10.08.2013 Views

Vector Mechanics for Engineers: Statics

Vector Mechanics for Engineers: Statics

Vector Mechanics for Engineers: Statics

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

CHAPTER<br />

VECTOR MECHANICS FOR ENGINEERS:<br />

STATICS<br />

Ferdinand P. Beer<br />

E. Russell Johnston, Jr.<br />

Lecture Notes:<br />

J. Walt Oler<br />

Texas Tech University<br />

Eighth Edition<br />

Distributed Forces:<br />

Centroids and Centers<br />

of Gravity<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Contents<br />

Introduction<br />

Center of Gravity of a 2D Body<br />

Centroids and First Moments of Areas<br />

and Lines<br />

Centroids of Common Shapes of Areas<br />

Centroids of Common Shapes of Lines<br />

Composite Plates and Areas<br />

Sample Problem 5.1<br />

Determination of Centroids by<br />

Integration<br />

Sample Problem 5.4<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

Theorems of Pappus-Guldinus<br />

Sample Problem 5.7<br />

Distributed Loads on Beams<br />

Sample Problem 5.9<br />

Center of Gravity of a 3D Body:<br />

Centroid of a Volume<br />

Centroids of Common 3D Shapes<br />

Composite 3D Bodies<br />

Sample Problem 5.12<br />

5 - 2


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Introduction<br />

• The earth exerts a gravitational <strong>for</strong>ce on each of the particles<br />

<strong>for</strong>ming a body. These <strong>for</strong>ces can be replace by a single<br />

equivalent <strong>for</strong>ce equal to the weight of the body and applied<br />

at the center of gravity <strong>for</strong> the body.<br />

• The centroid of an area is analogous to the center of<br />

gravity of a body. The concept of the first moment of an<br />

area is used to locate the centroid.<br />

• Determination of the area of a surface of revolution and<br />

the volume of a body of revolution are accomplished<br />

with the Theorems of Pappus-Guldinus.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

5 - 3


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Center of Gravity of a 2D Body<br />

• Center of gravity of a plate<br />

<br />

<br />

M<br />

M<br />

y<br />

y<br />

xW<br />

yW<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

xW<br />

x dW<br />

yW<br />

y dW<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Center of gravity of a wire<br />

5 - 4


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Centroids and First Moments of Areas and Lines<br />

• Centroid of an area<br />

x<br />

xW<br />

<br />

Atxt xA<br />

x dA<br />

yA<br />

<br />

x dW<br />

first<br />

<br />

<br />

first<br />

dA<br />

Q<br />

y dA Q<br />

y<br />

moment with<br />

x<br />

moment with<br />

respect to<br />

respect to<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

y<br />

x<br />

• Centroid of a line<br />

x<br />

xW<br />

x dW<br />

Laxa xL<br />

x dL<br />

yL<br />

y dL<br />

dL<br />

5 - 5


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

First Moments of Areas and Lines<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• An area is symmetric with respect to an axis BB’<br />

if <strong>for</strong> every point P there exists a point P’ such<br />

that PP’ is perpendicular to BB’ and is divided<br />

into two equal parts by BB’.<br />

• The first moment of an area with respect to a<br />

line of symmetry is zero.<br />

• If an area possesses a line of symmetry, its<br />

centroid lies on that axis<br />

• If an area possesses two lines of symmetry, its<br />

centroid lies at their intersection.<br />

• An area is symmetric with respect to a center O<br />

if <strong>for</strong> every element dA at (x,y) there exists an<br />

area dA’ of equal area at (-x,-y).<br />

• The centroid of the area coincides with the<br />

center of symmetry.<br />

5 - 6


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Centroids of Common Shapes of Areas<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

5 - 7


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Centroids of Common Shapes of Lines<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

5 - 8


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Composite Plates and Areas<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Composite plates<br />

X<br />

Y<br />

<br />

<br />

W<br />

W<br />

<br />

<br />

<br />

<br />

xW<br />

yW<br />

• Composite area<br />

X<br />

Y<br />

<br />

<br />

A <br />

A <br />

<br />

<br />

x A<br />

yA<br />

5 - 9


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.1<br />

For the plane area shown, determine<br />

the first moments with respect to the<br />

x and y axes and the location of the<br />

centroid.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

SOLUTION:<br />

• Divide the area into a triangle, rectangle,<br />

and semicircle with a circular cutout.<br />

• Calculate the first moments of each area<br />

with respect to the axes.<br />

• Find the total area and first moments of<br />

the triangle, rectangle, and semicircle.<br />

Subtract the area and first moment of the<br />

circular cutout.<br />

• Compute the coordinates of the area<br />

centroid by dividing the first moments by<br />

the total area.<br />

5 - 10


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.1<br />

• Find the total area and first moments of the<br />

triangle, rectangle, and semicircle. Subtract the<br />

area and first moment of the circular cutout.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

Q<br />

Q<br />

x<br />

y<br />

506.<br />

210<br />

<br />

757.<br />

7<br />

10<br />

3<br />

3<br />

mm<br />

mm<br />

3<br />

3<br />

5 - 11


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.1<br />

• Compute the coordinates of the area<br />

centroid by dividing the first moments by<br />

the total area.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

X<br />

Y<br />

<br />

x A<br />

<br />

A<br />

<br />

y A<br />

<br />

A<br />

<br />

757.<br />

7<br />

10<br />

13.82810<br />

<br />

X<br />

506.<br />

2<br />

13.82810<br />

Y<br />

3<br />

3<br />

54.<br />

8<br />

10<br />

3<br />

3<br />

36.<br />

6<br />

mm<br />

mm<br />

mm<br />

mm<br />

3<br />

2<br />

mm<br />

3<br />

2<br />

mm<br />

5 - 12


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Determination of Centroids by Integration<br />

xA<br />

yA<br />

<br />

<br />

<br />

<br />

xA<br />

yA<br />

xdA<br />

ydA<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

y<br />

y<br />

2<br />

<br />

<br />

el<br />

dA<br />

ydx el<br />

x dxdy<br />

y dxdy<br />

dA<br />

ydx xA<br />

yA<br />

a x<br />

2<br />

y dA<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

<br />

<br />

<br />

<br />

x<br />

y<br />

el<br />

el<br />

dA<br />

dA<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

• Double integration to find the first moment<br />

may be avoided by defining dA as a thin<br />

rectangle or strip.<br />

x<br />

y<br />

el<br />

el<br />

dA<br />

axdx axdx xA<br />

yA<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

y<br />

el<br />

el<br />

dA<br />

2r<br />

1<br />

cos<br />

<br />

3 2<br />

dA<br />

2r<br />

1<br />

sin<br />

<br />

3 2<br />

r<br />

r<br />

2<br />

2<br />

<br />

d<br />

<br />

<br />

<br />

d<br />

<br />

<br />

5 - 13


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.4<br />

Determine by direct integration the<br />

location of the centroid of a parabolic<br />

spandrel.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

SOLUTION:<br />

• Determine the constant k.<br />

• Evaluate the total area.<br />

• Using either vertical or horizontal<br />

strips, per<strong>for</strong>m a single integration to<br />

find the first moments.<br />

• Evaluate the centroid coordinates.<br />

5 - 14


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.4<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

SOLUTION:<br />

• Determine the constant k.<br />

y<br />

b<br />

y<br />

<br />

k<br />

a<br />

b<br />

x<br />

k a<br />

<br />

2<br />

2<br />

2<br />

x<br />

2<br />

<br />

k<br />

or<br />

<br />

a<br />

b<br />

x<br />

2<br />

<br />

• Evaluate the total area.<br />

A dA<br />

<br />

<br />

<br />

ab<br />

<br />

3<br />

y dx <br />

a<br />

<br />

0<br />

a<br />

b<br />

2<br />

x<br />

2<br />

b<br />

dx<br />

a<br />

1 2<br />

y<br />

b<br />

<br />

<br />

a<br />

1 2<br />

2<br />

x<br />

3<br />

<br />

<br />

a<br />

3 <br />

0<br />

5 - 15


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.4<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Using vertical strips, per<strong>for</strong>m a single integration<br />

to find the first moments.<br />

Q<br />

Q<br />

y<br />

x<br />

<br />

<br />

<br />

x<br />

y<br />

el<br />

b<br />

<br />

<br />

a<br />

<br />

2<br />

el<br />

2<br />

b<br />

<br />

<br />

2a<br />

dA <br />

x<br />

4<br />

4<br />

4<br />

<br />

<br />

<br />

5<br />

x<br />

5<br />

a<br />

0<br />

dA <br />

<br />

<br />

<br />

<br />

<br />

a<br />

0<br />

xydx<br />

y<br />

2<br />

2<br />

a b<br />

<br />

4<br />

ydx<br />

<br />

2<br />

ab<br />

<br />

10<br />

a<br />

<br />

0<br />

<br />

b<br />

x<br />

a<br />

a<br />

<br />

0<br />

2<br />

1 b<br />

<br />

2 a<br />

x<br />

2<br />

2<br />

x<br />

<br />

dx<br />

<br />

2<br />

<br />

<br />

<br />

2<br />

dx<br />

5 - 16


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.4<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Or, using horizontal strips, per<strong>for</strong>m a single<br />

integration to find the first moments.<br />

Q<br />

Q<br />

y<br />

x<br />

<br />

<br />

<br />

<br />

<br />

1<br />

2<br />

<br />

b<br />

<br />

0<br />

x<br />

b<br />

<br />

0<br />

y<br />

el<br />

dA <br />

<br />

a<br />

<br />

<br />

el<br />

2<br />

dA <br />

<br />

a<br />

ay<br />

<br />

b<br />

1 2<br />

a x<br />

2<br />

2<br />

a<br />

<br />

b<br />

<br />

y<br />

ax y<br />

3<br />

2<br />

ax dy<br />

2<br />

dy<br />

a b<br />

ydy<br />

<br />

<br />

4<br />

<br />

<br />

2<br />

ab<br />

dy<br />

<br />

10<br />

<br />

b<br />

<br />

0<br />

a<br />

2<br />

x<br />

2<br />

a<br />

y<br />

a <br />

b<br />

1 2<br />

2<br />

y<br />

dy<br />

1 2<br />

5 - 17<br />

<br />

dy


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.4<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Evaluate the centroid coordinates.<br />

xA Qy<br />

2 b<br />

ab a<br />

x <br />

3 4<br />

Q<br />

yA x<br />

2<br />

ab ab<br />

y <br />

3 10<br />

x<br />

<br />

3<br />

4<br />

a<br />

3<br />

y <br />

10<br />

b<br />

5 - 18


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Theorems of Pappus-Guldinus<br />

• Surface of revolution is generated by rotating a<br />

plane curve about a fixed axis.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Area of a surface of revolution is<br />

equal to the length of the generating<br />

curve times the distance traveled by<br />

the centroid through the rotation.<br />

A <br />

2<br />

yL<br />

5 - 19


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Theorems of Pappus-Guldinus<br />

• Body of revolution is generated by rotating a plane<br />

area about a fixed axis.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Volume of a body of revolution is<br />

equal to the generating area times<br />

the distance traveled by the centroid<br />

through the rotation.<br />

V <br />

2<br />

y A<br />

5 - 20


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.7<br />

The outside diameter of a pulley is 0.8<br />

m, and the cross section of its rim is as<br />

shown. Knowing that the pulley is<br />

made of steel and that the density of<br />

steel is<br />

7. 8510<br />

determine the mass and weight of the<br />

rim.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

3<br />

kg<br />

m<br />

3<br />

SOLUTION:<br />

• Apply the theorem of Pappus-Guldinus<br />

to evaluate the volumes or revolution<br />

<strong>for</strong> the rectangular rim section and the<br />

inner cutout section.<br />

• Multiply by density and acceleration<br />

to get the mass and acceleration.<br />

5 - 21


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.7<br />

SOLUTION:<br />

• Apply the theorem of Pappus-Guldinus<br />

to evaluate the volumes or revolution <strong>for</strong><br />

the rectangular rim section and the inner<br />

cutout section.<br />

• Multiply by density and acceleration to<br />

get the mass and acceleration.<br />

3 3 639 3 3 <br />

7.<br />

8510<br />

kg m 7.<br />

6510<br />

mm 10<br />

m mm <br />

<br />

<br />

2 <br />

60.<br />

0 kg 9.<br />

81m<br />

s<br />

m V <br />

m 60.<br />

0 kg<br />

W mg <br />

W 589 N<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

5 - 22


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Distributed Loads on Beams<br />

W<br />

OP L<br />

<br />

wdx<br />

dA A<br />

0<br />

W<br />

<br />

<br />

L<br />

OPAxdA xA<br />

0<br />

<br />

xdW<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• A distributed load is represented by plotting the load<br />

per unit length, w (N/m) . The total load is equal to<br />

the area under the load curve.<br />

• A distributed load can be replace by a concentrated<br />

load with a magnitude equal to the area under the<br />

load curve and a line of action passing through the<br />

area centroid.<br />

5 - 23


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.9<br />

A beam supports a distributed load as<br />

shown. Determine the equivalent<br />

concentrated load and the reactions at<br />

the supports.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

SOLUTION:<br />

• The magnitude of the concentrated load<br />

is equal to the total load or the area under<br />

the curve.<br />

• The line of action of the concentrated<br />

load passes through the centroid of the<br />

area under the curve.<br />

• Determine the support reactions by<br />

summing moments about the beam<br />

ends.<br />

5 - 24


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.9<br />

SOLUTION:<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• The magnitude of the concentrated load is equal to<br />

the total load or the area under the curve.<br />

F 18.<br />

0 kN<br />

• The line of action of the concentrated load passes<br />

through the centroid of the area under the curve.<br />

63 kN m<br />

X <br />

X<br />

3.<br />

5 m<br />

18 kN<br />

5 - 25


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.9<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Determine the support reactions by summing<br />

moments about the beam ends.<br />

M A y<br />

6 m<br />

18 kN3.5<br />

m<br />

0<br />

0 : B<br />

<br />

M B<br />

y<br />

By<br />

10.<br />

5<br />

kN<br />

6 m<br />

18 kN6<br />

m 3.5<br />

m<br />

0<br />

0 : A<br />

<br />

Ay<br />

<br />

7.<br />

5<br />

kN<br />

5 - 26


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Center of Gravity of a 3D Body: Centroid of a Volume<br />

• Center of gravity G<br />

<br />

W j W<br />

j<br />

<br />

r<br />

<br />

r<br />

G<br />

G<br />

<br />

W<br />

<br />

<br />

W j r<br />

W<br />

j <br />

<br />

j rW<br />

j <br />

<br />

<br />

dW r W rdW<br />

W G<br />

<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

<br />

<br />

• Results are independent of body orientation,<br />

xW<br />

xV<br />

<br />

<br />

xdW yW<br />

ydW zW<br />

zdW<br />

• For homogeneous bodies,<br />

W V and dW dV<br />

<br />

<br />

xdV yV<br />

ydV zV<br />

zdV<br />

<br />

<br />

5 - 27


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Centroids of Common 3D Shapes<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

5 - 28


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Composite 3D Bodies<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

• Moment of the total weight concentrated at the<br />

center of gravity G is equal to the sum of the<br />

moments of the weights of the component parts.<br />

X<br />

<br />

W<br />

<br />

<br />

<br />

xW<br />

Y W yW<br />

Z W zW<br />

• For homogeneous bodies,<br />

X<br />

<br />

V<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

xV<br />

Y V yV<br />

Z V zV<br />

5 - 29


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.12<br />

Locate the center of gravity of the<br />

steel machine element. The diameter<br />

of each hole is 1 in.<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

SOLUTION:<br />

• Form the machine element from a<br />

rectangular parallelepiped and a<br />

quarter cylinder and then subtracting<br />

two 1-in. diameter cylinders.<br />

5 - 30


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.12<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

5 - 31


ighth<br />

dition<br />

<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />

Sample Problem 5.12<br />

© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />

X<br />

Y<br />

Z<br />

xV<br />

V<br />

yV<br />

V<br />

zV<br />

V<br />

<br />

<br />

<br />

4 3 <br />

3.<br />

08 in 5.286<br />

in<br />

X<br />

4 3 <br />

5.047 in 5.286<br />

in<br />

Y<br />

4 3 <br />

1.618<br />

in 5.286<br />

in<br />

Z<br />

<br />

<br />

<br />

0.<br />

577<br />

0.<br />

577<br />

0.<br />

577<br />

in.<br />

in.<br />

in.<br />

5 - 32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!