Notes on different aspects of internal waves - including references
Notes on different aspects of internal waves - including references
Notes on different aspects of internal waves - including references
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
<str<strong>on</strong>g>Notes</str<strong>on</strong>g> <strong>on</strong> <strong>different</strong> <strong>aspects</strong> <strong>of</strong> <strong>internal</strong> <strong>waves</strong> -<br />
<strong>including</strong> <strong>references</strong><br />
Jarle Berntsen<br />
Department <strong>of</strong> Mathematics, University <strong>of</strong> Bergen, Johs. Bruns gt. 12, N-5008<br />
Bergen<br />
Abstract<br />
Short summaries <strong>of</strong> papers and <strong>references</strong>.<br />
Preprint submitted to Elsevier Science 13 March 2008
1 Classificati<strong>on</strong> <strong>of</strong> papers<br />
There is a large and growing literature <strong>on</strong> <strong>internal</strong> <strong>waves</strong>. In the papers <strong>different</strong><br />
<strong>aspects</strong> <strong>of</strong> the <strong>waves</strong> may be in focus, and also <strong>different</strong> methods for studying<br />
them may be used. Here I try to make a simple classificati<strong>on</strong> system for these<br />
papers according to the <strong>aspects</strong> in focus and methods used. Usually <strong>on</strong>e paper<br />
falls into several classes.<br />
A. Generati<strong>on</strong> <strong>of</strong> <strong>internal</strong> <strong>waves</strong>.<br />
B. Propagati<strong>on</strong> <strong>of</strong> <strong>internal</strong> <strong>waves</strong>.<br />
C. Breaking and mixing <strong>of</strong> <strong>internal</strong> <strong>waves</strong>.<br />
D. Fjord/Loch/Sill processes.<br />
E. Shelf Slope/Shelf Edge processes.<br />
F. Measurements.<br />
G. Mathematical modelling and theory.<br />
H. Numerical studies.<br />
I. Laboratory experiments.<br />
J. Energetics <strong>of</strong> <strong>internal</strong> <strong>waves</strong>.<br />
K. Wind generati<strong>on</strong>.<br />
L. Fresh water/river water influences.<br />
M. Other <strong>aspects</strong> <strong>of</strong> <strong>internal</strong> <strong>waves</strong>.<br />
N. Most <strong>of</strong> the topics above.<br />
A. The generati<strong>on</strong> <strong>of</strong> <strong>internal</strong> <strong>waves</strong> is discussed briefly in many papers, but <strong>of</strong>ten<br />
in rather vague terms. I have found explanati<strong>on</strong>s and discussi<strong>on</strong>s <strong>of</strong> the generati<strong>on</strong><br />
in Parsmar and Stigebrandt [1997], Bourgault et al. [2007], Green and Stigebrandt<br />
[2003], Jayne and St.Laurent [2001], Stacey [1984, 1985], Stacey and Gratt<strong>on</strong><br />
[2001], Dewey et al. [2005], Klymak and Gregg [2001, 2003, 2004], Van Haren<br />
et al. [2004], Vlasenko and Hutter [2001], Nycander [2005], and Guo and Davies<br />
[2003], Farmer and Armi [1999], Nakamura et al. [2000], Di Lorenzo et al. [2006],<br />
Vlasenko et al. [2002], Cummins et al. [2003], Haidvogel [2005]. See Alford [2001],<br />
Appt et al. [2004], Boegman et al. [2005], Umlauf and Lemmin [2005], Nakamura<br />
and Awaji [2004], Inall et al. [2004], Lamb [2002, 2003], Wunsch and Ferrari<br />
[2004], Munroe and Lamb [2005], Apel et al. [2006], Helfrich and Melville [2006],<br />
Wang [2006], Wake et al. [2007]. Chang [1993], Horn et al. [2000a].<br />
B.The propagati<strong>on</strong> <strong>of</strong> <strong>internal</strong> <strong>waves</strong> is discussed in Bourgault et al. [2007], Bourgault<br />
and Kelley [2007], Stacey [1984, 1985], Stacey and Gratt<strong>on</strong> [2001], Klymak<br />
and Gregg [2001, 2003, 2004], Van Haren et al. [2004], Vlasenko and Hutter [2001],<br />
Bourgault and Kelley [2003], Moum et al. [2003, 2007], Moum and Smyth [2006],<br />
2
Nakamura et al. [2000], Vlasenko and Hutter [2002a,b], Vlasenko et al. [2002],<br />
and Cacchi<strong>on</strong>e and Wunsch [1974], Helfrich [1992], Helfrich and Melville [2006],<br />
Michallet and Barthelemy [1998], Michallet and Ivey [1999], and Fringer and<br />
Street [2003], Gargett and Holloway [1984], Farmer and Armi [1999], Cummins<br />
et al. [2003], Haidvogel [2005], Munroe and Lamb [2005]. Bogucki and Garrett<br />
[1993], MacKinn<strong>on</strong> and Gregg [2003], Nakamura and Awaji [2004], Katsumata<br />
[2006], Venayagamoorthy and Fringer [2006]. Thorpe [1999, 2000], Lamb [2002,<br />
2003], Manders and Maas [2003], Appt et al. [2004], Boegman et al. [2005], Umlauf<br />
and Lemmin [2005], Apel et al. [2006], Wang [2006], Wake et al. [2007]. Chang<br />
[1993], Horn et al. [2000a].<br />
C. Breaking and mixing <strong>of</strong> <strong>internal</strong> <strong>waves</strong> is discussed in Parsmar and Stigebrandt<br />
[1997], Bourgault et al. [2007], Bourgault and Kelley [2007], Fer and Widell<br />
[2007], Widell [2006], Jayne and St.Laurent [2001], Stacey [1984, 1985], Stacey<br />
and Gratt<strong>on</strong> [2001], Dewey et al. [2005], Klymak and Gregg [2001, 2003, 2004],<br />
Van Haren et al. [2004], Vlasenko and Hutter [2001], Bourgault and Kelley [2003],<br />
Inall et al. [2000, 2004, 2005], Moum et al. [2007], Moum and Smyth [2006], Cacchi<strong>on</strong>e<br />
and Wunsch [1974], Nakamura et al. [2000], Saenko and Merryfield [2005],<br />
Winters et al. [1995], Winters and D’Asaro [1997], Zar<strong>on</strong> and Egbert [2006],<br />
Wunsch [1970], Vlasenko and Hutter [2002a,b], Vlasenko et al. [2002], Moum<br />
et al. [2003], and Helfrich [1992], Helfrich and Melville [2006], Michallet and Ivey<br />
[1999], Sveen et al. [2002], Guo and Davies [2003], Guo et al. [2005], Fringer and<br />
Street [2003], Gargett and Holloway [1984], Farmer and Armi [1999], Cummins<br />
et al. [2003], Haidvogel [2005]. Further studies in Polzin et al. [1997], Nash et al.<br />
[2004], Wunsch and Ferrari [2004], Smyth et al. [2005], and Lamb [2004], Xing<br />
and Davies [2006a,b, 2007], Davies and Xing [2007]. Dörnbrack [1998], Tseng and<br />
Ferziger [2001], Legg and Adcr<strong>of</strong>t [2003], Peltier and Caulfield [2003], Kunze and<br />
Llewellyn Smith [2004], Munroe and Lamb [2005], McPhee-Shaw [2006]. Bogucki<br />
and Garrett [1993], MacKinn<strong>on</strong> and Gregg [2003], Nakamura and Awaji [2004],<br />
Venayagamoorthy and Fringer [2006]. Kao et al. [1985], Carnevale et al. [2001],<br />
Staquet and Sommeria [2002], Manders and Maas [2003], Appt et al. [2004], Umlauf<br />
and Lemmin [2005], Wang [2006]. Toole et al. [1997], Thorpe [1999, 2000],<br />
Samels<strong>on</strong> [1998], Alford [2001], Spall [2001], Boegman et al. [2005]. Cummins<br />
[2000], F<strong>of</strong><strong>on</strong><strong>of</strong>f [2001], Afanasyev and Peltier [2001a,b], Polyakov [2001], Armi<br />
and Farmer [2002], Lamb [2002, 2003]. Horn et al. [2000a].<br />
D. In many paper the focus is <strong>on</strong> <strong>internal</strong> <strong>waves</strong> in fjords or lochs, and in particular<br />
their interacti<strong>on</strong>, generati<strong>on</strong> and breaking, with sills. See Parsmar and<br />
Stigebrandt [1997], Fer and Widell [2007], Widell [2006], Green and Stigebrandt<br />
[2003], Jayne and St.Laurent [2001], Stacey [1984, 1985], Stacey and Gratt<strong>on</strong><br />
[2001], Dewey et al. [2005], Klymak and Gregg [2001, 2003, 2004], Vlasenko and<br />
Hutter [2001], McCabe et al. [2006], Nakamura et al. [2000], Nakamura and Awaji<br />
3
[2004], Zar<strong>on</strong> and Egbert [2006], Vlasenko and Hutter [2002a,b], Vlasenko et al.<br />
[2002], ,Di Lorenzo et al. [2006], Farmer and Armi [1999], Cummins et al. [2003],<br />
Xing and Davies [2006a,b, 2007], Davies and Xing [2007], Cummins [2000], Farmer<br />
and Armi [2001], Afanasyev and Peltier [2001a,b], Armi and Farmer [2002], Lamb<br />
[2004], Inall et al. [2004, 2005], Wijffels and Meyers [2004], Janzen et al. [2005],<br />
Boegman et al. [2005], Hosegood and van Haren [2006], Wang [2006].<br />
E. Al<strong>on</strong>g shelf slopes and shelf edges there are str<strong>on</strong>g interacti<strong>on</strong>s between topography<br />
and <strong>internal</strong> <strong>waves</strong>. See Bourgault et al. [2007], Bourgault and Kelley [2007],<br />
Jayne and St.Laurent [2001], Bourgault and Kelley [2003], Inall et al. [2000],<br />
Moum et al. [2003, 2007], Moum and Smyth [2006], and Helfrich [1992], Michallet<br />
and Ivey [1999], Guo and Davies [2003], Legg and Adcr<strong>of</strong>t [2003], Nash et al.<br />
[2004], Haidvogel [2005], Munroe and Lamb [2005]. Toole et al. [1997], Thorpe<br />
[1997, 1999, 2000], MacKinn<strong>on</strong> and Gregg [2003], F<strong>of</strong><strong>on</strong><strong>of</strong>f [2001], Lamb [2002,<br />
2003], Hosegood and van Haren [2006], Katsumata [2006], Venayagamoorthy and<br />
Fringer [2006], Apel et al. [2006]. Chang [1993].<br />
F. Many measurement programs have focused <strong>on</strong> studying these <strong>waves</strong>. References<br />
include Parsmar and Stigebrandt [1997], Bourgault et al. [2007], Fer and<br />
Widell [2007], Widell [2006], Green and Stigebrandt [2003], Stacey [1984], Stacey<br />
and Gratt<strong>on</strong> [2001], Dewey et al. [2005], Klymak and Gregg [2001, 2003, 2004],<br />
Van Haren et al. [2004], Bourgault and Kelley [2003], Inall et al. [2000, 2004,<br />
2005], Moum et al. [2003, 2007], Moum and Smyth [2006], Polzin et al. [1997],<br />
Nakamura et al. [2000], Nash and Moum [2005], Gargett and Holloway [1984],<br />
Farmer and Armi [1999], Cummins et al. [2003], Nash et al. [2004], McPhee-Shaw<br />
[2006], Toole et al. [1997], Thorpe [1999], Boyer and Zhang [1990], Bogucki and<br />
Garrett [1993], Helfrich and Melville [2006], Apel et al. [2006]. Ostrovsky and<br />
Stepanyants [1989], MacKinn<strong>on</strong> and Gregg [2003], Wijffels and Meyers [2004],<br />
Appt et al. [2004], Boegman et al. [2005], Umlauf and Lemmin [2005], Hosegood<br />
and van Haren [2006]. F<strong>of</strong><strong>on</strong><strong>of</strong>f [2001], Armi and Farmer [2002], Janzen et al.<br />
[2005], Smith et al. [2007]<br />
G. Many mathematical models have been developed to get more insight in these<br />
<strong>waves</strong>. A classic text book is Kundu and Cohen [2004] and <strong>references</strong> therein.<br />
See also Ibragimov [2007], Green and Stigebrandt [2003], Jayne and St.Laurent<br />
[2001], Stacey [1984], Bourgault and Kelley [2003], Nycander [2005], McCabe<br />
et al. [2006], and Segur and Hammack [1982], Ostrovsky and Stepanyants [1989],<br />
Helfrich [1992], Helfrich and Melville [2006], Guo et al. [2005], Michallet and<br />
Barthelemy [1998], Nash and Moum [2005], Winters et al. [1995], Winters and<br />
D’Asaro [1997], Zar<strong>on</strong> and Egbert [2006], Wunsch [1970], Fringer and Street<br />
[2003], Gargett and Holloway [1984]. See also energy budgets in Wunsch and<br />
Ferrari [2004]. See Cacchi<strong>on</strong>e and Wunsch [1974], Kao et al. [1985], Bogucki and<br />
4
Garrett [1993], Thorpe [1997, 1999, 2000], Carnevale et al. [2001], Staquet and<br />
Sommeria [2002], Nilsen [2004], Apel et al. [2006]. Armi and Farmer [2002], Manders<br />
and Maas [2003], Boegman et al. [2005] Chang [1993], Horn et al. [2000a].<br />
H. Numerical models have also been used in many studies <strong>of</strong> <strong>internal</strong> <strong>waves</strong>. See<br />
Bourgault et al. [2007], Bourgault and Kelley [2007], Jayne and St.Laurent [2001],<br />
Klymak and Gregg [2003], Vlasenko and Hutter [2001, 2002a,b], Vlasenko et al.<br />
[2002], Bourgault and Kelley [2003], Nycander [2005], McCabe et al. [2006], Nakamura<br />
et al. [2000], Nakamura and Awaji [2004], Saenko and Merryfield [2005],<br />
Winters et al. [1995], Winters and D’Asaro [1997], Zar<strong>on</strong> and Egbert [2006],<br />
Stacey [1985], Bogucki and Garrett [1993], Stacey and Gratt<strong>on</strong> [2001], Michallet<br />
and Barthelemy [1998], Di Lorenzo et al. [2006], Fringer and Street [2003], Smyth<br />
et al. [2005], Farmer and Armi [1999], Cummins et al. [2003], Haidvogel [2005],<br />
Lamb [2002, 2003], Xing and Davies [2006a,b, 2007], Davies and Xing [2007],<br />
Dörnbrack [1998], Tseng and Ferziger [2001], Legg and Adcr<strong>of</strong>t [2003], Peltier<br />
and Caulfield [2003], Munroe and Lamb [2005], Helfrich and Melville [2006].<br />
Carnevale et al. [2001], Nilsen [2004], Venayagamoorthy and Fringer [2006], Katsumata<br />
[2006], Wang [2006]. Samels<strong>on</strong> [1998], Polyakov [2001], Spall [2001], Appt<br />
et al. [2004], Umlauf and Lemmin [2005], Smith et al. [2007]. Cummins [2000],<br />
Afanasyev and Peltier [2001a,b], Lamb [2004]. Chang [1993], Horn et al. [2000a].<br />
I. Internal <strong>waves</strong> are studied in laboratory experiments. Here this note is particularly<br />
weak. A few <strong>references</strong>: Helfrich [1992], Michallet and Barthelemy [1998],<br />
Michallet and Ivey [1999], Sveen et al. [2002], Guo et al. [2005], Klymak and<br />
Gregg [2003], Vlasenko and Hutter [2001], Haidvogel [2005]. See also Cacchi<strong>on</strong>e<br />
and Wunsch [1974], Segur and Hammack [1982], Kao et al. [1985], Boyer and<br />
Zhang [1990], Guo and Davies [2003], McPhee-Shaw [2006], Helfrich and Melville<br />
[2006]. Manders and Maas [2003], Boegman et al. [2005], Bourgault and Kelley<br />
[2007], Wake et al. [2007].<br />
J. Internal <strong>waves</strong> are believed to play an important role in the energy transfers in<br />
the ocean. Energy fluxes and the transfer <strong>of</strong> energy from the <strong>waves</strong> to irreversible<br />
mixing is the topic in many studies. See Parsmar and Stigebrandt [1997], Stacey<br />
[1984, 1985], Stacey and Gratt<strong>on</strong> [2001], Klymak and Gregg [2003, 2001, 2004],<br />
Alford [2001], Vlasenko and Hutter [2001], Nycander [2005], Inall et al. [2000,<br />
2004, 2005], Moum et al. [2007], Moum and Smyth [2006], McCabe et al. [2006],<br />
Nakamura et al. [2000], Nakamura and Awaji [2004], Nash and Moum [2005],<br />
Winters et al. [1995], Winters and D’Asaro [1997], Zar<strong>on</strong> and Egbert [2006],<br />
Di Lorenzo et al. [2006], Fringer and Street [2003], Gargett and Holloway [1984].<br />
Also Helfrich [1992], Helfrich and Melville [2006], Michallet and Ivey [1999], Tseng<br />
and Ferziger [2001], Guo and Davies [2003], Kao et al. [1985], Dörnbrack [1998],<br />
Legg and Adcr<strong>of</strong>t [2003], Nash et al. [2004], Kunze and Llewellyn Smith [2004],<br />
5
Wunsch and Ferrari [2004], Munroe and Lamb [2005]. F<strong>of</strong><strong>on</strong><strong>of</strong>f [2001], Carnevale<br />
et al. [2001], Lamb [2002, 2003], Boegman et al. [2005], Venayagamoorthy and<br />
Fringer [2006], Wang [2006], Smith et al. [2007], Bourgault and Kelley [2007].<br />
Horn et al. [2000a].<br />
K. Nilsen [2004], Davies and Xing [2005]. Alford [2001], MacKinn<strong>on</strong> and Gregg<br />
[2003], Appt et al. [2004], Umlauf and Lemmin [2005].<br />
L. Fresh water/river influence. Rippeth et al. [2001].<br />
M. Pierrehumbert and Wyman [1985], Huthnance [1992], Apel et al. [2006], Smith<br />
et al. [2007].<br />
N. Liu et al. [1985], Horn et al. [2000b, 2002], Boegman et al. [2004]<br />
6
2 Some short keyword notes <strong>on</strong> specific papers<br />
Gargett and Holloway [1984] is referenced by many. C<strong>on</strong>siders, from theory and<br />
observati<strong>on</strong>s, kinetic energy dissipati<strong>on</strong> rate, dissipati<strong>on</strong> <strong>of</strong> APE as functi<strong>on</strong>s <strong>of</strong><br />
N, and suggest in the end mixing efficiency approx 0.26. Many assumpti<strong>on</strong>s. No<br />
numerical exp.<br />
Inall et al. [2000]: Impact <strong>of</strong> n<strong>on</strong>linear <strong>waves</strong> <strong>on</strong> the dissipati<strong>on</strong> <strong>of</strong> <strong>internal</strong> tidal<br />
energy at a shelf break. The shelf c<strong>on</strong>sidered is the Malin Shelf. Tidally averaged<br />
dissipati<strong>on</strong> rates and vertical eddy diffusivity computed from measurements.<br />
Refers to mixing eff. due to <strong>internal</strong> shear η = Rf(1+Rf) from Gargett and Holloway<br />
[1984] and value 0.20. in the discussi<strong>on</strong>. Observati<strong>on</strong>s and theory, but no<br />
numerical experiments.<br />
Inall et al. [2004] describes measurements at the sill in Loch Etive. Tidal jet fjord<br />
during spring tide, and wave basin during neap tide. They state:’ the stagnant<br />
patch is a result <strong>of</strong> small-scale instabilities entraining recirculating fluid from the<br />
lower layer’. (c<strong>on</strong>sistent with Farmer and Armi (1999).) Wave drag, Form drag,<br />
and energy losses also investigated.<br />
Inall et al. [2005] focused <strong>on</strong> energy losses based <strong>on</strong> the Loch Etive sill measurements.<br />
Main losses due to <strong>internal</strong> wave radiati<strong>on</strong> and horiz<strong>on</strong>tal eddy shedding.<br />
Alford and Pinkel [2000]: observati<strong>on</strong>s <strong>of</strong> overturning in the thermocline: The<br />
c<strong>on</strong>text <strong>of</strong> ocean mixing. Theory and observati<strong>on</strong>s with FLIP outside California<br />
with 2-6 m vertical resoluti<strong>on</strong> <strong>of</strong> shear, strain, and Ri. They also investigate<br />
effective strain rates, ∂w.<br />
Thousands <strong>of</strong> overturning episodes detected. Vertical<br />
∂z<br />
eddy diffusivity estimated to approx. 0.89×10 −4 m2s−1 or 0.70×10 −4 m2s−1 depending <strong>on</strong> how the data is analysed. PDFs are computed for many measures<br />
(PDF = Probability Density Functi<strong>on</strong>s). Overturning occurs when ∂w is large.<br />
∂z<br />
Observati<strong>on</strong>s in the ocean interior, 100-400m where the full depth is 1500m, so<br />
away from bottom. No numerical studies. Gregg (1989) should be checked.<br />
In the preface and editorial to a special issue <strong>on</strong> ocean mixing, see Muench et al.<br />
[2006], Muench [2006], the state <strong>of</strong> the art and areas where more focus is needed<br />
are described in general terms. Very good overviews and discussi<strong>on</strong>s.<br />
Sveen et al. [2002] studied breaking over solitary <strong>waves</strong> at a ridge in a tank for<br />
a two layer stratificati<strong>on</strong>. The ridge does not extend over the bottom layer. An<br />
interesting breaking criteri<strong>on</strong> is that if U becomes larger than 0.7 times the linear<br />
wave speed, then breaking occurs.<br />
Guo and Davies [2003] studied tidally driven <strong>waves</strong> interacting with a slope with<br />
7
an edge. Sensitivity to n<strong>on</strong>-dimensi<strong>on</strong>al parameters discussed. Also sensitivity<br />
to slope angle. Relate findings to numerical results. Mixing and over-turning as<br />
functi<strong>on</strong>s <strong>of</strong> the parameters involved.<br />
Guo et al. [2005] extends studies in Sveen et al. [2002] and allows linear stratificati<strong>on</strong><br />
<strong>of</strong> the upper layer. Comparis<strong>on</strong>s theory versus measurements also discussed.<br />
Overturning and mixing in focus.<br />
Haidvogel [2005] compares numerical results for <strong>waves</strong> created at a coastal cany<strong>on</strong><br />
with measurements from a rotating tank. He has applied hydrostatic SEOM.<br />
Good agreement.<br />
Helfrich [1992] studied wave breaking and run-up <strong>on</strong> a uniform slope. He compares<br />
with existing theory, and study mixing and sensitivity to slope angle.<br />
Michallet and Barthelemy [1998] performed experimental studies <strong>of</strong> interfacial<br />
solitary <strong>waves</strong>. Measurements related to soluti<strong>on</strong>s <strong>of</strong> KdV-type equati<strong>on</strong>s and to<br />
soluti<strong>on</strong>s <strong>of</strong> Euler equati<strong>on</strong>s, to investigate match/mis-match between theory and<br />
real <strong>waves</strong>.<br />
Michallet and Ivey [1999] performed experimental studies <strong>of</strong> interfacial solitary<br />
<strong>waves</strong> breaking at a slope. This paper basis also for numerical experiments reported<br />
in Berntsen et al. [2006]. Mixing efficiency important topic. How is this<br />
efficiency as a functi<strong>on</strong> <strong>of</strong> slope steepness?<br />
Nash et al. [2004] measured <strong>internal</strong> <strong>waves</strong> at the slope <strong>of</strong>f Virginia. They computed<br />
energy fluxes, and studied mixing, and kinetic dissipati<strong>on</strong> rates.<br />
Polzin et al. [1997] is a Science paper with title: Spatial variability <strong>of</strong> turbulent<br />
mixing in the abyssal ocean. Points at the Mid-Atlantic ridge as an area <strong>of</strong><br />
intensified mixing.<br />
Wunsch and Ferrari [2004] give an excellent overview over: ”Vertical mixing, energy,<br />
and the general circulati<strong>on</strong> <strong>of</strong> the oceans.”<br />
Stacey [1984] discuss some <strong>aspects</strong> <strong>of</strong> the <strong>internal</strong> tide in Knight Inlet. Energy<br />
transfers, and mathematical and numerical modelling.<br />
Stacey and Gratt<strong>on</strong> [2001] studies <strong>internal</strong> <strong>waves</strong> in Saguenay Fjord in Canada.<br />
Mixing and energy budgets in focus. Numerical results are related to measurements.<br />
Davies and Xing [2005] studied with a 2D cross coast model near inertial <strong>internal</strong><br />
<strong>waves</strong> that are wind generated. Effects near fr<strong>on</strong>ts investigated.<br />
Smyth et al. [2005] apply DNS to investigate <strong>different</strong>ial diffusi<strong>on</strong> in breaking<br />
8
Kelvin-Helmholtz billows. DX approx. 0.005m. Very interesting.<br />
In Xing and Davies [2006a,b, 2007], Davies and Xing [2007] the MITgcm is used<br />
to study the flow at the sill in a loch similar to Loch Etive. It is shown that<br />
n<strong>on</strong>-hydrostatic effects are important, and sensitivity to the parameters involved<br />
is investigated. Also influence <strong>on</strong> power spectra. Str<strong>on</strong>g <strong>waves</strong> in the lee <strong>of</strong> the<br />
sill <strong>on</strong> inflow.<br />
Tseng and Ferziger [2001] discuss mixing and APE in stratified flows. Introductory<br />
discussi<strong>on</strong> <strong>of</strong> Ozimodov scale and Thorpe scale for over-turning. The computati<strong>on</strong><br />
<strong>of</strong> APE in focus.<br />
Winters and D’Asaro [1997] describe direct simulati<strong>on</strong> <strong>of</strong> energy wave transfer.<br />
This is not DNS, DX = 312,5m. The link between large scale <strong>internal</strong> <strong>waves</strong> and<br />
dissipati<strong>on</strong> in large scale models discussed at the end. They point at parameterizati<strong>on</strong>s.<br />
Klymak and Gregg [2004] studies turbulence and energy budgets at Knight Inlet.<br />
Relates dissipati<strong>on</strong> rate, N, and Thorpe scale. Separate energy transfers into<br />
Internal <strong>waves</strong>, dissipati<strong>on</strong>, bottom fricti<strong>on</strong>, and 3D vortices. Here IW losses seem<br />
very important. Dissipati<strong>on</strong> rates reaching 10 −4 Wkg −1 .<br />
Munroe and Lamb [2005] applies POM to study <strong>internal</strong> wave generati<strong>on</strong>, propagati<strong>on</strong>,<br />
and linear energy fluxes over idealized topography (Gaussian seamount).<br />
Horiz<strong>on</strong>tal grid sizes in the range from 3 km to 1 km. Only baroclinic energy flux.<br />
(U-prime P-prime term)<br />
Legg and Adcr<strong>of</strong>t [2003] applies the MITgcm to study the interacti<strong>on</strong>s <strong>of</strong> <strong>internal</strong><br />
<strong>waves</strong> with slopes. Studies with c<strong>on</strong>cave and c<strong>on</strong>vex slopes. Discussi<strong>on</strong> <strong>of</strong> the<br />
critical slope angle. Importance <strong>of</strong> n<strong>on</strong>-hydrostatic pressure. Energy budgets and<br />
mixing efficiency are computed.<br />
Kunze and Llewellyn Smith [2004] discuss the role <strong>of</strong> small-scale topography in<br />
turbulent mixing <strong>of</strong> the global ocean. This is a review type paper. Some major<br />
statements: ’Mixing is localized.’ ’... resolving topographic wavelengths <strong>of</strong> 50-100<br />
km may be sufficient to quantify this process’. As far as I understand it they<br />
do not believe very small scale topographic features play an important role in<br />
the ’global’ energy picture. Thus they are optimistic in the sense that large scale<br />
coarse resoluti<strong>on</strong> models can capture the ’important’ physics in global climate<br />
type studies. Is this true?<br />
McPhee-Shaw [2006] reviews boundary layer-interior ocean exchanges. The focus<br />
is <strong>on</strong> ’gravitati<strong>on</strong>al collapse’ after ’episodic mixing as a means <strong>of</strong> generating intrusi<strong>on</strong>s<br />
<strong>of</strong> boundary-layer fluid into interior water with possible implicati<strong>on</strong>s for<br />
9
dispersal near ocean margins.’<br />
Helfrich and Melville [2006] is a review paper with many <strong>references</strong> to good work.<br />
From the abstract:’... an overview <strong>of</strong> the properties <strong>of</strong> steady <strong>internal</strong> solitary<br />
<strong>waves</strong> and the transient processes <strong>of</strong> wave propagati<strong>on</strong> and evoluti<strong>on</strong>, primarily<br />
from the point <strong>of</strong> view <strong>of</strong> weakly n<strong>on</strong>linear theory, <strong>of</strong> which the Korteweg-de<br />
Vries equati<strong>on</strong> is the most frequently used example. However, the oceanographic<br />
important processes <strong>of</strong> wave instability and breaking, generally inaccessible with<br />
these models, are also discussed. Furthermore, observati<strong>on</strong>s <strong>of</strong>ten show str<strong>on</strong>gly<br />
n<strong>on</strong>linear <strong>waves</strong> whose properties can <strong>on</strong>ly be explained with fully n<strong>on</strong>linear models.’<br />
Dörnbrack [1998] studied turbulent mixing by breaking gravity <strong>waves</strong>. In the abstract<br />
he describe the evoluti<strong>on</strong>:’ In the first <strong>on</strong>e the flow is two-dimensi<strong>on</strong>al:<br />
<strong>internal</strong> <strong>waves</strong> propagate vertically upwards and create a c<strong>on</strong>vectively unstable<br />
regi<strong>on</strong> beneath the critical level. C<strong>on</strong>vective instability leads to turbulent breakdown<br />
in the sec<strong>on</strong>d stage. The developing three-dimensi<strong>on</strong>al mixed regi<strong>on</strong> is organized<br />
into shear-driven overturning rolls in the plane <strong>of</strong> wave propagati<strong>on</strong> and<br />
into counter-rotating streamwise vortices in the spanwise plane.’ Good numerical<br />
studies, with interesting figures. Also energy c<strong>on</strong>siderati<strong>on</strong>s.<br />
Peltier and Caulfield [2003] studied mixing efficiency in stratified shear flows.<br />
They point at the value <strong>of</strong> 0.2 <strong>of</strong> the mixing efficiency. Describes very well how this<br />
parameter may be computed, and Kristine Selvikvaag used their approach in her<br />
Masterdegree. They include numerical studies <strong>of</strong> wave breaking and computati<strong>on</strong><br />
<strong>of</strong> mixing efficiency. It is wave breaking in the interior <strong>of</strong> the fluid, and not up a<br />
slope.<br />
Moum et al. [2003] studied ’Structure and generati<strong>on</strong> <strong>of</strong> turbulence at interfaces<br />
strained by <strong>internal</strong> solitary <strong>waves</strong> propagating shoreward over the c<strong>on</strong>tinental<br />
shelf’. Detailed observati<strong>on</strong>s show many small scale features <strong>including</strong> a very nice<br />
picture <strong>of</strong> Kelvin-Helmholtz instabilities. Linear stability analysis suggest fastest<br />
growing modes <strong>of</strong> lengt scales between 3 and 4.5 m, the KH-billows seen have<br />
vertical scale <strong>of</strong> 10 m and horiz<strong>on</strong>tal scale <strong>of</strong> approximately 50 m. Also even<br />
smaller scale turbulence seen. They point at shear instabilities with ’wavelengths<br />
<strong>of</strong> meters or less’, and ’apparently sp<strong>on</strong>taneous generati<strong>on</strong> <strong>of</strong> turbulence at the<br />
interfaces in cases in which we cannot observe the instability leading to turbulence’.<br />
MacKinn<strong>on</strong> and Gregg [2003] describe measurement outside New-England. They<br />
focus <strong>on</strong> solibores, shear, dissipati<strong>on</strong> rates, diffusivity, and turbulence parameterizati<strong>on</strong>s.<br />
Enhanced mixing during Hurricane Edouard described. They point at<br />
episodic events <strong>on</strong> scales less than 5 m.<br />
10
Venayagamoorthy and Fringer [2006] compute n<strong>on</strong>-hydrostatic and n<strong>on</strong>-linear<br />
c<strong>on</strong>tributi<strong>on</strong>s to energy fluxes up an incline. They apply cross secti<strong>on</strong>al numerical<br />
models. The energy flux splitting and budgets very interesting. Laboratory scale<br />
numerical experiments.<br />
Nilsen [2004] used a two-layered model forced by wind to investigate the interacti<strong>on</strong>s<br />
between barotropic and baroclinic modes over a topography similar to the<br />
<strong>on</strong>e outside Norway. Good explanati<strong>on</strong>s <strong>of</strong> the interior forced moti<strong>on</strong>s.<br />
Nakamura and Awaji [2004] studies ’Tidally induced diapycnal mixing in the<br />
Kuril Strait and its role in water transformati<strong>on</strong> and transport: A three dimensi<strong>on</strong>al<br />
n<strong>on</strong>hydrostatic model experiment’. There is a str<strong>on</strong>g tidal flow through<br />
Kuril Strait, that is shallower than 600m. They do 3D studies with DX = 700m<br />
and DZ = 30m. They describe the generati<strong>on</strong> <strong>of</strong> unsteady lee <strong>waves</strong>, and length<br />
scales <strong>of</strong> 4-6 km and periods <strong>of</strong> about 4 hours are suggested. This is far larger<br />
<strong>waves</strong> than is seen in Xing and Davies [2006a], Berntsen et al. [2008]. They also<br />
describe eddy induced transport <strong>of</strong> mixed water. 3D very important here.<br />
Segur and Hammack [1982] discuss solit<strong>on</strong> models <strong>of</strong> l<strong>on</strong>g <strong>internal</strong> waved. The<br />
investigate the KdV-model, a finite-depth eq. due to Joseph (1977) and Kubota,<br />
Ko and Dobbs (1978). Comparis<strong>on</strong>s with laboratory experiments. This two layer,<br />
c<strong>on</strong>stant depth models.<br />
Wijffels and Meyers [2004] analyse measurements from the Ind<strong>on</strong>esian throughflows.<br />
Intraseas<strong>on</strong>al and interannual time scales, so <strong>internal</strong> <strong>waves</strong> are not ’captured’,<br />
but variati<strong>on</strong> in density pr<strong>of</strong>iles documented.<br />
Vlasenko and Hutter [2002b] studied breaking <strong>of</strong> solitary <strong>internal</strong> <strong>waves</strong> over a<br />
slope with a numerical model. DX in the range 1 to 5m and DZ in the range 0.25 to<br />
1m, and Pacanowski and Philander for sub-grid parameterizati<strong>on</strong>. They focus <strong>on</strong><br />
the breaking part, and a nice breaking criteri<strong>on</strong> is established. For gentle slopes,<br />
more <strong>of</strong> the energy can go into a dispersive wave trail and less into breaking.<br />
Boyer and Zhang [1990] performed laboratory experiments <strong>of</strong> flow past an isolated<br />
seamount similar to Fieberling Guyot and related results to measurements<br />
to observati<strong>on</strong>s around Fieberling Guyot. The moti<strong>on</strong> depends <strong>on</strong> the Rossby<br />
number, and for str<strong>on</strong>g enough forcing they see eddy shedding. The flow regimes<br />
discussed in terms <strong>of</strong> n<strong>on</strong>-dimensi<strong>on</strong>al numbers. C<strong>on</strong>stant N is assumed.<br />
Katsumata [2006] used POM to study the <strong>internal</strong> tide generati<strong>on</strong> and energy<br />
fluxes at a c<strong>on</strong>tinental slope (outside Australia). He discuss two and three dimensi<strong>on</strong>al<br />
models <strong>of</strong> <strong>internal</strong> tide, and state that by using 2D models the energy fluxes<br />
may be underestimated. An al<strong>on</strong>g shelf scale <strong>of</strong> the model domain <strong>of</strong> at least 5<br />
<strong>internal</strong> tide wave lengths is necessary to capture the energy fluxes. Experiments<br />
11
performed with DX = 4km.<br />
Ostrovsky and Stepanyants [1989] give a very good review <strong>of</strong> observati<strong>on</strong>s <strong>of</strong><br />
<strong>internal</strong> <strong>waves</strong> up til then and mathematical models, KdV and more.<br />
Bogucki and Garrett [1993] studied shear-induced decay <strong>of</strong> an <strong>internal</strong> solitary<br />
wave. The thickening <strong>of</strong> the the interface between the two layers is in focus, and<br />
they derive formulas for the damping rate. Overview <strong>of</strong> theoretical models is<br />
given. Criteri<strong>on</strong> for when thickening occur is given.<br />
Wang [2006] investigated <strong>internal</strong> <strong>waves</strong> in a channel generated by tide flowing<br />
over a hill or a valley. He used the POM with DX = 50m and looked at the<br />
transfer <strong>of</strong> energy to the <strong>internal</strong> wave for <strong>different</strong> topgraphies. For this case,<br />
n<strong>on</strong>-hydrostatic processes may be important, and he also point at that.<br />
Thorpe [1997] studied interacti<strong>on</strong>s <strong>of</strong> <strong>internal</strong> <strong>waves</strong> at a slope. It is interacti<strong>on</strong>s<br />
between the incident wave and the reflected wave that interact to sec<strong>on</strong>d order.<br />
Interacti<strong>on</strong>s depend <strong>on</strong> the slope angle. A theoretical model for the interacti<strong>on</strong>s<br />
is developed.<br />
Staquet and Sommeria [2002] is a review paper <strong>on</strong> <strong>internal</strong> gravity <strong>waves</strong> with<br />
subtitle: From instabilities to turbulence. Mechanisms <strong>of</strong> steepening and breaking<br />
and the final process from breaking into small-scale turbulence is discussed. Both<br />
theory, laboratory and numerical experimets are reviewed. The energy cascade is<br />
also reviewed, and possible parameterizati<strong>on</strong>s are discussed.<br />
Hosegood and van Haren [2006] describe observati<strong>on</strong>s made in the Faeroe-Shetland<br />
Channel near the interface between water masses. Internal tidal moti<strong>on</strong>s in focus,<br />
and kinetic energy spectra are given and discussed. Modulati<strong>on</strong> periods <strong>of</strong> 3.3 to<br />
4.3 days are related to changes in background stratificati<strong>on</strong> and low-frequency<br />
vorticity. The source for this may be c<strong>on</strong>tinental shelf <strong>waves</strong>.<br />
Carnevale et al. [2001] discuss the transiti<strong>on</strong> from the buoyancy range, from approximately<br />
10m to 1m, to the inertial range (less than 1m). On large scales,<br />
from kilometers to say 10m, <strong>internal</strong> <strong>waves</strong> dominate variability. They describe<br />
fall <strong>of</strong>f <strong>of</strong> spectra in this range. They apply a spectral model over a cube (sides<br />
are 20m) and 64 and 128 modes are used, and investigates spectra. L<strong>on</strong>g discussi<strong>on</strong>s<br />
<strong>of</strong> sub-grid closures for such models, <strong>including</strong> Smagorinsky. Turbulence<br />
anisotropic in buoyancy range and isotropic in inertial range. Interesting statements:’Between<br />
these extremes, the dynamics is a competiti<strong>on</strong> between <strong>waves</strong><br />
and turbulence. The nature <strong>of</strong> this intermediate range, called the buoyancy or<br />
the saturati<strong>on</strong> range, is highly c<strong>on</strong>troversial.’ ’The inertial range terminates in<br />
the dissipati<strong>on</strong> range for scales <strong>of</strong> a few centimetres or below’.<br />
12
Kao et al. [1985] did measurements <strong>of</strong> solitary <strong>waves</strong> in a tank, both generati<strong>on</strong>,<br />
propagati<strong>on</strong>, and shoaling and breaking over a slope are discribed. Results related<br />
to KdV type theory. They state:’... the <strong>on</strong>set <strong>of</strong> wave breaking was governed by<br />
shear instability, which was initiated when the local gradient Richards<strong>on</strong> number<br />
became less than 1/4.’<br />
Cacchi<strong>on</strong>e and Wunsch [1974] did an experimental study <strong>of</strong> <strong>internal</strong> <strong>waves</strong> op an<br />
incline. They c<strong>on</strong>sidered c<strong>on</strong>stant N, and investigated run up al<strong>on</strong>g the incline<br />
depending <strong>on</strong> the ratio between wave angle and the slope angle. If the angle <strong>of</strong><br />
the slope is critical (ratio = 1), ’ a striking instability is observed and the <strong>waves</strong><br />
are heavily damped’. Also review <strong>of</strong> theory <strong>on</strong> the problem.<br />
Appt et al. [2004] reported <strong>on</strong> basin scale moti<strong>on</strong> in the stratified Lake C<strong>on</strong>stance<br />
based <strong>on</strong> observati<strong>on</strong>s and numerical modelling. The oscillati<strong>on</strong>s are wind driven.<br />
Surges may be generated. ’The reflecti<strong>on</strong> <strong>of</strong> the surge from the northwestern<br />
boundary induced a vertical mode-two rep<strong>on</strong>se leading to an intrusi<strong>on</strong> in the<br />
metalimni<strong>on</strong> that caused a three-layer velocity structure in the smaller subbasin.’<br />
Umlauf and Lemmin [2005] studied <strong>waves</strong> in Lake Geneva using both measurements<br />
and the model <strong>of</strong> Burchard and Bolding. They looked at mixing in the<br />
hypolimni<strong>on</strong> and the role <strong>of</strong> l<strong>on</strong>g <strong>internal</strong> <strong>waves</strong>. The forcing is wind. Internal<br />
kelvin <strong>waves</strong> important also here.<br />
Huthnance [1992] give a review <strong>of</strong> slope currents and ocean-shelf interacti<strong>on</strong>. The<br />
focus is not <strong>on</strong> <strong>internal</strong> <strong>waves</strong>. However, <strong>internal</strong> <strong>waves</strong> will be str<strong>on</strong>gly influenced<br />
by the slope currents.<br />
Manders and Maas [2003] investigate <strong>internal</strong> wave rays in a rotating recangular<br />
tank with <strong>on</strong>e slope. Theory and measurements, wave-wave ineracti<strong>on</strong>s <strong>of</strong> many<br />
kinds.<br />
Boegman et al. [2004] discuss mixing and parameterizati<strong>on</strong> <strong>of</strong> mixing in a lake.<br />
Interesting study <strong>of</strong> the mixing efficiency as a functi<strong>on</strong> <strong>of</strong> the Iribarren number<br />
= Slope/sqrt(amp/lambda).<br />
Boegman et al. [2005] studied <strong>internal</strong> <strong>waves</strong> in a tank similar to a lake with<br />
sloping topography. Breaking and mixing in focus. Mixing efficiency as a functi<strong>on</strong><br />
<strong>of</strong> the Iribarren number discussed. Results related to findings from Lake Pusiano<br />
in north Italy. Can Vmax also be related to Iribarren number? See descripti<strong>on</strong> <strong>of</strong><br />
’spilling breakers’ and ’breaker height’. Very relevant. Also: From a wind event:<br />
generati<strong>on</strong> <strong>of</strong> a high-frequent solitary wave packet with substantial energy. Also<br />
relevant for J<strong>on</strong>s study.<br />
Thorpe [1999] investigated breaking <strong>of</strong> tidally driven <strong>internal</strong> <strong>waves</strong> and wave<br />
13
groups for c<strong>on</strong>stant N. Breaking criteri<strong>on</strong>s in terms <strong>of</strong> dimens<strong>on</strong>less parameters<br />
are discussed, and the size <strong>of</strong> the regi<strong>on</strong>s with breaking is in focus. In which<br />
situati<strong>on</strong>s do we get large volumes <strong>of</strong> fluid with enhanced mixing, and not <strong>on</strong>ly<br />
small local events?<br />
Thorpe [2000] investigated the effects <strong>of</strong> rotati<strong>on</strong>s <strong>on</strong> the n<strong>on</strong>linear reflecti<strong>on</strong> <strong>of</strong><br />
<strong>internal</strong> <strong>waves</strong> from a slope. C<strong>on</strong>stant N assumed. The Lagrangian al<strong>on</strong>gslope drift<br />
may increase c<strong>on</strong>siderably, and the level with str<strong>on</strong>gest drift is no l<strong>on</strong>ger at z = 0.<br />
The directi<strong>on</strong> <strong>of</strong> the drift near sea bed may be reversed. Eulerian upslope currents<br />
associatd with reflecti<strong>on</strong> may become str<strong>on</strong>ger. Effects <strong>of</strong> mixing and other effects<br />
not easily studied analytically ignored, and here he points at possible numerical<br />
studies.<br />
Toole et al. [1997] measured near boundary mixing above the flanks <strong>of</strong> Fieberling<br />
Guyot, a seamount. Elevated leves <strong>of</strong> shear and strain found in a 500 m thick layer<br />
above the bottom. Turbulent diffusivitiy estimates <strong>of</strong> approximately 0.1 ×10 −4<br />
m 2 s −1 found in the ocean interior and 1-5×10 −4 m 2 s −1 in the boundary layer.<br />
The global significance <strong>of</strong> this estimated.<br />
Spall [2001] investigated large scaled circulati<strong>on</strong> forced by localized mixing over<br />
a sloping bottom. Idealised studies. Internal <strong>waves</strong> are not explicitly resolved.<br />
Feedback to large scale from local mixing, and investigati<strong>on</strong>s <strong>of</strong> the parameters<br />
governing this, in focus.<br />
Samels<strong>on</strong> [1998] also studied large scaled circulati<strong>on</strong> forced by localized mixing.<br />
He compared the circulati<strong>on</strong> for the case <strong>of</strong> c<strong>on</strong>stant vertical diffusivity as compared<br />
to the circulati<strong>on</strong> when using a vertical diffusivity that varied in space (Hot<br />
spots). Also idealised studies to investigate basic mechanisms. Internal <strong>waves</strong> are<br />
not explicitly resolved.<br />
Alford [2001] studied the spatial distributi<strong>on</strong> <strong>of</strong> energy flux from the wind to nearinertial<br />
moti<strong>on</strong>s. Global studies based <strong>on</strong> NCEP-NCAR data <strong>of</strong> surface winds.<br />
C<strong>on</strong>vergence/divergence in the mixed layer moti<strong>on</strong>s pump energy into near inertial<br />
<strong>waves</strong>. Idealised studies. The role <strong>of</strong> ’events’ discussed. The role <strong>of</strong> these<br />
inertial moti<strong>on</strong>s in the total energy transfers necessary to maintain the global<br />
circulati<strong>on</strong> discussed. The small scale <strong>internal</strong> <strong>waves</strong> are not resolved.<br />
Rippeth et al. [2001] studied, based <strong>on</strong> measurements in Liverpool Bay,a ROFI<br />
system (Regi<strong>on</strong> <strong>of</strong> Freshwater Influence) and investigated how the rate <strong>of</strong> dissipati<strong>on</strong><br />
<strong>of</strong> turbulent kinetic energy depended <strong>on</strong> horiz<strong>on</strong>tal density gradients and<br />
the tidal cycle.<br />
Bourgault and Kelley [2007] study the reflectance <strong>of</strong> <strong>internal</strong> <strong>waves</strong> <strong>on</strong> a slope and<br />
relate 2D slice model results to lab. experiments described in Helfrich [1992] and<br />
14
Michallet and Ivey [1999]. They argue that in lab. experiments side wall effects<br />
are important, and suggest a simple way to parameterize this drag that is similar<br />
to how bottom drag is parameterized in 2D (x,y) shallow water models. They<br />
investigate Reflectance as a functi<strong>on</strong> <strong>of</strong> the Iribarren number (ξ = s/sqrta0/Lw).<br />
The reflectance increases with Iribarren number(or slope s = slope angle.) In the<br />
real ocean these side wall effects will not be present, so they argue for wider tank<br />
exp. and/or three dimensi<strong>on</strong>al numerical studies.<br />
Polyakov [2001] applied statistical mechanics <strong>of</strong> potential vorticity to derive an<br />
eddy parameterizati<strong>on</strong> based <strong>on</strong> the maximum entropy producti<strong>on</strong> (MEP). The<br />
eddy parameterizati<strong>on</strong> includes the ’Neptun effect’ (Holloway [1992]). This is<br />
parameterisati<strong>on</strong> <strong>of</strong> mesoscale eddies, rather than <strong>internal</strong> <strong>waves</strong>. However, the<br />
technique for deriving the parameterizati<strong>on</strong> is very interesting. He applied the<br />
parameterizati<strong>on</strong> to flow in the Arctic, and achieves a res<strong>on</strong>able flow pattern.<br />
F<strong>of</strong><strong>on</strong><strong>of</strong>f [2001] ”describe how the n<strong>on</strong>linear effect <strong>of</strong> c<strong>on</strong>tracti<strong>on</strong> <strong>on</strong> mixing <strong>of</strong><br />
seawater, referred to as ”cabbeling”, may determine major features <strong>of</strong> the ocean’s<br />
temperature and salinity structures.” Analysis based <strong>on</strong> measurments <strong>of</strong> vertical<br />
pr<strong>of</strong>iles in <strong>different</strong> oceans. The paper is not <strong>on</strong> <strong>internal</strong> <strong>waves</strong>, but <strong>internal</strong> <strong>waves</strong><br />
may play a role. ”A mechanism for creating slopes at the thermocline, such as<br />
<strong>internal</strong> <strong>waves</strong>, may enhance the process.”<br />
Apel et al. [2006] is a very good review paper <strong>on</strong> <strong>internal</strong> solit<strong>on</strong>s in the oceans<br />
with many good <strong>references</strong>, a review <strong>of</strong> mathematical models, and measurements.<br />
Also effects <strong>on</strong> sound propagati<strong>on</strong> is discussed.<br />
Lamb [2002] studied solitary <strong>waves</strong> near the surface generated at a shelf edge and<br />
propagating <strong>on</strong> to the shelf for <strong>different</strong> stratificati<strong>on</strong>. The focus is <strong>on</strong> possible<br />
trapped cores that are fairly shallow. Criteria for the formati<strong>on</strong> <strong>of</strong> these cores are<br />
discussed. The relti<strong>on</strong>ship between Umax and c is important. Limit approximately<br />
1. The work was followed up in Lamb [2003] where also additi<strong>on</strong>al effects <strong>of</strong><br />
background currents were c<strong>on</strong>sidered.<br />
Wake et al. [2007] investigated res<strong>on</strong>antly forced interfacial <strong>waves</strong> in a circular<br />
tank with focus <strong>on</strong> stratificati<strong>on</strong> effects. References to work by am<strong>on</strong>g others<br />
Faltinsen.<br />
Smith et al. [2007] applies PIV to measure in the BBL <strong>of</strong> the coastal ocean. Analysis<br />
<strong>of</strong> the data are used to calculate subgrid-scale stresses (SGS), and to evaluate<br />
comm<strong>on</strong> SGS models like the Smagorinsky model. Under certain c<strong>on</strong>diti<strong>on</strong>s, also<br />
negative energy fluxes are found, which means feedback from unresolved to resolved<br />
scales.<br />
Armi and Farmer [2002] investigate stratified flow over the sill in Knight Inlet and<br />
15
focus <strong>on</strong> bifurcati<strong>on</strong> fr<strong>on</strong>ts and the transiti<strong>on</strong> to the unc<strong>on</strong>rolled state. They describe<br />
”a wedge <strong>of</strong> partly mixed fluid downstream <strong>of</strong> a bifurcati<strong>on</strong> point or plunge<br />
point”. They also point at small-scale shear instabilities that are resp<strong>on</strong>sible for<br />
the initial phase <strong>of</strong> the mixing. They refer to this as ” a striking example <strong>of</strong> smallscale<br />
processes c<strong>on</strong>tributing to the larger-scale resp<strong>on</strong>se”. They also point at the<br />
importance <strong>of</strong> the boundary layer separati<strong>on</strong>. They have a nice analysis leading<br />
to a criteri<strong>on</strong> for the transiti<strong>on</strong> to bifurcati<strong>on</strong>. Also nice schematics illustrating<br />
the processes.<br />
Pierrehumbert and Wyman [1985] studied upstream effects <strong>of</strong> mesoscale mountains.<br />
Atmospheric paper. For large Froude number significant low level blocking<br />
effects.<br />
Cummins [2000] addressed the flow at Knight Inlet with a 2D versi<strong>on</strong> <strong>of</strong> the POM.<br />
Focus <strong>on</strong> the hydraulically c<strong>on</strong>trolled high drag state over the sill similar to the<br />
observed <strong>on</strong>e. In the model: mixing due to <strong>internal</strong> wave overturning whereas<br />
observati<strong>on</strong>s have no apparent overturning. The importance <strong>of</strong> flow separati<strong>on</strong><br />
in the lee <strong>of</strong> the sill crest emphasized. Grid resoluti<strong>on</strong> near sill 10 m. Results<br />
reported to be robust to grid sizes in the range from 5 to 30 m. Smagorinsky<br />
diff and vis with Smagorinsky and CM = 0.1 and Mellor-Yamada vertically. 101<br />
sigma-layers used vertically. High resoluti<strong>on</strong> near sea bed.<br />
Lamb [2004] studied the flow at Knight Inlet. Focus <strong>on</strong> boundary-layer separati<strong>on</strong><br />
and <strong>internal</strong> wave generati<strong>on</strong>. Only numerical results and and some results from<br />
a potential flow model shown. No measurements are given, but findings related<br />
to measurements. No-slip/Slip c<strong>on</strong>diti<strong>on</strong> sensitivity investigated. Sensitivity to<br />
subgrid scale closure and sensitivity to density pr<strong>of</strong>ile both vertically and across<br />
sill. Str<strong>on</strong>g <strong>internal</strong> lee <strong>waves</strong> in all cases except <strong>on</strong>e. Topographic drag discussed.<br />
Farmer and Armi (1999) point at small scale mixing and a shear instability that<br />
create a wedge <strong>of</strong> mixed fluid. Lamb did not find this in his studies, and a discussi<strong>on</strong><br />
<strong>of</strong> possible reas<strong>on</strong>s is given. His domain from -3000m to +3000m and<br />
DX from 1 to 10 m. He points at some simulati<strong>on</strong>s with DX = 0.50 m and DZ<br />
= 0.20 m over the sill, and says that ’at this time no c<strong>on</strong>necti<strong>on</strong> between these<br />
instabilities and the formati<strong>on</strong> <strong>of</strong> a wedge ...’.<br />
Afanasyev and Peltier [2001a] applied their numerical model to study breaking<br />
<strong>internal</strong> <strong>waves</strong> over the sill in Knight Inlet. The model is n<strong>on</strong>-hydrostatic, but applies<br />
a slip bottom boundary c<strong>on</strong>diti<strong>on</strong>, so it does not allow for bottom boundary<br />
separati<strong>on</strong>. As far as I can see: also rigid lid. DX = 5 m and DZ = 0.5 m and they<br />
denote this as DNS. Viscosities and diffusivities are set to zero, so I would expect<br />
some numerical dissipati<strong>on</strong>. Their main c<strong>on</strong>clusi<strong>on</strong> is that it is the breaking <strong>of</strong> a<br />
forced stati<strong>on</strong>ary <strong>internal</strong> wave, resulting in irreversible mixing, that creates the<br />
body <strong>of</strong> well-mixed fluid in the lee <strong>of</strong> the sill. They do not find Kelvin-Helmholtz<br />
16
type instabilities, and argues against the role <strong>of</strong> such instabilities in the creati<strong>on</strong><br />
<strong>of</strong> the well mixed wedge, arguing against the c<strong>on</strong>clusi<strong>on</strong> in Farmer and Armi<br />
[1999]. They point at the lacking boundary layer separati<strong>on</strong> as a reas<strong>on</strong> for the<br />
lack <strong>of</strong> these instabilities. They define three <strong>different</strong> relevant Froude numbers.<br />
Also they make simple estimates <strong>of</strong> the horiz<strong>on</strong>tal and vertical scales <strong>of</strong> the <strong>waves</strong><br />
as functi<strong>on</strong>s <strong>of</strong> N and topography.<br />
Farmer and Armi [2001] discuss discrepancies between measurements and corresp<strong>on</strong>ding<br />
model results for Knight Inlet. They claim that the mechanisms that create<br />
the wedge <strong>of</strong> mixed fluid in the numerical observati<strong>on</strong>s are wr<strong>on</strong>g. Numerical<br />
models produce <strong>internal</strong> <strong>waves</strong> rather than shear instabilities, and therefore the<br />
timing, build up, and processes leading to the wedge are wr<strong>on</strong>g. In particular they<br />
’attack’ results given in Afanasyev and Peltier (2001). The key questi<strong>on</strong>s agreed<br />
<strong>on</strong> is: ”Where does the intermediate layer <strong>of</strong> mixed fluid come from?” Boundary<br />
layer separati<strong>on</strong> also plays a crucial role in the formati<strong>on</strong> <strong>of</strong> the wedge/layer <strong>of</strong><br />
mixed fluid.<br />
Afanasyev and Peltier [2001b] resp<strong>on</strong>ded to the remarks given in Farmer and<br />
Armi [2001] to Afanasyev and Peltier [2001a]. They acknowledge that the role<br />
<strong>of</strong> KH instabilities has to be further investigated. The surface reverse flow and<br />
boundary layer separati<strong>on</strong> may also play a role here, and at least BL separati<strong>on</strong><br />
was absent in the studies in Afanasyev and Peltier [2001a]. There was also a<br />
c<strong>on</strong>troversy over the hydraulic analytical approaches in this is further clarified in<br />
this resp<strong>on</strong>se.<br />
Janzen et al. [2005] measured across-sill circulati<strong>on</strong> near a tidal mixing fr<strong>on</strong>t<br />
in a Scottish open fjord, the Clyde Sea. Partially unexplained st<strong>on</strong>g across sill<br />
exchanges. Affected by wind.<br />
Chang [1993] address solitary <strong>waves</strong> al<strong>on</strong>g potential vorticity fr<strong>on</strong>ts <strong>on</strong> an f-plane.<br />
Dispersi<strong>on</strong> introduced by short <strong>waves</strong> may balance n<strong>on</strong>-linear steepening. One<br />
Gaussian type perturbati<strong>on</strong> may develop into a train <strong>of</strong> solitary <strong>waves</strong>.<br />
Horn et al. [2000a] describe in a note that I found <strong>on</strong> the web from approximately<br />
2000 solitary <strong>waves</strong> in lakes and discuss how they may be parameterized<br />
in hydrostatic models.<br />
Horn et al. [2000b] describe an extended KdV equati<strong>on</strong> to study evoluti<strong>on</strong> and<br />
propagati<strong>on</strong> <strong>of</strong> <strong>internal</strong> solitary <strong>waves</strong>. First they describe, with good <strong>references</strong>,<br />
how such <strong>waves</strong> are generated from intial larger scale <strong>waves</strong>. They point at subsequent<br />
breaking, but do not model this phase. Very good paper.<br />
Horn et al. [2002] show how any initial displacement <strong>of</strong> the interface in a closed<br />
basin may develop into: a packet <strong>of</strong> solitary <strong>waves</strong>, a dispersive l<strong>on</strong>g wave or a<br />
17
train <strong>of</strong> dispersive oscillatory <strong>waves</strong>. They use two independent KdV equati<strong>on</strong>s<br />
to satisfy closed BCs. Very interesting.<br />
Liu et al. [1985] describe observati<strong>on</strong>s <strong>of</strong> solitary wave trains/packets in the Sulu<br />
Sea. They derive a KdV type equati<strong>on</strong> that include the effects <strong>of</strong> topography and<br />
spreading <strong>on</strong> this sea, and numerical results based <strong>on</strong> this equati<strong>on</strong> reproduce<br />
very well the measured wave packets.<br />
Goryachkin et al. [1990] describe measurements and analysis <strong>of</strong> <strong>internal</strong> wave<br />
events in the Black sea and the Aegean Sea (n<strong>on</strong>-tidal).<br />
Pawlak and Armi [2000] discuss mixing and entrainment in gravity currents down<br />
an incline. They classify <strong>different</strong> regi<strong>on</strong>s down the slope. Sensitivity to slope angle<br />
investigated.<br />
Vinc<strong>on</strong>t et al. [2000] descibe a tank experiment <strong>of</strong> scalar dispersi<strong>on</strong> in a turbulent<br />
boundary layer behind an obstacle. Relevant for Coral reefs?<br />
New and Pingree [2000] describes both measurements and results from a KdVtype<br />
model for the Bay <strong>of</strong> Biscay. The model is apparently able to capure major<br />
features <strong>of</strong> the <strong>internal</strong> solitary wave packets. An interesting remark is:” The<br />
magnitude <strong>of</strong> the vertical velicities, however, is signficantly underestimated by<br />
the theory ...” The link to mixing also addressed.<br />
Stastna and Rowe [2007] derive a KdV type equati<strong>on</strong> that include rotati<strong>on</strong>al<br />
effects. Compares soluti<strong>on</strong>s to the soluti<strong>on</strong>s from the full euler eqns. + Ostrovsky<br />
eqn.<br />
Other papers in the pile: Munk and Wunsch [1998], Winters et al. [2000], Sherwin<br />
et al. [2002], Van Haren [2005], Plueddemann and Farrar [2006], Huang et al.<br />
[2006] and Muench et al. [2006], Muench [2006], Marzei<strong>on</strong> and Drange [2006], Fer<br />
[2006].<br />
+ some more in other piles, that I have to check up.<br />
18
References<br />
Y.D. Afanasyev and W.R. Peltier. On breaking <strong>internal</strong> <strong>waves</strong> over the sill in<br />
Knight Inlet. Proceedings <strong>of</strong> the Royal Society <strong>of</strong> L<strong>on</strong>d<strong>on</strong> A, 457:2799–2825,<br />
2001a.<br />
Y.D. Afanasyev and W.R. Peltier. Reply to comment <strong>on</strong> the paper ’On breaking<br />
<strong>internal</strong> <strong>waves</strong> over the sill in Knight Inlet’. Proceedings <strong>of</strong> the Royal Society<br />
<strong>of</strong> L<strong>on</strong>d<strong>on</strong> A, 457:2831–2834, 2001b.<br />
M.H. Alford. Internal Swell Generati<strong>on</strong>: The Spatial Distributi<strong>on</strong> <strong>of</strong> Energy Flux<br />
from the Wind to Mixed Layer Near-Inertial Moti<strong>on</strong>s. Journal <strong>of</strong> Physical<br />
Oceanography, 31:2359–2368, 2001.<br />
M.H. Alford and R. Pinkel. Observati<strong>on</strong>s <strong>of</strong> Overturning in the Thermocline:<br />
The C<strong>on</strong>text <strong>of</strong> Ocean Mixing. Journal <strong>of</strong> Physical Oceanography, 30:805–832,<br />
2000.<br />
J.R. Apel, L.A. Ostrovsky, Y.A. Stepanyants, and Lynch.J.F. Internal Solit<strong>on</strong>s<br />
in the Ocean. Technical Report WHOI-2006-04, Woods Hole Oceanographic<br />
Instituti<strong>on</strong>, 2006.<br />
J. Appt, J. Imberger, and H. Kobus. Basin-scale moti<strong>on</strong> in stratified Upper Lake<br />
C<strong>on</strong>stance. Limnology and Oceanography, 49:919–933, 2004.<br />
L. Armi and D.M. Farmer. Stratified flow over topography: bifurcati<strong>on</strong> fr<strong>on</strong>ts<br />
and transiti<strong>on</strong> to the unc<strong>on</strong>trolled state. Proceedings <strong>of</strong> the Royal Society <strong>of</strong><br />
L<strong>on</strong>d<strong>on</strong> A, 458:513–538, 2002.<br />
J. Berntsen, J. Xing, and G. Alendal. Assessment <strong>of</strong> n<strong>on</strong>-hydrostatic ocean models<br />
using laboratory scale problems. C<strong>on</strong>tinental Shelf Research, 26:1433–1447,<br />
2006.<br />
J. Berntsen, J. Xing, and A.M. Davies. Numerical studies <strong>of</strong> <strong>internal</strong> <strong>waves</strong> at a<br />
sill: sensitivity to horiz<strong>on</strong>tal size and subgrid scale closure, 2008. Submitted to<br />
C<strong>on</strong>tinental Shelf Research.<br />
L. Boegman, G.N. Ivey, and J. Imberger. An Internal Solitary Wave parameterizati<strong>on</strong><br />
for Hydrodynamic Lake Models, 2004. Proceeding from the 15th<br />
Australian Fluid Mechanics C<strong>on</strong>ference, 13-17 December 2004.<br />
L. Boegman, G.N. Ivey, and J. Imberger. The degenerati<strong>on</strong> <strong>of</strong> <strong>internal</strong> <strong>waves</strong><br />
in lakes with sloping topography. Limnology and Oceanography, 50:1620–1637,<br />
2005.<br />
D. Bogucki and C. Garrett. A Simple Model for the Shear-induced Decay <strong>of</strong> an<br />
Internal Solitary Wave. Journal <strong>of</strong> Physical Oceanography, 23:1767–1776, 1993.<br />
D. Bourgault and D.E. Kelley. Wave-induced boundary mixing in a partially<br />
mixed estuary. Journal <strong>of</strong> Marine Research, 61:553–576, 2003.<br />
D. Bourgault and D.E. Kelley. On the Reflectance <strong>of</strong> Uniform Slopes for Normally<br />
Incident Interfacial Solitary Waves. Journal <strong>of</strong> Physical Oceanography, 37:1156–<br />
1162, 2007.<br />
19
D. Bourgault, M.D. Blokhina, R. Mirshak, and D.E. Kelley. Evoluti<strong>on</strong> <strong>of</strong><br />
a shoaling <strong>internal</strong> solitary wavetrain. Geophysical Research Letters, 34:<br />
doi:10.1029/2006GL028462, 2007.<br />
D.L. Boyer and X. Zhang. Moti<strong>on</strong> <strong>of</strong> Oscillatory Currents Past Isolated Topography.<br />
Journal <strong>of</strong> Physical Oceanography, 20:1425–1448, 1990.<br />
D. Cacchi<strong>on</strong>e and C. Wunsch. Experimental study <strong>of</strong> <strong>internal</strong> <strong>waves</strong> over a slope.<br />
J.Fluid.Mech., 66:223–239, 1974.<br />
G.F. Carnevale, M. Briscolini, and P. Orlandi. Buoyancy- to inertial-range transiti<strong>on</strong><br />
in forced stratified turbulence. Journal <strong>of</strong> Fluid Mechanics, 427:205–239,<br />
2001.<br />
P. Chang. A Note <strong>on</strong> Solitary Waves al<strong>on</strong>g Potential Vorticity Fr<strong>on</strong>ts <strong>on</strong> an<br />
f-plane. Journal <strong>of</strong> Oceanography, 49:477–489, 1993.<br />
P.F. Cummins. Stratified flow over topography: time-dependent comparis<strong>on</strong>s between<br />
model soluti<strong>on</strong>s and observati<strong>on</strong>s. Dynamics <strong>of</strong> Atmospheres and Oceans,<br />
33:43–72, 2000.<br />
P.F. Cummins, S. Vagle, L. Armi, and D. Farmer. Stratified flow over topography:<br />
upstream influence and generati<strong>on</strong> <strong>of</strong> n<strong>on</strong>linear <strong>waves</strong>. Proceedings <strong>of</strong> the Royal<br />
Society <strong>of</strong> L<strong>on</strong>d<strong>on</strong> A, 459:1467–1487, 2003.<br />
A.M. Davies and J. Xing. The Effect <strong>of</strong> a Bottom Shelf Fr<strong>on</strong>t up<strong>on</strong> the Generati<strong>on</strong><br />
and Propagati<strong>on</strong> <strong>of</strong> Near-Inertial Internal Waves in the Coastal Ocean. Journal<br />
<strong>of</strong> Physical Oceanography, 35:976–990, 2005.<br />
A.M. Davies and J. Xing. On the influence <strong>of</strong> stratificati<strong>on</strong> and tidal forcing up<strong>on</strong><br />
mixing in sill regi<strong>on</strong>s. Ocean Dynamics, 57:431–451, 2007. doi: 10.1007/s10236-<br />
007-0114-5.<br />
R. Dewey, D. Richm<strong>on</strong>d, and C. Garrett. Stratified Tidal Flow over a Bump.<br />
Journal <strong>of</strong> Physical Oceanography, 35:1911–1927, 2005.<br />
E. Di Lorenzo, W.R. Young, and S.L. Smith. Numerical and Analytical Estimates<br />
<strong>of</strong> M2 Tidal C<strong>on</strong>versi<strong>on</strong> at Steep Oceanic Ridges. Journal <strong>of</strong> Physical<br />
Oceanography, 36:1072–1084, 2006.<br />
A. Dörnbrack. Turbulent mixing by breaking gravity <strong>waves</strong>. Journal <strong>of</strong> Fluid<br />
Mechanics, 375:113–141, 1998.<br />
D.M. Farmer and L. Armi. Stratified flow over topography: models versus observati<strong>on</strong>s<br />
. Proceedings <strong>of</strong> the Royal Society <strong>of</strong> L<strong>on</strong>d<strong>on</strong> A, 457:2827–2830, 2001.<br />
D.M. Farmer and L. Armi. Stratified flow over topography: The role <strong>of</strong> smallscale<br />
entrainment and mixing in flow establishment. Proceedings <strong>of</strong> the Royal<br />
Society <strong>of</strong> L<strong>on</strong>d<strong>on</strong>, A455:3221–3258, 1999.<br />
I. Fer. Scaling turbulent dissipati<strong>on</strong> in an Artic fjord. Deep-Sea Research II, 53:<br />
77–95, 2006.<br />
I. Fer and K. Widell. Early spring turbulent mixing in an ice-covered Arctic fjord<br />
during transiti<strong>on</strong> to melting . C<strong>on</strong>tinental Shelf Research, 27:1980–1999, 2007.<br />
N.P. F<strong>of</strong><strong>on</strong><strong>of</strong>f. Thermal Stability <strong>of</strong> the World Ocean Thermoclines. Journal <strong>of</strong><br />
20
Physical Oceanography, 31:2169–2177, 2001.<br />
O.B. Fringer and R.L. Street. The dynamics <strong>of</strong> breaking progressive interfacial<br />
<strong>waves</strong>. Journal <strong>of</strong> Fluid Mechanics, 494:319–353, 2003.<br />
A.E. Gargett and G. Holloway. Dissipati<strong>on</strong> and diffusi<strong>on</strong> by <strong>internal</strong> wave breaking.<br />
Journal <strong>of</strong> Marine Research, 42:15–27, 1984.<br />
Y.N. Goryachkin, V.A. Ivanov, and A.D. Lisichenok. Short-period <strong>internal</strong> <strong>waves</strong><br />
in the fr<strong>on</strong>tal z<strong>on</strong>es <strong>of</strong> n<strong>on</strong>-tidal seas (the Black Sea and the Agean Sea). Physical<br />
Oceanography, 1:535–541, 1990.<br />
J.A.M. Green and A. Stigebrandt. Statistical models and distributi<strong>on</strong>s <strong>of</strong> current<br />
velocities with applicati<strong>on</strong> to the predicti<strong>on</strong> <strong>of</strong> extreme events. Estuarine,<br />
Coastal and Shelf Science, 58:601–609, 2003.<br />
Y. Guo and P.A. Davies. Laboratory modelling experiments <strong>on</strong> the flow generated<br />
by the tidal moti<strong>on</strong> <strong>of</strong> a stratified ocean over a c<strong>on</strong>tinental shelf. C<strong>on</strong>tinental<br />
Shelf Research, 23:193–212, 2003.<br />
Y. Guo, J.K. Sveen, P.A. Davies, J. Grue, and P. D<strong>on</strong>g. Modelling the Moti<strong>on</strong><br />
<strong>of</strong> an Internal Solitary Wave over a Bottom Ridge in a Stratified Fluid.<br />
Envir<strong>on</strong>mental Fluid Mechanics, 4:415–441, 2005.<br />
D.B. Haidvogel. Cross-Shelf Exchange Driven by Oscillatory Barotropic Currents<br />
at an Idealized Coastal Cany<strong>on</strong>. Journal <strong>of</strong> Physical Oceanography, 35:1054–<br />
1067, 2005.<br />
K.R. Helfrich. Internal solitary wave breaking and run-up <strong>on</strong> a uniform slope.<br />
Journal <strong>of</strong> Fluid Mechanics, 243:133–154, 1992.<br />
K.R. Helfrich and W.K. Melville. L<strong>on</strong>g N<strong>on</strong>linear Internal Waves. Annual Review<br />
<strong>of</strong> Fluid Mechanics, 38:395–425, 2006.<br />
G. Holloway. Representing topographic stress for large-scale ocean models. Journal<br />
<strong>of</strong> Physical Oceanography, 22:1033–1046, 1992.<br />
D.a. Horn, J. Imberger, and G.N. Ivey. Internal Solitary Waves in Lakes - a<br />
Closure Problem for Hydrostatic Models, 2000a. A manuscript I found <strong>on</strong> the<br />
web. Very interesting. Related to other work by this Australians.<br />
D.a. Horn, L.G. Redekopp, J. Imberger, and G.N. Ivey. Internal wave evoluti<strong>on</strong><br />
in a space-time varying field . Journal <strong>of</strong> Fluid Mechanics, 424:279–301, 2000b.<br />
D.a. Horn, J. Imberger, G.N. Ivey, and L.G. Redekopp. A weakly n<strong>on</strong>linear<br />
model <strong>of</strong> l<strong>on</strong>g <strong>internal</strong> <strong>waves</strong> in closed basins. Journal <strong>of</strong> Fluid Mechanics, 467:<br />
269–287, 2002.<br />
P. Hosegood and H. van Haren. Sub-inertial modulati<strong>on</strong> <strong>of</strong> semi-diurnal currents<br />
over the c<strong>on</strong>tinental slope in the Faeroe-Shetland Channel. Deep-Sea Research<br />
I, 53:627–655, 2006.<br />
R.X. Huang, W. Wang, and L.L. Liu. Decadal variability <strong>of</strong> wind-energy input<br />
to the world ocean. Deep-Sea Research II, 53:31–41, 2006.<br />
J.M. Huthnance. Extensive slope currents and the ocean-shelf boundary. Prog.<br />
Oceanog., 29:161–196, 1992.<br />
21
R.N. Ibragimov. Generati<strong>on</strong> <strong>of</strong> Internal Tides by an Oscillating Flow Al<strong>on</strong>g a<br />
Corrugated Slope , 2007. In press.<br />
M. Inall, F. Cottier, C. Griffiths, and T. Rippeth. Sill dynamics and energy<br />
transformati<strong>on</strong> in a jet fjord. Ocean Dynamics, 54:307–314, 2004.<br />
M. Inall, T. Rippeth, C. Griffiths, and P. Wiles. Evoluti<strong>on</strong> and distributi<strong>on</strong> <strong>of</strong><br />
TKE producti<strong>on</strong> and dissipati<strong>on</strong> within stratified flow over topography. Geophysical<br />
Research Letters, 32:L08607,doi:10.1029/2004GL022289, 2005.<br />
M.E. Inall, T.P. Rippeth, and T.J. Sherwin. Impact <strong>of</strong> n<strong>on</strong>linear <strong>waves</strong> <strong>on</strong> the<br />
dissipati<strong>on</strong> <strong>of</strong> <strong>internal</strong> tidal energy at a shelf break. J. Geophys. Res., 105:<br />
8687–8705, 2000.<br />
C.D. Janzen, J.H. Simps<strong>on</strong>, M.E. Inall, and F. Cottier. Across-sill circulati<strong>on</strong><br />
near a tidal mixing fr<strong>on</strong>t in a broad fjord. C<strong>on</strong>tinental Shelf Research, 25:<br />
1805–1824, 2005.<br />
S.R. Jayne and L.C. St.Laurent. Parameterizing Tidal Dissipati<strong>on</strong> over Rough<br />
Topography. Geophysical Research Letters, 28:811–814, 2001.<br />
T.W. Kao, F.-S. Pan, and D. Renouard. Internal solit<strong>on</strong>s <strong>on</strong> the pycnocline:<br />
generati<strong>on</strong>, propagati<strong>on</strong>, and shoaling and breaking over a slope. Journal <strong>of</strong><br />
Fluid Mechanics, 159:19–53, 1985.<br />
K. Katsumata. Two- and three-dimensi<strong>on</strong>al numerical models <strong>of</strong> <strong>internal</strong> tide<br />
generati<strong>on</strong> at a c<strong>on</strong>tinental slope. Ocean Modelling, 12:32–45, 2006.<br />
J.M. Klymak and M.C. Gregg. Three-dimensi<strong>on</strong>al nature <strong>of</strong> flow near a sill .<br />
Journal <strong>of</strong> Geophysical Research, 106:22295–22311, 2001.<br />
J.M. Klymak and M.C. Gregg. The Role <strong>of</strong> Upstream Waves and a Downstream<br />
Density Pool in the Growth <strong>of</strong> Lee Waves:Stratified Flow over the Knight Inlet<br />
Sill. Journal <strong>of</strong> Physical Oceanography, 33:1446–1461, 2003.<br />
J.M. Klymak and M.C. Gregg. Tidally Generated Turbulence over the Knight<br />
Inlet Sill. Journal <strong>of</strong> Physical Oceanography, 34:1135–1151, 2004.<br />
P.K. Kundu and I.M. Cohen. Fluid Mechanics. Elsevier Academic Press, 2004.<br />
E. Kunze and S.G. Llewellyn Smith. The Role <strong>of</strong> Small-Scale Topography in<br />
Turbulent Mixing <strong>of</strong> the Global Ocean. Oceanography, 17:55–64, 2004.<br />
K.G. Lamb. A numerical investigati<strong>on</strong> <strong>of</strong> solitary <strong>internal</strong> <strong>waves</strong> with trapped<br />
cores fomes via shoaling. Journal <strong>of</strong> Fluid Mechanics, 451:109–144, 2002.<br />
K.G. Lamb. Shoaling solitary <strong>internal</strong> <strong>waves</strong>: <strong>on</strong> a criteri<strong>on</strong> for the formati<strong>on</strong> <strong>of</strong><br />
<strong>waves</strong> with trapped cores. Journal <strong>of</strong> Fluid Mechanics, 478:81–100, 2003.<br />
K.G. Lamb. On boundary-layer separati<strong>on</strong> and <strong>internal</strong> wave generati<strong>on</strong> at the<br />
Knight Inlet sill. Proceedings <strong>of</strong> the Royal Society <strong>of</strong> L<strong>on</strong>d<strong>on</strong> A, 460:2305–2337,<br />
2004.<br />
S. Legg and A. Adcr<strong>of</strong>t. Internal wave breaking at c<strong>on</strong>cave and c<strong>on</strong>vex c<strong>on</strong>tinental<br />
slopes. Journal <strong>of</strong> Physical Oceanography, 33:2224–2246, 2003.<br />
A.K. Liu, J.R. Holbrook, and J.R. Apel. N<strong>on</strong>linear Internal Wave Evoluti<strong>on</strong> in<br />
the Sulu Sea. Journal <strong>of</strong> Physical Oceanography, 15:1613–1624, 1985.<br />
22
J.A. MacKinn<strong>on</strong> and M.C. Gregg. Mixing <strong>on</strong> the late-summer new england shelfsolibores,<br />
shear, and stratificati<strong>on</strong>. Journal <strong>of</strong> Physical Oceanography, 33:1476–<br />
1492, 2003.<br />
A.M.M. Manders and L.R.M. Maas. Observati<strong>on</strong>s <strong>of</strong> <strong>internal</strong> <strong>waves</strong> in a rectangular<br />
basin with <strong>on</strong>e sloping boundary. Lournal <strong>of</strong> Fluid Mechanics, 493:59–88,<br />
2003.<br />
B. Marzei<strong>on</strong> and H. Drange. Diapycnal mixin in a c<strong>on</strong>ceptual model <strong>of</strong> the<br />
Atlantic Meridi<strong>on</strong>al Overturning Virculati<strong>on</strong>. Deep-Sea Research II, 53:226–<br />
238, 2006.<br />
R.M. McCabe, P. MacCready, and G. Pawlak. Form Drag due to Flow Separati<strong>on</strong><br />
at a Headland. Journal <strong>of</strong> Physical Oceanography, 36:2136–2152, 2006.<br />
E. McPhee-Shaw. Boundary-interior exchange: Reviewing the idea that inernalwave<br />
mixing enhances lateral dispersal near c<strong>on</strong>tinental margins. Deep-Sea<br />
Research II, 53:42–59, 2006.<br />
H. Michallet and E. Barthelemy. Experimental study <strong>of</strong> interfacial solitary <strong>waves</strong>.<br />
Journal <strong>of</strong> Fluid Mechanics, 366:159–177, 1998.<br />
H. Michallet and G.N. Ivey. Experiments <strong>on</strong> mixing due to <strong>internal</strong> solitary<br />
<strong>waves</strong> breaking <strong>on</strong> uniform slopes. Journal <strong>of</strong> Geophysical Research, 104(C6):<br />
13467–13477, 1999.<br />
J.N. Moum and W.D. Smyth. The pressure disturbance <strong>of</strong> a n<strong>on</strong>linear <strong>internal</strong><br />
wave train . Journal <strong>of</strong> Fluid Mechanics, 558:153–177, 2006.<br />
J.N. Moum, D.M. Farmer, W.D. Smyth, K. Armi, and S. Vagle. Structure and<br />
Generati<strong>on</strong> <strong>of</strong> Turbulence at Interfaces by Internal Solitary Waves Propagating<br />
Shoreward over the C<strong>on</strong>tinental Shelf. Journal <strong>of</strong> Physical Oceanography, 33:<br />
2093–2112, 2003.<br />
J.N. Moum, J.M. Klymak, J.D. Nash, A. Perlin, and W.D. Smyth. Energy Transport<br />
by N<strong>on</strong>linear Internal Waves . Journal <strong>of</strong> Physical Oceanography, 37:<br />
1968–1988, 2007.<br />
R. Muench. Introducti<strong>on</strong> to the special issue <strong>on</strong> Ocean Mixing. Deep-Sea Research<br />
II, 53:2–4, 2006.<br />
R. Muench, T. McDougall, and H. Burchard. Preface to special editi<strong>on</strong> <strong>on</strong> Ocean<br />
Mixing. Deep-Sea Research II, 53:1–1, 2006.<br />
W.H. Munk and C. Wunsch. Abyssal recipes II: energetics <strong>of</strong> tidal and wind<br />
mixing. Deep-Sea Research I, 45:1978–2010, 1998.<br />
J.R. Munroe and K.G. Lamb. Topographic amplitude dependence <strong>of</strong> <strong>internal</strong><br />
wave generati<strong>on</strong> by tidal forcing over idealized three-dimensi<strong>on</strong>al topography.<br />
Journal <strong>of</strong> Geophysical Research, 110:doi:10.1029/2004JC002537, 2005.<br />
T. Nakamura and T. Awaji. Tidally induced diapycnal mixing in the Kuril<br />
Straits and its role in water transformati<strong>on</strong> and transport: A three-dimensi<strong>on</strong>al<br />
n<strong>on</strong>hydrostatic model experiment. Journal <strong>of</strong> Geophysical Research, 109:<br />
doi:10.1029/2003JC001850, 2004.<br />
23
T. Nakamura, T. Awaji, T. Hatayama, K. Akitomo, T. Takizawa, T. K<strong>on</strong>o,<br />
Y. Kawasaki, and M. Fukasawa. The Generati<strong>on</strong> <strong>of</strong> Large-Amplitude Unsteady<br />
Lee Waves by Subinertial K1 Tidal Flow: A Possible Vertical Mixing Mechanism<br />
in the Kuril Straits . Journal <strong>of</strong> Physical Oceanography, 30:1601–1621,<br />
2000.<br />
J.D. Nash and J.N. Moum. River Plumes as a Source <strong>of</strong> Large-Amplitude<br />
Internal Waves in the Coastal Ocean. Nature, 437:400–403, 2005.<br />
doi:10.1038/nature03936.<br />
J.D. Nash, E. Kunze, J.M. Toole, and R.W. Schmitt. Internal Tide Reflecti<strong>on</strong> and<br />
Turbulent Mixing <strong>on</strong> the C<strong>on</strong>tinental Slope. Journal <strong>of</strong> Physical Oceanography,<br />
34:1117–1134, 2004.<br />
A.L. New and R.D. Pingree. An intercomparis<strong>on</strong> <strong>of</strong> <strong>internal</strong> solitary <strong>waves</strong> in the<br />
Bay <strong>of</strong> biscay and resulting from Korteweg-de Vries- Type theory. Progress in<br />
Oceanography, 45:1–38, 2000.<br />
F. Nilsen. Forcing <strong>of</strong> a Two-Layered Water Column over a Sloping Seafloor.<br />
Journal <strong>of</strong> Physical Oceanography, 34:2659–2676, 2004.<br />
J. Nycander. Generati<strong>on</strong> <strong>of</strong> <strong>internal</strong> <strong>waves</strong> in the deep ocean by tides. Journal <strong>of</strong><br />
Geophysical Research, 110:doi:10.1029/2004JC002487, 2005.<br />
L.A. Ostrovsky and Y.A. Stepanyants. Do <strong>internal</strong> solit<strong>on</strong>s exist in the ocean?<br />
Reviews <strong>of</strong> Geophysics, 27:293–310, 1989.<br />
R. Parsmar and A. Stigebrandt. Observed Damping <strong>of</strong> Barotropic Seiches through<br />
Baroclinic Wave Drag in the Gullmar Fjord. Journal <strong>of</strong> Physical Oceanography,<br />
27:849–857, 1997.<br />
G. Pawlak and L. Armi. Mixing and entrainment in developing stratified currents.<br />
Journal <strong>of</strong> Fluid Mechanics, 424:45–73, 2000.<br />
W.R. Peltier and C.P. Caulfield. Mixing Efficiency in Stratified Shear Flows .<br />
Annual Review <strong>of</strong> Fluid Mechanics, 35:135–167, 2003.<br />
R.T. Pierrehumbert and B. Wyman. Upstream Effects <strong>of</strong> Mesoscale Mountains.<br />
Journal <strong>of</strong> The Atmospheric Sciences, 42:977–1003, 1985.<br />
A.J. Plueddemann and J.T. Farrar. Observati<strong>on</strong>s and models <strong>of</strong> the energy flux<br />
from the wind to mixed-layer inertial currents. Deep-Sea Research II, 53:5–30,<br />
2006.<br />
I. Polyakov. An Eddy Parameterizati<strong>on</strong> Based <strong>on</strong> Maximum Entropy Producti<strong>on</strong><br />
with Applicati<strong>on</strong> to Modeling <strong>of</strong> the Arctic Ocean Circulati<strong>on</strong>. Journal <strong>of</strong><br />
Physical Oceanography, 31:2255–2270, 2001.<br />
K.L. Polzin, J.M. Toole, J.R. Ledwell, and R.W. Schmitt. Spatial variability <strong>of</strong><br />
turbulent mixing in the abyssal ocean. Science, 276:93–96, 1997.<br />
T.P. Rippeth, N.R. Fisher, and J.H. Simps<strong>on</strong>. The Cycle <strong>of</strong> Turbulent Dissipati<strong>on</strong><br />
in the Presebce <strong>of</strong> Tidal Straining. Journal <strong>of</strong> Physical Oceanography, 31:2458–<br />
2471, 2001.<br />
O.A. Saenko and W.J. Merryfield. On the Effect <strong>of</strong> Topographically Enhanced<br />
24
Mixing <strong>on</strong> the Global Ocean Circulati<strong>on</strong>. Journal <strong>of</strong> Physical Oceanography,<br />
35:826–835, 2005.<br />
R.M. Samels<strong>on</strong>. Large scale circulati<strong>on</strong> with locally enhanced vertical mixing.<br />
Journal <strong>of</strong> Physical Oceanography, 28:712–726, 1998.<br />
H. Segur and J.L. Hammack. Solit<strong>on</strong> models <strong>of</strong> l<strong>on</strong>g <strong>internal</strong> <strong>waves</strong>. Journal <strong>of</strong><br />
Fluid Mechanics, 118:285–304, 1982.<br />
T.J. Sherwin, M.E. Inall, and R. Torres. The seas<strong>on</strong>al and spatial variability <strong>of</strong><br />
small-scale turbulence at the Iberian margin. Journal <strong>of</strong> Marine Research, 60:<br />
73–100, 2002.<br />
W.A.M.N. Smith, J. Katz, and T.R. Osborn. The effect <strong>of</strong> <strong>waves</strong> <strong>on</strong> subgridscale<br />
stresses, dissipati<strong>on</strong> and model coefficients in the coastal ocean bottom<br />
boundary layer. Journal <strong>of</strong> Fluid Mechanics, 583:133–160, 2007.<br />
W.D. Smyth, J.D. Nash, and J.N. Moum. Differential Diffusi<strong>on</strong> in Breaking<br />
Kelvin-Helmholtz Billows. Journal <strong>of</strong> Physical Oceanography, 35:1004–1022,<br />
2005.<br />
M.A. Spall. Large-scale circulati<strong>on</strong>s forced by localized mixing over a sloping<br />
bottom. Journal <strong>of</strong> Physical Oceanography, 31:2369–2384, 2001.<br />
M.W. Stacey. The Interacti<strong>on</strong> <strong>of</strong> Tides with the Sill <strong>of</strong> a Tidally Energetic Inlet.<br />
Journal <strong>of</strong> Physical Oceanography, 14:1105–1117, 1984.<br />
M.W. Stacey. Some Aspects <strong>of</strong> the Internal Tide in Knight Inlet, British Columbia<br />
. Journal <strong>of</strong> Physical Oceanography, 15:1652–1661, 1985.<br />
M.W. Stacey and Y. Gratt<strong>on</strong>. The Energetics and Tidally Induced Reverse Renewal<br />
in a Two-Silled Fjord. Journal <strong>of</strong> Physical Oceanography, 31:1599–1615,<br />
2001.<br />
C. Staquet and J. Sommeria. Internal Gravity Waves: From Instabilities to Turbulence.<br />
Annual Review <strong>of</strong> Fluid Mechanics, 34:559–593, 2002.<br />
M. Stastna and K. Rowe. On weakly n<strong>on</strong>linear decriti<strong>on</strong>s <strong>of</strong> n<strong>on</strong>linear <strong>internal</strong><br />
gravity <strong>waves</strong> in a rotating reference frame. Atlantic Electr<strong>on</strong>ic Journal <strong>of</strong><br />
Mathematics, 2:30–54, 2007.<br />
J.K. Sveen, Y. Guo, P.A. Davies, and J. Grue. On the breaking <strong>of</strong> <strong>internal</strong> solitary<br />
<strong>waves</strong> at a ridge. Journal <strong>of</strong> Fluid Mechanics, 469:161–188, 2002.<br />
S.A. Thorpe. The effects <strong>of</strong> rotati<strong>on</strong> <strong>on</strong> the n<strong>on</strong>linear reflecti<strong>on</strong> <strong>of</strong> <strong>internal</strong> <strong>waves</strong><br />
from a slope. Journal <strong>of</strong> Physical Oceanography, 30:1901–1909, 2000.<br />
S.A. Thorpe. On the Interacti<strong>on</strong>s <strong>of</strong> Internal Waves Reflecting from Slopes. Journal<br />
<strong>of</strong> Physical Oceanography, 27:2072–2078, 1997.<br />
S.A. Thorpe. On <strong>internal</strong> wave groups. Journal <strong>of</strong> Physical Oceanography, 29:<br />
1085–1095, 1999.<br />
J.M. Toole, R.W. Schmitt, K.L. Polzin, and E. Kunze. Near-boundary mixing<br />
above the flanks <strong>of</strong> a midlatitude seamount. Journal <strong>of</strong> Geophysical Research,<br />
102:947–959, 1997.<br />
Y. Tseng and J.H. Ferziger. Mixing and available potential energy in stratified<br />
25
flows. Physics <strong>of</strong> Fluids, 13:1281–1293, 2001.<br />
L. Umlauf and U. Lemmin. Interbasin exchange and mixing in the hypolimni<strong>on</strong><br />
<strong>of</strong> a large lake: The role <strong>of</strong> l<strong>on</strong>g <strong>internal</strong> <strong>waves</strong>. Limnology and Oceanography,<br />
50:1601–1611, 2005.<br />
H. Van Haren. Details <strong>of</strong> stratificati<strong>on</strong> in a sloping bottom boundary<br />
layer <strong>of</strong> Great Meteor Seamount. Geophysical Research Letters, 32:<br />
doi:10.1029/2004GL022298, 2005.<br />
H. Van Haren, L.St. Laurent, and D. Marshall. Small and mesoscale processes<br />
and their impact <strong>on</strong> the large scale: an introducti<strong>on</strong>. Deep-Sea Research Part<br />
II, 51:2883–2887, 2004.<br />
S.K. Venayagamoorthy and O.B. Fringer. Numerical simulati<strong>on</strong>s <strong>of</strong> the interavti<strong>on</strong><br />
<strong>of</strong> <strong>internal</strong> <strong>waves</strong> with a shelf break. Physics <strong>of</strong> Fluids, 18:076603, 2006.<br />
J.-Y. Vinc<strong>on</strong>t, S. Simoens, M. Ayrault, and J.M. Wallace. Passive scalar dispersi<strong>on</strong><br />
in a turbulent boundary layer from a line source at the wall and downstream<br />
<strong>of</strong> an obstacle. Journal <strong>of</strong> Fluid Mechanics, 424:127–167, 2000.<br />
V.I. Vlasenko and K. Hutter. Generati<strong>on</strong> <strong>of</strong> sec<strong>on</strong>d mode solitary <strong>waves</strong> by the<br />
interacti<strong>on</strong> <strong>of</strong> a first mode solit<strong>on</strong> with a sill. N<strong>on</strong>linear Processes in Geophysics,<br />
8:223–239, 2001.<br />
V.I. Vlasenko and K. Hutter. Transformati<strong>on</strong> and disintegrati<strong>on</strong> <strong>of</strong> str<strong>on</strong>gly n<strong>on</strong>linear<br />
<strong>internal</strong> <strong>waves</strong> by topography in stratified lakes. Annales Geophysicae,<br />
20:2087–2103, 2002a.<br />
V.I. Vlasenko and K. Hutter. Numerical Experiments <strong>on</strong> the Breaking <strong>of</strong> Solitary<br />
Internal Waves over a Slope-Shelf Topography. Journal <strong>of</strong> Physical Oceanography,<br />
32:1779–1793, 2002b.<br />
V.I. Vlasenko, N. Stashchuk, and K. Hutter. Water exchange in fjords induced<br />
by tidally generated <strong>internal</strong> lee <strong>waves</strong>. Dynamics <strong>of</strong> Atmospheres and Oceans,<br />
35:63–89, 2002.<br />
G.W. Wake, E.J. Hopfinger, and G.N. Ivey. Experimental study <strong>on</strong> res<strong>on</strong>antly<br />
forced interfacial <strong>waves</strong> in a stratified circular cylindrical basin. Journal <strong>of</strong><br />
Fluid Mechanics, 582:203–222, 2007.<br />
D.-P. Wang. Tidally generated <strong>internal</strong> <strong>waves</strong> in partially mixed estuaries. C<strong>on</strong>tinental<br />
Shelf Research, 26:1469–1480, 2006.<br />
K. Widell. Ice-ocean interacti<strong>on</strong> and the under-ice boundary layer in an Arctic<br />
fjord. PhD thesis, Geophysical Institute, University <strong>of</strong> Bergen, Norway, 2006.<br />
S. Wijffels and G. Meyers. An Intersecti<strong>on</strong> <strong>of</strong> Oceanic Waveguides: Variability<br />
in the Ind<strong>on</strong>esian Throughflow Regi<strong>on</strong>. Journal <strong>of</strong> Physical Oceanography, 34:<br />
1232–1253, 2004.<br />
K.B. Winters and E.A. D’Asaro. Direct Simulati<strong>on</strong> <strong>of</strong> Internal Wave Energy<br />
Transfer. Journal <strong>of</strong> Physical Oceanography, 27:1937–1945, 1997.<br />
K.B. Winters, P.N. Lombard, J.J. Riley, and E.A. D’Asaro. Available potential<br />
energy and mixing in density-stratified fluids . Journal <strong>of</strong> Fluid Mechanics,<br />
26
289:115–128, 1995.<br />
K.B. Winters, H.E. Seim, and T.D. Finnigan. Simulati<strong>on</strong> <strong>of</strong> n<strong>on</strong>-hydrostatic,<br />
density-stratified flow in irregular domains. Internati<strong>on</strong>al Journal for Numerical<br />
Methods in Fluids, 32:263–284, 2000.<br />
C. Wunsch. On oceanic boundary mixing. Deep-Sea Research, 17:293–301, 1970.<br />
C. Wunsch and R. Ferrari. Vertical Mixing, Energy, and the General Circulati<strong>on</strong><br />
<strong>of</strong> the Oceans. Annual Review <strong>of</strong> Fluid Mechanics, 36:281–314, 2004.<br />
J. Xing and A.M. Davies. Processes influencing tidal mixing in the regi<strong>on</strong> <strong>of</strong> sills.<br />
Geophysical Research Letters, 33:L04603 doi:10.1029/2005GL025226, 2006a.<br />
J. Xing and A.M. Davies. Influence <strong>of</strong> stratificati<strong>on</strong> and topography up<strong>on</strong> <strong>internal</strong><br />
wave spectra in the regi<strong>on</strong> <strong>of</strong> sills. Geophysical Research Letters, 33:L23606<br />
doi:10.1029/2005GL025226, 2006b.<br />
J. Xing and A.M. Davies. On the importance <strong>of</strong> n<strong>on</strong>-hydrostatic processes in<br />
determining tidally induced mixing in sill regi<strong>on</strong>s. C<strong>on</strong>tinental Shelf Research,<br />
27:2162–2185, 2007.<br />
E.D. Zar<strong>on</strong> and G.D. Egbert. Verificati<strong>on</strong> studies for a z-coordinate primitiveequati<strong>on</strong><br />
model: Tidal c<strong>on</strong>versi<strong>on</strong> at a mid-ocean ridge. Ocean Modelling, 14:<br />
257–278, 2006.<br />
27