Standard Model and CPV: the CKM Unitary Triangle Angles ... - ICTP
Standard Model and CPV: the CKM Unitary Triangle Angles ... - ICTP
Standard Model and CPV: the CKM Unitary Triangle Angles ... - ICTP
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
CP violation <strong>and</strong> <strong>CKM</strong><br />
measurements in B decays<br />
Bob Kowalewski<br />
University of Victoria <strong>and</strong><br />
LAPP, Annecy<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 1
Importance of <strong>CKM</strong> measurements<br />
Need to pin down “st<strong>and</strong>ard st<strong>and</strong>ard” physics for many “new new<br />
physics” physics searches, e.g. K L p0νν: νν<br />
Improved precision translates<br />
directly into increased NP reach<br />
<strong>CKM</strong><br />
parameters<br />
NP signal will be more credible if seen in multiple<br />
observables need precise measurements of many<br />
quantities<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 2
<strong>CKM</strong> in B physics<br />
B decays allow direct direct access<br />
to 2 elements <strong>and</strong> indirect indirect<br />
access to 2 o<strong>the</strong>rs via loops<br />
Can determine 2 angles <strong>and</strong> <strong>the</strong> phase in <strong>CKM</strong><br />
cb| | now known to ~2.5%; only sinθ sin C is known<br />
better<br />
|V cb<br />
⎛V V V ⎞<br />
ud us ub<br />
⎜ ⎟<br />
V V V<br />
⎜ cd cs cb ⎟<br />
⎜V V V ⎟<br />
⎝ td ts tb ⎠<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 3
At<br />
At<br />
| V<br />
<strong>the</strong><br />
λ =<br />
λ =<br />
ub<br />
<strong>the</strong><br />
A =<br />
A =<br />
|<br />
1%<br />
V<br />
us<br />
3%<br />
0.<br />
809<br />
<strong>and</strong><br />
→ ρ -η<br />
Unitarity relation of interest<br />
V udV ub * +VcdV cb * +VtdV tb * = 0<br />
Choice of parameters:<br />
0.<br />
2257<br />
V<br />
cb<br />
level :<br />
= sinθ<br />
level :<br />
2<br />
/ λ<br />
±<br />
| V<br />
±<br />
0.<br />
024<br />
td<br />
|<br />
plane<br />
c<br />
0.<br />
0021<br />
Vus γ<br />
V<br />
cb<br />
( 0 , 0)<br />
( 1,<br />
0)<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 4<br />
η<br />
R u<br />
( ρ, η)<br />
λ , A,<br />
ρ <strong>and</strong> η<br />
α<br />
R<br />
cd<br />
∗<br />
ub<br />
∗<br />
cb<br />
R t<br />
β<br />
Vud<br />
V<br />
2<br />
R u = ≈ − ρ + η<br />
V V<br />
t<br />
=<br />
Unitarity: 1 + R t + R u = 0<br />
V<br />
V<br />
td<br />
cd<br />
V<br />
V<br />
∗<br />
tb<br />
∗<br />
cb<br />
≈<br />
γ = argV<br />
−<br />
*<br />
ub<br />
,<br />
2<br />
( 1−<br />
ρ)<br />
+<br />
2<br />
η<br />
2<br />
e<br />
α = π − γ −β<br />
i γ<br />
e<br />
ρ<br />
−iβ
In all cases many<br />
different modes<br />
accessible in e + e -<br />
|V ub | / |V cb |,<br />
semileptonic<br />
B decays<br />
Direct CP<br />
asmmetries, e.g.<br />
B + D 0 K + /D 0 K +<br />
Observables<br />
CP asmmetries in<br />
b uqq transitions<br />
with BB mixing<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
B d <strong>and</strong> B s<br />
oscillations,<br />
bsγ, bdγ<br />
CP asmmetries in<br />
bccs transitions<br />
with BB mixing<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 5
Trees <strong>and</strong> loops<br />
Tree-dominated Tree dominated processes are ~free of new physics<br />
B<br />
b<br />
W<br />
ℓ<br />
ν<br />
q c, u<br />
q<br />
New physics, even at a high mass scale, can induce<br />
effects in loop-dominated loop dominated processes (e.g. W + H + )<br />
B 0<br />
b W d<br />
t t<br />
d W b<br />
B 0<br />
Compare <strong>CKM</strong> parameters from tree <strong>and</strong> loop processes<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 6<br />
B<br />
b<br />
q<br />
B -<br />
W<br />
t<br />
W<br />
s<br />
q<br />
K -<br />
D 0<br />
K -<br />
p
Experimental setting: e + e- Y(4S) Y(4S)BB<br />
20 MeV above BB threshold; no additional pions<br />
B mesons have small speed β ~ 0.06 in Y(4S) frame<br />
Decay products of B <strong>and</strong> B overlap in detector<br />
e + e- qq continuum decays also produced<br />
At asymmetric B factories, B vertices differ by 260μm 260<br />
qq<br />
on<br />
off peak peak<br />
(q=u,d,s,c)<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 7<br />
2m B<br />
BB
Belle <strong>and</strong> BaBar<br />
World’s World s highest luminosities -<br />
corresponds to 800 (500 500) ) 10 6<br />
BB events for Belle (BaBar BaBar)<br />
BaBar –<br />
531 fb -1<br />
Belle –<br />
817 fb -1<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 8
CP violation in B decay<br />
Need interference between competing amplitudes<br />
B0 Decay to CP eigenstate + BB mixing<br />
Only neutral B mesons<br />
Clean <strong>CKM</strong> info if 1 decay amplitude dominates<br />
CP violation in interfering decay amplitudes<br />
Need strong interaction phase shift information<br />
Can exploit D 0 decays to CP<br />
decays to CP eigenstates, DCSD<br />
CP violation in BB mixing process – tiny in SM<br />
Several mechanisms can be present<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 9
CP<br />
CP<br />
CP B = e B<br />
0 + 2iθ<br />
0<br />
CP B = e B<br />
0 −2iθ<br />
0<br />
CP Violation in Mixing<br />
off-shell off-shell<br />
on-shell on-shell<br />
arbitrary phase<br />
⎛ M − Γ M − Γ12⎞<br />
= ⎜ ⎟<br />
⎝ − Γ − Γ ⎠<br />
i i<br />
2 12 2<br />
eff *<br />
M12 i<br />
2<br />
∗<br />
12 M i<br />
2<br />
q q B H B M<br />
CP violation iff ≠ 1 where = =<br />
p p M<br />
2 0<br />
eff<br />
0 * i *<br />
12 − 2 Γ12<br />
0<br />
B Heff 0<br />
B<br />
i<br />
12 − 2 Γ12<br />
HFAG average: |q/p | q/p| | = 1.0025± 1.0025 0.0019<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 10<br />
H
a<br />
f<br />
CP<br />
CP violation in <strong>the</strong> interference<br />
between mixing <strong>and</strong> decay<br />
fCP<br />
λf = η CP f ⋅ CP<br />
p AfCP<br />
CP eigenvalue −2iβ<br />
B<br />
0<br />
Γ(<br />
B phys ( t)<br />
→ f CP ) − Γ(<br />
B<br />
( t)<br />
= 0<br />
0<br />
Γ(<br />
B ( t)<br />
→ f ) + Γ(<br />
B<br />
=<br />
C<br />
f<br />
CP<br />
phys<br />
⋅<br />
cos(<br />
Δm<br />
B<br />
q<br />
d<br />
CP<br />
A<br />
0<br />
t)<br />
+ S<br />
f<br />
≈ e<br />
CP<br />
0<br />
phys<br />
phys<br />
( t)<br />
→<br />
( t)<br />
→<br />
⋅ sin ( Δm<br />
amplitude<br />
ratio<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 11<br />
B<br />
d<br />
f<br />
f<br />
CP<br />
CP<br />
t)<br />
)<br />
)<br />
0<br />
B<br />
mixing<br />
0 phys<br />
C<br />
S<br />
fCP<br />
fCP<br />
=<br />
Af<br />
CP<br />
λ ≠ ± 1 ⇒ Prob(<br />
Bphys(t)<br />
→ fCP)<br />
≠ Prob(B<br />
(t) → fCP)<br />
f CP<br />
0<br />
phys<br />
−iMt<br />
−Γt<br />
/ 2<br />
We have |q/p|≈1. If one amplitude<br />
dominates, |A/A|≈1, but Im(λ)≠0<br />
0<br />
B<br />
[ ( ) ( ) ]<br />
0<br />
0<br />
cos Δmt/<br />
2 B + i(<br />
p/<br />
q)<br />
sin Δmt/<br />
2<br />
( t)<br />
= e e<br />
B<br />
1 − | λ<br />
1 + | λ<br />
2Imλ<br />
=<br />
1 + | λ<br />
fCP<br />
fCP<br />
Af<br />
CP<br />
|<br />
|<br />
2<br />
2<br />
fCP<br />
2<br />
f |<br />
CP<br />
fCP
−<br />
e<br />
Υ(<br />
4S)<br />
Outline of <strong>the</strong> measurement<br />
+<br />
e<br />
0 rec<br />
B<br />
0<br />
Btag<br />
J/ψ<br />
Δt ≈<br />
Δz<br />
Δz/<br />
K s<br />
B-Flavor Tagging<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 12<br />
βγ<br />
μ -<br />
c<br />
μ +<br />
Exclusive<br />
B Meson<br />
Reconstruction<br />
(flavor eigenstates) lifetime, mixing analyses<br />
p -<br />
p +<br />
(CP eigenstates) CP analysis<br />
ℓ -<br />
K -
β (φ1) ) determination<br />
Time-dependent Time dependent CP asymmetries in bc transitions<br />
Golden mode for <strong>the</strong>ory <strong>and</strong> experiment: experiment:<br />
B 0Xcc Tree amplitude dominates<br />
~no additional weak phases<br />
ccKS,L S,L<br />
error on S=sin2β: S=sin2 : estimates from 0.001 to 0.017<br />
Charmonium Xcc cc decays to lepton pairs<br />
Easy to reconstruct; good definition of decay vertex<br />
~all K 0 S decays can be reconstructed<br />
α (φ 2 )<br />
Even K 0 L can be used due to kinematic constraints<br />
γ (φ 3 ) β (φ 1 )<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 13
Golden modes for β (φ ) 1<br />
B0 Xcc cc K (*)0 (Xcc cc = J/ψ, J/ , ψ(2S), (2S), χc1, c1,<br />
ηc; ; K 0 or K *0 K 0p0 )<br />
Results compiled by HFAG<br />
sin2β= 0.714±0.032±0.018<br />
C=-A= 0.049±0.022±0.017 sin2β= 0.650±0.029±0.018<br />
C=-A=-0.018±0.021±0.014<br />
HFAG average:<br />
sin2β= 0.680±0.025<br />
C=-A= 0.012±0.020<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 14
O<strong>the</strong>r β measurements<br />
Many o<strong>the</strong>r modes exhibit Time-dependent Time dependent CP violation<br />
(TD<strong>CPV</strong>) yielding β:<br />
B0DDKS, , DCP CPh0 , DDalitz DDalitzh0<br />
, K + K-K0 , …<br />
Analyses of decays involving different spin or Dalitz<br />
amplitudes give sensitivity to cos2β: cos2 :<br />
rules out mirror solution for β<br />
Too many measurements to mention here; significant<br />
(>3σ) (>3 ) CP asymmetries in 11 individual modes<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 15
Penguin modes for β (φ ) 1<br />
TD<strong>CPV</strong> in bqqs penguin decays measures βeff eff in SM;<br />
e.g. modes B 0φK0 , η ( ’ ) K0 , p0K0 , f 0K0 , K 0K0K0 , etc.<br />
βeff eff ≠β due to additional EW<br />
phase; δβ varies per mode<br />
Interest in bqqs continues,<br />
consistency with golden modes<br />
depends on data selection,<br />
estimate of <strong>the</strong>ory uncertainties<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 16<br />
f 0 K S
Prospects for β (φ ) 1<br />
Super-B Super B with 10 36 luminosity (assume 75 ab -1 dataset)<br />
[projections taken from arXiv:0709.0451]<br />
sin2β sin2 from charmonium:<br />
charmonium:<br />
±0.005 0.005 (detector syst) syst<br />
Uncertainties of few % in bcʉd modes (stat)<br />
Uncertainties of few % in bsss modes (<strong>the</strong>ory)<br />
Self-consistency Self consistency of above modes constrains NP<br />
Highly accurate knowledge of β pins down <strong>CKM</strong><br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 17
TD<strong>CPV</strong> in bu transitions<br />
Measuring α (φ ) 2<br />
Many final states have contributions from >1 amplitude<br />
(tree, Penguin, color-suppressed color suppressed tree)<br />
Asymmetries proportional to αeff; eff;<br />
differs from α by a<br />
mode-dependent mode dependent offset<br />
Full isospin amplitude analysis needed to determine δα<br />
Most useful modes in practice:<br />
B0 ρ0ρ0 , ρ + ρ- , B + ρ + ρ0 B0 p0p0 , p + p- , B + p + p0 B0 p + p-p0 Dalitz<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 18
B0 pp<br />
B pp; pp;<br />
easy easy<br />
experimentally (except p0p0 , for which time-dependent<br />
time dependent<br />
asymmetry can’t can t readily be measured)<br />
In each case need isospin analysis<br />
to determine δα; ; hope for A 00<br />
hh 8-fold fold ambiguities in solution for α<br />
analysis (Gronau Gronau, , London PRL65: PRL65:3381(1990))<br />
3381(1990))<br />
00 á Ahh<br />
+-<br />
hh<br />
BF(B 0 + p p- )=(5.2±0.2)x10<br />
)=(5.2 0.2)x10-6 BF(B 0 0 p p0 )=(1.3±0.2)x10<br />
)=(1.3 0.2)x10-6 HFAG<br />
(big! big!)<br />
A hh +- /√2<br />
A hh 00<br />
A hh +0 = Ahh -0<br />
BaBar, PRD76:091102(2007)<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 19<br />
A hh +- /√2<br />
θ<br />
À<br />
θ–À = 2 δα<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
No TD<strong>CPV</strong><br />
input in<br />
B 0 p 0 p 0<br />
A hh 00
B0 ρρ<br />
B ρρ; ρρ;<br />
polarization determines CP eigenvalue<br />
experiment: ~full longitudinal polarization (CP even)<br />
Isospin analysis as for pp, pp,<br />
but ρ0ρ0 easier, smaller<br />
BF(B 0 + ρ ρ- )=(24.2±3.2)x10<br />
)=(24.2<br />
BF(B 0 HFAG<br />
0 ρ ρ0 )=( 1.1±0.4)x10<br />
1.1<br />
Impact of A(B 0 ρ 0 ρ 0 )<br />
arXiv:0708.1630<br />
3.2)x10-6 0.4)x10-6 B 0 ρ 0 ρ 0<br />
A hh +- /√2<br />
A hh +- /√2<br />
A hh +0 = Ahh -0<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 20<br />
θ<br />
À<br />
preliminary<br />
θ–À = 2 δα<br />
Angle<br />
constrained<br />
by TDCP in<br />
B 0 ρ 0 ρ 0<br />
A hh 00<br />
A hh 00
Main input for α (φ ) 2<br />
B p + p- : S +- C +-<br />
Belle -0.61 0.61±0.10 0.10±0.04 0.04 -0.55 0.55±0.08 0.08±0.05 0.05<br />
BaBar -0.60 0.60±0.11 0.11±0.03 0.03 -0.21 0.21±0.09 0.09±0.02 0.02<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
B ρ + ρ- : S +-<br />
L C +-<br />
L fL Belle 0.19±0.30 0.19 0.30±0.08 0.08 -0.16 0.16±0.21 0.21±0.08 0.08 0.941±0.037<br />
0.941 0.037±0.030 0.030<br />
BaBar -0.17 0.17±0.20 0.20±0.06 0.06 0.01±0.15 0.01 0.15±0.06 0.06 0.992±0.024<br />
0.992 0.024±0.026 0.026<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 21
Constraints on α (φ ) 2<br />
Isospin analyses on pp, pp,<br />
ρρ; ρρ;<br />
Dalitz analysis on ρp<br />
Combined result is<br />
α =<br />
UTfit<br />
91±<br />
o<br />
8<br />
α =<br />
<strong>CKM</strong>fitter<br />
( ) o 6.<br />
2<br />
87 . 5 5.<br />
3<br />
+<br />
−<br />
α (φ 2 )<br />
SuperB projects 1-2° 1 in ρρ, ρρ,<br />
2° 2 in ρp<br />
<strong>and</strong> 3° 3 in pp; pp <strong>the</strong>ory limited<br />
γ (φ 3 ) β (φ 1 )<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 22
Direct CP violation<br />
Interference between competing amplitudes (e.g. tree<br />
<strong>and</strong> penguin) involve strong phase shifts uncertainty<br />
Important special case: CP eigenstates or doubly <strong>CKM</strong>-<br />
suppressed decays lead to same final state of D0 <strong>and</strong> D0 .<br />
Favored: V cb V us *<br />
b<br />
u<br />
V cs * Vub : suppressed<br />
s<br />
u K u<br />
(*)-<br />
u<br />
Common K s<br />
(*)-<br />
B- B- final state<br />
A<br />
A<br />
c<br />
u<br />
D (*)0<br />
− 0<br />
−<br />
( B →D<br />
K )<br />
B −<br />
− 0 −<br />
( B D K ) = rBe e<br />
→<br />
iδ<br />
iγ<br />
f<br />
D (*)0<br />
Parameters: γ,<br />
(r B , δ B) per mode<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 23<br />
c<br />
u<br />
b
Accessing γ (φ ) 3<br />
Need interference common final state for D 0 <strong>and</strong> D0 CP eigenstates (Gronau ronauLondon ondonWyler yler): D<br />
): D0K + K- , p + p- , KS K p0… Double <strong>CKM</strong>-suppressed <strong>CKM</strong> suppressed (Atwood ( twoodDunietz unietzSoni oni): D<br />
3-body body Dalitz (Giri iriGrossman rossmanSoffer offerZupan upan,<br />
): D 0 K + p - …<br />
, Bondar): Bondar):<br />
Ksp + p-… Measure asymmetries between B + <strong>and</strong> B - decays <strong>and</strong><br />
ratios of average decay rates to gain sensitivity to<br />
magnitude (r ( B) ) <strong>and</strong> phase (δ ( B) ) of amplitude ratio<br />
These are tree-level tree level decays insensitive to NP<br />
Self-tagging Self tagging B 0 D (*)0 (*)0K *0 (K *0<br />
α (φ 2 )<br />
*0K + p- ) also measure γ<br />
TD<strong>CPV</strong> in B 0D (*)+ h- <strong>and</strong> D (*) (*)-h + measures sin(2β+γ) sin(2<br />
γ (φ 3 ) β (φ 1 )<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 24
Observables for γ (φ ) 3<br />
GLW: CP +/- +/ eigenstates<br />
r B, δ B, γ<br />
8-fold<br />
ambiguity<br />
on γ<br />
ADS: DCSD<br />
r B, δ B, r D, δ D, γ<br />
<br />
<br />
ADS<br />
ADS<br />
Γ<br />
=<br />
Γ<br />
Γ<br />
=<br />
Γ<br />
<br />
<br />
Γ<br />
Γ<br />
−<br />
− +<br />
+<br />
( B → D±<br />
K ) − Γ(<br />
B → D±<br />
K ) ± 2rB<br />
sinδ<br />
B sin γ<br />
=<br />
−<br />
− +<br />
2<br />
( B → D±<br />
K ) + Γ(<br />
B → D±<br />
K ) 1+<br />
rB<br />
± 2rB<br />
cosδ<br />
B cosγ<br />
−<br />
− +<br />
+<br />
( B → D±<br />
K ) + Γ(<br />
B → D±<br />
K ) 2<br />
= 1+<br />
r 2 cosδ<br />
cos<br />
0<br />
0<br />
B ± r<br />
−<br />
− +<br />
B B<br />
( B → D K ) + Γ(<br />
B → D K )<br />
CP±<br />
= +<br />
Γ<br />
Γ<br />
CP±<br />
= +<br />
amplitude<br />
ratio<br />
A<br />
A<br />
− + − −<br />
( B →D[<br />
K π ] K )<br />
− + − −<br />
( B →D[<br />
K π ] K )<br />
− + − − + − + +<br />
( B → [ K π ] K ) − Γ(<br />
B → [ K π ] K )<br />
− + − − + − + +<br />
( B → [ K π ] K ) + Γ(<br />
B → [ K π ] K )<br />
− + − − + − + +<br />
( B → [ K π ] K ) + Γ(<br />
B → [ K π ] K )<br />
− − + − + + − +<br />
( B → [ K π ] K ) + Γ(<br />
B → [ K π ] K )<br />
2rBr<br />
=<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 25<br />
= r<br />
2<br />
B<br />
D<br />
+ r<br />
2<br />
D<br />
=<br />
r<br />
B<br />
sin<br />
<br />
e<br />
iδ<br />
B<br />
e<br />
( δ + δ )<br />
B<br />
ADS<br />
+ 2r<br />
r<br />
B<br />
D<br />
D<br />
cos<br />
−iγ<br />
sin γ<br />
γ (φ 3 ) β (φ 1 )<br />
r<br />
α (φ 2 )<br />
D<br />
e<br />
−iδ<br />
D<br />
γ<br />
( δ + δ ) cosγ<br />
B<br />
D
Dalitz method for γ (φ ) 3<br />
Most precise results from Dalitz method:<br />
B-[K [KSp + p- ]K (*)- ]K(*)<br />
; also use D *0 D*0<br />
0 D p0 , D0γ Amplitude (m + ↔ m- D0 ↔ D0 )<br />
A<br />
±<br />
at point<br />
( 2 2 ) ± iγ<br />
iδ<br />
B<br />
m+<br />
, m−<br />
+ rBe<br />
e<br />
2 2(<br />
±<br />
m m K )<br />
( 2<br />
f m−<br />
,<br />
2 ) +<br />
= f<br />
m<br />
Determine f in flavor-tagged<br />
D *+ D 0 p + decays<br />
± ⇒ π<br />
need D 0 decay model (~18 quasi- quasi<br />
2-body body states)<br />
Can remove modeling error using<br />
ψ(3770) (3770)DD data (CLEOc ( CLEOc, , BES)<br />
BaBar also analyze D 0KSK + K- s<br />
Belle ADS<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 26<br />
K S p -<br />
K S p + p + p-
Dalitz method results<br />
Quote Cartesian variables: x ±=rB cos(±γ+δ), cos ), y ±=rB sin(±γ+δ) sin(<br />
x<br />
y<br />
x<br />
y<br />
−<br />
−<br />
+<br />
+<br />
BaBar [arXiv<br />
+<br />
+<br />
−<br />
−<br />
0.<br />
090<br />
0.<br />
053<br />
0.<br />
067<br />
0.<br />
015<br />
±<br />
±<br />
±<br />
±<br />
: 0804.2089]<br />
0.<br />
043<br />
0.<br />
056<br />
0.<br />
043<br />
0.<br />
055<br />
±<br />
±<br />
±<br />
±<br />
0.<br />
015<br />
0.<br />
007<br />
0.<br />
014<br />
0.<br />
006<br />
383M BB<br />
±<br />
±<br />
±<br />
±<br />
0.<br />
011<br />
0.<br />
015<br />
0.<br />
011<br />
0.<br />
008<br />
Belle [arXiv<br />
B - DK -<br />
B - DK -<br />
B + DK +<br />
Similar results in<br />
D * K <strong>and</strong> DK *<br />
0.<br />
105<br />
0.<br />
177<br />
0.<br />
107<br />
0.<br />
067<br />
0.<br />
047<br />
0.<br />
060<br />
0.<br />
043<br />
0.<br />
059<br />
0.<br />
011<br />
0.<br />
018<br />
0.<br />
011<br />
0.<br />
018<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
BaBar dashed, Belle solid<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 27<br />
+<br />
+<br />
−<br />
−<br />
: 0803.3375]<br />
±<br />
±<br />
±<br />
±<br />
±<br />
±<br />
±<br />
±<br />
657M BB
Combined results for γ (φ ) 3<br />
γ (φ3 ) β (φ1 )<br />
Three methods (ADS, GLW <strong>and</strong> Dalitz) Dalitz)<br />
can be combined<br />
for each of B -D 0K- , B-D *0 *0K- <strong>and</strong> B -D 0K *-<br />
SuperB: SuperB:<br />
1-2% 1 2% from all methods combined;<br />
statistics limited<br />
α (φ 2 )<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 28
The left side - |Vub| | / |V | ub cb<br />
cb |<br />
The determination of <strong>the</strong> |V | ub| ub|<br />
<strong>and</strong> |V | cb| cb|<br />
relies on<br />
semileptonic decays only one hadronic current<br />
Tree decays – like γ, , insensitive to NP<br />
Two complementary approaches:<br />
Exclusive:<br />
Exclusive:<br />
X fully reconstructed<br />
Need form factor normalization (non-perturbative<br />
(non perturbative)<br />
Inclusive: : sum over many X<br />
states, with at most partial<br />
reconstruction of <strong>the</strong> X system<br />
Inclusive<br />
Use OPE in (1/m b) n<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 29<br />
B<br />
b<br />
q<br />
W<br />
X<br />
ℓ<br />
ν
Exclusive semileptonic decays<br />
Conceptually simple – measure F(<br />
B<br />
W<br />
D *<br />
ℓ<br />
ν<br />
measure F(qq 22 )|V cb |<br />
QCD uncertainties enter calculation of form-factors form factors F<br />
One form-factor form factor per Lorentz structure in amplitude<br />
Shapes versus qq 22 can be measured<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
*<br />
2 2<br />
( B → D ν ) GF<br />
V<br />
2 2 2<br />
= ( F(<br />
q ) G(<br />
q )<br />
dΓ l<br />
cb<br />
dq<br />
Normalization from <strong>the</strong>ory uncertainty (~2% now)<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 30<br />
2<br />
q 2 = (p ℓ +p ν ) 2<br />
(momentum transfer) 2<br />
3<br />
48π<br />
phase<br />
space<br />
form factors
|Vcb| | from BD B<br />
cb<br />
* ℓν<br />
Measure decay rate versus<br />
4-velocity velocity transfer w <strong>and</strong><br />
determine F(1)|V cb|<br />
cb <strong>and</strong> FF slope<br />
F(w) F(w)<br />
= F(1)* F(1) * [1 - ρ2 (w-1)+ (w 1)+…]<br />
Many experiments have done so;<br />
average has P(χ P 2 ) = 2.6%<br />
scale cale errors by ◊χ2 /ndf=1.5<br />
so F(1)|Vcb|<br />
| = (35.9 ± 0.8)×10 0.8) 10-3 F(1)|V cb<br />
Latest lattice value is [1]<br />
F(1) = 0.930 ± 0.023<br />
Laiho et al., arXiv:0710.1111<br />
[1] Laiho<br />
Determine<br />
V<br />
( 38.<br />
6 ± 0.<br />
9 ± 1.<br />
0 )<br />
Determine<br />
cb<br />
= exp th<br />
× 10<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 31<br />
−3
Vub<br />
|Vub| | from B pℓν<br />
ub<br />
Use analyticity <strong>and</strong> unitarity constraints<br />
plus measured dΓ/dq d /dq2 to fit FF shape; <strong>the</strong>n<br />
normalize at any q 2<br />
Fit determines<br />
|Vub| ub|<br />
f +(q (q2 =0) = (91 ± 3BF BF ± 6shape FF normalizations |Vub| ub|<br />
values<br />
Choose<br />
=<br />
( + 0.<br />
6 ) −3<br />
3.<br />
5 × 10<br />
− 0.<br />
5<br />
shape)*10 )*10-5 LCSR 0.26 ± 0.04<br />
LQCD (FNAL) 0.25 ± 0.03<br />
LQCD (HPQCD) 0.27 ± 0.03<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
BaBar<br />
PRL 98 (2007) 091801<br />
f +(0) (0) |Vub|*10 ub<br />
35 ± 3<br />
36 ± 3<br />
33 ± 3<br />
|*10 4<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 32<br />
+ 6<br />
−5<br />
+ 5<br />
−4<br />
+ 4<br />
−3
Inclusive semileptonic decays γ (φ3 ) β (φ1 )<br />
Theoretical tool: Heavy Quark Expansion (OPE)<br />
1<br />
Γ ∑ 2m<br />
4 4<br />
( B → X ) = ( 2π<br />
) δ ( p − p )<br />
=<br />
G<br />
2<br />
F<br />
B<br />
m<br />
5<br />
b<br />
3<br />
192π<br />
Quark model result<br />
( 1+<br />
A )<br />
Express decay rate as double expansion in αs <strong>and</strong> 1/m b<br />
Perturbative corrections are calculable<br />
EW<br />
⎫<br />
+ ... ⎬<br />
⎭<br />
α (φ 2 )<br />
Non-perturbative<br />
Non perturbative matrix elements (e.g. μ 2<br />
p ) arise at<br />
each order in 1/m b; ; determine in fits moments<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 33<br />
A<br />
B<br />
pert<br />
X<br />
X<br />
L<br />
eff<br />
B<br />
2 2<br />
⎧ μπ<br />
+ 3μG<br />
⎨1<br />
+ 0 − 2<br />
⎩ 2mb<br />
2<br />
Simplified<br />
form for<br />
massless X<br />
First correction O((Λ/m b) 2 )
|Vcb| | from inclusive decays<br />
cb<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
n n<br />
Calculate moments (M ( x , Ee ) of inclusive processes bcℓν<br />
<strong>and</strong> bsγ for various cuts on lepton (photon) energy:<br />
n<br />
M x<br />
El<br />
> E<br />
0<br />
n<br />
x<br />
2 2 3 3<br />
= τ ∫ B M X dΓ<br />
= fn<br />
( E0,<br />
mb,<br />
mc,<br />
μG<br />
, μπ<br />
, ρD<br />
, ρLS<br />
)<br />
E<br />
0<br />
e or γ<br />
energy cut<br />
b-quark quark<br />
mass<br />
Kinetic scheme<br />
Benson, Bigi, Gambino, Mannel, Uraltsev<br />
(several papers)<br />
c-quark quark<br />
mass<br />
Matrix elements<br />
appearing at order<br />
1/m 2<br />
b <strong>and</strong> 1/mb 1/m 3<br />
1S scheme<br />
Bauer, Ligeti, Luke, Manohar, Trott<br />
PRD 70:094017 (2004)<br />
Fit ~60 measured moments from DELPHI, CLEO, BABAR,<br />
BELLE, CDF to determine ~6 parameters<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 34
Global moment fit results<br />
Scheme |V cb| (10 -3 )<br />
Kinetic 41.68 ± 0.39 ± 0.58 ΓSL<br />
1S 41.56 ± 0.39 ± 0.08τ B<br />
Choose<br />
Vcb<br />
=<br />
−3<br />
( 41.<br />
6 ± 0.<br />
6)<br />
× 10<br />
Source mb (GeV GeV)<br />
mb[kin] b[kin (global fit) 4.61 ± 0.03<br />
mb[kin] b[kin (global fit, no bsγ) 4.68 ± 0.05<br />
mb[kin] b[kin (bb threshold) 4.56 ± 0.06<br />
mb[1S] b[1S] (global fit) 4.70 ± 0.03<br />
mb[1S] b[1S] (global fit, no bsγ) 4.75 ± 0.06<br />
mb[1S] b[1S] (bb threshold) 4.69 ± 0.03<br />
arXiv:0803.2158<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
χ 2 /ndf is too good (e.g. 39/62 for<br />
kinetic, 25/63 for 1S); suggests<br />
<strong>the</strong>ory errors (included in fit) may<br />
be overestimated<br />
m b is crucial for |V ub |<br />
Use (or not) of bsγ in<br />
global fit still controversial<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 35
Vub<br />
|Vub| | from inclusive decays<br />
ub<br />
Measurement of inclusive bu SL rate<br />
requires cuts to suppress large bc<br />
background<br />
OPE convergence ruined in limited<br />
phase space<br />
Non-perturbative<br />
Non perturbative distribution f n<br />
needed; measure it in bsγ<br />
O<strong>the</strong>r issues: large mb dependence,<br />
weak annihilation<br />
Measure many partial rates<br />
(Ee, , M X, , q 2…) ) <strong>and</strong> compare<br />
with calculated rates<br />
=<br />
−3<br />
( 4.<br />
12 ± 0.<br />
15 ± 0.<br />
40)<br />
× 10<br />
PDG 2008<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
BELLE<br />
hep-ex/0504046<br />
• Bosch, Lange, Neubert, Neubert,<br />
Paz (BLNP)<br />
Phys.Rev.D73,073008(2006)<br />
• Gambino, Gambino,<br />
Giordano, Ossola, Ossola,<br />
Uraltsev (GGOU)<br />
JHEP 0710:058(2007)<br />
• Andersen <strong>and</strong> Gardi (DGE) JHEP 0601:097 (2006)<br />
• Aglietti, Aglietti,<br />
Di Lodovico, Lodovico,<br />
Ferrera, Ferrera,<br />
Ricciardi (AC)<br />
arXiv:0711.0860<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 36
α (φ 2 )<br />
|Vub| | <strong>and</strong> |V |<br />
ub<br />
cb| | summary cb<br />
γ (φ3 ) β (φ1 )<br />
Determinations from inclusive <strong>and</strong> exclusive decays are<br />
independent, both experimentally <strong>and</strong> <strong>the</strong>oretically<br />
Inclusive<br />
Exclusive :<br />
| avg has P(χ P( 2 )=3%;<br />
scale error by ◊χ2 /ndf=2.1<br />
|Vcb| cb<br />
:<br />
Vcb<br />
V<br />
V<br />
=<br />
cb<br />
cb<br />
=<br />
=<br />
−<br />
( 41.<br />
6 ± 0.<br />
6)<br />
× 10<br />
−3<br />
( 38.<br />
6 ± 1.<br />
3)<br />
× 10<br />
−3<br />
( 41.<br />
2 ± 1.<br />
1)<br />
× 10<br />
SuperB + <strong>the</strong>ory improvements ~1% on |V | cb|, cb|,<br />
2-3% 2 3%<br />
on |V | ub| ub|<br />
for each of inclusive/exclusive determinations<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 37<br />
3<br />
V<br />
V<br />
ub<br />
ub<br />
=<br />
=<br />
( 4.<br />
12 ± 0.<br />
43)<br />
( + 0.<br />
6 ) −3<br />
3.<br />
5 × 10<br />
−0.<br />
5<br />
× 10<br />
−3<br />
|Vub | avg has P(χ P( 2 )=40%<br />
Vub<br />
=<br />
−3<br />
( 3.<br />
95 ± 0.<br />
35)<br />
× 10
The long side - |Vtd td |<br />
Constraints come from precise experimental knowledge<br />
of BB mixing:<br />
= 0.507±0.005 0.005 ps -1 (HFAG)<br />
Δms = 17.77±0.10<br />
17.77 0.10±0.07 0.07 ps -1 (CDF<br />
Δm d = 0.507<br />
(CDF PRL97:242003(2006))<br />
PRL97:242003(2006) )<br />
Dominant uncertainty in |V | td| td|<br />
<strong>and</strong> |V | ts| ts|<br />
due to non-<br />
perturbative QCD input<br />
|Vtd/V td/Vts|<br />
ts|<br />
= (0.209 ± 0.006)*10 -3 (PDG)<br />
Also accessible in radiative decays BK B * γ, Bργ<br />
Need calculated ratio of form factors<br />
|Vtd/V td/Vts|<br />
ts|<br />
= (0.21 ± 0.04)*10 -3 (PDG)<br />
α (φ 2 )<br />
γ (φ 3 ) β (φ 1 )<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 38
Constraints on UT<br />
Putting all constraints toge<strong>the</strong>r, we determine <strong>the</strong> apex<br />
of <strong>the</strong> UT as<br />
É = 0.141 +0.029 -0.017 0.017 <strong>CKM</strong>fitter<br />
¿ = 0.343 +0.016<br />
+0.016 -0.016 0.016<br />
É = 0.147 ± 0.029<br />
¿ = 0.342 ± 0.016<br />
0.029 UTfit<br />
No significant departure from<br />
SM at present<br />
Current results from UTfit<br />
95% c.l.<br />
b<strong>and</strong>s<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 39
Trees <strong>and</strong> loops… loops<br />
Recall that some quantities are determined in tree-level tree level<br />
processes (e.g. |V | ub|) ub|)<br />
while o<strong>the</strong>rs involve BB mixing or<br />
“penguin penguin” amplitudes.<br />
Current accuracy is modest; tests NP amplitudes at <strong>the</strong><br />
~100% level<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 40
Unitarity triangle outlook<br />
SuperB<br />
scenarios from<br />
Ciucchini et al.<br />
“<strong>the</strong> reality”<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 41
Backup slides<br />
2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 42