Vector Mechanics for Engineers: Statics
Vector Mechanics for Engineers: Statics
Vector Mechanics for Engineers: Statics
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
CHAPTER<br />
VECTOR MECHANICS FOR ENGINEERS:<br />
STATICS<br />
Ferdinand P. Beer<br />
E. Russell Johnston, Jr.<br />
Lecture Notes:<br />
J. Walt Oler<br />
Texas Tech University<br />
Eighth Edition<br />
Distributed Forces:<br />
Centroids and Centers<br />
of Gravity<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Contents<br />
Introduction<br />
Center of Gravity of a 2D Body<br />
Centroids and First Moments of Areas<br />
and Lines<br />
Centroids of Common Shapes of Areas<br />
Centroids of Common Shapes of Lines<br />
Composite Plates and Areas<br />
Sample Problem 5.1<br />
Determination of Centroids by<br />
Integration<br />
Sample Problem 5.4<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
Theorems of Pappus-Guldinus<br />
Sample Problem 5.7<br />
Distributed Loads on Beams<br />
Sample Problem 5.9<br />
Center of Gravity of a 3D Body:<br />
Centroid of a Volume<br />
Centroids of Common 3D Shapes<br />
Composite 3D Bodies<br />
Sample Problem 5.12<br />
5 - 2
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Introduction<br />
• The earth exerts a gravitational <strong>for</strong>ce on each of the particles<br />
<strong>for</strong>ming a body. These <strong>for</strong>ces can be replace by a single<br />
equivalent <strong>for</strong>ce equal to the weight of the body and applied<br />
at the center of gravity <strong>for</strong> the body.<br />
• The centroid of an area is analogous to the center of<br />
gravity of a body. The concept of the first moment of an<br />
area is used to locate the centroid.<br />
• Determination of the area of a surface of revolution and<br />
the volume of a body of revolution are accomplished<br />
with the Theorems of Pappus-Guldinus.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
5 - 3
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Center of Gravity of a 2D Body<br />
• Center of gravity of a plate<br />
<br />
<br />
M<br />
M<br />
y<br />
y<br />
xW<br />
yW<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
xW<br />
x dW<br />
yW<br />
y dW<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Center of gravity of a wire<br />
5 - 4
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Centroids and First Moments of Areas and Lines<br />
• Centroid of an area<br />
x<br />
xW<br />
<br />
Atxt xA<br />
x dA<br />
yA<br />
<br />
x dW<br />
first<br />
<br />
<br />
first<br />
dA<br />
Q<br />
y dA Q<br />
y<br />
moment with<br />
x<br />
moment with<br />
respect to<br />
respect to<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
y<br />
x<br />
• Centroid of a line<br />
x<br />
xW<br />
x dW<br />
Laxa xL<br />
x dL<br />
yL<br />
y dL<br />
dL<br />
5 - 5
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
First Moments of Areas and Lines<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• An area is symmetric with respect to an axis BB’<br />
if <strong>for</strong> every point P there exists a point P’ such<br />
that PP’ is perpendicular to BB’ and is divided<br />
into two equal parts by BB’.<br />
• The first moment of an area with respect to a<br />
line of symmetry is zero.<br />
• If an area possesses a line of symmetry, its<br />
centroid lies on that axis<br />
• If an area possesses two lines of symmetry, its<br />
centroid lies at their intersection.<br />
• An area is symmetric with respect to a center O<br />
if <strong>for</strong> every element dA at (x,y) there exists an<br />
area dA’ of equal area at (-x,-y).<br />
• The centroid of the area coincides with the<br />
center of symmetry.<br />
5 - 6
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Centroids of Common Shapes of Areas<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
5 - 7
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Centroids of Common Shapes of Lines<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
5 - 8
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Composite Plates and Areas<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Composite plates<br />
X<br />
Y<br />
<br />
<br />
W<br />
W<br />
<br />
<br />
<br />
<br />
xW<br />
yW<br />
• Composite area<br />
X<br />
Y<br />
<br />
<br />
A <br />
A <br />
<br />
<br />
x A<br />
yA<br />
5 - 9
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.1<br />
For the plane area shown, determine<br />
the first moments with respect to the<br />
x and y axes and the location of the<br />
centroid.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
SOLUTION:<br />
• Divide the area into a triangle, rectangle,<br />
and semicircle with a circular cutout.<br />
• Calculate the first moments of each area<br />
with respect to the axes.<br />
• Find the total area and first moments of<br />
the triangle, rectangle, and semicircle.<br />
Subtract the area and first moment of the<br />
circular cutout.<br />
• Compute the coordinates of the area<br />
centroid by dividing the first moments by<br />
the total area.<br />
5 - 10
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.1<br />
• Find the total area and first moments of the<br />
triangle, rectangle, and semicircle. Subtract the<br />
area and first moment of the circular cutout.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
Q<br />
Q<br />
x<br />
y<br />
506.<br />
210<br />
<br />
757.<br />
7<br />
10<br />
3<br />
3<br />
mm<br />
mm<br />
3<br />
3<br />
5 - 11
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.1<br />
• Compute the coordinates of the area<br />
centroid by dividing the first moments by<br />
the total area.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
X<br />
Y<br />
<br />
x A<br />
<br />
A<br />
<br />
y A<br />
<br />
A<br />
<br />
757.<br />
7<br />
10<br />
13.82810<br />
<br />
X<br />
506.<br />
2<br />
13.82810<br />
Y<br />
3<br />
3<br />
54.<br />
8<br />
10<br />
3<br />
3<br />
36.<br />
6<br />
mm<br />
mm<br />
mm<br />
mm<br />
3<br />
2<br />
mm<br />
3<br />
2<br />
mm<br />
5 - 12
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Determination of Centroids by Integration<br />
xA<br />
yA<br />
<br />
<br />
<br />
<br />
xA<br />
yA<br />
xdA<br />
ydA<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
x<br />
x<br />
y<br />
y<br />
2<br />
<br />
<br />
el<br />
dA<br />
ydx el<br />
x dxdy<br />
y dxdy<br />
dA<br />
ydx xA<br />
yA<br />
a x<br />
2<br />
y dA<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
<br />
<br />
<br />
<br />
x<br />
y<br />
el<br />
el<br />
dA<br />
dA<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
• Double integration to find the first moment<br />
may be avoided by defining dA as a thin<br />
rectangle or strip.<br />
x<br />
y<br />
el<br />
el<br />
dA<br />
axdx axdx xA<br />
yA<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
x<br />
y<br />
el<br />
el<br />
dA<br />
2r<br />
1<br />
cos<br />
<br />
3 2<br />
dA<br />
2r<br />
1<br />
sin<br />
<br />
3 2<br />
r<br />
r<br />
2<br />
2<br />
<br />
d<br />
<br />
<br />
<br />
d<br />
<br />
<br />
5 - 13
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.4<br />
Determine by direct integration the<br />
location of the centroid of a parabolic<br />
spandrel.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
SOLUTION:<br />
• Determine the constant k.<br />
• Evaluate the total area.<br />
• Using either vertical or horizontal<br />
strips, per<strong>for</strong>m a single integration to<br />
find the first moments.<br />
• Evaluate the centroid coordinates.<br />
5 - 14
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.4<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
SOLUTION:<br />
• Determine the constant k.<br />
y<br />
b<br />
y<br />
<br />
k<br />
a<br />
b<br />
x<br />
k a<br />
<br />
2<br />
2<br />
2<br />
x<br />
2<br />
<br />
k<br />
or<br />
<br />
a<br />
b<br />
x<br />
2<br />
<br />
• Evaluate the total area.<br />
A dA<br />
<br />
<br />
<br />
ab<br />
<br />
3<br />
y dx <br />
a<br />
<br />
0<br />
a<br />
b<br />
2<br />
x<br />
2<br />
b<br />
dx<br />
a<br />
1 2<br />
y<br />
b<br />
<br />
<br />
a<br />
1 2<br />
2<br />
x<br />
3<br />
<br />
<br />
a<br />
3 <br />
0<br />
5 - 15
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.4<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Using vertical strips, per<strong>for</strong>m a single integration<br />
to find the first moments.<br />
Q<br />
Q<br />
y<br />
x<br />
<br />
<br />
<br />
x<br />
y<br />
el<br />
b<br />
<br />
<br />
a<br />
<br />
2<br />
el<br />
2<br />
b<br />
<br />
<br />
2a<br />
dA <br />
x<br />
4<br />
4<br />
4<br />
<br />
<br />
<br />
5<br />
x<br />
5<br />
a<br />
0<br />
dA <br />
<br />
<br />
<br />
<br />
<br />
a<br />
0<br />
xydx<br />
y<br />
2<br />
2<br />
a b<br />
<br />
4<br />
ydx<br />
<br />
2<br />
ab<br />
<br />
10<br />
a<br />
<br />
0<br />
<br />
b<br />
x<br />
a<br />
a<br />
<br />
0<br />
2<br />
1 b<br />
<br />
2 a<br />
x<br />
2<br />
2<br />
x<br />
<br />
dx<br />
<br />
2<br />
<br />
<br />
<br />
2<br />
dx<br />
5 - 16
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.4<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Or, using horizontal strips, per<strong>for</strong>m a single<br />
integration to find the first moments.<br />
Q<br />
Q<br />
y<br />
x<br />
<br />
<br />
<br />
<br />
<br />
1<br />
2<br />
<br />
b<br />
<br />
0<br />
x<br />
b<br />
<br />
0<br />
y<br />
el<br />
dA <br />
<br />
a<br />
<br />
<br />
el<br />
2<br />
dA <br />
<br />
a<br />
ay<br />
<br />
b<br />
1 2<br />
a x<br />
2<br />
2<br />
a<br />
<br />
b<br />
<br />
y<br />
ax y<br />
3<br />
2<br />
ax dy<br />
2<br />
dy<br />
a b<br />
ydy<br />
<br />
<br />
4<br />
<br />
<br />
2<br />
ab<br />
dy<br />
<br />
10<br />
<br />
b<br />
<br />
0<br />
a<br />
2<br />
x<br />
2<br />
a<br />
y<br />
a <br />
b<br />
1 2<br />
2<br />
y<br />
dy<br />
1 2<br />
5 - 17<br />
<br />
dy
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.4<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Evaluate the centroid coordinates.<br />
xA Qy<br />
2 b<br />
ab a<br />
x <br />
3 4<br />
Q<br />
yA x<br />
2<br />
ab ab<br />
y <br />
3 10<br />
x<br />
<br />
3<br />
4<br />
a<br />
3<br />
y <br />
10<br />
b<br />
5 - 18
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Theorems of Pappus-Guldinus<br />
• Surface of revolution is generated by rotating a<br />
plane curve about a fixed axis.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Area of a surface of revolution is<br />
equal to the length of the generating<br />
curve times the distance traveled by<br />
the centroid through the rotation.<br />
A <br />
2<br />
yL<br />
5 - 19
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Theorems of Pappus-Guldinus<br />
• Body of revolution is generated by rotating a plane<br />
area about a fixed axis.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Volume of a body of revolution is<br />
equal to the generating area times<br />
the distance traveled by the centroid<br />
through the rotation.<br />
V <br />
2<br />
y A<br />
5 - 20
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.7<br />
The outside diameter of a pulley is 0.8<br />
m, and the cross section of its rim is as<br />
shown. Knowing that the pulley is<br />
made of steel and that the density of<br />
steel is<br />
7. 8510<br />
determine the mass and weight of the<br />
rim.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
3<br />
kg<br />
m<br />
3<br />
SOLUTION:<br />
• Apply the theorem of Pappus-Guldinus<br />
to evaluate the volumes or revolution<br />
<strong>for</strong> the rectangular rim section and the<br />
inner cutout section.<br />
• Multiply by density and acceleration<br />
to get the mass and acceleration.<br />
5 - 21
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.7<br />
SOLUTION:<br />
• Apply the theorem of Pappus-Guldinus<br />
to evaluate the volumes or revolution <strong>for</strong><br />
the rectangular rim section and the inner<br />
cutout section.<br />
• Multiply by density and acceleration to<br />
get the mass and acceleration.<br />
3 3 639 3 3 <br />
7.<br />
8510<br />
kg m 7.<br />
6510<br />
mm 10<br />
m mm <br />
<br />
<br />
2 <br />
60.<br />
0 kg 9.<br />
81m<br />
s<br />
m V <br />
m 60.<br />
0 kg<br />
W mg <br />
W 589 N<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
5 - 22
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Distributed Loads on Beams<br />
W<br />
OP L<br />
<br />
wdx<br />
dA A<br />
0<br />
W<br />
<br />
<br />
L<br />
OPAxdA xA<br />
0<br />
<br />
xdW<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• A distributed load is represented by plotting the load<br />
per unit length, w (N/m) . The total load is equal to<br />
the area under the load curve.<br />
• A distributed load can be replace by a concentrated<br />
load with a magnitude equal to the area under the<br />
load curve and a line of action passing through the<br />
area centroid.<br />
5 - 23
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.9<br />
A beam supports a distributed load as<br />
shown. Determine the equivalent<br />
concentrated load and the reactions at<br />
the supports.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
SOLUTION:<br />
• The magnitude of the concentrated load<br />
is equal to the total load or the area under<br />
the curve.<br />
• The line of action of the concentrated<br />
load passes through the centroid of the<br />
area under the curve.<br />
• Determine the support reactions by<br />
summing moments about the beam<br />
ends.<br />
5 - 24
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.9<br />
SOLUTION:<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• The magnitude of the concentrated load is equal to<br />
the total load or the area under the curve.<br />
F 18.<br />
0 kN<br />
• The line of action of the concentrated load passes<br />
through the centroid of the area under the curve.<br />
63 kN m<br />
X <br />
X<br />
3.<br />
5 m<br />
18 kN<br />
5 - 25
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.9<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Determine the support reactions by summing<br />
moments about the beam ends.<br />
M A y<br />
6 m<br />
18 kN3.5<br />
m<br />
0<br />
0 : B<br />
<br />
M B<br />
y<br />
By<br />
10.<br />
5<br />
kN<br />
6 m<br />
18 kN6<br />
m 3.5<br />
m<br />
0<br />
0 : A<br />
<br />
Ay<br />
<br />
7.<br />
5<br />
kN<br />
5 - 26
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Center of Gravity of a 3D Body: Centroid of a Volume<br />
• Center of gravity G<br />
<br />
W j W<br />
j<br />
<br />
r<br />
<br />
r<br />
G<br />
G<br />
<br />
W<br />
<br />
<br />
W j r<br />
W<br />
j <br />
<br />
j rW<br />
j <br />
<br />
<br />
dW r W rdW<br />
W G<br />
<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
<br />
<br />
• Results are independent of body orientation,<br />
xW<br />
xV<br />
<br />
<br />
xdW yW<br />
ydW zW<br />
zdW<br />
• For homogeneous bodies,<br />
W V and dW dV<br />
<br />
<br />
xdV yV<br />
ydV zV<br />
zdV<br />
<br />
<br />
5 - 27
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Centroids of Common 3D Shapes<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
5 - 28
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Composite 3D Bodies<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
• Moment of the total weight concentrated at the<br />
center of gravity G is equal to the sum of the<br />
moments of the weights of the component parts.<br />
X<br />
<br />
W<br />
<br />
<br />
<br />
xW<br />
Y W yW<br />
Z W zW<br />
• For homogeneous bodies,<br />
X<br />
<br />
V<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
xV<br />
Y V yV<br />
Z V zV<br />
5 - 29
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.12<br />
Locate the center of gravity of the<br />
steel machine element. The diameter<br />
of each hole is 1 in.<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
SOLUTION:<br />
• Form the machine element from a<br />
rectangular parallelepiped and a<br />
quarter cylinder and then subtracting<br />
two 1-in. diameter cylinders.<br />
5 - 30
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.12<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
5 - 31
ighth<br />
dition<br />
<strong>Vector</strong> <strong>Mechanics</strong> <strong>for</strong> <strong>Engineers</strong>: <strong>Statics</strong><br />
Sample Problem 5.12<br />
© 2007 The McGraw-Hill Companies, Inc. All rights reserved.<br />
X<br />
Y<br />
Z<br />
xV<br />
V<br />
yV<br />
V<br />
zV<br />
V<br />
<br />
<br />
<br />
4 3 <br />
3.<br />
08 in 5.286<br />
in<br />
X<br />
4 3 <br />
5.047 in 5.286<br />
in<br />
Y<br />
4 3 <br />
1.618<br />
in 5.286<br />
in<br />
Z<br />
<br />
<br />
<br />
0.<br />
577<br />
0.<br />
577<br />
0.<br />
577<br />
in.<br />
in.<br />
in.<br />
5 - 32