 -2.2
35000<br />
30000<br />
25000<br />
20000<br />
15000<br />
10000<br />
5000<br />
0<br />
70000<br />
60000<br />
50000<br />
40000<br />
30000<br />
20000<br />
10000<br />
0<br />
-500<br />
-1000<br />
-1500<br />
0<br />
Point A Point D<br />
Shear Force<br />
y(m)<br />
0.00 1.00 2.00 3.00 4.00 5.00<br />
Bending Moment<br />
y (m)<br />
0.00 1.00 2.00 3.00 4.00 5.00<br />
Pitching Moment<br />
0.00 1.00 2.00 3.00 4.00 5.00<br />
35000<br />
30000<br />
25000<br />
20000<br />
15000<br />
10000<br />
5000<br />
0<br />
70000<br />
60000<br />
50000<br />
40000<br />
30000<br />
20000<br />
10000<br />
0<br />
0.00<br />
-2000.00<br />
-3000.00<br />
-4000.00<br />
-5000.00<br />
Shear Force<br />
y(m)<br />
0.00 1.00 2.00 3.00 4.00 5.00<br />
Bending Moment<br />
y (m)<br />
0.00 1.00 2.00 3.00 4.00 5.00<br />
y (m)<br />
0.00 1.00 2.00 3.00 4.00 5.00<br />
-1000.00<br />
Pitching Moment
Material chosen:<br />
Aluminium 7075-T651<br />
Property Value<br />
Density 2800 kg/m3<br />
Tensile Yield Strength 503MPa<br />
Shear Strength 331 MPa<br />
Modulus <strong>of</strong> Elasticity 71.7 GPa<br />
Shear Modulus 27 GPa<br />
Standard stiffener shapes are taken from the book by Bruhn<br />
Thicknesses <strong>of</strong> available aluminium plates were taken from<br />
www.matweb.com
Deciding on number <strong>of</strong> stiffeners<br />
Buckling constant for straight plate in shear<br />
After some trial and error it can be seen<br />
that for our geometry decreasing the<br />
width <strong>of</strong> the panels is as twice as effective<br />
as decreasing the length <strong>of</strong> the panels.
Initial layout:<br />
Both 3 and 4 bay configurations with step changes in properties are tested<br />
Each iteration goes as follows:
Procedure<br />
Spar locations were considered as fixed<br />
All geometrical properties are calculated in MathCad due to<br />
convenience<br />
For iteration purposes a C++ code was written<br />
Convergence criteria is the minimum weight point with a condition <strong>of</strong><br />
all MS being positive<br />
Iterations are performed for all thicknesses and stiffener areas values<br />
Both 3 and 4 bay configurations are checked<br />
Both codes in MathCad and C++ are used interchangeably for results<br />
verification
Rear spar location = 0.75*chord<br />
Front spar location = 0.25*chord<br />
START<br />
When all possible configurations are traced<br />
minimum weight is found.<br />
step
Results: 3 bays @ point D<br />
Bay 1<br />
Bay 2<br />
Bay 3<br />
***All areas in m2, all thicknesses in m<br />
As1<br />
As5 As3<br />
t3<br />
t1 t2 t5<br />
As2<br />
t4<br />
As6 As4<br />
BAY # As1 As2 As3 As4 As5 As6<br />
BAY 1 9.80643 e-4 1.29032 e-3 3.45161 e-5 6.4516 e-5 9.7677 e-5 3.45161 e-5<br />
BAY 2 4.77418 e-4 5.16128 e-4 3.45161 e-5 3.45161 e-5 3.45161 e-5 3.45161 e-5<br />
BAY 3 2.58064 e-4 1.93548 e-4 3.45161 e-5 3.45161 e-5 3.45161 e-5 3.45161 e-5<br />
BAY # t1 t2 t3 t4 t5<br />
BAY 1 0.001016 0.002286 0.001524 0.001524 0.000508<br />
BAY 2 0.001016 0.0018034 0.00127 0.00127 0.0004064<br />
BAY 3 0.000508 0.00127 0.0008128 0.001016 0.0004064<br />
55 KG
Margins <strong>of</strong> Safety: Bay 1@ point D<br />
<br />
0.176495<br />
0.0314091<br />
0.00300135<br />
0.0382938<br />
0.162106<br />
0.0576388<br />
0.197412 2.12591<br />
5.4585<br />
33.6149<br />
0.62967<br />
0.283007 0.348701 0.652871
Results: 4 bays @ point D<br />
We found that for 4 bay configuration weight is 53 kg<br />
For manufacturability we choose to have 3 bays
Results: 3 bays @ point A<br />
Bay 1<br />
Bay 2<br />
Bay 3<br />
***All areas in m2, all thicknesses in m<br />
As1<br />
As5 As3<br />
t3<br />
t1 t2 t5<br />
As2<br />
t4<br />
As6 As4<br />
BAY # As1 As2 As3 As4 As5 As6<br />
BAY 1 9.80643e-4 9.80643e-4 6.4516e-5 6.4516 e-5 9.7677 e-5 6.4516e-5<br />
BAY 2 4.77418 e-4 4.77418 e-4 3.45161 e-5 3.45161 e-5 3.45161 e-5 3.45161 e-5<br />
BAY 3 2.58064 e-4 1.93548 e-4 3.45161 e-5 3.45161 e-5 3.45161 e-5 3.45161 e-5<br />
BAY # t1 t2 t3 t4 t5<br />
BAY 1 0.001016 0.002286 0.00127 0.00127 0.000635<br />
BAY 2 0.0008128 0.0018034 0.001016 0.001016 0.000635<br />
BAY 3 0.0004064 0.00127 0.0006358 0.0008128 0.0004064<br />
47.5 KG
Divergence speed calculation:<br />
Shear modulus was calculated by two methods:<br />
Application <strong>of</strong> unit torque<br />
Formula by Fung<br />
Identical results were obtained<br />
For uniform untapered wing divergence speed can be calculated as:<br />
For our case a section at 75 % <strong>of</strong> the chord was taken:<br />
= 643 m/s
Concluding remarks<br />
Weight found is not necessarily the absolute minimum, to<br />
ensure minimum weight an optimization method should<br />
be applied<br />
Weight could be lower if spar locations were variable as<br />
well. But, 25% and 75 % chord are customary values (front<br />
spar close to a.c., rear spar close to hinge line)<br />
Aeroelastic stability <strong>of</strong> the wing is not ensured because<br />
flutter determinant is not checked<br />
All the calculations were accurately checked using two<br />
independent codes