16.08.2013 Views

212 - School of Earth Sciences - The Ohio State University

212 - School of Earth Sciences - The Ohio State University

212 - School of Earth Sciences - The Ohio State University

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

Reports <strong>of</strong> the Department <strong>of</strong> Geodetic Science<br />

Report No. 2 1 2<br />

A FORTRAN IV PROGRAM FOR THE DETERMINATION<br />

OF THE ANOMALOUS POTENTIAL<br />

USING STEPWISE LEAST SQUARES COLLOCATION<br />

by<br />

C. C. Tscherning<br />

<strong>The</strong> <strong>Ohio</strong> <strong>State</strong> Univer&y<br />

Department <strong>of</strong> Geodefic Science<br />

1958 Neil Avenue<br />

Columbus, <strong>Ohio</strong> 4321 0<br />

July, 1974


Reports <strong>of</strong> the Department <strong>of</strong> Geodetic Science<br />

Report No. <strong>212</strong><br />

A FORTRAN IV PROGRAM FOR THE DETERMINATION OF THE<br />

ANOMALOUS POTENTIAL USING STEPWISE LEAST SQUARES COLLOCATION<br />

by<br />

C. C. Tscherning<br />

<strong>The</strong> <strong>Ohio</strong> <strong>State</strong> <strong>University</strong><br />

Department <strong>of</strong> Geodetic Science<br />

1958 Neil Avenue<br />

Columbus, <strong>Ohio</strong> 43210<br />

July, 1974


Abstract<br />

<strong>The</strong> theory <strong>of</strong> sequential least squares collocation, as applied to the<br />

determination <strong>of</strong> an approximation ?? to the anomalous potential <strong>of</strong> the <strong>Earth</strong> T,<br />

and to the prediction and filtering <strong>of</strong> quantities related in a linear manner to T,<br />

is developed.<br />

<strong>The</strong> practical implementation <strong>of</strong> the theory in the form <strong>of</strong> a FORTRAN<br />

IV program is presented, and detailed instructions for the use <strong>of</strong> this program<br />

are given.<br />

<strong>The</strong> program requires the specification <strong>of</strong> (1) a covariance function<br />

<strong>of</strong> the gravity anomalies and (2) a set <strong>of</strong> observed quantities (with known stan-<br />

dard deviations).<br />

<strong>The</strong> covariance function is required to be isotropic. It is specified<br />

by a set <strong>of</strong> empirical anomaly degree-variances all <strong>of</strong> degree less than or<br />

equal to an integer I and by selecting the anomaly degree-variances <strong>of</strong> degree<br />

greater than I according to one <strong>of</strong> three possible degree-variance models. <strong>The</strong><br />

observations may be potential coefficients, mean or point gravity anomalies,<br />

height anomalies or deflections <strong>of</strong> the vertical. A filtering <strong>of</strong> the observations<br />

will take place simultaneously with the determination <strong>of</strong> ?.<br />

<strong>The</strong> program may be used for the prediction <strong>of</strong> height anomalies,<br />

gravity anomalies and deflections <strong>of</strong> the vertical. Estimates <strong>of</strong> the standard<br />

error <strong>of</strong> the predicted quantities may be obtained as well.<br />

<strong>The</strong> observations may be given in a local geodetic reference system.<br />

In this case parameters for a datum shift to a geocentric reference system<br />

must be specified. <strong>The</strong> predictions will be given in both the local and the geo-<br />

centric reference system.<br />

N<br />

T may be computed stepwise, i. e. the observations may be divided<br />

in up to three groups. (<strong>The</strong> limit <strong>of</strong> three is only attained when potential<br />

coefficients are observed, in which case these quantities will form the first set<br />

<strong>of</strong> observations. ) Each set <strong>of</strong> observations will determine a harmonic function<br />

and Twill be equal to the sum <strong>of</strong> these functions.<br />

N<br />

<strong>The</strong> function T determined by the program will be a (global or local)<br />

solution to the problem <strong>of</strong> Bjerhammar, i. e. , it will be harmonic outside a<br />

sphere enclosed in the <strong>Earth</strong>, and it will agree with the filtered observations.


Foreword<br />

This report was prepared by C. C. Tscherning, Research Associate,<br />

Department <strong>of</strong> Geodetic Science, and the Danish Geodetic Institute. This work<br />

was sponsored, in part, by the Danish Geodetic Institute, and in part by the<br />

Air Force Cambridge Research Laboratories, Bedford, Massachusetts, under<br />

Air Force Contract No. F19628-72-C-0120, <strong>The</strong> <strong>Ohio</strong> <strong>State</strong> <strong>University</strong> Research<br />

Foundation Project No. 3368B1, Project Supervisor, Richard H. Rapp. <strong>The</strong><br />

Air Force Contract Monitor is Mr. Bela Szabo and Dr. Donald H. Eckhardt is<br />

Project Scientist.<br />

Funds for the support <strong>of</strong> certain computations and program developments<br />

described in this study were made available through the Northern European<br />

<strong>University</strong> Computer Center, Lyngby, Denmark and through the Instruction and<br />

Research Computer Center <strong>of</strong> <strong>The</strong> <strong>Ohio</strong> <strong>State</strong> <strong>University</strong>.<br />

A travel grant was supplied by the NATO Senior Fellowship Scheme.<br />

<strong>The</strong> reproduction and distribution <strong>of</strong> this report was carried out through<br />

funds supplied by the Department <strong>of</strong> Geodetic Science. This report was also<br />

distributed by the Air Force Cambridge Research Laboratories as document<br />

AFCRL-TR-74-0391 (Scientific Report No. 17 under contract no. P19628-72-<br />

c-0120).<br />

<strong>The</strong> writer wishes to thank Dr. R. H. Rapp for valuable suggestions and<br />

critic ism and Jannie Nielsen for relieving me <strong>of</strong> most <strong>of</strong> my household respon-<br />

S ib ilities in the period when this report was being prepared.<br />

iii


Table <strong>of</strong> Contents<br />

1. Introduc tion<br />

2. <strong>The</strong> Basic Equations<br />

2.1 Least Squares Collocation<br />

2.2 Equations for the Covariance <strong>of</strong> and Between Gravity<br />

Anomalies, Deflections <strong>of</strong> the Vertical, Height Anom-<br />

alis and Potential Coefficients.<br />

2.3 Stepw ise Collocation<br />

Data Requirements<br />

3.1 Observed Quantities<br />

3.2 <strong>The</strong> Reference Sys tems<br />

3.3 <strong>The</strong> Covariance Function<br />

4. Main lines <strong>of</strong> function <strong>of</strong> the IWRTRAN IV Program.<br />

5. <strong>The</strong> Storage <strong>of</strong> the Normal Eq~~ations and the Function <strong>of</strong> the<br />

Sub-Programs.<br />

5.1 <strong>The</strong> S torage <strong>of</strong> the Normal Equations<br />

5.2 Solution <strong>of</strong> the Normal Equations and Computation <strong>of</strong> the<br />

Estimate <strong>of</strong> the Error <strong>of</strong> Prediction, Subroutine NES.<br />

5.3 Transformation BetweenReference Systems, Subroutine<br />

ITRAN.<br />

5.4 Computation <strong>of</strong> the Normal Gravity, the Normal Potential<br />

and the Contributions from the Potential Coefficients. Sub-<br />

routines GRAVC and IGPOT.<br />

5. 5 Coinpu ta tion <strong>of</strong> Euclidian Coordinates, Convers ion <strong>of</strong><br />

Angles to Radians, Subroutines EUCLID and RAD.<br />

5.6 Subroutines for Output Management and Prediction Statis-<br />

tics, HEAD, OUT, COI\IPA.<br />

5.7 Subroutines for the Computation <strong>of</strong> Covariances, PRED<br />

illld SUMK.<br />

6. Input Spec ifieations<br />

7. Output and Output Options<br />

8. Recornmendat ions and Conclus ions.<br />

References<br />

Appendix<br />

A. <strong>The</strong> FORTRAN program.<br />

B. An input example.<br />

C. An output example.<br />

iv<br />

Page<br />

1<br />

3


1. Introduction.<br />

<strong>The</strong> theory <strong>of</strong> least squares collocation has been discussed extensively by<br />

Kramp (1969), hloritz (1972, 1973), Lauritzen (1973), Grafarend (1973) and<br />

Tscherning (1973). Collocation was originally introduced by Krarup (1969) as a<br />

method for the deter~nination <strong>of</strong> the anomalous potential using different kinds <strong>of</strong><br />

observations. Primarily Moritz (1972) has extended the theory to a wider field.<br />

This report will only consider the use <strong>of</strong> least squares collocation for the determination<br />

<strong>of</strong> the anomalous potential, T and the estimation <strong>of</strong> quantities dependent<br />

on T.<br />

We will regard the problem <strong>of</strong> the determination <strong>of</strong> T as being equivalent<br />

to the solution <strong>of</strong> the Bjerhammar-problem, i. e. the determination <strong>of</strong> a function,<br />

harmonic outside a sphere totally enclosed in the <strong>Earth</strong> and regular at infinity,<br />

which agrees with observed values <strong>of</strong> e. g. gravity anomalies and deflections <strong>of</strong><br />

the vertical.<br />

It is not required, that the observations and the solution agree exactly.<br />

<strong>The</strong> observations will contain a certain amount <strong>of</strong> "noise", the magnitude <strong>of</strong> which<br />

is specified by an estimatecl stmckird error.<br />

Least squares collocation will filter out some <strong>of</strong> this noise, and the<br />

solution will agree cxactly with t,he filtered observations.<br />

N<br />

Having determined a solution, T, to the Bjerhammar problem, this<br />

function can naturally he used to compute geoid heights (or more correctly,<br />

height anomalies), gravity anomalies or deflections <strong>of</strong> the vertical in points in<br />

the set <strong>of</strong> harmonicity. Hence, by solving the Bjerhammar problem, we have<br />

implicitly also solved e. g. the problems <strong>of</strong> interpolation or extrapolation (pre-<br />

diction) <strong>of</strong> gravity anomalies or deflections and the problem <strong>of</strong> astrogeodetic or<br />

astrogravimetric geoid computation.<br />

An Algol-program, which used this approach was published in Tscherning<br />

(1972). <strong>The</strong> program could only handle a very limited amount <strong>of</strong> observations.<br />

In the FORTRAN IV program presented in this report, we have taken advantage<br />

<strong>of</strong> the availability <strong>of</strong> a computer (IBhI System 370), which has large core storage<br />

and fast peripherial units (disks), so that very large amounts <strong>of</strong> data can be<br />

treated. Thus, the use <strong>of</strong> FORTRAN IV, which does not have variable dimension-<br />

ing <strong>of</strong> amays, has required that certain (arbitrary) limits have been put on e.g.<br />

the number <strong>of</strong> observations, which the program can handle.


h section 2 we will present the basic equations <strong>of</strong> least squares collocation as<br />

applied to the Bjerhammar problem. We will also discuss the method <strong>of</strong> stepwise<br />

collocation, which differs solnewhat from the p ocedure described by<br />

Moritz (1973). All the observed quantities must be in the same reference system.<br />

This requirement is discussed in section 3. <strong>The</strong> main lines <strong>of</strong> function <strong>of</strong> the<br />

FORTRAN IV program is described in section 4. <strong>The</strong> most important details<br />

are given in the following section, which especially discusses the subprograms<br />

used. Input and output options are described in sections G and 7 respectively,<br />

and the final section 8 contains some recommendations and conclusions. <strong>The</strong><br />

FORTRAN program, an input and an output example are contained in an appendix.<br />

r<br />

References are given by author name and year, with one exception:<br />

Heiskanen and Moritz, Physical Geodesy, will be referenced only by PG,<br />

because references to this book occur frequently.


2. <strong>The</strong> Basic Equations<br />

<strong>The</strong>re are two ways <strong>of</strong> approach to least squares collocation. A mathe-<br />

matical (functional analytic) and a statistical. <strong>The</strong> mathematical approach is the<br />

most well founded and without dark spots. But its appreciation requires a math-<br />

matical background, which not yet is common among geodesists. <strong>The</strong> statistical<br />

approach is with a first glance less difficult and gives a sufficient insight. This<br />

means, that a geodesist, well educated in the theory and application <strong>of</strong> least<br />

squares adjustmcnt, will be able to use the method.<br />

We will, without hereby having questioned the intellectual ability <strong>of</strong> the<br />

reader, use the statistical approach in the following presentation <strong>of</strong> the basic<br />

equations <strong>of</strong> least squares collocation.<br />

2.1 Least sauares collocation.<br />

Let us suppose, that T is an element <strong>of</strong> a sample space H <strong>of</strong> functions<br />

harmonic outside a sphere totally enclosed in the <strong>Earth</strong>. We will denote the<br />

probability measure <strong>of</strong> H by @. Let the random variables Yp be the mappings,<br />

which relate a function in H to the value <strong>of</strong> the function in the point P, i.e.<br />

Yp (T) = T(P). <strong>The</strong> variables Yp will then form a stochastic process with the<br />

set <strong>of</strong> harnzonicity as index set (provided P fulfills some basic requirements see<br />

e. g. Grafarend (1973)). <strong>The</strong> covariance between two random variables Yp , YQ<br />

will be denoted cov(Tp , TQ ) , because Yp(T) = T(P) and YQ (T) = T(Q). It is equal<br />

to:<br />

We will require, that the variance cov(Tp , Tq) is finite.<br />

Example. Following Meissl (1971), the probability measure 9 may be<br />

defined by specifying the distribution <strong>of</strong> the random variables, Y, , which maps<br />

m<br />

T into its coefficient v& in a development <strong>of</strong> T as a series in solid spherical har-<br />

monics. Let us suppose that this random variable has a Gaussian distribution<br />

with mean value zero and variance oe(T, ~)/m only depending <strong>of</strong> the degree<br />

4, we will then have


where $ is the spherical distance between P and Q, r and r' the distance <strong>of</strong> P and<br />

Q from the origin, R the radius <strong>of</strong> the (l3jerhammar)-sphere bounding the set <strong>of</strong><br />

harmonicity and Pi (cos Jr) the Legendre polynomial <strong>of</strong> degree 1.<br />

<strong>The</strong> constants ol(T, T) are called the (potential) degree variances. <strong>The</strong> CO-<br />

variance function will be isotropic, i. e. invariant with respect to rotations <strong>of</strong><br />

the pair <strong>of</strong> points P and Q around the origin*<br />

From the random variables Yp we may form a second order stochastic<br />

field. This field consists <strong>of</strong> all random variables, which are linear combinations<br />

or limits <strong>of</strong> linear combinations <strong>of</strong> a finite number <strong>of</strong> these random variables and<br />

which have finite variance, (cf. e.g. Parzen (1967), page 260).<br />

<strong>The</strong>ir covariances can all be derived from the covariance (1). Let us<br />

regard<br />

<strong>The</strong>n<br />

And generally for quantities si and s , where<br />

we have<br />

(We have here implicitly presupposed, that cov (Tp, SJ) regarded as a function <strong>of</strong><br />

P and Yj (cov(Tp, TQ )) regarded as a function <strong>of</strong> Q, are elements <strong>of</strong> the sample<br />

space H, i. e. that they are harmonic. This will be proved below).<br />

<strong>The</strong> equation (3) is the so called law <strong>of</strong> propagation <strong>of</strong> covariances,<br />

Moritz (1972, page 97).


We will denote<br />

(4) clj = cov(s,, sj), C = {clj ] a qxq matrix,<br />

(5) cp1 = cov(Tp , si), Cp= {cP1 ] a q-vector and<br />

(We will below use subscripted quantities in brackets, { ] to denote vectors or<br />

matrices. In case the limit(s) <strong>of</strong> the subscript(s) are not obvious, the upper<br />

limit(s) will be indicated by subscripts, i, e. C = {cil l,,, ).<br />

We will have to regard one more kind <strong>of</strong> random quantities (independent<br />

<strong>of</strong> the above discussed), namely the random noise, n. A random variable will<br />

be associated with each <strong>of</strong> the random varial~les Ys. <strong>The</strong>y are all supposed to be<br />

Gaussian distributed with mean value zero, known variance (denoted 0:) and uncorrelated.<br />

<strong>The</strong> covariance matrix, which hence is a diagonal matrix, will be<br />

2<br />

denoted D= {dlj 3, dil = OS<br />

Following Moritz (1972), the basic equation <strong>of</strong> llobservationfl is<br />

where X is the measurement or observation, S' the corresponding l1signalU and n<br />

is the noise. X, S' and n are q-vectors, where q is the number <strong>of</strong> observations.<br />

<strong>The</strong> n-vector X comprises n parameters, and A is a known qx m matrix.<br />

Let us now assume, that we want to estimate the outcome S <strong>of</strong> a stochastic<br />

variable Ys , given a set <strong>of</strong> observed quantities X, Denoting C = C+D we obtain from<br />

Moritz (1972, eq. (2-38) and (2-35))<br />

where the superscript T means transposition.<br />

<strong>The</strong> corresponding estimate <strong>of</strong> the error <strong>of</strong> estimation m?(<strong>of</strong> S) and Exx<br />

(<strong>of</strong><br />

X) are, cf. Moritz (1972, eq. (3-38) and (3-33))


T-1<br />

with h, = C. C and C,. is the variance <strong>of</strong> S.<br />

<strong>The</strong> program presented in this report can only handle the non-parametric<br />

(i.e. X= 0) case. But the general equations are presented here, so that we later<br />

on can point out the main changes, which will have to be made in order to<br />

incorporate the parameters X.<br />

<strong>The</strong> special case we will consider here can then be described by the follow-<br />

ing equations :<br />

c:.<br />

T --l<br />

(12) s = C. C x and<br />

T<br />

<strong>The</strong> filtered observations E'are obtained from (12) by substituting C for<br />

<strong>The</strong> equations (12) and (13) differ from the equations given by PG(eq. (7-63)<br />

and (7-64)) only in that C has been substituted for C and that we are not restricted to<br />

consider only gravity anomalies.<br />

<strong>The</strong> quantities we want to consider here are potential coefficients, gravity<br />

anomalies, deflections <strong>of</strong> the vertical and height anomalies. <strong>The</strong>y are all (at<br />

least in spherical approximation) expressible as either linear combinations or<br />

limits <strong>of</strong> linear combinations <strong>of</strong> values <strong>of</strong> the anomalous potential. We will pre-<br />

suppose, that the variances <strong>of</strong> the corresponding stochastic variables all are<br />

finite. Equation (3) is hence valid for these kinds <strong>of</strong> quantities.<br />

<strong>The</strong> value <strong>of</strong> the Laplace operator A, applied on T and evaluated in a point<br />

P in the set <strong>of</strong> harmonicity,<br />

is related to a stoclmstic variable, YATp. This variable will also belong to the<br />

stochastic field (variance zero) and we will have for an arbitrary stochastic<br />

variable Y, :


Hence, the covariance between a quantity S and the value <strong>of</strong> the anomalous<br />

potential in P is a harmonic function (regarded as a function <strong>of</strong> P).<br />

Let us now assume, that we want to estimat the value <strong>of</strong> T in a point P<br />

from a set <strong>of</strong> observations X= {X, 1, i=l,. . . ,q. We then have from (12),<br />

Introduc ting the solution vector<br />

we have<br />

N<br />

(17) T (P) = C: b = [cov(~, , S, )IT [b, } = 1 cov (Tp, S, )bl<br />

Using (11) we see that<br />

Q<br />

i. e. ?? (P) is a harmonic function.<br />

By also requiring, that the functions in the sample space H are regular at<br />

infinity, it can be shown, that ?(P) is regular at infinity as well.<br />

We have then obtained a solution to the problem <strong>of</strong> Bjerhammar, if we<br />

2<br />

can prove, that the g, = S, = X, for us, (or d,,) = 0. But this is easily seen, '<br />

because<br />

a<br />

This fact makes available an easy test <strong>of</strong> a collocation program. <strong>The</strong> used obser-<br />

vations are predicted and it is checked, that the predictions agree with the obser-<br />

ved values (and that the estimates <strong>of</strong> the error <strong>of</strong> prediction are zero).<br />

9<br />

i= l


2.2 Equations for the covariances <strong>of</strong> and between gravity anomalies,<br />

deflections <strong>of</strong> the vertical, height anomalies and potential coefficients.<br />

<strong>The</strong> relation (3) between the signal and the anolnalous potential has been<br />

given in Tscherning and Rapp (1974), eq. (30)-(33)) in spherical approxima~ion<br />

for gravity anomalies, height anomalies and deflections <strong>of</strong> the vertical. We<br />

have for the height anomaly in P<br />

the latitude component <strong>of</strong> the deflection <strong>of</strong> the vertical<br />

the longitude component <strong>of</strong> the deflection <strong>of</strong> the vertical<br />

the point (free-air) gravity anomaly<br />

and the mean (free-air) gravity anomaly<br />

where r is the distance froin the origin, rp the latitude, X the longitude, y the<br />

reference gravity and A the area over which the mean gravity value is computed.<br />

We may, as explained in Tscherning and Rapp (1974, section 10) repre-<br />

sent mean gravity anomalies by point anomalies in a certain height above the<br />

center <strong>of</strong> the area A. For this reason we will not in the following distinguish be-<br />

tween mean and point gravity anomalies. <strong>The</strong> program is able to use all the<br />

quantities (20)-(24) as observed quantities for the computation <strong>of</strong> ?. <strong>The</strong> same<br />

kind <strong>of</strong> quantities may also be predicted by the program.<br />

One more kind <strong>of</strong> quantities, potential coefficients, can be used, though<br />

only as observed quantities. <strong>The</strong> given coefficients will generally be the<br />

coefficients <strong>of</strong> the potential <strong>of</strong> the <strong>Earth</strong>, W, expanded in spherical harmonics<br />

and not the coefficients <strong>of</strong> the ano~nalous potential. Denoting the normal potential<br />

by U we have


and for W and U expanded in fully normalized spherical harmonics<br />

Wa<br />

+-<br />

2<br />

(r*sin~)~ and<br />

W<br />

kM al J24 - w2<br />

(26) U(P) = ( 1 - )C () J = = ~<br />

a= l<br />

P,Q(COS a))+, (r sin Q)',<br />

where w is the speed <strong>of</strong> rotation <strong>of</strong> the <strong>Earth</strong>, 6 = 90' - 9, kM the product <strong>of</strong> the<br />

gravitational constant and the total mass <strong>of</strong> the <strong>Earth</strong>, the coefficients and<br />

-<br />

Cam the potential coefficients, and X(cos8) an associated Legendre polynomial,<br />

normalized so that<br />

<strong>The</strong> coefficients J8a in (26) are given in PG, (eq. (2-92)).<br />

For the potential coefficients we then have the following equation<br />

where wis the surface <strong>of</strong> the sphere with radius equal to the semi major axis a<br />

and with center in the origin. (We are now denoting two quantities by W , but since<br />

they are used in a different context, we hope, that no confusion is caused).<br />

In the program it is possible to use one <strong>of</strong> three different kinds <strong>of</strong><br />

(isotropic) covariance functions, which we below will distinguish by a subscript k,<br />

k = 1, 2 or 3. <strong>The</strong>y are all specified by a so called anomaly degree-variance<br />

model, i.e. by the coefficients a ,,~ (Ag, Ag) <strong>of</strong> degree A greater than a constant I<br />

<strong>of</strong> the covariance function <strong>of</strong> the gravity anomalies developed in a Legendre<br />

series:


where r' is the distance <strong>of</strong> Q from the origin, R the radius <strong>of</strong> the Bjerhammar<br />

A<br />

sphere, Jr = the spherical distance between P and Q and a~ (Ag, Ag) are empirically<br />

determined coefficients.<br />

<strong>The</strong> three different kinds <strong>of</strong> covariance functions correspond to three <strong>of</strong><br />

the five anomaly degree-variance models discussed in Tscherning and Rapp<br />

(1974, section 8). <strong>The</strong> models are for l


Denoting<br />

we will have<br />

We rearrange (33):<br />

From this covariance function all the other covariance functions can be derived<br />

using the "law <strong>of</strong> propagation <strong>of</strong> covariances", eq. (3) and the equations (20)-<br />

(24) and (28) relating the observed quantities to the anomalous potential.<br />

Due to the linear relationship (39) we generally have for two arbitrary<br />

randoin variables Y and Yj<br />

where S, = Yi (T) and sJ = YJ (T).<br />

For either si equal to Agp or


For the other part, cov; (si , sJ) we have (from Tscherning and Rapp 11974<br />

equations (145)-(150) and (50)))<br />

with<br />

Covariance functions, cov(si, sj ), where either si or sj is a deflection<br />

component can not explicitly be found in Tscllerning and Rapp (1974). But using<br />

the equations (20)-(24) we get (K = K(P, Q) = cov, (Tp Tq )):


Applying these equations on cov, (Tp, TQ), (39) shows, that the quantities we need<br />

to determine are (apart from the derivatives <strong>of</strong> t with respect to the latitude and<br />

longitude) :<br />

<strong>The</strong> last term in each <strong>of</strong> the equations (51)-(53) are identical to Tscherning and<br />

Rapp (1974, eq. (108)-(110), (118)-(120) and (133)-(135)) for k= 1,2,3.<br />

For the first term in each <strong>of</strong> the three equations we have, using (41), (42)<br />

and (43):<br />

I


with pi(t) = DtP (t) and ~,"(t.) = D:P,(~).<br />

A a<br />

<strong>The</strong> sums (54) - (56) are evaluated in the program (subroutine PRED) using<br />

the recu sion algodhm given in Tscherning and Rapp (1974, section 9).<br />

To avoid numerical prohleins for P near to Q, the following expressions<br />

are used for the evaluation <strong>of</strong> t and the derivatives <strong>of</strong> t with respect to and cc':<br />

(denoting: dX=X-X/a~~dd~=co-~'):<br />

I<br />

(57) t=cos$=sina0sir,~ +cos~*cosco'~cos(d~)<br />

=cos (dq) - cos cp ' cos * (1 - COS (dX))<br />

= 1 - 2 (S in 2 (&o/2)+ cos cos c; sin 2 (dA/2))<br />

(58) Dpt =cos'p * sin cpl- sin rp COB COS (dX) = -sin(dv)+Zcos q'* sin9 sin 2 (d~/2),<br />

(59) Dmtt = sin(dcp)+2cosrp singis in 2 (dh/2) and<br />

(60)<br />

D' ~t =cos cp * cos cpt+sh~*shv'* cos(d~)xos(d~~)-(l-cos(dX)) *sins* sinv'<br />

cpcp<br />

r<br />

We will now introduce a compact notation for the normalized surface<br />

harnlonics, which will facilitate the presentation <strong>of</strong> the covariances between the<br />

coefficients <strong>of</strong> T developed in spherical harmonics and other quantities. Denoting


and the coefficients <strong>of</strong> T developed in spherical harmonics by vAE we have<br />

where s =a in this integration and P is on the surface <strong>of</strong> the sphere <strong>of</strong> radius a.<br />

From equations (28) we get<br />

(2 1+1)' for m = 0 and Aeven,<br />

(63) vAm = a * kM* for m> 0,<br />

1<br />

for m < band m = 0 and J! uneven<br />

We will now compute the covariances covk(vR,, S!) where S, is either v,!,<br />

!Q, ?')Q , A&, or CQ . <strong>The</strong>se covariances are not exylicitly used in the program,<br />

so we will not distinguish between the different covariance models, but denote<br />

the degree-variances by uQ(T, T), uA(T,Ag) and uA(Ag, Ag).<br />

From eq. (62) and (33) we get<br />

Using the well lcnown summation formulae, (PG(~-81'))<br />

and the orthogonality propcrty <strong>of</strong> the surface harmonics, we get


, 1<br />

v, (0: A') dw<br />

Again using (62) and the orthogonality property we see, that<br />

-<br />

Ra a+1<br />

%(T,T)(~) forl=A andj=m<br />

otherwise.<br />

Thus, the covariance <strong>of</strong> two different anomalous potential coefficients is zero<br />

and their variance is equal to the degree-variance multiplied by a constant<br />

depending on R, a and the degree A.<br />

<strong>The</strong> other covariance functions can be derived using (66) and (20)-(23):<br />

and


2.3 Stcpwise collocation.<br />

<strong>The</strong> solution <strong>of</strong> the normal equations (8) and (9) may be a difficult numeri-<br />

cal task even when using a large computer, when the number <strong>of</strong> unknowils is<br />

greater than a few thousands.<br />

Moritz (1973) uses the term sequential collocation when the observations<br />

are divided in two or more groups and when the corresponding normal equations<br />

then are solved by inverting only the submatrices containing tlae covariances<br />

between the observations within one group.<br />

Let us first consider an example, where the observations have been<br />

divided in two groups containing m, and m, observations respectively:<br />

where X, is a m, vector and X, a m, vector <strong>of</strong> observations. <strong>The</strong> covariance<br />

matrix is then divided in four subma1;rices accordingly:<br />

and the vector <strong>of</strong> the covariances between the quantity S to be predicted and the<br />

observations becomes<br />

Hence, according to Moritz (1973, eq. (1-22)) we have<br />

Let us regard the case where we want to estimate T(P). Denoting


we see that<br />

(80) bg = cll~~~dlx, and<br />

N<br />

Hence, we are by using stepwise collocation, getting an estimate T which is<br />

equal to the sum <strong>of</strong> two other estimates.<br />

<strong>The</strong> first estimate ?,(P) is computed by (76) and (77) from the observations<br />

X, using the original covariance functions. <strong>The</strong> residual observations d, % (78) is<br />

then computed. <strong>The</strong>n the second estimate ?,(P) can be obtained from (80) and (81)<br />

using the covariances <strong>of</strong> the residual observations, dlCZ2 and dlCp, (79). (Supposing<br />

the "noise" matrix D to be zero we easily see<br />

which is nothing but the i, jth element <strong>of</strong> the matrix dlC2,. )<br />

<strong>The</strong> formulae (76)-(81) .can be generalized as to describe a partition <strong>of</strong> the<br />

observations into more than two groups. Such equations can for example, .be<br />

found in (1973, eq. (5-1)-(5-14)). We will here use a slightly different<br />

type <strong>of</strong> general equation.<br />

and with<br />

For a partition in k groups,


we have the estimates (P) and based on the residual observations dI- ,xi<br />

(Le. on all sets <strong>of</strong> observations with subscript less than i):<br />

and the final es tinmtes


(As usual, the linear equations corrcsponding to (80a) are denoted the normal-<br />

equations and b, the solution to the norinal equations. j<br />

One <strong>of</strong> the main advantages achieved by using stepwise collocation is<br />

according to Moritz (1973, page 11, that the normal equation matrices to be in-<br />

verted are smaller than the original c matrix. Thus, as may be realized from<br />

equations (79) and (go), the total storage requireinents are not diminished. So,<br />

when using a computer, which has peripheral storage units with fast access,<br />

stepwisc solution <strong>of</strong> the nornlal equations is <strong>of</strong> no real advantage.<br />

Thus, a cons iderable simpiification <strong>of</strong> the computations may be achieved<br />

when the residual covariances ~ J C l and d jCpi (79a) can be computed analytically.<br />

In this case, only the bl vectors (80a) are needed for the representation <strong>of</strong> and<br />

for the computation <strong>of</strong> p edictions. <strong>The</strong> residual covariance inay naturally be<br />

computed analytically, when the datasets are ~ncor~elated, i. e. when diC = CIi .<br />

But the possibility for analytical covariance also exists, when the first dataset<br />

x1 consists <strong>of</strong> potential coefficients.<br />

<strong>The</strong> matrix Cl, is in this case a diagonal matrix with diagonal elements<br />

equal to the sum <strong>of</strong> the q~~antities given in (67) and the error variances <strong>of</strong> the<br />

observed coefficient, o&. We will suppose, that all the variances are the same<br />

for the same degree, R, and denote this variance by o:(R).<br />

<strong>The</strong> elements <strong>of</strong> the vector b, are equal to the observed coefficient divided<br />

by the corresponding diagonal element. Let us then suppose, that potential<br />

coefficients up to degree I have been observed. <strong>The</strong> estimate 5 is then (cf. eq. (66),<br />

(67) and (77)):<br />

r


Using equations (6G), (67)-(79) and (85b) we easily see, that the residual observations<br />

(78), d,x, are nothing but the original<br />

,-., observations, but now referring to a<br />

higher order reference field, U1 = U + T1.<br />

For the i, j'th element <strong>of</strong> dlCzz we get from (GG) and (79), supposing e.g.<br />

that S,, = T(p), S,, = T(Q) and that G ~, xz, are the corresponding observed values<br />

(and P different from Q):<br />

with<br />

This quantity is zero for o?(~) equal to zero. <strong>The</strong> covariance function (84) is<br />

in this case a local I'th order covariance function, cf. Tscherning and Rapp<br />

(1974, Section 9).<br />

It is supposed in the program, that the error variances a: can be either<br />

a,<br />

disregarded or that they only depend on the degree. <strong>The</strong> program will, in the<br />

latter case, require that the quantity


(86) dluA (Q, Ag) = dlo (T, l') B<br />

&- -- q2<br />

a X"<br />

is specified. <strong>The</strong> quantity will be treated as if it was an empirical degree-variance.<br />

We have here seen, how we in one case explicitly can derive expressions<br />

for the covariance, covjd,~, , c'r,~,~ ). Anolher method would he simply to estimate<br />

a covariance fmc tion for the rcs idual. observations d1 x, . However, the program can<br />

only use three types <strong>of</strong> covariance fmct ions, and they are all isotropic.<br />

We are then restricted either to divide the observations x in groups <strong>of</strong><br />

quantities, which are nearly uncorrela.ted or to find a kind <strong>of</strong> observations, which<br />

we can treat like the potential coefficients.<br />

<strong>The</strong> potential coefficients are (in a general sense) weighted mean values <strong>of</strong><br />

the anolnalous potential. Mean gravity anomalies are also mean values, weighted<br />

with a function, which is equal to one in the considered area and zero outside.<br />

A mean gravity znolnaly fieid will represent an amount <strong>of</strong> information which<br />

is elal to the znlount <strong>of</strong> information contained in a set <strong>of</strong> potential coefficients 01<br />

degree less than or equal to an integer I. <strong>The</strong> magnitude <strong>of</strong> I will depend on the<br />

size <strong>of</strong> the area over which the mean anomaly is computed. 1 will be large mhen<br />

the area is small and small when the area is large. ( I will be zero when the<br />

area is the whole <strong>Earth</strong> and infinite when we are dealing with points). An estimate<br />

<strong>of</strong> the degree may be hund in the following way: <strong>The</strong> total number <strong>of</strong> equal area<br />

mean anomalies <strong>of</strong> a particula size is theoretica!ly equal to the total area <strong>of</strong> the<br />

<strong>Earth</strong> divided by the area <strong>of</strong> the basic mean anomaly. Let us call this number N.<br />

For the,perfect recovery <strong>of</strong> N r quantities we need a set <strong>of</strong> coefficients <strong>of</strong> degree<br />

up to N5. This method <strong>of</strong> estimation will give us NZ 202 for l0 equal area anomalies.<br />

<strong>The</strong> degree may also be estimated in a more empirical way. This can be<br />

done by first estimating the empirical covariance function <strong>of</strong> a set <strong>of</strong> residual observations<br />

(gravity anomzlies) cl,%. <strong>The</strong> first zero point <strong>of</strong> the empirical. covariance<br />

ft~nction (regarded as a function <strong>of</strong> the spherical distance $) will then<br />

give a reasonable estimate <strong>of</strong> the degree (cf. Tscherniag and Rapp, (1974, Section<br />

9))s<br />

As an example, the program described in this report was used to compute<br />

residual point gravity ano~nalics in a 2" 30 x 3" 40' square in the state <strong>of</strong> <strong>Ohio</strong>,<br />

U. S.A. <strong>The</strong> data set x did consist <strong>of</strong> three groups. <strong>The</strong> set X, was a set <strong>of</strong> po-<br />

tential coefficients <strong>of</strong> degree upto and inclusive <strong>of</strong> 20, given by Rapp (1973, Table<br />

G). X, consisted <strong>of</strong> 157 1" x 1' mean gravity znomalies surrounding the area and<br />

r;, was a set <strong>of</strong> 420 pojllt gravity anomalies, spaced zs uniform as possible with


a distance <strong>of</strong> 7%' in latitude and 10' in longitude between the points. <strong>The</strong> data-<br />

sets X, and X, was regarded as errorless.<br />

<strong>The</strong> covariance function recommended by Tscherning and Rapp (1974)<br />

was used (i.e. given by eq. (32) with B = 24 and A, = 425 mga1 2 ). <strong>The</strong> covariances<br />

d1CeiaJ can then be computed using a corresponding local 201th order covariance<br />

function (i. e. with degree-variances <strong>of</strong> order up to and inclusive <strong>of</strong> 20 equal to<br />

zero), cf. (84).<br />

<strong>The</strong> function ??, is then computed without actually solving any normal<br />

equations. We have (cf. (83a) and with <strong>of</strong>( R) = 0):<br />

We will now, as mentioned above represent the mean gravity anomaly as a point<br />

anomaly in a certain height 11' above the center <strong>of</strong> the area. Let us denote this<br />

point by Q and its distance from the origin r'. (We have in this case used<br />

hf=rf - R, = 10.5 ltm, cf. Tscherning and Rapp (1974, Section 10)).<br />

<strong>The</strong> residual anomaly is then, cf. eq. (78a) and (71):


Figure 1: Empi?-ically determined covariance<br />

values <strong>of</strong> res ikml point gravity anomalies compa<br />

ed with the local 205'th order covariance<br />

function,page 25,for varying spl-lerical distance $.<br />

+ empirically determined values<br />

- graph <strong>of</strong> the local covariance function<br />

r


i. e. , the mean anomaly computed with respect to the higher order reference<br />

field UT= US Tl. (<strong>The</strong> program does not use this equation for the computation <strong>of</strong><br />

the res idual anomaly. <strong>The</strong> contribution from is evaluated us ing the actual<br />

length <strong>of</strong> the gradient <strong>of</strong> U1 , see the description <strong>of</strong> the subroutine IGPOT, Section<br />

5.4).<br />

N<br />

<strong>The</strong> residual obsclvations dlx2 was then used to determine T, , this<br />

time by actually solving a set <strong>of</strong> normal equations, obtaining the solution vector<br />

b2*<br />

<strong>The</strong> residual point gravity anomalies were then computed by<br />

d,x,=x,- d,~:, b, - * bl<br />

T<br />

cf. (78a). <strong>The</strong> term CL? bl is again here the change due to the higher order<br />

reference field U1 .<br />

<strong>The</strong> empirical covariance hnc tion was computed using d, x3 by taking the<br />

sample mean <strong>of</strong> the products <strong>of</strong> the residuals sampled according to the spherical<br />

distance between the points <strong>of</strong> observation. <strong>The</strong> size <strong>of</strong> the sample interval m7as<br />

1<br />

72'. <strong>The</strong> covariance function<br />

with R/R, = 0.9998 was found to have the same zero point as the empirical covariance<br />

function, see Figure 1.<br />

We then see, that the two mentioned methods give nearly the same es-timate<br />

<strong>of</strong> the integer L This agreeinent should merely be taken as an illustration and not as<br />

a pro<strong>of</strong>. It shows one <strong>of</strong> the inany kinds <strong>of</strong> coinputaticns the FORTRAN program can<br />

perform.<br />

<strong>The</strong> choice <strong>of</strong> a proper covarinnce function is a delicate task, but we point<br />

out that the presented program may use three different degree-varianc e models<br />

and hence be usefd in test computations using different covariance functions.<br />

2 5


-.<br />

<strong>The</strong> program may compute Tin up to three steps. <strong>The</strong> different possibil-<br />

ities are illustrated in Table 1. Note, that potential coefficjents always form a<br />

separate data set, which will be the data set X,.<br />

Number<br />

<strong>of</strong> steps<br />

Table 1<br />

rU<br />

Different: options for the Computation <strong>of</strong> T.<br />

Dataset May Contain:<br />

1 xa I X3


3, Data Requirements.<br />

In this section the data requirements will be discussed. <strong>The</strong> precise<br />

specifications are given in Section 6.<br />

Three types <strong>of</strong> information are needed for the determination <strong>of</strong> T: obser-<br />

vations, information about the reference system <strong>of</strong> the observations and a co-<br />

variance function.<br />

<strong>The</strong> observed quantities we want to use are (a) potential coefficients,<br />

(b) point or mean free air gravity anomalies or measured gravity values,<br />

(c) height anomalies and (d) deflections <strong>of</strong> the vertical.<br />

<strong>The</strong> potential coefficients available will generally all be <strong>of</strong> a degree less<br />

than 25. <strong>The</strong>re has then only been reserved space in core store for up to 625<br />

coeflicients.<br />

<strong>The</strong> program accepts potential coefficients, which are fully normalized<br />

and multiplied by 106. <strong>The</strong> coefficients can naturally only be used, when a value<br />

<strong>of</strong> kM and ihe semi major zxis a art! specified.<br />

An observation (different from a potential coefficient) will be given by<br />

(1) the geodetic latitude and longitude, (2) a potential difference, (a geopotential<br />

number, for example), conve ted into a metric quantity e. g. by dividing the dif-<br />

ference with the reference gravity and (3) the measured quantity. <strong>The</strong> height<br />

above the reference ellipsoid is regarded as unknown except, naturally, when<br />

it itself is the observed quantity.<br />

A11 measured gravity values will have to be given in the same gravity<br />

reference system or a correction must be known. Measured gravity values are<br />

converted to free-air anomalies. <strong>The</strong> orthometric height must hence be known.<br />

<strong>The</strong> geodetic latitude (which is used to evaluate the normal gravity) would princi-<br />

pally have to be given in a geodetic reference system consistent with the gravity<br />

reference system (i.e. with the same flattening and semi major axis as used for<br />

the computation <strong>of</strong> the coeffic icnts in the e'xpression for the normal gravity). But<br />

the variation <strong>of</strong> the normal gravity with respect to the latitude is so small, that<br />

this requirement can be neglected here. <strong>The</strong> point or mcan gravity anomalies will<br />

all have to be free-air anomalies. <strong>The</strong>y must all refer to the same normal gravity<br />

field. LE they are not all given with respect to the same gravity base reference<br />

system, the correction to be applied for the conversion must be known.


A mean gravity anoinaly will be represented as a point gravity anomaly at<br />

a point <strong>of</strong> a certain height, h, above the ccnter <strong>of</strong> the area over which the mean<br />

value is computed. This height is specified by the ratio, RP between the sum <strong>of</strong><br />

this height and the mean <strong>Earth</strong> radius R, and the mean <strong>Earth</strong> radius, i.e.<br />

A height anomaly will have to be given in the same reference system as the<br />

geodetic latik~de and longitude. This will generally require, that a height anomaly<br />

obtained through an absolute position determination and given in a geocentric reference<br />

system must be transferred back to a local geodetic refe ence system,<br />

before it can be used in the program.<br />

We are, with observed deflections <strong>of</strong> the vertical, faced with a complicated<br />

problem. <strong>The</strong> deflections are equal to the difference between the astronomical<br />

coordinates <strong>of</strong> a point on the geoid and the geodetic coordinates <strong>of</strong> a point on the<br />

reference ellipsoid (multiplied with cosine to the latitude for the longitude difference).<br />

We have herehy implicitly int~oduced assun~ptions about the mass densities<br />

in between the geoid and the astronomical station. To avoid this, the deflections<br />

should have been given at the proper height (i.e. the height <strong>of</strong> the observation<br />

stations).<br />

Thus, heights <strong>of</strong> astronomical stations are seldoin found recorded together<br />

with the deflections. But if the heights are actually recorded, the program will<br />

treat the deflections as quantities, which have not been reduced to the geoid.<br />

<strong>The</strong> astronomical coordinates may carry systematical errors due to systematic<br />

differences between star catalogues or due to the neglect <strong>of</strong> corrections<br />

for polar motion. <strong>The</strong> observations may be corrected for ltnown systematical<br />

errors, if they can be specified in the same way as a datum shift, i. e. by specifyr<br />

ing the corrections in the latitude and the longitude com~onents at a certain point.<br />

Systematic errors in the height anornalies may be corrected in the same manner.<br />

In Section 2.2 we mentioned, that the equations which related the obser-<br />

vations and the anomalous potential was given in spherical approximation. This<br />

means, e.g. that all points onthe surface <strong>of</strong> the <strong>Earth</strong> are regarded as lying on<br />

the mean <strong>Earth</strong> sphere. This fact has been used in the program to speed up the<br />

computations. This is done by using the fact that the quantities


will be the same for a group <strong>of</strong> input data.<br />

Data which actually are observed above the surface <strong>of</strong> the <strong>Earth</strong> must be<br />

grouped so that they all refer to a sphere with radius equal to a mean height <strong>of</strong><br />

the points plus the mean <strong>Earth</strong> radius, R,. As for mean gravity anomalies, the<br />

height is specified in the program through the value <strong>of</strong> the quantity RP, (ey. (87)).<br />

<strong>The</strong> standard deviations <strong>of</strong> observations, different from potential coef-<br />

ficients,will have to be given in meters for the height anomaly, in mgal for gravity<br />

observations and in arc sec for deflection components. <strong>The</strong> standard deviations<br />

may be specified (1) individually for the single observations, (2) for a group <strong>of</strong><br />

observations or (3) as being zero for all observations.<br />

3.2 <strong>The</strong> Reference Systems.<br />

We have to know the parameters specifying the geodetic coordinate system.<br />

<strong>The</strong> program requires the semi major axis, a, and the flattening, f, to be specified.<br />

<strong>The</strong> gravity formulae may then either be given (1) through the values <strong>of</strong> kX4,<br />

U, a, and f, (2) by specifying that the international gravity formulae and the Pots-<br />

clgm referencc system has bccn used or (3) that the Szcdetic Refererce Systerr,<br />

1967 has been used. One <strong>of</strong> the three excludes the others.<br />

<strong>The</strong> covariance functions which can be used, will all have the degree-<br />

variances <strong>of</strong> degree .zero and one equal to zero. This implies, that we, in the<br />

computations, have to use the best possible kM value and a geodetic coordinate<br />

system which has origin coinciding with the gravity center <strong>of</strong> the <strong>Earth</strong>, Z-axis<br />

parallel to the mean axis <strong>of</strong> rotation and Z-X-plane equal to the mean Greenwich<br />

meridian plane.<br />

We will also require the global mean value <strong>of</strong> the gravity anomalies, the<br />

height anomalies and the deflections to be zero. This requirement implies, that<br />

we have to use the best possible semi-major axis. <strong>The</strong> geodetic latitude and<br />

longitude may then be transformed into such a reference system by specifying the<br />

new kM, a, f values, the translation vector, the scale change and the three rota-<br />

tion angles for the rotations around the X, Y and Z axes respectively.<br />

-<br />

<strong>The</strong> approximation T will be given in the same reference system as the one<br />

specified through the transformat ion parameters, i. e. in a geocentric reference<br />

sys tem. Predictions will be given in both the original and the new reference<br />

sys tem .


3.3 <strong>The</strong> Covariance Function.<br />

We explained in Section 2.2 how an isotropic covariance function can be<br />

specified through (1) a set <strong>of</strong> empirica.1 anonia7.y degree-variances <strong>of</strong> degree less<br />

than or equal to an integer I, bl(ag, Ag) and (2) an anomaly degree-variance model<br />

for the degree-variances o,,~ (Ag, Ag) for R greater than I.<br />

<strong>The</strong> values <strong>of</strong> the empirical degree-variances will depend on the radius <strong>of</strong><br />

the Bjerhanlmar sphere, R. We have, therefore chosen to specify these quantities<br />

on the surface <strong>of</strong> the mean <strong>Earth</strong>9 i. e. the quantities<br />

must be given together with the ratio R/R,. <strong>The</strong> quantities (88) must be given in<br />

units <strong>of</strong> mga12.<br />

<strong>The</strong> anomaly degree-variance model is for k= 1 and 2 specified through<br />

the constants A, and A, (eq. (30) and (31)) and for k= 3 through the constant A3<br />

and the integer B (eq. (32)).<br />

Thus, in the program the models are specified not through the constants<br />

A,, k= 1,2 or 3, but through the variance <strong>of</strong> the point gravity anomalies on the<br />

surface <strong>of</strong> the <strong>Earth</strong>.<br />

(29):<br />

This qualltity is then used for the determination <strong>of</strong> A,. We have from<br />

Let us now, for example regard model 2, i. e. a2,p, (Ag, Ag) = A,@- 1) . <strong>The</strong>n<br />

(1- 2)


I 2 $+2<br />

h<br />

(90) A,= (cov(Ag~ , Agp ) - 7 4 (Ag, Ag)<br />

!A<br />

A=O<br />

<strong>The</strong> infinite sum may be computed by the formula given in Tscherning and Rapp<br />

(1974, Section 8), and A, (and in the same way A, or A,) can then be found.<br />

We will finally mention, that the ratio R/R, is used by the program for the<br />

computation <strong>of</strong> the radius <strong>of</strong> the Bjerhammar sphere.


4. Main Lines <strong>of</strong> Function <strong>of</strong> the Program.<br />

In Section 2 we mentioned that the program could be used to estimate ?<br />

N<br />

from maxiinally three sets <strong>of</strong> observations X, , x, and X,. T would then be equal<br />

N N<br />

to the sum <strong>of</strong> up to three harmonic functions, T, , T, and ?, . <strong>The</strong> limit <strong>of</strong> three<br />

was only attained, when potential coefficients formed the first set <strong>of</strong> observations,<br />

X1 *<br />

We will here clescribe the function <strong>of</strong> the program, when we are in this<br />

situation, i.e. when we have three datasets X,, x, and x3, and X, is a set <strong>of</strong><br />

potential coeffic ients .<br />

<strong>The</strong> flow <strong>of</strong> the program is illustrated in Figure 2. Several logical vari-<br />

ables determine the flow. <strong>The</strong> logical variable LPRED will e. g. be "false" until<br />

the estimation <strong>of</strong>? is finished and will have the value fltrue", when predictions<br />

are computed.<br />

<strong>The</strong> program will start by initializingdiffermt variables. It will require<br />

illformation about the reference systems <strong>of</strong> the observations and use this infor-<br />

mation to select e. g. the proper formulae for the normal g~avity.<br />

When the reference sys tem is not geocentric or when the normal gravity<br />

does not correspond to a proper kM value, the necessary transformation elements<br />

and the kM value must be given.<br />

<strong>The</strong> next step is then to read in the observations X,, the potential coef-<br />

ficients. <strong>The</strong> normal equations (12) will not have to be solved in this situation,<br />

cf. Section 2.3. ?, is represented by (83).<br />

<strong>The</strong> following two steps, where we explicitly use the equations for collocation,<br />

will be denoted Collocation I and Collocation 11. We will first have to specify the<br />

covariance function and observations used in Collocation I:<br />

<strong>The</strong> covariance hnc tion for the residual anomalies d, X, must be specified<br />

through the selection <strong>of</strong> an anomaly degree -var ianc e model and contingently by<br />

specifying a set <strong>of</strong> low order empirical. deg ee-variances.<br />

<strong>The</strong> observations X, (and later X,) may be subdivided in different files<br />

according to format, kind <strong>of</strong> observed quantity etc. Each single observation is<br />

first transformed to a geocentric reference system (if necessary). <strong>The</strong>n the<br />

residual observation is computed, by subtracting the contribution from Tl from<br />

the observed value. After the input <strong>of</strong> a file, the value <strong>of</strong> a local variable LSTOP<br />

will be input, which will signify if more files belonging to X, will have to be input.


Flow-Chart <strong>of</strong> Program.<br />

Legend:<br />

T = true<br />

F= false<br />

Figure 2<br />

<strong>The</strong> main flow is determined by the values <strong>of</strong> the following logical variables:<br />

LTRAN - coordinates and observations must be transformed to a geocentric<br />

reference system and gravity observations must refer to a gravity<br />

formulae consistent with the refe ence sys tem.<br />

LPOT = potential coefficients from first set <strong>of</strong> I1observed" quantities.<br />

LCREF= second set <strong>of</strong> observations (or third when LPOT is true) will be<br />

used, and the harmonic function computed by Collocation I will be<br />

r<br />

used as an improved reference field. LCREF is initialized to be<br />

false and will get its final value after Collocation I is finished.<br />

LPRED = predictions are being computed.<br />

LGRID = the predictions are computed in the points <strong>of</strong> a uniform grid.<br />

LERNO = the error <strong>of</strong> prediction inus t be computed.<br />

LCOMP= compare observed and predicted values (an observed value is input<br />

together with the coordinates <strong>of</strong> the point <strong>of</strong> prediction).<br />

\input operation /<br />

/butput operation\<br />

reference system <strong>of</strong> observations<br />

I<br />

\input LTRAN, LPOT]<br />

~~~~F<br />

arame ters<br />

I T<br />

ut potential coefficients/<br />

I<br />

SpecjIy kind <strong>of</strong> degree-<br />

ariance model to be used<br />

1


Figure 2<br />

(cont'd)<br />

~pecl~6C"i~r.s in the<br />

elected<br />

\ Specify kind an1 formkt <strong>of</strong> file<br />

<strong>of</strong> obsei-vations or file <strong>of</strong> coor<br />

-.<br />

1<br />

F&~R ID)<br />

+T<br />

[-{reference svs tern I<br />

I~onqmte contribution from reference ]<br />

V-<br />

],F k l f i e l d given by potential coefficients I<br />

A<br />

ut u so utions<br />

1~ {&/I and the residual observations when I l<br />

ution from Collocation I ancl<br />

1<br />

Pu tput p ediction l<br />

Y<br />

rid or file ?


After the last file has been input, the vector d, ,u, is stored on a disk.<br />

<strong>The</strong> coefficients <strong>of</strong> the nornml equations are then computed and stored on the<br />

disk as well.<br />

A subprogram NES, which only uses a limited amount <strong>of</strong> core store, will<br />

then compute the solution vector b, and in this way 'i;, is determined.<br />

<strong>The</strong> solution vector may be output on punched cards, so that the function<br />

N<br />

T, can he retrieved without computing the coefficients <strong>of</strong> (and solving) the normal<br />

equations.<br />

Collocation I is now finished. It is then possible either to start the compu-<br />

tation <strong>of</strong> predictions or to start Collocation 11. -4 logical variable LCREF is used<br />

to distinguish between the two situations. Thus, LCREF will have to be true in<br />

this case, because we have decided to describe the situation, where three data-<br />

sets are used.<br />

<strong>The</strong> covariance function <strong>of</strong> the residual observations d,% is then first<br />

specified. It is done in the same way as for the covariance function used in<br />

Collocation I, though the kind <strong>of</strong> anomaly degree-variance model used will have<br />

to be the same.<br />

<strong>The</strong> different files <strong>of</strong> the dataset X, can then be input. Each observations<br />

is first transformed to a geocentric reference system. <strong>The</strong>n the contribution from<br />

F, and F, is computed, so that finally &X, can be stored. <strong>The</strong> coefficients <strong>of</strong> the<br />

new normal-equations can then be computed and the equations solved. Again, here<br />

the solution b, may be output on punched cards. (In case b, or b, had been com-<br />

puted in previous runs <strong>of</strong> the program, their respective values would have been<br />

input and the coefficients <strong>of</strong> the normal equations are then not computed.)<br />

When the equations have been solved, the reduced normal equation matrix is<br />

retained on a disk, so that errors <strong>of</strong> estimation can be computed, using equation (13).<br />

<strong>The</strong> estimate <strong>of</strong> the anomalous potential is then, cf. eq. (82a)<br />

rU N<br />

T(P) = Tl (P) + ?'a (P) + ?,(P),<br />

with T, (P) given by eq. (83),


cf. eq. (81a).<br />

<strong>The</strong> prediction <strong>of</strong> a height anomaly, a gravity anomaly or a deflection<br />

component can now be computed using eq. (82a). <strong>The</strong> computation is based upon<br />

exactly the same type <strong>of</strong> information as was used for the computation <strong>of</strong> F, and<br />

and T, , i. e. geodetic latitude and longitude, and a height. <strong>The</strong> program itself<br />

may generate lists <strong>of</strong> coordinates. Such a l.ist is generated, when the logical<br />

LGRID is true. <strong>The</strong> list will consist <strong>of</strong> coordinates <strong>of</strong> points lying in a grid. <strong>The</strong><br />

grid is specified by its south-west corner, and the number and magnitude <strong>of</strong> the<br />

grid increments in northern and eastern direction. <strong>The</strong> heights <strong>of</strong> the points are<br />

specified by the ratio RP (equation (87)).<br />

<strong>The</strong> prediction <strong>of</strong> a quantity, e.g. a gravity anomaly will then be computed<br />

by first determining the difference between the anomaly given in a geocentric<br />

reference system and the reference system <strong>of</strong> the observations, Ago. <strong>The</strong> contri-<br />

bution && is then evaluated from ?, and the contributions from ?, and F, using<br />

(81a), i. e.<br />

<strong>The</strong> predicted value is then, (cf. eq. (82a)):<br />

Predictions <strong>of</strong> other quantities are computed in the same way. A special facility<br />

for the comparison <strong>of</strong> observed and predicted quantities can be used, when the<br />

logical LCOMP is true. <strong>The</strong> differences between observed and predicted quantities<br />

are in this case, computed together with their mean value and variance. A sampling<br />

<strong>of</strong> the differences is done in intervals <strong>of</strong> a specified magnitude.<br />

<strong>The</strong> processing time (or more correctly, the central unit processing time)<br />

will valy depending on (1) the covariance function used, (2) the number <strong>of</strong> obsema-<br />

tions and (3) the number <strong>of</strong> cluantities to be predicted and estimates <strong>of</strong> errors to be<br />

computed. <strong>The</strong> program has been used for a variety <strong>of</strong> test computations, though<br />

never with more than 500 observations. <strong>The</strong> used processing times for anumber


Model<br />

<strong>of</strong> situations are presented in Table 2. <strong>The</strong> computations were all made on the<br />

IBM system/370 inodcl 165 computer <strong>of</strong> the Instruction and Research Computer<br />

Centcr, <strong>Ohio</strong> <strong>State</strong> <strong>University</strong>. <strong>The</strong> so called Fortran H-extended compiler<br />

(BM (1972)) was used for the compilation <strong>of</strong> the program. <strong>The</strong> normal equations<br />

were stored on an LBM model 3330 disk.<br />

Table 2<br />

Examples <strong>of</strong> Processing Times for Different Input Data and Covariance Functions.<br />

Potential Coefficients <strong>of</strong> Degree up to 20 Used.<br />

Collocation I<br />

Collocation II**<br />

Irde r <strong>of</strong> local<br />

zovar. fct. I<br />

110<br />

110<br />

1 GO<br />

160<br />

110<br />

110<br />

**Normal equations not computed and solved in Collocation I.<br />

Predictions<br />

Number <strong>of</strong><br />

Total pro-<br />

cessing time<br />

m sec<br />

0 43<br />

0 43<br />

2 31<br />

3 22<br />

2 57<br />

4 09<br />

2 54<br />

4 09


5.<br />

<strong>The</strong> Storing <strong>of</strong> the Cocffic ients <strong>of</strong> the Normal Eq~mtions and the Function<br />

<strong>of</strong> the Subprograms .<br />

We will in this section discuss in more detail the function <strong>of</strong> an important<br />

part <strong>of</strong> the main-program and the different subprograms which have been used.<br />

However, the most detailed clcscription is hund in the appendix, where the FOR-<br />

TRAN program, which includes a large number <strong>of</strong> comment statements, is repro-<br />

duc ed .<br />

5.1 <strong>The</strong> storing <strong>of</strong> the normal equations.<br />

<strong>The</strong> IBM system 370 model 165 computer <strong>of</strong> the Instruction and Research<br />

Computer Center <strong>of</strong> the <strong>Ohio</strong> <strong>State</strong> <strong>University</strong> makes available a 630K !byte) core<br />

storage for a usual program. Let us suppose, that we have used 180 I< for the<br />

storing <strong>of</strong> the program and variables different from the coefficients <strong>of</strong> the normalequations.<br />

We are then left with 450K bytes, which can be used to store these quantities.<br />

When the coefficients are represented as double p ecision variables (8 bytes),<br />

it is then possible to store 450* 1024/8=57600 coefficients in the core.<br />

A system <strong>of</strong> equations with N unknowns, and a full symmetric coefficient<br />

matrix plus a constant vector <strong>of</strong> length N+l will totally occupy (N+2)* (~+3)/2<br />

8 byte positions. This implies, that we maximally can sdve a system <strong>of</strong> eqmtioxls<br />

with 336 unknowns, if we want to store all the coefficients in the core.<br />

<strong>The</strong> solution to the problem is naturally to divide the upper (or lower) tri-<br />

angular part <strong>of</strong> the matrix in blocks, which then are stored on a disk and later<br />

read into core storage when needed. <strong>The</strong> subdivision in blocks can be made in<br />

several ways. h case we wanted to compute the inverse matrix, the optimal<br />

subdivision seeins to be a subdivision in squares submatrices, as used by Karki<br />

(1973). It is unnecessary to compute the inverse matrix for our purpose. <strong>The</strong><br />

solution vector b (16) and the estimate <strong>of</strong> the error <strong>of</strong> prediction (13) may both be<br />

computed without using the inverse matrix. It is enough to compute the so .called<br />

reduced matrix L',<br />

where L is a lower triangular matrix, cf. Poder and Tscherning (1973). <strong>The</strong><br />

T<br />

computation <strong>of</strong> L is most easily programmed, when the upper triangular<br />

-<br />

part <strong>of</strong><br />

C is subdivided in blocks, which contain a number <strong>of</strong> consecutive r columns, stored<br />

in a one-dimensioned array with the diagonal element having the highest subscript<br />

cf. Figure 3.


Number <strong>of</strong> last row stored<br />

in block<br />

Block Number<br />

Figure 3. Blocking <strong>of</strong> 400 X 400 matrix<br />

It is necessary, that two blocks can be stored sin~ultaneously in the core storage,<br />

i.e. the maximum block size is then 225K or (450/2) * 1024/8 = 28800 double precision<br />

coefficients. This number is then also the upper limit for the dimension<br />

<strong>of</strong> the normal equation matrix, N. (Another limit is set by the magnitude <strong>of</strong> the<br />

disk unit used. For the I13M model 3330 disk used here, N will have to be less<br />

than circa 5000).<br />

We have in this program edition preferred to limit the total storage re-<br />

quirements to 252K (which for the present operative system gives a reasonable<br />

turn-around time). Thus, 90K can be used for the storing <strong>of</strong> the required two<br />

blocks and for the buffer area necessary for the transfer between core store<br />

and disk.


On a disk it is practical to block data in groups which occupy an integer<br />

number <strong>of</strong> tracks. We have then chosen to work with data partitioned into blocks<br />

<strong>of</strong> size 4800 *8 bytes, covering three tracks and to use a buffer area <strong>of</strong> 1200* 8<br />

bytes. <strong>The</strong> total area occupied in core storage is hence 2*(38400) + 9600 bytes<br />

or nearly 86K. (<strong>The</strong> disk discussed is, as mentioned above, an BM model 3330<br />

disk). Figure 4 shows the number <strong>of</strong> tracks used as a function <strong>of</strong> the number <strong>of</strong><br />

observations, N.<br />

Tracks<br />

Figure 4. Number <strong>of</strong> tracks used on an IT3M model 3330 disk unit for a varying<br />

number <strong>of</strong> uulmowm, N (12800 bytes used on each track).<br />

40


When a coefficient <strong>of</strong> the normal equation matrix C (eq. 12) is computed<br />

(subroutine PRED) it will first be stored in an array C <strong>of</strong> dimension 4700 (the<br />

last 100*8 bytes are used to hold two catalogues). Where the array C is filled<br />

up with as many columns as possible, the content will be transferred to the disk<br />

and stored in a direct access dataset (see IBM (1973, page 67)). <strong>The</strong> constant<br />

vector <strong>of</strong> observations, X is stored together with the coefficients, as if it was an<br />

extra column. <strong>The</strong> ficticious diagonal element <strong>of</strong> this column will contain the<br />

normalized square sum <strong>of</strong> the observations.<br />

As mentioned above, the last 100*8 bytes <strong>of</strong> a block are used to hold two<br />

catalogues. <strong>The</strong> first catalogue contains the subscripts <strong>of</strong> the diagonal elements<br />

<strong>of</strong> the columns stored in the block. <strong>The</strong> second contains the subscript <strong>of</strong> the<br />

last zero element encountered in a column, starting the inspection <strong>of</strong> a column<br />

from the top. This catalogue may especially be used when C is a sparse matrix<br />

(e. g. when potential coefficients are not necessarily stored). In this program C<br />

will always be a full matrix, so the catalogue entries are just equal to zero.<br />

(<strong>The</strong>ir value may be changed by the subroutine NES, in case singularities are<br />

encountered).<br />

5.2 Solution <strong>of</strong> the Normal Equations and Computation <strong>of</strong> the Estimate <strong>of</strong> the<br />

Error <strong>of</strong> Prediction, Subroutine NES.<br />

<strong>The</strong> equations are, as mentioned in Section 5.1, solved by first computing<br />

the upper triangular matrix L? (cf. (91)). This method is the well known Cholesliyls<br />

factorization method.<br />

b<br />

We obtain, from (15) and(91) by a left multiplication with L-~<br />

T<br />

<strong>The</strong> algorithm for the computation <strong>of</strong> the elements <strong>of</strong> L , 1 1 is<br />

and nearly exactly the same for the computation <strong>of</strong> the elements b: <strong>of</strong> (92):


i.e. the algorithm (93) will compute (92), when x is regarded and stored as an<br />

extra column <strong>of</strong> the matrix E. When b' has been computed, b can easily be<br />

obtained from (92) by a so callcd back-substitution procedure. We note, that<br />

we have (cf. eq. (6) and (13)):<br />

<strong>The</strong>n, using the algo ithm (93) for j = m+l with C , ~ subst.ituted for ciJ, we will<br />

obtain the quantity L-'C, for i= l, . . . ,m. By defining an element c,+~,,+~= CSs<br />

and using (9 3) for i= m+l we will have computed the quantity G", (13).<br />

<strong>The</strong> sub<br />

outine NES uses these algorithms for the computation <strong>of</strong> the vector<br />

b and the quantity 1%:. <strong>The</strong> elements <strong>of</strong> c are stored in the positions on the disk,<br />

where earlier the coefficients <strong>of</strong> the upper triangular part <strong>of</strong> Cwere stored.<br />

<strong>The</strong> matrix @ is theoretically, always positive definite. Thus, mis takcs may<br />

be made, which make E non positive definite. <strong>The</strong> Choleskys algorithm (93) will<br />

not work in this case, because the diagonal element <strong>of</strong> L', Jll, is computed by taking<br />

the square- root <strong>of</strong> equation (93), where both sides have been multiplied with Jii.<br />

<strong>The</strong> occiireuce <strong>of</strong> a negative quantity<br />

r<br />

will not stop the execution <strong>of</strong> the program. NES will regxrd the column and corres-<br />

ponding row as deleted, and bl will be put equal to zero.<br />

Choleslyts method is very favorable numerically. But the proper use <strong>of</strong><br />

the method requires that the sum <strong>of</strong> the products II,, R,, in (93) are accun~ulated in<br />

a variable, which in this case would be in quadruple precision. <strong>The</strong> final product<br />

sum would then have to be rounded properly to double precision. Unfortunately<br />

rounding is not<br />

r<br />

done by simply requiring the quadruple precision variable to be<br />

stored in a double precision variable, but supplementary statements have to be<br />

used. Thus, the solution vector by is heye obtained by computations performed<br />

in double precision only, which in this case anyway, gives a satisfactory number <strong>of</strong><br />

significant digits.<br />

'N \3<br />

<strong>The</strong> solution vector b, is obtained in 0.71 Lz0; seconds, where N is the<br />

dimension <strong>of</strong> the normal equation matrix.


5.3 Transformation Between Reference Systems, Subroutine ITRAN.<br />

We pointed out in Section 3, that it was necessary to transform the co-<br />

ordinates and measurements into a geocentric reference system. This transfor-<br />

mation is performed for the coordinates, the deflections and the height anonlaly<br />

by the subroutine ITRAN.<br />

<strong>The</strong> subroutine uses the euclidian coordinates X, Y, and Z for a point<br />

with geodetic latitude and longitude X and with the ellipsoidal height equal to zero.<br />

XI Yl, Z, by<br />

<strong>The</strong>se coordinates are then transformed into geocentric coordinates,<br />

where (AX, AY, AZ) are the coordinates <strong>of</strong> the center <strong>of</strong> the old reference ellipsoid<br />

given in the new coordinate system, AL the scale change and (c,, c,, c,) the three<br />

infinitesimal rotations around the X, Y, Z axes respectively .<br />

<strong>The</strong> new geodetic latitude 9 and longitude X, <strong>of</strong> this point is computed<br />

using the ite ative procedure given in PG (p. 183). This computation will also<br />

furnish us with the change in the height anomaly, which is identical to the height<br />

<strong>of</strong> the point (Xl, Y,, Z1) above the ncw reference ellipsoid.<br />

<strong>The</strong> change in the deflection components are then determined using the<br />

differences col - cp and X, - X.<br />

A contingent correction for systematical errors in the deflections or the<br />

height anomaly (cf. Section 3.2), specified by the changes 65,, 6~,, 65, in a<br />

point with coordinates cp, Xo, is conlputed by the subroutine using the equations<br />

given in PG (eq. (5-59)).<br />

5.4 Computation <strong>of</strong> the Normal Gravity, the Normal Potential and the Contri-<br />

butions from the Potential Coefficients. Subroutines GRAVC and IGPOT.<br />

<strong>The</strong> normal gravity may be given in two ways. Either by a gravity formula<br />

or by specifying a norinn1 gravity field, from which the gravity formulae then can<br />

be derived, (cf. PG, Chapter 2). <strong>The</strong> only gravity formulae which can be used is<br />

the international gravity formulae, PG (cq. (2-126) and (2-131)). <strong>The</strong> normal<br />

gravity fields which can bc used, are those for which the reference ellipsoid is an<br />

equipo tential surface, i. e. it is specified by the values <strong>of</strong> kM, a, f and U.


We may need to kuow the reference gravity in two situations. Firstly<br />

when free-air anomalies are computed using measured gravity values and secondly,<br />

when we want to compute the change in the gravity anomalies due to the use <strong>of</strong> a<br />

new reference sys tern.<br />

<strong>The</strong> subroutine GRAVC will compute and store the constants (PG, Section<br />

2.10) necessary for the computation <strong>of</strong> the normal gravity in one or two reference<br />

systems. <strong>The</strong> constants used to compute the value <strong>of</strong> the normal potential (J,,,<br />

ns 5 in eq. (26)) and the change in the latitude component <strong>of</strong> the deflection <strong>of</strong> the<br />

vertical 5 due to the curvature <strong>of</strong> the normal plumbline (PG(5-34)) are computed as<br />

well. When the height exceeds 25 km, the derivatives <strong>of</strong> the series (26) with<br />

respect to the latitude and the distance froln the origin, will be used for the compu-<br />

tation <strong>of</strong> the normal gravity and the change in 5. Thus, this method <strong>of</strong> computation<br />

can, unfortunately, not be applied when the international gravity formula is used.<br />

<strong>The</strong> values <strong>of</strong> the normal gravity, the normal potential and the change in S<br />

are computed by calling separate entries to the subroutine. <strong>The</strong> subroutine IGPOT<br />

computes the value <strong>of</strong> the potential W(P) and the three components <strong>of</strong> thz gradient<br />

<strong>of</strong> the potential, the value <strong>of</strong> kM, a and w , cf. eq. (25).<br />

Let us, as usual, define V by<br />

<strong>The</strong> coefficient modification method is used for the computation <strong>of</strong> the values<br />

<strong>of</strong> V and the gradient <strong>of</strong> V. This method uses the fact, that the derivative <strong>of</strong> a har-<br />

monic function with respect to euclidian coordinates again is a harmonic function.<br />

<strong>The</strong> potential coefficients <strong>of</strong> the (three) new harmonic functions D,TJ, DyTJg and DZV<br />

are computed by means <strong>of</strong> a recursion algorithm given in James (1969, eq. (3) and<br />

(4)). <strong>The</strong> recursion algorithm is identical to the algorithm used for the evaluation<br />

<strong>of</strong> the values <strong>of</strong> the solid spherical harmonics. This fact simplifies the computations<br />

very much. It furthermore makes it unnecessary to store the three sets <strong>of</strong> modified<br />

potential coefficients. <strong>The</strong>y are conqmted for each call <strong>of</strong> the subroutine from the<br />

original potential coefficients. <strong>The</strong> algo ithm may easily be modifjed to compute<br />

higher order derivatives (without extra storage requirements). Thus, the algorithm<br />

may also be used in case the program is extended to use second order derivatives<br />

as observed quantities.<br />

<strong>The</strong> value <strong>of</strong> the potential and the gradient is used to compute the residual<br />

observation d,%i :<br />

<strong>The</strong> value <strong>of</strong> the potential is used together with the value <strong>of</strong> the normal


potential (as computed by GRAVC) to compute a residual height anomaly. <strong>The</strong><br />

gradient is used to compute the residual gravity anomalies and deflection compo-<br />

nents :<br />

A<br />

where y, is the normal gravity, qj is the geodetic latitude plus a correction for<br />

the curvature <strong>of</strong> the plumbline and X, the longitude.<br />

<strong>The</strong> components <strong>of</strong> the gradient used in (97a) are evaluated in a point with<br />

height equal to the orthometric height plus the distance h. between the reference<br />

ellipsoid and an equipotential surface <strong>of</strong> U1 = U + T1 with potential equal to the<br />

potential <strong>of</strong> the normal potential, U on the ellipsoid. <strong>The</strong> separation h, is computed<br />

by evaluating Tl /y oil the eliipsoicl. <strong>The</strong> other gradieiits are evaluated iil the height<br />

equal to the orthome tric height.<br />

5.5 Computation <strong>of</strong>, Euclidian Coordinates, Conversion <strong>of</strong> Angles to Radians,<br />

Subroutines EUCLID, RAD.<br />

<strong>The</strong> subroutine EUCLID computes the euclidian (rectangular) coordinates for<br />

a point with geodetic coordinates p, X , h (ellipsoidal height) given in a reference<br />

system with semi-major axis a and second eccentricity e by the equations PG (5-3)<br />

and (5-5).<br />

RAD converts angles given in either (1) degrees, minutes, arc seconds,<br />

(2) degrees and minutes, (3) degrees or (4) (400) grades into units <strong>of</strong> radians.<br />

Other options may easily be added.<br />

5.6 Subroutines for Output h'lanagement and Prediction Statistics, HEAD, OUT<br />

and COMPA.<br />

<strong>The</strong> output requirements are discussed in Section 7. <strong>The</strong> main require-<br />

ment is, that a determination <strong>of</strong> ?must be as well documented as possible. ?!<br />

may be computed in several ways, cf. Table 1. This implies, that the output may<br />

vary in just as many ways.


An array 013s is used for the storage <strong>of</strong> the observed quantities, the resid-<br />

ual observations, the contributions from the different sets <strong>of</strong> observations and the<br />

predicted quantities. <strong>The</strong> storage sequence <strong>of</strong> these quantities is determined by<br />

BEAD, which a,lso will print proper headings. <strong>The</strong> coordinates <strong>of</strong> an observed or<br />

predicted quantity and the quantities stored in OBS are printed on the line printer<br />

by OUT, which also will punch a part <strong>of</strong> this information when requested (see Sec-<br />

tion 7).<br />

COMPA uses the content <strong>of</strong> OBS for the computation <strong>of</strong> prediction statistics.<br />

<strong>The</strong> difference between observed and predicted quantities are sampled in classes<br />

defined by a specjfied class width. <strong>The</strong> number <strong>of</strong> differences in each class is<br />

printed by COVA after the final predictions have been computed. <strong>The</strong> sampling is<br />

done separately for Ag, 5 and v. No sampling is done for 5.<br />

5.7 Subroutines for the Computation <strong>of</strong> Covariances, PRED and SUMK.<br />

PRED computes :<br />

(a) the vector dim ,Cs or dl-, C l , (cf. eq. (78a) and (82a)).<br />

(h) a colunm <strong>of</strong> the upper triangular part <strong>of</strong> the normal equation matrix<br />

(eq. (80a)) diCii or<br />

t Sxi~ di S = d,~: bi , (cf. cq. (8Ia)).<br />

(C j Ihe pi.06~~<br />

<strong>The</strong> subroutine may theoretically work even when the observations (different<br />

from potential coefficients) are divided in more than two groups, as long as the<br />

total number <strong>of</strong> observations do not exceed 1600 minus the number <strong>of</strong> groups minus<br />

one.<br />

When the observed quantity is a pair <strong>of</strong> deflections <strong>of</strong> the vertical it is very<br />

easy to compute the two corresponding colunms <strong>of</strong> the upper triangular part <strong>of</strong> C<br />

at the same time. This is due to the similarity <strong>of</strong> the equations for the covariaaces<br />

(44)-(50) for 5 and v. This fact is used in the subroutine.<br />

We mentioned in Section 3.1, that ic would facilitate the computations if the<br />

observations were grouped according to cominon characteristics, i. e. , e. g. gravity<br />

amoinalies on the surface <strong>of</strong> the <strong>Earth</strong> in the first groilp, deflections in the second<br />

group, gravity anonxilies in 10 kinf S height in the third group, etc. <strong>The</strong> group<br />

characteristics (the type <strong>of</strong> observation and the quantity RP, ($7)) are stored in two<br />

arrays INDEX and P, which will also contain the subscripts <strong>of</strong> the first observation<br />

in the group within the total set <strong>of</strong> observations and a quantity related to the square<br />

root <strong>of</strong> the varimce <strong>of</strong> the observations. This quantity is used for the scaling <strong>of</strong><br />

the normal equations (in which all the diagonal elements will be equal to me).


<strong>The</strong> covariances are computed using the equations given in Section 2.2.<br />

Thus, for degree-variance model 3, the covariances will be evaluated using the<br />

subroutine SUMK as well. This subroutine computes the sum <strong>of</strong> the infinite series<br />

CD Q, m<br />

1 a 1 1-1 1 p - 2 - S Dt Pa(t) and -<br />

S k t L (a+B) 2 @+B) D: pkt) ;<br />

L<br />

which are needed for the computation <strong>of</strong> the quantities cov:(si, sJ), cf. eq. (39) and<br />

Tscheming and Rapp (1974, eq. (130) - (135)).


6. Input Spec if icatioils .<br />

We can divide the input data in different (sometimes overlapping) groups:<br />

(A) Data (generally true/false values <strong>of</strong> logical variables) determining<br />

the flow <strong>of</strong> the program (LTllAN, LPOT, LCREF, LGRID, LERNO,<br />

LSTOP),<br />

(B) Data specifying selected input/output options,<br />

(C) Data specifying the reference systems used for coordinates and obser-<br />

vations,<br />

(D) Data specifying the degree-variance model used,<br />

(E) Data used for the determination <strong>of</strong> T (i. e potential coefficients, gravity<br />

values, deflections, etc. ) and solutions to normal equations, and<br />

(F) Data used to specify which quantities we want to predict.<br />

<strong>The</strong> input flow is roughtly sketched in Figure 5. <strong>The</strong> position <strong>of</strong> the<br />

integers i-5 in the diagram indicates the beginning <strong>of</strong> the input data beionging to<br />

one <strong>of</strong> the 5 groups described below:<br />

up to<br />

one<br />

repetition<br />

Figure 5: <strong>The</strong> Input Flow.<br />

@ Input data <strong>of</strong> category<br />

(A)-(F) mentioned in text.<br />

Up to 8 repetitions, when the input data<br />

has significantly different characteristics<br />

Unlimited number <strong>of</strong><br />

repetitions


<strong>The</strong> input consists exclusively <strong>of</strong> data on 80-column punch-cards. We will<br />

describe the content <strong>of</strong> each card, but not the format <strong>of</strong> thc card. Instead, the for-<br />

mat statement number will be given (in brackets) together with a two to five digit<br />

number, e.g. 3.013. This number will be used to identify the corresponding card<br />

shown in the input example, Appendix B.<br />

We will divide the data in 5 categories:<br />

(1) Data <strong>of</strong> type (A), (B) and (C), i. e. data describing the reference<br />

systems used,<br />

(2) Data <strong>of</strong> type (A), (B) and (E), where the data <strong>of</strong> type (E) are the<br />

potential coefficients,<br />

(3) Data <strong>of</strong> type (A), (B) and (D), i. e. data related to the degree-<br />

variance models,<br />

(4) Data <strong>of</strong> type (A), (B) and (E), where the data <strong>of</strong> type (E) are obser-<br />

vations <strong>of</strong> gravity anomalies, measured gravity values, height anom-<br />

alies and deflections <strong>of</strong> the vertical,<br />

(5) Data <strong>of</strong> type (A), (B) and (F).<br />

<strong>The</strong> first digit in the identifying number will be the number <strong>of</strong> the category<br />

to which the card belongs. <strong>The</strong> other digits are used to indicate to which group<br />

or subgroup within the category the card belongs. In case an input situation de-<br />

pends on the content <strong>of</strong> e. g. the card 3.01 and there are two different input pos-<br />

sibilities, the two cards will have the numbers 3.011 and 3.012 respectively.<br />

(Data <strong>of</strong> type (A) and (B) will, as mentioned above, in many cases be the true or<br />

false value <strong>of</strong> a logical variable. <strong>The</strong> function <strong>of</strong> a logical variable can be explained<br />

by writing e. g. : LE is a logical variable, which is true when XXX and false other-<br />

wise. Thus, we will in several cases below simply write LE = XXX.)<br />

Categoq 1. (<strong>The</strong> numbers in brackets are, as mentioned above, the corresponding<br />

---- - format statement numbers).<br />

1.0 (105) <strong>The</strong> (true or false) values <strong>of</strong> five logical variables: LTRAN= the<br />

observations must be transformed to a new reference system, LPOT=<br />

potential coefficients are part <strong>of</strong> input data (observation data. set XI),<br />

LONEQ = output the coefficients <strong>of</strong> the normal equations on the line<br />

printer, LLEG= output a legend <strong>of</strong> the tables, which will be printed and<br />

LE = the standard deviations <strong>of</strong> the observations to be input (otherwise<br />

they are set equal to zero).


1.1 (103) A text <strong>of</strong> maximally 72 characters included in apostrophes, which<br />

identify the referace sys tem <strong>of</strong> the observations.<br />

1.2 (120) <strong>The</strong> semi-major axis (meters) and the inverse <strong>of</strong> the flattening <strong>of</strong><br />

the Geodetic Reference System. <strong>The</strong> value <strong>of</strong> two logical variables,<br />

LPOTSD = the gravity are given in the Potsdam system and LGRS67 =<br />

the gravity data are given in the Geodetic Reference System, 1967.<br />

In case the gravity data are not in the Potsdain system or in GRS 1967, input <strong>of</strong>:<br />

1.21 (121) <strong>The</strong> product <strong>of</strong> the gravity constant and the mass <strong>of</strong> the <strong>Earth</strong><br />

(kM) in units <strong>of</strong> me ters 3 / sec 2 .<br />

When LTRAN is true input <strong>of</strong>:<br />

l. 3 (131) <strong>The</strong> new semi-major axis (meters), the new kM (meters 3 /sec 2 ),<br />

the inverse flattening, the translation vector (dX, dY, dZ) (meters), dL =<br />

one minus the scale factor, the three rotation angles (c,, c,, c,) (arc sec)<br />

and the value <strong>of</strong> a logical variable, LCHANG, which is true when the<br />

deflections and the height anomaly are to be corrected for a systematic<br />

error. (<strong>The</strong> correction must be given as a change 65,, 6q0, 65, at a<br />

point with coordinates p, X,, cf. Section 5.2).<br />

When LCHANG is true, input <strong>of</strong>:<br />

1.31 (133) cp, and X. in degrees,minutes and arc seconds, 65, , 6q0 in arc<br />

seconds and 6C0 in meters.<br />

Category 2. Data <strong>of</strong> this category are only input, when LPOT (card 1.0) is true.<br />

<strong>The</strong> values <strong>of</strong> kIvI and a, input on card 2.1, will have to be the best<br />

available estimates, cf. Section 3.2. <strong>The</strong>y must be identical to<br />

the values input on card 1.3, when LTRAN is true.<br />

2.0 (103) A text <strong>of</strong> maxiinally 72 characters, describing the source <strong>of</strong> the<br />

potential coefficients.<br />

2.1 (137) kM (meters 3 /sec"), a (meters), the normalized coefficient c2*,<br />

multiplied by 106, the maximal degree <strong>of</strong> the coefficients and the value <strong>of</strong><br />

a logical variable, LF&I, which is false, when the coefficients E!,, are<br />

punched on a separate card, and C,, , S,, on the same card in a sequence<br />

increasing with i and j, and true w11en the coefficients are punched in the<br />

same scqxnce, on a number <strong>of</strong> cards, but with a fixed number <strong>of</strong> coef-<br />

ficients on each card. <strong>The</strong> first coefficient will, in both cases, have to


e C,,, (even when this is zero) and all cards must have the same format,<br />

as given by 2.1. All the coefficients have to be fully nornlalized and<br />

multiplied by 10~.<br />

2.2 (103) <strong>The</strong> format <strong>of</strong> the cards on which the coefficients are punched<br />

(in brackets).<br />

2.11 (format as given by 2.2). When LFM is false, the coefficients with c,O<br />

on one card and Clj and SIS on one card.<br />

2.12 (format as given by 2.2). When LFM is true, the coefficients in a se-<br />

quence increasing with i and j on a number <strong>of</strong> cards.<br />

Catezory 3. We can select one <strong>of</strong> three anomaly degree-variance models, by<br />

-- --- giving the variable KTY PE the value 1,2 or 3, cf. Section 2.2<br />

eq. (30), (31) and (32).<br />

When KTYPE is equal to 3:<br />

3.01 (107) IK = the variable B in equation (32).<br />

<strong>The</strong> degree-variance model is then specified by giving<br />

(a) the ratio R/R, between the radius <strong>of</strong> the Bjerhammar sphere and<br />

radius <strong>of</strong> the mean <strong>Earth</strong>,<br />

(b) the variance <strong>of</strong> the gravity anomalies on the surface <strong>of</strong> the <strong>Earth</strong><br />

(VARDGB), (from which the constant A, in the equations (30)-(32)<br />

are computed, cf. , e. g. equation (go)),<br />

(c) either the "order" Ll'vfAX <strong>of</strong> the local covariance model to be used<br />

or a zero, which will indicate, that empirical anomaly degree-<br />

variances are used, and in this case<br />

(d) the empirical anomaly degree-variances, given on the surface <strong>of</strong><br />

A<br />

the <strong>Earth</strong>, aE(Ag, Ag), (88).<br />

a<br />

When IMAX is equal to zero, input <strong>of</strong> the maximal degree, IMAXO <strong>of</strong> the degree-<br />

var iances &; (A g, A g).


3.12 (103) <strong>The</strong> forinat <strong>of</strong> the degree-variances. <strong>The</strong>se must be punched on<br />

one or more cards, sequentially from degree 2 to IMAXO.<br />

3.13 (format as given on card 3.12). <strong>The</strong> quant,ities &;(ng, Ag) in units <strong>of</strong> mga12.<br />

------ Category 4. hput <strong>of</strong> up to 9 clatasets with ~i~gnificantly different characteristics.<br />

One dataset can, for example, be two separate.datasets punched<br />

differently, but both being gravity anomalies on the surface <strong>of</strong> the<br />

<strong>Earth</strong>. Another clataset may consist <strong>of</strong> mean gravity anomalies, all<br />

with the same format. Before each separate dataset, there will<br />

be input <strong>of</strong> 2 or more cards specifying the characteristics <strong>of</strong> the<br />

dataset.<br />

All the records in a dataset must, be punched im the same way.<br />

<strong>The</strong>re are the following restrictions (or options): A station number<br />

may be punched. In this case it must be the first datafield on the<br />

card and maximally occupy seven positions. <strong>The</strong> next two data-<br />

fields must contain the latitude and the longitude (in an arbitrary se-<br />

quence). When the height is given, it must be punched in the next<br />

datafield.<br />

<strong>The</strong> following (up to four) datafields will have to contain the observed<br />

quantity (or quantities in case <strong>of</strong> pairs <strong>of</strong> deflecti n components) and<br />

P<br />

its standard deviation. When the observation is a pair <strong>of</strong> deflections,<br />

they have to be punched in the same sequence as the latitude and the<br />

longitude are punched. In t,he last datafield the value <strong>of</strong> the logical<br />

STOP has to be punched, generally false ( = blank), but true for<br />

the last record in the dataset.<br />

4.0 (103) <strong>The</strong> format <strong>of</strong> the records (in brackets).<br />

4.1 (202) INO=l when a station number is punched, 0 otherwise, ILA = the<br />

number <strong>of</strong> the datafield occupied by the latitude, ILO = the number <strong>of</strong> the<br />

datafield occupied by the longitude (ILA and ILO will be equal to 1, 2 or<br />

3), am integer IANG specifying the units used for the latitude and the<br />

longitude (1 for degrees, minutes, arc. sec., 2 for degrees and minutes,<br />

3 for degrecs and 4 for 400-grades), IH= 0 when the height is zero and<br />

not punched and otherwise the number <strong>of</strong> the datafield in the record in<br />

which the height is punched (generally 3 or 4), IOBSl= the datafield number<br />

<strong>of</strong> the first observation in the record, IOBSB = the clatafield nunlber <strong>of</strong> the<br />

second observation (zero when there is only one observations), the


value <strong>of</strong> an integer XI?, specifying the kind <strong>of</strong> observation: 1 for height<br />

anomalies, 2 for measured gravity or gravity anomalies (point or mean),<br />

3 for pairs <strong>of</strong> deflections, 4 for the latitude component 5 and 5 for the<br />

longitude component 7) .<br />

<strong>The</strong>n the ratio RP (87) between the sphere on which the observations are<br />

situated atid the mean <strong>Earth</strong> radius and finally 5 logical variables: LPUNCH =<br />

punch observations together with the difference between the observed quantity<br />

and a possible contribution from the potential coefficients and a contribution<br />

from Collocation I, LWLONG = longitude is measured positive towards west,<br />

LMEAN= the gravity is a mean value, LSA = the standard deviations are the<br />

same for all observations, LKM= true when the height is in units <strong>of</strong> kilo-<br />

meters and false when the height is in meters.<br />

When the observation is a height anomaly it will have to be given in units<br />

<strong>of</strong> meters, and when it is a deflection component in arc seconds. But<br />

when the observation is a gravity anomaly or a measured gravity quantity,<br />

it is possible to specify tivo constants DhI and DA, which when DA is first<br />

added and the sum multiplied with DM will bring the observed quantity into<br />

units <strong>of</strong> mgal.<br />

4.11 (203) DM, DA and a logical variable LMEGR, which is true, when the ob-<br />

servation is a measured gravity value.<br />

When LSA is true, the records <strong>of</strong> observations will not contain a standard<br />

deviation <strong>of</strong> the observed quantity, and the standard deviation will then have<br />

to be input separately:<br />

4.12 (<strong>212</strong>) the standard deviation <strong>of</strong> the observations. <strong>The</strong>n the observations<br />

are input record after record, not exceeding a total number <strong>of</strong> 1598.<br />

4.2 (format given on card 4.0). Input as specified on card 4.1, last record<br />

with LSTOP equal to true.<br />

WhenLSTOP is true, a logical variable with the same name (i.e. LSTOP) is input.<br />

It is true when the last dataset is the final dataset used in Collocation I or 11.<br />

<strong>The</strong> final card will hence have the value true (T) punched in the first datafield. On<br />

this card, in this case, the values <strong>of</strong> two other logical variables can be punched.<br />

4.3 (230) <strong>The</strong> value <strong>of</strong> LSTOP, and when LSTOP is true, the values <strong>of</strong> two<br />

logical variables, LRESOL = input the solutions to the norinal equations<br />

(they must then have been produced in a previous i-un <strong>of</strong> the program) and<br />

LWRSOL= punch the solutions to the normal equations.


When LSTOP is false, the input process will he repeated from card 4.0. When<br />

LSTOP is tme and LRESOL is true, input <strong>of</strong> the solutions to the normal equations:<br />

First an identification card is read, then the solutions:<br />

4.31 (361) Input <strong>of</strong> solutions, i.e. the cards produced in a previous mn <strong>of</strong><br />

the program, where the logical variable LWRSOL was true.<br />

When the set <strong>of</strong> observations is the first one (the variable LC 1 is false),<br />

input <strong>of</strong> a logical variable LCREF, else jump to 5.0.<br />

4.4 (230) LCREF = a new set <strong>of</strong> observations, which will be used in collocation<br />

11, will have to be input,<br />

For LCREF= true, jump back to 3.1.<br />

Category 5. Data specifying quantities to be predicted. This specification will<br />

naturally have to be done in much the same way, as when the obser-<br />

vations were specified. We need coordinates and some variables,<br />

which specifies tile type <strong>of</strong> quantity to be predicted. <strong>The</strong>re are then<br />

two possibilities, which are distinguished by the true and false value<br />

<strong>of</strong> the variable LGRID.<br />

When LGRID is false, we will proceed in exactly the same way as<br />

above, dealing with data <strong>of</strong> Category 4. <strong>The</strong> quantities to be pre-<br />

dicted will be specified by a list <strong>of</strong> coordinates and 2 or more<br />

cards specifying format and type <strong>of</strong> quantity to be predicted.<br />

<strong>The</strong> list <strong>of</strong> coordinates may in fact be a list <strong>of</strong> observed quantities,<br />

which we want to coinpare with the quantities to be predicted. If<br />

this is the case, a logical variable LCOMP has to be true.<br />

When LGRLD is true, the predictions will have to take place 1n<br />

points which form a grid. <strong>The</strong> south-west corner <strong>of</strong> thegrid<br />

will have to be specified together with the distance between<br />

the mesh points in northern and eastern direction and the num-<br />

ber <strong>of</strong> mesh points having the same longitude and the same latitude.<br />

5.0 (200) Input <strong>of</strong> the logical values <strong>of</strong> LGRID, LERNO = estimate <strong>of</strong> error <strong>of</strong><br />

prediction is nmted and LCOMP = compare predicted and observed quan-<br />

tities.<br />

First time LCOMP is true, two constants used to specify the sampling width for<br />

a frequency distribution <strong>of</strong> the difference between observed and predicted gravity


anomalies (VG) and deflections (VF) must be input (e. g. equal to 2.0 mgal and<br />

0.5 arc. sec. ). (<strong>The</strong> differences are sampled in 21 groups. )<br />

5.01 (203) VG and VF.<br />

When LGRID is true:<br />

5.02 (201) Coordinates (latitude and longitude in degrees and minutes) <strong>of</strong> the<br />

south-west corner <strong>of</strong> the grid, the increments in latitude and in longitude<br />

(minutes), the number <strong>of</strong> increments in northern and in eastern direction,<br />

the value <strong>of</strong> the R P giving the type <strong>of</strong> quantity to be predicted (see 4. l),<br />

RP (see 4. l), L&AP= print the predicted quantities on the line printer<br />

with all values which are predicted in points with the same latitude on<br />

one line and all values predicted in points with the same longitude above<br />

each other, LPUNCH = punch coordinates, predicted quantity and when<br />

LERNO is true the estimated error, LiLIEAN= gravity to be predicted<br />

is a mean value.<br />

When LGRID is true, jump to card 5.1.<br />

Now, when LGRID is false, we may input lists <strong>of</strong> coordinates just as above:<br />

5.030 as 4.0 (format <strong>of</strong> records)<br />

5.031 as 4.1, with the following changes; When LCOMP is true, LPUNCH will<br />

mean the same as in 4.1 and the error <strong>of</strong> prediction will be punched when<br />

LERNO is true. When LCOhlP is false, the predicted quantity as given<br />

in the new and in the old reference system will be punched together with<br />

the error <strong>of</strong> prediction, when LERNO is true. <strong>The</strong> logical variable LSA<br />

has no function in this phase <strong>of</strong> the computations.<br />

When no observed quantity is contained in the record, both IOBSl and<br />

IOBS2 will have to be put equal to zero. Thus, in this case the record<br />

will have to contain the height. (<strong>The</strong> program requires the presence <strong>of</strong><br />

at least one datafield be!xeen the datafields occupied by the latitude and<br />

the longitude and the datafield occupied by the logical variable LSTOP).<br />

When IKP= 2 (we are predicting gravity quantities):<br />

5.033 input as specified by 5.030.


5.1 <strong>The</strong> value <strong>of</strong> LSTOP, true when no more quantities are tb be predicted.<br />

When ISTOP is false, jump to 5.0.<br />

An input example is printed in Appendix B.


7. Output and Output Options.<br />

<strong>The</strong> output from the FORTRAN program has been designed with the purpose,<br />

that the determination <strong>of</strong> ? and subsequent predictions should be as well documented<br />

as possible. This means, that nearly everything, which is used as input also will<br />

be output.<br />

<strong>The</strong>re are a few exceptions:<br />

(a) data <strong>of</strong> type (A) and (B) (cf. Section 6) are not printed,<br />

(b) the potential coefficients are not printed,<br />

(c) a measured gravity value is not printed, but the corresponding free-air<br />

anonlaly is,<br />

(d) more than two decimal digits <strong>of</strong> coordinates given in minutes or seconds<br />

and <strong>of</strong> observations are generally not reproduced.<br />

With these exceptions all input <strong>of</strong> type (C) to (F) are printed with proper headings<br />

02 the !ize printer.<br />

We will now distinguish between non-optional and optional output. <strong>The</strong> out-<br />

put can be made on h 7 0 units, unit 6 the line printer and unit 7 the card punch. Non-<br />

optional output is output on the line printer exclusively.<br />

-A program identification is printed giving date <strong>of</strong> program version.<br />

-<strong>The</strong> used mean <strong>Earth</strong> radius and the reference gravity used on the sphere in<br />

equations (20)-(22) is printed.<br />

-<strong>The</strong> equatorial gravity and the potential <strong>of</strong> the reference ellipsoid as computed<br />

from the constants specifying the reference systems.<br />

-<strong>The</strong> residual observations di-,X,, and if meaningful: the contribution from the<br />

datum transformation, from the potential coefficients, the first dataset (Collocation<br />

I) and the second dataset (Collocation IT) and the sum <strong>of</strong> these contributions,<br />

-<strong>The</strong> pedicted quantity and if meaningf~tl: the contributions from the datum transformation,<br />

the potential coefficients, Collocation I and 11.<br />

-<strong>The</strong> solutions to the normal equations,<br />

-<strong>The</strong> estimaLcd variance <strong>of</strong> the residual observed and predic ted quantities, and<br />

-Error messages in case e. g. certain array limits are exceeded.


Optional output on the line-printer:<br />

-A legend <strong>of</strong> the labels <strong>of</strong> observations and preclic tions, (LLEG - tme),<br />

-<strong>The</strong> difference between observed and predicted quantities (LCOMP = true),<br />

-<strong>The</strong> estimated error <strong>of</strong> prediction (LERNOZ true),<br />

-A primitive "map" <strong>of</strong> the predictions (LGRID = true and LMAP = true). (<strong>The</strong><br />

predicted quantities multiplied by 100 will be printed with the values predicted<br />

in points with the same latitude on one line and the values predicted in points<br />

with the same longitude above each other, see the 'tmaptf, Appendix C, page 125. )<br />

-Mean value and variance <strong>of</strong> difference between observed and predicted quantities<br />

and table <strong>of</strong> distribution <strong>of</strong> the differences samples according to specified sample<br />

width (LCOhZP is true).<br />

Optional output on the card punch:<br />

-<strong>The</strong> solutions to the normal equations b, and b, (LWRSOL = true)<br />

-the observed quantities and the residual observations (LPUNCH= true),<br />

-the predicted quantities, the estimated error (LERNO = true), the difference<br />

between observed and predicted quantities (LCOMP = true), and when LCO&ZP<br />

is false, the predicted quantity in the original and the new reference system.<br />

<strong>The</strong> solutions to the normal equation can be used as input to the program,<br />

cf. Section 6, input specification No. 4.31.<br />

An example <strong>of</strong> the output on the line printer is given inn Appendix C.


8. Recomn~endations and Conclusions.<br />

A development <strong>of</strong> a computer program as the one presented here is a task,<br />

which can be continued for years. But at some point it is necessary to stop and<br />

present a fully documented program version, even if it is obvious that improve-<br />

ments can be made.<br />

Most <strong>of</strong> the recent ideas and investigations in the field <strong>of</strong> least squares<br />

collocation are used in the program. Hence, the program may principally be<br />

used for<br />

N<br />

-the determination <strong>of</strong> an approximation to the anomalous potential, T and<br />

-prediction and filtering <strong>of</strong> gravity anomalies, deflections and height<br />

anomal ie S.<br />

<strong>The</strong> determination <strong>of</strong> may be improved in several ways. <strong>The</strong> program<br />

should be changed so that other types <strong>of</strong> data as e. g. density anomalies, satellite<br />

orbit perturbations, and gravity gradients can be used as observations and pre-<br />

dictions. <strong>The</strong> program should also be able to predict potential coefficients. <strong>The</strong><br />

covariance models, which can be used in the program are all isotropic. <strong>The</strong> use<br />

<strong>of</strong> a non-isotropic covariance model may improve the determination <strong>of</strong> y.<br />

In Section 3.2 it was pointed out, that the data had to be given in a geo-<br />

centric refe ence system. Thus, the necessary translation parameters may be<br />

estimated by including these quantities as parameters X, cf. eq. (7) and (g),<br />

Tscherning (1973) and Moritz (1972, Section 6).<br />

It is also possible to add new data to an original set <strong>of</strong> observations, with-<br />

out having to conlpute and invert the full covariance matrix. This type <strong>of</strong> compu-<br />

tation is denoted sequential collocation cf. Moritz (1973). This feature may very<br />

easily be incorporated in the program, especially because <strong>of</strong> the flexible design<br />

<strong>of</strong> the subroutine NES (cf. Section 5.2 and the comments given to the subroutine<br />

in Appendix A).<br />

<strong>The</strong> determination <strong>of</strong> potential coefficients and datum shift parameters may<br />

also be incorporated without difficulties. But the other proposed improvements<br />

can not be made before the theoretical background and the necessary algorithms have<br />

been developed.


References<br />

Grafarend, Erik: Gcodetic Frediction Concepts, Lecture Notes, International<br />

Summer <strong>School</strong> in the Mountains, Ramsau, 1973 (in Press).<br />

Heiskanen, W. A. and 1-1. Moritz, Physical Geodesy, W. H. Freeman, San Fran-<br />

cisco, 1967.<br />

(BM): IBM OS FORTRAN IV (H Extended) Compiler,Programmer's Guide,<br />

SC28-6852-1, 1972.<br />

(BM): IBM System/3GO and Sys tem/370 FORTRAN IV Language, GC28-6515-9,<br />

1973.<br />

Jamcs, R. W. : Transformation <strong>of</strong> Spherical Harmonics Under Change <strong>of</strong> Reference<br />

Frame, Geophys. J.R. astr. Soc. (1969) 17, 305-316. J<br />

Karki, P. : A FORTRAN IV program for the Inversion <strong>of</strong> a Large Sylnlilet.ric<br />

Matrix by Block Partitioning, Department <strong>of</strong> Geodetic Science, OSU,<br />

Report No. 205, 1973.<br />

Krarup, T. : A contribution to the Mathematical Foundation <strong>of</strong> Physical Geodesy,<br />

Danish Geode tic Institute, Meddel else No. 44, 1969.<br />

Lauritzen, S. L. : <strong>The</strong> Probabilistic Background <strong>of</strong> some Statistical Methods in<br />

Physical Geodesy, Danish Geodetic Institute, Meddelelse No. 48, 1973.<br />

Meissl, P. : A Study <strong>of</strong> Covariance Functions Related to the <strong>Earth</strong>'s Disturbing<br />

Potential, Dep. <strong>of</strong> Geodetic Science, OSU, Report No. 151, 1971.<br />

Moritz, H. : Advanced Least-Squares Methods, Dep. <strong>of</strong> Geodetic Science, 'OSU,<br />

Report No. 175, 1972.<br />

Moritz, H. : Stepwise and Sequential Collocation, Dep. <strong>of</strong> Geodetic Science, OSU,<br />

Report No. 203, 1973.<br />

Parzen, E. : Statistical Inference on Time Series by Hilbert Space Methods, I,<br />

Tech. Rep. No. 23, Stanford. Published in Time Series Analysis Papers,<br />

Holden Day, San Francisco, 1967.


Poder, K. and C. C. Tscherning: Choleskyls Method on a Computer, <strong>The</strong> Danish<br />

Geodetic Institute, Internal Report No. 8, 1973.<br />

Rapp, R. H. : Numerical Resu1.t~ from the Combination <strong>of</strong> Gravimetric and Satellite<br />

Data Using the Principles <strong>of</strong> Least Squares Collocation, Dep. <strong>of</strong><br />

Geodetic Science, OSU, Report No. 200, 1973.<br />

Tscherning, C. C. and R. H. Rapp: Closed Covariance Expressions for Gravity<br />

Anomalies, Geoid Undulations, and Deflections <strong>of</strong> the Vertical implied<br />

by Anomaly Degree Variance Models, Department <strong>of</strong> Geodetic Science,<br />

OSU, Report No. 208, 1974.<br />

Tscherning, C. C. : An Algol Program for Prediction <strong>of</strong> Height Anomalies, Gravity<br />

Anomalies and Deflections <strong>of</strong> the Vertical, <strong>The</strong> Danish Geodetic Institute,<br />

Internal Report No. 2, 1972.<br />

Tscherning, C. C. : Determination <strong>of</strong> a Local Approximation to the Anomalous<br />

Potential <strong>of</strong> the <strong>Earth</strong> using llExactll Astro-Gravimetric Collocation,<br />

Lecture Notes, International Summer <strong>School</strong> in the Mountains, Ramsau,<br />

1973 (h Press).


Appendix<br />

A. <strong>The</strong> FORTRAN 1V program.<br />

B. An input example.<br />

C. An output exanzple.


Appendix A.<br />

<strong>The</strong> program is written in the language FORTRAN IV, cf. BM (1973). It may<br />

be run on an 113M model. 370 computer equipped with an BM model 3330 disk<br />

unit. <strong>The</strong> program may be compiled and executed using the catalogued pro-<br />

cedure FORTXCLG, cf. IBM (1972, p. 89) using the following job control<br />

language statements:<br />

// EXEC FORTXC LG, PARM. FORT='OPT(2)',<br />

// TIME. FORT=(, 3O), REGION=2521<<br />

//FORT. SYSIN DD *<br />

program statements<br />

//GO. FT GGFOOl DD DSN=DASET, CNITSYSDA,<br />

// SPACE=(12800,920), DISP=(, DELETE), DCB=(DSORG=DA, BUFNO=l)<br />

//GO. SYSIN DD *<br />

/ *<br />

//<br />

input data


a:<br />

C PPOGRAM GCODETIC CO!-LJCATlC!hS VERSION 20 APR, 19749 FORT'ZAN TV9 (?FP<br />

C 36Q/?O), PPnGKLCiYkD 6V C,CoYCUERh%NG~ DANISH GFOOETlC INSTITUTE/ CFP,<br />

Q GEODETIC SCItNit? OSL~,<br />

C SHE PROGRAM COVPUTES AN APPK3XIMAT13Y TO THE AQ9MALOUS POTFYTIAL '-IF<br />

C THE EARTH USIhG S7Er'WISE LEAST SQUAXE-F COLLOCATlONe THE MFTHrIT) 9FL)U.I-<br />

6 KES THE SPFClF1CATlWi OF (PI @!vE Oh TWC $CYD I N A SPFCIAL CASE TPQFE)<br />

C SETS OF QYSEKVED OUAiJTITIES WITH KVfJH1\l STANDARD OFVIATIflNS AQD (2 1 PNF<br />

C OR TWO CDVARIkk'CE FUYCTIONS.<br />

C THE CfiVkRIANCC FUYC7ICINS USFD ARE ISOTROPICe THEY ARE qPFCIF1 ED SY A<br />

C SET OF EMPIRICAL A~P4ALY DEGREE-VARIAYCES OF PEGRFF L E S THAY AY<br />

C IKTEGEW VPQIPFLE IMbXt RYD EY A ANOMALY DFS!iFE-VA?IA?4CE MOOFL FR9 THE<br />

C DEGPEF-VAFIbhCES @F DFGPEF CRFATHFR THAN IMAX.<br />

& THE OF. SERVATIONS MAY 3F POTFIJTIAL COEFFICIFYTS 9 bIEAN 9R PUInlT GSPVITY<br />

C AMOMALIEC, HFlGHT ANOWLLIES P44D IJEFLECTIPYS CF TUE VERTICAL. B FIL-<br />

C TtRING OF THF '-IMSF9VATiW!S 1AYFS PLACE I/rULTAYE3USLY WITH THF DETER-<br />

C MIIJATIOV OF Tt*E AM3VALOIJS FfJTFUTIAL.<br />

C THE DETFRMIkATIL't: I S VPCIF 1N A AI',LVREQ GF STEPS Ff'UAL TO THE NUYSCQ OF<br />

e stvs CF oe:Enva-rrrr%s, WHEN POTENTI AL COFFFIC~ENTS AFE USFP~ WI LL THF-<br />

C ESE FflRM A SFPEFbTE SFT AFID THE TOTAL YLVMYE9 OF SETS EIAY Ir\l THIS CASE<br />

C AMnUNT TQ THRIF,<br />

C EACH DATASET IFLCH STFP) WILL DETERMIUE A )-;IAQMOYIC FUYCTIDYy AVD THE<br />

C PPiOMALI3US POSENTIAL NILL 5E EQUAL TO THE SUY OF TFEFSF (?lAXIMbLLY<br />

C TtiRFF 1 FUhCT EDhS.<br />

C POTENTIAL CnEFFLCIENTS WILL DETERVIWF A FUNCTIOFl FQUAL TO THE CVFFFH-<br />

C ClENTS MULTIPLIED BY THE CUC.RFSDONDIi'4G SOLID SPHERICAL r-'AQMOUICC. THE<br />

C UP TO TWO cFT? UF DATA DIFFFFENT FRPM POTFNTIAL COEFFICIFVTS WILL<br />

C FACH RE U5FD TO DETERPIXE CONSTAYTS E( 11, THE COF'?ESPr]Yrll?lG HAQMnYIC<br />

C FUNCTIOVS 4RE THFX FQUAL TO THEESE COlrSTAYT5 MULTIPLIFr3r SY TYE COVA-<br />

C RlANCF EEThFEN THE PESERVAT IDNS A\D THE VALUE OF THE AVOMALOUS POT-<br />

C FNYI4L IN A PCtLhTp Ps<br />

C %"F MAIN FUUCTlrN PF TUF PqOOPAM IS, RESIPES THE C'IMPYTATION OF THF<br />

C COYSTANTS E( I S, TYE PREDICTI~Y C:F THE GU~TITIE? FTA, GELTA e, usr<br />

C AND ETA 191 POINTS Q. TH-rE PREDICTED VALUE IS ECUAL TO THE PRgDUCT SUY<br />

C OF B( I ) ANP TEE CDVPRIAYCE EETWEFN OBSERVATION Y0.I AND TtJE OUAVTITY<br />

C TO @F PRFDICTED.<br />

C<br />

C REF(A1: TSC"tRNINGpC*C- AND R-HeRAPP: CLOSEP COVARIANCE FXPUESSIOt'IS<br />

C F09 t-SAVITY ANOMALIES, GEOIO L!YDULATIPY!Ss AhD DEFLECT1 nUq PF<br />

C THE VFRT IC AL IMP LI ED EY A'V3MALY DEGREE-VAR IAVCE M'J9EL5, DEP-<br />

C ARTMFNT OF GFOGETIC SC lENCFt TPF OHIO STATE UY IVE9SITY 9<br />

C REPORT NO* 708 t 1974<br />

C<br />

e<br />

REF(R): TSCHERNIr\;G,CoCe: A FORTRAN 1V "RCCRAP FTIR<br />

nF T ~ E ANOMALOUS POTENTIAL USIQG STEPWISE<br />

THt DETFRMINATIPN<br />

LEAST S Q U A ~ F CPL- ~<br />

C LDCATlON t DEFAFTME'!T OF GEODFT IC SC IFUCFI THE OHID STATE UY I-<br />

C VESSITY, 9FPDRT NO* <strong>212</strong>9 19749<br />

& REFf C): HFISKANFN b.1.A- AND H.MC1R IT?: PHYSICAL GEOCIFSYp 1067.<br />

C REF(D1: JAMESr ReW*: G E D ~ H Y S ~ J ~ R ~ A S T R ~ S O17, C ~ I 305- ~ ~ Q ~ ~ )<br />

c<br />

IMPLICIT S Y T E G E P ( ~ ~ J ~ K ~ M LflGICAL(L)tREAL I Y ) ~<br />

*R(A-HqO-Z)


COMMQY/PR/SIGMA(250)TC,IGMAn(250) vi3( 16C!r))~P(42)r<br />

*SINLAT( 1600) rCOSLAT(160r)) IPLAI (l6nn) ,RLflKG( 16,001 vC~~SLAPTSI'JLAPT<br />

*RLATP TELONGPTQPTPPETkP9 PREDP~PWOLflNFCflT L?


C MFNSION OF TFE bRKAY NPL (IN 1HF 60i4elOU RLQCK /NFSnL/),<br />

DEFINE FILF 8 (5?O932OOtU,IQ?<br />

e<br />

C lNITlALIZAYlON OF VbRIAPLESt WHICH ARE IY CnMMOhJ BLCCKSo<br />

DO = O*ODO<br />

- oi = n,nw<br />

D2 Z00D0 D3 = 3aOGO<br />

P(19 = DO<br />

P(21B = DO<br />

COSLATt 1600 J = D1<br />

SINLATflt,OO) = U0<br />

RLkTd Pt~QOI = DO<br />

RLONG(16001 = DO<br />

CLA = PO<br />

WP(11 = RF+*S/GP<br />

W = S E**2 /GlA*2O6?6t,806LO<br />

WP(2) = D1<br />

WP(3) = W<br />

WP(41 = I4<br />

WP(51 = W<br />

BT = 0<br />

1P = 0<br />

LNFRtL'3 = LT<br />

LCPEF = LF<br />

LC1 = LF<br />

LC2 = LF<br />

INDEX (I 1 = 0<br />

D@ 12OG I = 1, 250<br />

1700 SIGMAO(11 = D0<br />

C<br />

C HEADINGS AND DEFINING CPNSTANTS.<br />

klR1TE(6?104)<br />

104 FORMAT( a 1GFODETIC COLLOCATTONIVERS~OY 20 APR<br />

MRITE(hrll3)<br />

1974aF//%<br />

113 FORPAT( "Oh'C!TF THAT THE FUhCT IONALS ARE I N SPqFRPCAL APPPf7X%YATIflNB<br />

*/B MEAN RADIUS = RE = 6371 KM AND MEAV GRAVITY 981 KGAk USEDe*)<br />

e<br />

C INPUT OF 5 LOGICAL VARIABLfSv LTRAN = CFORGINATFS ARE T f SE T4AVS-<br />

C FORMED TO NEN RFFERENCE SYSTEM? LPOT = POTEYTIAL CDrFFICIE\!TS AQc TO<br />

BE USED AS FIRST SET OF OBSERVATlOQTt LONEQ = OUTPUT COEFFICIFUTS 3F<br />

C NCRKAL FQUATIGNS ON UNIT 69 LLEGK = OUTPUT LEGEND VF TAPLES ?F 09SFP-<br />

C VATIOYS OR PREDPCTPONS AND LE = TAKE ERRORS CIF OFSERVATIORS<br />

C CCUNTe<br />

READ(~~LO~)LTRANILPOT,LUNEQ~LLEL~LE<br />

B05 FORMAT (5LF')<br />

LNTRAN = .NOT.LTi?AN<br />

LNPOT = .NflT.LPOT<br />

INTP bC-<br />

IF (eNQT-LE) WRLTE(6tll8)<br />

118 FORMAT l ' FF.RORS IN I1bSERVATlCINS ARE NOT TAKFN iNTO ACLflUVT- '1


C<br />

I F (LLFG) WRHTF(6sll4)<br />

114 FORMAT ( 'C'LEGEND OF TABLES OF OSSFRVbTIOVS ARD PRFDTCTlnNq :' ,/ 9<br />

*' 06s = OPSEKVED VALUE (klHFsl BOTH COMPDWFYTC '1F DFFLECTIqYS AI;FB/e<br />

* @ OBSERVEI ETA RFLOW KC l ) p DIF =THE DIFFEQFVCF RETWEFRI 03SF9VFD8/9<br />

*I AND PPFr ICTFD VALUF p WHFV PREDICTIONS ARE: CPYDUTFD AKD FLCC ' / v<br />

Ss THF KFrIlCjrJPL (>RSFPVATIO:4, ER? = FSTlrlA7EI) FPRO'I OF PRF~)ICTICYV/P<br />

4'3 TRA = CPVTPIZUTIPY FROM DATUM TSAYSFGRMATIC'Yp POT = CnYT?I-'/v<br />

*' BUTInY FPOV PflTEYTlAL CDEFFICIEYTSv COLL = COYTQTEUTI~U "3!4'/9<br />

*' COLLCICATJO'I DETERWINEP PAiiT UF FSTIflATE? WHF'! THFFC ONLY '+AS",<br />

* @<br />

* v<br />

PEFY USkD ONE SET OF GBYESVDTIONC (DIFFERENT FsfJ'4 P'JTgCOCF!=,) '6,<br />

COLLI = CPk'TXIkUTLON FPPF ESTIVATF OF ANflXbLOUS POT. DFTFR-@/v<br />

* @ MIYFL'I FSOM FIRST SFT OF Oi3SE9VATIONS~ COLLZ = C3YTRIBUTIT)".'/r<br />

* @ FPOV ESTIYATE CJRTAIYED FROM SECDVD 5ET PF ClFSFRVATITlYS, PQED='/,<br />

S' PREDICTFD VALUE IY YEW REFFREYCE TYSTFMI WHFY PRF9ICTI7YS APF'/*<br />

*l COMPUTFCI ANO FLSE Tt-IF SUlZ OF THE CONT%IBUTI7NS FRfkl THF PDT.s/t<br />

*' COEFFIC IEhTS AKD F1 QST TSTlb4LiTE OF ANDMDLCJIJS POTENTIAL. A W J '/p<br />

*' PREC-TRA = PREDICTIPN PR ?Ui+ OF CONTRIEUTIONS IN THF nLr PE-@/?<br />

*' FERENCt SYSTEM.')<br />

C.<br />

C. INPUT OF PATA OF REFERFYCF SYSTEM.<br />

WKITF (6,106)<br />

106 FORgAT('OoEFEQEh!CE SYSTEM:')<br />

C INPUT OF TFXT RESCiZIRIFiG REFERENCE SYSTEH I FqkX.72 CHARCICTLFS<br />

READ( 'T9103)FMT<br />

WRITE(hqFf1T)<br />

C IRPUT OF SFYI-MPJOR AXIS (METFRS)? l/FLATTENlYG, VALUE OF TWO LOGICAL<br />

C. VA41AbLESI LPCjTSD = GQAVITY I Y DOTSEAM SYSTFM AVC LGRS67 = GPAVITY RF-<br />

C FER TT; GRS 1967,<br />

READ( ~ ~ ~ ~ ~ ) A X ~ / P F O ~ L P O T S D / P L G X S ~ ~<br />

120 F@RMAT(FlO.LyFlPe5,2L2)<br />

F1 = DI/Fn<br />

E21 = Fl*(P2-F1)<br />

IF (LPOTSn.OR.LGRSh7) 50 TO 1021<br />

C. IKPUT OF GM CIF- PEFERENCF-SYSTFM OF DPSERVATIDNS.<br />

REAL( 51 121 )CM1<br />

121 FOKMAT (Dl5.8)<br />

1021 IF(.Y3Tg LCTRSh7) CALL CSAVC(AX~,FI,GM~V~TLFOTSDIUREFOT~R~F)<br />

I F (LCFS67) CALL GRAVC(6378160.0C0,D1/2?8.24?17DO13.4~603D14~~~<br />

*LFyU?FFOTGQEF)<br />

WRITF (h,177)AXlpFO,GP,EFpUCiEFO<br />

122 FOPMAT(O0A -'7F10.17' H V T<br />

4' 1/F =@TF1O.F/ p<br />

*@<br />

REF.GQAV1TY AT FQUATOQ ='?F12.2~' MGAL'/r<br />

8' POTF?


C<br />

C INPUT OF TFXT DESCRIBING SOUrlCE OF THE POTENTIAL COEFFICIENTS (MAX, 73<br />

C CHARACTF? S ).<br />

RFAD( S9lO3) FMT<br />

WPITE(h,l30)<br />

130 FORYAT(@OSOURCE OF THF POTFNTIAL CDFFFICIEYTS USED:')<br />

WRITE(h,FMT)<br />

C<br />

C lNPUT OF GM (P'ETERS**3/SEC*+2) A (METEQS) 9 THE WOPVALIZFD CnFFFICI FNT<br />

C C'F DEGREE TWO ARD OPCEP ZERI: (THF FCOYD DFCRFF ZDklAL YA9!lORIC) MEL-<br />

C TlPLlED 3Y ZeODhT THE MAXIMAL DEGhEF DF THE CnFFFlCIFYT', A LC


1050 N - O<br />

WR17E (69lOQ8<br />

109 FPRMAT(@OCTART rF CTLLOCATICY 1:<br />

C INPUT CIF TEF INBECiEP KTYPE DETEGPlINIING TYPE OF DEGREE-VARIANCE Yf'PFL<br />

C USFD FOR PFGREE-VPRZANCES OF PEGKEE GREATHER THAY IVAX (SEE BELOW)<br />

C KTYPE MAY L!? FCUAL TO le 2 AND 3 CORRESPONDING TO THE DEGREE-VAQIANCF<br />

C FIU.lELS l* ? AKD 3, CF. REF(B)? SECTION 7a2s<br />

WEAD(59102)KTYPE<br />

LKFQl = KTYPEeFQeI<br />

LKEQ3 = KTYPE.EQ.3<br />

LKNEl = .VOT.LKFWl<br />

I F (KTYDf c.LT.31<br />

READ( 5 p l Q 7 ) IK<br />

B07 FnRr44T ( 14.1<br />

GO TO 1036<br />

IF tKTYPEeLEOO aOX. KTYPE-GE.4) GO TO 9999<br />

C INlTIkLIZPIT ICJY CIF:<br />

TKO = 1K-f<br />

IKI = IK+l<br />

IKZ = IKt.2<br />

VRQIARLFS I N COMMON BLOCK /SCK/.<br />

C<br />

TKA = IK4YIK1<br />

1026 WRITEBh,141)<br />

141 FORMAT( 'OTHF<br />

A*(T-l)/sl<br />

MODF L A'JOMALY DEGPEE-VARIAVCES ARE EQUAL TOR/*<br />

GO T9 (lO379l03EplO39) ,K%YPE<br />

P037 WRTTE(6rl42)<br />

142 FORMAT(B+6~9Xo'I.'1<br />

cc7 Ti) Inno<br />

1038 WhITF(bpl43)<br />

143 FORMhTI'+OqYX,VI-Z). '1<br />

GO TO 1COO<br />

1039 kJRITE(69144!%K<br />

144 FnR.XATIs+"9X9' (( I-21*(<br />

C<br />

1000 CXR = Dn<br />

DO 1035 I = 1 9 250<br />

1035 S I GMA I 1 = L0<br />

sues = DO<br />

SUMSlG = DO<br />

SUKRS? = DO<br />

IV1 = -1<br />

MAXC1 = li<br />

C<br />

I + ' 9 1 4 P ' ) 1 *'l<br />

C IWUT OF C:I%STANTS USF-0 FOR THE FINAL SpEClFICATION OF T1iF DFG9EE-VAK-<br />

C IANCE FEODFL* R = RATIT! bET,+EFN THE BJERclAVMAR SPHERE RADIUS AKn THE<br />

C MEAN FARTu RADlUS9 VFRDC2 = VARlANCE OF TKE GRAVITY ANDMALJES AN9 IMAX<br />

C WHICH IS FOUPL TO THE (3FDFR OF TUE LPCAL COVORIANCE FUNCTICIN USF9.<br />

C<br />

C<br />

TtJUS IMAX=n IkPlCATES9 THAI WE ARE USLNG A GLOBAL COVA9IANCF F2YCTION.<br />

I N THIS LAST CA$€ 4 SET DF EClPI9ICAL ANOMALY DFG9EE-VA'IIAVCFS '3F ORDER<br />

C UP TO IMAXO CA% DE INPUT, THEESE DEGPEE-VARIANCES WILL HAVE 10 BE


C GIVFN ON THE SUPFACE OF TPE MEAN FAXTHv CFoRFF(E)rEQo(PfJ)o<br />

RCAD( SplGl)R~VARDS2~IPAX<br />

101 F!lRMAT(k9e6,F70?r<br />

I F (R.GT.Dl mnR,<br />

14)<br />

VkFDG2.LT~GOmDRmlMAX.LT,O) GO TO 0999<br />

LZFP7 = IMAX .YEm<br />

IMAXl = I&!AX+l<br />

0<br />

IF(LZEQO)GO TO 1040<br />

C INPUT OF TPF FCRMAT OFT THF PIGHEST DFGREF OF9 AND THF EMDIPICAL ANR-<br />

C KALY DEGREF-VARIAKCES<br />

102 FORMAT ( I 2 9<br />

READ( 5tlC2I IMAXO<br />

I V UYITS OF MGbL**2.<br />

IPLlAX = IRAXO<br />

IMAX1 = IVAX+1<br />

READ( S, 102<br />

P03 FUFt/lkT (QAP<br />

Fb4T<br />

READ(5,FMTI (SIrlNA(I)t I = 39 IMAXl)<br />

C ROTE TVAT THE DFCRFC-VARIAVCE OF OF'OEP I I S STORFD IN SIGMA (I+I<br />

C<br />

DO 1001 I = 3r IMAXl<br />

1001 SUMSIS = SUMS IG + S IGYA ( I)<br />

1040 I F (Itl#rX1+ISoLT.250) GO TD 1002<br />

WRITE (6,1FE)<br />

l08 FnRMAT(' SUSSCRIPTS OF ARPAY 5IGMA EXCEEDS APYAY LIMITt STflP*O<br />

GO TO 99Q0<br />

C<br />

1007 S = R W<br />

S2 = S*S<br />

RL = (Dl-k)*(Dl+R)<br />

S1 = RL<br />

RLNL = DLDG(QL)<br />

I F (IMEX.LT.3) GO TO 1004<br />

R I = GFLOPT( It4AX)<br />

D0 1003 J = 39 IPAX<br />

GO TO (1101~110?~1103)~KTYPE<br />

1101 R& = (FI-Fl)/RI<br />

GO TO 1105<br />

1102 RA = (RI-?l)/(RI-P29<br />

GO TO 1105<br />

1103 RA = (RI-Cl)/((EI-@2)*(kI+IK))<br />

1105 SUMRST = (SUMRST+RA)*S<br />

1003 R I = RI- D1<br />

C<br />

SUMRST = SUKRST*52<br />

1004 DIF = VARTGZ-'UMS I G<br />

I F (DIF,LT,PO) GP Tfl 9999<br />

C CCIMPUTATION OF THE NORFALlZlNG CCYSTANT A9 CFo REF,(B) FARAo 3030<br />

G@ TO ( I l ~ 6 r 1 1 0 7 ~ 1 1 ~ 8 ~ ~ K T Y P E<br />

1106 RA = KLYL+5/qL--SZ/DZ<br />

GO TO 111P<br />

1107 RA = D1/RL-S2*RLNL-SZ-S-n1<br />

1,


C WHEN PRF-DICTIPYS SHALL RE YADF I N PDINTS C'F A UPIFOFV GRID, LFKND IS<br />

C TFUFTW"tN TpE tS7 IMAFFD ERRPR OF PKEPICTICIY StfALL PE C'3KPUTED. LCnMP<br />

C IS TRUET WHCN PEiSE'?VTD k\D FPFDICTED VALUES SUALL BE CnMPAIREDm<br />

2000 PEbO( "200)LGP<br />

200 FURHAT(3L3)<br />

InrLFF~NO~ LCOMP<br />

1 F ( .NDTo (LFRkO.AMD.LkESOL)<br />

LERlJO = LF<br />

1 GO TO 3002<br />

WRITE (h?Z?t)<br />

226 FORMAT(' *** ERROR WILL NOT BE COMPUTEDl F.EQUIRED YFQ YOT STPREDe<br />

****l)<br />

2002 LCOMP = LCOMP .AND. (,?;QT.LGRID)<br />

I F (LCOM.CIRe(<br />

LCOM = LT<br />

oNOTmLCORP) GO TO 2005<br />

C lNPUT OF SCALE FACTPQS, USED FOR TPBLE OF DlSTRIRUTIOY OF DIFFEnFNCE?<br />

C SEE SUBROUTIYF CO14PA.<br />

RFAD( ~T?O?J)VGTVF<br />

CALL CfiWPA(L1G1VF<br />

C<br />

C<br />

VC, IN FAGAL APD VF IN ARCSFC.<br />

2005 LNFRNO = .NOT.LERNO<br />

LMAP = LF<br />

LMEGR = LF<br />

DM = D1<br />

@A = D@<br />

I F (.NQT.LGRID )GC TO 2000<br />

C<br />

C INPUT c c n ~ n r n \ n u ~ ~ h i+ uIES kr r ( LLTITUEEpLDYGITLIDE IN PEG9EE.S A';? DFi. OF r.7 IF:;-<br />

C TFS) OF S3UTH-WEST CORYER OF GYID? MAGYITUDE CIF GYID IVCPEPFYTS I N<br />

C N09THFKN ANP 'ASTERY DIRECTIOYS (V1YUTES)r YUWBFP nF IYCSFYFYTC IN<br />

C<br />

C<br />

TPE SAME DI'ECTIONS? THE VALUE OF IKP: ( l FOR ZETAp 2 FOR DFLTb<br />

G, 3 FOR KSI, 4 FCR FTA AKD 5 FOR (KSI?ETA)) RP = THE '?ATIT BCTWFEN<br />

C THE RADIUS OF THE SPHERE OV WHICH TYE POINTS PF PREDICTICX A9E 'ITUA-<br />

C TED ANG RE? TUE VALUE OF LMAP, WUIC" I S TRUE 9 Wk'FN TVE PREDICTIO'IS<br />

C SHALL 6E PR INTFD AS A PSI XI TIVE MAP? THE VALUE OF LPUYCI-I, WHICH I S<br />

C TRUE WHEY THE PREPlCTIfl!'IS SHALL 9E PUVCHFD AND THE VALUE OF LucAY,<br />

C TRUE WHEN THE PRREDlCTED QUANTlTIES ARE MFAN VALUE' (BECAUSE THIS IF+<br />

C PLIES? THAT TPFY ARE REPRESENTED AS POINT VALUFS I N A CFRTAIV YFIGHT).<br />

READ( 5,201) IDLACTSLACTIDLOC?SLGC?GLA~GL@?NLA~NLO? IKP~RPTLMAP,<br />

*LPUNCH?LPEAN<br />

201 FORMAT(?( I5,Fb-2)<br />

I F INLA.GT.19<br />

LWLONG = LF<br />

*OR- NLO.GT-19 .OR. IKPeEQ.51 LMAP = .FALSE,<br />

LGRP = IKP,EQe2<br />

NAI = 0<br />

NOI = O<br />

IOBS2 = 0<br />

I H = 0<br />

H = DC1<br />

I F (.NPT,LMFAK)<br />

LKM = H-GE.1.OD4<br />

H = (RP-Dl)*RE


C<br />

H0 = H<br />

OBS(P) = K<br />

IF (LKM) nescl, = M*I,OD-~<br />

LSTUP = LT<br />

JANG = 2<br />

NO = Q)<br />

2001 SLAT = NAI*LLAaSLAC<br />

SLOY = NC!I*GL@+SL@C<br />

ISLA = SLAT/60+OR13-2<br />

]I SLO = SLOId/hO+n. 10-2<br />

lDLAT = IDLAC+ISLA<br />

IDLOV = IDLCC+ISLO<br />

SLAT = SLAT-604ISLA<br />

SLON = SkON-bO*<br />

NE = NC+l<br />

U = H0<br />

ISLO<br />

IF (NO1 .EGO<br />

NO1 = "\iOl+B<br />

GO TD 2004<br />

2003 NO1 = 0<br />

NLO) GO TO 2003<br />

NAI = (:,A I+P<br />

2004 IF[NAIeNE*O ,CR.<br />

GD TO zon7<br />

C<br />

KQI oNEo 1)GO TO 3031<br />

C INPUT OF OVE PATA-SET OF OtjSERVATIONS 09 COOR.DINkTES OF P?EDICTID%<br />

C POINTS. ALL RECORCIS YUST EE PUNCPCD K'\! THE SAME WAY, THERE ARE THE<br />

C FOLLOWING CESTR~CT~TJNS ANb UPTIDNS: k STATION NUM9F9 MAY FE USFDp BUT<br />

C IT MUST OCCUPY THE FIRST GATAFIELD ON THF RECCtRD. THE TiJ@ NEXT DATA-<br />

C FIELDS MUST CCWTA1N TUE GEODETIC LATITUDE AND LOVGITCIDE ( IN P% \:R.FI-<br />

C TRARY OP9ER). IN CASE THE HEIGHT IS GIVEN* MUST IT BE PUNCHFD I? TPE<br />

C NEXT DATAFIELP. THE FDLLOkIING UP TO FOUR DATPFIELDS WILL WAVE T'3<br />

C CONTAIN THE OESERVED GUANTlTY (G!? QUANTITTEZ WHFN A PATT nF DEFLECTI-<br />

C ONS ARE EbSFRVFD) AND CONTINGENTLY THE STANOPRLi DEVIATIPMS ('IIIHFN LE IS<br />

C TRUE AND LSA 15 FALSE), A LIST OF C30RUIYATES OF PC:INTS WILL VAVF TO<br />

C CONTAIN A UEIGL'T CR A FlCTICIDUS OBSERVATION. TL'F LAST DATAFKFLD HAVF<br />

C TO HOLD THE VALUE 13F A LOGICAL VARIA3LE LSTClP? TSUE FOS THE LAST<br />

C RECORD IN THE FILE AND FALSE (I.E. BLANK) OTHERWISF,<br />

C<br />

C INPUT OF THE FORMAT OF THE RECORDS HnLDING THE OBSESVATIDN @R THE CO-<br />

C OR.DINATES OF THE PREEICTIPN PGlNT,<br />

2006 READ( 5,103) FKT<br />

C IYPUT OF VARIABLES SPECIFYIYG THE CCXTENT OF THF RFCOQDS. INO = Z t<br />

C WHEN THE STATION NUMGER IS PUVCHEDT O DTHFRWISE, ILA* IL'3 THE VUKBEQ<br />

C OF THE DATAFIELDS OCCUPIEO FY THE LATITUDE ANC! THF LONGI'IUDE 2FCDFC-<br />

C TIVELY? IANG SPECIFYING UNITS OF AhlGLES (1 FCI? DEGREES, MINUTES* ARC,-<br />

C SECONDSp ? FOR DEGREES, MI%I.!TES, 3 FUR GEGREFS AND 4 FnR 400-GRADFSIr<br />

C Iu = THE NUMBEk f3F T U E DATAFIELD WLDlNG TUE VEIGPT (PE90 WHEN WO<br />

C HEIGHT IS C3NTAINED)r IOPS1 IOES2 = THE D4TAFIELD NUMSER OF THE FIRST<br />

C AND THF SFCOYC' OBSERVATION, RESPFCTHVELY (ZERfl WHEY N3 FIRST OR SFCOVD


C OBSERVATIDNI* IKP* SPECIFYIYG THE KIVD OF OOSE?VATION~ (1 F99 ZFTA? 2<br />

C FOR MEASU2EG GRAVITY* POINT OR MEAN GRAVITY ANDMALIFSI 3 F9R KSIT 4<br />

C FUR ETA AF!D 5 FPR PAlR nF CIFFLECTIONS (K.SIVETA1 39 (ETA,YSII?(IN THE<br />

C SAME nRDER AS THE LATITUDE AND THE LONGlTUDT)<br />

C TUEN TuF. PATIP RP (CF.REF(B)r EQ-(07)) EETWEFN THE SPHERE ON WMICH Tt-!E:<br />

C OBSERVATIONS ARE SITUATED AYD RE, THE VALUES OF 5 LDGICAL V69IABLFS:<br />

C LPUNCH = PUNCH 09S. Oi? PRFOIClED VALUE AY@ CCNTIMGFNTLY TI!EI9 DIFFE-<br />

C RENCE* LWLONG = LONGITUDE I S PCJSITIVE TOWARDS WEST* LMFAN = THE DYED-<br />

C lCTED OR OBSERVED QUANTITY IS A PEAN VALUE* LSA = ALL OESFRVED CUAN-<br />

C TITIES 'JkVE TUE SC.HE STANDARD DEVIATIONS AND LKM = THE HEIGHT IS IN<br />

C LNITS OF KILUMETERS.<br />

READ( 592OZ) INOr ILA* ILO* IANGTIH*IOBS~~<br />

IOBS~~IKP*RP*LPUYCHTLWLONG<br />

*,LMEAVrLSA,LKl-l<br />

202 FORMAT(t13~F10.795L2)<br />

GM = Cj1<br />

DA = DO<br />

LGRP = IKP-EQ.2<br />

I F (LGRP I REAP( 59203) CMvDA*LF!F!GQ<br />

C LrZiEG9 IS T9UF WHEN THE MEASURED GqAVITY VALUE I S INPUT. OM ArJD DA ARF<br />

C AN ADDITIVE ANC! A MULTIPLICATIVE CONSTANT* RESPECTIVFLY? WHICH CAN BF<br />

C USED TO CI?NVERT IKPUT' VALUES TO MGAL PK CORRECT FDR A SYSTEMATICAL<br />

C ERROR-<br />

203 FORMAT( 2F10.21LZI<br />

C INPUT OF STANDARD DEVIATLON.<br />

I F (LSAI REAG(5*<strong>212</strong>)WM<br />

<strong>212</strong> FORMAT( F6.2)<br />

C<br />

2007 LRFPEC = IYP,FQ-5<br />

C INITIALIZATInN OF VARIABLES IN COMMON BLOCK /PR/.<br />

LONEC9 = sNOToLREPEC<br />

LNKSIP = IKPoNEo3 .AND. LONFCO<br />

LNETAP = IKPoNE-4 .AND- LONECO<br />

LDEFVP = IKP oGT- 2<br />

LNDFP = ,biOT,LDEFVP<br />

LNGR = .NOToLGRP<br />

C LREPEC IS TPUF, WHEN TNO COLUF!YS CAV BE COHPUTED AT THE SAME TIME.<br />

C LNSKIP? LNETAP IS TRUE? WWP\I THE OBSERVATION OR REQUESTED PREDICTlON<br />

C IN P IS NnT KS1 PESF. ETA.<br />

LZETA = IKP-EQ.1<br />

LKSIP = ,MOT,LNKSlP<br />

IF (RPoLTeR) R.P = D1<br />

C CHECK? THAT POINT I S NOT INSIDE THE BJFRHAMMAR-SPHERE,<br />

C<br />

C CONPUTATION OF CCINSTANT'S USED TO NORMAL I ZE THE NORMAL-EGUAT IONS 09<br />

C SCALE TEE FSTIMATES OF THE ERRCihS OF PREDICTION.<br />

NI = MP,XCl<br />

P(JQ) = D1<br />

P(JR+l) = RP<br />

INDEX( JR+1) = IKP<br />

PW = D1


COSLAP = Dl<br />

SINLAP = DO<br />

RLATP = P0<br />

RLOQGP= Gn<br />

CALL PREP(S~SRFFPUO~A~ISBI~QQ~JRY~~~~IYAXIPLF~LF~LT)<br />

PW = C(MAXC1)<br />

IF (PW.GT,CbO)<br />

P(JR1 = PW<br />

PW = DSCQT(PW1<br />

W = WPtIKP)<br />

IF (LNGRI W = W*RP*!?P<br />

I F BLZETAI W<br />

PhO = PN*k<br />

= W*RP<br />

PW2 = PWO~~PWO<br />

IF (LCREFI JVL = -1<br />

C<br />

C OCTFUB OF HEACIYG AYD INIIIALIZATION OF VARIABLES.<br />

LINVPF = LONEC9c+OPe (IOBS2~EC80).r!t?~ (IO8SleLT.InBS2)<br />

LOUTC = LNFCB02 ,LCOb4P<br />

I F (LEFAR) WRITF(bp205)<br />

205 FORMAT( 'OTHE FCLLDWING QUAKTITIES APE MFAN-VALUES9 AND ARE RFPRESE<br />

*NTFD AS PCINl VPLUFS IF! A HEIGHT Yeo)<br />

I F (RP eGTol*03G0eAND. (LKCIPeGPebGRP) ePNDe(LTP.ANeCReLPnTIeANDe<br />

*LPOTSD) WF 1TF (6 pZO4)<br />

204 FOQMAT('O** WARNING: THE HEIGHT MAY BE TCO BIG FO? THE COMPUTATION<br />

* DF'pBpt THE REFERENCE GRAVITY OR THE CYANGE IN LATITUDE **'I<br />

C<br />

CALL EEAD i iKP ,LONECOt FiiO, XP 1<br />

C INlTlALlZATIf!Y OF LOGICAL VAP IAELES USED TO DFTFRMIYE WulCu QUAYTITIFS<br />

C WE WILL HAVE TO ADD TOGETHEQ TO FOPE THE FlYAL DUTPUT OR TO QETFPMINE<br />

C WHICH QUANTITIES W1 LL €F INDUT,<br />

LADRA = TH.hEeIA<br />

LADDBC = IE.NE, IC1<br />

LbDDBP = 1SsNFe 1P<br />

LADGP R = LADDBP ,AqD .LREPEC<br />

LTYB = LTRAl!.ANDe(IT.YEeIG)<br />

LTEB = LTRANeANDe(IT.FQeIBI<br />

LOEl = LESAND-( ,NOT-LSA .ANGeLO?iECO<br />

LOE2 = LEeAh1De( ekCITeLSA) .ANDeLPEFEC<br />

C K1 "AS PEEN IIVITIAL.IZEC PY THE CALL OF 'HEAD'.<br />

C BER OF QUANTITIES READ IN TO TUE ARRAY oes.<br />

IF (LOF11 K9 = Kl+P<br />

I F (LOEZI K 1 = K1+2<br />

C<br />

I F (LGRID) GO TO 2031<br />

C<br />

IT IS EQUAL TO THE NUM-<br />

IF (LCOMP) CALL COMPB~IKPpLNG~~LPEPFC~LOh'ECO)<br />

C<br />

C lWUT OF COClQDINATES OF OBSEQVATInN 09 PRFDICTION POINTS 4YD CflNTIN-<br />

C GFNTLY THE OESFRVED QUANTITIES AND THFIR STANDARD DEVIATIflNS.<br />

%J = IANG*2+INO-1


2033 GO Tfl(?O249?025 920269 2027~20?Pv?029~?07E 9?079) 9 IJ<br />

2024 RFLD(5,FMT) IDLATTMLAT~SLAT~~~LONTMLON~SLO~~(DE~~<br />

119 I=lvKl TLSTOP<br />

GOTO 2030<br />

2025 READ( 5PFMT)NOrIDLATtMLATtSLATTIDLnNTMLr)Y tSL3Vt (OBS( 1) ~1=1 ~ q lT l<br />

*LSTOP<br />

GO TO 7070<br />

2026 READ(~*FPTTIIJLAT~SLAT~~DLON~SLDN~~OES(I<br />

)rI=lyKl)rLSTOP<br />

GOTO 2030<br />

2027 HEAD( 5rFM7 )NOIIDLAT?SLATT ]:DLC!N*SLf)fVy (OBS(1) tI=lyKl 1 9LSTP0<br />

GDTO 7030<br />

2028 READ(5rFMT)SLAT ,SLOYv (OBS(I 1 v]:=lyKl TLSTOP<br />

GO TO 2030<br />

2029 READ( ~,FMT)~!R~SLATTSLCN;* (C:BS( 1) 9 I=ltKl) TLSTOP<br />

C<br />

2030 IF(1LA .LT. ILOIGC TO 2031<br />

C CORRECTING IYVERTED ORDER 3F LAT* AXD LONG*<br />

I = IDLAT<br />

IDLAT = IfLGN<br />

IDLON = I<br />

1 = MLAT<br />

MLAT = MLPN<br />

MLOV = I<br />

A0 = SLAT<br />

SLAT = SLDN<br />

SLON = A0<br />

C<br />

2031 CALL RAD: ICLAT~~!LATqSLAT~RLAT?t IAYG1<br />

I F (LWLZNG-AVD* IAYG.LE.2) IDLON = -1DLON<br />

I F (LWLI)NG.AYD. IANG.GT.2) SLOY = -SLOY<br />

CALL RAD(IDLON~MLONrSLOXrRLOYGP~1ANG)<br />

COSLAP = rcm (Q LATP<br />

SINLAP = GSINIRLATP)<br />

I F (LGRIG) GO TO 2049<br />

C<br />

I F (Lot31 WflBS(Y+l) = ORS(K1)<br />

IF (LEE21 NOBS(N+l) = QaS(K1-l)<br />

I F (LOF2) RG5S(N+2) = OBS(K1)<br />

I F (IH.KE.0) GO TO 2050<br />

I F (LRFPEC) CBS(12) = ObS(2)<br />

OBS(2) = neS(1)<br />

ORS(1) = E0<br />

GO TO 2051<br />

1050 OES(l?) = OeS(3)<br />

I F (LWLf'NG-AhDe LKPedT*3) OBS( 12) = -ClPS( 17)<br />

C CCRRFCTING TUF OR SERVATION f;Y AN ADO ITlVE AND MULTIPLICATIVE COVSTANT<br />

C (IS USED ONLY FOR GRAVl TY OBSERVATIONS).<br />

2051 ORS(2 1 = OSS(2)*DM+!?A<br />

H = ORS(1)<br />

I F (LKM) H = H*1.0D3<br />

C CONVERSION OF PEIGHT INTO METERS.


2049 I F dLNGR? GO<br />

C<br />

70 2056<br />

IF (".LT,25,0E3 .AND*( -NFToLPOTSDI ICALL EUCLID(COSLAP9 SINLAP*<br />

*RLflNGPsH~EZlqPXIl<br />

CALL ?G9AV(SINLAPpHpO 9CREFl<br />

C COMPUTING THE GQbVl TY APiOMALY e<br />

BF 6LPFGR) ObS(7) = QBS12)-GRFF<br />

C<br />

2056 %F (LINVDEI GO TO 2032<br />

OBB = DES(l2)<br />

OBS[%2) = DSS(2)<br />

065(2) = CiEl<br />

IF (eNOTmLE.9E.LSA) Gn 7C' 2032<br />

MM = WOBSINsl)<br />

WCBS(%+l b = WCPSIN+ZI<br />

WORS(Y+21 = MM<br />

C<br />

70'2<br />

C<br />

OESiIP.1 = DO<br />

IF (LREPEC9 PHS(IE1.I = DO<br />

IF ILNTP) GC) TO 2055<br />

IF ILNTRAY) GO -r3 2053<br />

CALL EUCL ID(COZLAP~SI!JLAP~RL~NGP~DOI€~~~AX~ I<br />

CALL 7RAVS(SI?~iLPPqCflSLAPqRLAT'PtRLONGPqIKPqITIi<br />

IF {LNGRI GO TO 2053<br />

GREFP = GREF<br />

IF (HeGE.25 -003 I CPLL EUCLID(COSLAP~SINLAP,PPLONI;P~w~E22~AX2 1<br />

CALL Ri:~RkViS1VLb.PpHr15rGktF)<br />

OBS(IT9 = GREF1-GREF<br />

IF (LPOTSD) OBS(IT1 = OES(1T)-13.700<br />

GP.EF1 = GREF<br />

C<br />

2053 1F (LNPOTI GO TO 2055<br />

IF (LVGRS GO TO 2054<br />

C<br />

C FfiR GRkVI TY ANCIMALlES WE USE? THAT THE NEW REFs POTENTIAL GIVES A PFT-<br />

C TER ESTIMkTE CF THE GEOMETRIC HEIGHT? SO THAT THE NEW REF. GQAVITY CAN<br />

C BE COMPUTED AT THIS HEIGHT,<br />

CALL EUCLIG(CFSLAPtSINLAP~RLOI\iGPtDO~E22qAX21<br />

CALL SPOT (RLATP ICOSLAP~RLCVC~P~~~<br />

1 1 9 GRCF9LiREFO?DO)<br />

H = H+OBSI11I<br />

2054 CPLL EUCL ID(COSLAP9 SI NLAP 9RLOrYGP ?H, E 22qAX2I<br />

IF QLZFTA) CALL UREFER(UREFtl5,Hl<br />

IF (LkSIP) CALL CLAT(CLAv159p9RLATPI<br />

CALL GFCJT (RLATPpCOSLAPvRLOIVGPv IKPIIPvGREFvUQEFTCLA)<br />

IF (LADPBP) OLS(IB9 = OSS(IBI+OBS(IP)<br />

IF (LADRPR) OPS(IBl1 = C)bS(IE1)+OSS(IP1)<br />

2055 IF (,rYOT,LCREFl GO TO 2052<br />

C<br />

C THE VARIAFLE IVP IS USED TO INDICATE q THAT THE DEGREE- VARIANCE5 STCRED


C I N SIGMk WILL WAVE T@ BF CUAYCED FPPM COLLOCLTIDN I Tn COLLOCATION 11,<br />

C THE VALUE IS TRANSFFR.RER TO PRED BY THF CCWMOY PLflCK /PQ/.<br />

CALL P9FD(S?rFREFRpUROpAR,090~2p<br />

1v1 = -1<br />

flES(IC1) = PRFDP*W<br />

I F (LAG~JRC) OEsZ(IR) = OFS(16)+08S(lCl)<br />

I F (LOYECO) GO TP 2052<br />

OBStIC11) = FRFTAPWW<br />

IF (LADOBC) oDscrei I=<br />

2052 I F (LPPEL) GO TO 3021<br />

ossc rei)+ossc rc111<br />

C<br />

C STORING COOKRINATFS AND R IGHT-HAYD<br />

C COLUVNS AYD IC TLJE STATIORS.<br />

N = N+1<br />

SIDE OF NOilYAL-EQmp N CnUUTS THE<br />

-<br />

IC = 1C+1<br />

IF (LTKB) OES(1U) = OFS(l!3)-GES(IT)<br />

1F (LTER) OI.S(I1)) =+JFS( IT)<br />

IF (LKSO) 06S(3) = CSS(2)-OBS(lU)<br />

OEl = VBS(K2)/PWO<br />

B(Y) = OS1<br />

IF (LSA) KOBS(Y) = W!-!<br />

SSORS = SS05S+OF1**?<br />

I F (LRNECC) GP TC ?C33<br />

C<br />

I F (LTNS) IfGC(IU1) = T~ES(IBl)-OBS(ITl)<br />

IF (LTEB) OES(IU1) = -ObS(ITl)<br />

I F (LK30) OSS(13) = OBS(12)-ORS( IU1)<br />

OB2 = OBE(K21)/PWG<br />

SSOGS = SSf€S+Clb2*=+2<br />

N = N+1<br />

B(N) = P82<br />

I F (LSA) WOBS(Y = \$M<br />

2033 I F (N,LE115?E) GO TO 2060<br />

C CHECK OF hUMFER GF 05SEQVATIONS NOT EXCEEDING 4R9AY LIMIT<br />

WRITE(6p?29)<br />

229 FORMAT( ' NCMEER OF OESERVATLDNS TOO BIG* *** STOP ***'l<br />

C<br />

2060 COSLAT ( IC = COSLAP<br />

SINLAT(IC1 = SIRLAP<br />

RLAT( 1C) = RLATP<br />

RLORG ( 1C 1 = RLONGP<br />

CNR =RLATF*IC+ChR<br />

C OUTPUT OF flB5ERVATIVNS.<br />

CALL fIUT(Y9r IDLATTMLATTSLATT IDL~bI~ML~h'psL~NpLON~~n)<br />

IF(.NOT~LSTOP)GO TO m23<br />

C<br />

230 FORMAT(3L2)<br />

READ( 59230) LST@P,LRFSrL,LWRSOL<br />

C<br />

IF (LRESOLmAND. LWRSOL I G(3 TO 9999<br />

~ O B S R ~ Y ~ F T I M A X ~ R ~ L T ~ L F T L ~ )


C<br />

C FSTABLIWHVG A CATALnGUE OF THE ObSE9VAYIPNSrMRXlrZlALLY 9 SETC ALLf'bJEDI<br />

INDFX(JP1 = IC+I<br />

$R = JRt-2<br />

1F IHNDFX(J2-3) .NEe IKP *OR* (DAGS(P(~R-~)-RPP~GTC~~OD-?)I<br />

9Gll TO 3034<br />

JR = JP-2<br />

IYOEX( JP,-l 1 = IYDEX[JP+l)<br />

2094 I F [(JR-II) .LTC 191 GO Tfl 7035<br />

HRITF(h,298)<br />

298 FORMAT ( @ DPSFRVATSONP ASRANGED TOO COMPLICATED B<br />

GrJ 10 q9G5<br />

2035 HF (,YDT,LST3P) GO TO 3006<br />

C<br />

C FKD OF INPUT CF OFSF9VATIfVJS. M = NgMBER OF CibZFSVATTDYS, lO3S =<br />

C RUPLFP CF I'tLSFQVATI PI\' PC1 KT?.<br />

100s = IC-1'0<br />

N = N-ISP<br />

"41 = Y+l<br />

S(Nl+iSO) = SSOPS<br />

C<br />

I F I.YnT.LF) CO TO 2036<br />

WRlTE(bp2Q7)IROFS(I+ISOlr I = 1 9 NI<br />

297 FOEPATIPO~JR"d9AKD DTVlATIFYS OF TUE PESFRVATIONS 1Y T W SP:IF SEOUF<br />

*NCE'/tV AYO l",' THE SAME UYITS AS THE OSSESVATLflNS:'/yf' '9lCFE*2))<br />

C<br />

2036 IF (LQFSGL) GO TO 3?2[<br />

C<br />

I F (LDEFF) GP Tfl 3027<br />

LDEFF = LT<br />

NT = 3<br />

IPLMC = L700<br />

C I N THIS P9RGPAbl-VFRSIONt THE ARRAY C HAS DIYENSIOV IDEYC AYD ITS<br />

C VALUES AQE STbRfG G? RETRIVED FPOM UNIT 8 3Y NT READ 07 WqlTE ?PERA-<br />

C TIORS.<br />

C<br />

C SETTING UP A CPTPLOGUE OF THE NORMAL FQCIATIONS<br />

C Nb I S TPE PFCflFD ?:UEIGESr IC COUNTS THE YUMBER nF COLUMVS WIT'JRN A<br />

C RECORD* &"!D TPIS h:UME\FR I S STORFD IY NCAT(101)$. YCAT [ I ) WILL CnYTAIY<br />

C THE SUbSCQIpT CF THE GIAGONAL FLEMENT OF COLUFY I-Hp AWD ALL THE<br />

C FLEPFRTS @F ISZF WILL 6F ZEP.0 BECAUSE WE WORK WITH A FULL MATRIX,<br />

C NBL( I) COYTAIVS JHE NUMBER OF THE LAST COLUYN I N RECORD 1-1 NOTE<br />

C TPAT MAXIIYALLY GP CPLUMNS MAY BE STORED I N ONE RECORD,<br />

2037 YET = I<br />

YEL(1 )=C,<br />

N5 = 1<br />

IC=O<br />

If=O<br />

C<br />

DO 2304 I = I p N1


C<br />

IC=IC+l<br />

ISZE( IC )=Q<br />

NCAT( ICI-11<br />

H1 = Il+I<br />

1?=11+1+1<br />

IF(BIZ.LE.IDIMC),AND,(I,NE~Nl~.ANDo(IC.LEoQU GO TO 2304<br />

NCATB IC+P) = I1<br />

IFBIeYFoYll GO TO 2303<br />

12=I2+Nl+l<br />

IF(l2.LE.IbIMC) GO TO 2301<br />

C SECURIXG THAT THF LAST COLLUYN + ON€ MORE CAN BE STORED IN THF SAME<br />

C RECORD.<br />

NCAT( lnO)=IC-l<br />

WRITF( bfYeT+?)C3tNCATIISZE<br />

NET = I',E;T+NT<br />

NE=NB+l<br />

NBLW )=]-l<br />

NCAT(2)=Nl<br />

I IL =N1<br />

I[ c=1<br />

C MAXC I S THE SUSSCRIPT OF THE DIAGCNAL ELEMFVT OF THE CAST COLUYnS, AN13<br />

C MAXC2 IS THc SUbSCRIPT PF THE FICTICIDUS CIAGfGUAL FLEMENT OF THE RIGHT<br />

C HPND SlDE (IN WHICH THE SUARE-SUM OF THE NORMALIZED DBSERVATIOVT I S<br />

C STOREDJ.<br />

2301 MAXC = 11-YI<br />

MAXC2 = I1<br />

C STORING THF RIGHT- HAND SIDE c<br />

00 2307 J=ltNP<br />

2302 C(MAXC+J) = b(J+ISO)<br />

C<br />

2303 I1=0<br />

NCAT( 100) =IC<br />

IQ = NET<br />

WRITE(B'IQ)C~NCAT~ISZE<br />

NBT = NBT+NT<br />

I[ C=O<br />

ME=!\1!3 +l<br />

NBL(NHl=I<br />

I F (NbeLEo309) GO TO 2304<br />

WRITF(6r29q)<br />

299 FORMAT(' RESERVED AREA PN FILE 8 TOO SMALL')<br />

GO TO 9999<br />

2304 CONTI VUF<br />

C<br />

MAXBL=NR-l.<br />

MAXPLT = (MAXBL-1) *NT+1<br />

C<br />

C CPMPUTATIDN OF ELEMENTS OF NORMAL EQUATIONS (FQUAL TO TUE COVADIANCE<br />

C BETWEEN THE DBSERVATIONS) c TNE COEFFlCIEYTS ARE STPRED IN TUE ONE-OI-


C MFNSIOhAL ARRAY C, CnLLUMN AFTFR CQLLUHNpTME DIAGONAL ELEMENT HAVING<br />

C THE HElGHEST SUPSCRIPBe<br />

C<br />

G lNlTIALlZ ING VARIABLF?:<br />

C N I IS Ih MA%& THE SUEISCRIPT OF THE FIRST FLEWFNT OF COLUMN NC IQ AQRAY<br />

C Ce I N THE SUbFGUTINF PKEEp NI I S THE SUZSCEIPY f9F THF FLFMFNTS 3F THF<br />

C COLUMN, Nb<br />

C STOKED AYD<br />

15 THF NUMbFK OF THE BLQCk IN HHICtl BEF COVARIANCFS ARE<br />

I1 IS TEE NUMBER RF TUE LAST CPLUMQ STORED IN BWE ELDCK,<br />

C HCYEXT IS THE NUMPER OF THE FIRST COhUY'lsd HITHI3 A GROUP OF DATA WITH<br />

C THE SAME CHARACTEXISTICS, (THE CWARACTERISTlCS ARE GIVEN BY TPE ARRAYS<br />

C IhDEX AYD P (SUBSCRIPTS JC AND JC+BI).<br />

NI = 1<br />

NC = 1<br />

4C = II<br />

IVP =-l<br />

N@=E<br />

19=PF3LI2)<br />

RfAD(E'NTIC39NCAT,HSZE<br />

FINlj(8@19<br />

NBT = l<br />

ICNEXT = ISO+l<br />

C<br />

DO 3100 3C = l<br />

ICC = IC+lSr7<br />

9 IOBS<br />

c<br />

COSLAP = CLSLAT ( I CC 1<br />

SINLAP = SIYLAT (ICC 1<br />

RLATP = RLAT ( ICC 9<br />

RLONGP = RLONC( ICCI<br />

IF( ICC .NF. TCNEXTIGO 70 3003<br />

IKP = INDEXIJC+I)<br />

C INITIALIZATION OF VARIABLES IN COMMON BLOCK /PR/,<br />

PW = P(JC)<br />

RP = P(JC+l)<br />

PCNEXT = INDEX( JC)<br />

4C = J6+2<br />

LREPEC = TKP ,EQe 5<br />

e<br />

LPNECO = ,NOTeLREPEC<br />

LGRP = IKP.EQ.2<br />

LNGR = .NOT,LGKP<br />

LNKSIP = IKP.NE-3 -AND,<br />

LNETAP = IKP-RIE .4 ,AND,<br />

LOEFVP = IKP .GTe 2<br />

LNDFP = ,NOT,LDEFVP<br />

PWO = PW*WP(BKPI<br />

LONFCO<br />

LONECQ<br />

IF (LNGRI PM0 = PWO*RP*RP<br />

IF (IKPeFGoPl PKO = PkO*RP<br />

3003 LIRST=LF.,EPEC eAh'D. (KC eEQe 11 1<br />

C AS WE FOR LREPEC=TRUE ARE COMPUTIIKG TWT) CCLUMNS AT THF SAME TIMEo WE


l<br />

C PLIST, 1N CASE THt SFCONC) CCLUYN I S THE FIRST ONE I N THE NFXT RECVPP<br />

C STORE Tt'l S ONE TEMPORARY 1Y ARRAY B. THE PRLlCLEM WILL 7NLY OCCIJR WHEX<br />

C WE AYE SETTIYG UP THE NflRMALEQUATIONS* LBST = B-STORE*<br />

C<br />

C<br />

CALL P?ED(S~SREF~UOtAtIStIS3~IIt ICtQCt IXAXltLFtLBSTtLT)<br />

NE = N1-l<br />

DIA = C ( W )<br />

I F (LE) C(ND) = DIA+(WOGS(NR-l)/PWO)**2<br />

IF (LOYECfl) GO TO 3020<br />

I F (LE) DIA = DIA+(wOtiS(YKI/PWO)**2<br />

I F (LEST) b(NQ) = DIA<br />

I F (.NCT,LbST) C(NI+NCI = DIA<br />

C THE PPECEDING STATEMENT ASStIRES* THAT TPE DIAGONAL ELFYENT CflRREZPON-<br />

C DING TO ETAP E',ECPP.',ES EQUAL TO TcJkT OF KSIP-<br />

NC = YC+l<br />

N I = hl+NC<br />

C 3020 I F (NCrnLToIl*PNO-KC-LT.h) GO TO 3100<br />

C<br />

C STORING TPE COtFFICIErVTS OF THE NOSMPL-EB* ON FILE 8, RECORD N?.<br />

10 = YBT<br />

KRITE (8' 1Q)CtNCATrTSZE<br />

I F (.NOT-LOkECI GP TO 3200<br />

C<br />

C OUTPUT OF CnEFF IC IFYTS OF NORMAL-EQUATIONS,<br />

WS 1TE (h,3hO)NB<br />

380 FORMAT('OCDEFFIC1ENTS 3F NORMAL-EQUATIONS* BLOCK 'tI4r/l<br />

I1 = NI- l<br />

I F (NQ.ECot4AXf?LI I1 = MAXC2<br />

C<br />

WPITE(6p361)(C(KI* K = LT 11)<br />

381 FORMAT( ' ' 9 10F8 04)<br />

3200 N9T = YbT+YT<br />

NE,=9!3 + 1<br />

NJ=1<br />

I F (NC-NE-NI 11 = NBL(NE+l)<br />

I F (NR.GT,t+AXBLI GO TO 3201<br />

READ( IQICl<br />

READ( IQIC2<br />

RFAD(F'IQ)C3*KCAT*ISZE<br />

C WE HAVE TI) READ ThE WHOLE CONTENT OF RLXK NB INTO ARRAY C, RFCAUSE<br />

C WE MUST BE SUPE TUAT TUE RIGUT-PAS0 SIDE (WuICu ALREADY I S STORFDI<br />

C I S PLACFD COPSFCTLY.<br />

FIND(PtNB1<br />

C<br />

3701 I F (oNCTeLSST) GO TO 3100<br />

C<br />

00 1202 K=l*NC


CBSERVATlCNS AND KORP CF APPROXIMATION<br />

C<br />

C STORING SOLUTIONS DIVEDED BY A CDMMON FACTOR.<br />

N1 = P<br />

JRNEXT = 1SO+I<br />

JP = I1<br />

DO 3032 I = 1 9 HOBS<br />

IF ((I+ISCl).VE*JRKEXTI GO TO 3030<br />

IKP = INDEX(JR+l)<br />

LONFCf9 = 1KP ,LT, 5<br />

JRNEXT = INDEX( JR)<br />

PW = PIJR)<br />

4R = JR+2<br />

4030 IF (LCIWECC) GO TO 303%<br />

B(NI+ISfl) = C(MAXC+YIi/PW


NI = NI+1<br />

3031 RfYI+T5O) = C(MAXC+YI)/PW<br />

3032 N I = NI+1<br />

IF (LCI) GO TO 3116<br />

C<br />

LC1 = LT<br />

C INPUT OF LCQEF. WHICH I S TRUE WHEN ONE MORE SET OF OBSERVATION7<br />

C SPALL BE IYPUT ANT) USED FOR THE ESTlMATIOU OF QNF MORE HARYOYIC FUYC-<br />

C TION.<br />

READ( 59230) LCPFF<br />

IF (.NOT,LCRFF) GO TO 3110<br />

C<br />

C STORIYG AdAY THE WECESSARY CONSTANTS FOR COLLOCATION I.<br />

SR = S<br />

SREFR = S<br />

URO = U0<br />

ICtRSR = IPBS<br />

AR = P<br />

IMAXlR = IMAX1<br />

NIR = N1<br />

C INITIALIZING VAKIAFiLE? FOS STAR1 OF COLLOCATION 11.<br />

I S = INAX+3<br />

I1 = 22<br />

JR = 22<br />

IC = nlIR+2<br />

N = 1C<br />

IS0 = IC<br />

IhDEX(2li = I C<br />

WRITFtbv345)<br />

345 FOFMAT('0STAST OF COLLOCATION II:'/)<br />

GO TO 1OOO<br />

C<br />

C INITEALIZIYG VARIABLES FOP. PRFnICTIO%. HAXC1 IS THE SUSSCRIPT 3F THE<br />

C FISST ELE%FNT I& THE- COLUMN FORKING THE QIGHT-HAND SIDE,<br />

3110 LPEFD = LT<br />

LNEQ = LF<br />

LE = LF<br />

LC2 = LCREF<br />

MAXCl = MAXC+l<br />

IkDEX(41) = 0<br />

JR = 41<br />

WRITE(69344)<br />

344 FORMAT('1 PREDICTIDI\IS:t/)<br />

GCI TO 2000<br />

C<br />

3021 NI = MAXCl<br />

COLL PPED(S?SPEFvUO?A?ISv IS09 1 1 9 J13BSvhlv IMAXI vLT*LFTLFYNO)<br />

I F (LYFRNO) GO TO 3b22<br />

C<br />

C(MAXC2) = D1


C<br />

e<br />

C<br />

C<br />

iF (LCOXP) CALL COPiPCfiUi<br />

CALL OUT(KO~IDLAT~PLAT~SLATPIPLON~MLOY~SLONTLPNEC~I<br />

I F (LMAPI IMAP(NO1 = OBS(IUl*100<br />

IF(LGR1D ,AND- NAI oLF* NLAI GO TO 2001<br />

KF (,NOT,LMAPI GO TO 3045<br />

K = NLA+1<br />

WRITE(6r360)IDLACySLACo I@LOCpSLCC,GLA~GLC!<br />

360 FORMAT( "MP PF PREDICTIONS: @ / ' COORDINATES OF SOUTH-WEST CORNER "/<br />

*c LATITUDE LOVGITUDE AND SIDE LENGTH LAT. LONG, sf<br />

g 0, U Y D M M M V / ~ ( I ~ T F ~ . ~ ) T ~ F ~ ~ ? T / ! )<br />

DO 3044 J = le K<br />

WRlTE(bp350)<br />

350 FDRMAT ( W @ P)<br />

NAP = NO-NLO<br />

WRITE(6r352)(IMAP(IIe I = NAP9 NO)<br />

352 FORMAT(' '92015)<br />

3044 NO = QAP-1<br />

e<br />

3045 I F t,NOT.LSTDP) GO TO 2023<br />

C


C<br />

C 9999 STOP<br />

f h'D<br />

READ( 59230) LSTO?<br />

I F (,NOT.LSTGP) GO TO 2000<br />

IF (LCOM) CALL OUTCOM<br />

SUERDUTINF YES(f'1YtI IFC? I I FRrLPSIFW)<br />

C THE SUB99UTIVF WILL? USING THE CH3LFSKYS PETFOD:<br />

C (1) CnKPUTF THE REDUCED MATDIX L COYQESPOhDl hG Tfl A SYMMFTSIC POS ITIVF<br />

C DEFIYITE (NN-l)*(NN-l) MATRIX At WHFN THE JIFC COLUPNS AND IIFR<br />

C P,C,WS OF L ARE YFU'OWNT (L*LT = AT LT THE TRAN5PnSFD f3F L)<br />

C (2) COMPUTE THE PEDL~CED NY-1 VECTOR (L**-~)*Y.<br />

C (3) CCJMPUTF THE DIFFFRENCE PW = YfiJ-YT*( A**-l)*Ym<br />

C (4) SGLVE THE ECVATIOYS LT*X = (L**-l)';YT (THF SO CALLED BACK-S'3LUTION)<br />

C<br />

C THE REDUCEG SfWS AV0 COLUPNS C!F L (THERE VAY BE hCNE)t THF CORFFS-<br />

C PCWDING UYqEDUCFD UDPEQ TPIkNCtlLAR DART OF At THE NN-VECT39 FORMED<br />

C CY Y AVD YY Fn9MS AN UPPFR TFIAkGULAk ?JY*NV-MATkIX,<br />

C THE MATRIX IS 5TOKED COLUKYVIZE I N NT*PAXSL FECDQPS OF A DIRECT ACCESZ<br />

C FlLE (UNIT KUF:EER P ) . THE YT RECQRDS (YT*12F00 BYTE?) CONTAI'JS AS MA'VY<br />

C CCLUPMS AS POssIFLf l N THE FIRST E*( NT-l)*lh00+8*1500 RYTFS CnQSF;SPqN-<br />

C DlNG TO TEF DIMENSION OF THF ARRAYS C AYP C?. TPE LAST PO0 RYTFS<br />

C OF THE NT RECC:PDS HOLDS TWO CPTALOGES (INTEGER ARRAYS) NCAT AND ISZE<br />

C (NRCAT? IRSZF RESPECTIVELY). kiE WILL CAii THE UT REC0qD5 A BLOCY,<br />

C WHEN THE CGNTEqT OF A ?,LOCK HAS 5FFN TRAhSFERSFD €*G* TO C, Y C ~ T T<br />

C ISZEq WE HAVE THF FCILLOI4Ih:G SITUATIQh', THE COLUMVS ARE STODFP Ih C<br />

C FROM THE FIRST ELEMEQT DlFFFRFYT FRnEl ZERC TC THE DIAGfIYAL ELf'+f'NT-<br />

C NCAT(1) IS TPr SUESCRIPT CF T U E DIAGONAL FLEMEWT CIF COLUMN 1-1 CV@<br />

C ISZE( I ) IS THF YUMBER OF IGU3PEC (SAVFD ZEQOES IV COLUMN I, YCAT (100)<br />

C IS THE hUK6Ek OF CDLUMNS STCISED I N THE PECO?D.<br />

C N6L( I ) 1s FQUAL TO THE NUMSER OF THF LAST COLUMN STORE0 IN DEC09D 1-1.<br />

C (1) TO (3) ABOWE NILL ALWAYS PE EXFCUTED? BUT (4) WILL QNLY 9F EX€-<br />

C CUTE@ h'+% TUE LOGICAL LBS 1s TRUE* T U E EXECUTIDY OF (11, (2) FUD (4)<br />

C I S EQUIVALEYT TO THF SCLUTIOU OF THE EaUATIUNS A*X=Y. THE SnLUTI7YS<br />

C WILL 3E ST3XED I N THE ARRAY C I N TPE POSITIONS ORIGIYALLY OCCUPIED BY<br />

C Y AND WILL 6E TRANSFERRED TO FAIN TH90UGH THE COMMON BLDCK.<br />

C I N CASE A Y;UF'ERICAL SIh'GULAFilTY CCCURS IN COLUKF' &UMBER JP* THE COLUMN<br />

C IS DELETED 8Y CHANGlNG THF CATALOGUE ISZE AVCl TFJE ELEPEVTS IY RE\-+' J D<br />

C AND THE JD'TH t-LFMEYT OF T U E SOLUTION VECTOR IS PUT EQUAL TO ZE4O.<br />

IMPLICIT INTECER(I?JrK?M?W) REAL *S(A-H?~-Z)TLCGICAL(L)<br />

COMM9N /NESnL/C(4700) ?NCAT( 100) ?ISZE ( ~C)O)?NEL(~~O)?MAXBLTID<br />

COKMOQ /C"W/CRl (1hOO)<br />

DIMENSION CR(4700)?h1RCAT(100) qIRSZF(100)<br />

FQUIVALtNCE (CR ( 1 1 ?CRl( 1)<br />

NT = 3<br />

C NOTEv THAT IY CASE YT I S CHANGEDT WILL IT ALSO BE YECESSAPY Tn CHANGE


C THE DIFSEVSIOPJ OF THE ARQAYS C At'lD CK,<br />

C<br />

N = M".!<br />

IFR=lI LFR+B<br />

IFC=IIFCcl<br />

IF ( I F P e G T o I F C ) WRITE (6910)<br />

10 FORKAT(' ERPOP IY CALL* IFReGT.IFC 1<br />

e<br />

C RfGUCTIT3d OF COLUMNS IFC TT) M, ELEMENTSy WHICH ARF ALREAnY REnUCEP9<br />

C ARE STOkED IN CR [EXCEPT FOR JBL=KBL)e ELEMENTS9 WHICH AqE GOING TO BF<br />

C REDUCED* ARE STERED IN C*<br />

C<br />

C FIND FIRST ACTUAL RECORD AND RDH/COLUMN.<br />

JP r==o<br />

200 JBF=$tiF+1<br />

IF(NBL(JEF+l) .LT.TFC) GO TO 2CO<br />

11 = t\lDhlJEF9<br />

JF = IFC-IL<br />

JTF = JBF*NT-NT+1<br />

JTL = JTF<br />

1D = JTF<br />

FI&D(E*ID)<br />

C<br />

KBF = 0<br />

201 K6F = KEF +l<br />

IF (NBL[KEF+l l.LT,IFR) GO TO 201<br />

KLO = NBL(KBF)<br />

KF = IFR-KLG<br />

KFO = KF<br />

KTF = (KBF-l)*NT+l<br />

C RFAD RECORD JPL FROM FILE. THE ARRAY C WILL CONTAIN AT LEAST ONE UNRE-<br />

C DUCED COLUMN.<br />

DO 280 JBL=JBF,PAXbL<br />

READ( 8'ID)CVNCAT,ISZE<br />

FIND( Fi8KTF1<br />

NC=NCAT( 10@)<br />

JO=NBL($BLI<br />

K1 = KLO<br />

ID = KTF<br />

DO 270 KBL = KBF,<br />

LREC=KbL-EQoJBL<br />

JBL<br />

READ( 6' I D )CF.TURCATT IRSZE<br />

NR=NYCAT( 100)<br />

KO=KL<br />

K L =KL + NR<br />

MR=MAXO(KO~ IIFR)<br />

C<br />

C IN ORDER TO MINIMIZE T"E NUMBER OF TRAYSPORTS TO AND FROM FILF PT WF


C DO NOT [GFS'ERALLY) COMPUTF PLL TFJF REDUCFrJ ELEMENTS OF llNE COL'JMYT BUT<br />

C nwy THF FLFVTYTS IV PON K O + ~ TO KL. (KC IS THE NUMBER OF T ~ E LAST<br />

C COLUMY IY THE PREVIOUS RECORD* KL THE NUMBER OF THF LAST I Y THF ACTUAL<br />

C RECORD. 1<br />

C<br />

U0 760 J=JFtNC<br />

ISZ=ISZE(J)<br />

C WE CHECH THAT THFRE ARE tLEMENTS (UNRFDUCED) DIFFERENT FROM ZEQn IY<br />

C COLUMN J HITP YUSSCPIPT GREATMEY THAN OR FQUAL TO KLm<br />

1F (#L.LE.ISZ) GO TO 260<br />

C THE SUBSCRIPT CIF TPE FLEMENT IN COLUPN JtPnW K I S NCAT( J)+K-ISZF( J ) c<br />

C TPE DIFFERENCE NCAT(J)-ISZE(J) I S STOqEG IQ THE VARIABLE ICO.<br />

C 3HF SAME DIFFERENCF FOR COLUMY (ROW) K I S STORED IN IRO. T U E ELFMFYT<br />

C JUST BFFORF THE FIRST ELEMEYT TD E€ RFDUCFD WILL FEYCE YAVF 7U3SCSIPT<br />

C I=ICO+MAX(KO, IIFRTISZ) . K G I S TPE ABSOLUTt ROW NUMBER-<br />

ICO = M A T ( J)-1x2<br />

JD=JO+J<br />

NRO=MINO( JDTKLI-KO<br />

I F (%R.GE.ISZ) KFS =


C<br />

G<br />

IF( .QT!T.LRFC.ORa(JD.l\lF.KD,.oREJn,EQ.Nl Lt7 To 360<br />

C TEST OF tdUMERLCAL STAGILlTY<br />

QC12 = QCI/C(I)**?<br />

IF (QC12 ,GY, 0,lD-16) GO TO 251<br />

WPITE(6p20lJDpGC12<br />

20 FORMAT( "UMMERlCAL SINGULARITY IN ROW N0.'9H5? @<br />

9 TEST QUANTITY ='P<br />

C<br />

C<br />

C<br />

*Dk7alO)<br />

lSZE( J)=JD<br />

TVE COLUMN I S DFLFTEDa<br />

GO TO 260<br />

251 C(I) = l7SQP,T((P<br />

260 KF = b<br />

270 COhTINUE<br />

C REDUCFD ARRAY C BACK TO FILE, FIRST CPLUMY I N YEXT RECORD I S NPW TPE<br />

C FIRST STOKFD,<br />

I D = JTL<br />

EUT FIRST REDUCED COLUPSN I S AGAIN CCDLU!43 KFO IN QECe J6F<br />

WRITE(P81D)C9NCATpISZE<br />

JTL = JTL+NT<br />

JF=1<br />

KF=KFn<br />

C<br />

IF(JSL.NEcMAXRL)<br />

PW = QC1<br />

GO TO 280<br />

lFBINOTeLGS) GC TO 280<br />

C<br />

C BACK-SDLUTICN. NCTE TPAT TUF YAPIASLF l[ AT TuIS MPPENT I S THE SUB-<br />

G SCRIPT OF THE DiAGOYAL ELEMEVT CIF THF CGLUMN CONTAINIKG THE RIGHT- HAY0<br />

C SIDE, 1 WILL SUCCESSIVELY TAKE THE VALUE OF THE SUBSCRIPT qE THE ELF-<br />

C MENT If% RCJW M OF Wl[S COLUMN, AND THE SnLUTIOY WILL BE STOYED I N C(I)a<br />

C<br />

M = N<br />

KTL = (MAXEL-L) *NT+l<br />

I D = KTL<br />

DO 277 #B= lpMbXBL<br />

READ( R1ID)CRtNi?CAT9TRSZE<br />

KTL = KTL-KT<br />

ID = KTL<br />

I F (KTL.GT,O) FIND( E0 ID)<br />

NR=NRCAT( 100)<br />

C THE COLUMN COPJTAIYIY!G THE RIGHT-HAYD SIDE I S SKIPPED,<br />

IF(KSeEQa1lNR=FJR-1<br />

K1 =NR+1<br />

IF(N2,FQ.O) GO TO 277<br />

DO 276 K=l,NR<br />

C WE STEP BACKWARD (M) FRCM CC'LUMbi N-19 TAKIhlG P E NR COLUMNS CRnM EACH<br />

C RFCORO SUCCF SSIVELY.


I=I-P<br />

IC=I<br />

M=M-P<br />

IR=NRCAT(Kl)<br />

Kl=Kl-1<br />

IRSZ=IkSZF(KlI<br />

MR=M-IRSZ<br />

I F (MR.GT.0) GO TO 373<br />

C I N CASE A COLUKN HAS BEEN DELETED7 THE UNKNCIWY IS PUT EQUAL TO ZERO*<br />

C( I ) = OaCIDO<br />

Gn TO 276<br />

C TWE (UN)KN@WN C( I ) IS COMPUTED (ONE EQUATICIN WITH ONE UNKNOWY).<br />

273 C1 = C(I)/CR(IS)<br />

C(I1 = C1<br />

C<br />

IF(MP*FO.l) GO TO 276<br />

D@ 274 VP=?TttR<br />

C 1R I S TliE SUG5CRIPT OF THE ELEMENTS OF COLUMN M, RUVYIVG FnPM THE<br />

C DIAGnYAL-1 UP TO TVE SUEZCRIPl OF TUE FIRST ELEMENT DIFFERENT FPOM<br />

C ZERO. 1C IS THE SUBSCRIPT OF THE ELEMEYTS OY THF P IGHT-HAUD S IDF I N<br />

C THE SAME POW AS CK( IR).<br />

IR=IR-l<br />

IC=IC-1<br />

C TPE CONTR IBUTIGN FP.OM THE ( UR)KNOWN C( I 1 IS SUBTRACTED FROM TCF QUAN-<br />

C TITIES ON THE QIGHT-HAND SIDE.<br />

274 C(IC) = C(IC1-CI*CK(IR)<br />

C<br />

276 CONTINUE<br />

277 CONTINUF<br />

C ThE SOLUTIOYS ARE YOW ALL STORED I N C FROM C(YCAT(Y)+l) TO C(LtCAT(M+l)<br />

C -1) - THEY ARE TRANSFERRED TO 'MAIN' THROUGH TWE COMMOY BLOCK NESOL.<br />

280 CONTIYUE<br />

RETUQN<br />

END<br />

C<br />

SUESOUTINF ITSAN(DX,DY,DZ,EPSl,EPS2~EPS3,0L,AX2,F22,RLATO,<br />

*RLO~GO~DKSIO~DETAO~@ZFTPO~LCHANG)<br />

TRANSFORMATIGN OF GEODETIC CQUROINATES AND CORRESPONDING DEFLECTIONS<br />

C OF THE VERTICAL AND HEIGHT ANOMALY7 WHEN THF COORDINATE SYSTEM IS<br />

C TRANSLATE9 PY (DX,DYIDZ 17 ROTATED (EPSl ,EFS2,EPS3) ASOUYD THE XwY 72<br />

C AXES RESPECTIVELY AND MULTIPLIED LY l+DL.<br />

C WHFN LCHAYG 1S TRUE, THEkE I S FUTHERMOEE A CHAYGF IY THE ASTRnV3MICAL<br />

C COORDINATES AND IN THF HEIGHT SYSTEM, GIVEN AS A CWAYGF OF THF D€-<br />

C FLFCTIOYS OF THF VERTICAL AND THE HEIGHT ANPMALY I N A POINT HAVING<br />

C COORDINATFS RLATO AND RLONbO*<br />

IMPLICIT INTEGER( I) 1 REAL *P(A-'-',P-Z)<br />

COMM3Y /OESER/flRS (20)<br />

COMMON /EUCL/XyY 7 Z ,XY 9XY2 ,@I ST3tDIST2<br />

LfIGICAL(L1


c<br />

C CF. PFF(C) PAGE ?On9 FORPULA (5-59)<br />

COSDLO = LCOS (!?LONGp-RLOYOO<br />

S INOLC = GSIN(RL0YGP-RLDNGO)<br />

GO TO (61 *75rh2,63r62)p IKP<br />

61 DZETA = (-( CC!SLAO*S IULk P-S TNLAr)*COZ LAP*CClSnLn) WKSI 0-CflSLAP*S IKDLn<br />

**@ETAO)*AY?/YADSFC+ (S IF\ILAO*SIFYLAP+COSLAO*COSLAP*COSDLO)*DZET~O<br />

GO Tfl 69<br />

62 DKSI = (CRSLAP*CDSLhO+S INLAP*SINLCO*C~ISGLO) *nKSIO-5 INLAP*SIh!DLCl*<br />

*DETAn-(S IULAn*COSLAP-CnSLAO*S IYLAP*C@SSLL)*RbDSEC*DZFTAO/AXZ<br />

I F (IKP.NF.5) GO TO 69<br />

63 DETA = S I&LAO*S IKDLO*~ETAO+COSDLO*DETAO+COSLAO*SIQDLCl*RADSFC<br />

**DZETAO/AX?<br />

C<br />

69 GO 10 (71~75,72,73~72)tIKP<br />

71 ORS(IT1 = DZETA+DH<br />

GO TO 75<br />

72 OBS(IT1 = DKSI-DLA<br />

I F (IKP.NE.5) GO TT, 7 5<br />

73 OES( I T 1) = DFTA-DLOKPSLPP<br />

75 RETV9Y<br />

END<br />

SUBROUTlNF GRAVC(AXTFTGM~ IT LFOTSDTUKEF~GAklMA)<br />

C THE SUkROUTINE COMPUTES FIRST BY TuE CALL OF G2AVC TuE CPNSTANTS TO EE<br />

C USED IY Tt1E F3EPULA F09 TPE YDRMAL GRkVITYy THE FOYMULA F04 THE VCQMAL<br />

C POTENTIAL An4D THF CHA!.IGE IN LATITUDE WITH YFIGHT. CDYSTAQTS RFLATEn T9<br />

C TWO DIFFERENT REFERENCE FIELDS MAY BE USED. THEY ARE ST07ED TV THE<br />

C ARRAY FG I N THE VARlABLES SUBSCRIPTFD FRCY 1 TO 15 FnQ TYF FIQST<br />

C FIELD AND FRCM 16 TO 30 FOP THE SFCClNP ONF. THE APP.AY FJ COWTAIXS TFE<br />

C ZOYAL HASMONICSI W17H SIGN OPPClSITE T r TVE USUAL CONVEYTICNST CF<br />

C RFF(C)r EQ. (2-921.<br />

IMPLICIT INTEGF9( I) 7 REAL *e(A-HtM-Z)<br />

COMPON /DCON/DO ID1 y D2 ,D3<br />

9 LOGICAL(L1<br />

COMMON /EUCL/XTYTZ~XY TXY~,DTSTO,DIST~<br />

DlMENSION FG(3O) vFJ(3O) tLP(2)<br />

D4 = 4.ODfi<br />

D5 = 5.000<br />

OMEGA? = (0.7292115150-4)**2<br />

LP( l+I/l5 1 = .NOT.LPOTSD<br />

E2 = F*(D?-F)<br />

AX2 = AX*AX<br />

FG(I+14) = AX<br />

C<br />

FG(I+15) = GM<br />

I F (LPflTSD) GO TO 1501<br />

DO 1550 J = 1 7 15<br />

1550 FJ(J+I) = DO


C FG( I+8) CfJNTAINS THE THlSCl OERIVATIVE OF THE NORMAL GRAVITY.<br />

FG(I+E)<br />

RETURN<br />

= D4*FG(I+6)/(AX*Cl?)<br />

C<br />

EYTRV RGRAV (5 INLAPqHq IIGREF )<br />

IF (H.GT.75.003 .AY[). LP(1+I/lS) GO 70 1504<br />

C COMPUTATICN f3F THE REFEPENCE GFbVITY I N UNITS OF MGAL* CF. REF.(CI<br />

C PAGE 77 AND 79. H PUST PE<br />

SIN2 = SINLPP*SINLAP<br />

1N UklTS OF MFTFKS.<br />

GSEF = FG( I+1 l* (Dl+FG( 1+2)*SIU2+FG( I+~)J~SI~\:~*ZINZI<br />

* +(FG( I+S)+FG(1+5)*SlN2+( FG( I+61-FG(T+Y )*H)*H)*H<br />

RETURN<br />

C<br />

ENTRY CLbT(CLA7 I~HIRLATP)<br />

LKSI = eTFUE.<br />

IF (H.GT.~~ID~ .AYD. LFI~+I/~~)) GO TO 1504<br />

C CCIMPUTATIOM OF THE CHbr\lGE I N THE n1RECTlON OF THE GRAPIFNT WITH HElGHT<br />

C CF* 4EF(C) EGO (5-34).<br />

CLA =-FG( l+l?I*H*(Z+XY)<br />

LKSI = .FPLSE.<br />

RFTURN<br />

/DIST2<br />

C<br />

ENTRY USEFE:9(URFF7 I qH)<br />

C COMPUTATIOk nF THE VALUE OF<br />

C (6-14) AYD lh-15)0<br />

LZETA = .TRUE.<br />

THE NOSPAL POTENTIAL* CF. '?EF(C)t EOe<br />

IF (Dh5S(H).GTo1.00-3)<br />

UREF = FC(I+7)<br />

RFTUQN<br />

GCI TO 1503<br />

C<br />

1504 LZETA = .FALCE.<br />

C<br />

1503 T = Z/DISTQ<br />

U = XY/DISTD<br />

AX = FG(I+14)<br />

GM = FG(1+15)<br />

A1 = DO<br />

A0 = DO<br />

B1 = C10<br />

B0 = DO<br />

DAl = 00<br />

DAO = D0<br />

S = AX/DISTO<br />

TS = T*S<br />

S2 = S*S<br />

K = 11<br />

C1 = 12eOGO<br />

CO = 1l.On0<br />

C<br />

C SUMMATION OF LEGENDRE-SERIES REFRESEIVTIW THE NORMAL POTENTIAL. B0


C WILL HOLD TEE DEi71VATIVF WITH RESPECT TO THE BISTANCF FROM THE ORIGIN<br />

C AND DAO BL9E CT?IVATIVF WITH RFSPFCT TO THF LATITUDE AFTER THE FINAL<br />

c EFCU~SIn"J qTFr..<br />

DO 1553 J = P p 11<br />

FJK = FJ(K91)<br />

c3 = I-~?-DI/CO<br />

c4 = CO*S?/C1<br />

A2 = A1<br />

A% = kO<br />

A 0 = C3*TS*Al-C4*A2+FJK<br />

I F CLZETA) GO TO 1555<br />

C<br />

DA2 = DL'1<br />

DAl =: DAO<br />

DAn = C3* I S*AS+TS*@AI 1-C4WA2<br />

R2 = B1<br />

BP = 50<br />

B0 = C?*TS*B1-C4*BZ+FJK*CO<br />

1555 C1 = CO<br />

CO = CO-D1<br />

1553 K = K- l<br />

C<br />

IF ILZETA) GO TO P554<br />

C GP IS THE riFR IVATlVE OF THF N(jQMAL GSAVITY WITH 9F5PECT 13 PIST9<br />

C (THE DXSTAhCF FROP THE ORIGIN) AYD GL I S THE DERIVATLVE WTTH OEfPFCT<br />

C TO THE LATITGCEq CF. REF(C) EQ- (h-20') A\' (6-221.<br />

GL = [GM*PPO/DISTZ-fMEGAZ*DlSTF*T )*U<br />

GP = -GM*SP/DIST2+0MEGAZ*DI STO*U*U<br />

GZ = T*GR+lJ*GL<br />

GREF = DS€'QT( GR *GR+GL*GL)<br />

IF [LKSI) CLA =-~DARSIN~-GZ/GREF~-RLATP)*206?64080600<br />

LKSI = .FALSE*<br />

GREF = GREF*I,OD5<br />

RETUQV<br />

I554 UREF = GM*AO/@I STO+OM€SAZ*XY2/D2<br />

RETUSN<br />

END<br />

SUBROUTINF IGPBT( GMpAXqCOFFTbqrYMAX)<br />

@ THE SUBROUTINF CQWUTFS THE VALUE OF THF GQAYITATIflYAL POTFNTIAL AND<br />

C THE THREE FEKST GRDER DFRIVATIVFS 1N A POINT P HAVING GEnOETIC CIRG-<br />

C DiNATES RLATP,RLONGP Ahlj EUCLIDIAY COOSDIYATES XqYtZ. THE PllTEUTlAL I5<br />

C REPRESENTED BY A SERIES IN QUASI-'L'ORMALIZEO CPUERICAL 'JARPnNICS qUAVING<br />

C COEFFICIEUTS OF HIGHEST DEGkEF NPAX, ALL STORFD IN THE ARR4Y CqFF.<br />

C THE ALGOQITHM USFD IS GESCRIBED IN SFF(D).<br />

IMPLICIT Ib


DIMEN'lPN F(55)rG(55)rA(25)~6(25)rC@FF(M)<br />

C<br />

C TPE ARRAYS P<br />

C HARMONICS OF<br />

C THE ORDFR-1.<br />

AND '8 AKF USED TO KnLD THE VALVES OF THE SOLIP SPHF9ICAL<br />

CjIFFEQENT DEGREES, THE SUBCCRIPT flF A nR B I S EOU4L TO<br />

C THE ARRAY CCFF COhTAlNS THF FULLY RORMALIZED COEFFICIENTS OF TYC PPT-<br />

C ENTIAL LEVFLRPED IN A SERIES OF NORMALIZED COLID 5PHFRIChL HAR~lOidlC~<br />

C UP TO AND IVCLIJSIVC DEGREr YMAX AND FOUF UUMMY CPFFFICIFVTS FQUAL TO<br />

C ZERO. TIE CDEFFICIFNTS WILL BE QUAZI-Y7QMALlZED BY THE TUBQrjUTIVE,<br />

C F AND G CO:iTA 1% SSk'LikEE-ROOT TAHLtS USED IN THE aECURSI0Y PQ3-<br />

C CEGURE. GP I S TPF PRCOUCT OF TPF GRAVITATIONAL CONSTANT AND THF MPSS<br />

C PF THE EARTH (METFRS**~/S~C,'J*~) T AX THE SFM I-MAJCIP AXlS (METERS r<br />

C OMEGA2 THE SOUARF flF TUE SPEED @F ROTATION.<br />

C<br />

C<br />

INITIAL12 LYC COYSTAYTS,<br />

CjMEGA2=(O -72921 1515r)-4) **2<br />

RADSEC = ?C16764 ,bO6DO<br />

DO=O,l)fiO<br />

Dl=l. 000<br />

D2 = 2001jO<br />

NMAXl=YMAX+I<br />

N3=hMAX+3<br />

N4 = 2*NtJAX+3<br />

C THE ZERO URGE9 COtFFICIENT I S PUT EQUAL TO ZERO AND TWE CPNTRIQUTIPN<br />

C FROM THIS TERM IS FIRST USFD? WHEY THE CDVTRIBUTTCIY FRDM ALL OTPEq<br />

C DEG9EFS HAS bFEN ACCUMULATEb.<br />

CCFF! 1) = no<br />

C<br />

C SETTING UP A SCUAKE-ROOT<br />

F(1) = Do<br />

G(1) = PO<br />

D0 1031 N = LT N4<br />

DN = DFLOAT(hf)<br />

TA6LE.<br />

F(N+l)<br />

1031 G(N+l)<br />

C<br />

= DSORT(DY*(DN-01))<br />

= DSQRT( DN)<br />

C THE COEFFICIENTS A9F GOOIh'G TO BE QUASI-NORMALIZED.<br />

IJ = 1<br />

DO 1033 I = IT NPAX<br />

DN = G(2*(1+1))*1.0G-h<br />

NZ = 2*I+1<br />

D0 1032 J = 1 9 V?<br />

1032 COFF(IJ+J) = COFF(IJ+J)*DN<br />

1033 IJ = 1J+N2<br />

SQ2=G (3<br />

RETURR<br />

C<br />

EYTRY GPflT(RLATD~CflSLAPrRLONGPTIKPTIPrGRFFrURFFrCLA)<br />

C THF SUBROUTIVE IS HERE USFD TO COMPUTF HE IGHT-AYOMALIES GPAVITY-AUD-<br />

C MALIES AYD DEFLECTIOYS (KSIy ETA OR (KSI9FTA))r CORRESPOYGING T9 THF


C VALUF OF IKP = L e a a p 5 m ?HE RESULT IS STORFD IN OBSlIPI AYD 08S(IP+101<br />

C FOR IKP= 5,<br />

XP% = IP<br />

%F (IKP,f0.54 IPB = IP+PO<br />

U=X/D I STO<br />

V=Y/D I STD<br />

W=Z/D I[ STO<br />

ADIQS=AX/DISlCI<br />

POT-DO<br />

DX=DO<br />

DY=G0<br />

BZ=PO<br />

C A l l ) ES NOW TPE VALUE OF THE SOLID SPHeHAqMONIC OF DFGqFF 0.s<br />

A(l l )=@l<br />

B(l1 = CO<br />

FACT- PI<br />

ADIV?I=DI<br />

c<br />

DO 7002 I = 2 9 N3<br />

A(l)=C0<br />

7061 B(I)=PO<br />

e<br />

C<br />

C<br />

DO XI 10 I=l VNMAXI<br />

61 = D1<br />

Al=DO<br />

- B1 = Cic?<br />

B2 no<br />

Db, l =D 0<br />

DP1=DO<br />

062=DO<br />

DX O=D 0<br />

DY O=D n<br />

DZO=DO<br />

POTO=DO<br />

C = no<br />

IS=~I-11*(1-11+1<br />

01<br />

- 62<br />

CO = S02<br />

A2=Aa 1)<br />

DAZ=CCFF ( IS1<br />

BPLUSJ=I<br />

PPLUSI=I+l<br />

IMINJ1=I+L'<br />

SS=IS+l<br />

b.RFbC=ADIVR I/FACf<br />

DO 7005 J = I p l PLUS1<br />

IPLUSJ-I PLUSJ+1


IMIYJl~IMINJl-1<br />

JPLUSl=J+l<br />

ALFA = F( IPLUSJ )*Cl<br />

ALFA? = ALFA*C2<br />

BETA = F( lkIhJ1 )*CO<br />

GAMMA=(;( IPINJl) *G( IPLUSJ)<br />

DAO=DAl<br />

DAl=DA3<br />

DC2 = COFF(1S)<br />

DBO=Dbl<br />

DEl=DB2<br />

D82 = COFF(IS+l)<br />

ALBO=ALFAWEO<br />

BEB?=E ETA*DP2<br />

ALAO=ALFA2*0AO<br />

BEA2=3ETA*DA2<br />

nXO=DXO+( ALAO-EEA2) *AJ+(ALt30-E!EBZ)*BJ<br />

DYO~YO+(~LAO+PFA~)*QJJ(ALBO+~EB~)~AJ<br />

DZO=DZO+GAKMA*( DAl*AJ+DEl*E? J)<br />

IS=lS+2<br />

C1 =Dl/CO<br />

C2 = D2-C<br />

CO = Ctl<br />

7005 C = D1<br />

C<br />

POT=POT+AFFAC*PtlTO<br />

FACT=FACT*I<br />

ARFAC=ADIVR I/FACT<br />

C CXTDYTDZ IS THF VALUE OF THE FIRST DE9IVATIVES OF THE PQTENTIAL WIT U<br />

C RESPECT TO XyYyZ.<br />

DX=DX-AP FAC*DXO<br />

DY=DY-AEFAC*DYO


D P=DZ-AD FAC*D ZO<br />

C<br />

7010 ADIVR I=ADIVRI*ADIVR<br />

C<br />

C CONTRIEUT 19'4 FROM RCITATIONAL POTENTIAL.<br />

R!JTX=OY EGAZsX<br />

ROTY = QMFLA2*Y<br />

ROTFOl = OMEGA2 /G3*XY 2<br />

POT = (D 1+POT )*GM/G ISTOsRSTPOT<br />

AO=GM/DI ST2<br />

DX = (U-DX/D2 )*An-RnTX<br />

DY = (V-DY/D? 1 * AO-SOTY<br />

DZ = (W-DZl*AO<br />

IF (IKP.LF.21 GP = DSGRT(UX*DX+0Y*DY+DZ*DZ)<br />

C GP I S THE GPAVITY I N P.<br />

CO T!3 (7VO6?7nO7,?On8 ,?O09e?n08), IKP<br />

7006 ORS(IP1 = (POT-USEF)/GP<br />

QETUqN<br />

7007 BBS(IP1 = GP*1.005-GKEF<br />

PETCQN<br />

7008 O BS(IP1 = (DATANZ(DZ*DSQRT(DX*DX+DY*DY))-RLATPMADS€C+CLb<br />

IF (IKPeLTe4I RETURN<br />

7009 ObS( ID1 = (DATAN2( GY pGX) -RLONGP)*RADSEC*COSLAP<br />

KFTURN<br />

END<br />

SUBR3UTINE EUCL ID(C3SLAPTSIYLAPTRLO'\fG*H*F2rkX)<br />

C COMPUTATIflN OF EUCLIDIAV CnnSOlNATES X,Y,Z 9 PISTANCF AND SQUAqE OF<br />

C DISTANCE FFQM Z- AXIS XYT XY? AND DISTANCF AND SCUPRE OF DISTAYCF FROM<br />

C THE ORIGIX DlSTD AND DIST2 FP.CM GRCPETIC COCKDINATFS REFERRlYG TO AN<br />

C ELLIPSOID PAVING SEMI-MAJPR AXIS EQUAL 10 AX AND SECOND EXCFNT2ICITY<br />

C EZ. IMPLICIT INTEGER( I I JIK~KIN) T PEAL *8(A-H,O-Z 1<br />

COMMON /FUCL/X~Y,Z?XYvXY2,DlSTO,DIST2<br />

DN = AX/DSQRT( 1 .f)DO-E?*SINLAP**2 I<br />

Z = ((leODO-E2I*DN+H)*SINLAP<br />

XY = (DN+HI*COSLAP<br />

XY2 = XY*XY<br />

DIST2 = XY2+ZeZ<br />

DlSTO = DSQRT(DIST2 1<br />

X = XY*DC@S(RLONG)<br />

Y = XY*DSIY(PLONG)<br />

RETURY<br />

END


SUPROVTINF RADI IDfGTM INTSECTRApIANC)<br />

C TC'E SUEPDUTINE CDMVtR.TS FOR IANG = lTZT3r4 ANGLFS IN (1) DEGSFFST MI-<br />

C NUTEST SECOYDST (2) GEGREES? MINUTEST (3) DECREES AND (4) 400-DFGRFFS<br />

C TO RADIANS.<br />

IMPLI C1 T INTFGER( I J,K,M,N) ,RE'AL *R IA-HTn-Z)<br />

1 = 1<br />

I F (IDFG ,LT* 0 *AVE. lANG .LT* 5) 1 = -1<br />

GO TO ( l r 2 ~ 3 ~ 1IANG 4 )<br />

1 SF =I>* IDEG*3A0O+M IN*6O+SEC<br />

GO TO 5<br />

2 SF=l* IDEG*3600+SFC*60<br />

GO TO 5<br />

3 SE = SEC*3600<br />

GO TO C;<br />

4 S€ = SEC*324n<br />

5 RA= 1*SE/206264.t?06DO<br />

RF TUF? N<br />

END<br />

SUEROUT I%E HEAD ( IKP 1LO?4FCf?~P~O(RP)<br />

C OUTPUT OF HEADIMLS Aid@ INITIALIZATIOW OF THE FOLLOWIP?IG VAKIAr3LE.5: IAT<br />

C I R ~ I P T I Il~IL1~IE~l~I~I.~lTl~I21~131~IC1~ICll<br />

T ~<br />

(ALL SUSSCYIPTC @F DIF-<br />

C FERENT CUTPUT CUANTITIES), KZ - K4 (SUESCRIPT D3UXDARlCS FnR OUTPUT<br />

C QUANTITIES), K1 = UPPE9 LlMlT FOP WANT1TTC.S READ IVTO 08s.<br />

IMPLICIT LOGICAL( L)<br />

COMMDU/OUTC/KZIK~~K~T lU~K21, IU19 IAYGTLPU%CHTL~UTCTLYTQA~!TLVE~%R<br />

**LK30<br />

COMMON /CHEACI/IA~IBTIH,I~~ITT IAlql61, IOlTITlT IClT ICllTKl, ICiESlq<br />

*ICbS2 1 L PUTi LCl, LC? LCFiEF 1 LKM<br />

LTRAN = .NOT.LNTOAN<br />

LERNO = .%OT.LNERNO<br />

K 1 = 0<br />

IF (I@PSl.h!E.O) K1 = 1<br />

GO TO (2008~2009~2010~2011~2012) ,1Kp<br />

2008 WRlTE(6~204)<br />

204 FORMAT('0<br />

GO TO 2013<br />

NO L AT l TUDE LONG lTUDE H ZETA (M)')<br />

2009 WRITE (69705 1<br />

205 FORMAT ( '0<br />

* 1<br />

GO TO 2013<br />

NO LATITUDE LONG1 TUDE H DELTA G (VGALl8<br />

2010 WR ITE (6,206 I<br />

206 FORMAT('@ NO LATI TUDE LnNGl TUDE F, KSI (ARCSEC) @ B<br />

GO TO 2013<br />

2011 WRITE(6r207)<br />

207 FORMA7 ( '0 kD LATITUDE LONGITUDE H ETA (ARCSFC)')<br />

GO TO 2013<br />

2012 WRITE(6r20R)<br />

208 FORMAT('@ NO LAT I TUDE LO%G ITUDE U KSI /ETA (ARCSE


*Cl0)<br />

I F (I3ES2 ,YF. 01 K1 = 2<br />

2013 I F (IH.UE.0) K1 = K1+1<br />

WRITF(hq267)"WGvRP<br />

267 FDKt'AT('+\59X9' STeVAR* ='qF6*49\ RR4TIO R/RE =v 9F10.79'9' 1<br />

C<br />

GO Tc? (2O%P92Ol59ZOZO,ZOZlI pIkNG<br />

2nlA WRTTF(6r2fi9)<br />

209 FORKAT(Q D M S E M S M' 1<br />

GO TO 2022<br />

7019 WRITF( 692101<br />

210 FORMAT( n M D M M~ 1<br />

GO TO 2022<br />

2020 kQlTF(6r211)<br />

711 FORMAT(' DFGFEFS DFGPFES M' 1<br />

GO TO 3022<br />

7071 WRITF(h*712)<br />

<strong>212</strong> FOkMAT ( g GRAGES G kA@F S M' 1<br />

C<br />

2022 I F (LKM) WRITE(h,213)<br />

213 FORMAT( Q + 93779 'I:' 1<br />

C<br />

C WF NOW COYPUTE THE SUPSCRIPT CF THE DIFFFQFYT 6UhkTITIESq WHICH WILL<br />

C FE STOhED FOP LATER OUTPUT 1R TFF AEkAY OF!. THF DIFFFRENCE BETNFFN<br />

C T U E 0BCEF;VLTTl'Pt GIVFV IN TV€ PRIGlNAL AtID TVE NEI.1 REF,SYSTFPl IV<br />

C OBS(1Tlc THE COYTRILUTIPY TO THF RFF.POT. FFDM THE HASM!l'IIC FXPAVSION<br />

C I N OBS(IP1 9 THE CUYTRIBVTIEIY FKOM COLL.1 IU DBS( IC1) AY@ FK3Y COLLtlI<br />

C 1N GRS(IC2).<br />

IC1 = 11<br />

IF (LTRAV) GO TO 2105<br />

IF( LPOT 1 GO TO 2102<br />

IF (LC11 GO TO 2201<br />

r B = 4<br />

GO TO 2104<br />

1201 IC1 = 5<br />

I F (LC21 GO TC 2101<br />

1e=5<br />

WRITE( h925O)<br />

250 FnRMAT('+\b4X9 ' PRED'I<br />

GO TT) 2104<br />

C<br />

2101 IB=7<br />

1C 2=6<br />

WRITE (6,291<br />

251 FORMAT( '+ "63x9 ' COLLI COLL2 PRED 8 1<br />

GO TO 2104<br />

C<br />

2102 IP=5<br />

1F (LC%l CC' TO 2202<br />

liB = 5


WRITF(hq245)<br />

245 FORMAT('+'T64XT'<br />

GO TD 2104<br />

C<br />

2703 IC1 = 6<br />

POT '1<br />

IF (LC2) G@ TO 2103<br />

I E=?<br />

WRlTE(A,252)<br />

252 FORMAT( '+' ?64X1 ' POT COLL PREDt)<br />

GO TO 3104<br />

C<br />

2103 IC2=7<br />

IB=R<br />

3RITF (4~2")<br />

253 F3RMAT( '+'?04X? ' POT<br />

2104 K3 = I?-4<br />

1u = It:<br />

COLLl CULL2 PSFD')<br />

GO TO 2110<br />

C<br />

2105 IT=5<br />

IF(LP3T) C3 70 2107<br />

IF (LCl) CO To 2205<br />

IR = 3<br />

WP 1TE (6,246<br />

246 FC?RM&T('+'T~LXT ' TRP '1<br />

GO TO 2103<br />

C<br />

2205 IL1 = 6<br />

IF (LC2) GO TO 2106<br />

1B=7<br />

WRlTE(6~254)<br />

254 F ~ R ~ ~ T ( ' + '' T ~ TRA ~ X T PRED PRED-TRP'<br />

GQ TO 2109<br />

C<br />

2106 IC2=7<br />

I R=€?<br />

WRITE(6t255)<br />

255 FORMAT( '+'~63X, ' TRA CRLLl COLL2 PRED PRED-TQb '1<br />

GQ TO 2109<br />

C<br />

2107 IP=6<br />

IF (LC1) GO TO 2208<br />

IR = 6<br />

WRITE (69247)<br />

247 FORMAT( '+'~63X? ' TPA POT PET-TRA')<br />

GO TO 2109<br />

C 230P I C 1 = 7<br />

IF (LC2) GO TC 2108<br />

l B =8


2%<br />

WP IT€ (692561<br />

FFP/(AT ( 'a ' r63Xe ' TRA<br />

GO T7 310"<br />

Pc',? COkk PRFD PRED-?RA 1<br />

C<br />

2108 IC2=R<br />

16=9<br />

WRITE (6923)<br />

257 FCRMAT['+'F~~X,'<br />

2109 K3=19-3<br />

IiU = 1591<br />

C<br />

2110 IF (LC21 1A = 1C2<br />

TSA POT COLLl COLL2 PRED PRED-TSAE9<br />

IF (,SOT,LCPFF) 1A = 1C1<br />

C<br />

IF [LDUTC) GO TO <strong>212</strong>5<br />

IF(LEF'4r-l)<br />

K?=1<br />

Gn 10 2112<br />

GO TO 3135<br />

C<br />

2112 Y?=l<br />

W!? IT' (6,2601<br />

260 FORPAT( b+*r43X~ U F R R m )<br />

G9 TO 2135<br />

<strong>212</strong>5 IF(K3.GT.O)<br />

K 2 =2<br />

GP T3 3127<br />

WRITE (6,361)<br />

26! FqD,h'AT! + Q r4?Xr 8<br />

GO Trl 2135<br />

ces 1<br />

C<br />

<strong>212</strong>7 IF (LFSPIO) GO TD 7128<br />

K2=3<br />

WKITE(bp262)<br />

262 FORMAT ( '+' ~43x9 ' OBS DIFe 1<br />

GO TO<br />

e<br />

<strong>212</strong>8 K?=4<br />

2135<br />

MRITE (693631<br />

263 FOKMAT('+',43X,' 06s DIF ERR 1<br />

C<br />

2135 K 4 = K?<br />

LK30 = K3,GT.O<br />

IF (Lowcm C.O<br />

IP1 = IG+lO<br />

IU1 = IU+lO<br />

IAI = 1A+1n<br />

171 = IT+lo<br />

ID1 = IP+lO<br />

ICll = IC1+10<br />

K4 = ?*KZ-1<br />

K31 = K2+ln<br />

TO 2111


C<br />

2111 RETUQY<br />

E NI3<br />

SUHROUTINE neT( m, IDLAT ,fJILATT SLAT, InLor\l,MLar?!,s~c~,Lnuc)<br />

C THE 5l;BQnUTINF NF ITFS ON UNIT 6 (3.) STATION NUMPER, (2) CRn?DINATFSy<br />

c (2) DESERVED VALUE (IN C~QI(;.REF.SYSTEM), (4) CIFFERENCE SETWFFY nYsEe.-<br />

C VED AND P9ECICTFD VALUE, (5) EKSOR OF PREPICTIO!Jr (6) TGAUSF3RWTI!7V<br />

C VALUE, (7) SPEERICAL HARMONIC SEPIES COST~I5UTI@U, (F) QFYULT OF CULL<br />

C I AND (Q) COLL.11, (10) Sub4 RF QUANTITIES (7)-(9) AXD (11) S?rK DC (6)-<br />

C (9) - ALL IF MEP.NINGFULL. I?\! LAZE WE AkE DE4LIYG WITP A P4IR PF DE-<br />

C FLECTIONS, (LCNC = FALSE) 9 TPE CEF.RES?ONDING QUA?;TITEY FOR ETA ARE<br />

C WRITTEN A LIVE fiLLOW,<br />

C WHEN LPUNCH IS TRUE, THE FOLLOWIXG OF TWE ARGVE "4fWTITJUF;r) QUAVTITIES<br />

C ARE WRITTEN ON UNIT 7: (1) AND (21, AQrf WHFN LOUT€ I S TRUE: (3) - (E)<br />

C AND ELSE (11 1, (10) AWD (5)<br />

IMPLICIT Ib!TEGER( l J9K9MTN) + LOGICAL( L) 9REAL *8(A-H,O-Z<br />

COMfXlN/DUTC/I 7117 I27I47 1219 131,IANG~LPUNC~,LEETC~LNTKAV,LhEQVP<br />

* 9 LK.30<br />

COMMClN/DB SE ?/Of3 S ( 20<br />

nlKENSInN ObN(10)<br />

I F (DAP(S(SLAT) .LT, 0.1G-h) SLAT = O.ODO<br />

I F (OPBS(SLDN) .LT, 0-1s-6) SLOY = 0.090<br />

C THIS IS DONE IV ORDER TO AVOID PKINTIXL OF SlGY. WuEV TVE ARC-SFCVND<br />

C PART I S NEAR TO ZER3r(OR ZEZO IS REPRESENTED AY A SMALL YEGATI\IE NUM-<br />

C BER).<br />

I F (OKS(l).G€,1.004) OLS(1) = 9949,900<br />

I F (ORS(l)eLFe-leOD3)nP~S(l) = -999-99D0<br />

I F (*NRTeLPUNCU) GO TCl E010<br />

I F (LDUTC) GO TD 8007<br />

OBN(1) = OBS(1)<br />

10 = 2<br />

OEN(2) = GES(14)<br />

I F (LNTRAN) Gn TD 8031<br />

OBN(3 1 = DES( 14-1<br />

IQ = I0+1<br />

8031 I F (LYERND) GO TO 8032<br />

10 = 104-1<br />

OBN(10) = OES(I)<br />

8032 I F (LCNC) GO TO 8034.<br />

I0 = I0+1<br />

OEN(Io1 = 06SII31)<br />

I F (LNTRAN) GC 70 P033<br />

I0 = I041<br />

nBN(I0) = ChS(14+Q)<br />

8033 I F (LNERNO) GP TO 8034<br />

I0 = IO+l<br />

OBN(I0) = OBS(I21)


RL2 = RL2-DP/IK-S*T/IKl-(O3*T*T-D1I*S2/(n2*IY2I<br />

I F (LND) GO TO 905<br />

DRL2 = DRL2/S-Dl/LKl-D3*S*T/IK2<br />

IF (LNDDI GC TO 905<br />

DDRL2 = DORLZ/S2-D3/IK2<br />

905 RETURN<br />

END


Appendix B.<br />

An iuput example.<br />

<strong>The</strong> digital numbers written to the left <strong>of</strong> the input data correspond to the<br />

numbers identifying the input specification given in Section G.<br />

<strong>The</strong> input example will produce the output shown in Appendix C. It corresponds<br />

to the situation described in Section 4, i. e. where three datasets <strong>of</strong> observations<br />

X,, X,, and X, are used for the determination <strong>of</strong> ?.


Z CCOOOCCC<br />

rzl I I I I<br />

c3 GGOOCC00<br />

2 I I I I I


G I-- a?<br />

C B I<br />

c N<br />

m N Ccl<br />

Orla-N<br />

rid d


F T T<br />

f -00 0.10<br />

b15~20X,I3~13,Fh~2~I5pI3pF6o?,?F?e2pLl)<br />

1 2 3 1 0 4 5<br />

40216 EJER SAVNEHQEJ<br />

51.0 F F F F F<br />

55 58 34.68 9 44 54e9CJ -5e13 3-61<br />

40606 VlGERLOESE<br />

F<br />

F T T<br />

54 42 54-22 11<br />

(Ih,2( I3,F6-2) 12F7.2rL2)<br />

1 2 3 2 4 5 0 2100 F F F<br />

1-00 981000-00 T<br />

4413 54 51.49 9 59-55 6-94 517.5P<br />

3163 54 50-23 12 00.01 17-63 510.18T<br />

F<br />

T T F<br />

54 30eOO<br />

F<br />

T T F<br />

9 00.00<br />

54 30.00<br />

F<br />

T T F<br />

9 00.00<br />

54 30.00<br />

F<br />

T T F<br />

9 00.00<br />

54 30.00<br />

T<br />

9 00.00


Appendix C.<br />

An output example.<br />

<strong>The</strong> output has been produced by the FORTRAN program using the input given in<br />

Appendix B.


GFODETPC COLLOCATIONIVERSION 20 APR 1974-<br />

MOTE THAT THE FUNCTIONALS ARE I N SPHERICAL APPROXIMATION<br />

MEAN RADIUS = RE = 6371 KM AND MEAN GRAVITY 981 KGAL USED.<br />

LFGEND OF TASLFS OF DBSFRVATl nYS AND DQEnlCTIONS:<br />

OLS = Ot.SFRVFD VALUE (WHEN POTH COMPnNfNVS nF DFFLECTlONS ARE<br />

OPSFKVEC ETh PFLOH KSI), GIF =THE LIFFERENCE EETWEEN OUSERVED<br />

bYD PP.EO 1CiED VALUE V W E N PREDICT IONS ART CTtMPUlED AN0 €LSE<br />

TPC PE5ICIJAL nE7FDVATIOY. ER9 = FSTIMATFD FR40Q OF P3EOICTION<br />

1Q.A = CO';TP.IYUT19Y F90'4 OCTUN TRAYSFOPMATIO", PflT = C3NTRI-<br />

PUTION FoPM POTENTIAL CnFFFIClFNTS. CDLL = CnYT91BUTION FROM<br />

COLLOCATlPk DFTFRMIIIED PART OF ESTIHATEr WHEN THERE ONLY HAS<br />

BEEN USED OYE SET OF OBSFRVATlflNS (DIFFERENT FRnM PDT.COEFF.1<br />

COLLl = CCNTRleUTlON FROM ESTIMATE OF ANOMALOUS POT. OETER-<br />

MINED FPDM FIRST SET OF OBSFP.VATlnNS, CCtLL2 = COUTRI3UTION<br />

F909 FSTIYATF ORTPINEI? FROM SFCONP SET OF OBSERVATIW4S I PRED=<br />

PREDICTFD VALUF- IN NFU PEFEaENCE SYSTEM, MHEN PkfDlC.TIONS ARE<br />

COYPUTEO AkIl ELSF THE SUM nF THE CONTPltUTlONS FROM TtIF POT.<br />

COEFFICIENTS AN0 FIRST ESTlMATE OF AYOMALDUS POTENTIALI AND<br />

PRED-TRA = PREDlCTInN nR SUM @F CONTRIBUTIONS IN TWE OLD RE-<br />

FERENCE SYSTEM.<br />

REFFREYCE SYSTEM:<br />

EUROPEAN DATUM. 1050.<br />

A = 6378388.0 M<br />

1/F 297.00040<br />

sEF.GRdVITY AT EQUATOR = 978049.00<br />

POTFUTl AL AT REF .ELL. = 62639787.00<br />

MGAL<br />

M**2/SEC+*Z<br />

GWAVI TY FORMULA:<br />

INTERNA TI OKAL GRAVl TV FORMULA* POTSDAM SYSTEM.<br />

NEW A NEW G# NEW 1/F<br />

6378143.0 0.390601 ZO+l5 298.25000<br />

EPSl €PS2 EPS3<br />

1.57 0.19 1.05<br />

NEU REF. GFAVITY AT EQUATOR= 97R032.67 MGAL<br />

NEW POTENT 1AL AT ELLIPSOID = 62636916.84 M**Z/SEC**2<br />

DEFLECTIONS AND HFIGHT ANOMALIES CHANGED I N<br />

LAT I TUOE LONGITUDE BY DKSI DETA DZETA<br />

55 30 0.0 10 0 0.0 -1.00 1-00 0.0<br />

SOURCE OF TPE PPTEVTIAL COEFFICIENTS USED:<br />

R.H.QAPP, THE GEOPOTENTIAL TO (14r14) ETC-r IUGG. LUCERNEI 1967-<br />

G M A COFF (5) MAX .DEGREE<br />

0.39860122D+15 6378143.0 -484.1803 8


START OF COLLOCATION I:<br />

WE MODEL ANOMALY DEGREE-VAWIANCFS ARE EQUAL TO<br />

A - - l 2 + 2411.<br />

PATIO R/RE L 0.999800<br />

VARIAUCE OF POINT GRAVITY ANOMALIES = 16~1.00 MGAL**Z<br />

1HE FACTOR A P 412.08 MGAL**2<br />

12 EHPIPICAL ANOMALY DEGREF-VARIANCES FOR DEGREE > l*<br />

(IN UNITS OF WGAL**2):<br />

0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.1 17.7 13.7 8.4<br />

OBSERVATIONS:<br />

THE FOLLOWING QUANTITIES ARE MEAN-VALUES, AND ARE REPRESENTED AS POIYT VALUES I N A HEl6Wf R.<br />

LIT1 TUOE<br />

D M<br />

56 30.00<br />

56 30.00<br />

56 30.00<br />

55 30.00<br />

55 30.00<br />

55 30.00<br />

54 30.00<br />

54 30.00<br />

54 30.00<br />

H DELTA G (HGPL1<br />

M OBS DIF<br />

0.0 1P.00 -5.26<br />

0.0 10.00 -13.19<br />

0.0 27.00 3.93<br />

0.0 26.00 3.50<br />

0.0 12.00 -10.43<br />

0.0 6.00 -16.32<br />

0.0 5.00 -16.67<br />

0.0 10.00 -11.61<br />

0.0 2.00 -19.51<br />

S1At;DAtlD DEVIATIO?4S OF THE OBSERVATIONS IN THE SAME SEQUENCE<br />

AND IN THE SAME UNITS AS THE OBSERVATIONS:<br />

4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00<br />

SOLUTIONS TO NORMAL EQUATIONS:<br />

1PE SOLUTIONS HAVE BEEN COMPUTED IN A PREVIOUS RUN.<br />

NUMEER OF EQUATION = 9<br />

NORHALI ZED SOUARE-SUM OF OBSERVATIONS E 0.178534D+Ol<br />

NORRALI ZED DIFFERENCE BETWEEN SQUARE-SUM OF<br />

OBSERVATIONS AND NORM OF APPROXIMATION P 0.2196870+00<br />

ST-VAR. 27-98. RATIO RIRE 1.0015554s<br />

TRA POT POT-TRA<br />

-6.69 16-57 23.26<br />

-6.69 16.50 73.19<br />

-6.69 16.37 23.m<br />

-6.47 16.02 22.50<br />

-6.48 15.96 22-43<br />

---5.48 15.84 22.32<br />

-6.25 15.42 21.67<br />

-6.25 15.36 21.61<br />

-6.25 15.25 21.51


START OF COLLOCITPOM 1 X r<br />

RATIO RfRE<br />

VAR~ARCE 0~ POlNT GRAVITY ANOMALIES<br />

THE FACTOR A<br />

90 OECREE-VARIANCE% EQUAL 80 ZERO<br />

DBSERVAT IONS:<br />

LAT l TUDE<br />

D 1 4 5<br />

55 58 39-65<br />

LAT ITUOE<br />

O M S<br />

55 52 38.51<br />

LATITUDE<br />

D *<br />

56 4.90<br />

56 7.10<br />

54 51.49<br />

54 50.23<br />

LONG1 TUOE<br />

O H S<br />

9 49 54.90<br />

LONG1 TUDE<br />

o n s<br />

12 50 38-93<br />

LONG1 TUOE<br />

0 H<br />

10 0.34<br />

11 57.00<br />

Q 59.55<br />

12 0.01<br />

H #SI/ETA (ARCSEC) STaVAR, 1.95, RATIO RfRE = 1.0000000~<br />

TRA POT COLL PRED PREO-YRA<br />

H EETAIM)<br />

H OUS DIF<br />

0.0 20.40 -0.07<br />

H DELTA G (HGALI<br />

H 005 DIF<br />

70.60 37.49 21.61<br />

0.0 -5.70 -19.90<br />

6.94 17.20 5.69<br />

17.63 14.89 8-68<br />

ST.VAR. = 0.37, RATIO R/RE = 1.onoonno.<br />

TRA DOT COLL PQED PRED-TRA<br />

22.55 46.20 -3.18 43.02 20.47<br />

ST.VAQ. = 13-04. RATIO R/RE = l-0000000*<br />

TRA POT COLL PRED PRED-TRA<br />

-6.60 16.32 -7.04 9.28 15-88<br />

4-61 16.25 -8.66 7.59 14.20<br />

-6.33 15.61 -10.44 5.18 11.51<br />

-6.33 15.52 -15.64 4.12 6.21<br />

STANDARD DEV1ATION5 OF THE DRSERVATIONS IN THE SAME SECUFNCE<br />

AND IN THE SAME UNITS AS THF OBSERVATIONS:<br />

0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.0 0 -20<br />

0.20 0.20 0.20<br />

COEFFIC IEVTS OF NDRMAL-EPUATIOYSI BLOCK 1<br />

SOLUTIONS TO NORMAL EQUATIONS:<br />

KUMEER t3F FCUATIONS = 13<br />

NORMAL1 ZED SOUARE-SUM OF QBSERVATlONS P 0.1991610+02<br />

NORMAL1 ZED DIFFERENCE BETWEEN SQUARE-SUM OF<br />

OBSERVATIONS AND NORM OF APPROXIMATHO% ~-0.4244679+01


OP -<br />

or-<br />

H<br />

b-<br />

V) V UI<br />

os 5 UOQ - U<br />

W.<br />

goin -J V 2<br />

<<br />

0 P-<br />

W O *<br />

V)<br />

LLOM < U OLcm<br />

5 U<br />

V mn G+ C<br />

00 OIP<br />

UOO<br />

P UdC<br />

U . 0 EI u o .<br />

LU<br />

U1 ZOQ o m W zoo cm > moo am<br />

z W 0 > WII 0<br />

W<br />

0 a C<br />

L1: d W a 0 0-4<br />

C4 .U .ON U1 W .OR1 I W<br />

k- U. P( I U. Q C L 0<br />

ON<br />

4 U c- U. U.<br />

> C-( 0 P(<br />

&a L<br />

fud<br />

LL 0<br />

0 B<br />

bLI M M<br />

V) mqa, -MO W0.t CM0 V1<br />

5l zoa - z w..a C O O<br />

Z ZNr - c ZNM<br />

Q<br />

C l 0 z<br />

-<br />

0 C O P 2 - 00. L<br />

-am 200-4 - - 9 2 l- -Nm 304<br />

Q I-.-<br />

!-- !-l<br />

I U t-<br />

z U<br />

U U<br />

U. U B<br />

a<br />

C) W W O N<br />

V1 W U U. U U<br />

LU LY U I<br />

z U z c m tu OL z c m si a U ZQm<br />

Q h U 1 0 P U I a<br />

m<br />

4JJ i<br />

W M U.<br />

C V)*Q) UQ.? U -mm &C4 0 WC- WO* 8:<br />

U<br />

Z O 9 LL I 0 Zh" U. l<br />

D<br />

U d Z 4 Q L<br />

a - > U09 Z > U09 0 ><br />

2 0 1 0 a:<br />

O l b CL U0.6<br />

( L e UI P W W II<br />

o r W zcr E v)<br />

L 0 P<br />

ON a c I ON m o ZO+ I UN E m %<br />

Z Z G U 0 - W I<br />

0 W<br />

0 -a<br />

l-om<br />

COW LIJ<br />

M<br />

U 3 l U<br />

w 3 1 n W 3boa, 8<br />

U m 0 .S U m<br />

Z C2 z -we 3a z - 0 0 . 3 +CL ., U 2 m .-OQ.<br />

U -W U W I b W<br />

a<br />

a a I -L<br />

>m Z- C<br />

4 O L 1<br />

- m z- ,- o m 2- !-eOL<br />

W O O ZT<br />

U UZ X> D I dZ X> 0 I 2.7 X> 0 8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!