17.08.2013 Views

Manufacturing Processes Metal Powders, Ceramics, Glasses

Manufacturing Processes Metal Powders, Ceramics, Glasses

Manufacturing Processes Metal Powders, Ceramics, Glasses

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim<br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

<strong>Metal</strong> <strong>Powders</strong>, <strong>Powders</strong>,<br />

<strong>Ceramics</strong>, <strong>Glasses</strong>


Contents<br />

Powder <strong>Metal</strong>lurgy<br />

1. Powder production<br />

2. Blending or mixing<br />

3. Compaction<br />

4. Sintering<br />

Ceramic<br />

1. Mixing particles with additives<br />

2. Shaping<br />

3. Drying & Firing<br />

Glass<br />

1. Plate, Tubing<br />

2. Blowing, Pressing<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Powder <strong>Metal</strong>lurgy Usage<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim<br />

http://www.hmptech.com


Powder <strong>Metal</strong>lurgy<br />

1. Powder production<br />

2. Blending or mixing<br />

3. Compaction<br />

4. Sintering<br />

5. Finishing operations (Coining, Sizing, Machining,<br />

Infiltration)<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim<br />

http://www.youtube.com/watch?v=1Mjsi2F2MrY


Powder Production<br />

1. Atomization<br />

• Produces liquid-metal stream by injecting molten metal.<br />

2. Reduction<br />

• Removal of oxygen involves gases such as reducing agents.<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Particle size and shape<br />

• Particle size is measured and controlled by screening.<br />

• Size distribution of particles affects the processing<br />

characteristics of the powder.<br />

• Particle shape influences on processing characteristics.<br />

It is expressed by aspect ratio or shape factor.<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Blending metal powders<br />

• Blending (mixing) powders is the second step, and the<br />

purposes are:<br />

1. to impart physical and mechanical properties and<br />

characteristics to the P/M part<br />

2. obtain uniformity from part to part<br />

3. lubricants are mixed to improve flow characteristics<br />

4. additives used to facilitate sintering<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Compaction of metal powders<br />

• Compaction are pressed into shapes using dies and<br />

presses.<br />

• Obtain the required shape, density and particle-toparticle<br />

contact.<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Compaction of metal powders<br />

• The density after compaction<br />

depends on:<br />

1. compaction pressure<br />

2. powder composition<br />

3. hardness of the powder<br />

• Higher the density, higher<br />

the strength and<br />

elastic modulus of the part.<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Pressure distribution in powder<br />

compaction<br />

• Pressure distribution along length of the compact.<br />

p<br />

μ : powder-wall friction coef<br />

k : the inter-particle friction coef<br />

x/D : length-to-diameter ratio<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

x<br />

=<br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim<br />

p<br />

0<br />

e<br />

-4mkx<br />

D


Isostatic pressing<br />

• <strong>Powders</strong> are subjected to hydrostatic pressure in order<br />

to to achieve uniform compaction.<br />

• In cold isostatic pressing (CIP), metal powder is placed<br />

in a flexible rubber mold.<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Isostatic pressing<br />

• In hot isostatic pressing (HIP), a container is made of<br />

high-melting point sheet metal and the pressurizing<br />

medium is an inert gas.<br />

• It can produce compacts with uniform grain structure<br />

and density, irregardless of shape.<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Sintering<br />

• Sintering is where compacted metal powder is heated<br />

to below its melting point for the bonding of the<br />

individual metal particles.<br />

• Sintered density increases with temperature and time.<br />

• Volume shrink during sintering<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Sintering mechanisms<br />

• 1 st mechanism: As temperature increases, 2 particles<br />

will bond by diffusion.<br />

• 2 nd mechanism: Vapor-phase transport is due to<br />

material heated close to melting temperature.<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Design for Powder <strong>Metal</strong>lurgy<br />

1. Simple & uniform shape<br />

2. Easy ejection from die<br />

3. large tolerance reduce cost<br />

4. Avoid sharp radius<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Economics of Powder <strong>Metal</strong>lurgy<br />

• The cost depends on method of powder production, its<br />

quality and quantity purchased.<br />

• Due to high cost of punches, dies and equipment for<br />

P/M processing, production volume must be high.<br />

• P/M forging is used for critical applications where<br />

fatigue resistance are essential.<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


<strong>Ceramics</strong><br />

• <strong>Ceramics</strong> are compounds of metallic and non-metallic<br />

elements.<br />

• Bonding between atoms can be covalent and ionic.<br />

• Various types of ceramics are:<br />

1. Oxide ceramics O: Alumina Al 2 O 3 , Zirconia ZrO 2<br />

2. Carbides C: Tungstem carbides WC, Silicon carbide SiC<br />

3. Nitrides N: Cubic boron nitride cBN, Titanium nitride TiN, Sialon, Cermets<br />

4. Silica SiO 2<br />

5. Nanophase ceramic<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Ceramic usage<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

Pottery<br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim<br />

Aerospace<br />

Memory<br />

Medical


Ceramic usage<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim<br />

Electric resistance<br />

Wear resistance<br />

Art<br />

High temperature


General properties of ceramics<br />

• <strong>Ceramics</strong> are brittle, have high compressive strength and<br />

hardness at elevated temperatures, high elastic modulus,<br />

low toughness, low density, low thermal expansion, and low<br />

thermal and electrical conductivity.<br />

1. Mechanical properties<br />

• Sensitivity to cracks, impurities and porosity<br />

• Strength in tension is lower than compressive strength.<br />

2. Physical properties<br />

• Low specific gravity and have high melting temperatures.<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Ceramic process<br />

1. Crushing raw materials into very fine particles<br />

2. Mixing particles with additives<br />

3. Shaping<br />

4. Drying & Firing<br />

5. Finishing<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim<br />

http://www.youtube.com/watch?v=_xx0qwFJ8nI&feature=related


Ceramic Shaping process<br />

1. Casting: slip casting<br />

2. Plastic forming: extrusion<br />

3. Pressing: dry pressing, wet pressing, isostatic pressing,<br />

jiggering, injection molding, hot pressing<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Ceramic Fiber Process<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Glass<br />

• Glass is an amorphous solid with the structure of a liquid.<br />

• All glasses contain at least 50% silica SiO 2.<br />

• They are resistant to chemical attacks and ranked by their<br />

resistance to acid, alkali or water corrosion.<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Mechanical properties<br />

• Consider to be linearly elastic and brittle.<br />

• Bulk formed glass has low strength(


Forming and Shaping Glass<br />

1. Flat sheet or plate made by float method<br />

2. Rods and tubing<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim<br />

Float method<br />

http://www.seoulglass.com<br />

Tubing


Forming and Shaping Glass<br />

3. Discrete products<br />

– Blowing<br />

– Pressing<br />

– Centrifugal casting<br />

4. Glass fibers<br />

Pressing<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim<br />

Blowing


Graphite<br />

• Graphite is a layered structure of carbon C.<br />

• It is brittle, electrical thermal conductor, has resistance<br />

to chemical thermal shock.<br />

• Low frictional properties allow it to be a solid lubricant,<br />

abrasive but a poor lubricant in a vacuum.<br />

• Special structure : Graphite fiber and Carbon nano tube.<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim


Diamond<br />

• Has a covalently bonded structure and is the hardest<br />

substance.<br />

• It is brittle and decompose in air at about 973 K.<br />

• Applications include cutting tools, window of laser.<br />

<strong>Metal</strong>s <strong>Powders</strong>, <strong>Ceramics</strong>, <strong>Glasses</strong><br />

<strong>Manufacturing</strong> <strong>Processes</strong><br />

© Pearson Pearson<br />

& GNU Su-Jin Su Jin Kim

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!