20.08.2013 Views

Standard Model and CPV: the CKM Unitary Triangle Angles ... - ICTP

Standard Model and CPV: the CKM Unitary Triangle Angles ... - ICTP

Standard Model and CPV: the CKM Unitary Triangle Angles ... - ICTP

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

CP violation <strong>and</strong> <strong>CKM</strong><br />

measurements in B decays<br />

Bob Kowalewski<br />

University of Victoria <strong>and</strong><br />

LAPP, Annecy<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 1


Importance of <strong>CKM</strong> measurements<br />

Need to pin down “st<strong>and</strong>ard st<strong>and</strong>ard” physics for many “new new<br />

physics” physics searches, e.g. K L p0νν: νν<br />

Improved precision translates<br />

directly into increased NP reach<br />

<strong>CKM</strong><br />

parameters<br />

NP signal will be more credible if seen in multiple<br />

observables need precise measurements of many<br />

quantities<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 2


<strong>CKM</strong> in B physics<br />

B decays allow direct direct access<br />

to 2 elements <strong>and</strong> indirect indirect<br />

access to 2 o<strong>the</strong>rs via loops<br />

Can determine 2 angles <strong>and</strong> <strong>the</strong> phase in <strong>CKM</strong><br />

cb| | now known to ~2.5%; only sinθ sin C is known<br />

better<br />

|V cb<br />

⎛V V V ⎞<br />

ud us ub<br />

⎜ ⎟<br />

V V V<br />

⎜ cd cs cb ⎟<br />

⎜V V V ⎟<br />

⎝ td ts tb ⎠<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 3


At<br />

At<br />

| V<br />

<strong>the</strong><br />

λ =<br />

λ =<br />

ub<br />

<strong>the</strong><br />

A =<br />

A =<br />

|<br />

1%<br />

V<br />

us<br />

3%<br />

0.<br />

809<br />

<strong>and</strong><br />

→ ρ -η<br />

Unitarity relation of interest<br />

V udV ub * +VcdV cb * +VtdV tb * = 0<br />

Choice of parameters:<br />

0.<br />

2257<br />

V<br />

cb<br />

level :<br />

= sinθ<br />

level :<br />

2<br />

/ λ<br />

±<br />

| V<br />

±<br />

0.<br />

024<br />

td<br />

|<br />

plane<br />

c<br />

0.<br />

0021<br />

Vus γ<br />

V<br />

cb<br />

( 0 , 0)<br />

( 1,<br />

0)<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 4<br />

η<br />

R u<br />

( ρ, η)<br />

λ , A,<br />

ρ <strong>and</strong> η<br />

α<br />

R<br />

cd<br />

∗<br />

ub<br />

∗<br />

cb<br />

R t<br />

β<br />

Vud<br />

V<br />

2<br />

R u = ≈ − ρ + η<br />

V V<br />

t<br />

=<br />

Unitarity: 1 + R t + R u = 0<br />

V<br />

V<br />

td<br />

cd<br />

V<br />

V<br />

∗<br />

tb<br />

∗<br />

cb<br />

≈<br />

γ = argV<br />

−<br />

*<br />

ub<br />

,<br />

2<br />

( 1−<br />

ρ)<br />

+<br />

2<br />

η<br />

2<br />

e<br />

α = π − γ −β<br />

i γ<br />

e<br />

ρ<br />

−iβ


In all cases many<br />

different modes<br />

accessible in e + e -<br />

|V ub | / |V cb |,<br />

semileptonic<br />

B decays<br />

Direct CP<br />

asmmetries, e.g.<br />

B + D 0 K + /D 0 K +<br />

Observables<br />

CP asmmetries in<br />

b uqq transitions<br />

with BB mixing<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

B d <strong>and</strong> B s<br />

oscillations,<br />

bsγ, bdγ<br />

CP asmmetries in<br />

bccs transitions<br />

with BB mixing<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 5


Trees <strong>and</strong> loops<br />

Tree-dominated Tree dominated processes are ~free of new physics<br />

B<br />

b<br />

W<br />

ℓ<br />

ν<br />

q c, u<br />

q<br />

New physics, even at a high mass scale, can induce<br />

effects in loop-dominated loop dominated processes (e.g. W + H + )<br />

B 0<br />

b W d<br />

t t<br />

d W b<br />

B 0<br />

Compare <strong>CKM</strong> parameters from tree <strong>and</strong> loop processes<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 6<br />

B<br />

b<br />

q<br />

B -<br />

W<br />

t<br />

W<br />

s<br />

q<br />

K -<br />

D 0<br />

K -<br />

p


Experimental setting: e + e- Y(4S) Y(4S)BB<br />

20 MeV above BB threshold; no additional pions<br />

B mesons have small speed β ~ 0.06 in Y(4S) frame<br />

Decay products of B <strong>and</strong> B overlap in detector<br />

e + e- qq continuum decays also produced<br />

At asymmetric B factories, B vertices differ by 260μm 260<br />

qq<br />

on<br />

off peak peak<br />

(q=u,d,s,c)<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 7<br />

2m B<br />

BB


Belle <strong>and</strong> BaBar<br />

World’s World s highest luminosities -<br />

corresponds to 800 (500 500) ) 10 6<br />

BB events for Belle (BaBar BaBar)<br />

BaBar –<br />

531 fb -1<br />

Belle –<br />

817 fb -1<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 8


CP violation in B decay<br />

Need interference between competing amplitudes<br />

B0 Decay to CP eigenstate + BB mixing<br />

Only neutral B mesons<br />

Clean <strong>CKM</strong> info if 1 decay amplitude dominates<br />

CP violation in interfering decay amplitudes<br />

Need strong interaction phase shift information<br />

Can exploit D 0 decays to CP<br />

decays to CP eigenstates, DCSD<br />

CP violation in BB mixing process – tiny in SM<br />

Several mechanisms can be present<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 9


CP<br />

CP<br />

CP B = e B<br />

0 + 2iθ<br />

0<br />

CP B = e B<br />

0 −2iθ<br />

0<br />

CP Violation in Mixing<br />

off-shell off-shell<br />

on-shell on-shell<br />

arbitrary phase<br />

⎛ M − Γ M − Γ12⎞<br />

= ⎜ ⎟<br />

⎝ − Γ − Γ ⎠<br />

i i<br />

2 12 2<br />

eff *<br />

M12 i<br />

2<br />

∗<br />

12 M i<br />

2<br />

q q B H B M<br />

CP violation iff ≠ 1 where = =<br />

p p M<br />

2 0<br />

eff<br />

0 * i *<br />

12 − 2 Γ12<br />

0<br />

B Heff 0<br />

B<br />

i<br />

12 − 2 Γ12<br />

HFAG average: |q/p | q/p| | = 1.0025± 1.0025 0.0019<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 10<br />

H


a<br />

f<br />

CP<br />

CP violation in <strong>the</strong> interference<br />

between mixing <strong>and</strong> decay<br />

fCP<br />

λf = η CP f ⋅ CP<br />

p AfCP<br />

CP eigenvalue −2iβ<br />

B<br />

0<br />

Γ(<br />

B phys ( t)<br />

→ f CP ) − Γ(<br />

B<br />

( t)<br />

= 0<br />

0<br />

Γ(<br />

B ( t)<br />

→ f ) + Γ(<br />

B<br />

=<br />

C<br />

f<br />

CP<br />

phys<br />

⋅<br />

cos(<br />

Δm<br />

B<br />

q<br />

d<br />

CP<br />

A<br />

0<br />

t)<br />

+ S<br />

f<br />

≈ e<br />

CP<br />

0<br />

phys<br />

phys<br />

( t)<br />

→<br />

( t)<br />

→<br />

⋅ sin ( Δm<br />

amplitude<br />

ratio<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 11<br />

B<br />

d<br />

f<br />

f<br />

CP<br />

CP<br />

t)<br />

)<br />

)<br />

0<br />

B<br />

mixing<br />

0 phys<br />

C<br />

S<br />

fCP<br />

fCP<br />

=<br />

Af<br />

CP<br />

λ ≠ ± 1 ⇒ Prob(<br />

Bphys(t)<br />

→ fCP)<br />

≠ Prob(B<br />

(t) → fCP)<br />

f CP<br />

0<br />

phys<br />

−iMt<br />

−Γt<br />

/ 2<br />

We have |q/p|≈1. If one amplitude<br />

dominates, |A/A|≈1, but Im(λ)≠0<br />

0<br />

B<br />

[ ( ) ( ) ]<br />

0<br />

0<br />

cos Δmt/<br />

2 B + i(<br />

p/<br />

q)<br />

sin Δmt/<br />

2<br />

( t)<br />

= e e<br />

B<br />

1 − | λ<br />

1 + | λ<br />

2Imλ<br />

=<br />

1 + | λ<br />

fCP<br />

fCP<br />

Af<br />

CP<br />

|<br />

|<br />

2<br />

2<br />

fCP<br />

2<br />

f |<br />

CP<br />

fCP


−<br />

e<br />

Υ(<br />

4S)<br />

Outline of <strong>the</strong> measurement<br />

+<br />

e<br />

0 rec<br />

B<br />

0<br />

Btag<br />

J/ψ<br />

Δt ≈<br />

Δz<br />

Δz/<br />

K s<br />

B-Flavor Tagging<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 12<br />

βγ<br />

μ -<br />

c<br />

μ +<br />

Exclusive<br />

B Meson<br />

Reconstruction<br />

(flavor eigenstates) lifetime, mixing analyses<br />

p -<br />

p +<br />

(CP eigenstates) CP analysis<br />

ℓ -<br />

K -


β (φ1) ) determination<br />

Time-dependent Time dependent CP asymmetries in bc transitions<br />

Golden mode for <strong>the</strong>ory <strong>and</strong> experiment: experiment:<br />

B 0Xcc Tree amplitude dominates<br />

~no additional weak phases<br />

ccKS,L S,L<br />

error on S=sin2β: S=sin2 : estimates from 0.001 to 0.017<br />

Charmonium Xcc cc decays to lepton pairs<br />

Easy to reconstruct; good definition of decay vertex<br />

~all K 0 S decays can be reconstructed<br />

α (φ 2 )<br />

Even K 0 L can be used due to kinematic constraints<br />

γ (φ 3 ) β (φ 1 )<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 13


Golden modes for β (φ ) 1<br />

B0 Xcc cc K (*)0 (Xcc cc = J/ψ, J/ , ψ(2S), (2S), χc1, c1,<br />

ηc; ; K 0 or K *0 K 0p0 )<br />

Results compiled by HFAG<br />

sin2β= 0.714±0.032±0.018<br />

C=-A= 0.049±0.022±0.017 sin2β= 0.650±0.029±0.018<br />

C=-A=-0.018±0.021±0.014<br />

HFAG average:<br />

sin2β= 0.680±0.025<br />

C=-A= 0.012±0.020<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 14


O<strong>the</strong>r β measurements<br />

Many o<strong>the</strong>r modes exhibit Time-dependent Time dependent CP violation<br />

(TD<strong>CPV</strong>) yielding β:<br />

B0DDKS, , DCP CPh0 , DDalitz DDalitzh0<br />

, K + K-K0 , …<br />

Analyses of decays involving different spin or Dalitz<br />

amplitudes give sensitivity to cos2β: cos2 :<br />

rules out mirror solution for β<br />

Too many measurements to mention here; significant<br />

(>3σ) (>3 ) CP asymmetries in 11 individual modes<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 15


Penguin modes for β (φ ) 1<br />

TD<strong>CPV</strong> in bqqs penguin decays measures βeff eff in SM;<br />

e.g. modes B 0φK0 , η ( ’ ) K0 , p0K0 , f 0K0 , K 0K0K0 , etc.<br />

βeff eff ≠β due to additional EW<br />

phase; δβ varies per mode<br />

Interest in bqqs continues,<br />

consistency with golden modes<br />

depends on data selection,<br />

estimate of <strong>the</strong>ory uncertainties<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 16<br />

f 0 K S


Prospects for β (φ ) 1<br />

Super-B Super B with 10 36 luminosity (assume 75 ab -1 dataset)<br />

[projections taken from arXiv:0709.0451]<br />

sin2β sin2 from charmonium:<br />

charmonium:<br />

±0.005 0.005 (detector syst) syst<br />

Uncertainties of few % in bcʉd modes (stat)<br />

Uncertainties of few % in bsss modes (<strong>the</strong>ory)<br />

Self-consistency Self consistency of above modes constrains NP<br />

Highly accurate knowledge of β pins down <strong>CKM</strong><br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 17


TD<strong>CPV</strong> in bu transitions<br />

Measuring α (φ ) 2<br />

Many final states have contributions from >1 amplitude<br />

(tree, Penguin, color-suppressed color suppressed tree)<br />

Asymmetries proportional to αeff; eff;<br />

differs from α by a<br />

mode-dependent mode dependent offset<br />

Full isospin amplitude analysis needed to determine δα<br />

Most useful modes in practice:<br />

B0 ρ0ρ0 , ρ + ρ- , B + ρ + ρ0 B0 p0p0 , p + p- , B + p + p0 B0 p + p-p0 Dalitz<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 18


B0 pp<br />

B pp; pp;<br />

easy easy<br />

experimentally (except p0p0 , for which time-dependent<br />

time dependent<br />

asymmetry can’t can t readily be measured)<br />

In each case need isospin analysis<br />

to determine δα; ; hope for A 00<br />

hh 8-fold fold ambiguities in solution for α<br />

analysis (Gronau Gronau, , London PRL65: PRL65:3381(1990))<br />

3381(1990))<br />

00 á Ahh<br />

+-<br />

hh<br />

BF(B 0 + p p- )=(5.2±0.2)x10<br />

)=(5.2 0.2)x10-6 BF(B 0 0 p p0 )=(1.3±0.2)x10<br />

)=(1.3 0.2)x10-6 HFAG<br />

(big! big!)<br />

A hh +- /√2<br />

A hh 00<br />

A hh +0 = Ahh -0<br />

BaBar, PRD76:091102(2007)<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 19<br />

A hh +- /√2<br />

θ<br />

À<br />

θ–À = 2 δα<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

No TD<strong>CPV</strong><br />

input in<br />

B 0 p 0 p 0<br />

A hh 00


B0 ρρ<br />

B ρρ; ρρ;<br />

polarization determines CP eigenvalue<br />

experiment: ~full longitudinal polarization (CP even)<br />

Isospin analysis as for pp, pp,<br />

but ρ0ρ0 easier, smaller<br />

BF(B 0 + ρ ρ- )=(24.2±3.2)x10<br />

)=(24.2<br />

BF(B 0 HFAG<br />

0 ρ ρ0 )=( 1.1±0.4)x10<br />

1.1<br />

Impact of A(B 0 ρ 0 ρ 0 )<br />

arXiv:0708.1630<br />

3.2)x10-6 0.4)x10-6 B 0 ρ 0 ρ 0<br />

A hh +- /√2<br />

A hh +- /√2<br />

A hh +0 = Ahh -0<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 20<br />

θ<br />

À<br />

preliminary<br />

θ–À = 2 δα<br />

Angle<br />

constrained<br />

by TDCP in<br />

B 0 ρ 0 ρ 0<br />

A hh 00<br />

A hh 00


Main input for α (φ ) 2<br />

B p + p- : S +- C +-<br />

Belle -0.61 0.61±0.10 0.10±0.04 0.04 -0.55 0.55±0.08 0.08±0.05 0.05<br />

BaBar -0.60 0.60±0.11 0.11±0.03 0.03 -0.21 0.21±0.09 0.09±0.02 0.02<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

B ρ + ρ- : S +-<br />

L C +-<br />

L fL Belle 0.19±0.30 0.19 0.30±0.08 0.08 -0.16 0.16±0.21 0.21±0.08 0.08 0.941±0.037<br />

0.941 0.037±0.030 0.030<br />

BaBar -0.17 0.17±0.20 0.20±0.06 0.06 0.01±0.15 0.01 0.15±0.06 0.06 0.992±0.024<br />

0.992 0.024±0.026 0.026<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 21


Constraints on α (φ ) 2<br />

Isospin analyses on pp, pp,<br />

ρρ; ρρ;<br />

Dalitz analysis on ρp<br />

Combined result is<br />

α =<br />

UTfit<br />

91±<br />

o<br />

8<br />

α =<br />

<strong>CKM</strong>fitter<br />

( ) o 6.<br />

2<br />

87 . 5 5.<br />

3<br />

+<br />

−<br />

α (φ 2 )<br />

SuperB projects 1-2° 1 in ρρ, ρρ,<br />

2° 2 in ρp<br />

<strong>and</strong> 3° 3 in pp; pp <strong>the</strong>ory limited<br />

γ (φ 3 ) β (φ 1 )<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 22


Direct CP violation<br />

Interference between competing amplitudes (e.g. tree<br />

<strong>and</strong> penguin) involve strong phase shifts uncertainty<br />

Important special case: CP eigenstates or doubly <strong>CKM</strong>-<br />

suppressed decays lead to same final state of D0 <strong>and</strong> D0 .<br />

Favored: V cb V us *<br />

b<br />

u<br />

V cs * Vub : suppressed<br />

s<br />

u K u<br />

(*)-<br />

u<br />

Common K s<br />

(*)-<br />

B- B- final state<br />

A<br />

A<br />

c<br />

u<br />

D (*)0<br />

− 0<br />

−<br />

( B →D<br />

K )<br />

B −<br />

− 0 −<br />

( B D K ) = rBe e<br />

→<br />

iδ<br />

iγ<br />

f<br />

D (*)0<br />

Parameters: γ,<br />

(r B , δ B) per mode<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 23<br />

c<br />

u<br />

b


Accessing γ (φ ) 3<br />

Need interference common final state for D 0 <strong>and</strong> D0 CP eigenstates (Gronau ronauLondon ondonWyler yler): D<br />

): D0K + K- , p + p- , KS K p0… Double <strong>CKM</strong>-suppressed <strong>CKM</strong> suppressed (Atwood ( twoodDunietz unietzSoni oni): D<br />

3-body body Dalitz (Giri iriGrossman rossmanSoffer offerZupan upan,<br />

): D 0 K + p - …<br />

, Bondar): Bondar):<br />

Ksp + p-… Measure asymmetries between B + <strong>and</strong> B - decays <strong>and</strong><br />

ratios of average decay rates to gain sensitivity to<br />

magnitude (r ( B) ) <strong>and</strong> phase (δ ( B) ) of amplitude ratio<br />

These are tree-level tree level decays insensitive to NP<br />

Self-tagging Self tagging B 0 D (*)0 (*)0K *0 (K *0<br />

α (φ 2 )<br />

*0K + p- ) also measure γ<br />

TD<strong>CPV</strong> in B 0D (*)+ h- <strong>and</strong> D (*) (*)-h + measures sin(2β+γ) sin(2<br />

γ (φ 3 ) β (φ 1 )<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 24


Observables for γ (φ ) 3<br />

GLW: CP +/- +/ eigenstates<br />

r B, δ B, γ<br />

8-fold<br />

ambiguity<br />

on γ<br />

ADS: DCSD<br />

r B, δ B, r D, δ D, γ<br />

<br />

<br />

ADS<br />

ADS<br />

Γ<br />

=<br />

Γ<br />

Γ<br />

=<br />

Γ<br />

<br />

<br />

Γ<br />

Γ<br />

−<br />

− +<br />

+<br />

( B → D±<br />

K ) − Γ(<br />

B → D±<br />

K ) ± 2rB<br />

sinδ<br />

B sin γ<br />

=<br />

−<br />

− +<br />

2<br />

( B → D±<br />

K ) + Γ(<br />

B → D±<br />

K ) 1+<br />

rB<br />

± 2rB<br />

cosδ<br />

B cosγ<br />

−<br />

− +<br />

+<br />

( B → D±<br />

K ) + Γ(<br />

B → D±<br />

K ) 2<br />

= 1+<br />

r 2 cosδ<br />

cos<br />

0<br />

0<br />

B ± r<br />

−<br />

− +<br />

B B<br />

( B → D K ) + Γ(<br />

B → D K )<br />

CP±<br />

= +<br />

Γ<br />

Γ<br />

CP±<br />

= +<br />

amplitude<br />

ratio<br />

A<br />

A<br />

− + − −<br />

( B →D[<br />

K π ] K )<br />

− + − −<br />

( B →D[<br />

K π ] K )<br />

− + − − + − + +<br />

( B → [ K π ] K ) − Γ(<br />

B → [ K π ] K )<br />

− + − − + − + +<br />

( B → [ K π ] K ) + Γ(<br />

B → [ K π ] K )<br />

− + − − + − + +<br />

( B → [ K π ] K ) + Γ(<br />

B → [ K π ] K )<br />

− − + − + + − +<br />

( B → [ K π ] K ) + Γ(<br />

B → [ K π ] K )<br />

2rBr<br />

=<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 25<br />

= r<br />

2<br />

B<br />

D<br />

+ r<br />

2<br />

D<br />

=<br />

r<br />

B<br />

sin<br />

<br />

e<br />

iδ<br />

B<br />

e<br />

( δ + δ )<br />

B<br />

ADS<br />

+ 2r<br />

r<br />

B<br />

D<br />

D<br />

cos<br />

−iγ<br />

sin γ<br />

γ (φ 3 ) β (φ 1 )<br />

r<br />

α (φ 2 )<br />

D<br />

e<br />

−iδ<br />

D<br />

γ<br />

( δ + δ ) cosγ<br />

B<br />

D


Dalitz method for γ (φ ) 3<br />

Most precise results from Dalitz method:<br />

B-[K [KSp + p- ]K (*)- ]K(*)<br />

; also use D *0 D*0<br />

0 D p0 , D0γ Amplitude (m + ↔ m- D0 ↔ D0 )<br />

A<br />

±<br />

at point<br />

( 2 2 ) ± iγ<br />

iδ<br />

B<br />

m+<br />

, m−<br />

+ rBe<br />

e<br />

2 2(<br />

±<br />

m m K )<br />

( 2<br />

f m−<br />

,<br />

2 ) +<br />

= f<br />

m<br />

Determine f in flavor-tagged<br />

D *+ D 0 p + decays<br />

± ⇒ π<br />

need D 0 decay model (~18 quasi- quasi<br />

2-body body states)<br />

Can remove modeling error using<br />

ψ(3770) (3770)DD data (CLEOc ( CLEOc, , BES)<br />

BaBar also analyze D 0KSK + K- s<br />

Belle ADS<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 26<br />

K S p -<br />

K S p + p + p-


Dalitz method results<br />

Quote Cartesian variables: x ±=rB cos(±γ+δ), cos ), y ±=rB sin(±γ+δ) sin(<br />

x<br />

y<br />

x<br />

y<br />

−<br />

−<br />

+<br />

+<br />

BaBar [arXiv<br />

+<br />

+<br />

−<br />

−<br />

0.<br />

090<br />

0.<br />

053<br />

0.<br />

067<br />

0.<br />

015<br />

±<br />

±<br />

±<br />

±<br />

: 0804.2089]<br />

0.<br />

043<br />

0.<br />

056<br />

0.<br />

043<br />

0.<br />

055<br />

±<br />

±<br />

±<br />

±<br />

0.<br />

015<br />

0.<br />

007<br />

0.<br />

014<br />

0.<br />

006<br />

383M BB<br />

±<br />

±<br />

±<br />

±<br />

0.<br />

011<br />

0.<br />

015<br />

0.<br />

011<br />

0.<br />

008<br />

Belle [arXiv<br />

B - DK -<br />

B - DK -<br />

B + DK +<br />

Similar results in<br />

D * K <strong>and</strong> DK *<br />

0.<br />

105<br />

0.<br />

177<br />

0.<br />

107<br />

0.<br />

067<br />

0.<br />

047<br />

0.<br />

060<br />

0.<br />

043<br />

0.<br />

059<br />

0.<br />

011<br />

0.<br />

018<br />

0.<br />

011<br />

0.<br />

018<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

BaBar dashed, Belle solid<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 27<br />

+<br />

+<br />

−<br />

−<br />

: 0803.3375]<br />

±<br />

±<br />

±<br />

±<br />

±<br />

±<br />

±<br />

±<br />

657M BB


Combined results for γ (φ ) 3<br />

γ (φ3 ) β (φ1 )<br />

Three methods (ADS, GLW <strong>and</strong> Dalitz) Dalitz)<br />

can be combined<br />

for each of B -D 0K- , B-D *0 *0K- <strong>and</strong> B -D 0K *-<br />

SuperB: SuperB:<br />

1-2% 1 2% from all methods combined;<br />

statistics limited<br />

α (φ 2 )<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 28


The left side - |Vub| | / |V | ub cb<br />

cb |<br />

The determination of <strong>the</strong> |V | ub| ub|<br />

<strong>and</strong> |V | cb| cb|<br />

relies on<br />

semileptonic decays only one hadronic current<br />

Tree decays – like γ, , insensitive to NP<br />

Two complementary approaches:<br />

Exclusive:<br />

Exclusive:<br />

X fully reconstructed<br />

Need form factor normalization (non-perturbative<br />

(non perturbative)<br />

Inclusive: : sum over many X<br />

states, with at most partial<br />

reconstruction of <strong>the</strong> X system<br />

Inclusive<br />

Use OPE in (1/m b) n<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 29<br />

B<br />

b<br />

q<br />

W<br />

X<br />

ℓ<br />

ν


Exclusive semileptonic decays<br />

Conceptually simple – measure F(<br />

B<br />

W<br />

D *<br />

ℓ<br />

ν<br />

measure F(qq 22 )|V cb |<br />

QCD uncertainties enter calculation of form-factors form factors F<br />

One form-factor form factor per Lorentz structure in amplitude<br />

Shapes versus qq 22 can be measured<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

*<br />

2 2<br />

( B → D ν ) GF<br />

V<br />

2 2 2<br />

= ( F(<br />

q ) G(<br />

q )<br />

dΓ l<br />

cb<br />

dq<br />

Normalization from <strong>the</strong>ory uncertainty (~2% now)<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 30<br />

2<br />

q 2 = (p ℓ +p ν ) 2<br />

(momentum transfer) 2<br />

3<br />

48π<br />

phase<br />

space<br />

form factors


|Vcb| | from BD B<br />

cb<br />

* ℓν<br />

Measure decay rate versus<br />

4-velocity velocity transfer w <strong>and</strong><br />

determine F(1)|V cb|<br />

cb <strong>and</strong> FF slope<br />

F(w) F(w)<br />

= F(1)* F(1) * [1 - ρ2 (w-1)+ (w 1)+…]<br />

Many experiments have done so;<br />

average has P(χ P 2 ) = 2.6%<br />

scale cale errors by ◊χ2 /ndf=1.5<br />

so F(1)|Vcb|<br />

| = (35.9 ± 0.8)×10 0.8) 10-3 F(1)|V cb<br />

Latest lattice value is [1]<br />

F(1) = 0.930 ± 0.023<br />

Laiho et al., arXiv:0710.1111<br />

[1] Laiho<br />

Determine<br />

V<br />

( 38.<br />

6 ± 0.<br />

9 ± 1.<br />

0 )<br />

Determine<br />

cb<br />

= exp th<br />

× 10<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 31<br />

−3


Vub<br />

|Vub| | from B pℓν<br />

ub<br />

Use analyticity <strong>and</strong> unitarity constraints<br />

plus measured dΓ/dq d /dq2 to fit FF shape; <strong>the</strong>n<br />

normalize at any q 2<br />

Fit determines<br />

|Vub| ub|<br />

f +(q (q2 =0) = (91 ± 3BF BF ± 6shape FF normalizations |Vub| ub|<br />

values<br />

Choose<br />

=<br />

( + 0.<br />

6 ) −3<br />

3.<br />

5 × 10<br />

− 0.<br />

5<br />

shape)*10 )*10-5 LCSR 0.26 ± 0.04<br />

LQCD (FNAL) 0.25 ± 0.03<br />

LQCD (HPQCD) 0.27 ± 0.03<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

BaBar<br />

PRL 98 (2007) 091801<br />

f +(0) (0) |Vub|*10 ub<br />

35 ± 3<br />

36 ± 3<br />

33 ± 3<br />

|*10 4<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 32<br />

+ 6<br />

−5<br />

+ 5<br />

−4<br />

+ 4<br />

−3


Inclusive semileptonic decays γ (φ3 ) β (φ1 )<br />

Theoretical tool: Heavy Quark Expansion (OPE)<br />

1<br />

Γ ∑ 2m<br />

4 4<br />

( B → X ) = ( 2π<br />

) δ ( p − p )<br />

=<br />

G<br />

2<br />

F<br />

B<br />

m<br />

5<br />

b<br />

3<br />

192π<br />

Quark model result<br />

( 1+<br />

A )<br />

Express decay rate as double expansion in αs <strong>and</strong> 1/m b<br />

Perturbative corrections are calculable<br />

EW<br />

⎫<br />

+ ... ⎬<br />

⎭<br />

α (φ 2 )<br />

Non-perturbative<br />

Non perturbative matrix elements (e.g. μ 2<br />

p ) arise at<br />

each order in 1/m b; ; determine in fits moments<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 33<br />

A<br />

B<br />

pert<br />

X<br />

X<br />

L<br />

eff<br />

B<br />

2 2<br />

⎧ μπ<br />

+ 3μG<br />

⎨1<br />

+ 0 − 2<br />

⎩ 2mb<br />

2<br />

Simplified<br />

form for<br />

massless X<br />

First correction O((Λ/m b) 2 )


|Vcb| | from inclusive decays<br />

cb<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

n n<br />

Calculate moments (M ( x , Ee ) of inclusive processes bcℓν<br />

<strong>and</strong> bsγ for various cuts on lepton (photon) energy:<br />

n<br />

M x<br />

El<br />

> E<br />

0<br />

n<br />

x<br />

2 2 3 3<br />

= τ ∫ B M X dΓ<br />

= fn<br />

( E0,<br />

mb,<br />

mc,<br />

μG<br />

, μπ<br />

, ρD<br />

, ρLS<br />

)<br />

E<br />

0<br />

e or γ<br />

energy cut<br />

b-quark quark<br />

mass<br />

Kinetic scheme<br />

Benson, Bigi, Gambino, Mannel, Uraltsev<br />

(several papers)<br />

c-quark quark<br />

mass<br />

Matrix elements<br />

appearing at order<br />

1/m 2<br />

b <strong>and</strong> 1/mb 1/m 3<br />

1S scheme<br />

Bauer, Ligeti, Luke, Manohar, Trott<br />

PRD 70:094017 (2004)<br />

Fit ~60 measured moments from DELPHI, CLEO, BABAR,<br />

BELLE, CDF to determine ~6 parameters<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 34


Global moment fit results<br />

Scheme |V cb| (10 -3 )<br />

Kinetic 41.68 ± 0.39 ± 0.58 ΓSL<br />

1S 41.56 ± 0.39 ± 0.08τ B<br />

Choose<br />

Vcb<br />

=<br />

−3<br />

( 41.<br />

6 ± 0.<br />

6)<br />

× 10<br />

Source mb (GeV GeV)<br />

mb[kin] b[kin (global fit) 4.61 ± 0.03<br />

mb[kin] b[kin (global fit, no bsγ) 4.68 ± 0.05<br />

mb[kin] b[kin (bb threshold) 4.56 ± 0.06<br />

mb[1S] b[1S] (global fit) 4.70 ± 0.03<br />

mb[1S] b[1S] (global fit, no bsγ) 4.75 ± 0.06<br />

mb[1S] b[1S] (bb threshold) 4.69 ± 0.03<br />

arXiv:0803.2158<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

χ 2 /ndf is too good (e.g. 39/62 for<br />

kinetic, 25/63 for 1S); suggests<br />

<strong>the</strong>ory errors (included in fit) may<br />

be overestimated<br />

m b is crucial for |V ub |<br />

Use (or not) of bsγ in<br />

global fit still controversial<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 35


Vub<br />

|Vub| | from inclusive decays<br />

ub<br />

Measurement of inclusive bu SL rate<br />

requires cuts to suppress large bc<br />

background<br />

OPE convergence ruined in limited<br />

phase space<br />

Non-perturbative<br />

Non perturbative distribution f n<br />

needed; measure it in bsγ<br />

O<strong>the</strong>r issues: large mb dependence,<br />

weak annihilation<br />

Measure many partial rates<br />

(Ee, , M X, , q 2…) ) <strong>and</strong> compare<br />

with calculated rates<br />

=<br />

−3<br />

( 4.<br />

12 ± 0.<br />

15 ± 0.<br />

40)<br />

× 10<br />

PDG 2008<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

BELLE<br />

hep-ex/0504046<br />

• Bosch, Lange, Neubert, Neubert,<br />

Paz (BLNP)<br />

Phys.Rev.D73,073008(2006)<br />

• Gambino, Gambino,<br />

Giordano, Ossola, Ossola,<br />

Uraltsev (GGOU)<br />

JHEP 0710:058(2007)<br />

• Andersen <strong>and</strong> Gardi (DGE) JHEP 0601:097 (2006)<br />

• Aglietti, Aglietti,<br />

Di Lodovico, Lodovico,<br />

Ferrera, Ferrera,<br />

Ricciardi (AC)<br />

arXiv:0711.0860<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 36


α (φ 2 )<br />

|Vub| | <strong>and</strong> |V |<br />

ub<br />

cb| | summary cb<br />

γ (φ3 ) β (φ1 )<br />

Determinations from inclusive <strong>and</strong> exclusive decays are<br />

independent, both experimentally <strong>and</strong> <strong>the</strong>oretically<br />

Inclusive<br />

Exclusive :<br />

| avg has P(χ P( 2 )=3%;<br />

scale error by ◊χ2 /ndf=2.1<br />

|Vcb| cb<br />

:<br />

Vcb<br />

V<br />

V<br />

=<br />

cb<br />

cb<br />

=<br />

=<br />

−<br />

( 41.<br />

6 ± 0.<br />

6)<br />

× 10<br />

−3<br />

( 38.<br />

6 ± 1.<br />

3)<br />

× 10<br />

−3<br />

( 41.<br />

2 ± 1.<br />

1)<br />

× 10<br />

SuperB + <strong>the</strong>ory improvements ~1% on |V | cb|, cb|,<br />

2-3% 2 3%<br />

on |V | ub| ub|<br />

for each of inclusive/exclusive determinations<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 37<br />

3<br />

V<br />

V<br />

ub<br />

ub<br />

=<br />

=<br />

( 4.<br />

12 ± 0.<br />

43)<br />

( + 0.<br />

6 ) −3<br />

3.<br />

5 × 10<br />

−0.<br />

5<br />

× 10<br />

−3<br />

|Vub | avg has P(χ P( 2 )=40%<br />

Vub<br />

=<br />

−3<br />

( 3.<br />

95 ± 0.<br />

35)<br />

× 10


The long side - |Vtd td |<br />

Constraints come from precise experimental knowledge<br />

of BB mixing:<br />

= 0.507±0.005 0.005 ps -1 (HFAG)<br />

Δms = 17.77±0.10<br />

17.77 0.10±0.07 0.07 ps -1 (CDF<br />

Δm d = 0.507<br />

(CDF PRL97:242003(2006))<br />

PRL97:242003(2006) )<br />

Dominant uncertainty in |V | td| td|<br />

<strong>and</strong> |V | ts| ts|<br />

due to non-<br />

perturbative QCD input<br />

|Vtd/V td/Vts|<br />

ts|<br />

= (0.209 ± 0.006)*10 -3 (PDG)<br />

Also accessible in radiative decays BK B * γ, Bργ<br />

Need calculated ratio of form factors<br />

|Vtd/V td/Vts|<br />

ts|<br />

= (0.21 ± 0.04)*10 -3 (PDG)<br />

α (φ 2 )<br />

γ (φ 3 ) β (φ 1 )<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 38


Constraints on UT<br />

Putting all constraints toge<strong>the</strong>r, we determine <strong>the</strong> apex<br />

of <strong>the</strong> UT as<br />

É = 0.141 +0.029 -0.017 0.017 <strong>CKM</strong>fitter<br />

¿ = 0.343 +0.016<br />

+0.016 -0.016 0.016<br />

É = 0.147 ± 0.029<br />

¿ = 0.342 ± 0.016<br />

0.029 UTfit<br />

No significant departure from<br />

SM at present<br />

Current results from UTfit<br />

95% c.l.<br />

b<strong>and</strong>s<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 39


Trees <strong>and</strong> loops… loops<br />

Recall that some quantities are determined in tree-level tree level<br />

processes (e.g. |V | ub|) ub|)<br />

while o<strong>the</strong>rs involve BB mixing or<br />

“penguin penguin” amplitudes.<br />

Current accuracy is modest; tests NP amplitudes at <strong>the</strong><br />

~100% level<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 40


Unitarity triangle outlook<br />

SuperB<br />

scenarios from<br />

Ciucchini et al.<br />

“<strong>the</strong> reality”<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 41


Backup slides<br />

2008-07-03 Kowalewski - CPT@<strong>ICTP</strong> 42

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!