Vector Mechanics for Engineers: Statics
Vector Mechanics for Engineers: Statics
Vector Mechanics for Engineers: Statics
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
CHAPTER<br />
VECTOR MECHANICS FOR ENGINEERS:<br />
STATICS<br />
Ferdinand P. Beer<br />
E. Russell Johnston, Jr.<br />
Lecture Notes:<br />
J. Walt Oler<br />
Texas Tech University<br />
Eighth Edition<br />
Forces in Beams and Cables<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Contents<br />
Introduction<br />
Internal Forces in Members<br />
Sample Problem 7.1<br />
Various Types of Beam Loading and<br />
Support<br />
Shear and Bending Moment in a<br />
Beam<br />
Sample Problem 7.2<br />
Sample Problem 7.3<br />
Relations Among Load, Shear, and<br />
Bending Moment<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
Sample Problem 7.4<br />
Sample Problem 7.6<br />
Cables With Concentrated Loads<br />
Cables With Distributed Loads<br />
Parabolic Cable<br />
Sample Problem 7.8<br />
Catenary<br />
7- 2
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Introduction<br />
• Preceding chapters dealt with:<br />
a) determining external <strong>for</strong>ces acting on a structure and<br />
b) determining <strong>for</strong>ces which hold together the various members<br />
of a structure.<br />
• The current chapter is concerned with determining the internal<br />
<strong>for</strong>ces (i.e., tension/compression, shear, and bending) which hold<br />
together the various parts of a given member.<br />
• Focus is on two important types of engineering structures:<br />
a) Beams - usually long, straight, prismatic members designed<br />
to support loads applied at various points along the member.<br />
b) Cables - flexible members capable of withstanding only<br />
tension, designed to support concentrated or distributed loads.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
7- 3
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Internal Forces in Members<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Straight two-<strong>for</strong>ce member AB is in<br />
equilibrium under application of F and<br />
-F.<br />
• Internal <strong>for</strong>ces equivalent to F and -F are<br />
required <strong>for</strong> equilibrium of free-bodies AC<br />
and CB.<br />
• Multi<strong>for</strong>ce member ABCD is in equil-<br />
ibrium under application of cable and<br />
member contact <strong>for</strong>ces.<br />
• Internal <strong>for</strong>ces equivalent to a <strong>for</strong>ce-<br />
couple system are necessary <strong>for</strong> equil-<br />
ibrium of free-bodies JD and ABCJ.<br />
• An internal <strong>for</strong>ce-couple system is<br />
required <strong>for</strong> equilibrium of two-<strong>for</strong>ce<br />
members which are not straight.<br />
7- 4
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.1<br />
Determine the internal <strong>for</strong>ces (a) in<br />
member ACF at point J and (b) in<br />
member BCD at K.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
SOLUTION:<br />
• Compute reactions and <strong>for</strong>ces at<br />
connections <strong>for</strong> each member.<br />
• Cut member ACF at J. The internal<br />
<strong>for</strong>ces at J are represented by equivalent<br />
<strong>for</strong>ce-couple system which is determined<br />
by considering equilibrium of either part.<br />
• Cut member BCD at K. Determine<br />
<strong>for</strong>ce-couple system equivalent to<br />
internal <strong>for</strong>ces at K by applying<br />
equilibrium conditions to either part.<br />
7- 5
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.1<br />
SOLUTION:<br />
Fy<br />
x<br />
0 :<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Compute reactions and connection <strong>for</strong>ces.<br />
Consider entire frame as a free-body:<br />
E M<br />
0 :<br />
2400 N3.<br />
6m<br />
4. 8m<br />
0<br />
F F 1800 N<br />
y<br />
2400 N 1800<br />
N E 0 E y 600 N<br />
F 0 :<br />
E 0<br />
x<br />
7- 6
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.1<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
Consider member BCD as free-body:<br />
B 0 : M<br />
N 3.<br />
6 m y<br />
2400 2. 4 m<br />
0<br />
M C 0 :<br />
N 1.<br />
2 m y<br />
2400 2. 4 m<br />
0<br />
x<br />
F 0 : B 0<br />
C C 3600 N<br />
B B 1200 N<br />
x Cx<br />
Consider member ABE as free-body:<br />
A<br />
0 : M B 2. 4 m<br />
0 B 0<br />
x<br />
F 0 : B 0<br />
A 0<br />
x<br />
x Ax<br />
F 0 : A 600 N 0 A 1800 N<br />
y<br />
From member BCD,<br />
x<br />
y By<br />
F 0 : B 0 C<br />
0<br />
x Cx<br />
y<br />
y<br />
x<br />
x<br />
y<br />
x<br />
7- 7
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.1<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Cut member ACF at J. The internal <strong>for</strong>ces at J are<br />
represented by equivalent <strong>for</strong>ce-couple system.<br />
Consider free-body AJ:<br />
M J<br />
0 :<br />
1800 N1.<br />
2m<br />
0<br />
M M 2160 N m<br />
Fx<br />
0 :<br />
1800 Ncos<br />
41.<br />
7<br />
0<br />
F <br />
F 1344 N<br />
Fy<br />
V<br />
0 :<br />
<br />
1800 Nsin<br />
41.<br />
7<br />
0<br />
V<br />
1197 N<br />
7- 8
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.1<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Cut member BCD at K. Determine a <strong>for</strong>ce-couple<br />
system equivalent to internal <strong>for</strong>ces at K .<br />
Consider free-body BK:<br />
K M<br />
0 :<br />
1200 N1.<br />
5m<br />
0<br />
x<br />
M M 1800<br />
N m<br />
F 0 :<br />
F 0<br />
Fy<br />
0 :<br />
1200 N V<br />
0<br />
V<br />
1200<br />
N<br />
7- 9
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Various Types of Beam Loading and Support<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Beam - structural member designed to support<br />
loads applied at various points along its length.<br />
• Beam can be subjected to concentrated loads or<br />
distributed loads or combination of both.<br />
• Beam design is two-step process:<br />
1) determine shearing <strong>for</strong>ces and bending<br />
moments produced by applied loads<br />
2) select cross-section best suited to resist<br />
shearing <strong>for</strong>ces and bending moments<br />
7- 10
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Various Types of Beam Loading and Support<br />
• Beams are classified according to way in which they are<br />
supported.<br />
• Reactions at beam supports are determinate if they<br />
involve only three unknowns. Otherwise, they are<br />
statically indeterminate.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
7- 11
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Shear and Bending Moment in a Beam<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Wish to determine bending moment<br />
and shearing <strong>for</strong>ce at any point in a<br />
beam subjected to concentrated and<br />
distributed loads.<br />
• Determine reactions at supports by<br />
treating whole beam as free-body.<br />
• Cut beam at C and draw free-body<br />
diagrams <strong>for</strong> AC and CB. By<br />
definition, positive sense <strong>for</strong> internal<br />
<strong>for</strong>ce-couple systems are as shown.<br />
• From equilibrium considerations,<br />
determine M and V or M’ and V’.<br />
7- 12
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Shear and Bending Moment Diagrams<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Variation of shear and bending<br />
moment along beam may be<br />
plotted.<br />
• Determine reactions at<br />
supports.<br />
• Cut beam at C and consider<br />
member AC,<br />
V P 2 M Px 2<br />
• Cut beam at E and consider<br />
member EB,<br />
V P 2 M P L x<br />
2<br />
• For a beam subjected to<br />
concentrated loads, shear is<br />
constant between loading points<br />
and moment varies linearly.<br />
7- 13
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.2<br />
Draw the shear and bending moment<br />
diagrams <strong>for</strong> the beam and loading<br />
shown.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
SOLUTION:<br />
• Taking entire beam as a free-body,<br />
calculate reactions at B and D.<br />
• Find equivalent internal <strong>for</strong>ce-couple<br />
systems <strong>for</strong> free-bodies <strong>for</strong>med by<br />
cutting beam on either side of load<br />
application points.<br />
• Plot results.<br />
7- 14
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.2<br />
SOLUTION:<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Taking entire beam as a free-body, calculate<br />
reactions at B and D.<br />
• Find equivalent internal <strong>for</strong>ce-couple systems at<br />
sections on either side of load application points.<br />
F 0 : 20kN 1 0 V kN 20 V<br />
y<br />
1 <br />
M 0 : 20kN0 m<br />
1 0 M 0 M<br />
2 <br />
Similarly,<br />
V<br />
V<br />
V<br />
V<br />
3<br />
4<br />
5<br />
6<br />
26kN<br />
26kN<br />
26kN<br />
26kN<br />
M<br />
M<br />
M<br />
M<br />
3<br />
4<br />
5<br />
6<br />
50<br />
kN m<br />
50<br />
kN m<br />
50<br />
kN m<br />
50<br />
kN m<br />
1 <br />
7- 15
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.2<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Plot results.<br />
Note that shear is of constant value<br />
between concentrated loads and<br />
bending moment varies linearly.<br />
7- 16
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.3<br />
Draw the shear and bending moment<br />
diagrams <strong>for</strong> the beam AB. The<br />
distributed load of 40 lb/in. extends<br />
over 12 in. of the beam, from A to C,<br />
and the 400 lb load is applied at E.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
SOLUTION:<br />
• Taking entire beam as free-body,<br />
calculate reactions at A and B.<br />
• Determine equivalent internal <strong>for</strong>ce-<br />
couple systems at sections cut within<br />
segments AC, CD, and DB.<br />
• Plot results.<br />
7- 17
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.3<br />
SOLUTION:<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Taking entire beam as a free-body, calculate<br />
reactions at A and B.<br />
A M<br />
By<br />
0 :<br />
32in. 480lb6in. 400lb22in. 0<br />
B M<br />
0 :<br />
By<br />
365lb<br />
480lb26in. 400lb10in. A32in.<br />
0<br />
x<br />
A 515lb<br />
F 0 :<br />
B 0<br />
• Note: The 400 lb load at E may be replaced by a<br />
400 lb <strong>for</strong>ce and 1600 lb-in. couple at D.<br />
x<br />
7- 18
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.3<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Evaluate equivalent internal <strong>for</strong>ce-couple systems<br />
at sections cut within segments AC, CD, and DB.<br />
From A to C:<br />
Fy 0 : 515 40x<br />
V<br />
0<br />
V <br />
515 40x<br />
M 0 : 515x<br />
40x<br />
x<br />
M 0<br />
1 <br />
From C to D:<br />
1 <br />
2<br />
M 515x 20x<br />
Fy 0 : 515 480 V<br />
0<br />
V 35 lb<br />
M 0 : 515x 480x<br />
6<br />
M 0<br />
2 <br />
M<br />
2<br />
2880 35 lb in.<br />
x<br />
7- 19
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.3<br />
M<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Evaluate equivalent internal <strong>for</strong>ce-couple<br />
systems at sections cut within segments AC,<br />
CD, and DB.<br />
From D to B:<br />
F 0 : 515 480 400 V<br />
0<br />
y<br />
2 <br />
0 :<br />
V<br />
x 6<br />
1600 400x<br />
18<br />
0<br />
515x 480<br />
M <br />
M<br />
<br />
365<br />
lb<br />
11, 680 365 lb in.<br />
x<br />
7- 20
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.3<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Plot results.<br />
From A to C:<br />
V 515 40x<br />
M 515x 20x<br />
From C to D:<br />
V 35 lb<br />
M<br />
2<br />
2880 35 lb in.<br />
x<br />
From D to B:<br />
V 365<br />
lb<br />
M<br />
11, 680 365 lb in.<br />
x<br />
7- 21
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Relations Among Load, Shear, and Bending Moment<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Relations between load and shear:<br />
V<br />
V<br />
<br />
dV<br />
dx<br />
D<br />
V V<br />
<br />
<br />
lim<br />
x0 wx<br />
0<br />
V<br />
x<br />
x<br />
D<br />
V wdx<br />
C<br />
x<br />
C<br />
w<br />
<br />
<br />
area under load curve<br />
• Relations between shear and bending moment:<br />
MM dM<br />
dx<br />
M<br />
D<br />
<br />
x<br />
M Vx<br />
wx<br />
0<br />
2<br />
M<br />
lim lim<br />
x0<br />
x<br />
x0<br />
2<br />
<br />
x<br />
D<br />
M V dx<br />
C<br />
x<br />
C<br />
<br />
V1wxV area under shear curve<br />
7- 22
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Relations Among Load, Shear, and Bending Moment<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Reactions at supports,<br />
• Shear curve,<br />
V<br />
V<br />
VA <br />
wdx<br />
V<br />
A<br />
x<br />
0<br />
wx<br />
• Moment curve,<br />
M<br />
M<br />
M<br />
M<br />
<br />
x<br />
<br />
0<br />
max<br />
A<br />
<br />
<br />
x<br />
<br />
0<br />
<br />
L <br />
w<br />
xdx<br />
2 <br />
wL<br />
8<br />
2<br />
Vdx<br />
wx<br />
RA RB<br />
<br />
wL<br />
2<br />
wL L <br />
wx w<br />
x<br />
2 2 <br />
<br />
<br />
<br />
M<br />
<br />
w<br />
2<br />
at<br />
2 Lx<br />
x<br />
dM<br />
dx<br />
V<br />
<br />
0<br />
<br />
7- 23
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.4<br />
Draw the shear and bending-<br />
moment diagrams <strong>for</strong> the beam<br />
and loading shown.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
SOLUTION:<br />
• Taking entire beam as a free-body, determine<br />
reactions at supports.<br />
• Between concentrated load application<br />
points, dV dx w<br />
0 and shear is<br />
constant.<br />
• With uni<strong>for</strong>m loading between D and E, the<br />
shear variation is linear.<br />
• Between concentrated load application<br />
points, dM dx V constant.<br />
The change<br />
in moment between load application points is<br />
equal to area under shear curve between<br />
points.<br />
• With a linear shear variation between D<br />
and E, the bending moment diagram is a<br />
parabola.<br />
7- 24
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.4<br />
SOLUTION:<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Taking entire beam as a free-body,<br />
determine reactions at supports.<br />
M A 0 :<br />
D 24 ft 20 kips 6 ft 12 kips<br />
12 kips 28<br />
ft <br />
14 ft<br />
0<br />
D 26 kips<br />
Fy<br />
0<br />
:<br />
A 20 kips 12<br />
kips 26 kips 12<br />
kips 0<br />
y<br />
Ay<br />
18 kips<br />
• Between concentrated load application points,<br />
dV dx w<br />
0 and shear is constant.<br />
• With uni<strong>for</strong>m loading between D and E, the shear<br />
variation is linear.<br />
7- 25
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.4<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Between concentrated load application<br />
points, dM dx V constant.<br />
The change<br />
in moment between load application points is<br />
equal to area under the shear curve between<br />
points.<br />
M<br />
M<br />
M<br />
M<br />
B<br />
C<br />
D<br />
E<br />
M<br />
M<br />
M<br />
M<br />
A<br />
B<br />
C<br />
D<br />
108<br />
16<br />
140<br />
48<br />
M<br />
M<br />
M<br />
M<br />
108<br />
kip ft<br />
92<br />
kip ft<br />
48<br />
kip ft<br />
0<br />
• With a linear shear variation between D<br />
and E, the bending moment diagram is a<br />
parabola.<br />
B<br />
C<br />
D<br />
E<br />
7- 26
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.6<br />
Sketch the shear and bending-<br />
moment diagrams <strong>for</strong> the<br />
cantilever beam and loading<br />
shown.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
SOLUTION:<br />
• The change in shear between A and B is equal<br />
to the negative of area under load curve<br />
between points. The linear load curve results<br />
in a parabolic shear curve.<br />
• With zero load, change in shear between B<br />
and C is zero.<br />
• The change in moment between A and B is<br />
equal to area under shear curve between<br />
points. The parabolic shear curve results in<br />
a cubic moment curve.<br />
• The change in moment between B and C is<br />
equal to area under shear curve between<br />
points. The constant shear curve results in a<br />
linear moment curve.<br />
7- 27
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.6<br />
SOLUTION:<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• The change in shear between A and B is equal to<br />
negative of area under load curve between points.<br />
The linear load curve results in a parabolic shear<br />
curve.<br />
dV<br />
at A, VA<br />
<br />
0,<br />
w<br />
w<br />
dx<br />
V 1<br />
B A 2 0<br />
V 1<br />
B 2 0<br />
V w a<br />
w a<br />
dV<br />
at B,<br />
w<br />
<br />
dx<br />
0<br />
• With zero load, change in shear between B and C is<br />
zero.<br />
0<br />
7- 28
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 7.6<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• The change in moment between A and B is equal<br />
to area under shear curve between the points.<br />
The parabolic shear curve results in a cubic<br />
moment curve.<br />
dM<br />
at A, M A<br />
0,<br />
V <br />
dx<br />
M<br />
M<br />
B<br />
C<br />
M<br />
M<br />
A<br />
B<br />
<br />
<br />
<br />
<br />
1<br />
3<br />
1<br />
2<br />
w<br />
w<br />
0<br />
0<br />
a<br />
a<br />
2<br />
La M 1 w a3La<br />
• The change in moment between B and C is equal<br />
to area under shear curve between points. The<br />
constant shear curve results in a linear moment<br />
curve.<br />
0<br />
M<br />
B<br />
C<br />
<br />
<br />
1<br />
3<br />
6<br />
w<br />
0<br />
0<br />
a<br />
2<br />
7- 29