212 - School of Earth Sciences - The Ohio State University
212 - School of Earth Sciences - The Ohio State University
212 - School of Earth Sciences - The Ohio State University
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
Reports <strong>of</strong> the Department <strong>of</strong> Geodetic Science<br />
Report No. 2 1 2<br />
A FORTRAN IV PROGRAM FOR THE DETERMINATION<br />
OF THE ANOMALOUS POTENTIAL<br />
USING STEPWISE LEAST SQUARES COLLOCATION<br />
by<br />
C. C. Tscherning<br />
<strong>The</strong> <strong>Ohio</strong> <strong>State</strong> Univer&y<br />
Department <strong>of</strong> Geodefic Science<br />
1958 Neil Avenue<br />
Columbus, <strong>Ohio</strong> 4321 0<br />
July, 1974
Reports <strong>of</strong> the Department <strong>of</strong> Geodetic Science<br />
Report No. <strong>212</strong><br />
A FORTRAN IV PROGRAM FOR THE DETERMINATION OF THE<br />
ANOMALOUS POTENTIAL USING STEPWISE LEAST SQUARES COLLOCATION<br />
by<br />
C. C. Tscherning<br />
<strong>The</strong> <strong>Ohio</strong> <strong>State</strong> <strong>University</strong><br />
Department <strong>of</strong> Geodetic Science<br />
1958 Neil Avenue<br />
Columbus, <strong>Ohio</strong> 43210<br />
July, 1974
Abstract<br />
<strong>The</strong> theory <strong>of</strong> sequential least squares collocation, as applied to the<br />
determination <strong>of</strong> an approximation ?? to the anomalous potential <strong>of</strong> the <strong>Earth</strong> T,<br />
and to the prediction and filtering <strong>of</strong> quantities related in a linear manner to T,<br />
is developed.<br />
<strong>The</strong> practical implementation <strong>of</strong> the theory in the form <strong>of</strong> a FORTRAN<br />
IV program is presented, and detailed instructions for the use <strong>of</strong> this program<br />
are given.<br />
<strong>The</strong> program requires the specification <strong>of</strong> (1) a covariance function<br />
<strong>of</strong> the gravity anomalies and (2) a set <strong>of</strong> observed quantities (with known stan-<br />
dard deviations).<br />
<strong>The</strong> covariance function is required to be isotropic. It is specified<br />
by a set <strong>of</strong> empirical anomaly degree-variances all <strong>of</strong> degree less than or<br />
equal to an integer I and by selecting the anomaly degree-variances <strong>of</strong> degree<br />
greater than I according to one <strong>of</strong> three possible degree-variance models. <strong>The</strong><br />
observations may be potential coefficients, mean or point gravity anomalies,<br />
height anomalies or deflections <strong>of</strong> the vertical. A filtering <strong>of</strong> the observations<br />
will take place simultaneously with the determination <strong>of</strong> ?.<br />
<strong>The</strong> program may be used for the prediction <strong>of</strong> height anomalies,<br />
gravity anomalies and deflections <strong>of</strong> the vertical. Estimates <strong>of</strong> the standard<br />
error <strong>of</strong> the predicted quantities may be obtained as well.<br />
<strong>The</strong> observations may be given in a local geodetic reference system.<br />
In this case parameters for a datum shift to a geocentric reference system<br />
must be specified. <strong>The</strong> predictions will be given in both the local and the geo-<br />
centric reference system.<br />
N<br />
T may be computed stepwise, i. e. the observations may be divided<br />
in up to three groups. (<strong>The</strong> limit <strong>of</strong> three is only attained when potential<br />
coefficients are observed, in which case these quantities will form the first set<br />
<strong>of</strong> observations. ) Each set <strong>of</strong> observations will determine a harmonic function<br />
and Twill be equal to the sum <strong>of</strong> these functions.<br />
N<br />
<strong>The</strong> function T determined by the program will be a (global or local)<br />
solution to the problem <strong>of</strong> Bjerhammar, i. e. , it will be harmonic outside a<br />
sphere enclosed in the <strong>Earth</strong>, and it will agree with the filtered observations.
Foreword<br />
This report was prepared by C. C. Tscherning, Research Associate,<br />
Department <strong>of</strong> Geodetic Science, and the Danish Geodetic Institute. This work<br />
was sponsored, in part, by the Danish Geodetic Institute, and in part by the<br />
Air Force Cambridge Research Laboratories, Bedford, Massachusetts, under<br />
Air Force Contract No. F19628-72-C-0120, <strong>The</strong> <strong>Ohio</strong> <strong>State</strong> <strong>University</strong> Research<br />
Foundation Project No. 3368B1, Project Supervisor, Richard H. Rapp. <strong>The</strong><br />
Air Force Contract Monitor is Mr. Bela Szabo and Dr. Donald H. Eckhardt is<br />
Project Scientist.<br />
Funds for the support <strong>of</strong> certain computations and program developments<br />
described in this study were made available through the Northern European<br />
<strong>University</strong> Computer Center, Lyngby, Denmark and through the Instruction and<br />
Research Computer Center <strong>of</strong> <strong>The</strong> <strong>Ohio</strong> <strong>State</strong> <strong>University</strong>.<br />
A travel grant was supplied by the NATO Senior Fellowship Scheme.<br />
<strong>The</strong> reproduction and distribution <strong>of</strong> this report was carried out through<br />
funds supplied by the Department <strong>of</strong> Geodetic Science. This report was also<br />
distributed by the Air Force Cambridge Research Laboratories as document<br />
AFCRL-TR-74-0391 (Scientific Report No. 17 under contract no. P19628-72-<br />
c-0120).<br />
<strong>The</strong> writer wishes to thank Dr. R. H. Rapp for valuable suggestions and<br />
critic ism and Jannie Nielsen for relieving me <strong>of</strong> most <strong>of</strong> my household respon-<br />
S ib ilities in the period when this report was being prepared.<br />
iii
Table <strong>of</strong> Contents<br />
1. Introduc tion<br />
2. <strong>The</strong> Basic Equations<br />
2.1 Least Squares Collocation<br />
2.2 Equations for the Covariance <strong>of</strong> and Between Gravity<br />
Anomalies, Deflections <strong>of</strong> the Vertical, Height Anom-<br />
alis and Potential Coefficients.<br />
2.3 Stepw ise Collocation<br />
Data Requirements<br />
3.1 Observed Quantities<br />
3.2 <strong>The</strong> Reference Sys tems<br />
3.3 <strong>The</strong> Covariance Function<br />
4. Main lines <strong>of</strong> function <strong>of</strong> the IWRTRAN IV Program.<br />
5. <strong>The</strong> Storage <strong>of</strong> the Normal Eq~~ations and the Function <strong>of</strong> the<br />
Sub-Programs.<br />
5.1 <strong>The</strong> S torage <strong>of</strong> the Normal Equations<br />
5.2 Solution <strong>of</strong> the Normal Equations and Computation <strong>of</strong> the<br />
Estimate <strong>of</strong> the Error <strong>of</strong> Prediction, Subroutine NES.<br />
5.3 Transformation BetweenReference Systems, Subroutine<br />
ITRAN.<br />
5.4 Computation <strong>of</strong> the Normal Gravity, the Normal Potential<br />
and the Contributions from the Potential Coefficients. Sub-<br />
routines GRAVC and IGPOT.<br />
5. 5 Coinpu ta tion <strong>of</strong> Euclidian Coordinates, Convers ion <strong>of</strong><br />
Angles to Radians, Subroutines EUCLID and RAD.<br />
5.6 Subroutines for Output Management and Prediction Statis-<br />
tics, HEAD, OUT, COI\IPA.<br />
5.7 Subroutines for the Computation <strong>of</strong> Covariances, PRED<br />
illld SUMK.<br />
6. Input Spec ifieations<br />
7. Output and Output Options<br />
8. Recornmendat ions and Conclus ions.<br />
References<br />
Appendix<br />
A. <strong>The</strong> FORTRAN program.<br />
B. An input example.<br />
C. An output example.<br />
iv<br />
Page<br />
1<br />
3
1. Introduction.<br />
<strong>The</strong> theory <strong>of</strong> least squares collocation has been discussed extensively by<br />
Kramp (1969), hloritz (1972, 1973), Lauritzen (1973), Grafarend (1973) and<br />
Tscherning (1973). Collocation was originally introduced by Krarup (1969) as a<br />
method for the deter~nination <strong>of</strong> the anomalous potential using different kinds <strong>of</strong><br />
observations. Primarily Moritz (1972) has extended the theory to a wider field.<br />
This report will only consider the use <strong>of</strong> least squares collocation for the determination<br />
<strong>of</strong> the anomalous potential, T and the estimation <strong>of</strong> quantities dependent<br />
on T.<br />
We will regard the problem <strong>of</strong> the determination <strong>of</strong> T as being equivalent<br />
to the solution <strong>of</strong> the Bjerhammar-problem, i. e. the determination <strong>of</strong> a function,<br />
harmonic outside a sphere totally enclosed in the <strong>Earth</strong> and regular at infinity,<br />
which agrees with observed values <strong>of</strong> e. g. gravity anomalies and deflections <strong>of</strong><br />
the vertical.<br />
It is not required, that the observations and the solution agree exactly.<br />
<strong>The</strong> observations will contain a certain amount <strong>of</strong> "noise", the magnitude <strong>of</strong> which<br />
is specified by an estimatecl stmckird error.<br />
Least squares collocation will filter out some <strong>of</strong> this noise, and the<br />
solution will agree cxactly with t,he filtered observations.<br />
N<br />
Having determined a solution, T, to the Bjerhammar problem, this<br />
function can naturally he used to compute geoid heights (or more correctly,<br />
height anomalies), gravity anomalies or deflections <strong>of</strong> the vertical in points in<br />
the set <strong>of</strong> harmonicity. Hence, by solving the Bjerhammar problem, we have<br />
implicitly also solved e. g. the problems <strong>of</strong> interpolation or extrapolation (pre-<br />
diction) <strong>of</strong> gravity anomalies or deflections and the problem <strong>of</strong> astrogeodetic or<br />
astrogravimetric geoid computation.<br />
An Algol-program, which used this approach was published in Tscherning<br />
(1972). <strong>The</strong> program could only handle a very limited amount <strong>of</strong> observations.<br />
In the FORTRAN IV program presented in this report, we have taken advantage<br />
<strong>of</strong> the availability <strong>of</strong> a computer (IBhI System 370), which has large core storage<br />
and fast peripherial units (disks), so that very large amounts <strong>of</strong> data can be<br />
treated. Thus, the use <strong>of</strong> FORTRAN IV, which does not have variable dimension-<br />
ing <strong>of</strong> amays, has required that certain (arbitrary) limits have been put on e.g.<br />
the number <strong>of</strong> observations, which the program can handle.
h section 2 we will present the basic equations <strong>of</strong> least squares collocation as<br />
applied to the Bjerhammar problem. We will also discuss the method <strong>of</strong> stepwise<br />
collocation, which differs solnewhat from the p ocedure described by<br />
Moritz (1973). All the observed quantities must be in the same reference system.<br />
This requirement is discussed in section 3. <strong>The</strong> main lines <strong>of</strong> function <strong>of</strong> the<br />
FORTRAN IV program is described in section 4. <strong>The</strong> most important details<br />
are given in the following section, which especially discusses the subprograms<br />
used. Input and output options are described in sections G and 7 respectively,<br />
and the final section 8 contains some recommendations and conclusions. <strong>The</strong><br />
FORTRAN program, an input and an output example are contained in an appendix.<br />
r<br />
References are given by author name and year, with one exception:<br />
Heiskanen and Moritz, Physical Geodesy, will be referenced only by PG,<br />
because references to this book occur frequently.
2. <strong>The</strong> Basic Equations<br />
<strong>The</strong>re are two ways <strong>of</strong> approach to least squares collocation. A mathe-<br />
matical (functional analytic) and a statistical. <strong>The</strong> mathematical approach is the<br />
most well founded and without dark spots. But its appreciation requires a math-<br />
matical background, which not yet is common among geodesists. <strong>The</strong> statistical<br />
approach is with a first glance less difficult and gives a sufficient insight. This<br />
means, that a geodesist, well educated in the theory and application <strong>of</strong> least<br />
squares adjustmcnt, will be able to use the method.<br />
We will, without hereby having questioned the intellectual ability <strong>of</strong> the<br />
reader, use the statistical approach in the following presentation <strong>of</strong> the basic<br />
equations <strong>of</strong> least squares collocation.<br />
2.1 Least sauares collocation.<br />
Let us suppose, that T is an element <strong>of</strong> a sample space H <strong>of</strong> functions<br />
harmonic outside a sphere totally enclosed in the <strong>Earth</strong>. We will denote the<br />
probability measure <strong>of</strong> H by @. Let the random variables Yp be the mappings,<br />
which relate a function in H to the value <strong>of</strong> the function in the point P, i.e.<br />
Yp (T) = T(P). <strong>The</strong> variables Yp will then form a stochastic process with the<br />
set <strong>of</strong> harnzonicity as index set (provided P fulfills some basic requirements see<br />
e. g. Grafarend (1973)). <strong>The</strong> covariance between two random variables Yp , YQ<br />
will be denoted cov(Tp , TQ ) , because Yp(T) = T(P) and YQ (T) = T(Q). It is equal<br />
to:<br />
We will require, that the variance cov(Tp , Tq) is finite.<br />
Example. Following Meissl (1971), the probability measure 9 may be<br />
defined by specifying the distribution <strong>of</strong> the random variables, Y, , which maps<br />
m<br />
T into its coefficient v& in a development <strong>of</strong> T as a series in solid spherical har-<br />
monics. Let us suppose that this random variable has a Gaussian distribution<br />
with mean value zero and variance oe(T, ~)/m only depending <strong>of</strong> the degree<br />
4, we will then have
where $ is the spherical distance between P and Q, r and r' the distance <strong>of</strong> P and<br />
Q from the origin, R the radius <strong>of</strong> the (l3jerhammar)-sphere bounding the set <strong>of</strong><br />
harmonicity and Pi (cos Jr) the Legendre polynomial <strong>of</strong> degree 1.<br />
<strong>The</strong> constants ol(T, T) are called the (potential) degree variances. <strong>The</strong> CO-<br />
variance function will be isotropic, i. e. invariant with respect to rotations <strong>of</strong><br />
the pair <strong>of</strong> points P and Q around the origin*<br />
From the random variables Yp we may form a second order stochastic<br />
field. This field consists <strong>of</strong> all random variables, which are linear combinations<br />
or limits <strong>of</strong> linear combinations <strong>of</strong> a finite number <strong>of</strong> these random variables and<br />
which have finite variance, (cf. e.g. Parzen (1967), page 260).<br />
<strong>The</strong>ir covariances can all be derived from the covariance (1). Let us<br />
regard<br />
<strong>The</strong>n<br />
And generally for quantities si and s , where<br />
we have<br />
(We have here implicitly presupposed, that cov (Tp, SJ) regarded as a function <strong>of</strong><br />
P and Yj (cov(Tp, TQ )) regarded as a function <strong>of</strong> Q, are elements <strong>of</strong> the sample<br />
space H, i. e. that they are harmonic. This will be proved below).<br />
<strong>The</strong> equation (3) is the so called law <strong>of</strong> propagation <strong>of</strong> covariances,<br />
Moritz (1972, page 97).
We will denote<br />
(4) clj = cov(s,, sj), C = {clj ] a qxq matrix,<br />
(5) cp1 = cov(Tp , si), Cp= {cP1 ] a q-vector and<br />
(We will below use subscripted quantities in brackets, { ] to denote vectors or<br />
matrices. In case the limit(s) <strong>of</strong> the subscript(s) are not obvious, the upper<br />
limit(s) will be indicated by subscripts, i, e. C = {cil l,,, ).<br />
We will have to regard one more kind <strong>of</strong> random quantities (independent<br />
<strong>of</strong> the above discussed), namely the random noise, n. A random variable will<br />
be associated with each <strong>of</strong> the random varial~les Ys. <strong>The</strong>y are all supposed to be<br />
Gaussian distributed with mean value zero, known variance (denoted 0:) and uncorrelated.<br />
<strong>The</strong> covariance matrix, which hence is a diagonal matrix, will be<br />
2<br />
denoted D= {dlj 3, dil = OS<br />
Following Moritz (1972), the basic equation <strong>of</strong> llobservationfl is<br />
where X is the measurement or observation, S' the corresponding l1signalU and n<br />
is the noise. X, S' and n are q-vectors, where q is the number <strong>of</strong> observations.<br />
<strong>The</strong> n-vector X comprises n parameters, and A is a known qx m matrix.<br />
Let us now assume, that we want to estimate the outcome S <strong>of</strong> a stochastic<br />
variable Ys , given a set <strong>of</strong> observed quantities X, Denoting C = C+D we obtain from<br />
Moritz (1972, eq. (2-38) and (2-35))<br />
where the superscript T means transposition.<br />
<strong>The</strong> corresponding estimate <strong>of</strong> the error <strong>of</strong> estimation m?(<strong>of</strong> S) and Exx<br />
(<strong>of</strong><br />
X) are, cf. Moritz (1972, eq. (3-38) and (3-33))
T-1<br />
with h, = C. C and C,. is the variance <strong>of</strong> S.<br />
<strong>The</strong> program presented in this report can only handle the non-parametric<br />
(i.e. X= 0) case. But the general equations are presented here, so that we later<br />
on can point out the main changes, which will have to be made in order to<br />
incorporate the parameters X.<br />
<strong>The</strong> special case we will consider here can then be described by the follow-<br />
ing equations :<br />
c:.<br />
T --l<br />
(12) s = C. C x and<br />
T<br />
<strong>The</strong> filtered observations E'are obtained from (12) by substituting C for<br />
<strong>The</strong> equations (12) and (13) differ from the equations given by PG(eq. (7-63)<br />
and (7-64)) only in that C has been substituted for C and that we are not restricted to<br />
consider only gravity anomalies.<br />
<strong>The</strong> quantities we want to consider here are potential coefficients, gravity<br />
anomalies, deflections <strong>of</strong> the vertical and height anomalies. <strong>The</strong>y are all (at<br />
least in spherical approximation) expressible as either linear combinations or<br />
limits <strong>of</strong> linear combinations <strong>of</strong> values <strong>of</strong> the anomalous potential. We will pre-<br />
suppose, that the variances <strong>of</strong> the corresponding stochastic variables all are<br />
finite. Equation (3) is hence valid for these kinds <strong>of</strong> quantities.<br />
<strong>The</strong> value <strong>of</strong> the Laplace operator A, applied on T and evaluated in a point<br />
P in the set <strong>of</strong> harmonicity,<br />
is related to a stoclmstic variable, YATp. This variable will also belong to the<br />
stochastic field (variance zero) and we will have for an arbitrary stochastic<br />
variable Y, :
Hence, the covariance between a quantity S and the value <strong>of</strong> the anomalous<br />
potential in P is a harmonic function (regarded as a function <strong>of</strong> P).<br />
Let us now assume, that we want to estimat the value <strong>of</strong> T in a point P<br />
from a set <strong>of</strong> observations X= {X, 1, i=l,. . . ,q. We then have from (12),<br />
Introduc ting the solution vector<br />
we have<br />
N<br />
(17) T (P) = C: b = [cov(~, , S, )IT [b, } = 1 cov (Tp, S, )bl<br />
Using (11) we see that<br />
Q<br />
i. e. ?? (P) is a harmonic function.<br />
By also requiring, that the functions in the sample space H are regular at<br />
infinity, it can be shown, that ?(P) is regular at infinity as well.<br />
We have then obtained a solution to the problem <strong>of</strong> Bjerhammar, if we<br />
2<br />
can prove, that the g, = S, = X, for us, (or d,,) = 0. But this is easily seen, '<br />
because<br />
a<br />
This fact makes available an easy test <strong>of</strong> a collocation program. <strong>The</strong> used obser-<br />
vations are predicted and it is checked, that the predictions agree with the obser-<br />
ved values (and that the estimates <strong>of</strong> the error <strong>of</strong> prediction are zero).<br />
9<br />
i= l
2.2 Equations for the covariances <strong>of</strong> and between gravity anomalies,<br />
deflections <strong>of</strong> the vertical, height anomalies and potential coefficients.<br />
<strong>The</strong> relation (3) between the signal and the anolnalous potential has been<br />
given in Tscherning and Rapp (1974), eq. (30)-(33)) in spherical approxima~ion<br />
for gravity anomalies, height anomalies and deflections <strong>of</strong> the vertical. We<br />
have for the height anomaly in P<br />
the latitude component <strong>of</strong> the deflection <strong>of</strong> the vertical<br />
the longitude component <strong>of</strong> the deflection <strong>of</strong> the vertical<br />
the point (free-air) gravity anomaly<br />
and the mean (free-air) gravity anomaly<br />
where r is the distance froin the origin, rp the latitude, X the longitude, y the<br />
reference gravity and A the area over which the mean gravity value is computed.<br />
We may, as explained in Tscherning and Rapp (1974, section 10) repre-<br />
sent mean gravity anomalies by point anomalies in a certain height above the<br />
center <strong>of</strong> the area A. For this reason we will not in the following distinguish be-<br />
tween mean and point gravity anomalies. <strong>The</strong> program is able to use all the<br />
quantities (20)-(24) as observed quantities for the computation <strong>of</strong> ?. <strong>The</strong> same<br />
kind <strong>of</strong> quantities may also be predicted by the program.<br />
One more kind <strong>of</strong> quantities, potential coefficients, can be used, though<br />
only as observed quantities. <strong>The</strong> given coefficients will generally be the<br />
coefficients <strong>of</strong> the potential <strong>of</strong> the <strong>Earth</strong>, W, expanded in spherical harmonics<br />
and not the coefficients <strong>of</strong> the ano~nalous potential. Denoting the normal potential<br />
by U we have
and for W and U expanded in fully normalized spherical harmonics<br />
Wa<br />
+-<br />
2<br />
(r*sin~)~ and<br />
W<br />
kM al J24 - w2<br />
(26) U(P) = ( 1 - )C () J = = ~<br />
a= l<br />
P,Q(COS a))+, (r sin Q)',<br />
where w is the speed <strong>of</strong> rotation <strong>of</strong> the <strong>Earth</strong>, 6 = 90' - 9, kM the product <strong>of</strong> the<br />
gravitational constant and the total mass <strong>of</strong> the <strong>Earth</strong>, the coefficients and<br />
-<br />
Cam the potential coefficients, and X(cos8) an associated Legendre polynomial,<br />
normalized so that<br />
<strong>The</strong> coefficients J8a in (26) are given in PG, (eq. (2-92)).<br />
For the potential coefficients we then have the following equation<br />
where wis the surface <strong>of</strong> the sphere with radius equal to the semi major axis a<br />
and with center in the origin. (We are now denoting two quantities by W , but since<br />
they are used in a different context, we hope, that no confusion is caused).<br />
In the program it is possible to use one <strong>of</strong> three different kinds <strong>of</strong><br />
(isotropic) covariance functions, which we below will distinguish by a subscript k,<br />
k = 1, 2 or 3. <strong>The</strong>y are all specified by a so called anomaly degree-variance<br />
model, i.e. by the coefficients a ,,~ (Ag, Ag) <strong>of</strong> degree A greater than a constant I<br />
<strong>of</strong> the covariance function <strong>of</strong> the gravity anomalies developed in a Legendre<br />
series:
where r' is the distance <strong>of</strong> Q from the origin, R the radius <strong>of</strong> the Bjerhammar<br />
A<br />
sphere, Jr = the spherical distance between P and Q and a~ (Ag, Ag) are empirically<br />
determined coefficients.<br />
<strong>The</strong> three different kinds <strong>of</strong> covariance functions correspond to three <strong>of</strong><br />
the five anomaly degree-variance models discussed in Tscherning and Rapp<br />
(1974, section 8). <strong>The</strong> models are for l
Denoting<br />
we will have<br />
We rearrange (33):<br />
From this covariance function all the other covariance functions can be derived<br />
using the "law <strong>of</strong> propagation <strong>of</strong> covariances", eq. (3) and the equations (20)-<br />
(24) and (28) relating the observed quantities to the anomalous potential.<br />
Due to the linear relationship (39) we generally have for two arbitrary<br />
randoin variables Y and Yj<br />
where S, = Yi (T) and sJ = YJ (T).<br />
For either si equal to Agp or
For the other part, cov; (si , sJ) we have (from Tscherning and Rapp 11974<br />
equations (145)-(150) and (50)))<br />
with<br />
Covariance functions, cov(si, sj ), where either si or sj is a deflection<br />
component can not explicitly be found in Tscllerning and Rapp (1974). But using<br />
the equations (20)-(24) we get (K = K(P, Q) = cov, (Tp Tq )):
Applying these equations on cov, (Tp, TQ), (39) shows, that the quantities we need<br />
to determine are (apart from the derivatives <strong>of</strong> t with respect to the latitude and<br />
longitude) :<br />
<strong>The</strong> last term in each <strong>of</strong> the equations (51)-(53) are identical to Tscherning and<br />
Rapp (1974, eq. (108)-(110), (118)-(120) and (133)-(135)) for k= 1,2,3.<br />
For the first term in each <strong>of</strong> the three equations we have, using (41), (42)<br />
and (43):<br />
I
with pi(t) = DtP (t) and ~,"(t.) = D:P,(~).<br />
A a<br />
<strong>The</strong> sums (54) - (56) are evaluated in the program (subroutine PRED) using<br />
the recu sion algodhm given in Tscherning and Rapp (1974, section 9).<br />
To avoid numerical prohleins for P near to Q, the following expressions<br />
are used for the evaluation <strong>of</strong> t and the derivatives <strong>of</strong> t with respect to and cc':<br />
(denoting: dX=X-X/a~~dd~=co-~'):<br />
I<br />
(57) t=cos$=sina0sir,~ +cos~*cosco'~cos(d~)<br />
=cos (dq) - cos cp ' cos * (1 - COS (dX))<br />
= 1 - 2 (S in 2 (&o/2)+ cos cos c; sin 2 (dA/2))<br />
(58) Dpt =cos'p * sin cpl- sin rp COB COS (dX) = -sin(dv)+Zcos q'* sin9 sin 2 (d~/2),<br />
(59) Dmtt = sin(dcp)+2cosrp singis in 2 (dh/2) and<br />
(60)<br />
D' ~t =cos cp * cos cpt+sh~*shv'* cos(d~)xos(d~~)-(l-cos(dX)) *sins* sinv'<br />
cpcp<br />
r<br />
We will now introduce a compact notation for the normalized surface<br />
harnlonics, which will facilitate the presentation <strong>of</strong> the covariances between the<br />
coefficients <strong>of</strong> T developed in spherical harmonics and other quantities. Denoting
and the coefficients <strong>of</strong> T developed in spherical harmonics by vAE we have<br />
where s =a in this integration and P is on the surface <strong>of</strong> the sphere <strong>of</strong> radius a.<br />
From equations (28) we get<br />
(2 1+1)' for m = 0 and Aeven,<br />
(63) vAm = a * kM* for m> 0,<br />
1<br />
for m < band m = 0 and J! uneven<br />
We will now compute the covariances covk(vR,, S!) where S, is either v,!,<br />
!Q, ?')Q , A&, or CQ . <strong>The</strong>se covariances are not exylicitly used in the program,<br />
so we will not distinguish between the different covariance models, but denote<br />
the degree-variances by uQ(T, T), uA(T,Ag) and uA(Ag, Ag).<br />
From eq. (62) and (33) we get<br />
Using the well lcnown summation formulae, (PG(~-81'))<br />
and the orthogonality propcrty <strong>of</strong> the surface harmonics, we get
, 1<br />
v, (0: A') dw<br />
Again using (62) and the orthogonality property we see, that<br />
-<br />
Ra a+1<br />
%(T,T)(~) forl=A andj=m<br />
otherwise.<br />
Thus, the covariance <strong>of</strong> two different anomalous potential coefficients is zero<br />
and their variance is equal to the degree-variance multiplied by a constant<br />
depending on R, a and the degree A.<br />
<strong>The</strong> other covariance functions can be derived using (66) and (20)-(23):<br />
and
2.3 Stcpwise collocation.<br />
<strong>The</strong> solution <strong>of</strong> the normal equations (8) and (9) may be a difficult numeri-<br />
cal task even when using a large computer, when the number <strong>of</strong> unknowils is<br />
greater than a few thousands.<br />
Moritz (1973) uses the term sequential collocation when the observations<br />
are divided in two or more groups and when the corresponding normal equations<br />
then are solved by inverting only the submatrices containing tlae covariances<br />
between the observations within one group.<br />
Let us first consider an example, where the observations have been<br />
divided in two groups containing m, and m, observations respectively:<br />
where X, is a m, vector and X, a m, vector <strong>of</strong> observations. <strong>The</strong> covariance<br />
matrix is then divided in four subma1;rices accordingly:<br />
and the vector <strong>of</strong> the covariances between the quantity S to be predicted and the<br />
observations becomes<br />
Hence, according to Moritz (1973, eq. (1-22)) we have<br />
Let us regard the case where we want to estimate T(P). Denoting
we see that<br />
(80) bg = cll~~~dlx, and<br />
N<br />
Hence, we are by using stepwise collocation, getting an estimate T which is<br />
equal to the sum <strong>of</strong> two other estimates.<br />
<strong>The</strong> first estimate ?,(P) is computed by (76) and (77) from the observations<br />
X, using the original covariance functions. <strong>The</strong> residual observations d, % (78) is<br />
then computed. <strong>The</strong>n the second estimate ?,(P) can be obtained from (80) and (81)<br />
using the covariances <strong>of</strong> the residual observations, dlCZ2 and dlCp, (79). (Supposing<br />
the "noise" matrix D to be zero we easily see<br />
which is nothing but the i, jth element <strong>of</strong> the matrix dlC2,. )<br />
<strong>The</strong> formulae (76)-(81) .can be generalized as to describe a partition <strong>of</strong> the<br />
observations into more than two groups. Such equations can for example, .be<br />
found in (1973, eq. (5-1)-(5-14)). We will here use a slightly different<br />
type <strong>of</strong> general equation.<br />
and with<br />
For a partition in k groups,
we have the estimates (P) and based on the residual observations dI- ,xi<br />
(Le. on all sets <strong>of</strong> observations with subscript less than i):<br />
and the final es tinmtes
(As usual, the linear equations corrcsponding to (80a) are denoted the normal-<br />
equations and b, the solution to the norinal equations. j<br />
One <strong>of</strong> the main advantages achieved by using stepwise collocation is<br />
according to Moritz (1973, page 11, that the normal equation matrices to be in-<br />
verted are smaller than the original c matrix. Thus, as may be realized from<br />
equations (79) and (go), the total storage requireinents are not diminished. So,<br />
when using a computer, which has peripheral storage units with fast access,<br />
stepwisc solution <strong>of</strong> the nornlal equations is <strong>of</strong> no real advantage.<br />
Thus, a cons iderable simpiification <strong>of</strong> the computations may be achieved<br />
when the residual covariances ~ J C l and d jCpi (79a) can be computed analytically.<br />
In this case, only the bl vectors (80a) are needed for the representation <strong>of</strong> and<br />
for the computation <strong>of</strong> p edictions. <strong>The</strong> residual covariance inay naturally be<br />
computed analytically, when the datasets are ~ncor~elated, i. e. when diC = CIi .<br />
But the possibility for analytical covariance also exists, when the first dataset<br />
x1 consists <strong>of</strong> potential coefficients.<br />
<strong>The</strong> matrix Cl, is in this case a diagonal matrix with diagonal elements<br />
equal to the sum <strong>of</strong> the q~~antities given in (67) and the error variances <strong>of</strong> the<br />
observed coefficient, o&. We will suppose, that all the variances are the same<br />
for the same degree, R, and denote this variance by o:(R).<br />
<strong>The</strong> elements <strong>of</strong> the vector b, are equal to the observed coefficient divided<br />
by the corresponding diagonal element. Let us then suppose, that potential<br />
coefficients up to degree I have been observed. <strong>The</strong> estimate 5 is then (cf. eq. (66),<br />
(67) and (77)):<br />
r
Using equations (6G), (67)-(79) and (85b) we easily see, that the residual observations<br />
(78), d,x, are nothing but the original<br />
,-., observations, but now referring to a<br />
higher order reference field, U1 = U + T1.<br />
For the i, j'th element <strong>of</strong> dlCzz we get from (GG) and (79), supposing e.g.<br />
that S,, = T(p), S,, = T(Q) and that G ~, xz, are the corresponding observed values<br />
(and P different from Q):<br />
with<br />
This quantity is zero for o?(~) equal to zero. <strong>The</strong> covariance function (84) is<br />
in this case a local I'th order covariance function, cf. Tscherning and Rapp<br />
(1974, Section 9).<br />
It is supposed in the program, that the error variances a: can be either<br />
a,<br />
disregarded or that they only depend on the degree. <strong>The</strong> program will, in the<br />
latter case, require that the quantity
(86) dluA (Q, Ag) = dlo (T, l') B<br />
&- -- q2<br />
a X"<br />
is specified. <strong>The</strong> quantity will be treated as if it was an empirical degree-variance.<br />
We have here seen, how we in one case explicitly can derive expressions<br />
for the covariance, covjd,~, , c'r,~,~ ). Anolher method would he simply to estimate<br />
a covariance fmc tion for the rcs idual. observations d1 x, . However, the program can<br />
only use three types <strong>of</strong> covariance fmct ions, and they are all isotropic.<br />
We are then restricted either to divide the observations x in groups <strong>of</strong><br />
quantities, which are nearly uncorrela.ted or to find a kind <strong>of</strong> observations, which<br />
we can treat like the potential coefficients.<br />
<strong>The</strong> potential coefficients are (in a general sense) weighted mean values <strong>of</strong><br />
the anolnalous potential. Mean gravity anomalies are also mean values, weighted<br />
with a function, which is equal to one in the considered area and zero outside.<br />
A mean gravity znolnaly fieid will represent an amount <strong>of</strong> information which<br />
is elal to the znlount <strong>of</strong> information contained in a set <strong>of</strong> potential coefficients 01<br />
degree less than or equal to an integer I. <strong>The</strong> magnitude <strong>of</strong> I will depend on the<br />
size <strong>of</strong> the area over which the mean anomaly is computed. 1 will be large mhen<br />
the area is small and small when the area is large. ( I will be zero when the<br />
area is the whole <strong>Earth</strong> and infinite when we are dealing with points). An estimate<br />
<strong>of</strong> the degree may be hund in the following way: <strong>The</strong> total number <strong>of</strong> equal area<br />
mean anomalies <strong>of</strong> a particula size is theoretica!ly equal to the total area <strong>of</strong> the<br />
<strong>Earth</strong> divided by the area <strong>of</strong> the basic mean anomaly. Let us call this number N.<br />
For the,perfect recovery <strong>of</strong> N r quantities we need a set <strong>of</strong> coefficients <strong>of</strong> degree<br />
up to N5. This method <strong>of</strong> estimation will give us NZ 202 for l0 equal area anomalies.<br />
<strong>The</strong> degree may also be estimated in a more empirical way. This can be<br />
done by first estimating the empirical covariance function <strong>of</strong> a set <strong>of</strong> residual observations<br />
(gravity anomzlies) cl,%. <strong>The</strong> first zero point <strong>of</strong> the empirical. covariance<br />
ft~nction (regarded as a function <strong>of</strong> the spherical distance $) will then<br />
give a reasonable estimate <strong>of</strong> the degree (cf. Tscherniag and Rapp, (1974, Section<br />
9))s<br />
As an example, the program described in this report was used to compute<br />
residual point gravity ano~nalics in a 2" 30 x 3" 40' square in the state <strong>of</strong> <strong>Ohio</strong>,<br />
U. S.A. <strong>The</strong> data set x did consist <strong>of</strong> three groups. <strong>The</strong> set X, was a set <strong>of</strong> po-<br />
tential coefficients <strong>of</strong> degree upto and inclusive <strong>of</strong> 20, given by Rapp (1973, Table<br />
G). X, consisted <strong>of</strong> 157 1" x 1' mean gravity znomalies surrounding the area and<br />
r;, was a set <strong>of</strong> 420 pojllt gravity anomalies, spaced zs uniform as possible with
a distance <strong>of</strong> 7%' in latitude and 10' in longitude between the points. <strong>The</strong> data-<br />
sets X, and X, was regarded as errorless.<br />
<strong>The</strong> covariance function recommended by Tscherning and Rapp (1974)<br />
was used (i.e. given by eq. (32) with B = 24 and A, = 425 mga1 2 ). <strong>The</strong> covariances<br />
d1CeiaJ can then be computed using a corresponding local 201th order covariance<br />
function (i. e. with degree-variances <strong>of</strong> order up to and inclusive <strong>of</strong> 20 equal to<br />
zero), cf. (84).<br />
<strong>The</strong> function ??, is then computed without actually solving any normal<br />
equations. We have (cf. (83a) and with <strong>of</strong>( R) = 0):<br />
We will now, as mentioned above represent the mean gravity anomaly as a point<br />
anomaly in a certain height 11' above the center <strong>of</strong> the area. Let us denote this<br />
point by Q and its distance from the origin r'. (We have in this case used<br />
hf=rf - R, = 10.5 ltm, cf. Tscherning and Rapp (1974, Section 10)).<br />
<strong>The</strong> residual anomaly is then, cf. eq. (78a) and (71):
Figure 1: Empi?-ically determined covariance<br />
values <strong>of</strong> res ikml point gravity anomalies compa<br />
ed with the local 205'th order covariance<br />
function,page 25,for varying spl-lerical distance $.<br />
+ empirically determined values<br />
- graph <strong>of</strong> the local covariance function<br />
r
i. e. , the mean anomaly computed with respect to the higher order reference<br />
field UT= US Tl. (<strong>The</strong> program does not use this equation for the computation <strong>of</strong><br />
the res idual anomaly. <strong>The</strong> contribution from is evaluated us ing the actual<br />
length <strong>of</strong> the gradient <strong>of</strong> U1 , see the description <strong>of</strong> the subroutine IGPOT, Section<br />
5.4).<br />
N<br />
<strong>The</strong> residual obsclvations dlx2 was then used to determine T, , this<br />
time by actually solving a set <strong>of</strong> normal equations, obtaining the solution vector<br />
b2*<br />
<strong>The</strong> residual point gravity anomalies were then computed by<br />
d,x,=x,- d,~:, b, - * bl<br />
T<br />
cf. (78a). <strong>The</strong> term CL? bl is again here the change due to the higher order<br />
reference field U1 .<br />
<strong>The</strong> empirical covariance hnc tion was computed using d, x3 by taking the<br />
sample mean <strong>of</strong> the products <strong>of</strong> the residuals sampled according to the spherical<br />
distance between the points <strong>of</strong> observation. <strong>The</strong> size <strong>of</strong> the sample interval m7as<br />
1<br />
72'. <strong>The</strong> covariance function<br />
with R/R, = 0.9998 was found to have the same zero point as the empirical covariance<br />
function, see Figure 1.<br />
We then see, that the two mentioned methods give nearly the same es-timate<br />
<strong>of</strong> the integer L This agreeinent should merely be taken as an illustration and not as<br />
a pro<strong>of</strong>. It shows one <strong>of</strong> the inany kinds <strong>of</strong> coinputaticns the FORTRAN program can<br />
perform.<br />
<strong>The</strong> choice <strong>of</strong> a proper covarinnce function is a delicate task, but we point<br />
out that the presented program may use three different degree-varianc e models<br />
and hence be usefd in test computations using different covariance functions.<br />
2 5
-.<br />
<strong>The</strong> program may compute Tin up to three steps. <strong>The</strong> different possibil-<br />
ities are illustrated in Table 1. Note, that potential coefficjents always form a<br />
separate data set, which will be the data set X,.<br />
Number<br />
<strong>of</strong> steps<br />
Table 1<br />
rU<br />
Different: options for the Computation <strong>of</strong> T.<br />
Dataset May Contain:<br />
1 xa I X3
3, Data Requirements.<br />
In this section the data requirements will be discussed. <strong>The</strong> precise<br />
specifications are given in Section 6.<br />
Three types <strong>of</strong> information are needed for the determination <strong>of</strong> T: obser-<br />
vations, information about the reference system <strong>of</strong> the observations and a co-<br />
variance function.<br />
<strong>The</strong> observed quantities we want to use are (a) potential coefficients,<br />
(b) point or mean free air gravity anomalies or measured gravity values,<br />
(c) height anomalies and (d) deflections <strong>of</strong> the vertical.<br />
<strong>The</strong> potential coefficients available will generally all be <strong>of</strong> a degree less<br />
than 25. <strong>The</strong>re has then only been reserved space in core store for up to 625<br />
coeflicients.<br />
<strong>The</strong> program accepts potential coefficients, which are fully normalized<br />
and multiplied by 106. <strong>The</strong> coefficients can naturally only be used, when a value<br />
<strong>of</strong> kM and ihe semi major zxis a art! specified.<br />
An observation (different from a potential coefficient) will be given by<br />
(1) the geodetic latitude and longitude, (2) a potential difference, (a geopotential<br />
number, for example), conve ted into a metric quantity e. g. by dividing the dif-<br />
ference with the reference gravity and (3) the measured quantity. <strong>The</strong> height<br />
above the reference ellipsoid is regarded as unknown except, naturally, when<br />
it itself is the observed quantity.<br />
A11 measured gravity values will have to be given in the same gravity<br />
reference system or a correction must be known. Measured gravity values are<br />
converted to free-air anomalies. <strong>The</strong> orthometric height must hence be known.<br />
<strong>The</strong> geodetic latitude (which is used to evaluate the normal gravity) would princi-<br />
pally have to be given in a geodetic reference system consistent with the gravity<br />
reference system (i.e. with the same flattening and semi major axis as used for<br />
the computation <strong>of</strong> the coeffic icnts in the e'xpression for the normal gravity). But<br />
the variation <strong>of</strong> the normal gravity with respect to the latitude is so small, that<br />
this requirement can be neglected here. <strong>The</strong> point or mcan gravity anomalies will<br />
all have to be free-air anomalies. <strong>The</strong>y must all refer to the same normal gravity<br />
field. LE they are not all given with respect to the same gravity base reference<br />
system, the correction to be applied for the conversion must be known.
A mean gravity anoinaly will be represented as a point gravity anomaly at<br />
a point <strong>of</strong> a certain height, h, above the ccnter <strong>of</strong> the area over which the mean<br />
value is computed. This height is specified by the ratio, RP between the sum <strong>of</strong><br />
this height and the mean <strong>Earth</strong> radius R, and the mean <strong>Earth</strong> radius, i.e.<br />
A height anomaly will have to be given in the same reference system as the<br />
geodetic latik~de and longitude. This will generally require, that a height anomaly<br />
obtained through an absolute position determination and given in a geocentric reference<br />
system must be transferred back to a local geodetic refe ence system,<br />
before it can be used in the program.<br />
We are, with observed deflections <strong>of</strong> the vertical, faced with a complicated<br />
problem. <strong>The</strong> deflections are equal to the difference between the astronomical<br />
coordinates <strong>of</strong> a point on the geoid and the geodetic coordinates <strong>of</strong> a point on the<br />
reference ellipsoid (multiplied with cosine to the latitude for the longitude difference).<br />
We have herehy implicitly int~oduced assun~ptions about the mass densities<br />
in between the geoid and the astronomical station. To avoid this, the deflections<br />
should have been given at the proper height (i.e. the height <strong>of</strong> the observation<br />
stations).<br />
Thus, heights <strong>of</strong> astronomical stations are seldoin found recorded together<br />
with the deflections. But if the heights are actually recorded, the program will<br />
treat the deflections as quantities, which have not been reduced to the geoid.<br />
<strong>The</strong> astronomical coordinates may carry systematical errors due to systematic<br />
differences between star catalogues or due to the neglect <strong>of</strong> corrections<br />
for polar motion. <strong>The</strong> observations may be corrected for ltnown systematical<br />
errors, if they can be specified in the same way as a datum shift, i. e. by specifyr<br />
ing the corrections in the latitude and the longitude com~onents at a certain point.<br />
Systematic errors in the height anornalies may be corrected in the same manner.<br />
In Section 2.2 we mentioned, that the equations which related the obser-<br />
vations and the anomalous potential was given in spherical approximation. This<br />
means, e.g. that all points onthe surface <strong>of</strong> the <strong>Earth</strong> are regarded as lying on<br />
the mean <strong>Earth</strong> sphere. This fact has been used in the program to speed up the<br />
computations. This is done by using the fact that the quantities
will be the same for a group <strong>of</strong> input data.<br />
Data which actually are observed above the surface <strong>of</strong> the <strong>Earth</strong> must be<br />
grouped so that they all refer to a sphere with radius equal to a mean height <strong>of</strong><br />
the points plus the mean <strong>Earth</strong> radius, R,. As for mean gravity anomalies, the<br />
height is specified in the program through the value <strong>of</strong> the quantity RP, (ey. (87)).<br />
<strong>The</strong> standard deviations <strong>of</strong> observations, different from potential coef-<br />
ficients,will have to be given in meters for the height anomaly, in mgal for gravity<br />
observations and in arc sec for deflection components. <strong>The</strong> standard deviations<br />
may be specified (1) individually for the single observations, (2) for a group <strong>of</strong><br />
observations or (3) as being zero for all observations.<br />
3.2 <strong>The</strong> Reference Systems.<br />
We have to know the parameters specifying the geodetic coordinate system.<br />
<strong>The</strong> program requires the semi major axis, a, and the flattening, f, to be specified.<br />
<strong>The</strong> gravity formulae may then either be given (1) through the values <strong>of</strong> kX4,<br />
U, a, and f, (2) by specifying that the international gravity formulae and the Pots-<br />
clgm referencc system has bccn used or (3) that the Szcdetic Refererce Systerr,<br />
1967 has been used. One <strong>of</strong> the three excludes the others.<br />
<strong>The</strong> covariance functions which can be used, will all have the degree-<br />
variances <strong>of</strong> degree .zero and one equal to zero. This implies, that we, in the<br />
computations, have to use the best possible kM value and a geodetic coordinate<br />
system which has origin coinciding with the gravity center <strong>of</strong> the <strong>Earth</strong>, Z-axis<br />
parallel to the mean axis <strong>of</strong> rotation and Z-X-plane equal to the mean Greenwich<br />
meridian plane.<br />
We will also require the global mean value <strong>of</strong> the gravity anomalies, the<br />
height anomalies and the deflections to be zero. This requirement implies, that<br />
we have to use the best possible semi-major axis. <strong>The</strong> geodetic latitude and<br />
longitude may then be transformed into such a reference system by specifying the<br />
new kM, a, f values, the translation vector, the scale change and the three rota-<br />
tion angles for the rotations around the X, Y and Z axes respectively.<br />
-<br />
<strong>The</strong> approximation T will be given in the same reference system as the one<br />
specified through the transformat ion parameters, i. e. in a geocentric reference<br />
sys tem. Predictions will be given in both the original and the new reference<br />
sys tem .
3.3 <strong>The</strong> Covariance Function.<br />
We explained in Section 2.2 how an isotropic covariance function can be<br />
specified through (1) a set <strong>of</strong> empirica.1 anonia7.y degree-variances <strong>of</strong> degree less<br />
than or equal to an integer I, bl(ag, Ag) and (2) an anomaly degree-variance model<br />
for the degree-variances o,,~ (Ag, Ag) for R greater than I.<br />
<strong>The</strong> values <strong>of</strong> the empirical degree-variances will depend on the radius <strong>of</strong><br />
the Bjerhanlmar sphere, R. We have, therefore chosen to specify these quantities<br />
on the surface <strong>of</strong> the mean <strong>Earth</strong>9 i. e. the quantities<br />
must be given together with the ratio R/R,. <strong>The</strong> quantities (88) must be given in<br />
units <strong>of</strong> mga12.<br />
<strong>The</strong> anomaly degree-variance model is for k= 1 and 2 specified through<br />
the constants A, and A, (eq. (30) and (31)) and for k= 3 through the constant A3<br />
and the integer B (eq. (32)).<br />
Thus, in the program the models are specified not through the constants<br />
A,, k= 1,2 or 3, but through the variance <strong>of</strong> the point gravity anomalies on the<br />
surface <strong>of</strong> the <strong>Earth</strong>.<br />
(29):<br />
This qualltity is then used for the determination <strong>of</strong> A,. We have from<br />
Let us now, for example regard model 2, i. e. a2,p, (Ag, Ag) = A,@- 1) . <strong>The</strong>n<br />
(1- 2)
I 2 $+2<br />
h<br />
(90) A,= (cov(Ag~ , Agp ) - 7 4 (Ag, Ag)<br />
!A<br />
A=O<br />
<strong>The</strong> infinite sum may be computed by the formula given in Tscherning and Rapp<br />
(1974, Section 8), and A, (and in the same way A, or A,) can then be found.<br />
We will finally mention, that the ratio R/R, is used by the program for the<br />
computation <strong>of</strong> the radius <strong>of</strong> the Bjerhammar sphere.
4. Main Lines <strong>of</strong> Function <strong>of</strong> the Program.<br />
In Section 2 we mentioned that the program could be used to estimate ?<br />
N<br />
from maxiinally three sets <strong>of</strong> observations X, , x, and X,. T would then be equal<br />
N N<br />
to the sum <strong>of</strong> up to three harmonic functions, T, , T, and ?, . <strong>The</strong> limit <strong>of</strong> three<br />
was only attained, when potential coefficients formed the first set <strong>of</strong> observations,<br />
X1 *<br />
We will here clescribe the function <strong>of</strong> the program, when we are in this<br />
situation, i.e. when we have three datasets X,, x, and x3, and X, is a set <strong>of</strong><br />
potential coeffic ients .<br />
<strong>The</strong> flow <strong>of</strong> the program is illustrated in Figure 2. Several logical vari-<br />
ables determine the flow. <strong>The</strong> logical variable LPRED will e. g. be "false" until<br />
the estimation <strong>of</strong>? is finished and will have the value fltrue", when predictions<br />
are computed.<br />
<strong>The</strong> program will start by initializingdiffermt variables. It will require<br />
illformation about the reference systems <strong>of</strong> the observations and use this infor-<br />
mation to select e. g. the proper formulae for the normal g~avity.<br />
When the reference sys tem is not geocentric or when the normal gravity<br />
does not correspond to a proper kM value, the necessary transformation elements<br />
and the kM value must be given.<br />
<strong>The</strong> next step is then to read in the observations X,, the potential coef-<br />
ficients. <strong>The</strong> normal equations (12) will not have to be solved in this situation,<br />
cf. Section 2.3. ?, is represented by (83).<br />
<strong>The</strong> following two steps, where we explicitly use the equations for collocation,<br />
will be denoted Collocation I and Collocation 11. We will first have to specify the<br />
covariance function and observations used in Collocation I:<br />
<strong>The</strong> covariance hnc tion for the residual anomalies d, X, must be specified<br />
through the selection <strong>of</strong> an anomaly degree -var ianc e model and contingently by<br />
specifying a set <strong>of</strong> low order empirical. deg ee-variances.<br />
<strong>The</strong> observations X, (and later X,) may be subdivided in different files<br />
according to format, kind <strong>of</strong> observed quantity etc. Each single observation is<br />
first transformed to a geocentric reference system (if necessary). <strong>The</strong>n the<br />
residual observation is computed, by subtracting the contribution from Tl from<br />
the observed value. After the input <strong>of</strong> a file, the value <strong>of</strong> a local variable LSTOP<br />
will be input, which will signify if more files belonging to X, will have to be input.
Flow-Chart <strong>of</strong> Program.<br />
Legend:<br />
T = true<br />
F= false<br />
Figure 2<br />
<strong>The</strong> main flow is determined by the values <strong>of</strong> the following logical variables:<br />
LTRAN - coordinates and observations must be transformed to a geocentric<br />
reference system and gravity observations must refer to a gravity<br />
formulae consistent with the refe ence sys tem.<br />
LPOT = potential coefficients from first set <strong>of</strong> I1observed" quantities.<br />
LCREF= second set <strong>of</strong> observations (or third when LPOT is true) will be<br />
used, and the harmonic function computed by Collocation I will be<br />
r<br />
used as an improved reference field. LCREF is initialized to be<br />
false and will get its final value after Collocation I is finished.<br />
LPRED = predictions are being computed.<br />
LGRID = the predictions are computed in the points <strong>of</strong> a uniform grid.<br />
LERNO = the error <strong>of</strong> prediction inus t be computed.<br />
LCOMP= compare observed and predicted values (an observed value is input<br />
together with the coordinates <strong>of</strong> the point <strong>of</strong> prediction).<br />
\input operation /<br />
/butput operation\<br />
reference system <strong>of</strong> observations<br />
I<br />
\input LTRAN, LPOT]<br />
~~~~F<br />
arame ters<br />
I T<br />
ut potential coefficients/<br />
I<br />
SpecjIy kind <strong>of</strong> degree-<br />
ariance model to be used<br />
1
Figure 2<br />
(cont'd)<br />
~pecl~6C"i~r.s in the<br />
elected<br />
\ Specify kind an1 formkt <strong>of</strong> file<br />
<strong>of</strong> obsei-vations or file <strong>of</strong> coor<br />
-.<br />
1<br />
F&~R ID)<br />
+T<br />
[-{reference svs tern I<br />
I~onqmte contribution from reference ]<br />
V-<br />
],F k l f i e l d given by potential coefficients I<br />
A<br />
ut u so utions<br />
1~ {&/I and the residual observations when I l<br />
ution from Collocation I ancl<br />
1<br />
Pu tput p ediction l<br />
Y<br />
rid or file ?
After the last file has been input, the vector d, ,u, is stored on a disk.<br />
<strong>The</strong> coefficients <strong>of</strong> the nornml equations are then computed and stored on the<br />
disk as well.<br />
A subprogram NES, which only uses a limited amount <strong>of</strong> core store, will<br />
then compute the solution vector b, and in this way 'i;, is determined.<br />
<strong>The</strong> solution vector may be output on punched cards, so that the function<br />
N<br />
T, can he retrieved without computing the coefficients <strong>of</strong> (and solving) the normal<br />
equations.<br />
Collocation I is now finished. It is then possible either to start the compu-<br />
tation <strong>of</strong> predictions or to start Collocation 11. -4 logical variable LCREF is used<br />
to distinguish between the two situations. Thus, LCREF will have to be true in<br />
this case, because we have decided to describe the situation, where three data-<br />
sets are used.<br />
<strong>The</strong> covariance function <strong>of</strong> the residual observations d,% is then first<br />
specified. It is done in the same way as for the covariance function used in<br />
Collocation I, though the kind <strong>of</strong> anomaly degree-variance model used will have<br />
to be the same.<br />
<strong>The</strong> different files <strong>of</strong> the dataset X, can then be input. Each observations<br />
is first transformed to a geocentric reference system. <strong>The</strong>n the contribution from<br />
F, and F, is computed, so that finally &X, can be stored. <strong>The</strong> coefficients <strong>of</strong> the<br />
new normal-equations can then be computed and the equations solved. Again, here<br />
the solution b, may be output on punched cards. (In case b, or b, had been com-<br />
puted in previous runs <strong>of</strong> the program, their respective values would have been<br />
input and the coefficients <strong>of</strong> the normal equations are then not computed.)<br />
When the equations have been solved, the reduced normal equation matrix is<br />
retained on a disk, so that errors <strong>of</strong> estimation can be computed, using equation (13).<br />
<strong>The</strong> estimate <strong>of</strong> the anomalous potential is then, cf. eq. (82a)<br />
rU N<br />
T(P) = Tl (P) + ?'a (P) + ?,(P),<br />
with T, (P) given by eq. (83),
cf. eq. (81a).<br />
<strong>The</strong> prediction <strong>of</strong> a height anomaly, a gravity anomaly or a deflection<br />
component can now be computed using eq. (82a). <strong>The</strong> computation is based upon<br />
exactly the same type <strong>of</strong> information as was used for the computation <strong>of</strong> F, and<br />
and T, , i. e. geodetic latitude and longitude, and a height. <strong>The</strong> program itself<br />
may generate lists <strong>of</strong> coordinates. Such a l.ist is generated, when the logical<br />
LGRID is true. <strong>The</strong> list will consist <strong>of</strong> coordinates <strong>of</strong> points lying in a grid. <strong>The</strong><br />
grid is specified by its south-west corner, and the number and magnitude <strong>of</strong> the<br />
grid increments in northern and eastern direction. <strong>The</strong> heights <strong>of</strong> the points are<br />
specified by the ratio RP (equation (87)).<br />
<strong>The</strong> prediction <strong>of</strong> a quantity, e.g. a gravity anomaly will then be computed<br />
by first determining the difference between the anomaly given in a geocentric<br />
reference system and the reference system <strong>of</strong> the observations, Ago. <strong>The</strong> contri-<br />
bution && is then evaluated from ?, and the contributions from ?, and F, using<br />
(81a), i. e.<br />
<strong>The</strong> predicted value is then, (cf. eq. (82a)):<br />
Predictions <strong>of</strong> other quantities are computed in the same way. A special facility<br />
for the comparison <strong>of</strong> observed and predicted quantities can be used, when the<br />
logical LCOMP is true. <strong>The</strong> differences between observed and predicted quantities<br />
are in this case, computed together with their mean value and variance. A sampling<br />
<strong>of</strong> the differences is done in intervals <strong>of</strong> a specified magnitude.<br />
<strong>The</strong> processing time (or more correctly, the central unit processing time)<br />
will valy depending on (1) the covariance function used, (2) the number <strong>of</strong> obsema-<br />
tions and (3) the number <strong>of</strong> cluantities to be predicted and estimates <strong>of</strong> errors to be<br />
computed. <strong>The</strong> program has been used for a variety <strong>of</strong> test computations, though<br />
never with more than 500 observations. <strong>The</strong> used processing times for anumber
Model<br />
<strong>of</strong> situations are presented in Table 2. <strong>The</strong> computations were all made on the<br />
IBM system/370 inodcl 165 computer <strong>of</strong> the Instruction and Research Computer<br />
Centcr, <strong>Ohio</strong> <strong>State</strong> <strong>University</strong>. <strong>The</strong> so called Fortran H-extended compiler<br />
(BM (1972)) was used for the compilation <strong>of</strong> the program. <strong>The</strong> normal equations<br />
were stored on an LBM model 3330 disk.<br />
Table 2<br />
Examples <strong>of</strong> Processing Times for Different Input Data and Covariance Functions.<br />
Potential Coefficients <strong>of</strong> Degree up to 20 Used.<br />
Collocation I<br />
Collocation II**<br />
Irde r <strong>of</strong> local<br />
zovar. fct. I<br />
110<br />
110<br />
1 GO<br />
160<br />
110<br />
110<br />
**Normal equations not computed and solved in Collocation I.<br />
Predictions<br />
Number <strong>of</strong><br />
Total pro-<br />
cessing time<br />
m sec<br />
0 43<br />
0 43<br />
2 31<br />
3 22<br />
2 57<br />
4 09<br />
2 54<br />
4 09
5.<br />
<strong>The</strong> Storing <strong>of</strong> the Cocffic ients <strong>of</strong> the Normal Eq~mtions and the Function<br />
<strong>of</strong> the Subprograms .<br />
We will in this section discuss in more detail the function <strong>of</strong> an important<br />
part <strong>of</strong> the main-program and the different subprograms which have been used.<br />
However, the most detailed clcscription is hund in the appendix, where the FOR-<br />
TRAN program, which includes a large number <strong>of</strong> comment statements, is repro-<br />
duc ed .<br />
5.1 <strong>The</strong> storing <strong>of</strong> the normal equations.<br />
<strong>The</strong> IBM system 370 model 165 computer <strong>of</strong> the Instruction and Research<br />
Computer Center <strong>of</strong> the <strong>Ohio</strong> <strong>State</strong> <strong>University</strong> makes available a 630K !byte) core<br />
storage for a usual program. Let us suppose, that we have used 180 I< for the<br />
storing <strong>of</strong> the program and variables different from the coefficients <strong>of</strong> the normalequations.<br />
We are then left with 450K bytes, which can be used to store these quantities.<br />
When the coefficients are represented as double p ecision variables (8 bytes),<br />
it is then possible to store 450* 1024/8=57600 coefficients in the core.<br />
A system <strong>of</strong> equations with N unknowns, and a full symmetric coefficient<br />
matrix plus a constant vector <strong>of</strong> length N+l will totally occupy (N+2)* (~+3)/2<br />
8 byte positions. This implies, that we maximally can sdve a system <strong>of</strong> eqmtioxls<br />
with 336 unknowns, if we want to store all the coefficients in the core.<br />
<strong>The</strong> solution to the problem is naturally to divide the upper (or lower) tri-<br />
angular part <strong>of</strong> the matrix in blocks, which then are stored on a disk and later<br />
read into core storage when needed. <strong>The</strong> subdivision in blocks can be made in<br />
several ways. h case we wanted to compute the inverse matrix, the optimal<br />
subdivision seeins to be a subdivision in squares submatrices, as used by Karki<br />
(1973). It is unnecessary to compute the inverse matrix for our purpose. <strong>The</strong><br />
solution vector b (16) and the estimate <strong>of</strong> the error <strong>of</strong> prediction (13) may both be<br />
computed without using the inverse matrix. It is enough to compute the so .called<br />
reduced matrix L',<br />
where L is a lower triangular matrix, cf. Poder and Tscherning (1973). <strong>The</strong><br />
T<br />
computation <strong>of</strong> L is most easily programmed, when the upper triangular<br />
-<br />
part <strong>of</strong><br />
C is subdivided in blocks, which contain a number <strong>of</strong> consecutive r columns, stored<br />
in a one-dimensioned array with the diagonal element having the highest subscript<br />
cf. Figure 3.
Number <strong>of</strong> last row stored<br />
in block<br />
Block Number<br />
Figure 3. Blocking <strong>of</strong> 400 X 400 matrix<br />
It is necessary, that two blocks can be stored sin~ultaneously in the core storage,<br />
i.e. the maximum block size is then 225K or (450/2) * 1024/8 = 28800 double precision<br />
coefficients. This number is then also the upper limit for the dimension<br />
<strong>of</strong> the normal equation matrix, N. (Another limit is set by the magnitude <strong>of</strong> the<br />
disk unit used. For the I13M model 3330 disk used here, N will have to be less<br />
than circa 5000).<br />
We have in this program edition preferred to limit the total storage re-<br />
quirements to 252K (which for the present operative system gives a reasonable<br />
turn-around time). Thus, 90K can be used for the storing <strong>of</strong> the required two<br />
blocks and for the buffer area necessary for the transfer between core store<br />
and disk.
On a disk it is practical to block data in groups which occupy an integer<br />
number <strong>of</strong> tracks. We have then chosen to work with data partitioned into blocks<br />
<strong>of</strong> size 4800 *8 bytes, covering three tracks and to use a buffer area <strong>of</strong> 1200* 8<br />
bytes. <strong>The</strong> total area occupied in core storage is hence 2*(38400) + 9600 bytes<br />
or nearly 86K. (<strong>The</strong> disk discussed is, as mentioned above, an BM model 3330<br />
disk). Figure 4 shows the number <strong>of</strong> tracks used as a function <strong>of</strong> the number <strong>of</strong><br />
observations, N.<br />
Tracks<br />
Figure 4. Number <strong>of</strong> tracks used on an IT3M model 3330 disk unit for a varying<br />
number <strong>of</strong> uulmowm, N (12800 bytes used on each track).<br />
40
When a coefficient <strong>of</strong> the normal equation matrix C (eq. 12) is computed<br />
(subroutine PRED) it will first be stored in an array C <strong>of</strong> dimension 4700 (the<br />
last 100*8 bytes are used to hold two catalogues). Where the array C is filled<br />
up with as many columns as possible, the content will be transferred to the disk<br />
and stored in a direct access dataset (see IBM (1973, page 67)). <strong>The</strong> constant<br />
vector <strong>of</strong> observations, X is stored together with the coefficients, as if it was an<br />
extra column. <strong>The</strong> ficticious diagonal element <strong>of</strong> this column will contain the<br />
normalized square sum <strong>of</strong> the observations.<br />
As mentioned above, the last 100*8 bytes <strong>of</strong> a block are used to hold two<br />
catalogues. <strong>The</strong> first catalogue contains the subscripts <strong>of</strong> the diagonal elements<br />
<strong>of</strong> the columns stored in the block. <strong>The</strong> second contains the subscript <strong>of</strong> the<br />
last zero element encountered in a column, starting the inspection <strong>of</strong> a column<br />
from the top. This catalogue may especially be used when C is a sparse matrix<br />
(e. g. when potential coefficients are not necessarily stored). In this program C<br />
will always be a full matrix, so the catalogue entries are just equal to zero.<br />
(<strong>The</strong>ir value may be changed by the subroutine NES, in case singularities are<br />
encountered).<br />
5.2 Solution <strong>of</strong> the Normal Equations and Computation <strong>of</strong> the Estimate <strong>of</strong> the<br />
Error <strong>of</strong> Prediction, Subroutine NES.<br />
<strong>The</strong> equations are, as mentioned in Section 5.1, solved by first computing<br />
the upper triangular matrix L? (cf. (91)). This method is the well known Cholesliyls<br />
factorization method.<br />
b<br />
We obtain, from (15) and(91) by a left multiplication with L-~<br />
T<br />
<strong>The</strong> algorithm for the computation <strong>of</strong> the elements <strong>of</strong> L , 1 1 is<br />
and nearly exactly the same for the computation <strong>of</strong> the elements b: <strong>of</strong> (92):
i.e. the algorithm (93) will compute (92), when x is regarded and stored as an<br />
extra column <strong>of</strong> the matrix E. When b' has been computed, b can easily be<br />
obtained from (92) by a so callcd back-substitution procedure. We note, that<br />
we have (cf. eq. (6) and (13)):<br />
<strong>The</strong>n, using the algo ithm (93) for j = m+l with C , ~ subst.ituted for ciJ, we will<br />
obtain the quantity L-'C, for i= l, . . . ,m. By defining an element c,+~,,+~= CSs<br />
and using (9 3) for i= m+l we will have computed the quantity G", (13).<br />
<strong>The</strong> sub<br />
outine NES uses these algorithms for the computation <strong>of</strong> the vector<br />
b and the quantity 1%:. <strong>The</strong> elements <strong>of</strong> c are stored in the positions on the disk,<br />
where earlier the coefficients <strong>of</strong> the upper triangular part <strong>of</strong> Cwere stored.<br />
<strong>The</strong> matrix @ is theoretically, always positive definite. Thus, mis takcs may<br />
be made, which make E non positive definite. <strong>The</strong> Choleskys algorithm (93) will<br />
not work in this case, because the diagonal element <strong>of</strong> L', Jll, is computed by taking<br />
the square- root <strong>of</strong> equation (93), where both sides have been multiplied with Jii.<br />
<strong>The</strong> occiireuce <strong>of</strong> a negative quantity<br />
r<br />
will not stop the execution <strong>of</strong> the program. NES will regxrd the column and corres-<br />
ponding row as deleted, and bl will be put equal to zero.<br />
Choleslyts method is very favorable numerically. But the proper use <strong>of</strong><br />
the method requires that the sum <strong>of</strong> the products II,, R,, in (93) are accun~ulated in<br />
a variable, which in this case would be in quadruple precision. <strong>The</strong> final product<br />
sum would then have to be rounded properly to double precision. Unfortunately<br />
rounding is not<br />
r<br />
done by simply requiring the quadruple precision variable to be<br />
stored in a double precision variable, but supplementary statements have to be<br />
used. Thus, the solution vector by is heye obtained by computations performed<br />
in double precision only, which in this case anyway, gives a satisfactory number <strong>of</strong><br />
significant digits.<br />
'N \3<br />
<strong>The</strong> solution vector b, is obtained in 0.71 Lz0; seconds, where N is the<br />
dimension <strong>of</strong> the normal equation matrix.
5.3 Transformation Between Reference Systems, Subroutine ITRAN.<br />
We pointed out in Section 3, that it was necessary to transform the co-<br />
ordinates and measurements into a geocentric reference system. This transfor-<br />
mation is performed for the coordinates, the deflections and the height anonlaly<br />
by the subroutine ITRAN.<br />
<strong>The</strong> subroutine uses the euclidian coordinates X, Y, and Z for a point<br />
with geodetic latitude and longitude X and with the ellipsoidal height equal to zero.<br />
XI Yl, Z, by<br />
<strong>The</strong>se coordinates are then transformed into geocentric coordinates,<br />
where (AX, AY, AZ) are the coordinates <strong>of</strong> the center <strong>of</strong> the old reference ellipsoid<br />
given in the new coordinate system, AL the scale change and (c,, c,, c,) the three<br />
infinitesimal rotations around the X, Y, Z axes respectively .<br />
<strong>The</strong> new geodetic latitude 9 and longitude X, <strong>of</strong> this point is computed<br />
using the ite ative procedure given in PG (p. 183). This computation will also<br />
furnish us with the change in the height anomaly, which is identical to the height<br />
<strong>of</strong> the point (Xl, Y,, Z1) above the ncw reference ellipsoid.<br />
<strong>The</strong> change in the deflection components are then determined using the<br />
differences col - cp and X, - X.<br />
A contingent correction for systematical errors in the deflections or the<br />
height anomaly (cf. Section 3.2), specified by the changes 65,, 6~,, 65, in a<br />
point with coordinates cp, Xo, is conlputed by the subroutine using the equations<br />
given in PG (eq. (5-59)).<br />
5.4 Computation <strong>of</strong> the Normal Gravity, the Normal Potential and the Contri-<br />
butions from the Potential Coefficients. Subroutines GRAVC and IGPOT.<br />
<strong>The</strong> normal gravity may be given in two ways. Either by a gravity formula<br />
or by specifying a norinn1 gravity field, from which the gravity formulae then can<br />
be derived, (cf. PG, Chapter 2). <strong>The</strong> only gravity formulae which can be used is<br />
the international gravity formulae, PG (cq. (2-126) and (2-131)). <strong>The</strong> normal<br />
gravity fields which can bc used, are those for which the reference ellipsoid is an<br />
equipo tential surface, i. e. it is specified by the values <strong>of</strong> kM, a, f and U.
We may need to kuow the reference gravity in two situations. Firstly<br />
when free-air anomalies are computed using measured gravity values and secondly,<br />
when we want to compute the change in the gravity anomalies due to the use <strong>of</strong> a<br />
new reference sys tern.<br />
<strong>The</strong> subroutine GRAVC will compute and store the constants (PG, Section<br />
2.10) necessary for the computation <strong>of</strong> the normal gravity in one or two reference<br />
systems. <strong>The</strong> constants used to compute the value <strong>of</strong> the normal potential (J,,,<br />
ns 5 in eq. (26)) and the change in the latitude component <strong>of</strong> the deflection <strong>of</strong> the<br />
vertical 5 due to the curvature <strong>of</strong> the normal plumbline (PG(5-34)) are computed as<br />
well. When the height exceeds 25 km, the derivatives <strong>of</strong> the series (26) with<br />
respect to the latitude and the distance froln the origin, will be used for the compu-<br />
tation <strong>of</strong> the normal gravity and the change in 5. Thus, this method <strong>of</strong> computation<br />
can, unfortunately, not be applied when the international gravity formula is used.<br />
<strong>The</strong> values <strong>of</strong> the normal gravity, the normal potential and the change in S<br />
are computed by calling separate entries to the subroutine. <strong>The</strong> subroutine IGPOT<br />
computes the value <strong>of</strong> the potential W(P) and the three components <strong>of</strong> thz gradient<br />
<strong>of</strong> the potential, the value <strong>of</strong> kM, a and w , cf. eq. (25).<br />
Let us, as usual, define V by<br />
<strong>The</strong> coefficient modification method is used for the computation <strong>of</strong> the values<br />
<strong>of</strong> V and the gradient <strong>of</strong> V. This method uses the fact, that the derivative <strong>of</strong> a har-<br />
monic function with respect to euclidian coordinates again is a harmonic function.<br />
<strong>The</strong> potential coefficients <strong>of</strong> the (three) new harmonic functions D,TJ, DyTJg and DZV<br />
are computed by means <strong>of</strong> a recursion algorithm given in James (1969, eq. (3) and<br />
(4)). <strong>The</strong> recursion algorithm is identical to the algorithm used for the evaluation<br />
<strong>of</strong> the values <strong>of</strong> the solid spherical harmonics. This fact simplifies the computations<br />
very much. It furthermore makes it unnecessary to store the three sets <strong>of</strong> modified<br />
potential coefficients. <strong>The</strong>y are conqmted for each call <strong>of</strong> the subroutine from the<br />
original potential coefficients. <strong>The</strong> algo ithm may easily be modifjed to compute<br />
higher order derivatives (without extra storage requirements). Thus, the algorithm<br />
may also be used in case the program is extended to use second order derivatives<br />
as observed quantities.<br />
<strong>The</strong> value <strong>of</strong> the potential and the gradient is used to compute the residual<br />
observation d,%i :<br />
<strong>The</strong> value <strong>of</strong> the potential is used together with the value <strong>of</strong> the normal
potential (as computed by GRAVC) to compute a residual height anomaly. <strong>The</strong><br />
gradient is used to compute the residual gravity anomalies and deflection compo-<br />
nents :<br />
A<br />
where y, is the normal gravity, qj is the geodetic latitude plus a correction for<br />
the curvature <strong>of</strong> the plumbline and X, the longitude.<br />
<strong>The</strong> components <strong>of</strong> the gradient used in (97a) are evaluated in a point with<br />
height equal to the orthometric height plus the distance h. between the reference<br />
ellipsoid and an equipotential surface <strong>of</strong> U1 = U + T1 with potential equal to the<br />
potential <strong>of</strong> the normal potential, U on the ellipsoid. <strong>The</strong> separation h, is computed<br />
by evaluating Tl /y oil the eliipsoicl. <strong>The</strong> other gradieiits are evaluated iil the height<br />
equal to the orthome tric height.<br />
5.5 Computation <strong>of</strong>, Euclidian Coordinates, Conversion <strong>of</strong> Angles to Radians,<br />
Subroutines EUCLID, RAD.<br />
<strong>The</strong> subroutine EUCLID computes the euclidian (rectangular) coordinates for<br />
a point with geodetic coordinates p, X , h (ellipsoidal height) given in a reference<br />
system with semi-major axis a and second eccentricity e by the equations PG (5-3)<br />
and (5-5).<br />
RAD converts angles given in either (1) degrees, minutes, arc seconds,<br />
(2) degrees and minutes, (3) degrees or (4) (400) grades into units <strong>of</strong> radians.<br />
Other options may easily be added.<br />
5.6 Subroutines for Output h'lanagement and Prediction Statistics, HEAD, OUT<br />
and COMPA.<br />
<strong>The</strong> output requirements are discussed in Section 7. <strong>The</strong> main require-<br />
ment is, that a determination <strong>of</strong> ?must be as well documented as possible. ?!<br />
may be computed in several ways, cf. Table 1. This implies, that the output may<br />
vary in just as many ways.
An array 013s is used for the storage <strong>of</strong> the observed quantities, the resid-<br />
ual observations, the contributions from the different sets <strong>of</strong> observations and the<br />
predicted quantities. <strong>The</strong> storage sequence <strong>of</strong> these quantities is determined by<br />
BEAD, which a,lso will print proper headings. <strong>The</strong> coordinates <strong>of</strong> an observed or<br />
predicted quantity and the quantities stored in OBS are printed on the line printer<br />
by OUT, which also will punch a part <strong>of</strong> this information when requested (see Sec-<br />
tion 7).<br />
COMPA uses the content <strong>of</strong> OBS for the computation <strong>of</strong> prediction statistics.<br />
<strong>The</strong> difference between observed and predicted quantities are sampled in classes<br />
defined by a specjfied class width. <strong>The</strong> number <strong>of</strong> differences in each class is<br />
printed by COVA after the final predictions have been computed. <strong>The</strong> sampling is<br />
done separately for Ag, 5 and v. No sampling is done for 5.<br />
5.7 Subroutines for the Computation <strong>of</strong> Covariances, PRED and SUMK.<br />
PRED computes :<br />
(a) the vector dim ,Cs or dl-, C l , (cf. eq. (78a) and (82a)).<br />
(h) a colunm <strong>of</strong> the upper triangular part <strong>of</strong> the normal equation matrix<br />
(eq. (80a)) diCii or<br />
t Sxi~ di S = d,~: bi , (cf. cq. (8Ia)).<br />
(C j Ihe pi.06~~<br />
<strong>The</strong> subroutine may theoretically work even when the observations (different<br />
from potential coefficients) are divided in more than two groups, as long as the<br />
total number <strong>of</strong> observations do not exceed 1600 minus the number <strong>of</strong> groups minus<br />
one.<br />
When the observed quantity is a pair <strong>of</strong> deflections <strong>of</strong> the vertical it is very<br />
easy to compute the two corresponding colunms <strong>of</strong> the upper triangular part <strong>of</strong> C<br />
at the same time. This is due to the similarity <strong>of</strong> the equations for the covariaaces<br />
(44)-(50) for 5 and v. This fact is used in the subroutine.<br />
We mentioned in Section 3.1, that ic would facilitate the computations if the<br />
observations were grouped according to cominon characteristics, i. e. , e. g. gravity<br />
amoinalies on the surface <strong>of</strong> the <strong>Earth</strong> in the first groilp, deflections in the second<br />
group, gravity anonxilies in 10 kinf S height in the third group, etc. <strong>The</strong> group<br />
characteristics (the type <strong>of</strong> observation and the quantity RP, ($7)) are stored in two<br />
arrays INDEX and P, which will also contain the subscripts <strong>of</strong> the first observation<br />
in the group within the total set <strong>of</strong> observations and a quantity related to the square<br />
root <strong>of</strong> the varimce <strong>of</strong> the observations. This quantity is used for the scaling <strong>of</strong><br />
the normal equations (in which all the diagonal elements will be equal to me).
<strong>The</strong> covariances are computed using the equations given in Section 2.2.<br />
Thus, for degree-variance model 3, the covariances will be evaluated using the<br />
subroutine SUMK as well. This subroutine computes the sum <strong>of</strong> the infinite series<br />
CD Q, m<br />
1 a 1 1-1 1 p - 2 - S Dt Pa(t) and -<br />
S k t L (a+B) 2 @+B) D: pkt) ;<br />
L<br />
which are needed for the computation <strong>of</strong> the quantities cov:(si, sJ), cf. eq. (39) and<br />
Tscheming and Rapp (1974, eq. (130) - (135)).
6. Input Spec if icatioils .<br />
We can divide the input data in different (sometimes overlapping) groups:<br />
(A) Data (generally true/false values <strong>of</strong> logical variables) determining<br />
the flow <strong>of</strong> the program (LTllAN, LPOT, LCREF, LGRID, LERNO,<br />
LSTOP),<br />
(B) Data specifying selected input/output options,<br />
(C) Data specifying the reference systems used for coordinates and obser-<br />
vations,<br />
(D) Data specifying the degree-variance model used,<br />
(E) Data used for the determination <strong>of</strong> T (i. e potential coefficients, gravity<br />
values, deflections, etc. ) and solutions to normal equations, and<br />
(F) Data used to specify which quantities we want to predict.<br />
<strong>The</strong> input flow is roughtly sketched in Figure 5. <strong>The</strong> position <strong>of</strong> the<br />
integers i-5 in the diagram indicates the beginning <strong>of</strong> the input data beionging to<br />
one <strong>of</strong> the 5 groups described below:<br />
up to<br />
one<br />
repetition<br />
Figure 5: <strong>The</strong> Input Flow.<br />
@ Input data <strong>of</strong> category<br />
(A)-(F) mentioned in text.<br />
Up to 8 repetitions, when the input data<br />
has significantly different characteristics<br />
Unlimited number <strong>of</strong><br />
repetitions
<strong>The</strong> input consists exclusively <strong>of</strong> data on 80-column punch-cards. We will<br />
describe the content <strong>of</strong> each card, but not the format <strong>of</strong> thc card. Instead, the for-<br />
mat statement number will be given (in brackets) together with a two to five digit<br />
number, e.g. 3.013. This number will be used to identify the corresponding card<br />
shown in the input example, Appendix B.<br />
We will divide the data in 5 categories:<br />
(1) Data <strong>of</strong> type (A), (B) and (C), i. e. data describing the reference<br />
systems used,<br />
(2) Data <strong>of</strong> type (A), (B) and (E), where the data <strong>of</strong> type (E) are the<br />
potential coefficients,<br />
(3) Data <strong>of</strong> type (A), (B) and (D), i. e. data related to the degree-<br />
variance models,<br />
(4) Data <strong>of</strong> type (A), (B) and (E), where the data <strong>of</strong> type (E) are obser-<br />
vations <strong>of</strong> gravity anomalies, measured gravity values, height anom-<br />
alies and deflections <strong>of</strong> the vertical,<br />
(5) Data <strong>of</strong> type (A), (B) and (F).<br />
<strong>The</strong> first digit in the identifying number will be the number <strong>of</strong> the category<br />
to which the card belongs. <strong>The</strong> other digits are used to indicate to which group<br />
or subgroup within the category the card belongs. In case an input situation de-<br />
pends on the content <strong>of</strong> e. g. the card 3.01 and there are two different input pos-<br />
sibilities, the two cards will have the numbers 3.011 and 3.012 respectively.<br />
(Data <strong>of</strong> type (A) and (B) will, as mentioned above, in many cases be the true or<br />
false value <strong>of</strong> a logical variable. <strong>The</strong> function <strong>of</strong> a logical variable can be explained<br />
by writing e. g. : LE is a logical variable, which is true when XXX and false other-<br />
wise. Thus, we will in several cases below simply write LE = XXX.)<br />
Categoq 1. (<strong>The</strong> numbers in brackets are, as mentioned above, the corresponding<br />
---- - format statement numbers).<br />
1.0 (105) <strong>The</strong> (true or false) values <strong>of</strong> five logical variables: LTRAN= the<br />
observations must be transformed to a new reference system, LPOT=<br />
potential coefficients are part <strong>of</strong> input data (observation data. set XI),<br />
LONEQ = output the coefficients <strong>of</strong> the normal equations on the line<br />
printer, LLEG= output a legend <strong>of</strong> the tables, which will be printed and<br />
LE = the standard deviations <strong>of</strong> the observations to be input (otherwise<br />
they are set equal to zero).
1.1 (103) A text <strong>of</strong> maximally 72 characters included in apostrophes, which<br />
identify the referace sys tem <strong>of</strong> the observations.<br />
1.2 (120) <strong>The</strong> semi-major axis (meters) and the inverse <strong>of</strong> the flattening <strong>of</strong><br />
the Geodetic Reference System. <strong>The</strong> value <strong>of</strong> two logical variables,<br />
LPOTSD = the gravity are given in the Potsdam system and LGRS67 =<br />
the gravity data are given in the Geodetic Reference System, 1967.<br />
In case the gravity data are not in the Potsdain system or in GRS 1967, input <strong>of</strong>:<br />
1.21 (121) <strong>The</strong> product <strong>of</strong> the gravity constant and the mass <strong>of</strong> the <strong>Earth</strong><br />
(kM) in units <strong>of</strong> me ters 3 / sec 2 .<br />
When LTRAN is true input <strong>of</strong>:<br />
l. 3 (131) <strong>The</strong> new semi-major axis (meters), the new kM (meters 3 /sec 2 ),<br />
the inverse flattening, the translation vector (dX, dY, dZ) (meters), dL =<br />
one minus the scale factor, the three rotation angles (c,, c,, c,) (arc sec)<br />
and the value <strong>of</strong> a logical variable, LCHANG, which is true when the<br />
deflections and the height anomaly are to be corrected for a systematic<br />
error. (<strong>The</strong> correction must be given as a change 65,, 6q0, 65, at a<br />
point with coordinates p, X,, cf. Section 5.2).<br />
When LCHANG is true, input <strong>of</strong>:<br />
1.31 (133) cp, and X. in degrees,minutes and arc seconds, 65, , 6q0 in arc<br />
seconds and 6C0 in meters.<br />
Category 2. Data <strong>of</strong> this category are only input, when LPOT (card 1.0) is true.<br />
<strong>The</strong> values <strong>of</strong> kIvI and a, input on card 2.1, will have to be the best<br />
available estimates, cf. Section 3.2. <strong>The</strong>y must be identical to<br />
the values input on card 1.3, when LTRAN is true.<br />
2.0 (103) A text <strong>of</strong> maxiinally 72 characters, describing the source <strong>of</strong> the<br />
potential coefficients.<br />
2.1 (137) kM (meters 3 /sec"), a (meters), the normalized coefficient c2*,<br />
multiplied by 106, the maximal degree <strong>of</strong> the coefficients and the value <strong>of</strong><br />
a logical variable, LF&I, which is false, when the coefficients E!,, are<br />
punched on a separate card, and C,, , S,, on the same card in a sequence<br />
increasing with i and j, and true w11en the coefficients are punched in the<br />
same scqxnce, on a number <strong>of</strong> cards, but with a fixed number <strong>of</strong> coef-<br />
ficients on each card. <strong>The</strong> first coefficient will, in both cases, have to
e C,,, (even when this is zero) and all cards must have the same format,<br />
as given by 2.1. All the coefficients have to be fully nornlalized and<br />
multiplied by 10~.<br />
2.2 (103) <strong>The</strong> format <strong>of</strong> the cards on which the coefficients are punched<br />
(in brackets).<br />
2.11 (format as given by 2.2). When LFM is false, the coefficients with c,O<br />
on one card and Clj and SIS on one card.<br />
2.12 (format as given by 2.2). When LFM is true, the coefficients in a se-<br />
quence increasing with i and j on a number <strong>of</strong> cards.<br />
Catezory 3. We can select one <strong>of</strong> three anomaly degree-variance models, by<br />
-- --- giving the variable KTY PE the value 1,2 or 3, cf. Section 2.2<br />
eq. (30), (31) and (32).<br />
When KTYPE is equal to 3:<br />
3.01 (107) IK = the variable B in equation (32).<br />
<strong>The</strong> degree-variance model is then specified by giving<br />
(a) the ratio R/R, between the radius <strong>of</strong> the Bjerhammar sphere and<br />
radius <strong>of</strong> the mean <strong>Earth</strong>,<br />
(b) the variance <strong>of</strong> the gravity anomalies on the surface <strong>of</strong> the <strong>Earth</strong><br />
(VARDGB), (from which the constant A, in the equations (30)-(32)<br />
are computed, cf. , e. g. equation (go)),<br />
(c) either the "order" Ll'vfAX <strong>of</strong> the local covariance model to be used<br />
or a zero, which will indicate, that empirical anomaly degree-<br />
variances are used, and in this case<br />
(d) the empirical anomaly degree-variances, given on the surface <strong>of</strong><br />
A<br />
the <strong>Earth</strong>, aE(Ag, Ag), (88).<br />
a<br />
When IMAX is equal to zero, input <strong>of</strong> the maximal degree, IMAXO <strong>of</strong> the degree-<br />
var iances &; (A g, A g).
3.12 (103) <strong>The</strong> forinat <strong>of</strong> the degree-variances. <strong>The</strong>se must be punched on<br />
one or more cards, sequentially from degree 2 to IMAXO.<br />
3.13 (format as given on card 3.12). <strong>The</strong> quant,ities &;(ng, Ag) in units <strong>of</strong> mga12.<br />
------ Category 4. hput <strong>of</strong> up to 9 clatasets with ~i~gnificantly different characteristics.<br />
One dataset can, for example, be two separate.datasets punched<br />
differently, but both being gravity anomalies on the surface <strong>of</strong> the<br />
<strong>Earth</strong>. Another clataset may consist <strong>of</strong> mean gravity anomalies, all<br />
with the same format. Before each separate dataset, there will<br />
be input <strong>of</strong> 2 or more cards specifying the characteristics <strong>of</strong> the<br />
dataset.<br />
All the records in a dataset must, be punched im the same way.<br />
<strong>The</strong>re are the following restrictions (or options): A station number<br />
may be punched. In this case it must be the first datafield on the<br />
card and maximally occupy seven positions. <strong>The</strong> next two data-<br />
fields must contain the latitude and the longitude (in an arbitrary se-<br />
quence). When the height is given, it must be punched in the next<br />
datafield.<br />
<strong>The</strong> following (up to four) datafields will have to contain the observed<br />
quantity (or quantities in case <strong>of</strong> pairs <strong>of</strong> deflecti n components) and<br />
P<br />
its standard deviation. When the observation is a pair <strong>of</strong> deflections,<br />
they have to be punched in the same sequence as the latitude and the<br />
longitude are punched. In t,he last datafield the value <strong>of</strong> the logical<br />
STOP has to be punched, generally false ( = blank), but true for<br />
the last record in the dataset.<br />
4.0 (103) <strong>The</strong> format <strong>of</strong> the records (in brackets).<br />
4.1 (202) INO=l when a station number is punched, 0 otherwise, ILA = the<br />
number <strong>of</strong> the datafield occupied by the latitude, ILO = the number <strong>of</strong> the<br />
datafield occupied by the longitude (ILA and ILO will be equal to 1, 2 or<br />
3), am integer IANG specifying the units used for the latitude and the<br />
longitude (1 for degrees, minutes, arc. sec., 2 for degrees and minutes,<br />
3 for degrecs and 4 for 400-grades), IH= 0 when the height is zero and<br />
not punched and otherwise the number <strong>of</strong> the datafield in the record in<br />
which the height is punched (generally 3 or 4), IOBSl= the datafield number<br />
<strong>of</strong> the first observation in the record, IOBSB = the clatafield nunlber <strong>of</strong> the<br />
second observation (zero when there is only one observations), the
value <strong>of</strong> an integer XI?, specifying the kind <strong>of</strong> observation: 1 for height<br />
anomalies, 2 for measured gravity or gravity anomalies (point or mean),<br />
3 for pairs <strong>of</strong> deflections, 4 for the latitude component 5 and 5 for the<br />
longitude component 7) .<br />
<strong>The</strong>n the ratio RP (87) between the sphere on which the observations are<br />
situated atid the mean <strong>Earth</strong> radius and finally 5 logical variables: LPUNCH =<br />
punch observations together with the difference between the observed quantity<br />
and a possible contribution from the potential coefficients and a contribution<br />
from Collocation I, LWLONG = longitude is measured positive towards west,<br />
LMEAN= the gravity is a mean value, LSA = the standard deviations are the<br />
same for all observations, LKM= true when the height is in units <strong>of</strong> kilo-<br />
meters and false when the height is in meters.<br />
When the observation is a height anomaly it will have to be given in units<br />
<strong>of</strong> meters, and when it is a deflection component in arc seconds. But<br />
when the observation is a gravity anomaly or a measured gravity quantity,<br />
it is possible to specify tivo constants DhI and DA, which when DA is first<br />
added and the sum multiplied with DM will bring the observed quantity into<br />
units <strong>of</strong> mgal.<br />
4.11 (203) DM, DA and a logical variable LMEGR, which is true, when the ob-<br />
servation is a measured gravity value.<br />
When LSA is true, the records <strong>of</strong> observations will not contain a standard<br />
deviation <strong>of</strong> the observed quantity, and the standard deviation will then have<br />
to be input separately:<br />
4.12 (<strong>212</strong>) the standard deviation <strong>of</strong> the observations. <strong>The</strong>n the observations<br />
are input record after record, not exceeding a total number <strong>of</strong> 1598.<br />
4.2 (format given on card 4.0). Input as specified on card 4.1, last record<br />
with LSTOP equal to true.<br />
WhenLSTOP is true, a logical variable with the same name (i.e. LSTOP) is input.<br />
It is true when the last dataset is the final dataset used in Collocation I or 11.<br />
<strong>The</strong> final card will hence have the value true (T) punched in the first datafield. On<br />
this card, in this case, the values <strong>of</strong> two other logical variables can be punched.<br />
4.3 (230) <strong>The</strong> value <strong>of</strong> LSTOP, and when LSTOP is true, the values <strong>of</strong> two<br />
logical variables, LRESOL = input the solutions to the norinal equations<br />
(they must then have been produced in a previous i-un <strong>of</strong> the program) and<br />
LWRSOL= punch the solutions to the normal equations.
When LSTOP is false, the input process will he repeated from card 4.0. When<br />
LSTOP is tme and LRESOL is true, input <strong>of</strong> the solutions to the normal equations:<br />
First an identification card is read, then the solutions:<br />
4.31 (361) Input <strong>of</strong> solutions, i.e. the cards produced in a previous mn <strong>of</strong><br />
the program, where the logical variable LWRSOL was true.<br />
When the set <strong>of</strong> observations is the first one (the variable LC 1 is false),<br />
input <strong>of</strong> a logical variable LCREF, else jump to 5.0.<br />
4.4 (230) LCREF = a new set <strong>of</strong> observations, which will be used in collocation<br />
11, will have to be input,<br />
For LCREF= true, jump back to 3.1.<br />
Category 5. Data specifying quantities to be predicted. This specification will<br />
naturally have to be done in much the same way, as when the obser-<br />
vations were specified. We need coordinates and some variables,<br />
which specifies tile type <strong>of</strong> quantity to be predicted. <strong>The</strong>re are then<br />
two possibilities, which are distinguished by the true and false value<br />
<strong>of</strong> the variable LGRID.<br />
When LGRID is false, we will proceed in exactly the same way as<br />
above, dealing with data <strong>of</strong> Category 4. <strong>The</strong> quantities to be pre-<br />
dicted will be specified by a list <strong>of</strong> coordinates and 2 or more<br />
cards specifying format and type <strong>of</strong> quantity to be predicted.<br />
<strong>The</strong> list <strong>of</strong> coordinates may in fact be a list <strong>of</strong> observed quantities,<br />
which we want to coinpare with the quantities to be predicted. If<br />
this is the case, a logical variable LCOMP has to be true.<br />
When LGRLD is true, the predictions will have to take place 1n<br />
points which form a grid. <strong>The</strong> south-west corner <strong>of</strong> thegrid<br />
will have to be specified together with the distance between<br />
the mesh points in northern and eastern direction and the num-<br />
ber <strong>of</strong> mesh points having the same longitude and the same latitude.<br />
5.0 (200) Input <strong>of</strong> the logical values <strong>of</strong> LGRID, LERNO = estimate <strong>of</strong> error <strong>of</strong><br />
prediction is nmted and LCOMP = compare predicted and observed quan-<br />
tities.<br />
First time LCOMP is true, two constants used to specify the sampling width for<br />
a frequency distribution <strong>of</strong> the difference between observed and predicted gravity
anomalies (VG) and deflections (VF) must be input (e. g. equal to 2.0 mgal and<br />
0.5 arc. sec. ). (<strong>The</strong> differences are sampled in 21 groups. )<br />
5.01 (203) VG and VF.<br />
When LGRID is true:<br />
5.02 (201) Coordinates (latitude and longitude in degrees and minutes) <strong>of</strong> the<br />
south-west corner <strong>of</strong> the grid, the increments in latitude and in longitude<br />
(minutes), the number <strong>of</strong> increments in northern and in eastern direction,<br />
the value <strong>of</strong> the R P giving the type <strong>of</strong> quantity to be predicted (see 4. l),<br />
RP (see 4. l), L&AP= print the predicted quantities on the line printer<br />
with all values which are predicted in points with the same latitude on<br />
one line and all values predicted in points with the same longitude above<br />
each other, LPUNCH = punch coordinates, predicted quantity and when<br />
LERNO is true the estimated error, LiLIEAN= gravity to be predicted<br />
is a mean value.<br />
When LGRID is true, jump to card 5.1.<br />
Now, when LGRID is false, we may input lists <strong>of</strong> coordinates just as above:<br />
5.030 as 4.0 (format <strong>of</strong> records)<br />
5.031 as 4.1, with the following changes; When LCOMP is true, LPUNCH will<br />
mean the same as in 4.1 and the error <strong>of</strong> prediction will be punched when<br />
LERNO is true. When LCOhlP is false, the predicted quantity as given<br />
in the new and in the old reference system will be punched together with<br />
the error <strong>of</strong> prediction, when LERNO is true. <strong>The</strong> logical variable LSA<br />
has no function in this phase <strong>of</strong> the computations.<br />
When no observed quantity is contained in the record, both IOBSl and<br />
IOBS2 will have to be put equal to zero. Thus, in this case the record<br />
will have to contain the height. (<strong>The</strong> program requires the presence <strong>of</strong><br />
at least one datafield be!xeen the datafields occupied by the latitude and<br />
the longitude and the datafield occupied by the logical variable LSTOP).<br />
When IKP= 2 (we are predicting gravity quantities):<br />
5.033 input as specified by 5.030.
5.1 <strong>The</strong> value <strong>of</strong> LSTOP, true when no more quantities are tb be predicted.<br />
When ISTOP is false, jump to 5.0.<br />
An input example is printed in Appendix B.
7. Output and Output Options.<br />
<strong>The</strong> output from the FORTRAN program has been designed with the purpose,<br />
that the determination <strong>of</strong> ? and subsequent predictions should be as well documented<br />
as possible. This means, that nearly everything, which is used as input also will<br />
be output.<br />
<strong>The</strong>re are a few exceptions:<br />
(a) data <strong>of</strong> type (A) and (B) (cf. Section 6) are not printed,<br />
(b) the potential coefficients are not printed,<br />
(c) a measured gravity value is not printed, but the corresponding free-air<br />
anonlaly is,<br />
(d) more than two decimal digits <strong>of</strong> coordinates given in minutes or seconds<br />
and <strong>of</strong> observations are generally not reproduced.<br />
With these exceptions all input <strong>of</strong> type (C) to (F) are printed with proper headings<br />
02 the !ize printer.<br />
We will now distinguish between non-optional and optional output. <strong>The</strong> out-<br />
put can be made on h 7 0 units, unit 6 the line printer and unit 7 the card punch. Non-<br />
optional output is output on the line printer exclusively.<br />
-A program identification is printed giving date <strong>of</strong> program version.<br />
-<strong>The</strong> used mean <strong>Earth</strong> radius and the reference gravity used on the sphere in<br />
equations (20)-(22) is printed.<br />
-<strong>The</strong> equatorial gravity and the potential <strong>of</strong> the reference ellipsoid as computed<br />
from the constants specifying the reference systems.<br />
-<strong>The</strong> residual observations di-,X,, and if meaningful: the contribution from the<br />
datum transformation, from the potential coefficients, the first dataset (Collocation<br />
I) and the second dataset (Collocation IT) and the sum <strong>of</strong> these contributions,<br />
-<strong>The</strong> pedicted quantity and if meaningf~tl: the contributions from the datum transformation,<br />
the potential coefficients, Collocation I and 11.<br />
-<strong>The</strong> solutions to the normal equations,<br />
-<strong>The</strong> estimaLcd variance <strong>of</strong> the residual observed and predic ted quantities, and<br />
-Error messages in case e. g. certain array limits are exceeded.
Optional output on the line-printer:<br />
-A legend <strong>of</strong> the labels <strong>of</strong> observations and preclic tions, (LLEG - tme),<br />
-<strong>The</strong> difference between observed and predicted quantities (LCOMP = true),<br />
-<strong>The</strong> estimated error <strong>of</strong> prediction (LERNOZ true),<br />
-A primitive "map" <strong>of</strong> the predictions (LGRID = true and LMAP = true). (<strong>The</strong><br />
predicted quantities multiplied by 100 will be printed with the values predicted<br />
in points with the same latitude on one line and the values predicted in points<br />
with the same longitude above each other, see the 'tmaptf, Appendix C, page 125. )<br />
-Mean value and variance <strong>of</strong> difference between observed and predicted quantities<br />
and table <strong>of</strong> distribution <strong>of</strong> the differences samples according to specified sample<br />
width (LCOhZP is true).<br />
Optional output on the card punch:<br />
-<strong>The</strong> solutions to the normal equations b, and b, (LWRSOL = true)<br />
-the observed quantities and the residual observations (LPUNCH= true),<br />
-the predicted quantities, the estimated error (LERNO = true), the difference<br />
between observed and predicted quantities (LCOMP = true), and when LCO&ZP<br />
is false, the predicted quantity in the original and the new reference system.<br />
<strong>The</strong> solutions to the normal equation can be used as input to the program,<br />
cf. Section 6, input specification No. 4.31.<br />
An example <strong>of</strong> the output on the line printer is given inn Appendix C.
8. Recomn~endations and Conclusions.<br />
A development <strong>of</strong> a computer program as the one presented here is a task,<br />
which can be continued for years. But at some point it is necessary to stop and<br />
present a fully documented program version, even if it is obvious that improve-<br />
ments can be made.<br />
Most <strong>of</strong> the recent ideas and investigations in the field <strong>of</strong> least squares<br />
collocation are used in the program. Hence, the program may principally be<br />
used for<br />
N<br />
-the determination <strong>of</strong> an approximation to the anomalous potential, T and<br />
-prediction and filtering <strong>of</strong> gravity anomalies, deflections and height<br />
anomal ie S.<br />
<strong>The</strong> determination <strong>of</strong> may be improved in several ways. <strong>The</strong> program<br />
should be changed so that other types <strong>of</strong> data as e. g. density anomalies, satellite<br />
orbit perturbations, and gravity gradients can be used as observations and pre-<br />
dictions. <strong>The</strong> program should also be able to predict potential coefficients. <strong>The</strong><br />
covariance models, which can be used in the program are all isotropic. <strong>The</strong> use<br />
<strong>of</strong> a non-isotropic covariance model may improve the determination <strong>of</strong> y.<br />
In Section 3.2 it was pointed out, that the data had to be given in a geo-<br />
centric refe ence system. Thus, the necessary translation parameters may be<br />
estimated by including these quantities as parameters X, cf. eq. (7) and (g),<br />
Tscherning (1973) and Moritz (1972, Section 6).<br />
It is also possible to add new data to an original set <strong>of</strong> observations, with-<br />
out having to conlpute and invert the full covariance matrix. This type <strong>of</strong> compu-<br />
tation is denoted sequential collocation cf. Moritz (1973). This feature may very<br />
easily be incorporated in the program, especially because <strong>of</strong> the flexible design<br />
<strong>of</strong> the subroutine NES (cf. Section 5.2 and the comments given to the subroutine<br />
in Appendix A).<br />
<strong>The</strong> determination <strong>of</strong> potential coefficients and datum shift parameters may<br />
also be incorporated without difficulties. But the other proposed improvements<br />
can not be made before the theoretical background and the necessary algorithms have<br />
been developed.
References<br />
Grafarend, Erik: Gcodetic Frediction Concepts, Lecture Notes, International<br />
Summer <strong>School</strong> in the Mountains, Ramsau, 1973 (in Press).<br />
Heiskanen, W. A. and 1-1. Moritz, Physical Geodesy, W. H. Freeman, San Fran-<br />
cisco, 1967.<br />
(BM): IBM OS FORTRAN IV (H Extended) Compiler,Programmer's Guide,<br />
SC28-6852-1, 1972.<br />
(BM): IBM System/3GO and Sys tem/370 FORTRAN IV Language, GC28-6515-9,<br />
1973.<br />
Jamcs, R. W. : Transformation <strong>of</strong> Spherical Harmonics Under Change <strong>of</strong> Reference<br />
Frame, Geophys. J.R. astr. Soc. (1969) 17, 305-316. J<br />
Karki, P. : A FORTRAN IV program for the Inversion <strong>of</strong> a Large Sylnlilet.ric<br />
Matrix by Block Partitioning, Department <strong>of</strong> Geodetic Science, OSU,<br />
Report No. 205, 1973.<br />
Krarup, T. : A contribution to the Mathematical Foundation <strong>of</strong> Physical Geodesy,<br />
Danish Geode tic Institute, Meddel else No. 44, 1969.<br />
Lauritzen, S. L. : <strong>The</strong> Probabilistic Background <strong>of</strong> some Statistical Methods in<br />
Physical Geodesy, Danish Geodetic Institute, Meddelelse No. 48, 1973.<br />
Meissl, P. : A Study <strong>of</strong> Covariance Functions Related to the <strong>Earth</strong>'s Disturbing<br />
Potential, Dep. <strong>of</strong> Geodetic Science, OSU, Report No. 151, 1971.<br />
Moritz, H. : Advanced Least-Squares Methods, Dep. <strong>of</strong> Geodetic Science, 'OSU,<br />
Report No. 175, 1972.<br />
Moritz, H. : Stepwise and Sequential Collocation, Dep. <strong>of</strong> Geodetic Science, OSU,<br />
Report No. 203, 1973.<br />
Parzen, E. : Statistical Inference on Time Series by Hilbert Space Methods, I,<br />
Tech. Rep. No. 23, Stanford. Published in Time Series Analysis Papers,<br />
Holden Day, San Francisco, 1967.
Poder, K. and C. C. Tscherning: Choleskyls Method on a Computer, <strong>The</strong> Danish<br />
Geodetic Institute, Internal Report No. 8, 1973.<br />
Rapp, R. H. : Numerical Resu1.t~ from the Combination <strong>of</strong> Gravimetric and Satellite<br />
Data Using the Principles <strong>of</strong> Least Squares Collocation, Dep. <strong>of</strong><br />
Geodetic Science, OSU, Report No. 200, 1973.<br />
Tscherning, C. C. and R. H. Rapp: Closed Covariance Expressions for Gravity<br />
Anomalies, Geoid Undulations, and Deflections <strong>of</strong> the Vertical implied<br />
by Anomaly Degree Variance Models, Department <strong>of</strong> Geodetic Science,<br />
OSU, Report No. 208, 1974.<br />
Tscherning, C. C. : An Algol Program for Prediction <strong>of</strong> Height Anomalies, Gravity<br />
Anomalies and Deflections <strong>of</strong> the Vertical, <strong>The</strong> Danish Geodetic Institute,<br />
Internal Report No. 2, 1972.<br />
Tscherning, C. C. : Determination <strong>of</strong> a Local Approximation to the Anomalous<br />
Potential <strong>of</strong> the <strong>Earth</strong> using llExactll Astro-Gravimetric Collocation,<br />
Lecture Notes, International Summer <strong>School</strong> in the Mountains, Ramsau,<br />
1973 (h Press).
Appendix<br />
A. <strong>The</strong> FORTRAN 1V program.<br />
B. An input example.<br />
C. An output exanzple.
Appendix A.<br />
<strong>The</strong> program is written in the language FORTRAN IV, cf. BM (1973). It may<br />
be run on an 113M model. 370 computer equipped with an BM model 3330 disk<br />
unit. <strong>The</strong> program may be compiled and executed using the catalogued pro-<br />
cedure FORTXCLG, cf. IBM (1972, p. 89) using the following job control<br />
language statements:<br />
// EXEC FORTXC LG, PARM. FORT='OPT(2)',<br />
// TIME. FORT=(, 3O), REGION=2521<<br />
//FORT. SYSIN DD *<br />
program statements<br />
//GO. FT GGFOOl DD DSN=DASET, CNITSYSDA,<br />
// SPACE=(12800,920), DISP=(, DELETE), DCB=(DSORG=DA, BUFNO=l)<br />
//GO. SYSIN DD *<br />
/ *<br />
//<br />
input data
a:<br />
C PPOGRAM GCODETIC CO!-LJCATlC!hS VERSION 20 APR, 19749 FORT'ZAN TV9 (?FP<br />
C 36Q/?O), PPnGKLCiYkD 6V C,CoYCUERh%NG~ DANISH GFOOETlC INSTITUTE/ CFP,<br />
Q GEODETIC SCItNit? OSL~,<br />
C SHE PROGRAM COVPUTES AN APPK3XIMAT13Y TO THE AQ9MALOUS POTFYTIAL '-IF<br />
C THE EARTH USIhG S7Er'WISE LEAST SQUAXE-F COLLOCATlONe THE MFTHrIT) 9FL)U.I-<br />
6 KES THE SPFClF1CATlWi OF (PI @!vE Oh TWC $CYD I N A SPFCIAL CASE TPQFE)<br />
C SETS OF QYSEKVED OUAiJTITIES WITH KVfJH1\l STANDARD OFVIATIflNS AQD (2 1 PNF<br />
C OR TWO CDVARIkk'CE FUYCTIONS.<br />
C THE CfiVkRIANCC FUYC7ICINS USFD ARE ISOTROPICe THEY ARE qPFCIF1 ED SY A<br />
C SET OF EMPIRICAL A~P4ALY DEGREE-VARIAYCES OF PEGRFF L E S THAY AY<br />
C IKTEGEW VPQIPFLE IMbXt RYD EY A ANOMALY DFS!iFE-VA?IA?4CE MOOFL FR9 THE<br />
C DEGPEF-VAFIbhCES @F DFGPEF CRFATHFR THAN IMAX.<br />
& THE OF. SERVATIONS MAY 3F POTFIJTIAL COEFFICIFYTS 9 bIEAN 9R PUInlT GSPVITY<br />
C AMOMALIEC, HFlGHT ANOWLLIES P44D IJEFLECTIPYS CF TUE VERTICAL. B FIL-<br />
C TtRING OF THF '-IMSF9VATiW!S 1AYFS PLACE I/rULTAYE3USLY WITH THF DETER-<br />
C MIIJATIOV OF Tt*E AM3VALOIJS FfJTFUTIAL.<br />
C THE DETFRMIkATIL't: I S VPCIF 1N A AI',LVREQ GF STEPS Ff'UAL TO THE NUYSCQ OF<br />
e stvs CF oe:Enva-rrrr%s, WHEN POTENTI AL COFFFIC~ENTS AFE USFP~ WI LL THF-<br />
C ESE FflRM A SFPEFbTE SFT AFID THE TOTAL YLVMYE9 OF SETS EIAY Ir\l THIS CASE<br />
C AMnUNT TQ THRIF,<br />
C EACH DATASET IFLCH STFP) WILL DETERMIUE A )-;IAQMOYIC FUYCTIDYy AVD THE<br />
C PPiOMALI3US POSENTIAL NILL 5E EQUAL TO THE SUY OF TFEFSF (?lAXIMbLLY<br />
C TtiRFF 1 FUhCT EDhS.<br />
C POTENTIAL CnEFFLCIENTS WILL DETERVIWF A FUNCTIOFl FQUAL TO THE CVFFFH-<br />
C ClENTS MULTIPLIED BY THE CUC.RFSDONDIi'4G SOLID SPHERICAL r-'AQMOUICC. THE<br />
C UP TO TWO cFT? UF DATA DIFFFFENT FRPM POTFNTIAL COEFFICIFVTS WILL<br />
C FACH RE U5FD TO DETERPIXE CONSTAYTS E( 11, THE COF'?ESPr]Yrll?lG HAQMnYIC<br />
C FUNCTIOVS 4RE THFX FQUAL TO THEESE COlrSTAYT5 MULTIPLIFr3r SY TYE COVA-<br />
C RlANCF EEThFEN THE PESERVAT IDNS A\D THE VALUE OF THE AVOMALOUS POT-<br />
C FNYI4L IN A PCtLhTp Ps<br />
C %"F MAIN FUUCTlrN PF TUF PqOOPAM IS, RESIPES THE C'IMPYTATION OF THF<br />
C COYSTANTS E( I S, TYE PREDICTI~Y C:F THE GU~TITIE? FTA, GELTA e, usr<br />
C AND ETA 191 POINTS Q. TH-rE PREDICTED VALUE IS ECUAL TO THE PRgDUCT SUY<br />
C OF B( I ) ANP TEE CDVPRIAYCE EETWEFN OBSERVATION Y0.I AND TtJE OUAVTITY<br />
C TO @F PRFDICTED.<br />
C<br />
C REF(A1: TSC"tRNINGpC*C- AND R-HeRAPP: CLOSEP COVARIANCE FXPUESSIOt'IS<br />
C F09 t-SAVITY ANOMALIES, GEOIO L!YDULATIPY!Ss AhD DEFLECT1 nUq PF<br />
C THE VFRT IC AL IMP LI ED EY A'V3MALY DEGREE-VAR IAVCE M'J9EL5, DEP-<br />
C ARTMFNT OF GFOGETIC SC lENCFt TPF OHIO STATE UY IVE9SITY 9<br />
C REPORT NO* 708 t 1974<br />
C<br />
e<br />
REF(R): TSCHERNIr\;G,CoCe: A FORTRAN 1V "RCCRAP FTIR<br />
nF T ~ E ANOMALOUS POTENTIAL USIQG STEPWISE<br />
THt DETFRMINATIPN<br />
LEAST S Q U A ~ F CPL- ~<br />
C LDCATlON t DEFAFTME'!T OF GEODFT IC SC IFUCFI THE OHID STATE UY I-<br />
C VESSITY, 9FPDRT NO* <strong>212</strong>9 19749<br />
& REFf C): HFISKANFN b.1.A- AND H.MC1R IT?: PHYSICAL GEOCIFSYp 1067.<br />
C REF(D1: JAMESr ReW*: G E D ~ H Y S ~ J ~ R ~ A S T R ~ S O17, C ~ I 305- ~ ~ Q ~ ~ )<br />
c<br />
IMPLICIT S Y T E G E P ( ~ ~ J ~ K ~ M LflGICAL(L)tREAL I Y ) ~<br />
*R(A-HqO-Z)
COMMQY/PR/SIGMA(250)TC,IGMAn(250) vi3( 16C!r))~P(42)r<br />
*SINLAT( 1600) rCOSLAT(160r)) IPLAI (l6nn) ,RLflKG( 16,001 vC~~SLAPTSI'JLAPT<br />
*RLATP TELONGPTQPTPPETkP9 PREDP~PWOLflNFCflT L?
C MFNSION OF TFE bRKAY NPL (IN 1HF 60i4elOU RLQCK /NFSnL/),<br />
DEFINE FILF 8 (5?O932OOtU,IQ?<br />
e<br />
C lNITlALIZAYlON OF VbRIAPLESt WHICH ARE IY CnMMOhJ BLCCKSo<br />
DO = O*ODO<br />
- oi = n,nw<br />
D2 Z00D0 D3 = 3aOGO<br />
P(19 = DO<br />
P(21B = DO<br />
COSLATt 1600 J = D1<br />
SINLATflt,OO) = U0<br />
RLkTd Pt~QOI = DO<br />
RLONG(16001 = DO<br />
CLA = PO<br />
WP(11 = RF+*S/GP<br />
W = S E**2 /GlA*2O6?6t,806LO<br />
WP(2) = D1<br />
WP(3) = W<br />
WP(41 = I4<br />
WP(51 = W<br />
BT = 0<br />
1P = 0<br />
LNFRtL'3 = LT<br />
LCPEF = LF<br />
LC1 = LF<br />
LC2 = LF<br />
INDEX (I 1 = 0<br />
D@ 12OG I = 1, 250<br />
1700 SIGMAO(11 = D0<br />
C<br />
C HEADINGS AND DEFINING CPNSTANTS.<br />
klR1TE(6?104)<br />
104 FORMAT( a 1GFODETIC COLLOCATTONIVERS~OY 20 APR<br />
MRITE(hrll3)<br />
1974aF//%<br />
113 FORPAT( "Oh'C!TF THAT THE FUhCT IONALS ARE I N SPqFRPCAL APPPf7X%YATIflNB<br />
*/B MEAN RADIUS = RE = 6371 KM AND MEAV GRAVITY 981 KGAk USEDe*)<br />
e<br />
C INPUT OF 5 LOGICAL VARIABLfSv LTRAN = CFORGINATFS ARE T f SE T4AVS-<br />
C FORMED TO NEN RFFERENCE SYSTEM? LPOT = POTEYTIAL CDrFFICIE\!TS AQc TO<br />
BE USED AS FIRST SET OF OBSERVATlOQTt LONEQ = OUTPUT COEFFICIFUTS 3F<br />
C NCRKAL FQUATIGNS ON UNIT 69 LLEGK = OUTPUT LEGEND VF TAPLES ?F 09SFP-<br />
C VATIOYS OR PREDPCTPONS AND LE = TAKE ERRORS CIF OFSERVATIORS<br />
C CCUNTe<br />
READ(~~LO~)LTRANILPOT,LUNEQ~LLEL~LE<br />
B05 FORMAT (5LF')<br />
LNTRAN = .NOT.LTi?AN<br />
LNPOT = .NflT.LPOT<br />
INTP bC-<br />
IF (eNQT-LE) WRLTE(6tll8)<br />
118 FORMAT l ' FF.RORS IN I1bSERVATlCINS ARE NOT TAKFN iNTO ACLflUVT- '1
C<br />
I F (LLFG) WRHTF(6sll4)<br />
114 FORMAT ( 'C'LEGEND OF TABLES OF OSSFRVbTIOVS ARD PRFDTCTlnNq :' ,/ 9<br />
*' 06s = OPSEKVED VALUE (klHFsl BOTH COMPDWFYTC '1F DFFLECTIqYS AI;FB/e<br />
* @ OBSERVEI ETA RFLOW KC l ) p DIF =THE DIFFEQFVCF RETWEFRI 03SF9VFD8/9<br />
*I AND PPFr ICTFD VALUF p WHFV PREDICTIONS ARE: CPYDUTFD AKD FLCC ' / v<br />
Ss THF KFrIlCjrJPL (>RSFPVATIO:4, ER? = FSTlrlA7EI) FPRO'I OF PRF~)ICTICYV/P<br />
4'3 TRA = CPVTPIZUTIPY FROM DATUM TSAYSFGRMATIC'Yp POT = CnYT?I-'/v<br />
*' BUTInY FPOV PflTEYTlAL CDEFFICIEYTSv COLL = COYTQTEUTI~U "3!4'/9<br />
*' COLLCICATJO'I DETERWINEP PAiiT UF FSTIflATE? WHF'! THFFC ONLY '+AS",<br />
* @<br />
* v<br />
PEFY USkD ONE SET OF GBYESVDTIONC (DIFFERENT FsfJ'4 P'JTgCOCF!=,) '6,<br />
COLLI = CPk'TXIkUTLON FPPF ESTIVATF OF ANflXbLOUS POT. DFTFR-@/v<br />
* @ MIYFL'I FSOM FIRST SFT OF Oi3SE9VATIONS~ COLLZ = C3YTRIBUTIT)".'/r<br />
* @ FPOV ESTIYATE CJRTAIYED FROM SECDVD 5ET PF ClFSFRVATITlYS, PQED='/,<br />
S' PREDICTFD VALUE IY YEW REFFREYCE TYSTFMI WHFY PRF9ICTI7YS APF'/*<br />
*l COMPUTFCI ANO FLSE Tt-IF SUlZ OF THE CONT%IBUTI7NS FRfkl THF PDT.s/t<br />
*' COEFFIC IEhTS AKD F1 QST TSTlb4LiTE OF ANDMDLCJIJS POTENTIAL. A W J '/p<br />
*' PREC-TRA = PREDICTIPN PR ?Ui+ OF CONTRIEUTIONS IN THF nLr PE-@/?<br />
*' FERENCt SYSTEM.')<br />
C.<br />
C. INPUT OF PATA OF REFERFYCF SYSTEM.<br />
WKITF (6,106)<br />
106 FORgAT('OoEFEQEh!CE SYSTEM:')<br />
C INPUT OF TFXT RESCiZIRIFiG REFERENCE SYSTEH I FqkX.72 CHARCICTLFS<br />
READ( 'T9103)FMT<br />
WRITE(hqFf1T)<br />
C IRPUT OF SFYI-MPJOR AXIS (METFRS)? l/FLATTENlYG, VALUE OF TWO LOGICAL<br />
C. VA41AbLESI LPCjTSD = GQAVITY I Y DOTSEAM SYSTFM AVC LGRS67 = GPAVITY RF-<br />
C FER TT; GRS 1967,<br />
READ( ~ ~ ~ ~ ~ ) A X ~ / P F O ~ L P O T S D / P L G X S ~ ~<br />
120 F@RMAT(FlO.LyFlPe5,2L2)<br />
F1 = DI/Fn<br />
E21 = Fl*(P2-F1)<br />
IF (LPOTSn.OR.LGRSh7) 50 TO 1021<br />
C. IKPUT OF GM CIF- PEFERENCF-SYSTFM OF DPSERVATIDNS.<br />
REAL( 51 121 )CM1<br />
121 FOKMAT (Dl5.8)<br />
1021 IF(.Y3Tg LCTRSh7) CALL CSAVC(AX~,FI,GM~V~TLFOTSDIUREFOT~R~F)<br />
I F (LCFS67) CALL GRAVC(6378160.0C0,D1/2?8.24?17DO13.4~603D14~~~<br />
*LFyU?FFOTGQEF)<br />
WRITF (h,177)AXlpFO,GP,EFpUCiEFO<br />
122 FOPMAT(O0A -'7F10.17' H V T<br />
4' 1/F =@TF1O.F/ p<br />
*@<br />
REF.GQAV1TY AT FQUATOQ ='?F12.2~' MGAL'/r<br />
8' POTF?
C<br />
C INPUT OF TFXT DESCRIBING SOUrlCE OF THE POTENTIAL COEFFICIENTS (MAX, 73<br />
C CHARACTF? S ).<br />
RFAD( S9lO3) FMT<br />
WPITE(h,l30)<br />
130 FORYAT(@OSOURCE OF THF POTFNTIAL CDFFFICIEYTS USED:')<br />
WRITE(h,FMT)<br />
C<br />
C lNPUT OF GM (P'ETERS**3/SEC*+2) A (METEQS) 9 THE WOPVALIZFD CnFFFICI FNT<br />
C C'F DEGREE TWO ARD OPCEP ZERI: (THF FCOYD DFCRFF ZDklAL YA9!lORIC) MEL-<br />
C TlPLlED 3Y ZeODhT THE MAXIMAL DEGhEF DF THE CnFFFlCIFYT', A LC
1050 N - O<br />
WR17E (69lOQ8<br />
109 FPRMAT(@OCTART rF CTLLOCATICY 1:<br />
C INPUT CIF TEF INBECiEP KTYPE DETEGPlINIING TYPE OF DEGREE-VARIANCE Yf'PFL<br />
C USFD FOR PFGREE-VPRZANCES OF PEGKEE GREATHER THAY IVAX (SEE BELOW)<br />
C KTYPE MAY L!? FCUAL TO le 2 AND 3 CORRESPONDING TO THE DEGREE-VAQIANCF<br />
C FIU.lELS l* ? AKD 3, CF. REF(B)? SECTION 7a2s<br />
WEAD(59102)KTYPE<br />
LKFQl = KTYPEeFQeI<br />
LKEQ3 = KTYPE.EQ.3<br />
LKNEl = .VOT.LKFWl<br />
I F (KTYDf c.LT.31<br />
READ( 5 p l Q 7 ) IK<br />
B07 FnRr44T ( 14.1<br />
GO TO 1036<br />
IF tKTYPEeLEOO aOX. KTYPE-GE.4) GO TO 9999<br />
C INlTIkLIZPIT ICJY CIF:<br />
TKO = 1K-f<br />
IKI = IK+l<br />
IKZ = IKt.2<br />
VRQIARLFS I N COMMON BLOCK /SCK/.<br />
C<br />
TKA = IK4YIK1<br />
1026 WRITEBh,141)<br />
141 FORMAT( 'OTHF<br />
A*(T-l)/sl<br />
MODF L A'JOMALY DEGPEE-VARIAVCES ARE EQUAL TOR/*<br />
GO T9 (lO379l03EplO39) ,K%YPE<br />
P037 WRTTE(6rl42)<br />
142 FORMAT(B+6~9Xo'I.'1<br />
cc7 Ti) Inno<br />
1038 WhITF(bpl43)<br />
143 FORMhTI'+OqYX,VI-Z). '1<br />
GO TO 1COO<br />
1039 kJRITE(69144!%K<br />
144 FnR.XATIs+"9X9' (( I-21*(<br />
C<br />
1000 CXR = Dn<br />
DO 1035 I = 1 9 250<br />
1035 S I GMA I 1 = L0<br />
sues = DO<br />
SUMSlG = DO<br />
SUKRS? = DO<br />
IV1 = -1<br />
MAXC1 = li<br />
C<br />
I + ' 9 1 4 P ' ) 1 *'l<br />
C IWUT OF C:I%STANTS USF-0 FOR THE FINAL SpEClFICATION OF T1iF DFG9EE-VAK-<br />
C IANCE FEODFL* R = RATIT! bET,+EFN THE BJERclAVMAR SPHERE RADIUS AKn THE<br />
C MEAN FARTu RADlUS9 VFRDC2 = VARlANCE OF TKE GRAVITY ANDMALJES AN9 IMAX<br />
C WHICH IS FOUPL TO THE (3FDFR OF TUE LPCAL COVORIANCE FUNCTICIN USF9.<br />
C<br />
C<br />
TtJUS IMAX=n IkPlCATES9 THAI WE ARE USLNG A GLOBAL COVA9IANCF F2YCTION.<br />
I N THIS LAST CA$€ 4 SET DF EClPI9ICAL ANOMALY DFG9EE-VA'IIAVCFS '3F ORDER<br />
C UP TO IMAXO CA% DE INPUT, THEESE DEGPEE-VARIANCES WILL HAVE 10 BE
C GIVFN ON THE SUPFACE OF TPE MEAN FAXTHv CFoRFF(E)rEQo(PfJ)o<br />
RCAD( SplGl)R~VARDS2~IPAX<br />
101 F!lRMAT(k9e6,F70?r<br />
I F (R.GT.Dl mnR,<br />
14)<br />
VkFDG2.LT~GOmDRmlMAX.LT,O) GO TO 0999<br />
LZFP7 = IMAX .YEm<br />
IMAXl = I&!AX+l<br />
0<br />
IF(LZEQO)GO TO 1040<br />
C INPUT OF TPF FCRMAT OFT THF PIGHEST DFGREF OF9 AND THF EMDIPICAL ANR-<br />
C KALY DEGREF-VARIAKCES<br />
102 FORMAT ( I 2 9<br />
READ( 5tlC2I IMAXO<br />
I V UYITS OF MGbL**2.<br />
IPLlAX = IRAXO<br />
IMAX1 = IVAX+1<br />
READ( S, 102<br />
P03 FUFt/lkT (QAP<br />
Fb4T<br />
READ(5,FMTI (SIrlNA(I)t I = 39 IMAXl)<br />
C ROTE TVAT THE DFCRFC-VARIAVCE OF OF'OEP I I S STORFD IN SIGMA (I+I<br />
C<br />
DO 1001 I = 3r IMAXl<br />
1001 SUMSIS = SUMS IG + S IGYA ( I)<br />
1040 I F (Itl#rX1+ISoLT.250) GO TD 1002<br />
WRITE (6,1FE)<br />
l08 FnRMAT(' SUSSCRIPTS OF ARPAY 5IGMA EXCEEDS APYAY LIMITt STflP*O<br />
GO TO 99Q0<br />
C<br />
1007 S = R W<br />
S2 = S*S<br />
RL = (Dl-k)*(Dl+R)<br />
S1 = RL<br />
RLNL = DLDG(QL)<br />
I F (IMEX.LT.3) GO TO 1004<br />
R I = GFLOPT( It4AX)<br />
D0 1003 J = 39 IPAX<br />
GO TO (1101~110?~1103)~KTYPE<br />
1101 R& = (FI-Fl)/RI<br />
GO TO 1105<br />
1102 RA = (RI-?l)/(RI-P29<br />
GO TO 1105<br />
1103 RA = (RI-Cl)/((EI-@2)*(kI+IK))<br />
1105 SUMRST = (SUMRST+RA)*S<br />
1003 R I = RI- D1<br />
C<br />
SUMRST = SUKRST*52<br />
1004 DIF = VARTGZ-'UMS I G<br />
I F (DIF,LT,PO) GP Tfl 9999<br />
C CCIMPUTATION OF THE NORFALlZlNG CCYSTANT A9 CFo REF,(B) FARAo 3030<br />
G@ TO ( I l ~ 6 r 1 1 0 7 ~ 1 1 ~ 8 ~ ~ K T Y P E<br />
1106 RA = KLYL+5/qL--SZ/DZ<br />
GO TO 111P<br />
1107 RA = D1/RL-S2*RLNL-SZ-S-n1<br />
1,
C WHEN PRF-DICTIPYS SHALL RE YADF I N PDINTS C'F A UPIFOFV GRID, LFKND IS<br />
C TFUFTW"tN TpE tS7 IMAFFD ERRPR OF PKEPICTICIY StfALL PE C'3KPUTED. LCnMP<br />
C IS TRUET WHCN PEiSE'?VTD k\D FPFDICTED VALUES SUALL BE CnMPAIREDm<br />
2000 PEbO( "200)LGP<br />
200 FURHAT(3L3)<br />
InrLFF~NO~ LCOMP<br />
1 F ( .NDTo (LFRkO.AMD.LkESOL)<br />
LERlJO = LF<br />
1 GO TO 3002<br />
WRITE (h?Z?t)<br />
226 FORMAT(' *** ERROR WILL NOT BE COMPUTEDl F.EQUIRED YFQ YOT STPREDe<br />
****l)<br />
2002 LCOMP = LCOMP .AND. (,?;QT.LGRID)<br />
I F (LCOM.CIRe(<br />
LCOM = LT<br />
oNOTmLCORP) GO TO 2005<br />
C lNPUT OF SCALE FACTPQS, USED FOR TPBLE OF DlSTRIRUTIOY OF DIFFEnFNCE?<br />
C SEE SUBROUTIYF CO14PA.<br />
RFAD( ~T?O?J)VGTVF<br />
CALL CfiWPA(L1G1VF<br />
C<br />
C<br />
VC, IN FAGAL APD VF IN ARCSFC.<br />
2005 LNFRNO = .NOT.LERNO<br />
LMAP = LF<br />
LMEGR = LF<br />
DM = D1<br />
@A = D@<br />
I F (.NQT.LGRID )GC TO 2000<br />
C<br />
C INPUT c c n ~ n r n \ n u ~ ~ h i+ uIES kr r ( LLTITUEEpLDYGITLIDE IN PEG9EE.S A';? DFi. OF r.7 IF:;-<br />
C TFS) OF S3UTH-WEST CORYER OF GYID? MAGYITUDE CIF GYID IVCPEPFYTS I N<br />
C N09THFKN ANP 'ASTERY DIRECTIOYS (V1YUTES)r YUWBFP nF IYCSFYFYTC IN<br />
C<br />
C<br />
TPE SAME DI'ECTIONS? THE VALUE OF IKP: ( l FOR ZETAp 2 FOR DFLTb<br />
G, 3 FOR KSI, 4 FCR FTA AKD 5 FOR (KSI?ETA)) RP = THE '?ATIT BCTWFEN<br />
C THE RADIUS OF THE SPHERE OV WHICH TYE POINTS PF PREDICTICX A9E 'ITUA-<br />
C TED ANG RE? TUE VALUE OF LMAP, WUIC" I S TRUE 9 Wk'FN TVE PREDICTIO'IS<br />
C SHALL 6E PR INTFD AS A PSI XI TIVE MAP? THE VALUE OF LPUYCI-I, WHICH I S<br />
C TRUE WHEY THE PREPlCTIfl!'IS SHALL 9E PUVCHFD AND THE VALUE OF LucAY,<br />
C TRUE WHEN THE PRREDlCTED QUANTlTIES ARE MFAN VALUE' (BECAUSE THIS IF+<br />
C PLIES? THAT TPFY ARE REPRESENTED AS POINT VALUFS I N A CFRTAIV YFIGHT).<br />
READ( 5,201) IDLACTSLACTIDLOC?SLGC?GLA~GL@?NLA~NLO? IKP~RPTLMAP,<br />
*LPUNCH?LPEAN<br />
201 FORMAT(?( I5,Fb-2)<br />
I F INLA.GT.19<br />
LWLONG = LF<br />
*OR- NLO.GT-19 .OR. IKPeEQ.51 LMAP = .FALSE,<br />
LGRP = IKP,EQe2<br />
NAI = 0<br />
NOI = O<br />
IOBS2 = 0<br />
I H = 0<br />
H = DC1<br />
I F (.NPT,LMFAK)<br />
LKM = H-GE.1.OD4<br />
H = (RP-Dl)*RE
C<br />
H0 = H<br />
OBS(P) = K<br />
IF (LKM) nescl, = M*I,OD-~<br />
LSTUP = LT<br />
JANG = 2<br />
NO = Q)<br />
2001 SLAT = NAI*LLAaSLAC<br />
SLOY = NC!I*GL@+SL@C<br />
ISLA = SLAT/60+OR13-2<br />
]I SLO = SLOId/hO+n. 10-2<br />
lDLAT = IDLAC+ISLA<br />
IDLOV = IDLCC+ISLO<br />
SLAT = SLAT-604ISLA<br />
SLON = SkON-bO*<br />
NE = NC+l<br />
U = H0<br />
ISLO<br />
IF (NO1 .EGO<br />
NO1 = "\iOl+B<br />
GO TD 2004<br />
2003 NO1 = 0<br />
NLO) GO TO 2003<br />
NAI = (:,A I+P<br />
2004 IF[NAIeNE*O ,CR.<br />
GD TO zon7<br />
C<br />
KQI oNEo 1)GO TO 3031<br />
C INPUT OF OVE PATA-SET OF OtjSERVATIONS 09 COOR.DINkTES OF P?EDICTID%<br />
C POINTS. ALL RECORCIS YUST EE PUNCPCD K'\! THE SAME WAY, THERE ARE THE<br />
C FOLLOWING CESTR~CT~TJNS ANb UPTIDNS: k STATION NUM9F9 MAY FE USFDp BUT<br />
C IT MUST OCCUPY THE FIRST GATAFIELD ON THF RECCtRD. THE TiJ@ NEXT DATA-<br />
C FIELDS MUST CCWTA1N TUE GEODETIC LATITUDE AND LOVGITCIDE ( IN P% \:R.FI-<br />
C TRARY OP9ER). IN CASE THE HEIGHT IS GIVEN* MUST IT BE PUNCHFD I? TPE<br />
C NEXT DATAFIELP. THE FDLLOkIING UP TO FOUR DATPFIELDS WILL WAVE T'3<br />
C CONTAIN THE OESERVED GUANTlTY (G!? QUANTITTEZ WHFN A PATT nF DEFLECTI-<br />
C ONS ARE EbSFRVFD) AND CONTINGENTLY THE STANOPRLi DEVIATIPMS ('IIIHFN LE IS<br />
C TRUE AND LSA 15 FALSE), A LIST OF C30RUIYATES OF PC:INTS WILL VAVF TO<br />
C CONTAIN A UEIGL'T CR A FlCTICIDUS OBSERVATION. TL'F LAST DATAFKFLD HAVF<br />
C TO HOLD THE VALUE 13F A LOGICAL VARIA3LE LSTClP? TSUE FOS THE LAST<br />
C RECORD IN THE FILE AND FALSE (I.E. BLANK) OTHERWISF,<br />
C<br />
C INPUT OF THE FORMAT OF THE RECORDS HnLDING THE OBSESVATIDN @R THE CO-<br />
C OR.DINATES OF THE PREEICTIPN PGlNT,<br />
2006 READ( 5,103) FKT<br />
C IYPUT OF VARIABLES SPECIFYIYG THE CCXTENT OF THF RFCOQDS. INO = Z t<br />
C WHEN THE STATION NUMGER IS PUVCHEDT O DTHFRWISE, ILA* IL'3 THE VUKBEQ<br />
C OF THE DATAFIELDS OCCUPIEO FY THE LATITUDE ANC! THF LONGI'IUDE 2FCDFC-<br />
C TIVELY? IANG SPECIFYING UNITS OF AhlGLES (1 FCI? DEGREES, MINUTES* ARC,-<br />
C SECONDSp ? FOR DEGREES, MI%I.!TES, 3 FUR GEGREFS AND 4 FnR 400-GRADFSIr<br />
C Iu = THE NUMBEk f3F T U E DATAFIELD WLDlNG TUE VEIGPT (PE90 WHEN WO<br />
C HEIGHT IS C3NTAINED)r IOPS1 IOES2 = THE D4TAFIELD NUMSER OF THE FIRST<br />
C AND THF SFCOYC' OBSERVATION, RESPFCTHVELY (ZERfl WHEY N3 FIRST OR SFCOVD
C OBSERVATIDNI* IKP* SPECIFYIYG THE KIVD OF OOSE?VATION~ (1 F99 ZFTA? 2<br />
C FOR MEASU2EG GRAVITY* POINT OR MEAN GRAVITY ANDMALIFSI 3 F9R KSIT 4<br />
C FUR ETA AF!D 5 FPR PAlR nF CIFFLECTIONS (K.SIVETA1 39 (ETA,YSII?(IN THE<br />
C SAME nRDER AS THE LATITUDE AND THE LONGlTUDT)<br />
C TUEN TuF. PATIP RP (CF.REF(B)r EQ-(07)) EETWEFN THE SPHERE ON WMICH Tt-!E:<br />
C OBSERVATIONS ARE SITUATED AYD RE, THE VALUES OF 5 LDGICAL V69IABLFS:<br />
C LPUNCH = PUNCH 09S. Oi? PRFOIClED VALUE AY@ CCNTIMGFNTLY TI!EI9 DIFFE-<br />
C RENCE* LWLONG = LONGITUDE I S PCJSITIVE TOWARDS WEST* LMFAN = THE DYED-<br />
C lCTED OR OBSERVED QUANTITY IS A PEAN VALUE* LSA = ALL OESFRVED CUAN-<br />
C TITIES 'JkVE TUE SC.HE STANDARD DEVIATIONS AND LKM = THE HEIGHT IS IN<br />
C LNITS OF KILUMETERS.<br />
READ( 592OZ) INOr ILA* ILO* IANGTIH*IOBS~~<br />
IOBS~~IKP*RP*LPUYCHTLWLONG<br />
*,LMEAVrLSA,LKl-l<br />
202 FORMAT(t13~F10.795L2)<br />
GM = Cj1<br />
DA = DO<br />
LGRP = IKP-EQ.2<br />
I F (LGRP I REAP( 59203) CMvDA*LF!F!GQ<br />
C LrZiEG9 IS T9UF WHEN THE MEASURED GqAVITY VALUE I S INPUT. OM ArJD DA ARF<br />
C AN ADDITIVE ANC! A MULTIPLICATIVE CONSTANT* RESPECTIVFLY? WHICH CAN BF<br />
C USED TO CI?NVERT IKPUT' VALUES TO MGAL PK CORRECT FDR A SYSTEMATICAL<br />
C ERROR-<br />
203 FORMAT( 2F10.21LZI<br />
C INPUT OF STANDARD DEVIATLON.<br />
I F (LSAI REAG(5*<strong>212</strong>)WM<br />
<strong>212</strong> FORMAT( F6.2)<br />
C<br />
2007 LRFPEC = IYP,FQ-5<br />
C INITIALIZATInN OF VARIABLES IN COMMON BLOCK /PR/.<br />
LONEC9 = sNOToLREPEC<br />
LNKSIP = IKPoNEo3 .AND. LONFCO<br />
LNETAP = IKPoNE-4 .AND- LONECO<br />
LDEFVP = IKP oGT- 2<br />
LNDFP = ,biOT,LDEFVP<br />
LNGR = .NOToLGRP<br />
C LREPEC IS TPUF, WHEN TNO COLUF!YS CAV BE COHPUTED AT THE SAME TIME.<br />
C LNSKIP? LNETAP IS TRUE? WWP\I THE OBSERVATION OR REQUESTED PREDICTlON<br />
C IN P IS NnT KS1 PESF. ETA.<br />
LZETA = IKP-EQ.1<br />
LKSIP = ,MOT,LNKSlP<br />
IF (RPoLTeR) R.P = D1<br />
C CHECK? THAT POINT I S NOT INSIDE THE BJFRHAMMAR-SPHERE,<br />
C<br />
C CONPUTATION OF CCINSTANT'S USED TO NORMAL I ZE THE NORMAL-EGUAT IONS 09<br />
C SCALE TEE FSTIMATES OF THE ERRCihS OF PREDICTION.<br />
NI = MP,XCl<br />
P(JQ) = D1<br />
P(JR+l) = RP<br />
INDEX( JR+1) = IKP<br />
PW = D1
COSLAP = Dl<br />
SINLAP = DO<br />
RLATP = P0<br />
RLOQGP= Gn<br />
CALL PREP(S~SRFFPUO~A~ISBI~QQ~JRY~~~~IYAXIPLF~LF~LT)<br />
PW = C(MAXC1)<br />
IF (PW.GT,CbO)<br />
P(JR1 = PW<br />
PW = DSCQT(PW1<br />
W = WPtIKP)<br />
IF (LNGRI W = W*RP*!?P<br />
I F BLZETAI W<br />
PhO = PN*k<br />
= W*RP<br />
PW2 = PWO~~PWO<br />
IF (LCREFI JVL = -1<br />
C<br />
C OCTFUB OF HEACIYG AYD INIIIALIZATION OF VARIABLES.<br />
LINVPF = LONEC9c+OPe (IOBS2~EC80).r!t?~ (IO8SleLT.InBS2)<br />
LOUTC = LNFCB02 ,LCOb4P<br />
I F (LEFAR) WRITF(bp205)<br />
205 FORMAT( 'OTHE FCLLDWING QUAKTITIES APE MFAN-VALUES9 AND ARE RFPRESE<br />
*NTFD AS PCINl VPLUFS IF! A HEIGHT Yeo)<br />
I F (RP eGTol*03G0eAND. (LKCIPeGPebGRP) ePNDe(LTP.ANeCReLPnTIeANDe<br />
*LPOTSD) WF 1TF (6 pZO4)<br />
204 FOQMAT('O** WARNING: THE HEIGHT MAY BE TCO BIG FO? THE COMPUTATION<br />
* DF'pBpt THE REFERENCE GRAVITY OR THE CYANGE IN LATITUDE **'I<br />
C<br />
CALL EEAD i iKP ,LONECOt FiiO, XP 1<br />
C INlTlALlZATIf!Y OF LOGICAL VAP IAELES USED TO DFTFRMIYE WulCu QUAYTITIFS<br />
C WE WILL HAVE TO ADD TOGETHEQ TO FOPE THE FlYAL DUTPUT OR TO QETFPMINE<br />
C WHICH QUANTITIES W1 LL €F INDUT,<br />
LADRA = TH.hEeIA<br />
LADDBC = IE.NE, IC1<br />
LbDDBP = 1SsNFe 1P<br />
LADGP R = LADDBP ,AqD .LREPEC<br />
LTYB = LTRAl!.ANDe(IT.YEeIG)<br />
LTEB = LTRANeANDe(IT.FQeIBI<br />
LOEl = LESAND-( ,NOT-LSA .ANGeLO?iECO<br />
LOE2 = LEeAh1De( ekCITeLSA) .ANDeLPEFEC<br />
C K1 "AS PEEN IIVITIAL.IZEC PY THE CALL OF 'HEAD'.<br />
C BER OF QUANTITIES READ IN TO TUE ARRAY oes.<br />
IF (LOF11 K9 = Kl+P<br />
I F (LOEZI K 1 = K1+2<br />
C<br />
I F (LGRID) GO TO 2031<br />
C<br />
IT IS EQUAL TO THE NUM-<br />
IF (LCOMP) CALL COMPB~IKPpLNG~~LPEPFC~LOh'ECO)<br />
C<br />
C lWUT OF COClQDINATES OF OBSEQVATInN 09 PRFDICTION POINTS 4YD CflNTIN-<br />
C GFNTLY THE OESFRVED QUANTITIES AND THFIR STANDARD DEVIATIflNS.<br />
%J = IANG*2+INO-1
2033 GO Tfl(?O249?025 920269 2027~20?Pv?029~?07E 9?079) 9 IJ<br />
2024 RFLD(5,FMT) IDLATTMLAT~SLAT~~~LONTMLON~SLO~~(DE~~<br />
119 I=lvKl TLSTOP<br />
GOTO 2030<br />
2025 READ( 5PFMT)NOrIDLATtMLATtSLATTIDLnNTMLr)Y tSL3Vt (OBS( 1) ~1=1 ~ q lT l<br />
*LSTOP<br />
GO TO 7070<br />
2026 READ(~*FPTTIIJLAT~SLAT~~DLON~SLDN~~OES(I<br />
)rI=lyKl)rLSTOP<br />
GOTO 2030<br />
2027 HEAD( 5rFM7 )NOIIDLAT?SLATT ]:DLC!N*SLf)fVy (OBS(1) tI=lyKl 1 9LSTP0<br />
GDTO 7030<br />
2028 READ(5rFMT)SLAT ,SLOYv (OBS(I 1 v]:=lyKl TLSTOP<br />
GO TO 2030<br />
2029 READ( ~,FMT)~!R~SLATTSLCN;* (C:BS( 1) 9 I=ltKl) TLSTOP<br />
C<br />
2030 IF(1LA .LT. ILOIGC TO 2031<br />
C CORRECTING IYVERTED ORDER 3F LAT* AXD LONG*<br />
I = IDLAT<br />
IDLAT = IfLGN<br />
IDLON = I<br />
1 = MLAT<br />
MLAT = MLPN<br />
MLOV = I<br />
A0 = SLAT<br />
SLAT = SLDN<br />
SLON = A0<br />
C<br />
2031 CALL RAD: ICLAT~~!LATqSLAT~RLAT?t IAYG1<br />
I F (LWLZNG-AVD* IAYG.LE.2) IDLON = -1DLON<br />
I F (LWLI)NG.AYD. IANG.GT.2) SLOY = -SLOY<br />
CALL RAD(IDLON~MLONrSLOXrRLOYGP~1ANG)<br />
COSLAP = rcm (Q LATP<br />
SINLAP = GSINIRLATP)<br />
I F (LGRIG) GO TO 2049<br />
C<br />
I F (Lot31 WflBS(Y+l) = ORS(K1)<br />
IF (LEE21 NOBS(N+l) = QaS(K1-l)<br />
I F (LOF2) RG5S(N+2) = OBS(K1)<br />
I F (IH.KE.0) GO TO 2050<br />
I F (LRFPEC) CBS(12) = ObS(2)<br />
OBS(2) = neS(1)<br />
ORS(1) = E0<br />
GO TO 2051<br />
1050 OES(l?) = OeS(3)<br />
I F (LWLf'NG-AhDe LKPedT*3) OBS( 12) = -ClPS( 17)<br />
C CCRRFCTING TUF OR SERVATION f;Y AN ADO ITlVE AND MULTIPLICATIVE COVSTANT<br />
C (IS USED ONLY FOR GRAVl TY OBSERVATIONS).<br />
2051 ORS(2 1 = OSS(2)*DM+!?A<br />
H = ORS(1)<br />
I F (LKM) H = H*1.0D3<br />
C CONVERSION OF PEIGHT INTO METERS.
2049 I F dLNGR? GO<br />
C<br />
70 2056<br />
IF (".LT,25,0E3 .AND*( -NFToLPOTSDI ICALL EUCLID(COSLAP9 SINLAP*<br />
*RLflNGPsH~EZlqPXIl<br />
CALL ?G9AV(SINLAPpHpO 9CREFl<br />
C COMPUTING THE GQbVl TY APiOMALY e<br />
BF 6LPFGR) ObS(7) = QBS12)-GRFF<br />
C<br />
2056 %F (LINVDEI GO TO 2032<br />
OBB = DES(l2)<br />
OBS[%2) = DSS(2)<br />
065(2) = CiEl<br />
IF (eNOTmLE.9E.LSA) Gn 7C' 2032<br />
MM = WOBSINsl)<br />
WCBS(%+l b = WCPSIN+ZI<br />
WORS(Y+21 = MM<br />
C<br />
70'2<br />
C<br />
OESiIP.1 = DO<br />
IF (LREPEC9 PHS(IE1.I = DO<br />
IF ILNTP) GC) TO 2055<br />
IF ILNTRAY) GO -r3 2053<br />
CALL EUCL ID(COZLAP~SI!JLAP~RL~NGP~DOI€~~~AX~ I<br />
CALL 7RAVS(SI?~iLPPqCflSLAPqRLAT'PtRLONGPqIKPqITIi<br />
IF {LNGRI GO TO 2053<br />
GREFP = GREF<br />
IF (HeGE.25 -003 I CPLL EUCLID(COSLAP~SINLAP,PPLONI;P~w~E22~AX2 1<br />
CALL Ri:~RkViS1VLb.PpHr15rGktF)<br />
OBS(IT9 = GREF1-GREF<br />
IF (LPOTSD) OBS(IT1 = OES(1T)-13.700<br />
GP.EF1 = GREF<br />
C<br />
2053 1F (LNPOTI GO TO 2055<br />
IF (LVGRS GO TO 2054<br />
C<br />
C FfiR GRkVI TY ANCIMALlES WE USE? THAT THE NEW REFs POTENTIAL GIVES A PFT-<br />
C TER ESTIMkTE CF THE GEOMETRIC HEIGHT? SO THAT THE NEW REF. GQAVITY CAN<br />
C BE COMPUTED AT THIS HEIGHT,<br />
CALL EUCLIG(CFSLAPtSINLAP~RLOI\iGPtDO~E22qAX21<br />
CALL SPOT (RLATP ICOSLAP~RLCVC~P~~~<br />
1 1 9 GRCF9LiREFO?DO)<br />
H = H+OBSI11I<br />
2054 CPLL EUCL ID(COSLAP9 SI NLAP 9RLOrYGP ?H, E 22qAX2I<br />
IF QLZFTA) CALL UREFER(UREFtl5,Hl<br />
IF (LkSIP) CALL CLAT(CLAv159p9RLATPI<br />
CALL GFCJT (RLATPpCOSLAPvRLOIVGPv IKPIIPvGREFvUQEFTCLA)<br />
IF (LADPBP) OLS(IB9 = OSS(IBI+OBS(IP)<br />
IF (LADRPR) OPS(IBl1 = C)bS(IE1)+OSS(IP1)<br />
2055 IF (,rYOT,LCREFl GO TO 2052<br />
C<br />
C THE VARIAFLE IVP IS USED TO INDICATE q THAT THE DEGREE- VARIANCE5 STCRED
C I N SIGMk WILL WAVE T@ BF CUAYCED FPPM COLLOCLTIDN I Tn COLLOCATION 11,<br />
C THE VALUE IS TRANSFFR.RER TO PRED BY THF CCWMOY PLflCK /PQ/.<br />
CALL P9FD(S?rFREFRpUROpAR,090~2p<br />
1v1 = -1<br />
flES(IC1) = PRFDP*W<br />
I F (LAG~JRC) OEsZ(IR) = OFS(16)+08S(lCl)<br />
I F (LOYECO) GO TP 2052<br />
OBStIC11) = FRFTAPWW<br />
IF (LADOBC) oDscrei I=<br />
2052 I F (LPPEL) GO TO 3021<br />
ossc rei)+ossc rc111<br />
C<br />
C STORING COOKRINATFS AND R IGHT-HAYD<br />
C COLUVNS AYD IC TLJE STATIORS.<br />
N = N+1<br />
SIDE OF NOilYAL-EQmp N CnUUTS THE<br />
-<br />
IC = 1C+1<br />
IF (LTKB) OES(1U) = OFS(l!3)-GES(IT)<br />
1F (LTER) OI.S(I1)) =+JFS( IT)<br />
IF (LKSO) 06S(3) = CSS(2)-OBS(lU)<br />
OEl = VBS(K2)/PWO<br />
B(Y) = OS1<br />
IF (LSA) KOBS(Y) = W!-!<br />
SSORS = SS05S+OF1**?<br />
I F (LRNECC) GP TC ?C33<br />
C<br />
I F (LTNS) IfGC(IU1) = T~ES(IBl)-OBS(ITl)<br />
IF (LTEB) OES(IU1) = -ObS(ITl)<br />
I F (LK30) OSS(13) = OBS(12)-ORS( IU1)<br />
OB2 = OBE(K21)/PWG<br />
SSOGS = SSf€S+Clb2*=+2<br />
N = N+1<br />
B(N) = P82<br />
I F (LSA) WOBS(Y = \$M<br />
2033 I F (N,LE115?E) GO TO 2060<br />
C CHECK OF hUMFER GF 05SEQVATIONS NOT EXCEEDING 4R9AY LIMIT<br />
WRITE(6p?29)<br />
229 FORMAT( ' NCMEER OF OESERVATLDNS TOO BIG* *** STOP ***'l<br />
C<br />
2060 COSLAT ( IC = COSLAP<br />
SINLAT(IC1 = SIRLAP<br />
RLAT( 1C) = RLATP<br />
RLORG ( 1C 1 = RLONGP<br />
CNR =RLATF*IC+ChR<br />
C OUTPUT OF flB5ERVATIVNS.<br />
CALL fIUT(Y9r IDLATTMLATTSLATT IDL~bI~ML~h'psL~NpLON~~n)<br />
IF(.NOT~LSTOP)GO TO m23<br />
C<br />
230 FORMAT(3L2)<br />
READ( 59230) LST@P,LRFSrL,LWRSOL<br />
C<br />
IF (LRESOLmAND. LWRSOL I G(3 TO 9999<br />
~ O B S R ~ Y ~ F T I M A X ~ R ~ L T ~ L F T L ~ )
C<br />
C FSTABLIWHVG A CATALnGUE OF THE ObSE9VAYIPNSrMRXlrZlALLY 9 SETC ALLf'bJEDI<br />
INDFX(JP1 = IC+I<br />
$R = JRt-2<br />
1F IHNDFX(J2-3) .NEe IKP *OR* (DAGS(P(~R-~)-RPP~GTC~~OD-?)I<br />
9Gll TO 3034<br />
JR = JP-2<br />
IYOEX( JP,-l 1 = IYDEX[JP+l)<br />
2094 I F [(JR-II) .LTC 191 GO Tfl 7035<br />
HRITF(h,298)<br />
298 FORMAT ( @ DPSFRVATSONP ASRANGED TOO COMPLICATED B<br />
GrJ 10 q9G5<br />
2035 HF (,YDT,LST3P) GO TO 3006<br />
C<br />
C FKD OF INPUT CF OFSF9VATIfVJS. M = NgMBER OF CibZFSVATTDYS, lO3S =<br />
C RUPLFP CF I'tLSFQVATI PI\' PC1 KT?.<br />
100s = IC-1'0<br />
N = N-ISP<br />
"41 = Y+l<br />
S(Nl+iSO) = SSOPS<br />
C<br />
I F I.YnT.LF) CO TO 2036<br />
WRlTE(bp2Q7)IROFS(I+ISOlr I = 1 9 NI<br />
297 FOEPATIPO~JR"d9AKD DTVlATIFYS OF TUE PESFRVATIONS 1Y T W SP:IF SEOUF<br />
*NCE'/tV AYO l",' THE SAME UYITS AS THE OSSESVATLflNS:'/yf' '9lCFE*2))<br />
C<br />
2036 IF (LQFSGL) GO TO 3?2[<br />
C<br />
I F (LDEFF) GP Tfl 3027<br />
LDEFF = LT<br />
NT = 3<br />
IPLMC = L700<br />
C I N THIS P9RGPAbl-VFRSIONt THE ARRAY C HAS DIYENSIOV IDEYC AYD ITS<br />
C VALUES AQE STbRfG G? RETRIVED FPOM UNIT 8 3Y NT READ 07 WqlTE ?PERA-<br />
C TIORS.<br />
C<br />
C SETTING UP A CPTPLOGUE OF THE NORMAL FQCIATIONS<br />
C Nb I S TPE PFCflFD ?:UEIGESr IC COUNTS THE YUMBER nF COLUMVS WIT'JRN A<br />
C RECORD* &"!D TPIS h:UME\FR I S STORFD IY NCAT(101)$. YCAT [ I ) WILL CnYTAIY<br />
C THE SUbSCQIpT CF THE GIAGONAL FLEMENT OF COLUFY I-Hp AWD ALL THE<br />
C FLEPFRTS @F ISZF WILL 6F ZEP.0 BECAUSE WE WORK WITH A FULL MATRIX,<br />
C NBL( I) COYTAIVS JHE NUMBER OF THE LAST COLUYN I N RECORD 1-1 NOTE<br />
C TPAT MAXIIYALLY GP CPLUMNS MAY BE STORED I N ONE RECORD,<br />
2037 YET = I<br />
YEL(1 )=C,<br />
N5 = 1<br />
IC=O<br />
If=O<br />
C<br />
DO 2304 I = I p N1
C<br />
IC=IC+l<br />
ISZE( IC )=Q<br />
NCAT( ICI-11<br />
H1 = Il+I<br />
1?=11+1+1<br />
IF(BIZ.LE.IDIMC),AND,(I,NE~Nl~.ANDo(IC.LEoQU GO TO 2304<br />
NCATB IC+P) = I1<br />
IFBIeYFoYll GO TO 2303<br />
12=I2+Nl+l<br />
IF(l2.LE.IbIMC) GO TO 2301<br />
C SECURIXG THAT THF LAST COLLUYN + ON€ MORE CAN BE STORED IN THF SAME<br />
C RECORD.<br />
NCAT( lnO)=IC-l<br />
WRITF( bfYeT+?)C3tNCATIISZE<br />
NET = I',E;T+NT<br />
NE=NB+l<br />
NBLW )=]-l<br />
NCAT(2)=Nl<br />
I IL =N1<br />
I[ c=1<br />
C MAXC I S THE SUSSCRIPT OF THE DIAGCNAL ELEMFVT OF THE CAST COLUYnS, AN13<br />
C MAXC2 IS THc SUbSCRIPT PF THE FICTICIDUS CIAGfGUAL FLEMENT OF THE RIGHT<br />
C HPND SlDE (IN WHICH THE SUARE-SUM OF THE NORMALIZED DBSERVATIOVT I S<br />
C STOREDJ.<br />
2301 MAXC = 11-YI<br />
MAXC2 = I1<br />
C STORING THF RIGHT- HAND SIDE c<br />
00 2307 J=ltNP<br />
2302 C(MAXC+J) = b(J+ISO)<br />
C<br />
2303 I1=0<br />
NCAT( 100) =IC<br />
IQ = NET<br />
WRITE(B'IQ)C~NCAT~ISZE<br />
NBT = NBT+NT<br />
I[ C=O<br />
ME=!\1!3 +l<br />
NBL(NHl=I<br />
I F (NbeLEo309) GO TO 2304<br />
WRITF(6r29q)<br />
299 FORMAT(' RESERVED AREA PN FILE 8 TOO SMALL')<br />
GO TO 9999<br />
2304 CONTI VUF<br />
C<br />
MAXBL=NR-l.<br />
MAXPLT = (MAXBL-1) *NT+1<br />
C<br />
C CPMPUTATIDN OF ELEMENTS OF NORMAL EQUATIONS (FQUAL TO TUE COVADIANCE<br />
C BETWEEN THE DBSERVATIONS) c TNE COEFFlCIEYTS ARE STPRED IN TUE ONE-OI-
C MFNSIOhAL ARRAY C, CnLLUMN AFTFR CQLLUHNpTME DIAGONAL ELEMENT HAVING<br />
C THE HElGHEST SUPSCRIPBe<br />
C<br />
G lNlTIALlZ ING VARIABLF?:<br />
C N I IS Ih MA%& THE SUEISCRIPT OF THE FIRST FLEWFNT OF COLUMN NC IQ AQRAY<br />
C Ce I N THE SUbFGUTINF PKEEp NI I S THE SUZSCEIPY f9F THF FLFMFNTS 3F THF<br />
C COLUMN, Nb<br />
C STOKED AYD<br />
15 THF NUMbFK OF THE BLQCk IN HHICtl BEF COVARIANCFS ARE<br />
I1 IS TEE NUMBER RF TUE LAST CPLUMQ STORED IN BWE ELDCK,<br />
C HCYEXT IS THE NUMPER OF THE FIRST COhUY'lsd HITHI3 A GROUP OF DATA WITH<br />
C THE SAME CHARACTEXISTICS, (THE CWARACTERISTlCS ARE GIVEN BY TPE ARRAYS<br />
C IhDEX AYD P (SUBSCRIPTS JC AND JC+BI).<br />
NI = 1<br />
NC = 1<br />
4C = II<br />
IVP =-l<br />
N@=E<br />
19=PF3LI2)<br />
RfAD(E'NTIC39NCAT,HSZE<br />
FINlj(8@19<br />
NBT = l<br />
ICNEXT = ISO+l<br />
C<br />
DO 3100 3C = l<br />
ICC = IC+lSr7<br />
9 IOBS<br />
c<br />
COSLAP = CLSLAT ( I CC 1<br />
SINLAP = SIYLAT (ICC 1<br />
RLATP = RLAT ( ICC 9<br />
RLONGP = RLONC( ICCI<br />
IF( ICC .NF. TCNEXTIGO 70 3003<br />
IKP = INDEXIJC+I)<br />
C INITIALIZATION OF VARIABLES IN COMMON BLOCK /PR/,<br />
PW = P(JC)<br />
RP = P(JC+l)<br />
PCNEXT = INDEX( JC)<br />
4C = J6+2<br />
LREPEC = TKP ,EQe 5<br />
e<br />
LPNECO = ,NOTeLREPEC<br />
LGRP = IKP.EQ.2<br />
LNGR = .NOT,LGKP<br />
LNKSIP = IKP.NE-3 -AND,<br />
LNETAP = IKP-RIE .4 ,AND,<br />
LOEFVP = IKP .GTe 2<br />
LNDFP = ,NOT,LDEFVP<br />
PWO = PW*WP(BKPI<br />
LONFCO<br />
LONECQ<br />
IF (LNGRI PM0 = PWO*RP*RP<br />
IF (IKPeFGoPl PKO = PkO*RP<br />
3003 LIRST=LF.,EPEC eAh'D. (KC eEQe 11 1<br />
C AS WE FOR LREPEC=TRUE ARE COMPUTIIKG TWT) CCLUMNS AT THF SAME TIMEo WE
l<br />
C PLIST, 1N CASE THt SFCONC) CCLUYN I S THE FIRST ONE I N THE NFXT RECVPP<br />
C STORE Tt'l S ONE TEMPORARY 1Y ARRAY B. THE PRLlCLEM WILL 7NLY OCCIJR WHEX<br />
C WE AYE SETTIYG UP THE NflRMALEQUATIONS* LBST = B-STORE*<br />
C<br />
C<br />
CALL P?ED(S~SREF~UOtAtIStIS3~IIt ICtQCt IXAXltLFtLBSTtLT)<br />
NE = N1-l<br />
DIA = C ( W )<br />
I F (LE) C(ND) = DIA+(WOGS(NR-l)/PWO)**2<br />
IF (LOYECfl) GO TO 3020<br />
I F (LE) DIA = DIA+(wOtiS(YKI/PWO)**2<br />
I F (LEST) b(NQ) = DIA<br />
I F (.NCT,LbST) C(NI+NCI = DIA<br />
C THE PPECEDING STATEMENT ASStIRES* THAT TPE DIAGONAL ELFYENT CflRREZPON-<br />
C DING TO ETAP E',ECPP.',ES EQUAL TO TcJkT OF KSIP-<br />
NC = YC+l<br />
N I = hl+NC<br />
C 3020 I F (NCrnLToIl*PNO-KC-LT.h) GO TO 3100<br />
C<br />
C STORING TPE COtFFICIErVTS OF THE NOSMPL-EB* ON FILE 8, RECORD N?.<br />
10 = YBT<br />
KRITE (8' 1Q)CtNCATrTSZE<br />
I F (.NOT-LOkECI GP TO 3200<br />
C<br />
C OUTPUT OF CnEFF IC IFYTS OF NORMAL-EQUATIONS,<br />
WS 1TE (h,3hO)NB<br />
380 FORMAT('OCDEFFIC1ENTS 3F NORMAL-EQUATIONS* BLOCK 'tI4r/l<br />
I1 = NI- l<br />
I F (NQ.ECot4AXf?LI I1 = MAXC2<br />
C<br />
WPITE(6p361)(C(KI* K = LT 11)<br />
381 FORMAT( ' ' 9 10F8 04)<br />
3200 N9T = YbT+YT<br />
NE,=9!3 + 1<br />
NJ=1<br />
I F (NC-NE-NI 11 = NBL(NE+l)<br />
I F (NR.GT,t+AXBLI GO TO 3201<br />
READ( IQICl<br />
READ( IQIC2<br />
RFAD(F'IQ)C3*KCAT*ISZE<br />
C WE HAVE TI) READ ThE WHOLE CONTENT OF RLXK NB INTO ARRAY C, RFCAUSE<br />
C WE MUST BE SUPE TUAT TUE RIGUT-PAS0 SIDE (WuICu ALREADY I S STORFDI<br />
C I S PLACFD COPSFCTLY.<br />
FIND(PtNB1<br />
C<br />
3701 I F (oNCTeLSST) GO TO 3100<br />
C<br />
00 1202 K=l*NC
CBSERVATlCNS AND KORP CF APPROXIMATION<br />
C<br />
C STORING SOLUTIONS DIVEDED BY A CDMMON FACTOR.<br />
N1 = P<br />
JRNEXT = 1SO+I<br />
JP = I1<br />
DO 3032 I = 1 9 HOBS<br />
IF ((I+ISCl).VE*JRKEXTI GO TO 3030<br />
IKP = INDEX(JR+l)<br />
LONFCf9 = 1KP ,LT, 5<br />
JRNEXT = INDEX( JR)<br />
PW = PIJR)<br />
4R = JR+2<br />
4030 IF (LCIWECC) GO TO 303%<br />
B(NI+ISfl) = C(MAXC+YIi/PW
NI = NI+1<br />
3031 RfYI+T5O) = C(MAXC+YI)/PW<br />
3032 N I = NI+1<br />
IF (LCI) GO TO 3116<br />
C<br />
LC1 = LT<br />
C INPUT OF LCQEF. WHICH I S TRUE WHEN ONE MORE SET OF OBSERVATION7<br />
C SPALL BE IYPUT ANT) USED FOR THE ESTlMATIOU OF QNF MORE HARYOYIC FUYC-<br />
C TION.<br />
READ( 59230) LCPFF<br />
IF (.NOT,LCRFF) GO TO 3110<br />
C<br />
C STORIYG AdAY THE WECESSARY CONSTANTS FOR COLLOCATION I.<br />
SR = S<br />
SREFR = S<br />
URO = U0<br />
ICtRSR = IPBS<br />
AR = P<br />
IMAXlR = IMAX1<br />
NIR = N1<br />
C INITIALIZING VAKIAFiLE? FOS STAR1 OF COLLOCATION 11.<br />
I S = INAX+3<br />
I1 = 22<br />
JR = 22<br />
IC = nlIR+2<br />
N = 1C<br />
IS0 = IC<br />
IhDEX(2li = I C<br />
WRITFtbv345)<br />
345 FOFMAT('0STAST OF COLLOCATION II:'/)<br />
GO TO 1OOO<br />
C<br />
C INITEALIZIYG VARIABLES FOP. PRFnICTIO%. HAXC1 IS THE SUSSCRIPT 3F THE<br />
C FISST ELE%FNT I& THE- COLUMN FORKING THE QIGHT-HAND SIDE,<br />
3110 LPEFD = LT<br />
LNEQ = LF<br />
LE = LF<br />
LC2 = LCREF<br />
MAXCl = MAXC+l<br />
IkDEX(41) = 0<br />
JR = 41<br />
WRITE(69344)<br />
344 FORMAT('1 PREDICTIDI\IS:t/)<br />
GCI TO 2000<br />
C<br />
3021 NI = MAXCl<br />
COLL PPED(S?SPEFvUO?A?ISv IS09 1 1 9 J13BSvhlv IMAXI vLT*LFTLFYNO)<br />
I F (LYFRNO) GO TO 3b22<br />
C<br />
C(MAXC2) = D1
C<br />
e<br />
C<br />
C<br />
iF (LCOXP) CALL COPiPCfiUi<br />
CALL OUT(KO~IDLAT~PLAT~SLATPIPLON~MLOY~SLONTLPNEC~I<br />
I F (LMAPI IMAP(NO1 = OBS(IUl*100<br />
IF(LGR1D ,AND- NAI oLF* NLAI GO TO 2001<br />
KF (,NOT,LMAPI GO TO 3045<br />
K = NLA+1<br />
WRITE(6r360)IDLACySLACo I@LOCpSLCC,GLA~GLC!<br />
360 FORMAT( "MP PF PREDICTIONS: @ / ' COORDINATES OF SOUTH-WEST CORNER "/<br />
*c LATITUDE LOVGITUDE AND SIDE LENGTH LAT. LONG, sf<br />
g 0, U Y D M M M V / ~ ( I ~ T F ~ . ~ ) T ~ F ~ ~ ? T / ! )<br />
DO 3044 J = le K<br />
WRlTE(bp350)<br />
350 FDRMAT ( W @ P)<br />
NAP = NO-NLO<br />
WRITE(6r352)(IMAP(IIe I = NAP9 NO)<br />
352 FORMAT(' '92015)<br />
3044 NO = QAP-1<br />
e<br />
3045 I F t,NOT.LSTDP) GO TO 2023<br />
C
C<br />
C 9999 STOP<br />
f h'D<br />
READ( 59230) LSTO?<br />
I F (,NOT.LSTGP) GO TO 2000<br />
IF (LCOM) CALL OUTCOM<br />
SUERDUTINF YES(f'1YtI IFC? I I FRrLPSIFW)<br />
C THE SUB99UTIVF WILL? USING THE CH3LFSKYS PETFOD:<br />
C (1) CnKPUTF THE REDUCED MATDIX L COYQESPOhDl hG Tfl A SYMMFTSIC POS ITIVF<br />
C DEFIYITE (NN-l)*(NN-l) MATRIX At WHFN THE JIFC COLUPNS AND IIFR<br />
C P,C,WS OF L ARE YFU'OWNT (L*LT = AT LT THE TRAN5PnSFD f3F L)<br />
C (2) COMPUTE THE PEDL~CED NY-1 VECTOR (L**-~)*Y.<br />
C (3) CCJMPUTF THE DIFFFRENCE PW = YfiJ-YT*( A**-l)*Ym<br />
C (4) SGLVE THE ECVATIOYS LT*X = (L**-l)';YT (THF SO CALLED BACK-S'3LUTION)<br />
C<br />
C THE REDUCEG SfWS AV0 COLUPNS C!F L (THERE VAY BE hCNE)t THF CORFFS-<br />
C PCWDING UYqEDUCFD UDPEQ TPIkNCtlLAR DART OF At THE NN-VECT39 FORMED<br />
C CY Y AVD YY Fn9MS AN UPPFR TFIAkGULAk ?JY*NV-MATkIX,<br />
C THE MATRIX IS 5TOKED COLUKYVIZE I N NT*PAXSL FECDQPS OF A DIRECT ACCESZ<br />
C FlLE (UNIT KUF:EER P ) . THE YT RECQRDS (YT*12F00 BYTE?) CONTAI'JS AS MA'VY<br />
C CCLUPMS AS POssIFLf l N THE FIRST E*( NT-l)*lh00+8*1500 RYTFS CnQSF;SPqN-<br />
C DlNG TO TEF DIMENSION OF THF ARRAYS C AYP C?. TPE LAST PO0 RYTFS<br />
C OF THE NT RECC:PDS HOLDS TWO CPTALOGES (INTEGER ARRAYS) NCAT AND ISZE<br />
C (NRCAT? IRSZF RESPECTIVELY). kiE WILL CAii THE UT REC0qD5 A BLOCY,<br />
C WHEN THE CGNTEqT OF A ?,LOCK HAS 5FFN TRAhSFERSFD €*G* TO C, Y C ~ T T<br />
C ISZEq WE HAVE THF FCILLOI4Ih:G SITUATIQh', THE COLUMVS ARE STODFP Ih C<br />
C FROM THE FIRST ELEMEQT DlFFFRFYT FRnEl ZERC TC THE DIAGfIYAL ELf'+f'NT-<br />
C NCAT(1) IS TPr SUESCRIPT CF T U E DIAGONAL FLEMEWT CIF COLUMN 1-1 CV@<br />
C ISZE( I ) IS THF YUMBER OF IGU3PEC (SAVFD ZEQOES IV COLUMN I, YCAT (100)<br />
C IS THE hUK6Ek OF CDLUMNS STCISED I N THE PECO?D.<br />
C N6L( I ) 1s FQUAL TO THE NUMSER OF THF LAST COLUMN STORE0 IN DEC09D 1-1.<br />
C (1) TO (3) ABOWE NILL ALWAYS PE EXFCUTED? BUT (4) WILL QNLY 9F EX€-<br />
C CUTE@ h'+% TUE LOGICAL LBS 1s TRUE* T U E EXECUTIDY OF (11, (2) FUD (4)<br />
C I S EQUIVALEYT TO THF SCLUTIOU OF THE EaUATIUNS A*X=Y. THE SnLUTI7YS<br />
C WILL 3E ST3XED I N THE ARRAY C I N TPE POSITIONS ORIGIYALLY OCCUPIED BY<br />
C Y AND WILL 6E TRANSFERRED TO FAIN TH90UGH THE COMMON BLDCK.<br />
C I N CASE A Y;UF'ERICAL SIh'GULAFilTY CCCURS IN COLUKF' &UMBER JP* THE COLUMN<br />
C IS DELETED 8Y CHANGlNG THF CATALOGUE ISZE AVCl TFJE ELEPEVTS IY RE\-+' J D<br />
C AND THE JD'TH t-LFMEYT OF T U E SOLUTION VECTOR IS PUT EQUAL TO ZE4O.<br />
IMPLICIT INTECER(I?JrK?M?W) REAL *S(A-H?~-Z)TLCGICAL(L)<br />
COMM9N /NESnL/C(4700) ?NCAT( 100) ?ISZE ( ~C)O)?NEL(~~O)?MAXBLTID<br />
COKMOQ /C"W/CRl (1hOO)<br />
DIMENSION CR(4700)?h1RCAT(100) qIRSZF(100)<br />
FQUIVALtNCE (CR ( 1 1 ?CRl( 1)<br />
NT = 3<br />
C NOTEv THAT IY CASE YT I S CHANGEDT WILL IT ALSO BE YECESSAPY Tn CHANGE
C THE DIFSEVSIOPJ OF THE ARQAYS C At'lD CK,<br />
C<br />
N = M".!<br />
IFR=lI LFR+B<br />
IFC=IIFCcl<br />
IF ( I F P e G T o I F C ) WRITE (6910)<br />
10 FORKAT(' ERPOP IY CALL* IFReGT.IFC 1<br />
e<br />
C RfGUCTIT3d OF COLUMNS IFC TT) M, ELEMENTSy WHICH ARF ALREAnY REnUCEP9<br />
C ARE STOkED IN CR [EXCEPT FOR JBL=KBL)e ELEMENTS9 WHICH AqE GOING TO BF<br />
C REDUCED* ARE STERED IN C*<br />
C<br />
C FIND FIRST ACTUAL RECORD AND RDH/COLUMN.<br />
JP r==o<br />
200 JBF=$tiF+1<br />
IF(NBL(JEF+l) .LT.TFC) GO TO 2CO<br />
11 = t\lDhlJEF9<br />
JF = IFC-IL<br />
JTF = JBF*NT-NT+1<br />
JTL = JTF<br />
1D = JTF<br />
FI&D(E*ID)<br />
C<br />
KBF = 0<br />
201 K6F = KEF +l<br />
IF (NBL[KEF+l l.LT,IFR) GO TO 201<br />
KLO = NBL(KBF)<br />
KF = IFR-KLG<br />
KFO = KF<br />
KTF = (KBF-l)*NT+l<br />
C RFAD RECORD JPL FROM FILE. THE ARRAY C WILL CONTAIN AT LEAST ONE UNRE-<br />
C DUCED COLUMN.<br />
DO 280 JBL=JBF,PAXbL<br />
READ( 8'ID)CVNCAT,ISZE<br />
FIND( Fi8KTF1<br />
NC=NCAT( 10@)<br />
JO=NBL($BLI<br />
K1 = KLO<br />
ID = KTF<br />
DO 270 KBL = KBF,<br />
LREC=KbL-EQoJBL<br />
JBL<br />
READ( 6' I D )CF.TURCATT IRSZE<br />
NR=NYCAT( 100)<br />
KO=KL<br />
K L =KL + NR<br />
MR=MAXO(KO~ IIFR)<br />
C<br />
C IN ORDER TO MINIMIZE T"E NUMBER OF TRAYSPORTS TO AND FROM FILF PT WF
C DO NOT [GFS'ERALLY) COMPUTF PLL TFJF REDUCFrJ ELEMENTS OF llNE COL'JMYT BUT<br />
C nwy THF FLFVTYTS IV PON K O + ~ TO KL. (KC IS THE NUMBER OF T ~ E LAST<br />
C COLUMY IY THE PREVIOUS RECORD* KL THE NUMBER OF THF LAST I Y THF ACTUAL<br />
C RECORD. 1<br />
C<br />
U0 760 J=JFtNC<br />
ISZ=ISZE(J)<br />
C WE CHECH THAT THFRE ARE tLEMENTS (UNRFDUCED) DIFFERENT FROM ZEQn IY<br />
C COLUMN J HITP YUSSCPIPT GREATMEY THAN OR FQUAL TO KLm<br />
1F (#L.LE.ISZ) GO TO 260<br />
C THE SUBSCRIPT CIF TPE FLEMENT IN COLUPN JtPnW K I S NCAT( J)+K-ISZF( J ) c<br />
C TPE DIFFERENCE NCAT(J)-ISZE(J) I S STOqEG IQ THE VARIABLE ICO.<br />
C 3HF SAME DIFFERENCF FOR COLUMY (ROW) K I S STORED IN IRO. T U E ELFMFYT<br />
C JUST BFFORF THE FIRST ELEMEYT TD E€ RFDUCFD WILL FEYCE YAVF 7U3SCSIPT<br />
C I=ICO+MAX(KO, IIFRTISZ) . K G I S TPE ABSOLUTt ROW NUMBER-<br />
ICO = M A T ( J)-1x2<br />
JD=JO+J<br />
NRO=MINO( JDTKLI-KO<br />
I F (%R.GE.ISZ) KFS =
C<br />
G<br />
IF( .QT!T.LRFC.ORa(JD.l\lF.KD,.oREJn,EQ.Nl Lt7 To 360<br />
C TEST OF tdUMERLCAL STAGILlTY<br />
QC12 = QCI/C(I)**?<br />
IF (QC12 ,GY, 0,lD-16) GO TO 251<br />
WPITE(6p20lJDpGC12<br />
20 FORMAT( "UMMERlCAL SINGULARITY IN ROW N0.'9H5? @<br />
9 TEST QUANTITY ='P<br />
C<br />
C<br />
C<br />
*Dk7alO)<br />
lSZE( J)=JD<br />
TVE COLUMN I S DFLFTEDa<br />
GO TO 260<br />
251 C(I) = l7SQP,T((P<br />
260 KF = b<br />
270 COhTINUE<br />
C REDUCFD ARRAY C BACK TO FILE, FIRST CPLUMY I N YEXT RECORD I S NPW TPE<br />
C FIRST STOKFD,<br />
I D = JTL<br />
EUT FIRST REDUCED COLUPSN I S AGAIN CCDLU!43 KFO IN QECe J6F<br />
WRITE(P81D)C9NCATpISZE<br />
JTL = JTL+NT<br />
JF=1<br />
KF=KFn<br />
C<br />
IF(JSL.NEcMAXRL)<br />
PW = QC1<br />
GO TO 280<br />
lFBINOTeLGS) GC TO 280<br />
C<br />
C BACK-SDLUTICN. NCTE TPAT TUF YAPIASLF l[ AT TuIS MPPENT I S THE SUB-<br />
G SCRIPT OF THE DiAGOYAL ELEMEVT CIF THF CGLUMN CONTAINIKG THE RIGHT- HAY0<br />
C SIDE, 1 WILL SUCCESSIVELY TAKE THE VALUE OF THE SUBSCRIPT qE THE ELF-<br />
C MENT If% RCJW M OF Wl[S COLUMN, AND THE SnLUTIOY WILL BE STOYED I N C(I)a<br />
C<br />
M = N<br />
KTL = (MAXEL-L) *NT+l<br />
I D = KTL<br />
DO 277 #B= lpMbXBL<br />
READ( R1ID)CRtNi?CAT9TRSZE<br />
KTL = KTL-KT<br />
ID = KTL<br />
I F (KTL.GT,O) FIND( E0 ID)<br />
NR=NRCAT( 100)<br />
C THE COLUMN COPJTAIYIY!G THE RIGHT-HAYD SIDE I S SKIPPED,<br />
IF(KSeEQa1lNR=FJR-1<br />
K1 =NR+1<br />
IF(N2,FQ.O) GO TO 277<br />
DO 276 K=l,NR<br />
C WE STEP BACKWARD (M) FRCM CC'LUMbi N-19 TAKIhlG P E NR COLUMNS CRnM EACH<br />
C RFCORO SUCCF SSIVELY.
I=I-P<br />
IC=I<br />
M=M-P<br />
IR=NRCAT(Kl)<br />
Kl=Kl-1<br />
IRSZ=IkSZF(KlI<br />
MR=M-IRSZ<br />
I F (MR.GT.0) GO TO 373<br />
C I N CASE A COLUKN HAS BEEN DELETED7 THE UNKNCIWY IS PUT EQUAL TO ZERO*<br />
C( I ) = OaCIDO<br />
Gn TO 276<br />
C TWE (UN)KN@WN C( I ) IS COMPUTED (ONE EQUATICIN WITH ONE UNKNOWY).<br />
273 C1 = C(I)/CR(IS)<br />
C(I1 = C1<br />
C<br />
IF(MP*FO.l) GO TO 276<br />
D@ 274 VP=?TttR<br />
C 1R I S TliE SUG5CRIPT OF THE ELEMENTS OF COLUMN M, RUVYIVG FnPM THE<br />
C DIAGnYAL-1 UP TO TVE SUEZCRIPl OF TUE FIRST ELEMENT DIFFERENT FPOM<br />
C ZERO. 1C IS THE SUBSCRIPT OF THE ELEMEYTS OY THF P IGHT-HAUD S IDF I N<br />
C THE SAME POW AS CK( IR).<br />
IR=IR-l<br />
IC=IC-1<br />
C TPE CONTR IBUTIGN FP.OM THE ( UR)KNOWN C( I 1 IS SUBTRACTED FROM TCF QUAN-<br />
C TITIES ON THE QIGHT-HAND SIDE.<br />
274 C(IC) = C(IC1-CI*CK(IR)<br />
C<br />
276 CONTINUE<br />
277 CONTINUF<br />
C ThE SOLUTIOYS ARE YOW ALL STORED I N C FROM C(YCAT(Y)+l) TO C(LtCAT(M+l)<br />
C -1) - THEY ARE TRANSFERRED TO 'MAIN' THROUGH TWE COMMOY BLOCK NESOL.<br />
280 CONTIYUE<br />
RETUQN<br />
END<br />
C<br />
SUESOUTINF ITSAN(DX,DY,DZ,EPSl,EPS2~EPS3,0L,AX2,F22,RLATO,<br />
*RLO~GO~DKSIO~DETAO~@ZFTPO~LCHANG)<br />
TRANSFORMATIGN OF GEODETIC CQUROINATES AND CORRESPONDING DEFLECTIONS<br />
C OF THE VERTICAL AND HEIGHT ANOMALY7 WHEN THF COORDINATE SYSTEM IS<br />
C TRANSLATE9 PY (DX,DYIDZ 17 ROTATED (EPSl ,EFS2,EPS3) ASOUYD THE XwY 72<br />
C AXES RESPECTIVELY AND MULTIPLIED LY l+DL.<br />
C WHFN LCHAYG 1S TRUE, THEkE I S FUTHERMOEE A CHAYGF IY THE ASTRnV3MICAL<br />
C COORDINATES AND IN THF HEIGHT SYSTEM, GIVEN AS A CWAYGF OF THF D€-<br />
C FLFCTIOYS OF THF VERTICAL AND THE HEIGHT ANPMALY I N A POINT HAVING<br />
C COORDINATFS RLATO AND RLONbO*<br />
IMPLICIT INTEGER( I) 1 REAL *P(A-'-',P-Z)<br />
COMM3Y /OESER/flRS (20)<br />
COMMON /EUCL/XyY 7 Z ,XY 9XY2 ,@I ST3tDIST2<br />
LfIGICAL(L1
c<br />
C CF. PFF(C) PAGE ?On9 FORPULA (5-59)<br />
COSDLO = LCOS (!?LONGp-RLOYOO<br />
S INOLC = GSIN(RL0YGP-RLDNGO)<br />
GO TO (61 *75rh2,63r62)p IKP<br />
61 DZETA = (-( CC!SLAO*S IULk P-S TNLAr)*COZ LAP*CClSnLn) WKSI 0-CflSLAP*S IKDLn<br />
**@ETAO)*AY?/YADSFC+ (S IF\ILAO*SIFYLAP+COSLAO*COSLAP*COSDLO)*DZET~O<br />
GO Tfl 69<br />
62 DKSI = (CRSLAP*CDSLhO+S INLAP*SINLCO*C~ISGLO) *nKSIO-5 INLAP*SIh!DLCl*<br />
*DETAn-(S IULAn*COSLAP-CnSLAO*S IYLAP*C@SSLL)*RbDSEC*DZFTAO/AXZ<br />
I F (IKP.NF.5) GO TO 69<br />
63 DETA = S I&LAO*S IKDLO*~ETAO+COSDLO*DETAO+COSLAO*SIQDLCl*RADSFC<br />
**DZETAO/AX?<br />
C<br />
69 GO 10 (71~75,72,73~72)tIKP<br />
71 ORS(IT1 = DZETA+DH<br />
GO TO 75<br />
72 OBS(IT1 = DKSI-DLA<br />
I F (IKP.NE.5) GO TT, 7 5<br />
73 OES( I T 1) = DFTA-DLOKPSLPP<br />
75 RETV9Y<br />
END<br />
SUBROUTlNF GRAVC(AXTFTGM~ IT LFOTSDTUKEF~GAklMA)<br />
C THE SUkROUTINE COMPUTES FIRST BY TuE CALL OF G2AVC TuE CPNSTANTS TO EE<br />
C USED IY Tt1E F3EPULA F09 TPE YDRMAL GRkVITYy THE FOYMULA F04 THE VCQMAL<br />
C POTENTIAL An4D THF CHA!.IGE IN LATITUDE WITH YFIGHT. CDYSTAQTS RFLATEn T9<br />
C TWO DIFFERENT REFERENCE FIELDS MAY BE USED. THEY ARE ST07ED TV THE<br />
C ARRAY FG I N THE VARlABLES SUBSCRIPTFD FRCY 1 TO 15 FnQ TYF FIQST<br />
C FIELD AND FRCM 16 TO 30 FOP THE SFCClNP ONF. THE APP.AY FJ COWTAIXS TFE<br />
C ZOYAL HASMONICSI W17H SIGN OPPClSITE T r TVE USUAL CONVEYTICNST CF<br />
C RFF(C)r EQ. (2-921.<br />
IMPLICIT INTEGF9( I) 7 REAL *e(A-HtM-Z)<br />
COMPON /DCON/DO ID1 y D2 ,D3<br />
9 LOGICAL(L1<br />
COMMON /EUCL/XTYTZ~XY TXY~,DTSTO,DIST~<br />
DlMENSION FG(3O) vFJ(3O) tLP(2)<br />
D4 = 4.ODfi<br />
D5 = 5.000<br />
OMEGA? = (0.7292115150-4)**2<br />
LP( l+I/l5 1 = .NOT.LPOTSD<br />
E2 = F*(D?-F)<br />
AX2 = AX*AX<br />
FG(I+14) = AX<br />
C<br />
FG(I+15) = GM<br />
I F (LPflTSD) GO TO 1501<br />
DO 1550 J = 1 7 15<br />
1550 FJ(J+I) = DO
C FG( I+8) CfJNTAINS THE THlSCl OERIVATIVE OF THE NORMAL GRAVITY.<br />
FG(I+E)<br />
RETURN<br />
= D4*FG(I+6)/(AX*Cl?)<br />
C<br />
EYTRV RGRAV (5 INLAPqHq IIGREF )<br />
IF (H.GT.75.003 .AY[). LP(1+I/lS) GO 70 1504<br />
C COMPUTATICN f3F THE REFEPENCE GFbVITY I N UNITS OF MGAL* CF. REF.(CI<br />
C PAGE 77 AND 79. H PUST PE<br />
SIN2 = SINLPP*SINLAP<br />
1N UklTS OF MFTFKS.<br />
GSEF = FG( I+1 l* (Dl+FG( 1+2)*SIU2+FG( I+~)J~SI~\:~*ZINZI<br />
* +(FG( I+S)+FG(1+5)*SlN2+( FG( I+61-FG(T+Y )*H)*H)*H<br />
RETURN<br />
C<br />
ENTRY CLbT(CLA7 I~HIRLATP)<br />
LKSI = eTFUE.<br />
IF (H.GT.~~ID~ .AYD. LFI~+I/~~)) GO TO 1504<br />
C CCIMPUTATIOM OF THE CHbr\lGE I N THE n1RECTlON OF THE GRAPIFNT WITH HElGHT<br />
C CF* 4EF(C) EGO (5-34).<br />
CLA =-FG( l+l?I*H*(Z+XY)<br />
LKSI = .FPLSE.<br />
RFTURN<br />
/DIST2<br />
C<br />
ENTRY USEFE:9(URFF7 I qH)<br />
C COMPUTATIOk nF THE VALUE OF<br />
C (6-14) AYD lh-15)0<br />
LZETA = .TRUE.<br />
THE NOSPAL POTENTIAL* CF. '?EF(C)t EOe<br />
IF (Dh5S(H).GTo1.00-3)<br />
UREF = FC(I+7)<br />
RFTUQN<br />
GCI TO 1503<br />
C<br />
1504 LZETA = .FALCE.<br />
C<br />
1503 T = Z/DISTQ<br />
U = XY/DISTD<br />
AX = FG(I+14)<br />
GM = FG(1+15)<br />
A1 = DO<br />
A0 = DO<br />
B1 = C10<br />
B0 = DO<br />
DAl = 00<br />
DAO = D0<br />
S = AX/DISTO<br />
TS = T*S<br />
S2 = S*S<br />
K = 11<br />
C1 = 12eOGO<br />
CO = 1l.On0<br />
C<br />
C SUMMATION OF LEGENDRE-SERIES REFRESEIVTIW THE NORMAL POTENTIAL. B0
C WILL HOLD TEE DEi71VATIVF WITH RESPECT TO THE BISTANCF FROM THE ORIGIN<br />
C AND DAO BL9E CT?IVATIVF WITH RFSPFCT TO THF LATITUDE AFTER THE FINAL<br />
c EFCU~SIn"J qTFr..<br />
DO 1553 J = P p 11<br />
FJK = FJ(K91)<br />
c3 = I-~?-DI/CO<br />
c4 = CO*S?/C1<br />
A2 = A1<br />
A% = kO<br />
A 0 = C3*TS*Al-C4*A2+FJK<br />
I F CLZETA) GO TO 1555<br />
C<br />
DA2 = DL'1<br />
DAl =: DAO<br />
DAn = C3* I S*AS+TS*@AI 1-C4WA2<br />
R2 = B1<br />
BP = 50<br />
B0 = C?*TS*B1-C4*BZ+FJK*CO<br />
1555 C1 = CO<br />
CO = CO-D1<br />
1553 K = K- l<br />
C<br />
IF ILZETA) GO TO P554<br />
C GP IS THE riFR IVATlVE OF THF N(jQMAL GSAVITY WITH 9F5PECT 13 PIST9<br />
C (THE DXSTAhCF FROP THE ORIGIN) AYD GL I S THE DERIVATLVE WTTH OEfPFCT<br />
C TO THE LATITGCEq CF. REF(C) EQ- (h-20') A\' (6-221.<br />
GL = [GM*PPO/DISTZ-fMEGAZ*DlSTF*T )*U<br />
GP = -GM*SP/DIST2+0MEGAZ*DI STO*U*U<br />
GZ = T*GR+lJ*GL<br />
GREF = DS€'QT( GR *GR+GL*GL)<br />
IF [LKSI) CLA =-~DARSIN~-GZ/GREF~-RLATP)*206?64080600<br />
LKSI = .FALSE*<br />
GREF = GREF*I,OD5<br />
RETUQV<br />
I554 UREF = GM*AO/@I STO+OM€SAZ*XY2/D2<br />
RETUSN<br />
END<br />
SUBROUTINF IGPBT( GMpAXqCOFFTbqrYMAX)<br />
@ THE SUBROUTINF CQWUTFS THE VALUE OF THF GQAYITATIflYAL POTFNTIAL AND<br />
C THE THREE FEKST GRDER DFRIVATIVFS 1N A POINT P HAVING GEnOETIC CIRG-<br />
C DiNATES RLATP,RLONGP Ahlj EUCLIDIAY COOSDIYATES XqYtZ. THE PllTEUTlAL I5<br />
C REPRESENTED BY A SERIES IN QUASI-'L'ORMALIZEO CPUERICAL 'JARPnNICS qUAVING<br />
C COEFFICIEUTS OF HIGHEST DEGkEF NPAX, ALL STORFD IN THE ARR4Y CqFF.<br />
C THE ALGOQITHM USFD IS GESCRIBED IN SFF(D).<br />
IMPLICIT Ib
DIMEN'lPN F(55)rG(55)rA(25)~6(25)rC@FF(M)<br />
C<br />
C TPE ARRAYS P<br />
C HARMONICS OF<br />
C THE ORDFR-1.<br />
AND '8 AKF USED TO KnLD THE VALVES OF THE SOLIP SPHF9ICAL<br />
CjIFFEQENT DEGREES, THE SUBCCRIPT flF A nR B I S EOU4L TO<br />
C THE ARRAY CCFF COhTAlNS THF FULLY RORMALIZED COEFFICIENTS OF TYC PPT-<br />
C ENTIAL LEVFLRPED IN A SERIES OF NORMALIZED COLID 5PHFRIChL HAR~lOidlC~<br />
C UP TO AND IVCLIJSIVC DEGREr YMAX AND FOUF UUMMY CPFFFICIFVTS FQUAL TO<br />
C ZERO. TIE CDEFFICIFNTS WILL BE QUAZI-Y7QMALlZED BY THE TUBQrjUTIVE,<br />
C F AND G CO:iTA 1% SSk'LikEE-ROOT TAHLtS USED IN THE aECURSI0Y PQ3-<br />
C CEGURE. GP I S TPF PRCOUCT OF TPF GRAVITATIONAL CONSTANT AND THF MPSS<br />
C PF THE EARTH (METFRS**~/S~C,'J*~) T AX THE SFM I-MAJCIP AXlS (METERS r<br />
C OMEGA2 THE SOUARF flF TUE SPEED @F ROTATION.<br />
C<br />
C<br />
INITIAL12 LYC COYSTAYTS,<br />
CjMEGA2=(O -72921 1515r)-4) **2<br />
RADSEC = ?C16764 ,bO6DO<br />
DO=O,l)fiO<br />
Dl=l. 000<br />
D2 = 2001jO<br />
NMAXl=YMAX+I<br />
N3=hMAX+3<br />
N4 = 2*NtJAX+3<br />
C THE ZERO URGE9 COtFFICIENT I S PUT EQUAL TO ZERO AND TWE CPNTRIQUTIPN<br />
C FROM THIS TERM IS FIRST USFD? WHEY THE CDVTRIBUTTCIY FRDM ALL OTPEq<br />
C DEG9EFS HAS bFEN ACCUMULATEb.<br />
CCFF! 1) = no<br />
C<br />
C SETTING UP A SCUAKE-ROOT<br />
F(1) = Do<br />
G(1) = PO<br />
D0 1031 N = LT N4<br />
DN = DFLOAT(hf)<br />
TA6LE.<br />
F(N+l)<br />
1031 G(N+l)<br />
C<br />
= DSORT(DY*(DN-01))<br />
= DSQRT( DN)<br />
C THE COEFFICIENTS A9F GOOIh'G TO BE QUASI-NORMALIZED.<br />
IJ = 1<br />
DO 1033 I = IT NPAX<br />
DN = G(2*(1+1))*1.0G-h<br />
NZ = 2*I+1<br />
D0 1032 J = 1 9 V?<br />
1032 COFF(IJ+J) = COFF(IJ+J)*DN<br />
1033 IJ = 1J+N2<br />
SQ2=G (3<br />
RETURR<br />
C<br />
EYTRY GPflT(RLATD~CflSLAPrRLONGPTIKPTIPrGRFFrURFFrCLA)<br />
C THF SUBROUTIVE IS HERE USFD TO COMPUTF HE IGHT-AYOMALIES GPAVITY-AUD-<br />
C MALIES AYD DEFLECTIOYS (KSIy ETA OR (KSI9FTA))r CORRESPOYGING T9 THF
C VALUF OF IKP = L e a a p 5 m ?HE RESULT IS STORFD IN OBSlIPI AYD 08S(IP+101<br />
C FOR IKP= 5,<br />
XP% = IP<br />
%F (IKP,f0.54 IPB = IP+PO<br />
U=X/D I STO<br />
V=Y/D I STD<br />
W=Z/D I[ STO<br />
ADIQS=AX/DISlCI<br />
POT-DO<br />
DX=DO<br />
DY=G0<br />
BZ=PO<br />
C A l l ) ES NOW TPE VALUE OF THE SOLID SPHeHAqMONIC OF DFGqFF 0.s<br />
A(l l )=@l<br />
B(l1 = CO<br />
FACT- PI<br />
ADIV?I=DI<br />
c<br />
DO 7002 I = 2 9 N3<br />
A(l)=C0<br />
7061 B(I)=PO<br />
e<br />
C<br />
C<br />
DO XI 10 I=l VNMAXI<br />
61 = D1<br />
Al=DO<br />
- B1 = Cic?<br />
B2 no<br />
Db, l =D 0<br />
DP1=DO<br />
062=DO<br />
DX O=D 0<br />
DY O=D n<br />
DZO=DO<br />
POTO=DO<br />
C = no<br />
IS=~I-11*(1-11+1<br />
01<br />
- 62<br />
CO = S02<br />
A2=Aa 1)<br />
DAZ=CCFF ( IS1<br />
BPLUSJ=I<br />
PPLUSI=I+l<br />
IMINJ1=I+L'<br />
SS=IS+l<br />
b.RFbC=ADIVR I/FACf<br />
DO 7005 J = I p l PLUS1<br />
IPLUSJ-I PLUSJ+1
IMIYJl~IMINJl-1<br />
JPLUSl=J+l<br />
ALFA = F( IPLUSJ )*Cl<br />
ALFA? = ALFA*C2<br />
BETA = F( lkIhJ1 )*CO<br />
GAMMA=(;( IPINJl) *G( IPLUSJ)<br />
DAO=DAl<br />
DAl=DA3<br />
DC2 = COFF(1S)<br />
DBO=Dbl<br />
DEl=DB2<br />
D82 = COFF(IS+l)<br />
ALBO=ALFAWEO<br />
BEB?=E ETA*DP2<br />
ALAO=ALFA2*0AO<br />
BEA2=3ETA*DA2<br />
nXO=DXO+( ALAO-EEA2) *AJ+(ALt30-E!EBZ)*BJ<br />
DYO~YO+(~LAO+PFA~)*QJJ(ALBO+~EB~)~AJ<br />
DZO=DZO+GAKMA*( DAl*AJ+DEl*E? J)<br />
IS=lS+2<br />
C1 =Dl/CO<br />
C2 = D2-C<br />
CO = Ctl<br />
7005 C = D1<br />
C<br />
POT=POT+AFFAC*PtlTO<br />
FACT=FACT*I<br />
ARFAC=ADIVR I/FACT<br />
C CXTDYTDZ IS THF VALUE OF THE FIRST DE9IVATIVES OF THE PQTENTIAL WIT U<br />
C RESPECT TO XyYyZ.<br />
DX=DX-AP FAC*DXO<br />
DY=DY-AEFAC*DYO
D P=DZ-AD FAC*D ZO<br />
C<br />
7010 ADIVR I=ADIVRI*ADIVR<br />
C<br />
C CONTRIEUT 19'4 FROM RCITATIONAL POTENTIAL.<br />
R!JTX=OY EGAZsX<br />
ROTY = QMFLA2*Y<br />
ROTFOl = OMEGA2 /G3*XY 2<br />
POT = (D 1+POT )*GM/G ISTOsRSTPOT<br />
AO=GM/DI ST2<br />
DX = (U-DX/D2 )*An-RnTX<br />
DY = (V-DY/D? 1 * AO-SOTY<br />
DZ = (W-DZl*AO<br />
IF (IKP.LF.21 GP = DSGRT(UX*DX+0Y*DY+DZ*DZ)<br />
C GP I S THE GPAVITY I N P.<br />
CO T!3 (7VO6?7nO7,?On8 ,?O09e?n08), IKP<br />
7006 ORS(IP1 = (POT-USEF)/GP<br />
QETUqN<br />
7007 BBS(IP1 = GP*1.005-GKEF<br />
PETCQN<br />
7008 O BS(IP1 = (DATANZ(DZ*DSQRT(DX*DX+DY*DY))-RLATPMADS€C+CLb<br />
IF (IKPeLTe4I RETURN<br />
7009 ObS( ID1 = (DATAN2( GY pGX) -RLONGP)*RADSEC*COSLAP<br />
KFTURN<br />
END<br />
SUBR3UTINE EUCL ID(C3SLAPTSIYLAPTRLO'\fG*H*F2rkX)<br />
C COMPUTATIflN OF EUCLIDIAV CnnSOlNATES X,Y,Z 9 PISTANCF AND SQUAqE OF<br />
C DISTANCE FFQM Z- AXIS XYT XY? AND DISTANCF AND SCUPRE OF DISTAYCF FROM<br />
C THE ORIGIX DlSTD AND DIST2 FP.CM GRCPETIC COCKDINATFS REFERRlYG TO AN<br />
C ELLIPSOID PAVING SEMI-MAJPR AXIS EQUAL 10 AX AND SECOND EXCFNT2ICITY<br />
C EZ. IMPLICIT INTEGER( I I JIK~KIN) T PEAL *8(A-H,O-Z 1<br />
COMMON /FUCL/X~Y,Z?XYvXY2,DlSTO,DIST2<br />
DN = AX/DSQRT( 1 .f)DO-E?*SINLAP**2 I<br />
Z = ((leODO-E2I*DN+H)*SINLAP<br />
XY = (DN+HI*COSLAP<br />
XY2 = XY*XY<br />
DIST2 = XY2+ZeZ<br />
DlSTO = DSQRT(DIST2 1<br />
X = XY*DC@S(RLONG)<br />
Y = XY*DSIY(PLONG)<br />
RETURY<br />
END
SUPROVTINF RADI IDfGTM INTSECTRApIANC)<br />
C TC'E SUEPDUTINE CDMVtR.TS FOR IANG = lTZT3r4 ANGLFS IN (1) DEGSFFST MI-<br />
C NUTEST SECOYDST (2) GEGREES? MINUTEST (3) DECREES AND (4) 400-DFGRFFS<br />
C TO RADIANS.<br />
IMPLI C1 T INTFGER( I J,K,M,N) ,RE'AL *R IA-HTn-Z)<br />
1 = 1<br />
I F (IDFG ,LT* 0 *AVE. lANG .LT* 5) 1 = -1<br />
GO TO ( l r 2 ~ 3 ~ 1IANG 4 )<br />
1 SF =I>* IDEG*3A0O+M IN*6O+SEC<br />
GO TO 5<br />
2 SF=l* IDEG*3600+SFC*60<br />
GO TO 5<br />
3 SE = SEC*3600<br />
GO TO C;<br />
4 S€ = SEC*324n<br />
5 RA= 1*SE/206264.t?06DO<br />
RF TUF? N<br />
END<br />
SUEROUT I%E HEAD ( IKP 1LO?4FCf?~P~O(RP)<br />
C OUTPUT OF HEADIMLS Aid@ INITIALIZATIOW OF THE FOLLOWIP?IG VAKIAr3LE.5: IAT<br />
C I R ~ I P T I Il~IL1~IE~l~I~I.~lTl~I21~131~IC1~ICll<br />
T ~<br />
(ALL SUSSCYIPTC @F DIF-<br />
C FERENT CUTPUT CUANTITIES), KZ - K4 (SUESCRIPT D3UXDARlCS FnR OUTPUT<br />
C QUANTITIES), K1 = UPPE9 LlMlT FOP WANT1TTC.S READ IVTO 08s.<br />
IMPLICIT LOGICAL( L)<br />
COMMDU/OUTC/KZIK~~K~T lU~K21, IU19 IAYGTLPU%CHTL~UTCTLYTQA~!TLVE~%R<br />
**LK30<br />
COMMON /CHEACI/IA~IBTIH,I~~ITT IAlql61, IOlTITlT IClT ICllTKl, ICiESlq<br />
*ICbS2 1 L PUTi LCl, LC? LCFiEF 1 LKM<br />
LTRAN = .NOT.LNTOAN<br />
LERNO = .%OT.LNERNO<br />
K 1 = 0<br />
IF (I@PSl.h!E.O) K1 = 1<br />
GO TO (2008~2009~2010~2011~2012) ,1Kp<br />
2008 WRlTE(6~204)<br />
204 FORMAT('0<br />
GO TO 2013<br />
NO L AT l TUDE LONG lTUDE H ZETA (M)')<br />
2009 WRITE (69705 1<br />
205 FORMAT ( '0<br />
* 1<br />
GO TO 2013<br />
NO LATITUDE LONG1 TUDE H DELTA G (VGALl8<br />
2010 WR ITE (6,206 I<br />
206 FORMAT('@ NO LATI TUDE LnNGl TUDE F, KSI (ARCSEC) @ B<br />
GO TO 2013<br />
2011 WRITE(6r207)<br />
207 FORMA7 ( '0 kD LATITUDE LONGITUDE H ETA (ARCSFC)')<br />
GO TO 2013<br />
2012 WRITE(6r20R)<br />
208 FORMAT('@ NO LAT I TUDE LO%G ITUDE U KSI /ETA (ARCSE
*Cl0)<br />
I F (I3ES2 ,YF. 01 K1 = 2<br />
2013 I F (IH.UE.0) K1 = K1+1<br />
WRITF(hq267)"WGvRP<br />
267 FDKt'AT('+\59X9' STeVAR* ='qF6*49\ RR4TIO R/RE =v 9F10.79'9' 1<br />
C<br />
GO Tc? (2O%P92Ol59ZOZO,ZOZlI pIkNG<br />
2nlA WRTTF(6r2fi9)<br />
209 FORKAT(Q D M S E M S M' 1<br />
GO TO 2022<br />
7019 WRITF( 692101<br />
210 FORMAT( n M D M M~ 1<br />
GO TO 2022<br />
2020 kQlTF(6r211)<br />
711 FORMAT(' DFGFEFS DFGPFES M' 1<br />
GO TO 3022<br />
7071 WRITF(h*712)<br />
<strong>212</strong> FOkMAT ( g GRAGES G kA@F S M' 1<br />
C<br />
2022 I F (LKM) WRITE(h,213)<br />
213 FORMAT( Q + 93779 'I:' 1<br />
C<br />
C WF NOW COYPUTE THE SUPSCRIPT CF THE DIFFFQFYT 6UhkTITIESq WHICH WILL<br />
C FE STOhED FOP LATER OUTPUT 1R TFF AEkAY OF!. THF DIFFFRENCE BETNFFN<br />
C T U E 0BCEF;VLTTl'Pt GIVFV IN TV€ PRIGlNAL AtID TVE NEI.1 REF,SYSTFPl IV<br />
C OBS(1Tlc THE COYTRILUTIPY TO THF RFF.POT. FFDM THE HASM!l'IIC FXPAVSION<br />
C I N OBS(IP1 9 THE CUYTRIBVTIEIY FKOM COLL.1 IU DBS( IC1) AY@ FK3Y COLLtlI<br />
C 1N GRS(IC2).<br />
IC1 = 11<br />
IF (LTRAV) GO TO 2105<br />
IF( LPOT 1 GO TO 2102<br />
IF (LC11 GO TO 2201<br />
r B = 4<br />
GO TO 2104<br />
1201 IC1 = 5<br />
I F (LC21 GO TC 2101<br />
1e=5<br />
WRITE( h925O)<br />
250 FnRMAT('+\b4X9 ' PRED'I<br />
GO TT) 2104<br />
C<br />
2101 IB=7<br />
1C 2=6<br />
WRITE (6,291<br />
251 FORMAT( '+ "63x9 ' COLLI COLL2 PRED 8 1<br />
GO TO 2104<br />
C<br />
2102 IP=5<br />
1F (LC%l CC' TO 2202<br />
liB = 5
WRITF(hq245)<br />
245 FORMAT('+'T64XT'<br />
GO TD 2104<br />
C<br />
2703 IC1 = 6<br />
POT '1<br />
IF (LC2) G@ TO 2103<br />
I E=?<br />
WRlTE(A,252)<br />
252 FORMAT( '+' ?64X1 ' POT COLL PREDt)<br />
GO TO 3104<br />
C<br />
2103 IC2=7<br />
IB=R<br />
3RITF (4~2")<br />
253 F3RMAT( '+'?04X? ' POT<br />
2104 K3 = I?-4<br />
1u = It:<br />
COLLl CULL2 PSFD')<br />
GO TO 2110<br />
C<br />
2105 IT=5<br />
IF(LP3T) C3 70 2107<br />
IF (LCl) CO To 2205<br />
IR = 3<br />
WP 1TE (6,246<br />
246 FC?RM&T('+'T~LXT ' TRP '1<br />
GO TO 2103<br />
C<br />
2205 IL1 = 6<br />
IF (LC2) GO TO 2106<br />
1B=7<br />
WRlTE(6~254)<br />
254 F ~ R ~ ~ T ( ' + '' T ~ TRA ~ X T PRED PRED-TRP'<br />
GQ TO 2109<br />
C<br />
2106 IC2=7<br />
I R=€?<br />
WRITE(6t255)<br />
255 FORMAT( '+'~63X, ' TRA CRLLl COLL2 PRED PRED-TQb '1<br />
GQ TO 2109<br />
C<br />
2107 IP=6<br />
IF (LC1) GO TO 2208<br />
IR = 6<br />
WRITE (69247)<br />
247 FORMAT( '+'~63X? ' TPA POT PET-TRA')<br />
GO TO 2109<br />
C 230P I C 1 = 7<br />
IF (LC2) GO TC 2108<br />
l B =8
2%<br />
WP IT€ (692561<br />
FFP/(AT ( 'a ' r63Xe ' TRA<br />
GO T7 310"<br />
Pc',? COkk PRFD PRED-?RA 1<br />
C<br />
2108 IC2=R<br />
16=9<br />
WRITE (6923)<br />
257 FCRMAT['+'F~~X,'<br />
2109 K3=19-3<br />
IiU = 1591<br />
C<br />
2110 IF (LC21 1A = 1C2<br />
TSA POT COLLl COLL2 PRED PRED-TSAE9<br />
IF (,SOT,LCPFF) 1A = 1C1<br />
C<br />
IF [LDUTC) GO TO <strong>212</strong>5<br />
IF(LEF'4r-l)<br />
K?=1<br />
Gn 10 2112<br />
GO TO 3135<br />
C<br />
2112 Y?=l<br />
W!? IT' (6,2601<br />
260 FORPAT( b+*r43X~ U F R R m )<br />
G9 TO 2135<br />
<strong>212</strong>5 IF(K3.GT.O)<br />
K 2 =2<br />
GP T3 3127<br />
WRITE (6,361)<br />
26! FqD,h'AT! + Q r4?Xr 8<br />
GO Trl 2135<br />
ces 1<br />
C<br />
<strong>212</strong>7 IF (LFSPIO) GO TD 7128<br />
K2=3<br />
WKITE(bp262)<br />
262 FORMAT ( '+' ~43x9 ' OBS DIFe 1<br />
GO TO<br />
e<br />
<strong>212</strong>8 K?=4<br />
2135<br />
MRITE (693631<br />
263 FOKMAT('+',43X,' 06s DIF ERR 1<br />
C<br />
2135 K 4 = K?<br />
LK30 = K3,GT.O<br />
IF (Lowcm C.O<br />
IP1 = IG+lO<br />
IU1 = IU+lO<br />
IAI = 1A+1n<br />
171 = IT+lo<br />
ID1 = IP+lO<br />
ICll = IC1+10<br />
K4 = ?*KZ-1<br />
K31 = K2+ln<br />
TO 2111
C<br />
2111 RETUQY<br />
E NI3<br />
SUHROUTINE neT( m, IDLAT ,fJILATT SLAT, InLor\l,MLar?!,s~c~,Lnuc)<br />
C THE 5l;BQnUTINF NF ITFS ON UNIT 6 (3.) STATION NUMPER, (2) CRn?DINATFSy<br />
c (2) DESERVED VALUE (IN C~QI(;.REF.SYSTEM), (4) CIFFERENCE SETWFFY nYsEe.-<br />
C VED AND P9ECICTFD VALUE, (5) EKSOR OF PREPICTIO!Jr (6) TGAUSF3RWTI!7V<br />
C VALUE, (7) SPEERICAL HARMONIC SEPIES COST~I5UTI@U, (F) QFYULT OF CULL<br />
C I AND (Q) COLL.11, (10) Sub4 RF QUANTITIES (7)-(9) AXD (11) S?rK DC (6)-<br />
C (9) - ALL IF MEP.NINGFULL. I?\! LAZE WE AkE DE4LIYG WITP A P4IR PF DE-<br />
C FLECTIONS, (LCNC = FALSE) 9 TPE CEF.RES?ONDING QUA?;TITEY FOR ETA ARE<br />
C WRITTEN A LIVE fiLLOW,<br />
C WHEN LPUNCH IS TRUE, THE FOLLOWIXG OF TWE ARGVE "4fWTITJUF;r) QUAVTITIES<br />
C ARE WRITTEN ON UNIT 7: (1) AND (21, AQrf WHFN LOUT€ I S TRUE: (3) - (E)<br />
C AND ELSE (11 1, (10) AWD (5)<br />
IMPLICIT Ib!TEGER( l J9K9MTN) + LOGICAL( L) 9REAL *8(A-H,O-Z<br />
COMfXlN/DUTC/I 7117 I27I47 1219 131,IANG~LPUNC~,LEETC~LNTKAV,LhEQVP<br />
* 9 LK.30<br />
COMMClN/DB SE ?/Of3 S ( 20<br />
nlKENSInN ObN(10)<br />
I F (DAP(S(SLAT) .LT, 0.1G-h) SLAT = O.ODO<br />
I F (OPBS(SLDN) .LT, 0-1s-6) SLOY = 0.090<br />
C THIS IS DONE IV ORDER TO AVOID PKINTIXL OF SlGY. WuEV TVE ARC-SFCVND<br />
C PART I S NEAR TO ZER3r(OR ZEZO IS REPRESENTED AY A SMALL YEGATI\IE NUM-<br />
C BER).<br />
I F (OKS(l).G€,1.004) OLS(1) = 9949,900<br />
I F (ORS(l)eLFe-leOD3)nP~S(l) = -999-99D0<br />
I F (*NRTeLPUNCU) GO TCl E010<br />
I F (LDUTC) GO TD 8007<br />
OBN(1) = OBS(1)<br />
10 = 2<br />
OEN(2) = GES(14)<br />
I F (LNTRAN) Gn TD 8031<br />
OBN(3 1 = DES( 14-1<br />
IQ = I0+1<br />
8031 I F (LYERND) GO TO 8032<br />
10 = 104-1<br />
OBN(10) = OES(I)<br />
8032 I F (LCNC) GO TO 8034.<br />
I0 = I0+1<br />
OEN(Io1 = 06SII31)<br />
I F (LNTRAN) GC 70 P033<br />
I0 = I041<br />
nBN(I0) = ChS(14+Q)<br />
8033 I F (LNERNO) GP TO 8034<br />
I0 = IO+l<br />
OBN(I0) = OBS(I21)
RL2 = RL2-DP/IK-S*T/IKl-(O3*T*T-D1I*S2/(n2*IY2I<br />
I F (LND) GO TO 905<br />
DRL2 = DRL2/S-Dl/LKl-D3*S*T/IK2<br />
IF (LNDDI GC TO 905<br />
DDRL2 = DORLZ/S2-D3/IK2<br />
905 RETURN<br />
END
Appendix B.<br />
An iuput example.<br />
<strong>The</strong> digital numbers written to the left <strong>of</strong> the input data correspond to the<br />
numbers identifying the input specification given in Section G.<br />
<strong>The</strong> input example will produce the output shown in Appendix C. It corresponds<br />
to the situation described in Section 4, i. e. where three datasets <strong>of</strong> observations<br />
X,, X,, and X, are used for the determination <strong>of</strong> ?.
Z CCOOOCCC<br />
rzl I I I I<br />
c3 GGOOCC00<br />
2 I I I I I
G I-- a?<br />
C B I<br />
c N<br />
m N Ccl<br />
Orla-N<br />
rid d
F T T<br />
f -00 0.10<br />
b15~20X,I3~13,Fh~2~I5pI3pF6o?,?F?e2pLl)<br />
1 2 3 1 0 4 5<br />
40216 EJER SAVNEHQEJ<br />
51.0 F F F F F<br />
55 58 34.68 9 44 54e9CJ -5e13 3-61<br />
40606 VlGERLOESE<br />
F<br />
F T T<br />
54 42 54-22 11<br />
(Ih,2( I3,F6-2) 12F7.2rL2)<br />
1 2 3 2 4 5 0 2100 F F F<br />
1-00 981000-00 T<br />
4413 54 51.49 9 59-55 6-94 517.5P<br />
3163 54 50-23 12 00.01 17-63 510.18T<br />
F<br />
T T F<br />
54 30eOO<br />
F<br />
T T F<br />
9 00.00<br />
54 30.00<br />
F<br />
T T F<br />
9 00.00<br />
54 30.00<br />
F<br />
T T F<br />
9 00.00<br />
54 30.00<br />
T<br />
9 00.00
Appendix C.<br />
An output example.<br />
<strong>The</strong> output has been produced by the FORTRAN program using the input given in<br />
Appendix B.
GFODETPC COLLOCATIONIVERSION 20 APR 1974-<br />
MOTE THAT THE FUNCTIONALS ARE I N SPHERICAL APPROXIMATION<br />
MEAN RADIUS = RE = 6371 KM AND MEAN GRAVITY 981 KGAL USED.<br />
LFGEND OF TASLFS OF DBSFRVATl nYS AND DQEnlCTIONS:<br />
OLS = Ot.SFRVFD VALUE (WHEN POTH COMPnNfNVS nF DFFLECTlONS ARE<br />
OPSFKVEC ETh PFLOH KSI), GIF =THE LIFFERENCE EETWEEN OUSERVED<br />
bYD PP.EO 1CiED VALUE V W E N PREDICT IONS ART CTtMPUlED AN0 €LSE<br />
TPC PE5ICIJAL nE7FDVATIOY. ER9 = FSTIMATFD FR40Q OF P3EOICTION<br />
1Q.A = CO';TP.IYUT19Y F90'4 OCTUN TRAYSFOPMATIO", PflT = C3NTRI-<br />
PUTION FoPM POTENTIAL CnFFFIClFNTS. CDLL = CnYT91BUTION FROM<br />
COLLOCATlPk DFTFRMIIIED PART OF ESTIHATEr WHEN THERE ONLY HAS<br />
BEEN USED OYE SET OF OBSFRVATlflNS (DIFFERENT FRnM PDT.COEFF.1<br />
COLLl = CCNTRleUTlON FROM ESTIMATE OF ANOMALOUS POT. OETER-<br />
MINED FPDM FIRST SET OF OBSFP.VATlnNS, CCtLL2 = COUTRI3UTION<br />
F909 FSTIYATF ORTPINEI? FROM SFCONP SET OF OBSERVATIW4S I PRED=<br />
PREDICTFD VALUF- IN NFU PEFEaENCE SYSTEM, MHEN PkfDlC.TIONS ARE<br />
COYPUTEO AkIl ELSF THE SUM nF THE CONTPltUTlONS FROM TtIF POT.<br />
COEFFICIENTS AN0 FIRST ESTlMATE OF AYOMALDUS POTENTIALI AND<br />
PRED-TRA = PREDlCTInN nR SUM @F CONTRIBUTIONS IN TWE OLD RE-<br />
FERENCE SYSTEM.<br />
REFFREYCE SYSTEM:<br />
EUROPEAN DATUM. 1050.<br />
A = 6378388.0 M<br />
1/F 297.00040<br />
sEF.GRdVITY AT EQUATOR = 978049.00<br />
POTFUTl AL AT REF .ELL. = 62639787.00<br />
MGAL<br />
M**2/SEC+*Z<br />
GWAVI TY FORMULA:<br />
INTERNA TI OKAL GRAVl TV FORMULA* POTSDAM SYSTEM.<br />
NEW A NEW G# NEW 1/F<br />
6378143.0 0.390601 ZO+l5 298.25000<br />
EPSl €PS2 EPS3<br />
1.57 0.19 1.05<br />
NEU REF. GFAVITY AT EQUATOR= 97R032.67 MGAL<br />
NEW POTENT 1AL AT ELLIPSOID = 62636916.84 M**Z/SEC**2<br />
DEFLECTIONS AND HFIGHT ANOMALIES CHANGED I N<br />
LAT I TUOE LONGITUDE BY DKSI DETA DZETA<br />
55 30 0.0 10 0 0.0 -1.00 1-00 0.0<br />
SOURCE OF TPE PPTEVTIAL COEFFICIENTS USED:<br />
R.H.QAPP, THE GEOPOTENTIAL TO (14r14) ETC-r IUGG. LUCERNEI 1967-<br />
G M A COFF (5) MAX .DEGREE<br />
0.39860122D+15 6378143.0 -484.1803 8
START OF COLLOCATION I:<br />
WE MODEL ANOMALY DEGREE-VAWIANCFS ARE EQUAL TO<br />
A - - l 2 + 2411.<br />
PATIO R/RE L 0.999800<br />
VARIAUCE OF POINT GRAVITY ANOMALIES = 16~1.00 MGAL**Z<br />
1HE FACTOR A P 412.08 MGAL**2<br />
12 EHPIPICAL ANOMALY DEGREF-VARIANCES FOR DEGREE > l*<br />
(IN UNITS OF WGAL**2):<br />
0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.1 17.7 13.7 8.4<br />
OBSERVATIONS:<br />
THE FOLLOWING QUANTITIES ARE MEAN-VALUES, AND ARE REPRESENTED AS POIYT VALUES I N A HEl6Wf R.<br />
LIT1 TUOE<br />
D M<br />
56 30.00<br />
56 30.00<br />
56 30.00<br />
55 30.00<br />
55 30.00<br />
55 30.00<br />
54 30.00<br />
54 30.00<br />
54 30.00<br />
H DELTA G (HGPL1<br />
M OBS DIF<br />
0.0 1P.00 -5.26<br />
0.0 10.00 -13.19<br />
0.0 27.00 3.93<br />
0.0 26.00 3.50<br />
0.0 12.00 -10.43<br />
0.0 6.00 -16.32<br />
0.0 5.00 -16.67<br />
0.0 10.00 -11.61<br />
0.0 2.00 -19.51<br />
S1At;DAtlD DEVIATIO?4S OF THE OBSERVATIONS IN THE SAME SEQUENCE<br />
AND IN THE SAME UNITS AS THE OBSERVATIONS:<br />
4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00<br />
SOLUTIONS TO NORMAL EQUATIONS:<br />
1PE SOLUTIONS HAVE BEEN COMPUTED IN A PREVIOUS RUN.<br />
NUMEER OF EQUATION = 9<br />
NORHALI ZED SOUARE-SUM OF OBSERVATIONS E 0.178534D+Ol<br />
NORRALI ZED DIFFERENCE BETWEEN SQUARE-SUM OF<br />
OBSERVATIONS AND NORM OF APPROXIMATION P 0.2196870+00<br />
ST-VAR. 27-98. RATIO RIRE 1.0015554s<br />
TRA POT POT-TRA<br />
-6.69 16-57 23.26<br />
-6.69 16.50 73.19<br />
-6.69 16.37 23.m<br />
-6.47 16.02 22.50<br />
-6.48 15.96 22-43<br />
---5.48 15.84 22.32<br />
-6.25 15.42 21.67<br />
-6.25 15.36 21.61<br />
-6.25 15.25 21.51
START OF COLLOCITPOM 1 X r<br />
RATIO RfRE<br />
VAR~ARCE 0~ POlNT GRAVITY ANOMALIES<br />
THE FACTOR A<br />
90 OECREE-VARIANCE% EQUAL 80 ZERO<br />
DBSERVAT IONS:<br />
LAT l TUDE<br />
D 1 4 5<br />
55 58 39-65<br />
LAT ITUOE<br />
O M S<br />
55 52 38.51<br />
LATITUDE<br />
D *<br />
56 4.90<br />
56 7.10<br />
54 51.49<br />
54 50.23<br />
LONG1 TUOE<br />
O H S<br />
9 49 54.90<br />
LONG1 TUDE<br />
o n s<br />
12 50 38-93<br />
LONG1 TUOE<br />
0 H<br />
10 0.34<br />
11 57.00<br />
Q 59.55<br />
12 0.01<br />
H #SI/ETA (ARCSEC) STaVAR, 1.95, RATIO RfRE = 1.0000000~<br />
TRA POT COLL PRED PREO-YRA<br />
H EETAIM)<br />
H OUS DIF<br />
0.0 20.40 -0.07<br />
H DELTA G (HGALI<br />
H 005 DIF<br />
70.60 37.49 21.61<br />
0.0 -5.70 -19.90<br />
6.94 17.20 5.69<br />
17.63 14.89 8-68<br />
ST.VAR. = 0.37, RATIO R/RE = 1.onoonno.<br />
TRA DOT COLL PQED PRED-TRA<br />
22.55 46.20 -3.18 43.02 20.47<br />
ST.VAQ. = 13-04. RATIO R/RE = l-0000000*<br />
TRA POT COLL PRED PRED-TRA<br />
-6.60 16.32 -7.04 9.28 15-88<br />
4-61 16.25 -8.66 7.59 14.20<br />
-6.33 15.61 -10.44 5.18 11.51<br />
-6.33 15.52 -15.64 4.12 6.21<br />
STANDARD DEV1ATION5 OF THE DRSERVATIONS IN THE SAME SECUFNCE<br />
AND IN THE SAME UNITS AS THF OBSERVATIONS:<br />
0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.0 0 -20<br />
0.20 0.20 0.20<br />
COEFFIC IEVTS OF NDRMAL-EPUATIOYSI BLOCK 1<br />
SOLUTIONS TO NORMAL EQUATIONS:<br />
KUMEER t3F FCUATIONS = 13<br />
NORMAL1 ZED SOUARE-SUM OF QBSERVATlONS P 0.1991610+02<br />
NORMAL1 ZED DIFFERENCE BETWEEN SQUARE-SUM OF<br />
OBSERVATIONS AND NORM OF APPROXIMATHO% ~-0.4244679+01
OP -<br />
or-<br />
H<br />
b-<br />
V) V UI<br />
os 5 UOQ - U<br />
W.<br />
goin -J V 2<br />
<<br />
0 P-<br />
W O *<br />
V)<br />
LLOM < U OLcm<br />
5 U<br />
V mn G+ C<br />
00 OIP<br />
UOO<br />
P UdC<br />
U . 0 EI u o .<br />
LU<br />
U1 ZOQ o m W zoo cm > moo am<br />
z W 0 > WII 0<br />
W<br />
0 a C<br />
L1: d W a 0 0-4<br />
C4 .U .ON U1 W .OR1 I W<br />
k- U. P( I U. Q C L 0<br />
ON<br />
4 U c- U. U.<br />
> C-( 0 P(<br />
&a L<br />
fud<br />
LL 0<br />
0 B<br />
bLI M M<br />
V) mqa, -MO W0.t CM0 V1<br />
5l zoa - z w..a C O O<br />
Z ZNr - c ZNM<br />
Q<br />
C l 0 z<br />
-<br />
0 C O P 2 - 00. L<br />
-am 200-4 - - 9 2 l- -Nm 304<br />
Q I-.-<br />
!-- !-l<br />
I U t-<br />
z U<br />
U U<br />
U. U B<br />
a<br />
C) W W O N<br />
V1 W U U. U U<br />
LU LY U I<br />
z U z c m tu OL z c m si a U ZQm<br />
Q h U 1 0 P U I a<br />
m<br />
4JJ i<br />
W M U.<br />
C V)*Q) UQ.? U -mm &C4 0 WC- WO* 8:<br />
U<br />
Z O 9 LL I 0 Zh" U. l<br />
D<br />
U d Z 4 Q L<br />
a - > U09 Z > U09 0 ><br />
2 0 1 0 a:<br />
O l b CL U0.6<br />
( L e UI P W W II<br />
o r W zcr E v)<br />
L 0 P<br />
ON a c I ON m o ZO+ I UN E m %<br />
Z Z G U 0 - W I<br />
0 W<br />
0 -a<br />
l-om<br />
COW LIJ<br />
M<br />
U 3 l U<br />
w 3 1 n W 3boa, 8<br />
U m 0 .S U m<br />
Z C2 z -we 3a z - 0 0 . 3 +CL ., U 2 m .-OQ.<br />
U -W U W I b W<br />
a<br />
a a I -L<br />
>m Z- C<br />
4 O L 1<br />
- m z- ,- o m 2- !-eOL<br />
W O O ZT<br />
U UZ X> D I dZ X> 0 I 2.7 X> 0 8