10.08.2013 Views

Vector Mechanics for Engineers: Statics

Vector Mechanics for Engineers: Statics

Vector Mechanics for Engineers: Statics

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

CHAPTER<br />

VECTOR MECHANICS FOR ENGINEERS:<br />

STATICS<br />

Ferdinand P. Beer<br />

E. Russell Johnston, Jr.<br />

Lecture Notes:<br />

J. Walt Oler<br />

Texas Tech University<br />

Eighth Edition<br />

Forces in Beams and Cables<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Contents<br />

Introduction<br />

Internal Forces in Members<br />

Sample Problem 7.1<br />

Various Types of Beam Loading and<br />

Support<br />

Shear and Bending Moment in a<br />

Beam<br />

Sample Problem 7.2<br />

Sample Problem 7.3<br />

Relations Among Load, Shear, and<br />

Bending Moment<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

Sample Problem 7.4<br />

Sample Problem 7.6<br />

Cables With Concentrated Loads<br />

Cables With Distributed Loads<br />

Parabolic Cable<br />

Sample Problem 7.8<br />

Catenary<br />

7- 2


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Introduction<br />

• Preceding chapters dealt with:<br />

a) determining external <strong>for</strong>ces acting on a structure and<br />

b) determining <strong>for</strong>ces which hold together the various members<br />

of a structure.<br />

• The current chapter is concerned with determining the internal<br />

<strong>for</strong>ces (i.e., tension/compression, shear, and bending) which hold<br />

together the various parts of a given member.<br />

• Focus is on two important types of engineering structures:<br />

a) Beams - usually long, straight, prismatic members designed<br />

to support loads applied at various points along the member.<br />

b) Cables - flexible members capable of withstanding only<br />

tension, designed to support concentrated or distributed loads.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

7- 3


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Internal Forces in Members<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Straight two-<strong>for</strong>ce member AB is in<br />

equilibrium under application of F and<br />

-F.<br />

• Internal <strong>for</strong>ces equivalent to F and -F are<br />

required <strong>for</strong> equilibrium of free-bodies AC<br />

and CB.<br />

• Multi<strong>for</strong>ce member ABCD is in equil-<br />

ibrium under application of cable and<br />

member contact <strong>for</strong>ces.<br />

• Internal <strong>for</strong>ces equivalent to a <strong>for</strong>ce-<br />

couple system are necessary <strong>for</strong> equil-<br />

ibrium of free-bodies JD and ABCJ.<br />

• An internal <strong>for</strong>ce-couple system is<br />

required <strong>for</strong> equilibrium of two-<strong>for</strong>ce<br />

members which are not straight.<br />

7- 4


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.1<br />

Determine the internal <strong>for</strong>ces (a) in<br />

member ACF at point J and (b) in<br />

member BCD at K.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

SOLUTION:<br />

• Compute reactions and <strong>for</strong>ces at<br />

connections <strong>for</strong> each member.<br />

• Cut member ACF at J. The internal<br />

<strong>for</strong>ces at J are represented by equivalent<br />

<strong>for</strong>ce-couple system which is determined<br />

by considering equilibrium of either part.<br />

• Cut member BCD at K. Determine<br />

<strong>for</strong>ce-couple system equivalent to<br />

internal <strong>for</strong>ces at K by applying<br />

equilibrium conditions to either part.<br />

7- 5


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.1<br />

SOLUTION:<br />

Fy<br />

x<br />

0 :<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Compute reactions and connection <strong>for</strong>ces.<br />

Consider entire frame as a free-body:<br />

E M<br />

0 :<br />

2400 N3.<br />

6m<br />

4. 8m<br />

0<br />

F F 1800 N<br />

y<br />

2400 N 1800<br />

N E 0 E y 600 N<br />

F 0 :<br />

E 0<br />

x<br />

7- 6


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.1<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

Consider member BCD as free-body:<br />

B 0 : M<br />

N 3.<br />

6 m y<br />

2400 2. 4 m<br />

0<br />

M C 0 :<br />

N 1.<br />

2 m y<br />

2400 2. 4 m<br />

0<br />

x<br />

F 0 : B 0<br />

C C 3600 N<br />

B B 1200 N<br />

x Cx<br />

Consider member ABE as free-body:<br />

A<br />

0 : M B 2. 4 m<br />

0 B 0<br />

x<br />

F 0 : B 0<br />

A 0<br />

x<br />

x Ax<br />

F 0 : A 600 N 0 A 1800 N<br />

y<br />

From member BCD,<br />

x<br />

y By<br />

F 0 : B 0 C<br />

0<br />

x Cx<br />

y<br />

y<br />

x<br />

x<br />

y<br />

x<br />

7- 7


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.1<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Cut member ACF at J. The internal <strong>for</strong>ces at J are<br />

represented by equivalent <strong>for</strong>ce-couple system.<br />

Consider free-body AJ:<br />

M J<br />

0 :<br />

1800 N1.<br />

2m<br />

0<br />

M M 2160 N m<br />

Fx<br />

0 :<br />

1800 Ncos<br />

41.<br />

7<br />

0<br />

F <br />

F 1344 N<br />

Fy<br />

V<br />

0 :<br />

<br />

1800 Nsin<br />

41.<br />

7<br />

0<br />

V<br />

1197 N<br />

7- 8


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.1<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Cut member BCD at K. Determine a <strong>for</strong>ce-couple<br />

system equivalent to internal <strong>for</strong>ces at K .<br />

Consider free-body BK:<br />

K M<br />

0 :<br />

1200 N1.<br />

5m<br />

0<br />

x<br />

M M 1800<br />

N m<br />

F 0 :<br />

F 0<br />

Fy<br />

0 :<br />

1200 N V<br />

0<br />

V<br />

1200<br />

N<br />

7- 9


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Various Types of Beam Loading and Support<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Beam - structural member designed to support<br />

loads applied at various points along its length.<br />

• Beam can be subjected to concentrated loads or<br />

distributed loads or combination of both.<br />

• Beam design is two-step process:<br />

1) determine shearing <strong>for</strong>ces and bending<br />

moments produced by applied loads<br />

2) select cross-section best suited to resist<br />

shearing <strong>for</strong>ces and bending moments<br />

7- 10


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Various Types of Beam Loading and Support<br />

• Beams are classified according to way in which they are<br />

supported.<br />

• Reactions at beam supports are determinate if they<br />

involve only three unknowns. Otherwise, they are<br />

statically indeterminate.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

7- 11


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Shear and Bending Moment in a Beam<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Wish to determine bending moment<br />

and shearing <strong>for</strong>ce at any point in a<br />

beam subjected to concentrated and<br />

distributed loads.<br />

• Determine reactions at supports by<br />

treating whole beam as free-body.<br />

• Cut beam at C and draw free-body<br />

diagrams <strong>for</strong> AC and CB. By<br />

definition, positive sense <strong>for</strong> internal<br />

<strong>for</strong>ce-couple systems are as shown.<br />

• From equilibrium considerations,<br />

determine M and V or M’ and V’.<br />

7- 12


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Shear and Bending Moment Diagrams<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Variation of shear and bending<br />

moment along beam may be<br />

plotted.<br />

• Determine reactions at<br />

supports.<br />

• Cut beam at C and consider<br />

member AC,<br />

V P 2 M Px 2<br />

• Cut beam at E and consider<br />

member EB,<br />

V P 2 M P L x<br />

2<br />

• For a beam subjected to<br />

concentrated loads, shear is<br />

constant between loading points<br />

and moment varies linearly.<br />

7- 13


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.2<br />

Draw the shear and bending moment<br />

diagrams <strong>for</strong> the beam and loading<br />

shown.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

SOLUTION:<br />

• Taking entire beam as a free-body,<br />

calculate reactions at B and D.<br />

• Find equivalent internal <strong>for</strong>ce-couple<br />

systems <strong>for</strong> free-bodies <strong>for</strong>med by<br />

cutting beam on either side of load<br />

application points.<br />

• Plot results.<br />

7- 14


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.2<br />

SOLUTION:<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Taking entire beam as a free-body, calculate<br />

reactions at B and D.<br />

• Find equivalent internal <strong>for</strong>ce-couple systems at<br />

sections on either side of load application points.<br />

F 0 : 20kN 1 0 V kN 20 V<br />

y<br />

1 <br />

M 0 : 20kN0 m<br />

1 0 M 0 M<br />

2 <br />

Similarly,<br />

V<br />

V<br />

V<br />

V<br />

3<br />

4<br />

5<br />

6<br />

26kN<br />

26kN<br />

26kN<br />

26kN<br />

M<br />

M<br />

M<br />

M<br />

3<br />

4<br />

5<br />

6<br />

50<br />

kN m<br />

50<br />

kN m<br />

50<br />

kN m<br />

50<br />

kN m<br />

1 <br />

7- 15


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.2<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Plot results.<br />

Note that shear is of constant value<br />

between concentrated loads and<br />

bending moment varies linearly.<br />

7- 16


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.3<br />

Draw the shear and bending moment<br />

diagrams <strong>for</strong> the beam AB. The<br />

distributed load of 40 lb/in. extends<br />

over 12 in. of the beam, from A to C,<br />

and the 400 lb load is applied at E.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

SOLUTION:<br />

• Taking entire beam as free-body,<br />

calculate reactions at A and B.<br />

• Determine equivalent internal <strong>for</strong>ce-<br />

couple systems at sections cut within<br />

segments AC, CD, and DB.<br />

• Plot results.<br />

7- 17


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.3<br />

SOLUTION:<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Taking entire beam as a free-body, calculate<br />

reactions at A and B.<br />

A M<br />

By<br />

0 :<br />

32in. 480lb6in. 400lb22in. 0<br />

B M<br />

0 :<br />

By<br />

365lb<br />

480lb26in. 400lb10in. A32in.<br />

0<br />

x<br />

A 515lb<br />

F 0 :<br />

B 0<br />

• Note: The 400 lb load at E may be replaced by a<br />

400 lb <strong>for</strong>ce and 1600 lb-in. couple at D.<br />

x<br />

7- 18


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.3<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Evaluate equivalent internal <strong>for</strong>ce-couple systems<br />

at sections cut within segments AC, CD, and DB.<br />

From A to C:<br />

Fy 0 : 515 40x<br />

V<br />

0<br />

V <br />

515 40x<br />

M 0 : 515x<br />

40x<br />

x<br />

M 0<br />

1 <br />

From C to D:<br />

1 <br />

2<br />

M 515x 20x<br />

Fy 0 : 515 480 V<br />

0<br />

V 35 lb<br />

M 0 : 515x 480x<br />

6<br />

M 0<br />

2 <br />

M<br />

2<br />

2880 35 lb in.<br />

x<br />

7- 19


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.3<br />

M<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Evaluate equivalent internal <strong>for</strong>ce-couple<br />

systems at sections cut within segments AC,<br />

CD, and DB.<br />

From D to B:<br />

F 0 : 515 480 400 V<br />

0<br />

y<br />

2 <br />

0 :<br />

V<br />

x 6<br />

1600 400x<br />

18<br />

0<br />

515x 480<br />

M <br />

M<br />

<br />

365<br />

lb<br />

11, 680 365 lb in.<br />

x<br />

7- 20


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.3<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Plot results.<br />

From A to C:<br />

V 515 40x<br />

M 515x 20x<br />

From C to D:<br />

V 35 lb<br />

M<br />

2<br />

2880 35 lb in.<br />

x<br />

From D to B:<br />

V 365<br />

lb<br />

M<br />

11, 680 365 lb in.<br />

x<br />

7- 21


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Relations Among Load, Shear, and Bending Moment<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Relations between load and shear:<br />

V<br />

V<br />

<br />

dV<br />

dx<br />

D<br />

V V<br />

<br />

<br />

lim<br />

x0 wx<br />

0<br />

V<br />

x<br />

x<br />

D<br />

V wdx<br />

C<br />

x<br />

C<br />

w<br />

<br />

<br />

area under load curve<br />

• Relations between shear and bending moment:<br />

MM dM<br />

dx<br />

M<br />

D<br />

<br />

x<br />

M Vx<br />

wx<br />

0<br />

2<br />

M<br />

lim lim<br />

x0<br />

x<br />

x0<br />

2<br />

<br />

x<br />

D<br />

M V dx<br />

C<br />

x<br />

C<br />

<br />

V1wxV area under shear curve<br />

7- 22


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Relations Among Load, Shear, and Bending Moment<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Reactions at supports,<br />

• Shear curve,<br />

V<br />

V<br />

VA <br />

wdx<br />

V<br />

A<br />

x<br />

0<br />

wx<br />

• Moment curve,<br />

M<br />

M<br />

M<br />

M<br />

<br />

x<br />

<br />

0<br />

max<br />

A<br />

<br />

<br />

x<br />

<br />

0<br />

<br />

L <br />

w<br />

xdx<br />

2 <br />

wL<br />

8<br />

2<br />

Vdx<br />

wx<br />

RA RB<br />

<br />

wL<br />

2<br />

wL L <br />

wx w<br />

x<br />

2 2 <br />

<br />

<br />

<br />

M<br />

<br />

w<br />

2<br />

at<br />

2 Lx<br />

x<br />

dM<br />

dx<br />

V<br />

<br />

0<br />

<br />

7- 23


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.4<br />

Draw the shear and bending-<br />

moment diagrams <strong>for</strong> the beam<br />

and loading shown.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

SOLUTION:<br />

• Taking entire beam as a free-body, determine<br />

reactions at supports.<br />

• Between concentrated load application<br />

points, dV dx w<br />

0 and shear is<br />

constant.<br />

• With uni<strong>for</strong>m loading between D and E, the<br />

shear variation is linear.<br />

• Between concentrated load application<br />

points, dM dx V constant.<br />

The change<br />

in moment between load application points is<br />

equal to area under shear curve between<br />

points.<br />

• With a linear shear variation between D<br />

and E, the bending moment diagram is a<br />

parabola.<br />

7- 24


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.4<br />

SOLUTION:<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Taking entire beam as a free-body,<br />

determine reactions at supports.<br />

M A 0 :<br />

D 24 ft 20 kips 6 ft 12 kips<br />

12 kips 28<br />

ft <br />

14 ft<br />

0<br />

D 26 kips<br />

Fy<br />

0<br />

:<br />

A 20 kips 12<br />

kips 26 kips 12<br />

kips 0<br />

y<br />

Ay<br />

18 kips<br />

• Between concentrated load application points,<br />

dV dx w<br />

0 and shear is constant.<br />

• With uni<strong>for</strong>m loading between D and E, the shear<br />

variation is linear.<br />

7- 25


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.4<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Between concentrated load application<br />

points, dM dx V constant.<br />

The change<br />

in moment between load application points is<br />

equal to area under the shear curve between<br />

points.<br />

M<br />

M<br />

M<br />

M<br />

B<br />

C<br />

D<br />

E<br />

M<br />

M<br />

M<br />

M<br />

A<br />

B<br />

C<br />

D<br />

108<br />

16<br />

140<br />

48<br />

M<br />

M<br />

M<br />

M<br />

108<br />

kip ft<br />

92<br />

kip ft<br />

48<br />

kip ft<br />

0<br />

• With a linear shear variation between D<br />

and E, the bending moment diagram is a<br />

parabola.<br />

B<br />

C<br />

D<br />

E<br />

7- 26


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.6<br />

Sketch the shear and bending-<br />

moment diagrams <strong>for</strong> the<br />

cantilever beam and loading<br />

shown.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

SOLUTION:<br />

• The change in shear between A and B is equal<br />

to the negative of area under load curve<br />

between points. The linear load curve results<br />

in a parabolic shear curve.<br />

• With zero load, change in shear between B<br />

and C is zero.<br />

• The change in moment between A and B is<br />

equal to area under shear curve between<br />

points. The parabolic shear curve results in<br />

a cubic moment curve.<br />

• The change in moment between B and C is<br />

equal to area under shear curve between<br />

points. The constant shear curve results in a<br />

linear moment curve.<br />

7- 27


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.6<br />

SOLUTION:<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• The change in shear between A and B is equal to<br />

negative of area under load curve between points.<br />

The linear load curve results in a parabolic shear<br />

curve.<br />

dV<br />

at A, VA<br />

<br />

0,<br />

w<br />

w<br />

dx<br />

V 1<br />

B A 2 0<br />

V 1<br />

B 2 0<br />

V w a<br />

w a<br />

dV<br />

at B,<br />

w<br />

<br />

dx<br />

0<br />

• With zero load, change in shear between B and C is<br />

zero.<br />

0<br />

7- 28


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 7.6<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• The change in moment between A and B is equal<br />

to area under shear curve between the points.<br />

The parabolic shear curve results in a cubic<br />

moment curve.<br />

dM<br />

at A, M A<br />

0,<br />

V <br />

dx<br />

M<br />

M<br />

B<br />

C<br />

M<br />

M<br />

A<br />

B<br />

<br />

<br />

<br />

<br />

1<br />

3<br />

1<br />

2<br />

w<br />

w<br />

0<br />

0<br />

a<br />

a<br />

2<br />

La M 1 w a3La<br />

• The change in moment between B and C is equal<br />

to area under shear curve between points. The<br />

constant shear curve results in a linear moment<br />

curve.<br />

0<br />

M<br />

B<br />

C<br />

<br />

<br />

1<br />

3<br />

6<br />

w<br />

0<br />

0<br />

a<br />

2<br />

7- 29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!