10.08.2013 Views

Thesis Defence (pdf) - Department of Aerospace Engineering ...

Thesis Defence (pdf) - Department of Aerospace Engineering ...

Thesis Defence (pdf) - Department of Aerospace Engineering ...

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

Middle East Technical University<br />

<strong>Aerospace</strong> <strong>Engineering</strong> <strong>Department</strong><br />

Effects <strong>of</strong> the Jacobian Evaluation on<br />

Direct Solutions <strong>of</strong> the Euler Equations<br />

by Ömer Onur<br />

Supervisor: Assoc. Pr<strong>of</strong>. Dr. Sinan Eyi


Outline<br />

Introduction<br />

Objectives<br />

Flow Analysis<br />

Accuracy Analysis & Results<br />

Performance Analysis & Results<br />

Conclusion<br />

Recommendations<br />

Ömer Onur - AE500 Presentation<br />

2


Introduction<br />

Ömer Onur - AE500 Presentation<br />

Steady flow computations can be realized either by<br />

iterative means, means,<br />

or using direct methods. methods<br />

Although iterative solvers make an unsteady flow<br />

analysis with an advance in time, time,<br />

with direct methods<br />

a steady flow analysis is possible.<br />

Low memory requirements made the iterative<br />

methods popular untill the development <strong>of</strong> recent<br />

advanced computers.<br />

Solving the whole domain at once makes direct<br />

solvers stable, and faster convergence is possible<br />

due to small number <strong>of</strong> iterations. iterations<br />

In CFD applications like design optimization, optimization,<br />

and<br />

flutter analysis, analysis,<br />

direct methods are preferable.<br />

3


Introduction (Cont.)<br />

Ömer Onur - AE500 Presentation<br />

Direct solvers require the calculation <strong>of</strong> Jacobian<br />

matrix.<br />

Derivation <strong>of</strong> analytical nalytical Jacobians becomes more<br />

difficult as the discretization <strong>of</strong> governing equations<br />

become more complex.<br />

The best alternative is to compute the Jacobians<br />

numerically as accurate as possible.<br />

4


Objectives<br />

Ömer Onur - AE500 Presentation<br />

To develop a direct flow solver code<br />

To compare the accuracy <strong>of</strong> numerical and analytical<br />

Jacobians used in direct flow solvers<br />

To investigate their effects on the performance<br />

(convergence convergence and CPU time) <strong>of</strong> direct flow solvers<br />

To improve the efficiency <strong>of</strong> Jacobian matrix solution<br />

5


Flow Analysis<br />

Ömer Onur - AE500 Presentation<br />

Flow code is a 2-D planar/axisymmetric Euler solver:<br />

– 1st/2nd order finite-volume discretizations<br />

– Steger-Warming, Van Leer, Roe upwind flux splitting<br />

schemes<br />

– Newton's method<br />

– both numerical and analytical Jacobian matrices<br />

– UMFPACK sparse matrix solver package<br />

Different geometries, geometries,<br />

grid sizes and BCs are<br />

considered.<br />

6


Flow Analysis (Cont.)<br />

Ömer Onur - AE500 Presentation<br />

Steady, 2-D planar/axisymmetric Euler equations in<br />

generalized coordinates:<br />

∂F(W ˆ ˆ ) ∂G(W<br />

ˆ ˆ )<br />

+ + σ H(W ˆ ˆ ) = 0<br />

∂ξ ∂η<br />

ˆF = J<br />

⎡ ρU ⎤<br />

⎢<br />

ρuU + ξ p<br />

⎥<br />

⎢ ρvU + ξ p ⎥<br />

−1<br />

⎢ x ⎥<br />

y<br />

⎢ ⎥<br />

⎣( ρet<br />

+ p)U ⎦<br />

ˆG = J<br />

⎡ ρV ⎤<br />

⎢<br />

ρuV + η p<br />

⎥<br />

−1<br />

⎢ x ⎥<br />

⎢ ρvV + η p ⎥<br />

y<br />

⎢ ⎥<br />

⎣( ρet<br />

+ p)V ⎦<br />

where<br />

ˆH = J<br />

−1<br />

ˆW = J<br />

−1<br />

⎡ρ⎤ ⎢<br />

ρu<br />

⎥<br />

⎢ ⎥<br />

⎢ρv⎥ ⎢ ⎥<br />

ρe<br />

⎣ t ⎦<br />

⎡ρv⎤ ⎢<br />

1 ρuv<br />

⎥<br />

⎢ ⎥<br />

2<br />

y ⎢ρv⎥ ⎢ ⎥<br />

⎢( ρe<br />

+ p)v⎥<br />

⎣ t ⎦<br />

7


Flow Analysis (Cont.)<br />

Newton’s method:<br />

R(W ˆ ˆ ) = 0<br />

n<br />

ˆR ˆ n ˆ n<br />

⎛ ∂ ⎞<br />

⎜ ˆW<br />

⎟<br />

⎝∂⎠ (Discretized Residual)<br />

⋅ ∆W<br />

= −R(W<br />

)<br />

[Jacobian Matrix]<br />

Ömer Onur - AE500 Presentation<br />

ˆ +<br />

W = Wˆ + ∆Wˆ<br />

n 1 n n<br />

8


Flow Analysis (Cont.)<br />

Analytical<br />

Ömer Onur - AE500 Presentation<br />

Analytical Jacobians:<br />

Jacobians<br />

– Derivation by hand / symbolic manipulators for simple<br />

flow models<br />

– Difficult derivation for complex flow models<br />

Numerical Jacobians:<br />

Jacobians<br />

∂Rˆ<br />

i<br />

∂ ˆW<br />

R(Wˆ ˆ<br />

i + ε ⋅e j ) − R(W) i<br />

=<br />

ε<br />

j<br />

– Good choice <strong>of</strong> finite-difference perturbation magnitude ε<br />

– Usage <strong>of</strong> higher computer precision<br />

9


Accuracy Analysis<br />

Ömer Onur - AE500 Presentation<br />

Error analysis:<br />

– Condition error [loss <strong>of</strong> numerical precision]<br />

– Truncation error [neglected terms in the Taylor series]<br />

– Total error<br />

2<br />

2⋅ER ∂ f ( ξ ) ε<br />

E TOTAL( ε ) = E C( ε ) + E T ( ε ) = + ⋅ 2<br />

ε ∂x<br />

2<br />

ε> & ε >> E T>><br />

ε opt<br />

E TOTALmin<br />

10


Accuracy Analysis (Cont ( Cont.) .)<br />

Optimum perturbation magnitude analysis:<br />

∂E ( ε ) 2⋅E 1<br />

2<br />

TOTAL R ∂ f( ξ )<br />

=− + ⋅ = 0<br />

∂ε ε<br />

2 2 ∂x<br />

2<br />

Ömer Onur - AE500 Presentation<br />

= 2 ⋅<br />

∂<br />

ER<br />

f( ξ )<br />

2<br />

∂x<br />

OPT 2<br />

– E R can be taken as ε M or simply found by subtraction <strong>of</strong><br />

double and single precision calculations <strong>of</strong> flux values.<br />

– Second derivative <strong>of</strong> flux can be calculated using a<br />

forward/backward finite difference method with double<br />

precision or taken as equal to 1.<br />

– Optimum perturbation magnitude is also found by trialerror<br />

ε<br />

11


Accuracy Results<br />

Ömer Onur - AE500 Presentation<br />

Error in numerical flux Jacobians are analyzed for<br />

– 15º ramp geometry with 33x25 grid<br />

– M=2.0 free-stream flow<br />

– inlet-outlet, symmetry and wall BCs<br />

Jacobians are calculated using<br />

– already converged solution<br />

– 1st order S-W flux splitting<br />

Different perturbation magnitude values are<br />

investigated for both single and double precision.<br />

Optimum perturbation magnitude analysis is<br />

performed for single precision.<br />

12


TotalError between ResidualJacobians (∂ R/∂ W)<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 1 10 -5<br />

Accuracy Results (Cont.)<br />

Effect <strong>of</strong> Control on Total Errors for Residual Jacobians<br />

[Single Precision, Forward Differencing]<br />

10 -1<br />

ε =7×10 -4<br />

10 -3<br />

10 -5<br />

Perturbation Magnitude (ε)<br />

w/o Cont. (Max. E)<br />

wCont.(Max.E)<br />

w/o Cont. (Avg. E)<br />

w Cont. (Avg. E)<br />

10 -7<br />

10 -9<br />

TotalError between ResidualJacobians (∂ R/∂ W)<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 1 10 -5<br />

10 -1<br />

Ömer Onur - AE500 Presentation<br />

Effect <strong>of</strong> Control on Total Errors for Residual Jacobians<br />

[Single Precision,Backward Differencing]<br />

ε =7×10 -4<br />

10 -3<br />

10 -5<br />

Perturbation Magnitude (ε)<br />

w/o Cont. (Max. E)<br />

wCont.(Max.E)<br />

w/o Cont. (Avg. E)<br />

w Cont. (Avg. E)<br />

10 -7<br />

13<br />

10 -9


TotalMax. Error between Jacobians<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 1 10 -3<br />

Accuracy Results (Cont.)<br />

Change <strong>of</strong> Total Maximum Error with Perturbation Magnitude<br />

[Single Precision, Forward Differencing]<br />

10 -1<br />

ε =7×10 -4<br />

10 -3<br />

10 -5<br />

Perturbation Magnitude (ε)<br />

10 -7<br />

∂ F + / ∂ W<br />

∂ F - / ∂ W<br />

∂ G + / ∂ W<br />

∂ G - / ∂ W<br />

∂ R pl / ∂ W<br />

10 -9<br />

Total Avg. Error between Jacobians<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 1 10 -5<br />

10 -1<br />

Ömer Onur - AE500 Presentation<br />

Change <strong>of</strong> Total Average Error with Perturbation Magnitude<br />

[Single Precision, Forward Differencing]<br />

ε =7×10 -4<br />

10 -3<br />

10 -5<br />

Perturbation Magnitude (ε)<br />

10 -7<br />

∂ F + / ∂ W<br />

∂ F - / ∂ W<br />

∂ G + / ∂ W<br />

∂ G - / ∂ W<br />

∂ R pl / ∂ W<br />

14<br />

10 -9


TotalError between ResidualJacobians (∂ R/∂ W)<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 1 10 -5<br />

Accuracy Results (Cont.)<br />

Effect <strong>of</strong> Axisymmetry on Total Errors for Residual Jacobians<br />

[Single Precision, Forward Differencing]<br />

10 -1<br />

ε =7×10 -4<br />

10 -3<br />

10 -5<br />

Perturbation Magnitude (ε)<br />

Planar (Avg. E)<br />

Axis ym. (Avg. E)<br />

Planar (Max. E)<br />

Axisym. (Max. E)<br />

10 -7<br />

10 -9<br />

Ömer Onur - AE500 Presentation<br />

Optimum Perturbation Magnitude (εopt) Analysis<br />

for Single precision<br />

Trial-Error Procedure Optimization Method<br />

Flux εopt (max. error) εopt (avg. error) εopt (avg.) εopt ( εM)<br />

F +<br />

9.8 . 10 -4<br />

6.4 . 10 -4<br />

7.7 . 10 -4<br />

F -<br />

G<br />

- - -<br />

+<br />

1.5 . 10 -5<br />

6.4 . 10 -4<br />

7.9 . 10 -4<br />

G -<br />

1.5 . 10 -5<br />

6.4 . 10 -4<br />

7.8 . 10 -4<br />

3.5.10 -4<br />

For single precision;<br />

ε opt ≈ 7x10 -4<br />

15


TotalError between ResidualJacobians (∂ R/∂ W)<br />

10 3<br />

10 1<br />

10 -1<br />

10 -3<br />

10 -5<br />

10 -7<br />

10 -2 10 -9<br />

Accuracy Results (Cont.)<br />

Effect <strong>of</strong> Control on Total Errors for Residual Jacobians<br />

[Double Precision, Forward Differencing]<br />

10 -4<br />

10 -6<br />

ε =4×10 -8<br />

10 -8<br />

Perturbation Magnitude (ε)<br />

w/o Cont. (Max. E)<br />

wCont.(Max.E)<br />

w/o Cont. (Avg. E)<br />

w Cont. (Avg. E)<br />

10 -10<br />

10 -12<br />

TotalError between ResidualJacobians (∂ R/∂ W)<br />

10 3<br />

10 1<br />

10 -1<br />

10 -3<br />

10 -5<br />

10 -7<br />

10 -2 10 -9<br />

10 -4<br />

Ömer Onur - AE500 Presentation<br />

Effect <strong>of</strong> Control on Total Errors for Residual Jacobians<br />

[Double Precision, Backward Differencing]<br />

10 -6<br />

ε =4×10 -8<br />

10 -8<br />

Perturbation Magnitude (ε)<br />

w/o Cont. (Max. E)<br />

wCont.(Max.E)<br />

w/o Cont. (Avg. E)<br />

w Cont. (Avg. E)<br />

10 -10<br />

16<br />

10 -12


TotalMax. Error between Jacobians<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -8<br />

10 -2 10 -9<br />

Accuracy Results (Cont.)<br />

Change <strong>of</strong> Total Maximum Error with Perturbation Magnitude<br />

[Double Precision, Forward Differencing]<br />

10 -4<br />

10 -6<br />

ε =4×10 -8<br />

10 -8<br />

Perturbation Magnitude (ε)<br />

10 -10<br />

∂ F + / ∂ W<br />

∂ F - / ∂ W<br />

∂ G + / ∂ W<br />

∂ G - / ∂ W<br />

∂ R pl / ∂ W<br />

10 -12<br />

TotalAvg. Error between Jacobians<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -8<br />

10 -9<br />

10 -2 10 -10<br />

10 -4<br />

Ömer Onur - AE500 Presentation<br />

Change <strong>of</strong> Total Average Error with Perturbation Magnitude<br />

[Double Precision, Forward Differencing]<br />

10 -6<br />

ε =4×10 -8<br />

10 -8<br />

Perturbation Magnitude (ε)<br />

10 -10<br />

∂ F + / ∂ W<br />

∂ F - / ∂ W<br />

∂ G + / ∂ W<br />

∂ G - / ∂ W<br />

∂ R pl / ∂ W<br />

17<br />

10 -12


TotalError between ResidualJacobians (∂ R/∂ W)<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -8<br />

10 -2 10 -9<br />

Accuracy Results (Cont.)<br />

Effect <strong>of</strong> Axisymmetry on Total Errors for Residual Jacobians<br />

[Double Precision, Forward Differencing]<br />

10 -4<br />

10 -6<br />

ε =4×10 -8<br />

10 -8<br />

Perturbation Magnitude (ε)<br />

Planar (Avg. E)<br />

Axis ym. (Avg. E)<br />

Planar (Max. E)<br />

Axisym. (Max. E)<br />

10 -10<br />

10 -12<br />

Ömer Onur - AE500 Presentation<br />

Optimum Perturbation Magnitude (εopt) Analysis<br />

for Double precision<br />

Trial-Error Procedure Optimization Method<br />

Flux εopt (max. error) εopt (avg. error) εopt<br />

F +<br />

4 . 10 -8<br />

4 . 10 -8<br />

F -<br />

- -<br />

G +<br />

4 . 10 -8<br />

4 . 10 -8<br />

G -<br />

4 . 10 -8<br />

4 . 10 -8<br />

For double precision;<br />

ε opt ≈ 4x10 -8<br />

1.5 . 10 -8<br />

18


Performance Analysis<br />

Ömer Onur - AE500 Presentation<br />

Jacobian Matrix structure:<br />

– a huge square matrix even for a simple geometry<br />

– composed <strong>of</strong> either analytical or numerical Jacobians<br />

– most <strong>of</strong> the elements are zero<br />

Matrix solver:<br />

– Direct full matrix solvers have very high storage and<br />

memory costs.<br />

– Storage <strong>of</strong> only non-zero elements improve the<br />

efficiency greatly.<br />

Sparse Matrix Solvers<br />

19


Ömer Onur - AE500 Presentation<br />

Performance Analysis (Cont.)<br />

Matrix Solution Strategies:<br />

– Frozen Jacobian [using same Jacobian matrix in<br />

subsequent iterations]<br />

– Good initial guess [a time-like term addition to the Jacobian<br />

matrix diagonal]<br />

0<br />

n<br />

ˆ<br />

R(W ˆ )<br />

⎛ 1 ∂ R ⎞<br />

n 0<br />

n n<br />

2<br />

⎜ [] I + ∆Wˆ<br />

= −R(W<br />

ˆ ) ∆t = ∆t<br />

∆t ∂Wˆ<br />

⎟<br />

ˆ n<br />

R(W )<br />

⎝ ⎠<br />

2<br />

Δt>><br />

Original Newton’s method<br />

20


Performance Results<br />

Ömer Onur - AE500 Presentation<br />

Test Case Results:<br />

Test Case Results:<br />

– Convergence and CPU time performance <strong>of</strong> the direct<br />

solver is analyzed for<br />

15º ramp geometry with 33x25 grid<br />

M=2.0 free-stream flow<br />

inlet-outlet, symmetry and wall BCs<br />

– Jacobians are calculated using<br />

1st order S-W flux splitting<br />

– Calculations are realized with forward and backward<br />

differencing in single and double precision.<br />

– Effect <strong>of</strong> perturbation magnitude ε is investigated<br />

– Effect <strong>of</strong> Jacobian freezing and time-like diagonal term<br />

addition are analyzed.<br />

21


Performance Results (Cont Cont.) .)<br />

33x25 Grid for Ramp geometry<br />

Ömer Onur - AE500 Presentation<br />

– 34x26 cells<br />

– 4 flow variables<br />

– total 3536<br />

variables<br />

– Jacobian matrix<br />

has 35362 ≈ 12.5<br />

million elements<br />

Solver Storage CPU time<br />

Full Matrix<br />

LU<br />

240 MB 26 h<br />

Sparse<br />

Matrix<br />

1.2 MB 20 s<br />

22


Performance Results (Cont Cont.) .)<br />

Mach Contour for Ramp geometry<br />

[2-D planar, Double Precision, 1st order S-W]<br />

1.25731<br />

1.95049<br />

1.35633<br />

1.45536<br />

1.50487<br />

1.75244<br />

1.55439<br />

1.65341<br />

1.75244<br />

1.55439<br />

1.6039<br />

1.45536<br />

1.70292<br />

1.35633<br />

1.80195<br />

Ömer Onur - AE500 Presentation<br />

Mach Contour for Ramp geometry<br />

[2-D axisymmetric, Double Precision, 1st order S-W]<br />

1.65341<br />

1.80195<br />

1.90097<br />

1.85146<br />

1.98426<br />

1.93113<br />

1.95049<br />

1.96313<br />

1.98426<br />

1.95049<br />

23<br />

1.97467


Max. Density Residual (R 1 )<br />

10 0<br />

10 -5<br />

10 -10<br />

10 -15<br />

Performance Results (Cont Cont.) .)<br />

Effect <strong>of</strong> ∆t onConvergenceHistory<br />

[2-D planar, Double Precision]<br />

No ∆t<br />

∆t rm =1.5<br />

∆t rm =5.<br />

Full ∆t<br />

AnalyticalJac.<br />

No frz.<br />

10<br />

0 10 20<br />

#<strong>of</strong>iterations<br />

30 40<br />

-20<br />

∆t<br />

CPU Time<br />

(s)<br />

No ∆t NaN<br />

∆trm= 1.5 13.32<br />

∆trm= 5. 22.65<br />

Full ∆t 257.27<br />

Max. Density Res idual (R 1 )<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

10 -14<br />

10 -16<br />

No ∆t<br />

∆t rm =1.5<br />

∆t rm =5.<br />

Full ∆t<br />

Ömer Onur - AE500 Presentation<br />

Effect <strong>of</strong> ∆t onConvergenceHistory<br />

[2-D axisymmetric, Double Precision]<br />

AnalyticalJac.<br />

No frz.<br />

10<br />

0 5 10<br />

#<strong>of</strong>iterations<br />

15 20<br />

-18<br />

∆t<br />

CPU Time<br />

(s)<br />

No ∆t 9.79<br />

∆trm= 1.5 9.84<br />

∆trm= 5. 12.28<br />

Full ∆t 22.59<br />

24


Max. Density Res idual (R 1 )<br />

10 1<br />

10 -1<br />

10 -3<br />

10 -5<br />

10 -7<br />

10 -9<br />

10 -11<br />

10 -13<br />

10 -15<br />

Performance Results (Cont Cont.) .)<br />

EffectOfFreezingonConvergenceHistory<br />

[2-D planar, Double Precision]<br />

No frz.<br />

R frz =1×10 -1<br />

R frz =1×10 -2<br />

R frz =1×10 -4<br />

Analytica l J ac.<br />

∆t rm =1.5<br />

10<br />

0 5 10<br />

#<strong>of</strong>iterations<br />

15 20<br />

-17<br />

Tolerance<br />

CPU Time<br />

(s)<br />

No freeze 13.32<br />

Rfrz= 1x10 -1<br />

12.85<br />

Rfrz= 1x10 -2<br />

12.20<br />

Rfrz= 1x10 -4<br />

12.51<br />

Max. Density Residual (R 1 )<br />

10 1<br />

10 -1<br />

10 -3<br />

10 -5<br />

10 -7<br />

10 -9<br />

10 -11<br />

10 -13<br />

10 -15<br />

No frz.<br />

R frz =1×10 -1<br />

R frz =1×10 -2<br />

R frz =1×10 -4<br />

Ömer Onur - AE500 Presentation<br />

Effect Of Freezing on Convergence History<br />

[2-D axisymmetric, Double Precision]<br />

Analytica l J a c.<br />

No ∆t<br />

10<br />

0 5 10<br />

#<strong>of</strong>iterations<br />

15 20<br />

-17<br />

Tolerance<br />

CPU Time<br />

(s)<br />

No freeze 9.79<br />

Rfrz= 1x10 -1<br />

10.32<br />

Rfrz= 1x10 -2<br />

8.15<br />

Rfrz= 1x10 -4<br />

8.23<br />

25


Max. Density Residual (R 1 )<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

10 -14<br />

Performance Results (Cont Cont.) .)<br />

Convergence History<br />

[2-D planar, Double Precision, Forward Differencing]<br />

An. J a c.<br />

ε =4×10 -4<br />

ε =4×10 -8<br />

ε =4×10 -12<br />

10<br />

0 5 10<br />

#<strong>of</strong>iterations<br />

15<br />

-16<br />

Jacobian<br />

CPU Time<br />

(s)<br />

Analytic 12.69<br />

ε = 4x10 -4<br />

22.05<br />

ε = 4x10 -8<br />

16.27<br />

ε = 4x10 -12<br />

19.11<br />

∆t rm =1.5<br />

R frz =10 -4<br />

Max. Density Residual (R 1 )<br />

10 1<br />

10 -1<br />

10 -3<br />

10 -5<br />

10 -7<br />

10 -9<br />

10 -11<br />

10 -13<br />

10 -15<br />

An. J ac.<br />

ε =4×10 -4<br />

ε =4×10 -8<br />

ε =4×10 -12<br />

Ömer Onur - AE500 Presentation<br />

Convergence History<br />

[2-D a xis ymmetric, Double P re cis ion, Forward Diffe rencing]<br />

∆t rm =0.<br />

R frz =10 -2<br />

10<br />

0 2 4 6 8 10<br />

#<strong>of</strong>iterations<br />

-17<br />

Jacobian<br />

CPU Time<br />

(s)<br />

Analytic 8.25<br />

ε = 4x10 -4<br />

10.06<br />

ε = 4x10 -8<br />

9.72<br />

ε = 4x10 -12<br />

10.08<br />

26


Performance Results (Cont Cont.) .)<br />

Ömer Onur - AE500 Presentation<br />

Different Flux Splitting Schemes:<br />

Different Flux Splitting Schemes:<br />

– Convergence and CPU time performance <strong>of</strong> the direct<br />

solver is analyzed for the test case using<br />

1st order Van Leer/Roe flux splitting<br />

– Jacobians are calculated using<br />

1st order Van Leer/Roe flux splitting numerically<br />

1st order S-W flux splitting analytically<br />

– Optimum perturbation magnitude ε opt is used in the<br />

calculations.<br />

– Calculations are realized with forward and backward<br />

differencing in single and double precision.<br />

– Benefits <strong>of</strong> using the same flux calculation scheme for<br />

both Jacobian and residual calculation are analyzed.<br />

27


Performance Results (Cont Cont.) .)<br />

Mach Contour for Ramp geometry<br />

[2-D planar, Double Precision, 1st order VL]<br />

1.25731<br />

1.95049<br />

1.40585<br />

1.75244<br />

1.55439<br />

1.65341<br />

1.6039<br />

1.50487<br />

1.70292<br />

1.80195<br />

1.35633<br />

Ömer Onur - AE500 Presentation<br />

Mach Contour for Ramp geometry<br />

[2-D axisymmetric, Double Precision, 1st order VL]<br />

1.65341<br />

1.90097<br />

1.85146<br />

1.98426<br />

1.93113<br />

1.95049<br />

1.96313<br />

1.97467<br />

1.93113<br />

28<br />

1.95049


Performance Results (Cont Cont.) .)<br />

Mach Contour for Ramp geometry<br />

[2-D planar, Double Precision, 1st order Roe]<br />

1.25731<br />

1.30682<br />

1.95049<br />

1.45536<br />

1.75244<br />

1.55439<br />

1.65341<br />

1.6039<br />

1.80195<br />

1.45536<br />

1.70292<br />

1.35633<br />

Ömer Onur - AE500 Presentation<br />

Mach Contour for Ramp geometry<br />

[2-D axisymmetric, Double Precision, 1st order Roe]<br />

1.65341<br />

1.93113<br />

1.85146<br />

1.98426<br />

1.90097<br />

1.93113<br />

1.96313<br />

1.96313<br />

1.97467<br />

1.96313<br />

29


Max. Density Residual (R 1 )<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

10 -14<br />

Performance Results (Cont Cont.) .)<br />

Convergence History<br />

[2-D planar, Double Precision, S-W An. Jac.]<br />

Steger-Warming<br />

Va n Le e r<br />

Roe<br />

∆t rm =1.5<br />

R frz =10 -4<br />

10<br />

0 50 100 150<br />

#<strong>of</strong>iterations<br />

-16<br />

FS<br />

CPU Time<br />

(s)<br />

SW 12.69<br />

VL 26.51<br />

Roe 99.62<br />

Max. Density Residual (R 1 )<br />

10 2<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

10 -14<br />

Ömer Onur - AE500 Presentation<br />

Convergence History<br />

[2-D planar, Double Precision, Num. Jac.]<br />

Steger-Warming<br />

Van Leer<br />

Roe<br />

∆t rm =1.5(SW)<br />

∆t rm =2.(VL)<br />

∆t rm =3.(Roe)<br />

R frz =10 -4<br />

ε =4×10 -8<br />

10<br />

0 5 10<br />

#<strong>of</strong>iterations<br />

15 20<br />

-16<br />

FS<br />

CPU Time<br />

(s)<br />

SW 16.27<br />

VL 28.44<br />

Roe 29.40<br />

30


Max. Density Residual (R 1 )<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

10 -14<br />

Performance Results (Cont Cont.) .)<br />

Convergence History<br />

[2-D axisymmetric, Double Precision, S-W An. Jac.]<br />

Steger-Warming<br />

Van Leer<br />

Roe<br />

10<br />

0 50<br />

#<strong>of</strong>iterations<br />

100<br />

-16<br />

FS<br />

CPU Time<br />

(s)<br />

SW 8.25<br />

VL 18.33<br />

Roe 128.81<br />

∆t rm =0.<br />

R frz =10 -2<br />

Max. Density Residual (R 1 )<br />

10 2<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

10 -14<br />

Ömer Onur - AE500 Presentation<br />

Convergence History<br />

[2-D axisymmetric, Double Precision, Num. Jac.]<br />

Steger-Warming<br />

Van Leer<br />

Roe<br />

10<br />

0 5 10<br />

#<strong>of</strong>iterations<br />

-16<br />

FS<br />

CPU Time<br />

(s)<br />

SW 9.72<br />

VL 11.53<br />

Roe 14.99<br />

∆t rm =0.(SW,VL)<br />

∆t rm =1.5(Roe)<br />

R frz =10 -2<br />

ε =4×10 -8<br />

31


Performance Results (Cont Cont.) .)<br />

Ömer Onur - AE500 Presentation<br />

Higher-Order Discretizations:<br />

Higher-Order Discretizations:<br />

– Convergence and CPU time performance <strong>of</strong> the direct<br />

solver is analyzed for the test case using<br />

2nd order S-W/Van Leer/Roe flux splitting<br />

Van Albada limiter<br />

– Jacobians are calculated using<br />

2nd order S-W/Van Leer/Roe flux splitting numerically<br />

– Optimum perturbation magnitude ε opt is used in the<br />

calculations.<br />

– Calculations are realized with forward differencing in<br />

double precision.<br />

32


Performance Results (Cont Cont.) .)<br />

Mach Contour for Ramp geometry<br />

[2-D planar, Double Precision, 2nd order S-W]<br />

1.25731<br />

1.95049<br />

1.30682<br />

1.80195<br />

1.40585<br />

1.80195<br />

1.50487<br />

1.70292<br />

1.85146<br />

1.25731<br />

1.90097<br />

1.40585<br />

Ömer Onur - AE500 Presentation<br />

Mach Contour for Ramp geometry<br />

[2-D axisymmetric, Double Precision, 2nd order S-W]<br />

1.6039<br />

1.75244<br />

1.75244<br />

1.85146<br />

1.96313<br />

1.98426<br />

1.90097<br />

1.93113<br />

1.95049<br />

33


Performance Results (Cont Cont.) .)<br />

Mach Contour for Ramp geometry<br />

[2-D planar, Double Precision, 2nd order VL]<br />

1.95049<br />

1.25731<br />

1.35633<br />

1.50487<br />

1.75244<br />

1.80195<br />

1.45536<br />

1.65341<br />

1.85146<br />

1.25731<br />

1.45536<br />

1.90097<br />

Ömer Onur - AE500 Presentation<br />

Mach Contour for Ramp geometry<br />

[2-D axisymmetric, Double Precision, 2nd order VL]<br />

1.65341<br />

1.75244<br />

1.95049<br />

1.90097<br />

1.85146<br />

1.93113<br />

1.98426<br />

1.93113<br />

34<br />

1.95049<br />

1.93113


Performance Results (Cont Cont.) .)<br />

Mach Contour for Ramp geometry<br />

[2-D planar, Double Precision, 2nd order Roe]<br />

1.25731<br />

1.95049<br />

1.30682<br />

1.75244<br />

1.40585<br />

1.65341<br />

1.55439<br />

1.85146<br />

1.80195<br />

1.25731<br />

1.40585<br />

Ömer Onur - AE500 Presentation<br />

Mach Contour for Ramp geometry<br />

[2-D axisymmetric, Double Precision, 2nd order Roe]<br />

1.65341<br />

1.75244<br />

1.96313<br />

1.85146<br />

1.90097<br />

1.98426<br />

1.93113<br />

1.90097<br />

35<br />

1.95049


Max. Density Residual (R 1 )<br />

10 2<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

10 -14<br />

Performance Results (Cont Cont.) .)<br />

Convergence History<br />

[2-D planar, Double Precision, Num. Jac., Van Albada]<br />

Steger-Warming<br />

Van Leer<br />

Roe<br />

Full ∆t<br />

No Freezing<br />

ε =4×10 -8<br />

10<br />

0 25 50<br />

#<strong>of</strong>iterations<br />

75 100<br />

-16<br />

FS<br />

CPU Time<br />

(s)<br />

SW 194.9<br />

VL 334.67<br />

Roe 335.28<br />

Max. Density Residual (R 1 )<br />

10 2<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

10 -14<br />

Ömer Onur - AE500 Presentation<br />

Convergence History<br />

[2-D axisymmetric, Double Precision, Num. Jac., Van Albada]<br />

Steger-Warming<br />

Van Leer<br />

Roe<br />

Full ∆t<br />

No Freezing<br />

ε =4×10 -8<br />

10<br />

0 25 50<br />

#<strong>of</strong>iterations<br />

75 100<br />

-16<br />

FS<br />

CPU Time<br />

(s)<br />

SW Limit cycle<br />

VL Limit cycle<br />

Roe Limit cycle<br />

36


Performance Results (Cont Cont.) .)<br />

Ömer Onur - AE500 Presentation<br />

Different Geometry and Flow Conditions:<br />

Different Geometry and Flow Conditions:<br />

– Convergence and CPU time performance <strong>of</strong> the direct<br />

solver is analyzed for<br />

bump geometry with 65x17 grid<br />

M=2.0 and M=0.5 free-stream flows<br />

inlet-outlet, symmetry and wall BCs<br />

2nd order Roe flux splitting with Van Albada limiter<br />

– Jacobians are calculated using<br />

2nd order Roe flux splitting numerically<br />

– Optimum perturbation magnitude ε opt is used in the<br />

calculations.<br />

– Calculations are realized with forward differencing in<br />

double precision.<br />

37


Performance Results (Cont Cont.) .)<br />

65x17GridforBumpgeometry<br />

Ömer Onur - AE500 Presentation<br />

38


Performance Results (Cont Cont.) .)<br />

Ömer Onur - AE500 Presentation<br />

39


Max. Density Res idual (R 1 )<br />

10 2<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

Performance Results (Cont Cont.) .)<br />

Convergence History<br />

[2-D planar, Double Precision, Num. Jac., Van Albada]<br />

Roe<br />

Full ∆t<br />

No Freezing<br />

ε =4×10 -8<br />

10<br />

0 100 200 300<br />

#<strong>of</strong>iterations<br />

-14<br />

Max. Density Res idual (R 1 )<br />

10 2<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

Ömer Onur - AE500 Presentation<br />

Convergence History<br />

[2-D axisymmetric, Double Precision, Num. Jac., Van Albada]<br />

Roe<br />

Full ∆t<br />

No Freezing<br />

ε =4×10 -8<br />

10<br />

0 50 100 150<br />

#<strong>of</strong>iterations<br />

200 250 300<br />

-14<br />

40


Performance Results (Cont Cont.) .)<br />

Ömer Onur - AE500 Presentation<br />

41


Max. Density Res idual (R 1 )<br />

10 2<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

Performance Results (Cont Cont.) .)<br />

Convergence History<br />

[Subsonic 2-D planar, Double Precision, Num. Jac., Van Albada]<br />

Roe<br />

Full ∆t<br />

No Freezing<br />

ε =4×10 -8<br />

10<br />

0 100 200 300 400 500<br />

#<strong>of</strong>iterations<br />

-14<br />

Max. Density Res idual (R 1 )<br />

Ömer Onur - AE500 Presentation<br />

Convergence History<br />

[Subsonic 2-D axisymmetric, Double Precision, Num. Jac., Van Albada]<br />

10 2<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

Roe<br />

Full ∆t<br />

No Freezing<br />

ε =4×10 -8<br />

10<br />

0 100 200 300 400 500<br />

#<strong>of</strong>iterations<br />

-14<br />

42


Conclusion<br />

Ömer Onur - AE500 Presentation<br />

A direct flow solver code is developed.<br />

Accuracy <strong>of</strong> numerical Jacobians used in the solver is<br />

analyzed.<br />

– A control mechanism is required in 1st order SW<br />

Jacobian calculation.<br />

– Forward/backward differencing does not differ so much.<br />

– Double precision improves accuracy significantly.<br />

– Optimum perturbation magnitude is found by an<br />

optimization method.<br />

43


Conclusion (Cont ( Cont.) .)<br />

Ömer Onur - AE500 Presentation<br />

The effects <strong>of</strong> the accuracy <strong>of</strong> numerical Jacobians on<br />

the performance (convergence convergence and CPU time) <strong>of</strong><br />

direct flow solvers is investigated.<br />

– Double precision improves convergence limits<br />

significantly.<br />

– Optimum perturbation magnitude gives the same<br />

convergence with the analytical method.<br />

– Calculation <strong>of</strong> fluxes with perturbation only for related<br />

cells reduced the execution time greatly.<br />

44


Conclusion (Cont ( Cont.) .)<br />

Ömer Onur - AE500 Presentation<br />

The efficiency <strong>of</strong> Jacobian matrix solution is improved<br />

by some strategies.<br />

– A sparse matrix solver having low storage and memory<br />

requiremets is used.<br />

– A time-like term addition to matrix diagonal stabilizes<br />

the solver in case <strong>of</strong> poor initial conditions. Removing<br />

this modification at the right time makes the<br />

convergence very fast.<br />

– Jacobian matrix freezing at the right time decreases the<br />

execution time.<br />

45


Conclusion (Cont ( Cont.) .)<br />

Ömer Onur - AE500 Presentation<br />

Using the same flux calculation scheme for both<br />

Jacobian and residual calculation maintains faster<br />

convergence.<br />

According to the choice <strong>of</strong> the flux limiter, higherorder<br />

schemes may have convergence problems.<br />

Unsteady results like limit-cycle is observed in higherorder<br />

schemes.<br />

46


Recommendations<br />

Ömer Onur - AE500 Presentation<br />

The control mechanism used in 1st order SW<br />

Jacobian calculation can be improved to give the best<br />

accuracy for all perturbation magnitude values.<br />

More advanced strategies can be considered to<br />

improve the Jacobian matrix solution.<br />

Higher-order schemes, and especially the choice and<br />

application <strong>of</strong> limiter can be analyzed deeply to obtain<br />

fully converged solution.<br />

47

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!