Photomultiplier Tubes

bo.infn.it

Photomultiplier Tubes

Photomultiplier Tubes


Opening The Future with

Photonics

Hamamatsu has been engaged in photonics technology for 45 years and has developed a

variety of photonic devices such as photodetectors, imaging devices, and scientific light

sources. Our state-of-the-art photonic devices have applications in a wide range of fields,

including scientific research, industrial instrumentation, and physical photometry as well as

general electronics. The continually expanding frontiers of science demand equally constant

exploration of new technology. Hamamatsu's research and development of photonic devices

not only keep pace with scientific needs, but stay one step ahead,

pioneering new trails into the future of light and optics.

This catalog provides information on our photomultiplier tubes, their accessories, electron

multipliers and microchannel plates. But this catalog is just the starting point of our line

because we will modify our production specs or design completely new types to match your

performance specs.

Variants of the listed types are usually available with:

1. Different photocathode materials

2. Different window materials

3. Different configurations and pin connections

4. Other special requirements for your applications

For further information, please contact your nearest Hamamatsu sales offices.

TABLE OF CONTENTS

Page

Index by Type No. 2

About Photomultiplier Tubes

Construction and Operating Characteristics 4

Selection Guide by Applications 18

Side-On Type Photomultiplier Tubes

13mm (1/2”) Dia. Types 24

28mm (1-1/8”) Dia. Types with UV to Visible Sensitivity 26

28mm (1-1/8”) Dia. Types with UV to Near IR Sensitivity 28

13mm (1/2”) Dia. Types, 28mm (1-1/8”) Dia. Types with Solar Blind Response 30

38mm (1-1/2”) Dia. Dormer Window Types 30

Head-On Type Photomultiplier Tubes

10mm (3/8”) Dia. Types 32

13mm (1/2”) Dia. Types 32

19mm (3/4”) Dia. Types 34

25mm (1”) Dia. Types 36

28mm (1-1/8”) Dia. Types 38

38mm (1-1/2”) Dia. Types 40

51mm (2”) Dia. Types with Plastic Base 42

51mm (2”) Dia. Types with Glass Base 44,46

76mm (3”) Dia. Types 48

127mm (5”) Dia. Types 48

Special Purpose Photomultiplier Tubes

Hemispherical Envelope Types 50

Special Envelope Types 52,54

Tubes for High Magnetic Environments 56

Position Sensitive Types 58

Microchannel Plate- Photomultiplier Tubes (MCP-PMTs) 60

Metal Package Photomultiplier Tubes 62

Photosensor Module 68

Gain Characteristics 70

Voltage Distribution Ratio 72

Replacement Information 73

Photomultiplier Tube Assemblies 74

Accessories for Photomultiplier Tubes

E678 Series Sockets 76

Socket Assemblies 78

Regulated High-Voltage Power Supplies 80

Thermoelectric Coolers 81

Magnetic Shield Cases 81

Photon Counters and Related Products 82

Electron Multipliers

Electron Multipliers 84

Cautions 86

Warranty 86

Typical Photocathode Spectral Response 87


INDEX BY TYPE NO.

Type No. Product Page

R105 .............................. Side-on PMT .................................................. 26

R106 .............................. Side-on PMT .................................................. 26

R166UH ......................... Side-on PMT .................................................. 30

R212 .............................. Side-on PMT .................................................. 26

R316-02 ......................... Head-on PMT ................................................. 38

R329-02 ......................... Head-on PMT ................................................. 44

R331-05 ......................... Head-on PMT ................................................. 44

R374 .............................. Head-on PMT ................................................. 38

R375 .............................. Head-on PMT ................................................. 46

R464 .............................. Head-on PMT ................................................. 44

R474 .............................. Electron Multiplier ........................................... 84

R515 .............................. Electron Multiplier ........................................... 84

R550 .............................. Head-on PMT ................................................. 42

R580 .............................. Head-on PMT ................................................. 40

R595 .............................. Electron Multiplier ........................................... 84

R596 .............................. Electron Multiplier ........................................... 84

R632-01 ......................... Head-on PMT ................................................. 34

R636-10 ......................... Side-on PMT .................................................. 28

R647 .............................. Head-on PMT ................................................. 32

R649 .............................. Head-on PMT ................................................. 44

C659 Series ................... Thermoelectric Cooler .................................... 81

R669 .............................. Head-on PMT ................................................. 46

E678 Series ................... Socket ............................................................ 76

E717 Series ................... Socket Assembly ............................................ 79

R759 .............................. Head-on PMT ................................................. 32

R821 .............................. Head-on PMT ................................................. 34

E849 Series ................... Socket Assembly ............................................ 79

E850 Series ................... Socket Assembly ............................................ 79

R877 .............................. Head-on PMT ................................................. 48

R928 .............................. Side-on PMT .................................................. 28

E934 Series ................... Socket Assembly ............................................ 79

R943-02 ......................... Head-on PMT ................................................. 46

C956 Series ................... Socket Assembly ............................................ 78

H957 Series ................... PMT Assembly ............................................... 75

R972 .............................. Head-on PMT ................................................. 34

E974 Series ................... Socket Assembly ............................................ 79

R980 .............................. Head-on PMT ................................................. 40

E989 Series ................... Magnetic Shield Case .................................... 81

E990 Series ................... Socket Assembly ............................................ 79

C1053 Series ................. Socket Assembly ............................................ 78

R1080 ............................ Head-on PMT ................................................. 32

R1081 ............................ Head-on PMT ................................................. 32

R1166 ............................ Head-on PMT ................................................. 34

E1198 Series ................. Socket Assembly ............................................ 79

R1220 ............................ Side-on PMT .................................................. 30

R1250 ............................ Head-on PMT ................................................. 48

R1259 ............................ Side-on PMT .................................................. 30

R1281 ............................ Head-on PMT ................................................. 34

R1288 ............................ Head-on PMT ................................................. 36

R1306 ............................ Head-on PMT ................................................. 42

R1307 ............................ Head-on PMT ................................................. 48

R1387 ............................ Head-on PMT ................................................. 40

E1435 Series ................. Socket Assembly ............................................ 79

R1450 ............................ Head-on PMT ................................................. 34

E1458 Series ................. Socket Assembly ............................................ 79

R1463 ............................ Head-on PMT ................................................. 32

R1464 ............................ Head-on PMT ................................................. 34

R1477-06 ....................... Side-on PMT .................................................. 28

R1513 ............................ Head-on PMT ................................................. 48

R1527 ............................ Side-on PMT .................................................. 26

R1548 ............................ Rectangular Dual PMT ................................... 54

C1556 Series ................. Socket Assembly ............................................ 78

R1584 ............................ Head-on PMT ................................................. 48

R1617 ............................ Head-on PMT ................................................. 34

R1635 ............................ Head-on PMT ................................................. 32

R1705 ............................ Head-on PMT ................................................. 40

E1761 Series ................. Socket Assembly ............................................ 79

R1767 ............................ Head-on PMT ................................................. 40

R1828-01 ....................... Head-on PMT ................................................. 42

R1878 ............................ Head-on PMT ................................................. 34

R1893 ............................ Head-on PMT ................................................. 32

R1894 ............................ Head-on PMT ................................................. 32

R1923 ............................ Side-on PMT .................................................. 30

Type No. Product Page Type No. Product Page Type No. Product Page

R1924 ............................ Head-on PMT ................................................. 36

R1925 ............................ Head-on PMT ................................................. 36

H1949-51 ....................... PMT Assembly ............................................... 75

R2066 ............................ Head-on PMT ................................................. 40

R2078 ............................ Head-on PMT ................................................. 36

R2083 ............................ Head-on PMT ................................................. 44

R2102 ............................ Rectangular PMT ........................................... 54

R2154-02 ....................... Head-on PMT ................................................. 42

E2183 Series ................. Socket Assembly ............................................ 79

R2228 ............................ Head-on PMT ................................................. 38

R2248 ............................ Rectangular PMT ........................................... 54

E2253 Series ................. Socket Assembly ............................................ 79

R2257 ............................ Head-on PMT ................................................. 46

R2362 ............................ Electron Multiplier ........................................... 84

R2368 ............................ Side-on PMT .................................................. 28

E2380 Series ................. Socket Assembly ............................................ 79

H2431-50 ....................... PMT Assembly ............................................... 75

R2486-02 ....................... Position-Sensitive PMT .................................. 58

R2487-02 ....................... Position-Sensitive PMT .................................. 58

R2496 ............................ Head-on PMT ................................................. 32

R2497 ............................ Rectangular PMT ........................................... 54

R2557 ............................ Head-on PMT ................................................. 32

E2624 Series ................. Socket Assembly ............................................ 79

C2633 ............................ Power Supply ................................................. 80

R2658 ............................ Side-on PMT .................................................. 28

R2693 ............................ Side-on PMT .................................................. 26

R2801 ............................ Head-on PMT ................................................. 34

E2924 Series ................. Socket Assembly ............................................ 79

R2949 ............................ Side-on PMT .................................................. 28

E2979 Series ................. Socket Assembly ............................................ 79

H3164-10 ....................... PMT Assembly ............................................... 74

H3165-10 ....................... PMT Assembly ............................................... 74

H3171-04 ....................... PMT Assembly ............................................... 74

H3173-03 ....................... PMT Assembly ............................................... 74

H3177-51 ....................... PMT Assembly ............................................... 75

H3178-51 ....................... PMT Assembly ............................................... 74

R3234-01 ....................... Head-on PMT ................................................. 42

R3292-02 ....................... Position-Sensitive PMT .................................. 58

R3310-02 ....................... Head-on PMT ................................................. 46

C3350 ............................ Power Supply ................................................. 80

C3360 ............................ Power Supply ................................................. 80

H3378-50 ....................... PMT Assembly ............................................... 75

H3460 ............................ Photon Counting Head ................................... 83

R3478 ............................ Head-on PMT ................................................. 34

R3550 ............................ Head-on PMT ................................................. 36

C3589 ............................ Prescaler ........................................................ 83

R3600-02 ....................... Hemispherical PMT ........................................ 50

R3600-06 ....................... PMT Assembly ............................................... 75

H3690-03 ....................... PMT Assembly ............................................... 74

H3695-10 ....................... PMT Assembly ............................................... 74

R3788 ............................ Side-on PMT .................................................. 26

R3809U Series ............... MCP-PMT ...................................................... 60

R3810 ............................ Side-on PMT .................................................. 24

R3811 ............................ Side-on PMT .................................................. 24

C3830 ............................ Power Supply ................................................. 80

C3866 ............................ Photon Counting Unit ..................................... 83

R3886 ............................ Head-on PMT ................................................. 40

R3896 ............................ Side-on PMT .................................................. 28

R3991 ............................ Head-on PMT ................................................. 34

R3998-02 ....................... Head-on PMT ................................................. 38

R4124 ............................ Head-on PMT ................................................. 32

R4177-01 ....................... Head-on PMT ................................................. 32

R4220 ............................ Side-on PMT .................................................. 26

E4229 Series ................. Socket Assembly ............................................ 79

E4512 Series ................. Socket Assembly ............................................ 79

R4607-01 ....................... Head-on PMT ................................................. 44

R4632 ............................ Side-on PMT .................................................. 28

C4710 Series ................. Power Supply ................................................. 80

C4720 ............................ Power Supply ................................................. 80

C4877 ............................ Thermoelectric Cooler .................................... 81

C4878 ............................ Thermoelectric Cooler .................................... 81

C4900 Series ................. Power Supply ................................................. 80

R4998 ............................ Head-on PMT ................................................. 36

R5070 ............................ Head-on PMT ................................................. 36

R5108 ............................ Side-on PMT .................................................. 28

R5150 ............................ Electron Multiplier ........................................... 84

C5410 ............................ Photon Counter .............................................. 82

R5496 ............................ Head-on PMT ................................................. 44

R5505 ............................ Head-on PMT for Highly Magnetic Field ............. 56

R5542 ............................ Head-on PMT for Highly Magnetic Field ............. 56

R5611-01 ....................... Head-on PMT ................................................. 34

E5780 ............................. Socket Assembly ............................................ 79

H5784 Series ................. Photosensor Module ...................................... 68

R5800 ............................ Head-on PMT ................................................. 36

R5900U .......................... Metal Package PMT ....................................... 64

R5900U-M4 .................... Metal Package PMT ....................................... 64

R5900U-L16 ................... Metal Package PMT ....................................... 66

R5900U-C8 .................... Metal Package PMT ....................................... 66

R5912 ............................ Hemispherical PMT ........................................ 50

R5916U Series ............... MCP-PMT ...................................................... 60

H5920 Series ................. Photon Counting Head ................................... 83

R5924 ............................ Head-on PMT for Highly Magnetic Field ............. 56

R5929 ............................ Head-on PMT ................................................. 38

R5946 ............................ Head-on PMT for Highly Magnetic Field ............. 56

E5996 ............................. Socket Assembly ............................................ 79

R6091 ............................ Head-on PMT ................................................. 48

R6095 ............................ Head-on PMT ................................................. 38

E6132 Series ................. Socket Assembly ............................................ 79

E6133 Series ................. Socket Assembly ............................................ 79

H6152-01 ....................... PMT Assembly ............................................... 74

H6153-01 ....................... PMT Assembly ............................................... 74

H6156-50 ....................... PMT Assembly ............................................... 75

H6180 Series ................. Photon Counting Head ................................... 83

R6231 ............................ Head-on PMT ................................................. 42

R6233 ............................ Head-on PMT ................................................. 48

R6234 ............................ Hexagonal PMT ............................................. 52

R6235 ............................ Hexagonal PMT ............................................. 52

R6236 ............................ Rectangular PMT ........................................... 52

R6237 ............................ Rectangular PMT ........................................... 52

H6240 ............................ Photon Counting Head ................................... 83

C6270 Series ................. Socket Assembly ............................................ 78

R6350 ............................ Side-on PMT .................................................. 24

R6351 ............................ Side-on PMT .................................................. 24

R6352 ............................ Side-on PMT .................................................. 24

R6353 ............................ Side-on PMT .................................................. 24

R6354 ............................ Side-on PMT .................................................. 30

R6355 ............................ Side-on PMT .................................................. 24

R6356 ............................ Side-on PMT .................................................. 24

R6357 ............................ Side-on PMT .................................................. 24

R6358 ............................ Side-on PMT .................................................. 24

H6410 ............................ PMT Assembly ............................................... 75

R6427 ............................ Head-on PMT ................................................. 38

R6504 ............................ Head-on PMT for Highly Magnetic Field ............. 56

H6520 ............................ PMT Assembly ............................................... 74

H6521 ............................ PMT Assembly ............................................... 75

H6522 ............................ PMT Assembly ............................................... 75

H6524 ............................ PMT Assembly ............................................... 74

H6527 ............................ PMT Assembly ............................................... 75

H6528 ............................ PMT Assembly ............................................... 75

H6533 ............................ PMT Assembly ............................................... 74

H6559 ............................ PMT Assembly ............................................... 75

H6568 ............................ PMT Assembly ............................................... 64

H6614-01 ....................... PMT Assembly ............................................... 75

E6669 ............................. Socket Assembly ............................................ 79

E6736 ............................. Socket Assembly ............................................ 79

H6779 ............................ Photosensor Module ...................................... 68

H6780 ............................ Photosensor Module ...................................... 68

R6834 ............................ Head-on PMT ................................................. 38

R6835 ............................ Head-on PMT ................................................. 38

R6836 ............................ Head-on PMT ................................................. 38

E7083 ............................. Socket Assembly ............................................ 79

R7311 ............................ Side-on PMT .................................................. 30

H7318 ............................ PMT Assembly ............................................... 75

R7400U Series ............... Metal Package PMT ....................................... 62

R7511 ............................ Side-on PMT .................................................. 30

1P21 ............................... Side-on PMT .................................................. 26

1P28 ............................... Side-on PMT .................................................. 26

931A ............................... Side-on PMT .................................................. 26

931B ............................... Side-on PMT .................................................. 26

Type numbers shown in "Notes".

R105UH ......................... Side-on PMT .................................................. 27

R106UH ......................... Side-on PMT .................................................. 27

R189 .............................. Head-on PMT ................................................. 41

R212UH ......................... Side-on PMT .................................................. 27

R331 .............................. Head-on PMT ................................................. 45

R376 .............................. Head-on PMT ................................................. 39

R585 .............................. Head-on PMT ................................................. 45

R647P ............................ Head-on PMT ................................................. 33

R750 .............................. Head-on PMT ................................................. 35

R758-10 ......................... Side-on PMT .................................................. 29

R760 .............................. Head-on PMT ................................................. 33

R762 .............................. Head-on PMT ................................................. 35

R877-01 ......................... Head-on PMT ................................................. 49

R955 .............................. Side-on PMT .................................................. 29

R960 .............................. Head-on PMT ................................................. 33

R976 .............................. Head-on PMT ................................................. 35

R1104 ............................ Head-on PMT ................................................. 39

R1281-02 ....................... Head-on PMT ................................................. 35

R1288-01 ....................... Head-on PMT ................................................. 37

R1307-01 ....................... Head-on PMT ................................................. 49

R1307-07 ....................... Head-on PMT ................................................. 49

R1463P .......................... Head-on PMT ................................................. 33

R1508 ............................ Head-on PMT ................................................. 41

R1509 ............................ Head-on PMT ................................................. 41

R1516 ............................ Side-on PMT .................................................. 27

R1527P .......................... Side-on PMT .................................................. 27

R1548-02 ....................... Rectangular Dual PMT ................................... 55

R1635P .......................... Head-on PMT ................................................. 33

R1924P .......................... Head-on PMT ................................................. 37

R1926 ............................ Head-on PMT ................................................. 37

R2027 ............................ Head-on PMT ................................................. 35

R2032 ............................ Side-on PMT .................................................. 31

R2059 ............................ Head-on PMT ................................................. 43

R2076 ............................ Head-on PMT ................................................. 35

R2220 ............................ Head-on PMT ................................................. 43

R2256-02 ....................... Head-on PMT ................................................. 45

R2295 ............................ Head-on PMT ................................................. 35

R2658P .......................... Side-on PMT .................................................. 29

R2693P .......................... Side-on PMT .................................................. 27

R3235-01 ....................... Head-on PMT ................................................. 43

R3237-01 ....................... Head-on PMT ................................................. 43

R3256 ............................ Head-on PMT ................................................. 43

R3810P .......................... Side-on PMT .................................................. 25

R3878 ............................ Head-on PMT ................................................. 33

R4141 ............................ Head-on PMT ................................................. 33

R4144 ............................ Head-on PMT ................................................. 49

R4220P .......................... Side-on PMT .................................................. 27

R4332 ............................ Side-on PMT .................................................. 27

R5113-02 ....................... Head-on PMT ................................................. 45

R5320 ............................ Head-on PMT ................................................. 37

R5611 ............................ Head-on PMT ................................................. 35

R6094 ............................ Head-on PMT ................................................. 39

H6152-01 ....................... PMT Assembly ............................................... 57

H6153-01 ....................... PMT Assembly ............................................... 57

H6155-01 ....................... PMT Assembly ............................................... 57

R6231-01 ....................... Head-on PMT ................................................. 43

R6233-01 ....................... Head-on PMT ................................................. 49

R6234-01 ....................... Hexagonal PMT ............................................. 53

R6235-01 ....................... Hexagonal PMT ............................................. 53

R6236-01 ....................... Rectangular PMT ........................................... 53

R6237-01 ....................... Rectangular PMT ........................................... 53

R6350P .......................... Side-on PMT .................................................. 25

R6353P .......................... Side-on PMT .................................................. 25

R6358P .......................... Side-on PMT .................................................. 25

H6614-01 ....................... PMT Assembly ............................................... 57

R7056 ............................ Head-on PMT ................................................. 39

R7057 ............................ Head-on PMT ................................................. 39

2 3


PHOTOMULTIPLIER TUBES

Construction and Operating Characteristics

INTRODUCTION

Among the photosensitive devices in use today, the photomultiplier

tube (or PMT) is a versatile device that provides extremely

high sensitivity and ultra-fast response. A typical photomultiplier

tube consists of a photoemissive cathode (photocathode)

followed by focusing electrodes, an electron multiplier and

an electron collector (anode) in a vacuum tube, as shown in Figure

1.

When light enters the photocathode, the photocathode emits

photoelectrons into the vacuum. These photoelectrons are then

directed by the focusing electrode voltages towards the electron

multiplier where electrons are multiplied by the process of secondary

emission. The multiplied electrons are collected by the

anode as an output signal.

Because of secondary-emission multiplication, photomultiplier

tubes provide extremely high sensitivity and exceptionally

low noise among the photosensitive devices currently used to

detect radiant energy in the ultraviolet, visible, and near infrared

regions. The photomultiplier tube also features fast time response,

low noise and a choice of large photosensitive areas.

This section describes the prime features of photomultiplier

tube construction and basic operating characteristics.

Figures 1: Cross-Section of Head-On Type PMT

DIRECTION OF LIGHT

FACEPLATE

e -

FOCUSING

ELECTRODE

SECONDARY

ELECTRON

ELECTORON

MULTIPLIER

(DYNODES)

PHOTOCATHODE

LAST DYNODE

VACUUM

-4 (10 Pa)

ANODE

STEM PIN

STEM

Variants of the head-on type having a large-diameter hemispherical

window have been developed for high energy physics

experiments where good angular light acceptability is important.

Figure 2: External Appearance

a) Side-On Type b) Head-On Type

PHOTO-

SENSITIVE

AREA

H A M A M A T S U

M A D E IN JA PA N

R928

Figure 3: Types of Photocathode

a) Reflection Mode

REFLECTION MODE

PHOTOCATHODE

DIRECTION OF LIGHT

PHOTOELECTRON

b) Transmission Mode

DIRECTION

OF LIGHT

H A M A M A T S U

M A D E IN JA PA N

R 3

TPMSC0028EA TPMOC0083EA

SEMITRANSPARENT

PHOTOCATHODE

PHOTO-

SENSITIVE

AREA

TPMSC0029EA

2) Box-and-grid type

This type consists of a train of quarter cylindrical dynodes

and is widely used in head-on type photomultiplier tubes because

of its relatively simple dynode design and improved

uniformity, although time response may be too slow in some

applications.

TPMOC0078EA

3) Linear-focused type

The linear-focused type features extremely fast response

time and is widely used in head-on type photomultiplier tubes

where time resolution and pulse linearity are important.

TPMOC0079EA

4) Venetian blind type

The venetian blind type has a large dynode area and is

primarily used for tubes with large photocathode areas. It offers

better uniformity and a larger pulse output current. This

structure is usually used when time response is not a prime

consideration.

TPMOC0080EA

6) Microchannel plate (MCP)

The MCP is a thin disk consisting of millions of micro

glass tubes (channels) fused in parallel with each other. Each

channel acts as an independent electron multiplier. The MCP

offers much faster time response than the other discrete dynodes.

It also features good immunity from magnetic fields

and two-dimensional detection ability when multiple anodes

are used. (See pages 60 and 61 for MCP-PMTs.)

TPMOC0082EA

7) Metal channel type

The Metal channel dynode has a compact dynode

costruction manufactured by our unique fine machining technique.

It achieves high speed response due to its narrower

space between each stage of dynodes than the other type of

conventional dynode construction.

It is also adequate for position sensitive measurement.

PHOTOELECTRON

5) Mesh type

In addition, hybrid dynodes combining two of the above dynodes

are available. These hybrid dynodes are designed to

TPMHC0084EB

The mesh type has a structure of fine mesh electrodes

provide the merits of each dynode.

TPMHC0006EA

stacked in close proximity. This type provides high immunity

CONSTRUCTION

The photomultiplier tube generally has a photocathode in either

a side-on or a head-on configuration. The side-on type receives

incident light through the side of the glass bulb, while in

the head-on type, it is received through the end of the glass bulb.

In general, the side-on type photomultiplier tube is relatively low

priced and widely used for spectrophotometers and general photometric

systems. Most of the side-on types employ an opaque

photocathode (reflection-mode photocathode) and a circularcage

structure electron multiplier which has good sensitivity and

high amplification at a relatively low supply voltage.

The head-on type (or the end-on type) has a semitransparent

photocathode (transmission-mode photocathode) deposited

ELECTRON MULTIPLIER

The superior sensitivity (high current amplification and high

S/N ratio) of photomultiplier tubes is due to the use of a low-noise

electron multiplier which amplifies electrons by a cascade secondary

electron emission process. The electron multiplier consists

of from 8, up to 19 stages of electrodes called dynodes.

There are several principal types in use today.

1) Circular-cage type

The circular-cage is generally used for the side-on type of

photomultiplier tube. The prime features of the circular-cage

are compactness and fast time response.

to magnetic fields, as well as good uniformity and high pulse

linearity. In addition, it has position-sensitive capability when

used with cross-wire anodes or multiple anodes. (See pages

58 and 59.)

ELECTRON

ELECTRON

ELECTRON

SPECTRAL RESPONSE

The photocathode of a photomultiplier tube converts energy

of incident light into photoelectrons. The conversion efficiency

(photocathode sensitivity) varies with the wavelength of the incident

light. This relationship between photocathode sensitivity

and wavelength is called the spectral response characteristic.

Figure 4 shows the typical spectral response of a bialkali photomultiplier

tube. The spectral response characteristics are determined

on the long wavelength side by the photocathode material

and on the short wavelength side by the window material. Typical

spectral response characteristics for various types of photomultiplier

tubes are shown on pages 88 and 89. In this catalog,

the longwavelength cut-off of spectral response characteristics

upon the inner surface of the entrance window. The head-on

is defined as the wavelength at which the cathode radiant sensi-

type provides better spatial uniformity (see page 10) than the

tivity becomes 1% of the maximum sensitivity for bialkali and Agside-on

type having a reflection-mode photocathode. Other fea-

O-Cs photocathodes, and 0.1% of the maximum sensitivity for

tures of head-on types include a choice of photosensitive areas

multialkali photocathodes.

from tens of square millimeters to hundreds of square centime-

COARSE MESH TYPE

FINE-MESH TYPE

Spectral response characteristics shown at the end of this

ters.

TPMOC0077EB

catalog are typical curves for representative tube types. Actual

TPMOC0081EA

data may be different from type to type.

4 5

ELECTRON

TPMOC0084EA


Figure 4: Typical Spectral Response of Head-On, Bialkali

Photocathode

CATHODE RADIANT SENSITIVITY (mA/W)

QUANTUM EFFICIENCY (%)

100

10

1

0.1

0.01

200

CATHODE

RADIANT

SENSITIVITY

QUANTUM EFFICIENCY

400 600 800

WAVELENGTH (nm)

TPMOB0070EA

PHOTOCATHODE MATERIALS

The photocathode is a photoemissive surface usually consisting

of alkali metals with very low work functions. The photocathode

materials most commonly used in photomultiplier tubes

are as follows:

1) Ag-O-Cs

The transmission-mode photocathode using this material

is designated S-1 and sensitive from the visible to infrared

range (300 to 1200nm). Since Ag-O-Cs has comparatively

high thermionic dark emission (refer to "ANODE DARK CUR-

RENT" on page 8), tubes of this photocathode are mainly

used for detection in the near infrared region with the photocathode

cooled.

2) GaAs(Cs)

GaAs activated in cesium is also used as a photocathode.

The spectral response of this photocathode usually covers a

wider spectral response range than multialkali, from ultraviolet

to 930nm, which is comparatively flat over 300 to 850nm.

3) InGaAs(Cs)

This photocathode has greater extended sensitivity in the

infrared range than GaAs. Moreover, in the range between

900 and 1000nm, InGaAs has much higher S/N ratio than Ag-

O-Cs.

4) Sb-Cs

This is a widely used photocathode and has a spectral

response in the ultraviolet to visible range. This is not suited

for transmission-mode photocathodes and mainly used for

reflection-mode photocathodes.

5) Bialkali (Sb-Rb-Cs, Sb-K-Cs)

These have a spectral response range similar to the Sb-

Cs photocathode, but have higher sensitivity and lower noise

than Sb-Cs. The transmission mode bialkali photocathodes

also have a favorable blue sensitivity for scintillator flashes

from NaI (Tl) scintillators, thus are frequently used for radiation

measurement using scintillation counting.

6

6) High temperature bialkali or low noise bialkali

(Na-K-Sb)

This is particularly useful at higher operating temperatures

since it can withstand up to 175°C. A major application

is in the oil well logging industry. At room temperatures, this

photocathode operates with very low dark current, making it

ideal for use in photon counting applications.

7) Multialkali (Na-K-Sb-Cs)

The multialkali photocathode has a high, wide spectral response

from the ultraviolet to near infrared region. It is widely

used for broad-band spectrophotometers. The long wavelength

response can be extended out to 930nm by special

photocathode processing.

8) Cs-Te, Cs-I

These materials are sensitive to vacuum UV and UV rays

but not to visible light and are therefore called solar blind. Cs-

Te is quite insensitive to wavelengths longer than 320nm,

and Cs-I to those longer than 200nm.

WINDOW MATERIALS

The window materials commonly used in photomultiplier

tubes are as follows:

1) Borosilicate glass

This is frequently used glass material. It transmits radiation

from the near infrared to approximately 300nm. It is not

suitable for detection in the ultraviolet region. For some applications,

the combination of a bialkali photocathode and a

low-noise borosilicate glass (so called K-free glass) is used.

The K-free glass contains very low potassium (K2O) which

can cause background counts by 40 K. In particular, tubes designed

for scintillation counting often employ K-free glass not

only for the faceplate but also for the side bulb to minimize

noise pulses.

2) UV-transmitting glass (UV glass)

This glass transmits ultraviolet radiation well, as the name

implies, and is widely used as a borosilicate glass. For spectroscopy

applications, UV glass is commonly used. The UV

cut-off is approximately 185nm.

3) Synthetic silica

The synthetic silica transmits ultraviolet radiation down to

160nm and offers lower absorption in the ultraviolet range

compared to fused silica. Since thermal expansion coefficient

of the synthetic silica is different from Kovar which is used for

the tube leads, it is not suitable for the stem material of the

tube (see Figure 1 on page 4). Borosilicate glass is used for

the stem, then a graded seal using glasses with gradually

different thermal expansion coefficients are connected to the

synthetic silica window. Because of this structure, the graded

seal is vulnerable to mechanical shock so that sufficient care

should be taken in handling the tube.

4) MgF2 (magnesium fluoride)

The crystals of alkali halide are superior in transmitting

ultraviolet radiation, but have the disadvantage of deliquescence.

Among these, MgF2 is known as a practical window

material because it offers low deliquescence and transmits

ultraviolet radiation down to 115nm.

Figure 5: Typical Transmittance of Various Window Materials

TRANSMITTANCE (%)

100

10

MgF2

SYNTHETIC

QUARTZ

UV-

TRANSMITTING

GLASS

BOROSILICATE

GLASS

1

100 120 160 200 240 300 400 500

WAVELENGTH (nm)

TPMOB0076EB

As stated above, spectral response range is determined by

the photocathode and window materials. It is important to select

an appropriate combination which will suit your applications.

RADIANT SENSITIVITY AND QUANTUM EFFICIENCY

As Figure 4 shows, spectral response is usually expressed in

terms of radiant sensitivity or quantum efficiency as a function of

wavelength. Radiant sensitivity (S) is the photoelectric current

from the photocathode, divided by the incident radiant power at a

given wavelength, expressed in A/W (amperes per watt). Quantum

efficiency (QE) is the number of photoelectrons emitted from

the photocathode divided by the number of incident photons. It is

customary to present quantum efficiency in a percentage. Quantum

efficiency and radiant sensitivity have the following relationship

at a given wavelength.

S × 1240

QE = × 100%

λ

Where S is the radiant sensitivity in A/W at the given wavelength,

and λ is the wavelength in nm (nanometers).

LUMINOUS SENSITIVITY

Since the measurement of the spectral response characteristic

of a photomultiplier tube requires a sophisticated system and

much time, it is not practical to provide customers with spectral

response characteristics for each tube ordered. Instead cathode

or anode luminous sensitivity is commonly used.

The cathode luminous sensitivity is the photoelectric current from

the photocathode per incident light flux (10 -5 to 10 -2 lumens) from

a tungsten filament lamp operated at a distribution temperature

of 2856K. The anode luminous sensitivity is the anode output

current (amplified by the secondary emission process) per incident

light flux (10 -10 to 10 -5 lumens) on the photocathode. Although

the same tungsten lamp is used, the light flux and the

applied voltage are adjusted to an appropriate level. These parameters

are particularly useful when comparing tubes having

the same or similar spectral response range. Hamamatsu final

test sheets accompanying the tubes usually indicate these parameters

except for tubes with Cs-I or Cs-Te photocathodes,

which are not sensitive to tungsten lamp light. (Radiant sensitivity

at a specific wavelength is listed for those tubes instead.)

Both the cathode and anode luminous sensitivities are expressed

in units of A/lm (amperes per lumen). Note that the lumen

is a unit used for luminous flux in the visible region and

therefore these values may be meaningless for tubes which are

sensitive beyond the visible region. (For those tubes, the blue

sensitivity or red/white ratio is often used.)

Figure 6: Typical Human Eye Response and Spectral

Energy Distribution of 2856K Tungsten Lamp

RELATIVE VALUE (%)

100

80

60

40

20

TUNGSTEN

LAMP

AT 2856K

VISUAL SENSITIVITY

0

200 400 600 800 1000 1200 1400

WAVELENGTH (nm)

TPMOB0054EB

BLUE SENSITIVITY AND RED/WHITE RATIO

For simple comparison of spectral response of photomultiplier

tubes, cathode blue sensitivity and red/white ratio are often

used.

The cathode blue sensitivity is the photoelectric current from the

photocathode produced by a light flux of a tungsten lamp at

2856K passing through a blue filter (Corning CS No. 5-58 polished

to half stock thickness). Since the light flux, once transmitted

through the blue filter cannot be expressed in lumens, blue

sensitivity is conveniently expressed in A/lm-b (amperes per lumen-blue).

The blue sensitivity is an important parameter in scintillation

counting using an NaI (Tl) scintillator since the NaI (Tl)

scintillator produces emissions in the blue region of the spectrum,

and may be the decisive factor in energy resolution.

The red/white ratio is used for photomultiplier tubes with a

spectral response extending to the near infrared region. This parameter

is defined as the quotient of the cathode sensitivity measured

with a light flux of a tungsten lamp at 2856K passing

through a red filter (Toshiba IR-D80A for the S-1 photocathode or

R-68 for others) divided by the cathode luminous sensitivity with

the filter removed.

7


Figure 7: Transmittance of Various Filters

8

TRANSMITTANCE (%)

100

80

60

40

20

CORNING

CS-5-58

(1/2 STOCK

THICKNESS)

CURRENT AMPLIFICATION (GAIN)

Photoelectrons emitted from a photocathode are accelerated

by an electric field so as to strike the first dynode and produce

secondary electron emissions. These secondary electrons then

impinge upon the next dynode to produce additional secondary

electron emissions. Repeating this process over successive dynode

stages, a high current amplification is achieved. A very

small photoelectric current from the photocathode can be observed

as a large output current from the anode of the photomultiplier

tube.

Current amplification is simply the ratio of the anode output

current to the photoelectric current from the photocathode. Ideally,

the current amplification of a photomultiplier tube having n

dynode stage and an average secondary emission ratio δ per

stage is δ n . While the secondary electron emission ratio δ is given

by

δ = A EE α

where A is constant, E is an interstage voltage, and α is a coefficient

determined by the dynode material and geometric structure.

It usually has a value of 0.7 to 0.8.

When a voltage V is applied between the cathode and the anode

of a photomultiplier tube having n dynode stages, current amplification,

μ, becomes

μ = δ n = (A ⋅ E α ) n = A⋅

A

=

(n + 1) αn

n

{ ( ) }

n + 1

⋅ V αn = K ⋅ V αn

TOSHIBA R-68

TOSHIBA

IR-D80A

0

200 400 600 800 1000 1200

WAVELENGTH (nm)

V α n

TPMOB0055EB

Since photomultiplier tubes generally have 9 to 12 dynode

stages, the anode output varies directly with the 6th to 10th

power of the change in applied voltage. The output signal of the

photomultiplier tube is extremely susceptible to fluctuations in

the power supply voltage, thus the power supply must be very

stable and provide minimum ripple, drift and temperature coefficient.

Various types of regulated high-voltage power supplies

designed with this consideration are available from Hamamatsu

(see page 80).

Figure 8: Typical Current Amplification vs. Supply Voltage

ANODE LUMINOUS SENSITIVITY (A / lm)

ANODE DARK CURRENT (nA)

10 4

10 3

10 2

10 1

10 0

10 -1

ANODE LUMINOUS

SENSITIVITY

CURRENT

AMPLIFICATION (GAIN)

10 9

10 8

10 7

10 6

10 5

10 4

10

200 300 500 700 1000 1500

-2

103 10 1

10 0

10 -1

10 -2

10

400

-3

SUPPLY VOLTAGE (V)

(AFTER 30 MINUTE STORAGE)

600 800 1000 1200 1400

APPLIED VOLTAGE (V)

CURRENT AMPLIFCATION

TPMOB0058EA

ANODE DARK CURRENT

A small amount of current flows in a photomultiplier tube even

when the tube is operated in a completely dark state. This output

current, called the anode dark current, and the resulting noise

are critical factors in determining the detectivity of a photomultiplier

tube. As Figure 9 shows, dark current is greatly dependent

on the supply voltage.

Figure 9: Typical Dark Current vs. Supply Voltage

TPMOB0071EA

Major sources of dark current may be categorized as follows:

1) Thermionic emission of electrons

Since the materials of the photocathode and dynodes

have very low work functions, they emit thermionic electrons

even at room temperature. Most of dark currents originate

from the thermionic emissions, especially those from the

photocathode as they are multiplied by the dynodes. Cooling

the photocathode is most effective in reducing thermionic

emission and, this is particularly useful in applications where

low dark counts are essential such as in photon counting.

Figure 10 shows the relationship between dark current

and temperature for various photocathodes. Photocathodes

which have high sensitivity in the red to infrared region, especially

S-1, show higher dark current at room temperature.

Hamamatsu provides thermoelectric coolers (C659 and

C4877) designed for various sizes of photomultiplier tubes

(see page 81).

Figure 10: Temperature Characteristics of Dark Current

ANODE DARK CURRENT (A)

10 -5

10 -6

10 -7

10 -8

10 -9

10 -10

R316

(HEAD-ON TYPE, Ag-O-Cs)

R374

(HEAD-ON TYPE,

MULTIALKALI)

10

R3550

(HEAD-ON TYPE,

LOW-NOISE BIALKALI)

R6095

(HEAD-ON TYPE, BIALKALI)

-60 -40 -20 0 20 40

-12

10-11 10-13 TEMPERATURE (°C)

TPMOB0065EB

2) Ionization of residual gases (ion feedback)

Residual gases inside a photomultiplier tube can be ionized

by collision with electrons. When these ions strike the

photocathode or earlier stages of dynodes, secondary electrons

may be emitted, thus resulting in relatively large output

noise pulses. These noise pulses are usually observed as

afterpulses following the primary signal pulses and may be a

problem in detecting light pulses. Present photomultiplier

tubes are designed to minimize afterpulses.

3) Glass scintillation

When electrons deviating from their normal trajectories

strike the glass envelope, scintillations may occur and dark

pulses may result. To minimize this type of dark pulse, photomultiplier

tubes may be operated with the anode at high voltage

and the cathode at ground potential. But this is inconvenient

to handle the tube. To obtain the same effect without

difficulty, Hamamatsu provides "HA coating" in which the

glass bulb is coated with a conductive paint connected to the

cathode. (See "GROUND POLARITY AND HA COATING"

on page 13.)

4) Leakage current (ohmic leakage)

Leakage current resulting from the glass stem base and

socket may be another source of dark current. This is predominant

when the photomultiplier tube is operated at a low

voltage or low temperature. The flatter slopes in Figures 9

and 10 are mainly due to leakage current.

Contamination from dirt and moisture on the surface of the

tube may increase the leakage current, and therefore should

be avoided.

5) Field emission

When a photomultiplier tube is operated at a voltage near

the maximum rated value, electrons may be emitted from

electrodes by the strong electric field and may cause noise

pulses. It is therefore recommended that the tube be operated

at a voltage 20 to 30% lower than the maximum rating.

The anode dark current decreases with time after the tube is

placed in a dark state. In this catalog, anode dark currents

are measured after 30-minute storage in a dark state.

ENI (EQUIVALENT NOISE INPUT)

ENI is an indication of the photon-limited signal-to-noise ratio.

It refers to the amount of light usually in watts or lumens necessary

to produce a signal-to-noise ratio of unity in the output of a

photomultiplier tube. ENI is expressed in units of lumens or watts.

For example the value of ENI (in watts) is given by

ENI =

2q ⋅ Idb ⋅ μ ⋅ Δf

S

(watts or lumens)

where

q = electronic charge (1.60 × 10 -19 coul.)

Idb = anode dark current in amperes after 30-minute

storage in darkness

μ = current amplification

Δf = bandwidth of the system in hertz (usually 1 hertz)

S = anode radiant sensitivity in amperes per watt at

the wavelength of interest or anode luminous

sensitivity in amperes per lumen

For the tubes listed in this catalog, the value of ENI may be calculated

by the above equation. Usually it has a value between 10 -15

and 10 -16 watts or lumens.

MAGNETIC FIELD EFFECTS

Most photomultiplier tubes are affected by the presence of

magnetic fields. Magnetic fields may deflect electrons from their

normal trajectories and cause a loss of gain. The extent of the

loss of gain depends on the type of photomultiplier tube and its

orientation in the magnetic field. Figure 11 shows typical effects

of magnetic fields on some types of photomultiplier tubes. In general,

tubes having a long path from the photocathode to the first

dynode are very vulnerable to magnetic fields. Therefore headon

types, especially large diameter tubes, tend to be more adversely

influenced by magnetic fields.

9


Figure 11: Typical Effects by Magnetic Fields Perpendicular

to Tube Axis

10

RELATIVE OUTPUT (%)

120

110

100

90

80

70

60

50

40

30

20

10

When a tube has to be operated in magnetic fields, it may be

necessary to shield the tube with a magnetic shield case.

Hamamatsu provides a variety of magnetic shield cases (see

page 81). To express the effect of a magnetic shield case, the

magnetic shielding factor is used. This is the ratio of the strength

of the magnetic field outside the shield case, Hout, to that inside

the shield case, Hin. It is determined by the permeability μ, the

thickness t (mm) and inner diameter D (mm) of the shield case,

as follows:

Hout

Hin

0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

=

3μt

4 D

It should be noted that the magnetic shielding effect decreases

towards the edge of the shield case as shown in Figure

12. It is recommended that the tube be covered by a shield case

longer than the tube length by at least half the tube diameter.

Figure 12: Edge Effect of Magnetic Shield Case

EDGE EFFECT

SHIELDING FACTOR (Ho/Hi)

t

2r

1000

100

10

1

38 mm dia.

HEAD - ON TYPE

CIRCULAR CAGE

TYPE DYNODE

( )

28 mm dia.

SIDE - ON TYPE

13 mm dia.

HEAD - ON TYPE

LINEAR - FOCUSED

TYPE DYNODE

( )

MAGNETIC FLUX DENSITY (mT)

LONGER than r

PHOTOMULTIPLIER TUBE

L

r r

TPMOB0017EB

TPMOB0011EA

Hamamatsu provides photomultiplier tubes using fine mesh

dynodes (see page 56). These tube types (see page 56) exhibit

much higher immunity to external magnetic fields than the photomultiplier

tubes using other dynodes. In addition, when the light

level to be measured is rather high, triode or tetrode type photomultiplier

tubes can be used in hishly magnetic fields.

SPATIAL UNIFORMITY

Spatial uniformity is the variation of sensitivity with position of

incident light on a photocathode.

Although the focusing electrodes of a photomultiplier tube

are designed so that electrons emitted from the photocathode or

dynodes are collected efficiently by the first or following dynodes,

some electrons may deviate from their desired trajectories in the

focusing and multiplication processes, resulting in a loss of collection

efficiency. This loss of collection efficiency varies with the

position on the photocathode from which the photoelectrons are

emitted and influences the spatial uniformity of a photomultiplier

tube. The spatial uniformity is also determined by the photocathode

surface uniformity itself.

In general, head-on type photomultiplier tubes provide better

spatial uniformity than side-on types because of the photocathode

to first dynode geometry. Tubes especially designed for

gamma camera applications have excellent spatial uniformity,

because uniformity is the decisive factor in the overall performance

of a gamma camera.

Figure 13: Examples of Spatial Uniformity

(a) Head-On Type (b) Side-On Type

(R6231-01 for gamma camera applications) Reflection-mode photocathode

PHOTO-

CATHODE

(TOP VIEW)

ANODE SENSITIVITY (%)

100

50

0

ANODE

SENSITIVITY (%)

(R6231-01 for gamma camera applications)

100

50

0

PHOTO-

CATHODE

GUIDE KEY

ANODE

SENSITIVITY (%)

0 50 100

TPMHC0085EB TPMSC0030EC

TEMPERATURE CHARACTERISTICS

By decreasing the temperature of a photomultiplier tube,

dark current originating from thermionic emission can be reduced.

Sensitivity of the photomultiplier tube also varies with the

temperature. In the ultraviolet to visible region, the temperature

coefficient of sensitivity usually has a negative value, while near

the long wavelength cut-off it has a positive value. Figure 14

shows temperature coefficients vs. wavelength of typical photomultiplier

tubes. Since the temperature coefficient change is

large near the long wavelength cutoff, temperature control may

be required in some applications.

Figure 14: Typical Temperature Coefficients of Anode Sensitivity

TEMPERATURE COEFFICIENT

FOR CATHODE SENSITIVITY [% °C]

1.5

1

0.5

0

-0.5

Cs-Te

Sb-Cs

MULTIALKALI

Sb-Cs

BIALKALI

MULTIALKALI

GaAs (Cs)

Ag-O-Cs

-1

200 300 400 500 600 700 800 900 1000 1100 1200

WAVELENGTH [nm]

TPMOB0013EA

HYSTERESIS

A photomultiplier tube may exhibit an unstable output for several

seconds to several tens of seconds after voltage and light

are applied, i.e., output may slightly overshoot or undershoot before

reaching a stable level (Figure 15). This instability is called

hysteresis and may be a problem in spectrophotometry and

other applications.

Hysteresis is mainly caused by electrons being deviated from

their planned trajectories and electrostatically charging the dynode

support ceramics and glass bulb. When the applied voltage

is changed as the light input changes, marked hysteresis can

occur. As a countermeasure, many Hamamatsu side-on photomultiplier

tubes employ "anti-hysteresis design" which virtually

eliminate hysteresis.

Figure 15: Hysteresis Measurement

ANODE CURRENT

0 5 6 7

Ii

TIME (MINUTE)

I min.

I max.

TPMOC0071EA

DRIFT AND LIFE CHARACTERISTIC

While operating a photomultiplier tube continuously over a

long period, anode output current of the photomultiplier tube may

vary slightly with time, although operating conditions have not

changed. This change is reffered to as drift or in the case where

the operating time is 10 3 to 10 4 hrs it is called life characteristics.

Figure 16 shows typical life characteristics.

Drift is primarily caused by damage to the last dynode by

heavy electron bombardment. Therefore the use of lower anode

current is desirable. When stability is of prime importance, the

use of average anode current of 1 μA or less is recommended.

Figure 16: Examples of Life

RELATIVE ANODE CURRENT (%)

100

50

0

PMT:R1924

SUPPLY VOLTAGE:1000 V

INITIAL ANODE CURRENT:10 μA

1 10 100

TIME (hour)

1000 10000

TPMHB0448EA

TIME RESPONSE

In the measurement of pulsed light, the anode output signal

should reproduce a waveform faithful to the incident pulse waveform.

This reproducibility is greatly affected by the electron transit

time, anode pulse rise time, and electron transit time spread

(TTS).

As illustrated in Figure 17, the electron transit time is the time

interval between the arrival of a delta function light pulse (pulse

width less than 50ns) at the photocathode and the instant when

the anode output pulse reaches its peak amplitude. The anode

pulse rise time is defined as the time required to rise from 10% to

90% of the peak amplitude when the whole photocathode is illuminated

by a delta function light pulse (pulse width less than 50

ps). The electron transit time has a fluctuation between individual

light pulses. This fluctuation is called transit time spread

(TTS) and defined as the FWHM of the frequency distribution of

electron transit times (Figure 18) at single photoelectron event.

The TTS is an important factor in time-resolved measurement.

The time response characteristics depend on the dynode

structure and applied voltage. In general, tubes of the linear-focused

or circular-cage structure exhibit better time response

than tubes of the box-and-grid or venetian blind structure. MCP-

PMTs, which employ an MCP in place of conventional dynodes,

offer better time response than tubes using other dynodes. For

example, the TTS can be significantly improved compared to

normal photomultiplier tubes because a nearly parallel electric

field is applied between the photocathode, MCP and the anode.

Figure 19 shows typical time response characteristics vs. applied

voltage for types R2059 (51mm dia. head-on, 12-stage, linear-focused

type) .

11


Figure 17: Anode Pulse Rise Time and Electron Transit Time

Figure 18: Electron Transit Time Spread (TTS)

12

DELTA FUNCTION LIGHT

RELATIVE COUNT

10 4

10 3

10 2

10 1

10 0

-5

TYPE NO. : R2059 ∗FWHM=550ps

∗FWTM=1228ps

-4 -3 -2 -1 0 1 2 3 4

TIME [ns]

TPMOB0059EB

TPMHB0126EB

Figure 19: Time Response Characteristics vs. Supply

Voltage

TIME (ns)

10 2

10 1

10 0

TRANSIT TIME

RISE TIME FALL TIME

10%

90%

ANODE

OUTPUT

SIGNAL

500 1000 1500 2000 2500 3000

SUPPLY VOLTAGE (V)

TYPE NO. : R2059

TRANSIT TIME

RISE TIME

T. T. S

5

TPMOB0060EA

VOLTAGE-DIVIDER CONSIDERATION

Interstage voltages for the dynodes of a photomultiplier tube

are usually supplied by a voltage-divider circuits consisting of

series-connected resistors. Schematic diagrams of typical voltage-divider

circuits are illustrated in Figure 20. Circuit (a) is a

basic arrangement (DC output) and (b) is for pulse operations.

Figure 21 shows the relationship between the incident light level

and the average anode output current of a photomultiplier tube

using the voltage-divider circuit (a). Deviation from the ideal linearity

occurs at a certain incident level (region B). This is caused

by an increase in dynode voltage due to the redistribution of the

voltage loss between the last few stages, resulting in an apparent

increase in sensitivity. As the input light level is increased,

the anode output current begins to saturate near the value of the

current flowing through the voltage divider (region C). Therefore,

it is recommended that the voltage-divider current be maintained

at least at 20 times the average anode output current required

from the photomultiplier tube.

Figure 20: Schematic Diagrams of Voltage-Divider Circuits

(a) Basic arrangement for DC operation

-HV

(b) For pulse operation

-HV

PHOTOCATHODE

1R 1R 1R 1R 1R 1R 1R 1R 1R 1R 1R

PHOTOCATHODE

1R 1R 1R 1R 1R 1R 1R 1R 1R 1R 1R

RATIO OF AVERAGE OUTPUT CURRENT

TO DIVIDER CURRENT

10

1.0

0.1

0.01

A

B

0.001

0.001 0.01 0.1 1.0 10

LIGHT FLUX (A.U.)

ACTUAL

CURVE

IDEAL

CURVE

C1 C2 C3

C

TACCB0005EA

ANODE

ANODE

TACCC0030EB

Figure 21: Output Characteristics of a PMT Using Voltage-

Divider Circuit (a)

Generally high output current is required in pulsed light applications.

In order to maintain dynode potentials at a constant

value during pulse durations and obtain high peak currents, large

capacitors are used as shown in Figure 20 (b). The capacitor values

depend on the output charge. If linearity of better than 1% is

needed, the capacitor value should be at least 100 times the output

charge per pulse, as follows:

I ⋅ t

C>100 (farads)

V

where I is the peak output current in amperes, it is the pulse width

in seconds, and V is the voltage across the capacitor in volts.

In high energy physics applications where a high pulse output is

required, as the incident light is increased while the interstage voltage

is kept fixed, output saturation will occur at a certain level. This

is caused by an increase in the electron density between the

electrodes, causing space charge effects which disturb the electron

current. As a corrective action to overcome space charge

effects, the voltage applied to the last few stages, where the electron

density becomes high, should be set at a higher value than

the standard voltage distribution so that the voltage gradient between

those electrodes is enhanced. For this purpose, a socalled

tapered bleeder circuit (Figure 22) is often employed. Use

of this tapered bleeder circuit improves pulse linearity 5 to 10

times better than that obtained with normal bleeder circuits

(equally divided circuits).

Hamamatsu provides a variety of socket assemblies incorporating

voltage-divider circuits. They are compact, rugged, lightweight

and ensure the maximum performance for a photomultiplier

tube by simple wiring.

Figure 22: Tapered Bleeder Circuit

PHOTOCATHODE

-HV

1R

1R 1R 1R 2R 3R 2.5R

C1 C2 C3

ANODE

SIGNAL

OUTPUT

TACCC0035EB

GROUND POLARITY AND HA COATING

The general technique used for voltage-divider circuits is to

ground the anode with a high negative voltage applied to the

cathode, as shown in Figure 20. This scheme facilitates the connection

of such circuits as ammeters or current-to-voltage conversion

operational amplifiers to the photomultiplier tube. However,

when a grounded anode configuration is used, bringing a

grounded metallic holder or magnetic shield case near the bulb

of the tube can cause electrons to strike the inner bulb wall, resulting

in the generation of noise. Also, for head-on type photomultiplier

tubes, if the faceplate or bulb near the photocathode is

grounded, the slight conductivity of the glass material causes a

current to flow between the photocathode (which has a high

negative potential) and ground. This may cause significant deterioration

of the photocathode. For this reason, when designing

RL

the housing for a photomultiplier tube and when using an electrostatic

or magnetic shield case, extreme care is required.

In addition, when using foam rubber or similar material to

mount the tube in its housing, it is essential that material having

sufficiently good insulation properties be used. This problem can

be solved by applying a black conductive layer around the bulb

and connecting to the cathode potential (called HA Coating), as

shown in Figure 23.

As mentioned above, the HA coating can be effectively used

to eliminate the effects of external potential on the side of the

bulb. However, if a grounded object is located on the photocathode

faceplate, there are no effective countermeasures. Glass

scintillation, if it occurrs in the faceplate, has a larger influence on

the noise. It also causes deterioration of the photocathode sensitivity

and, once deteriorated, the sensitivity will never recover to

the original level. To solve these problems, it is recommended

that the photomultiplier tube be operated in the cathode ground

scheme, as shown in Figure 24, with the anode at a positive high

voltage. For example, in scintillation counting, since the

grounded scintillator is directly coupled to the photomultiplier

tube, it is recommended that the cathode be grounded, with a

high positive voltage applied to the anode. Using this scheme, a

coupling capacitor Cc is used to separate the high positive voltage

applied to the anode from the signal, making it impossible to

obtain a DC signal output.

Figure 23: HA Coating

Figure 24: Cathode Ground Scheme

PHOTOCATHODE

GLASS BULB

CONDUCTIVE PAINT

(SAME POTENTIAL

AS CATHODE)

INSULATING

PROTECTIVE COVER

CONNECTED TO

CATHODE PIN

R1 R2 R3 R4 R5 R6 R7

ANODE

+HV

Cc

SIGNAL

OUTPUT

TPMOC0015EA

TACCC0036EB

13


SINGLE PHOTON COUNTING

Photon counting is one effective way to use a photomultiplier

tube for measuring very low light levels. It is widely used in astronomical

photometry and chemiluminescence or bioluminescence

measurement. In the usual application, a number of photons

enter the photomultiplier tube and create an output pulse

train like (a) in Figure 25. The actual output obtained by the measurement

circuit is a DC current with a fluctuation as shown at

(b).

Figure 25: Overlapping Output Pulses

(a)

(b)

14

TPMOC0073EA

When the light intensity becomes so low that the incident

photons are separated as shown in Figure 26. This condition is

called a single photon (or photoelectron) event. The number of

output pulses is in direct proportion to the amount of incident light

and this pulse counting method has advantages in S/N ratio and

stability over the DC method averaging all the pulses. This pulse

counting technique is known as the photon counting method.

Figure 26: Discrete Output Pulses (Single Photon Event)

TPMOC0074EA

Since the photomultiplier tube output contains a variety of

noise pulses in addition to the signal pulses representing photoelectrons

as shown in Figure 27, simply counting the pulses without

some form of noise elimination will not result in an accurate

measurement. The most effective approach to noise elimination

is to investigate the height of the output pulses.

Figure 27: Output Pulse and Discrimination Level

PULSE HEIGHT

TIME

TIME

TIME

DARK CURRENT

PULSE

COSMIC RAY PULSE

ULD

SIGNAL PULSE

LLD

TIME

TPMOC0075EB

A typical pulse height distribution (PHD) for the output of photomultiplier

tubes is shown in Figure 28. In this PHD, the lower

level discrimination (LLD) is set at the valley trough and the upper

level discrimination (ULD) at the foot where the output pulses

are very few. Most pulses smaller than the LLD are noise and

pulses larger than the ULD result from cosmic rays, etc. Therefore,

by counting pulses between the LLD and ULD, accurate

light measurements becomes possible. In the PHD, Hm is the

mean height of the pulses. It is recommended that the LLD be set

at 1/3 of Hm and the ULD at triple Hm. In most cases, however,

the ULD setting can be omitted.

Considering the above, a clear definition of the peak and valley

in the PHD is a very significant characteristic for photomultiplier

tubes for use in photon counting.

Figure 28: Typical Pulse Height Distribution

COUNTS

GAMMA RAY

RADIATION

SOURCE

SCINTILLATOR

SIGNAL PULSE + NOISE PULSE

REFLECTIVE

COATING

NOISE PULSE

LLD Hm ULD

PULSE HEIGHT

SCINTILLATION COUNTING

Scintillation counting is one of the most sensitive and effective

methods for detecting radiation. It uses a photomultiplier

tube coupled to a transparent crystal called scintillator which produces

light by incidence of radiation.

Figure 29: Diagram of Scintillation Detector

PHOTOCATHODE

PHOTOELECTRONS

DYNODES

OPTICAL COUPLING

(USING SILICONE OIL etc.)

PMT

ANODE

TPMOC0076EA

TPMHC0052EB

In radiation measurements, there are two parameters that

should be measured. One is the energy of individual particles

and the other is the amount of particles. Radiation measurements

should determine these two parameters.

When radiation enters the scintillator, it produce light flashes

in response to each particle. The amount of flash is proportional

to the energy of the incident racliation. The photomultiplier tube

detects individual light flashes and provides the output pulses

which contain information on both the energy and amount of

pulses, as shown in Figure 30. By analyzing these output pulses

using a multichannel analyzer (MCA), a pulse height distribution

(PHD) or energy spectrum is obtained, and the amount of incident

particles at various energy levels can be measured accurately.

Figure 31 shows typical PHDs or energy spectra when

gamma rays ( 55 Fe, 137 Cs, 60 Co) are detected by the combination

of an NaI(Tl) scintillator and a photomultiplier tube. For the PHD,

it is very important to have distinct peaks at each energy level.

This is evaluated as pulse height resolution (energy resolution)

and is the most significant characteristic in radiation particle

measurements. Figure 32 shows the definition of energy resolution

taken with a 137 Cs source.

Figure 30: Incident Particles and PMT Output

SCINTILLATOR

CURRENT

TPMOC0039EA

Figure 31: Typical Pulse Height Distributions (Energy Spectra)

a) 55 Fe+NaI (Tl)

COUNTS

b) 137 Cs+NaI (Tl)

COUNTS

PMT

1000

500

10000

( 2" dia. × 2" t )

0 500

CHANNEL NUMBER

1000

5000

( 2" dia. × 2" t )

TIME

0 500

1000

CHANNEL NUMBER

THE HEIGHT OF OUTPUT

PULSE IS PROPORTIONAL

TO THE ENERGY OF

INCIDENT PARTICLE.

TIME

c) 60 Co+NaI (Tl)

Figure 32: Definition of Energy Resolution

QUANTUM EFFICIENCY (%)

RELATIVE EMISSION DISTRIBUTION

OF VARIOUS SCINTILLATOR (%)

COUNTS

10000

NUMBER OF PULSES

10 2

10 1

10 0

10 -1

5000

0 500

1000

BaF2

NaI (Tl)

( 2" dia. × 2" t )

CHANNEL NUMBER

b

PULSE HEIGHT

a

Pulse Height Resolution (FWHM)= – ×100%

b

BIALKALI

WAVELENGTH (nm)

TPMOB0087EA

CsI (Tl)

200 300 400 500 600 700 800

TPMOB0088EA

Figure 33: Spectral Response of PMT and Spectral Emission

of Scintillators

Pulse height resolution is mainly determined by the quantum

efficiency of the photomultiplier tube in response to the scintillator

emission. It is necessary to choose a tube whose spectral

response matches with the scintillator emission. In the case of

thallium-activated sodium iodide, or NaI(Tl), which is the most

popular scintillator, head-on type photomultiplier tube with a

bialkali photocathode is widely used.

15

a

BGO

H

H

2

TPMOB0073EA


Connections to External Circuits

LOAD RESISTANCE

Since the output of a photomultiplier tube is a current signal

and the type of external circuit to which photomultiplier tubes are

usually connected has voltage inputs, a load resistance is used

to perform a current-voltage transformation. This section describes

considerations to be made when selecting this load resistance.

Since for low output current levels, the photomultiplier

tube may be assumed to act as virtually an ideal constant-current

source, the load resistance can be made arbitrarily large, thus

converting a low-level current output to a high-level voltage output.

In practice, however, using very large values of load resistance

creates the problems of deterioration of frequency response

and output linearity described below.

Figure 34: PMT Output Circuit

If, in the circuit of Figure 34, we let the load resistance be RL

and the total of the capacitance of the photomultiplier tube anode

to all other electrodes, including such stray capacitance as wiring

capacitances be Cs, the cutoff frequency fc is expressed by the

following relationship.

From this relationship, it can be seen that, even if the photomultiplier

tube and amplifier have very fast response, response

will be limited to the cutoff frequency fc of the output circuit. If the

load resistance is made large, at high current levels the voltage

drop across RL becomes large, affecting a potential difference

between the last dynode stage and the anode. As a result, a loss

of output linearity (output current linearity with respect to incident

light level) may occur.

Figure 35: Amplifier Internal Resistance

(1)

PMT P

DYn

In Figure 35, let us consider the effect of the internal resistance

of the amplifier. If the load resistance is RL and the input

impedance of the amplifier is Rin, the combined parallel output

resistance of the photomultiplier tube, Ro, is given by the following

equation.

This value of Ro, which is less than the value of RL, is then the

effective load resistance of the photomultiplier tube. If, for example,

RL=Rin, the effective load resistance is 1/2 that of RL

16

PHOTOCATHODE

fc =

RL CS

Ro =

-HV

1

2πCs ⋅ RL

Rin

RL ⋅ Rin

RL + Rin

SIGNAL

OUTPUT

ANODE

(2)

PMT P

DYn

Ip

RL

RL CS

CS

CC

SIGNAL

OUTPUT

Rin

TACCC0037EB

SIGNAL

OUTPUT

TACCC0017EA

alone. From this we see that the upper limit of the load resistance

is actually the input resistance of the amplifier and that

making the load resistance much greater than this value does

not have significant effect. While the above description assumed

the load and input impedances to be purely resistive, in practice,

stray capacitances, input capacitance and stray inductances influence

phase relationships. Therefore, as frequency is increased,

these circuit elements must be considered as compound

impedances rather than pure resistances.

From the above, three guides can be derived for use in selection

of the load resistance:

1) In cases in which frequency response is important, the

load resistance should be made as small as possible.

2) In cases in which output linearity is important, the load

resistance should be chosen such that the output voltage

is below several volts.

3) The load resistance should be less than the approximate

input impedance of the external amplifier.

HIGH-SPEED OUTPUT CIRCUIT

For the detection of high-speed and pulsed light signals, a

coaxial cable is used to make the connection between the photomultiplier

tube and the electronic circuit, as shown in Figure 36.

Since commonly used cables have characteristic impedances of

50Ω or 75Ω, this cable must be terminated in a pure resistance

equivalent to the characteristic impedance to provide impedance

matching and ensure distortion-free transmission for the signal

waveform. If a matched transmission line is used, the impedance

of the cable as seen by the photomultiplier tube output will

be the characteristic impedance of the cable, regardless of the

cable length, and no distortion will occur in signal waveforms.

If proper matching at the signal receiving end is not achieved,

the impedance seen at the photomultiplier tube output will be a

function of both frequency and cable length, resulting in significant

waveform distortion. Such mismatched conditions can be

caused by the connectors used as well, so that the connector to

be used should be chosen with regard given to the frequency

range to be used, to provide a match to the coaxial cable.

When a mismatch at the signal receiving end occurs, all of

the pulse energy from the photomultiplier tube is not dissipated

at the receiving end, but is partially reflected back to the photomultiplier

tube via the cable. While this reflected energy will be

fully dissipated at the photomultiplier tube when an impedance

match has been achieved at the tube, if this is not the case, because

the photomultiplier tube itself acts as an open circuit, the

energy will be reflected and, thus returned to the signal-receiving

end. Since part of the pulse makes a round trip in the coaxial

cable and is again input to the receiving end, this reflected signal

is delayed with respect to the main pulse and results in waveform

distortion (so called ringing phenomenon). To prevent this

phenomenon, in addition to providing impedance matching at

the receiving end, it is necessary to provide a resistance

matched to the cable impedance at the photomultiplier tube end

as well. If this is done, it is possible to virtually eliminate the ringing

caused by an impedance mismatch, although the output

pulse height of the photomultiplier tube is reduced to one-half of

the normal level by use of this impedance matching resistor.

Figure 36: Typical Connections Used to Prevent Ringing

PMT

HOUSING ANTI-REFLECTION

RESISTOR

TACCC0039EA

Next, let us consider waveform observation of high-speed

pulses using an oscilloscope (Figure 37). This type of operation

requires a low load resistance. Since, however, there is a limit to

the oscilloscope sensitivity, an amplifier may be required.

For cables to which a matching resistor has been connected,

there is an advantage that the cable length does not affect the

characteristics of the cable. However, since the matching resistance

is very low compared to the usual load resistance, the output

voltage becomes too small. While this situation can be remedied

with an amplifier of high gain, the inherent noise of such an

amplifier can itself be detrimental to measurement performance.

In such cases, the photomultiplier tube can be brought as close

as possible to the amplifier and a load resistance as large as possible

should be used (consistent with preservation of frequency

response), to achieve the desired input voltage.

Figure 37: With Ringing Suppression Measures

PMT

P

DYn

RL

50Ω OR 75Ω COAXIAL CABLE

50Ω OR 75Ω CONNECTOR

WIRING SHOULD BE

AS SHORT AS POSSIBLE.

OSCILLOSCOPE

RL

(50 OR 75Ω

MATCHING RESISTOR)

TACCC0026EA

It is relatively simple to implement a high-speed amplifier using

a wide-band video amplifier or operational amplifier. However,

in exchange of design convenience, use of these ICs tends

to create problems related to performance (such as noise). It is

therefore necessary to know their performance limit and take corrective

action.

As the pulse repetition frequency increases, baseline shift

creates one reason for concern. This occurs because the DC signal

component has been eliminated from the signal circuit by

coupling with a capacitor which does not pass DC components. If

this occurs, the reference zero level observed at the last dynode

stage is not the actual zero level. Instead, the apparent zero level

is the time-average of the positive and negative fluctuations of

the signal waveform. This will vary as a function of the pulse density,

and is known as baseline shift. Since the height of the pulses

above this baseline level is influenced by the repetition frequency,

this phenomenon is of concern when observing waveforms

or discriminating pulse levels.

OPERATIONAL AMPLIFIERS

In cases in which a high-sensitivity ammeter is not available,

the use of an operational amplifier will enable measurements to

be made using an inexpensive voltmeter. This technique relies

on converting the output current of the photomultiplier tube to a

voltage signal. The basic circuit is as shown in Figure 38, for

which the output voltage, Vo, is given by the following relationship.

Vo = -Rf ⋅ Ip

This relationship is derived for the following reason. If the

input impedance of the operational amplifier is extremely large,

and the output current of the photomultiplier tube is allowed to

flow into the input terminal of the amplifier, most of the current

will flow through Rf and subsequently to the operational amplifier

output circuit. Therefore, the output voltage Vo is given by the

expression -Rf × Ip. When using such an operational amplifier, it

is of course, not possible to increase the output voltage without

limit, the actual maximum output being approximately equal to

the operational amplifier power supply voltage. At the other end

of the scale, for extremely small currents, limitations are placed

by the operational amplifier offset current (Ios), the quality of Rf,

and other factors such as the insulation materials used.

Figure 38: Current-Voltage Transformation Using

an Operational Amplifier

PMT

+

OP-AMP

Vo= -lp ⋅ Rf

If the operational amplifier has an offset current (Ios), the

above-described output voltage becomes Vo = -Rf (Ip + Ios), the

offset current component being superimposed on the output.

Furthermore, the magnitude of temperature drift may create a

problem. In general, a metallic film resistor which has a low temperature

coefficient is used for the resistance Rf, and for high

resistance values, a vacuum-sealed type is used. Carbon resistors,

with their highly temperature-dependent resistance characteristics,

are not suitable for this application. When measuring

such extremely low level currents as 100 pA and below, in addition

to the considerations described above, the materials used in

the circuit implementation require care as well. For example, materials

such as bakelite are not suitable, and more suitable materials

are Teflon, polystyrol or steatite. In addition, low-noise

cables should be used, since general-purpose coaxial cables

exhibit noise due to mechanical changes. In the measurement of

these low level currents, use of an FET input operational amplifier

is recommended.

Figure 39: Frequency Compensation of an Operational

Amplifier

TACCC0041EA

TACCC0042EA

In Figure 39, if a capacitance Cf (including any stray capacitance)

exists in parallel to the resistance Rf, the circuit exhibits a

time constant of (Rf × Cf), so that response speed is limited to

this time constant. This is a particular problem if Rf is large. Stray

capacitance can be reduced by passing Rf through a hole in a

shield plate. When using coaxial signal input cables, since the

cable capacitance Cc and Rf are in the feedback loop, oscillations

may occur and noise may be amplified. While the method

of avoiding this is to connect Cf in parallel to Rf, to reduce gain at

high frequencies, as described above, this creates a time constant

of Rf × Cf which limits the response speed.

17

Rf

p lp lp

Cf

-

+

Cs

Rf

-

OP-AMP.

V

SHIELD CIRCUIT

SIGNAL

OUTPUT


Selection Guide by Application

Spectroscopy

18

Applications Required Major Characteristics Applicable PMT

Equipment Utilizing Absorption

UV/Visible/IR Spectrophotometer

When light passes through a substance, the light energy

causes changes in the electron energy of the substance,

resulting in partial energy loss. This is called absorption

and gives analytical data. In order to determine the amount

of the sample substance, it is irradiated while the light

wavelength is scanned continuously. The spectral intensities

of the light before and after passing through the sample

are detected by a photomultiplier tube to measure the

amount of absorption.

Atomic Absorption Spectrophotometer

This is widely used in the analysis of minute quantities of

metallic elements. For each element to be analyzed, a special

elementary hollow cathode lamp is used to irradiate a

sample which is burned for atomization. A photomultiplier

tube detects the light passing through the sample to measure

the amount of absorption, which is compared with a

reference sample measured in advance.

Equipment Utilizing Emission

Photoelectric Emission Spectrophotometer

When an external energy is applied to a sample, light emission

occurs from the sample. By dispersing this emission

using a monochromator, into characteristic spectral lines of

elements and measuring their presence and intensity simultaneously

with photomultiplier tubes, this equipment

enables rapid qualitative and quantitative analysis of the

elements contained in the sample.

Fluorescence Spectrophotometer

The fluorescence spectrophotometer is used in biological

science, particularly in molecular biology. When an excitation

light is applied, some substances emit light with a

wavelength longer than that of the excitation light. This light

is known as fluorescence. The intensity and spectral characteristics

of the fluorescence are measured by a photomultiplier

tube, and the substance is analyzed qualitatively

and quantitatively.

Raman Spectrophotometer

When monochromatic light strikes a substance and scatters,

Raman scattering also occurs at a different wavelength

from the excitation light. Since the wavelength difference

is a characteristic of the molecules, the spectral measurement

of Raman scattering provides qualitative and

quantitative data of the molecules. Raman scattering is extremely

weak and a sophisticated optical system is used for

measurement, thus the photomultiplier tube is operated in

the photon counting mode.

Others

• Liquid or Gas Chromatography

• X-Ray Diffractometer, X-Ray Fluorescence Analyzer

• Electron Microscope

1) Wide spectral response

2) High stability

3) Low dark current

4) High quantum efficiency

5) Low hysteresis

6) Good polarization characteristic

1) High sensitivity

2) Low dark current

3) High stability

1) High quantum efficiency

2) Low dark current

3) Single photon discrimination ability

R6356, R6357

R928, R955, R1477, R3896

R1463

R374, R376

R928

R955

R6350, R6351, R6352

R6354, R6355, R6356, R7311

1P28, R106, R166, R212, R4220

R759, R760

R6353, R6358

R3788, R4220, R1527

R928

R2949

R1463P, R649

R943-02

R3788

R647-01, R1166, R6095, R580

R647

Mass Spectroscopy and Solid Surface Analysis

Solid Surface Analysis

The composition and structure of a solid surface can be

studied by irradiating a narrow beam of electrons, ions, light

or X-rays onto the surface and measuring the secondary

electrons, ions or X-rays that are produced. With the

progress of the semiconductor industry, this kind of technology

becomes essential in evaluating semiconductors, including

defects, surface analysis, adhesion, and density

profile. Electrons, ions, and X-rays are measured with electron

multipliers and MCPs.

Environment Monitoring

Dust Counter

A dust counter measures the density of dust or particles

floating in the atmosphere or inside rooms. It makes use of

light scattering or absorption of beta-rays by particles.

Turbidimeter

When floating particles are contained in a liquid, light incident

on the liquid is absorbed, scattered or refracted by

these particles. It looks cloudy or hazy to the human eye. A

turbidimeter is a device that numerically measures the turbidity

by using light transmission and scattering.

Others

• NOx meters, SOx meters

Biotechnology

Applications Required Major Characteristics Applicable PMT

Cell Sorter

The cell sorter is an instrument that selects and collects

only specific cells using a fluorescent substance for labeling.

The labeled cells are irradiated by laser beam, and a

photomultiplier tube is used to detect the resulting fluorescence

or scattering.

Fluorometer

While the ultimate purpose of the cell sorter is to separate

cells, the fluorometer is used to analyze cells and chemical

substances by measuring the fluorescence or scattered

light from a cell or chromosome with regard to such factors

as fluorescence spectrum, fluorescence quantum efficiency,

fluorescence anisotropy (polarization) and fluorescence

lifetime.

1) High environmental resistance

2) High stability

3) High current amplification

4) Low dark current

1) Low dark noise

2) Low spike noise

3) High quantum efficiency

1) Low dark current

2) Low spike noise

3) High quantum efficiency

1) High quantum efficiency at wavelength

of interest

2) Low dark current

3) Good temperature characteristic

4) High stability

1) High quantum efficiency

2) High stability

3) Low dark current

4) High current amplification

5) Good polarization characteristic

R474, R515, R596, R595

R2362, R5150

R6350

R105, R3788

R647-01

R6350

R105

R1924

NOx= R928

R374, R2228, R5959

R5070

SOx= R6095, R3788, R1527

R2693

R6353, R6357, R6358

R928, R1477, R3788, R3896

R2368

19


20

Applications

Medical Applications

Gamma Camera

The gamma camera takes an image of a radioisotope-labeled

reagent injected into the body of a patient to locate

abnormalities. This equipment starts from a scintillation

scanner and has been gradually improved. Its detection

section uses a large diameter NaI(Tl) scintillator and lightguide

coupled to an array of photomultiplier tubes.

Positron CT

The positron CT provides tomographic images by detecting

coincident gamma-ray emission accompanying annihilation

of a positron emitted from a tracer radioisotope ( 11 C,

15 O, 13 N, 18 F, etc.) injected into the body. Photomultiplier

tubes coupled to scintillators are used to detect these

gamma-rays.

Liquid Scintillation Counter

Liquid scintillation counters are used for tracer analysis in

age measurement and biochemical research. A sample

containing radioisotopes is dissolved in a solution containing

an organic scintillator, and it is placed in the center between

a pair of photomultiplier tubes. These tubes simultaneously

detect the emission of the organic scintillator.

In-Vitro Assay

In-vitro assay is used for

physical checkups, diagnosis,

and evaluation of drug potency

by making use of specificity

of the antigen/antibody

reaction characteristics of tiny

amounts of insulin, hormones,

drugs and viruses

which are contained in blood

or urine. Photomultiplier

tubes are used to measure

optically the amount of antigens

labeled by radioisotopes,

enzymes, fluorescent

chemiluminescent or bioluminescent

substances.

• Radioimmunoassay

(RIA)

Uses radioactive

isotopes for labeling.

• Enzymeimmunoassay

(EIA)

Uses enzymes for

labeling and measures

resulting chemiluminescence

or bioluminescence.

• Fluoroimmunoassay/

chemiluminescent

imunoassay

Uses fluorescent or

chemiluminescent

substances for

labeling.

Others

• X-ray phototimer

In X-ray examination, this equipment automatically controls

the exposure to an X-ray film. The X-ray transmitting

through a subject is converted into visible light by a phosphor

screen. A photomultiplier tube is used to detect this

light and provide an electrical signal. When the accumulated

electrical signal reaches a preset level, X-ray irradiation

is shut off, making it possible to obtain an optimum film

density.

Required Major Characteristics

1) High energy resolution

2) Good uniformity

3) High stability

4) Uniform current amplification

1) High energy resolution

2) High stability

3) High speed response

4) Compact size

1) High quantum efficiency

2) Low noise of thermionic emission

3) Less glass scintillation at the faceplate

and bulb

4) Fast response time

5) High pulse linearity

1) High quantum efficiency

2) High stability

3) Low dark current

1) High sensitivity

2) Low dark current

3) High stability

R6231-01

R6234-01

R6235-01

R6236-01

R1307-01

R6233-01

R6237-01

Applicable PMT

R1635, R5900U-00-C8

R1450

R5800

R1548

R6427

R331, R331-05

R647

R1166, R5611-01

R1924

R6350, R6352, R6353

R6356, R6357

R4220, R928, R3788

R647, R1463

R1925

R6095, R374

R6350

931A, R105

Radiation Measurement

Applications Required Major Characteristics Applicable PMT

Area Monitor

The area monitor is designed to continuously measure a

change in environmental radiation levels. It uses a

photomutiplier tube coupled to a scintillator, to monitor lowlevel

alpha ray or gamma ray.

Survey Meter

The survey meter measures low-level gamma ray or beta

ray using a photomultipliter tube coupled to a scintillator.

Resource Inquiry

Oil Well Logging

Oil well logging is used to locate an oil deposit and determine

its size. A probe containing a radiation source and a

scintillator/photomultiplier tube is lowered into an oil well as

it is being drilled. The scattered radiation or natural radiation

from the geological formation are detected and analyzed,

to determine the type and density of the rock that

surrounds the well.

Industrial Measurement

Thickness Meter

Using a radiation source and a scintillator/photomultiplier

tube, a product thickness can be measured on factory production

lines for paper, plastic, steel sheet, etc. Beta-rays

are used as a radiation source in measurement of products

with a small density, such as rubber, plastic, and paper.

Gamma-rays are used for products with a large density, like

steel sheet. (X-ray fluorescence spectrometers are used in

measurement of film thickness for plating, evaporation,

etc.)

Semiconductor Inspection System

This is widely used for semiconductor wafer inspection and

pattern recognition such as semiconductor mask alignment.

For wafer inspection, the wafer is scanned by a laser

beam, and scattered light caused by dirt or defects is detected

by a photomultiplier tube.

Photography and Printing

Color Scanner

To prepare color pictures and photographs for printing, the

color scanner is used to separate the original colors into the

three primary colors (RGB) and black. It uses photomultiplier

tubes combined with RGB filters, and provides color

separation as image data.

1) Long term stability

2) Low background noise

3) Good plateau characteristic

1) Long term stability

2) Low background noise

3) Good plateau characteristic

1) Stable operation at high temperature up

to 175

2) Rugged structure

3) Good plateau characteristic

1) Wide dynamic range

2) High energy resolution

1) High quantum efficiency at wavelength

of interest

2) Good uniformity

3) Low spike noise

1) High quantum efficiency at wavelengthes

of RGB

2) Low dark noise

3) Fast fall time

4) High stability

5) Good repeatability with change in input

signal

R1306, R6231

R329-02, R4607-01

R1307, R6233

R877, R877-01

R1635

R647

R1924

R6095

R4177-01, R1281

R3991

R1288, R1288-01

R647-01, R5800

R6095

R580

R1306, R6231

R329-02

R928, R1477, R3896

R647, R1463

R3788

R3810, R3811

R647, R1463

R1924, R1925

21


22

Applications

High Energy Physics

Collision Experiment

Hodoscope

Photomuliplier tuubes are coupled to the ends of long, thin

plastic scintillators arranged orthogonally in two layers.

They measure the time and position at which charged particles

pass through the scintillators.

TOF Counter

TOF counters consisting of plastic scintillators and photomultiplier

tubes are arranged along paths of secondary particles

which are generated by collision reactions. Velosities

of these particles are measured by time differences between

collision time and detection times.

Cherenkov Counter

A Cherenkov counter identifies secondary particles which

generated by collision reactions. Cherenkov lights emitted

from a charged particle which has energy more than a constant

level and goes through a radiator like gas or silicon

aerogel are detected. A velocity of a charged particle is

mesured by an angle of its cherenkov lights.

Calorimeter

The calorimeter measures the accurate direction and energy

of secondary particles emitted from the collision reaction

of electrons and positrons.

Neutrino and Proton Decay Experiment, Cosmic Ray Detection

Neutrino Experiment

A research of solar neutrinos or particle astrophysics is

performed in a neutrino experiment.

Its observation system consists of a large size radiator surrounded

by a number of large-diameter photomultiplier

tubes. Cherenkov light which occurs from interactions of

neutrinos or other particles and a radiator are detected.

The directions and energies of the particles are measured.

Neutrino and Proton Decay Experiment

In the neutrino and proton decay experiment which is performed

at KAMIOKA in Japan, 11200 of 20" dimeter photomultiplier

tubes are set covering all directions of a huge

tank storing around 50000t of pure water. Cherenkov light

emitted by solar neutrino or proton decay are measured.

Air Shower Counter

When cosmic rays collide with the earth's atmosphere, secondary

particles are created by the interaction of the cosmic

rays and atmospheric atoms. These secondary particles

generate more secondary particles, which continue to increase

in a geometrical progression. This is called an air

shower. The gamma rays and Cherenkov light emitted in

this air shower is detected by photomultiplier tubes lined up

in a lattice array on the ground.

Required Major Characteristics Applicable PMT

1) Fast time response

2) Compact size

3) Immunity to magnetic fields

1) High Quantum efficiency

2) Good single photon defectivity

3) High current amplification

4) Fast time response

5) Immunity to magnetic fields

1) High pulse linearity

2) High energy resolution

3) High stability

4) Immunity to magnetic fields

1) Large photocathode area

2) Fast Time Response

3) High stability

4) Low dark count

R1635 (H3164-10)

R647-01 (H3165-10)

R1450 (H6524)

R1166 (H6520)

R5800

R1635 (H3164-10)

R1450 (H6524)

R4998 (H6533), R5505 (H6152-01)

R1828-01 (H1949-51), R2083 (H2431-50)

R5924 (H6614-01)

R2256-02 (H6521)

R5113-02 (H6522)

R2059 (H3177-51)

R1584 (H6528)

R5924 (R6614-01)

R580 (H3178-51)

R329-02 (H6410)

R5924 (H6614-01)

R6091 (H6559)

R5912

R3600-02 (R3600-06)

R1166 (H6520)

R580 (H3178-51)

R329-02 (H6410)

R1828-01 (H1949-51)

R6091 (H6559)

R1250 (H6527)

The assembly type is given in parentheses.

Aerospace

Measurement of X-rays from Outer Space

X-rays from outer space include information on the enigmas

of space. As an example, the X-ray observation satellite

"Asuka", developed by a group of the ISAS (Institute of

Space and Astronomical Science - Japan), uses a gas-scintillation

proportional counter coupled to a position-sensitive

photomultiplier tube, to measure X-rays from supernovas,

etc.

Measurement of Scattered Light from Fixed Stars

and Interstellar Dust

Ultraviolet rays from space contain a lot of information about

the surface temperature of the stars and interstellar substances.

However, these ultraviolet rays are absorbed by

the earth's atmosphere, so it is impossible to measure them

from the earth surface. Photomultiplier tubes are mounted

in rockets or artificial satellites, to measure ultraviolet rays

with wavelengthes shorter than 300nm.

Lasers

Laser Radar

The laser radar is used in such applications as atmospheric

measurement which uses a highly-accurate range finding or

aerosol scattering.

Fluorescence Lifetime Measurement

The laser is used as an excitation light for fluorescence lifetime

measurement. The molecular structure of a substance

can be studied by measuring temporal intensity changes in

the emitted fluorescence.

Plasma

Applications Required Major Characteristics

Plasma Measurement

Photomultiplier tubes are being used in the electron density

and electron temperature measurement system for plasma

in the Tokamak-type nuclear fusion test reactor in Japan.

Photomultiplier tubes and MCPs are also used in similar

measurements for plasma using Thompson scattering and

the Doppler effect, in observation of spatial distribution of

plasma, and in measurements of impurities in plasma for

the purpose of impurity and ion control.

1) High energy resolution

2) Rugged structure

1) Rugged structure

2) Sensitivity in VUV to UV range (solar

blind response: see page 4 for Cs-Te,

Cs-I photocathodes)

1) Fast response time

2) Low dark count

3) High current amplification

1) High detectivity at low light level

2) High quantum efficiency

3) Gate operation

R2486

R1080, R976

R6834, R6835, R6836

R3809U Series, R5916U Series

R3234-01, R3237-01

R3809U Series, R5916U Series

R636-10

R943-02

Applicable PMT

23


Side On Type Photomultiplier Tubes

A

Type No.

Remarks

13mm (1/2") Dia. Types

R6350

R6351

R6352

R6353

R6355

R6356

R6357

R6358

For UV to visible range, general

purpose

Synthetic silica window type of

R6350

High sensitivity variant of R6350

Low dark current bialkali photocathode

For UV to near IR range, general

purpose

High sensitivity variant of R6355

High sensitivity variant of R6356,

Meshless type

Low dark current multialkali photocathode

Spectral Response

B

Curve

Code

Range

(nm)

13mm (1/2") Dia. Subminiature Types

R3810

R3811

For UV to visible range, general

purpose

Multialkali photocathode variant of

R3810

350U

(S-5)

350S

452U

456U

550U

560U


561U

350U

(S-5)

550U

185 to 650

160 to 650

185 to 750

185 to 680

185 to 850

185 to 900

185 to 900

185 to 830

185 to 830

185 to 830

Peak

Wavelength

(nm)

340

340

420

400

530

600

450

530

340

530

C

Photocathode

Material

Sb-Cs

Sb-Cs

BA

LBA

MA

MA

MA

MA

Sb-Cs

MA

D E F

Dynode

Out- Structure

Window line

Material No.

U

Q

U

U

U

U

U

U

U

U

q

w

q

q

q

q

e

q

r

r

No. of

Stages

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

Socket

Socket

Assembly

E678-11U * /z

E678-11U * /z

E678-11U * /z

E678-11U * /z

E678-11U * /z

E678-11U * /z

E678-11U * /z

E678-11U * /z

E678-11U * /z

E678-11U * /z

G

Maximum RatingsH Cathode Sensitivity

Anode to

J

Average

Luminous

Cathode

Voltage

Anode

Current

Min. Typ.

(Vdc)

1250

1250

1250

1250

1250

1250

1250

1250

1250

1250

(mA)

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

(μ A/lm)

20

20

80

30

80

140

350

140

20

50

(μ A/lm)

Cathode Sensitivity

DY5

6

DY6

7 DY7

8

DY4

5

9

DY8

DY3 4

10 DY9

3

DY2

2

DY1

1

K

11

P

24 25

Blue

(5-58)

Typ.

(μ A/lm-b)

Red /

White

Ratio

Typ.

K

Radiant

Typ.

(mA/W)

L Anode Characteristics M

Anode to

Cathode

Supply

Voltage

(Vdc)

Anode Sensitivity

Luminous Radiant

Min. Typ. Typ.

(A/lm) (A/lm) (A/W)

Gain

Typ.

Anode Dark

Current

(After 30 min.)

Typ. Max.

(nA) (nA)

Time Response

Rise Electron

Time

Transit

Time

Typ. Typ.

(ns) (ns)

q R6350, R6352, R6353 etc. w R6351

e R6357 r R3810, R3811

PHOTO-

CATHODE

13 MIN.

UV WINDOW

13.5 ± 0.8

4 MIN.

3 ± 2

24.0 ± 1.5

40 ± 2

DY5

6

DY6

7 DY7

8

DY4

5

9

DY8

DY3 4

10 DY9

3

DY2

2

DY1

1

K

11

P

DIRECTION OF LIGHT

50 MAX.

PHOTO-

CATHODE

13 MIN.

13.5 ± 0.8

4 MIN.

7 ± 2

24.0 ± 1.5

42 ± 2

QUARTZ WINDOW

DY5

6

DY6

7 DY7

8

DY4

5

9

DY8

DY3 4

10 DY9

3

DY2

2

DY1

1

K

11

P

DIRECTION OF LIGHT

52 MAX.

40

40

120

70

150

250

500

200

40

150

5.0

5.0

10.0

6.5

6.0

7.0

13.0

7.5

5.0

6.0





0.15

0.3

0.4

0.15


0.15

PHOTOCATHODE

4 MIN.

Notes

3 MIN.

11 PIN BASE

13.5 ± 0.8

9.7 ± 0.5

DIRECTION OF LIGHT

TPMSA0034EB TPMSA0034EA TPMSA0034EB TPMSA0013EA

48

48

90

65

45

60

105

70

48

45

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

50

50

100

100

100

400

1000

300

50

50

PHOTO-

CATHODE

13 MIN.

300

300

700

400

600

2500

2000

700

300

200

UV WINDOW

3.6 × 10 5

3.6 × 10 5

5.2 × 10 5

3.7 × 10 5

1.8 × 10 5

6.0 × 10 5

4.2 × 10 5

2.5 × 10 5

3.6 × 10 5

5.9 × 10 4

13.5 ± 0.8

4 MIN.

3 ± 2

24.0 ± 1.5

40 ± 2

DY5

6

DY6

7 DY7

8

DY4

5

9

DY8

DY3 4

10 DY9

3

DY2

2

DY1

1

K

11

P

DIRECTION OF LIGHT

50 MAX.

7.5 × 10 6

7.5 × 10 6

5.8 × 10 6

5.7 × 10 6

4.0 × 10 6

1.0 × 10 7

4.0 × 10 6

3.5 × 10 6

7.5 × 10 6

1.3 × 10 6

0.5

0.5

1

0.1

1

1

2

0.1

0.5

1

5

5

10

2

10

10

10

1

5

10

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

15

15

15

15

15

15

15

15

15

15

Photon counting type: R6350P

: 10cps Typ.

Photon counting type: R6353P

: 10cps Typ.

Photon counting type: R6358P

: 20cps Typ.

Photon counting type: R3810P

: 5cps Typ.

17 MAX.

25 MAX.

(at 25°C)

A

Type No.

R6350

R6351

R6352

R6353

R6355

R6356

R6357

R6358

R3810

R3811

(Unit: mm)


Side On Type Photomultiplier Tubes

A

Type No.

Remarks

Spectral Response

B

Curve

Code

Range

(nm)

Peak

Wavelength

(nm)

400

400

Photo-

cathode

Material

D

Window

Material

28mm (1-1/8") Dia. Types with UV to Visible Sensitivity

931A

931B

1P21

R105

1P28

R212

R1527

R4220

R106

R3788

R2693

For visible range, general purpose

Bialkali photocathode, high stability

Low dark current variant of R105

High gain and low dark current variant

of 931A

For UV to visible range, general

purpose

High gain and low dark current variant

of 1P28

Low dark current bialkali photocathode

High sensitivity variant of R1527

Variant of R212 with synthetic silica

window

High sensitivity variant of R212

Transmission-mode bialkali photocathode

350K

(S-4)

300 to 650

300 to 650

TPMSA0001EA

Outline

No.

q 931A, 931B, 1P28, R3788, etc. w R2693

PHOTOCATHODE

24 MIN.

453K

350K

(S-4)

350U

(S-5)

456U

430U

300 to 650

185 to 650

185 to 680

456U 185 to 710

350S

(S-19) 160 to 650

452U 185 to 750

28.5 ± 1.5

8 MIN.

32.2 ± 0.5

11 PIN BASE

JEDEC No. B11-88

185 to 650

49.0 ± 2.5

80 MAX.

94 MAX.

400

340

400

410

340

420

375

C

Sb-Cs

BA

Sb-Cs

Sb-Cs

Sb-Cs

Sb-Cs

LBA

LBA

Sb-Cs

BA

LBA

DY5

5

DY6

6 DY7

7

DY4

4

8

DY8

DY3 3

9 DY9

2

DY2

1

10

P

11

DY1

K

DIRECTION OF LIGHT

K

K

K

K

U

U

U

U

Q

U

U

E F

q

q

q

q

q

q

q

q

q

q

w

Dynode

Structure

No. of

Stages

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

Socket

Socket

Assembly

G

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

PHOTOCATHODE

16 MIN.

Maximum RatingsH Cathode Sensitivity

Anode to

J

Average

Luminous

Cathode

Voltage

Anode

Current

Min. Typ.

(Vdc)

1250

1250

1250

1250

1250

1250

1250

1250

1250

1250

1250

29.0 ± 1.7

18 MIN.

34 MAX.

11 PIN BASE

JEDEC No. B11-88

49.0 ± 2.5

76 MAX.

90 MAX.

(mA)

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

HA COATING

(μ A/lm)

25

30

25

25

25

25

40

80

25

100

30

(μ A/lm)

40

60

40

40

40

40

60

100

50

120

50

Unit: mm

DY5

5

DY6

6 DY7

7

DY4

4

8

DY8

DY3 3

9 DY9

2

DY2

1

10

P

11

DY1

K

DIRECTION OF LIGHT

TPMSA0007EA

Cathode Sensitivity

Anode Sensitivity

Anode Characteristics

26 27

Blue

(5-58)

Typ.

(μ A/lm-b)

5.0

7.1

5.0

5.0

5.0

5.0

6.4

8.0

6.5

10.0

7.0

Red /

White

Ratio

Typ.










0.01


K

Radiant

Typ.

(mA/W)

48

60

48

48

48

48

60

70

48

90

62

L

Anode to

Cathode

Supply

Voltage

(Vdc)

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

Luminous

Min.

(A/lm)

50

50

50

50

20

50

200

1000

100

500

100

Typ.

(A/lm)

400

600

250

400

400

300

400

1200

400

1200

300

Radiant

Typ.

(A/W)

4.8 × 10 5

6.6 × 10 5

3.0 × 10 5

4.8 × 10 5

4.8 × 10 5

3.6 × 10 5

4.0 × 10 5

8.4 × 10 5

3.6 × 10 5

9.0 × 10 5

3.7 × 10 5

Gain

Typ.

1.0 × 10 7

1.0 × 10 7

6.25 × 10 6

1.0 × 10 7

1.0 × 10 7

7.5 × 10 6

6.7 × 10 6

1.2 × 10 7

8.0 × 10 6

1.0 × 10 7

6.0 × 10 6

Typ.

(nA)

M

Anode Dark

Current

(After 30 min.)

5

5

1

1

5

1

0.1

0.2

1

5

0.5

Max.

(nA)

50

50

5

10

50

10

2

2

10

50

5

Time Response

Rise

Time

Typ.

(ns)

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.2

1.2

Electron

Transit

Time

Typ.

(ns)

22

22

22

22

22

22

22

22

22

22

18

Notes

UV glass window type: R1516

High gain type: R105UH

High gain type: R212UH

Photon counting type: R1527P

: 10cps Typ.

Photon counting type: R4220P

: 10cps Typ.

High gain type: R106UH

Synthetic silica window type

: R4332

Photon counting type: R2693P

: 15cps Typ.

(at 25°C)

A

Type No.

931A

931B

1P21

R105

1P28

R212

R1527

R4220

R106

R3788

R2693


Side On Type Photomultiplier Tubes

R2368

Transmission-mode multialkali

photocathode

R928

For UV to near IR range, high sensitivity

R2949

For UV to near IR range, low dark

count

R1477-06 High sensitivity variant of R928

R3896

R4632

R636-10

R2658

R5108

A

Type No.

Remarks

High sensitivity variant of R1477-06

High sensitivity in 400 to 700nm

range, low dark count

GaAs photocathode, high quantum

efficiency

InGaAs photocathode, for UV to

1010nm range

For near IR range

B

Curve

Code

Spectral Response

500U

562U

552U

554U

555U

556U

650U

850U

700K

(S-1)

Range

(nm)

28mm (1-1/8") Dia. Types with UV to Near IR Sensitivity

q R2368

PHOTOCATHODE

16 MIN.

29.0 ± 1.7

18 MIN.

11 PIN BASE

JEDEC No. B11-88

185 to 850

185 to 900

185 to 900

185 to 900

185 to 900

185 to 850

185 to 930

185 to 1010

400 to 1200

C D E F

G Maximum RatingsH Cathode Sensitivity

Peak

WavelengthPhotocathode

Material

Window

Material

Dynode

Out- Structure

line

No.

No. of

Socket

Socket

Anode to

Cathode

Voltage

J

Average

Anode

Current

Luminous

Min. Typ.

(nm)

Stages Assembly

(Vdc) (mA) (μ A/lm) (μ A/lm)

420

400

400

450

450

U

U

U

U

U

U

U

U

K

q

e

y

e

e

e

r

t

w

w R5108

e R928, R1477-06, R4632, etc. r R636-10

T9

BULB

PHOTOCATHODE

24 MIN.

32.2 ± 0.5

28.5 ± 1.5

32.2 ± 0.5

11 PIN BASE

JEDEC No. B11-88

49.0 ± 2.5

76 MAX.

90 MAX.

HA COATING

8 MIN.

49.0 ± 2.5

80 MAX.

94 MAX.

MA

MA

MA

MA

MA

430 MA

300

to 800 GaAs(Cs)

400

InGaAs

(Cs)

800 Ag-O-Cs

DY5

5

DY6

6 DY7

7

DY4

4

8

DY8

DY3 3

9 DY9

2

DY2

1

10

P

11

DY1

K

DIRECTION OF LIGHT

DY5

5

DY6

6 DY7

7

DY4

4

8

DY8

DY3 3

9 DY9

2

DY2

1

10

P

11

DY1

K

DIRECTION OF LIGHT

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

E678-11A ■ /xc

PHOTOCATHODE

PHOTOCATHODE

16 MIN.

12 MIN.

1250

1250

1250

1250

1250

1250

1500

1500

1500

29.0 ± 1.7

34 MAX.

11 PIN BASE

JEDEC No. B11-88

8 MIN.

3 MIN.

49.0 ± 2.5

80 MAX.

94 MAX.

0.1

0.1

0.1

0.1

0.1

0.1

0.001

0.001

0.1

HA COATING

TPMSA0008EA TPMSA0027EC

16 MIN.

29.0 ± 1.7

18 MIN.

34 MAX.

11 PIN BASE

JEDEC No. B11-88

49.0 ± 2.5

76 MAX.

90 MAX.

HA COATING

80

140

140

350

475

140

400

50

10

150

250

200

375

525

200

550

100

25

DY5

5

DY6

6 DY7

7

DY4

4

8

DY8

DY3 3

9 DY9

2

DY2

1

10

P

11

DY1

K

DIRECTION OF LIGHT

Cathode Sensitivity

28 29

Blue

(5-58)

Typ.

(μ A/lm-b)


8.0

7.5

10.0

15.0

7.5

9.0

4.5


Red /

White

Ratio

Typ.

0.15

0.3

0.3

0.35

0.4

0.15

0.53

0.4


K

Radiant

Typ.

(mA/W)

64

74

68

80

90

80

62

1

(at 1μ m)

2.2

L

Anode to

Cathode

Supply

Voltage

(Vdc)

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

1250 !0

1250 !0

1250 !0

50

400

1000

1000

3000

300

100

5

3.5

Anode Sensitivity

Luminous

Min.

(A/lm)

Typ.

(A/lm)

200

2500

2000

2000

5000

700

250

16

7.5

Radiant

Typ.

(A/W)

8.3 × 10 4

7.4 × 10 5

6.8 × 10 5

4.2 × 10 5

8.6 × 10 5

2.8 × 10 5

2.8 × 10 4

1.6 × 10 2

6.6 × 10 3

Anode Characteristics

Gain

Typ.

1.3 × 10 6

1.0 × 10 7

1.0 × 10 7

5.3 × 10 6

9.5 × 10 6

3.5 × 10 6

4.5 × 10 5

1.6 × 10 5

3.0 × 10 5

Typ.

(nA)

5

3

300 h

3

10

50 h

0.1 f

1

350 e

Max.

(nA)

50

50

500 h

50

50

100 h

2 f

10

M

Anode Dark

Current

(After 30 min.)

t R2658 y R2949

1000 e

Time Response

Rise

Time

Typ.

(ns)

1.2

2.2

2.2

2.2

2.2

2.2

2.0

2.0

1.2

Electron

Transit

Time

Typ.

(ns)

18

22

22

22

22

22

20

20

18

Notes

R2368

Synthetic silica window type: R955 R928

Synthetic silica window type

: R758-10

Photon counting type: R2658P

TPMSA0026EA TPMSA0023EA TPMSA0012EC

TPMSA0016EA

D

DY6

DY4

DY5

5

6 DY7

7

DY3

DY4

4

8

DY8

DY3 3

9 DY9

DY2

2

DY2

1

10

P

11

D

DY1

K

DIRECTION OF LIGHT

T9

BULB

PHOTOCATHODE

12 MIN.

28.5 ± 1.5

32.2 ± 0.5

11 PIN BASE

JEDEC No. B11-88

3 MIN.

49.0 ± 2.5

80 MAX.

94 MAX.

(at 25°C)

R2949

R1477-06

R3896

R4632

R636-10

R2658

R5108

A

Type No.

(Unit: mm)

DY6

DY5 6 DY7

5 7

DY6

DY5 6 DY7

5 7

DY4

4

8

DY8

DY4

4

8

DY8

DY3 3

9 DY9

DY3 3

9 DY9

2

DY2

1

DY1

10

P

11

K

2

DY2

1

DY1

10

P

11

K

DIRECTION OF LIGHT

PHOTOCATHODE

6 MIN.

29.0 ± 1.7

8 MIN.

32.2 ± 0.5

11 PIN BASE

JEDEC No. B11-88

7 MIN.

49 ± 1

80 MAX.

94 MAX.

INSULATION COVER

DIRECTION OF LIGHT


Side-On and Dormer Window Type Photomultiplier Tubes

* R7511

R6354

* R7311

R1259

R166UH

R1220

A

Type No.

Remarks

B

Curve

Code

150M

250S

250M

150M

250S

250M

Spectral Response

Range

13mm (1/2") Dia. Compact Types with Solar Blind Response

For VUV range, MgF2 window

For UV range

For UV range, MgF2 window

(nm)

115 to 195

160 to 320

115 to 320

115 to 195

160 to 320

115 to 320

C D E F

G Maximum RatingsH Cathode Sensitivity

Peak

WavelengthPhotoOut-

Window

cathodeline

Material No.

Material

Dynode

Structure

No. of

Socket

Socket

Anode to

Cathode

Voltage

J

Average

Anode

Current

Luminous

Min. Typ.

(nm)

Stages Assembly

(Vdc) (mA) (μ A/lm) (μ A/lm)

130

200

200

120

200

200

Cs-I

Cs-Te

Cs-Te

28m1-1/8") Dia. Types with Solar Blind Response

For VUV range, MgF2 window

For UV range

For UV range, MgF2 window

38mm (1-1/2") Dia. Dormer Window Types

q R6354

Cs-I

Cs-Te

Cs-Te

TPMSA0034EA

MF

Q

MF

MF

Q

MF

w

q

w

e

r

e

CC/9

CC/9

CC/9

CC/9

CC/9

CC/9

w R7511, R7311

E678-11U *

E678-11U * /z

E678-11U *

E678-11A ■

E678-11A ■ /xc

E678-11A ■

1250

1250

1250

1250

1250

1250

0.01

0.01

0.01

0.1

0.1

0.1













TPMSA0038EB

Cathode Sensitivity

30 31

Blue

(5-58)

Typ.

(μ A/lm-b)







Red /

White

Ratio

Typ.







K

Radiant

Typ.

(mA/W)

26 a

62 b

40 b

26 a

40 b

40 b

L

Anode to

Cathode

Supply

Voltage

(Vdc)

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0

1000 !0







Anode Sensitivity

Luminous

Min.

(A/lm)

Typ.

(A/lm)







Radiant

Typ.

(A/W)

Anode Characteristics

Gain

Typ.

5.2 × 104a 2.0 × 106 1.5 × 105b 2.5 × 106 2.8 × 105b 7.0 × 106 3.1 × 104a 1.2 × 106 4.0 × 105b 1.0 × 107 4.0 × 105b 1.0 × 107 (Unit: mm)

Typ.

(nA)

0.3

0.5

0.3

1

1

1

Max.

(nA)

3

5

3

10

10

10

M

Anode Dark

Current

(After 30 min.)

Time Response

MA CC/10 E678-12A■ 558K 300 to 800 530

2000 0.1 200 300

8.0 0.12 89 1250 !6 5 15 4.4 × 103 5.0 × 104 Multialkali photocathode, tempo-

R1923 K t

rary base

1 10 2.2 22

e R1259, R1220

PHOTO-

CATHODE

13 MIN.

13.5 ± 0.8

4 MIN.

7 ± 2

24.0 ± 1.5

42 ± 2

QUARTZ WINDOW

FACE PLATE

MgF2 WINDOW

PHOTO-

CATHODE

14 MIN.

52 MAX.

20 MAX.

28.5 ± 1.5

32.2 ± 0.5

11 PIN BASE

JEDEC No. B11-88

20 MAX.

DY5

6

DY6

7 DY7

8

DY4

5

9

DY8

DY3 4

10 DY9

3

DY2

2

DY1

1

K

11

P

8 MIN.

49.0 ± 2.5

80 MAX.

DIRECTION OF LIGHT

94 MAX.

DY5

5

DY6

6 DY7

7

DY4

4

8

DY8

DY3 3

9 DY9

2

DY2

1

10

P

11

DY1

K

DIRECTION OF LIGHT

TPMSA0020EA

r R166UH

MgF2 WINDOW

PHOTOCATHODE

11 PIN BASE

9.0 ± 0.5

PHOTOCATHODE

24 MIN.

14.0 ± 0.4

4 MIN

5 MIN

28.5 ± 1.5

32.2 ± 0.5

11 PIN BASE

JEDEC No. B11-88

16.8 ± 0.6

24.0 ± 2.5

43.0 ± 2.0

8 MIN.

53 MAX

49.0 ± 2.5

80 MAX.

94 MAX.

DY5

6

DY6

7 DY7

8

DY4

5

9

DY8

DY3 4

10 DY9

3

DY2

2

DY1

1 K

11

P

DIRECTION OF LIGHT

DY6

DY5

5

6

DY7

7

DY4

4

8

DY8

DY3 3

9 DY9

2

DY2

1

10

P

11

DY1 K

DIRECTION OF LIGHT

TPMSA0021EA

t R1923

PHOTO

CATHODE

FACEPLATE

15.2 MIN.

12.7 MIN.

PHOTO-

CATHODE

6.3 MIN.

12 PIN BASE

JEDEC No. B12-43

2.5

A Temporary Base Removed

DIRECTION OF LIGHT P

6

DY10

DY8

8 9

DY6

10

38.5 ± 1.1

DY9 5

11 DY4

17.2 MIN.

DY7 4

12 DY2

16.5 MIN.

DY5 3

13

K

2

DY3

DY1

1

36.5 ± 0.25

18.8 ± 0.25

66 ± 1

45.7 MIN.

76.4 MAX.

B Bottom View

P DY10

DY9

5

6 7 DY8

8

DY7 4

9 DY6

DY5 3

10 DY4

2

DY3 1

11

12 DY2

DY1 K

TPMSA0022EA

Rise

Time

Typ.

(ns)

1.4

1.4

1.4

2.2

2.2

2.2

Electron

Transit

Time

Typ.

(ns)

15

15

15

22

22

22

Notes

Sharp-cut UV type

: R2032

Direct replacement for Burle 4526.

(at 25°C)

R7511 *

R6354

R7311 *

R1259

R166UH

R1220

A

Type No.

R1923


Head On Type Photomultiplier Tubes

R1893

R1635

R2496

R1894

R1081

R1080

R759

R647

R4124

R2557

A

Type No.

Remarks

10mm (3/8") Dia. Types

13mm (1/2") Dia. Types

For VUV range, MgF2 window

For UV range

For visible range and scintillation

counting

For visible range, fast time response

Low noise bialkali photocathode

R4177-01 High temperature, ruggedized type

Multialkali photocathode for UV to

R1463 near IR range

B

Curve

Code

200S

400K

400S

100M

200M

200S

400K

402K

401K

Spectral Response

Range

(nm)

160 to 320

300 to 650

160 to 650

300 to 850

115 to 200

115 to 320

160 to 320

300 to 650

500U 185 to 850

C D E F

G Maximum RatingsH Cathode Sensitivity

Peak

Wavelength

Dynode

PhotoOut- Structure

Window

cathodeline

Material No.

Material

No. of

Socket

Socket

Anode to

Cathode

Voltage

J

Average

Anode

Current

Luminous

Min. Typ.

(nm)

Stages Assembly

(Vdc) (mA) (μ A/lm) (μ A/lm)

240

420

420

420

Cs-Te

BA

BA

MA

Q

K

Q

K

q

q

q

q

L/8

L/8

L/8

L/8

E678-11N * /v

E678-11N * /v

E678-11N * /b

E678-11N * /v

140 Cs-I

E678-12A

Cs-Te

Cs-Te

BA

BA

LBA

HBA

MA

*

E678-12A *

E678-13A * /m

E678-13A * /m

E678-13A * /.

E678-13A * /,

E678-13A * /

E678-13A * MF r L/10

MF r L/10

240

Q e L/10

420

K e L/10

K t L/10

K e L/10

375

K w L/10

420

U e L/10

/m

q R1893, R1635, R2496, R1894 w R4177-01 e R647, R2557, R1463, R759

A

Subminiature size, for UV range

For visible range and scintillation

counting

For UV to visible range, fast time

response

For UV to near IR range, general

purpose

For UV range, MgF2 window

R1635

9.7 ± 0.4

R1893, R2496

10.5 ± 0.5

FACEPLATE

PHOTOCATHODE

11 PIN BASE

Others

9.7 ± 0.4

500K

(S-20)

A

10 MAX. 45.0 ± 1.5

8 MIN.

DY7

5

DY5

4

P

6

DY8

7

DY6

8

DY3 3

9 DY4

2

10

DY1 1 11 DY2

IC K

SHORT PIN

FACEPLATE

PHOTOCATHODE

14.5 ± 0.7

13 PIN BASE

10 MIN.

61 ± 2

13 MAX.

DY10

P

DY8

6 7

8

DY9

DY6

5

9

DY7 4

10 DY4

3

DY5

11

DY2

2

DY3

1

12

13

IC

DY1

K

SHORT PIN

1500

1500

1500

1500

2250

1250

1250

1250

1250

1500

1800

1250

0.01

0.03

0.03

0.03

0.01

0.01

0.01

0.1

0.03

0.03

0.02

0.03

FACEPLATE

PHOTOCATHODE


60

60

80




40

40

25

20

80

13 PIN BASE

TPMHA0100EA TPMHA0006EA TPMHA0014EA

71 ± 2

13 MAX.


95

95

120




100

95

40

40

120

13.5 ± 0.5

10 MIN.

DY10

P

6

DY9

5

7

DY8

8

DY6

9

DY7 4

10 DY4

DY5 3

11 DY2

2

DY3

1

12

IC

13

DY1 K

SHORT PIN

Cathode Sensitivity

32 33

Blue

(5-58)

Typ.

(μ A/lm-b)


9.5

9.5





9.5

9.5

5.5

6.0


Red /

White

Ratio

Typ.




0.2








0.2

K

Radiant

Typ.

(mA/W)

24 b

76

76

51

9.8 a

28 b

28 b

76

76

50

50

51

L

Anode to

Cathode

Supply

Voltage

(Vdc)

1250 1

1250 1

1250 5

1250 1

2000 !3

1000 !3

1000 !3

1000 !3

1000 !9

1250 !6

1500 !3

1000 !3

Anode Sensitivity

Luminous

Min.

(A/lm)

1.2 × 103 b

(A/W)

30

30

10

2 × 10 2

(A/W)

4 × 10 3

(A/W)

4 × 10 3

(A/W)

30

30

50

10

30

Typ.

(A/lm)


100

100

50




100

100

200

20

120

Radiant

Typ.

(A/W)

r R1080, R1081 t R4124

Temporary Base Removed

DY10

P

6

DY9

5

7

DY8

8

DY6

9

DY7 4

10 DY4

DY5 3

11

DY2

2

DY3

1

DY1

13

K

FACEPLATE

PHOTOCATHODE

SEMI-FLEXIBLE

LEADS

12 PIN BASE

JEDEC

No. B12-43

13.5 ± 0.5

6 MIN.

37.3 ± 0.5

Bottom View

13 MAX.

71 ± 2

33 MIN.

P DY10

DY9

5

6 7 DY8

8

DY7 4

9 DY6

DY5 3

10 DY4

2

DY3

1

11

12 DY2

DY1

K

a

b

b

Anode Characteristics

Gain

Typ.

3.6 × 103b 1.5 × 105 8.0 × 104 1.1 × 106 8.0 × 104 1.1 × 106 2.1 × 104 4.2 × 105 1.0 × 105 9.8 × 102a 5.0 × 105 1.4 × 104b 5.0 × 105 1.4 × 104b 1.0 × 106 7.6 × 104 1.1 × 106 8.0 × 104 5.0 × 106 2.5 × 105 5.0 × 105 2.5 × 104 1.0 × 106 5.1 × 104 FACEPLATE

Typ.

(nA)

PHOTOCATHODE

M

Anode Dark

Current

(After 30 min.)

0.5

1

2

2

0.03

0.3

0.3

1

1

10 h

0.5

4

13.5 ± 0.5

13 PIN BASE

Max.

(nA)

2.5

50

50

20

0.05

1

1

15

15

30 h

10

20

10 MIN.

Time Response

Rise

Time

Typ.

(ns)

TPMHA0207EA TPMHA0102EA

50 ± 2

13 MAX.

DY9

6

DY7

5

P

7

DY10

8

DY8

9

DY5 4

10 DY6

3

DY3

2

DY1 1

11

DY4

12

13 DY2

IC K

SHORT PIN

0.8

0.8

0.7

0.8

1.8

2.5

2.5

2.5

1.1

2.2

2.0

2.5

Electron

Transit

Time

Typ.

(ns)

7.8

9.0

9.0

7.8

18

24

24

24

12

22

20

24

Notes

Photon counting type: R1635P

UV glass window type: R3878

Photon counting type: R647P

UV glass window type: R960

Synthetic silica window type: R760

UV glass window type: R4141

Photon counting type: R1463P

(at 25°C)

R1893

R1635

R2496

R1894

R1081

R1080

R759

R647

R4124

R2557

R4177-01

R1463

A

Type No.

(Unit: mm)


Head-On Type Photomultiplier Tubes

R972

R821

R1166

R2801

R1450

R3478

R5611-01 For visible range, low profile

R3991

R1281

R1617

R1464

R1878

A

Type No.

R632-01

Remarks

19mm (3/4") Dia. Types

For VUV range, MgF2 window

For UV range, synthetic silica window

For visible range and scintillation

counting

Low noise bialkali photocathode

Small TTS, for scintillation counting

For visible range, fast time response

High temperature, ruggedized

type, low profile

Multialkali photocathode for visible

to near IR range

Multialkali photocathode for UV to

near IR range

For photon counting in visible to

near IR range

Spectral Response

B

Curve

Code

100M

200S

400K

402K

400K

401K

500K

(S-20)

500U

Range

(nm)

115 to 200

160 to 320

300 to 650

300 to 850

185 to 850

300 to 850

400 to 1200

C D E F

G Maximum RatingsH Cathode Sensitivity

Peak

Wavelength

Dynode

PhotoOut- Structure

Window

cathodeline

Material No.

Material

No. of

Socket

Socket

Anode to

Cathode

Voltage

J

Average

Anode

Current

Luminous

Min. Typ.

(nm)

Stages Assembly

(Vdc) (mA) (μ A/lm) (μ A/lm)

140

240

420

375

420

375

420

800

Cs-I

Cs-Te

BA

LBA

BA

BA

BA

HBA

HBA

MA

MA

MA

Ag-O-Cs

MF

Q

K

K

K

K

K

K

K

K

U

K

K

w

q

q

q

q

y

t

t

e

q

q

r

q

L/10

L/10

L/10

L/10

L/10

L/8

CC/10

CC/10

L/10

L/10

L/10

L/10

L/10

E678-12A *

E678-12L * /⁄3⁄4⁄5

E678-12L * /⁄3⁄4⁄5

E678-12L * /⁄3⁄4⁄5

E678-12L * /⁄7

E678-12L * /⁄1⁄2

E678-12A *

E678-12A *

E678-12A *

E678-12L * /⁄3⁄4⁄5

E678-12L * /⁄3⁄4⁄5

E678-12L * /⁄6

E678-12L * /⁄3⁄4⁄5

q R821, R1450, etc. w R972 e R1281

A

18.6mm (3/4")

12 i

High temperature photocathode

For near IR range,

QE=0.05% Typ. at 1.06 μm

R821

19 ± 1

FACEPLATE

PHOTOCATHODE

Others

18.6 ± 0.7

R1450 has a plano-concave faceplate.

A

12 PIN BASE

500K

(S-20)

700K

(S-1)

88 ± 2

13 MAX.

DY10 DY8

P

5

6 7 DY6

8

DY9 4

9 DY4

DY7 3

10 DY2

2

DY5

1

11

K

12

DY3 DY1

SHORT PIN

15 MIN.

FACEPLATE

PHOTOCATHODE

19 ± 1

MAX.

SEMI-FLEXIBLE

LEADS 13

A

B

A Temporary Base Removed

DY8

DY10

7

6

P

5

DY6

8 DY4

9

DY9 4

10 DY2

11

DY7 3

2

DY5

DY3

1

K

12

DY1

12 PIN BASE

JEDEC

No. B12-43

37.3 ± 0.5

B Bottom View

13 MIN.

88 ± 2

45 MIN.

P DY10

DY9

5

6 7 DY8

8

DY7 4

9 DY6

DY5 3

10 DY4

2

DY3

1

11

DY2

12

DY1

K

TPMHA0012EB TPMHA0208EA TPMHA0209EA

2250

1250

1250

1500

1800

1800

1250

1800

1800

1250

1250

1500

1500

0.01

0.01

0.1

0.1

0.1

0.1

0.1

0.02

0.02

0.1

0.1

0.1

0.01

FACEPLATE

PHOTOCATHODE

SEMI-FLEXIBLE

LEADS

12 PIN BASE

JEDEC

No. B12-43

B

A Temporary Base Removed

DY8

DY10

7

6

P

5

DY6

8 DY4

9

DY9 4

10 DY2

DY7 3

11 K

2

DY5

DY3

1

12

DY1

A



70

30

70

70

60

20

20

80

80

80

10

18.6 ± 0.7

15 MIN.

37.3 ± 0.5

13 MAX.

B Bottom View

73 ± 2

45 MIN.



105

45

115

115

90

40

40

120

120

120

20

P DY10

DY9

5

6 7 DY8

8

DY7 4

9 DY6

DY5 3

10 DY4

2

DY3

1

11

DY2

12

DY1

K

Cathode Sensitivity

34 35

Blue

(5-58)

Typ.

(μ A/lm-b)



10.5

6.0

11.0

11.0

10.5

6.0

6.0





Red /

White

Ratio

Typ.










0.2

0.2

0.2

0.14 d

K

Radiant

Typ.

(mA/W)

9.8 a

28 b

85

55

88

88

85

51

50

51

51

51

1.9

L

Anode to

Cathode

Supply

Voltage

(Vdc)

2000 !5

1000 !5

1000 !5

1250 !5

1500 !7

1700 6

1000 !8

1500 !8

1500 !5

1000 !5

1000 !5

1000 !6

1250 !5

10

50

100

100

10

5

20

30

30

30

5

Anode Sensitivity

Luminous

Min.

(A/lm)

2 × 102 a

(A/W)

4 × 103 b

(A/W)

TPMHA0027EA

Typ.

(A/lm)



100

300

200

200

50

15

50

120

120

150

10

Radiant

Typ.

(A/W)

Anode Characteristics

Gain

Typ.

9.8 × 102a 1.0 × 105 1.0 × 104b 3.6 × 105 8.1 × 104 9.5 × 105 3.7 × 105 6.7 × 106 1.5 × 105 1.7 × 106 1.5 × 105 1.7 × 106 4.7 × 104 5.5 × 105 1.9 × 104 3.75 × 105 6.5 × 104 1.3 × 106 5.1 × 104 1.0 × 106 5.1 × 104 1.0 × 106 6.1 × 104 1.2 × 106 9.5 × 102 5.0 × 105 Typ.

(nA)

0.03

0.3

1

15 h

3

10

3

0.1

0.5

4

4

100 h

800 e

Max.

(nA)

0.05

0.5

5

45 h

50

300

20

10

10

20

20

M

Anode Dark

Current

(After 30 min.)

250 h

2000 e

Time Response

Rise

Time

Typ.

(ns)

1.6

2.5

2.5

2.2

1.8

1.3

1.5

1.0

1.9

2.5

2.5

1.7

2.2

TPMHA0036EA

Electron

Transit

Time

Typ.

(ns)

r R1878 t R5611-01, R3991 y R3478

FACEPLATE

MASKED

PHOTOCATHODE

HA COATING

P

DY9 4

19 ± 1

12 PIN BASE

13 MAX.

4 MIN.

80 ± 2

DY10 DY8

5

6 7

8

DY6

9 DY4

DY7 3

10 DY2

2

DY5 1

11

K

12

DY3 DY1

SHORT PIN

A Temporary Base Removed

P

DY9

5

6

DY10

9

DY7 4

10

DY8

DY5 3

11 DY6

2

DY3

1

DY1

14

K

12

13

DY4

DY2

FACEPLATE

PHOTOCATHODE

SEMIFLEXIBLE

LEADS

A

12 PIN BASE

JEDEC

No. B12-43

B

37.3 ± 0.5

18.6 ± 0.7

15 MIN.

13 MAX.

A

45 MIN.

R5611-01 R3991

A 30 ± 1.5 28 ± 1.5

B Bottom View

P DY10

DY9

5

6 7 DY8

8

DY7 4

9 DY6

DY5 3

10 DY4

2

DY3

1

11

DY2

12

DY1 K

17

27

27

25

19

14

17

13

21

27

27

24

25

Notes

Cs-Te photocathode type: R976

Synthetic silica window type: R762

UV glass window type: R750

Synthetic silica window type:

R2076

Button stem type: R5611

Button stem type: R1281-02

Synthetic silica window type:

R2027

Bialkali photocathode type: R2295

FACEPLATE

PHOTOCATHODE

(at 25°C)

R972

R821

R1166

R2801

R1450

R3478

R5611-01

R3991

R1281

R1617

R1464

R1878

R632-01

A

Type No.

(Unit: mm)

18.6 ± 0.7

15 MIN.

12 PIN BASE

65 ± 2

13 MAX.

IC DY8

P

5

6 7 DY6

8

IC 4

9 DY4

DY7 3

10 DY2

2

DY5

1

11

K

12

DY3 DY1

SHORT PIN

TPMHA0119EA


Head-On Type Photomultiplier Tubes

25mm (1") Dia. Types

R5800

R4998

R2078

R1924

R3550

R1288

R1925

R5070

A

Type No.

For scintillation counting

For visible range, fast time response

400K

25mm (1") Dia. Low Profile Types

For UV range

For visible range

Remarks

Low noise bialkali photocathode

High temperature, ruggedized type

For visible to near IR range

Prismatic window, multialkali photocathode

with high sensitivity

B

Curve

Code

201S

400K

Spectral Response

Range

(nm)

300 to 650 420

BA

BA

L/10

L/10

160 to 320 240 Cs-Te Q w CC/10

402K 300 to 650

401K

500K

(S-20) 300 to 850

502K 300 to 900

Peak

Wavelength

(nm)

420

375

420

BA

LBA

HBA

MA

MA

C

Photocathode

Material

K

K

K

K

K

K

K

D

Window

Material

E F

Dynode

Out- Structure

line

No.

q

r

e

e

w

e

e

No. of

Stages

CC/10

CC/10

CC/10

CC/10

CC/10

Socket

Socket

Assembly

E678-14C * /⁄8⁄9¤0

E678-12A *

E678-12A *

E678-14C * /⁄8⁄9¤0

E678-14C * /⁄8⁄9¤0

E678-12A *

G

E678-14C * /⁄8⁄9¤0

E678-14C * /⁄8⁄9¤0

Maximum RatingsH Cathode Sensitivity

Anode to

J

Average

Luminous

Cathode

Voltage

Anode

Current

Min. Typ.

(Vdc)

1800

2500

2000

1250

1250

1800

1250

1250

(mA)

0.1

0.1

0.015

0.1

0.1

0.02

0.1

0.1

70

60


60

30

20

80

130

95

70


90

50

40

120

230

Cathode Sensitivity

36 37

Blue

(5-58)

Typ.

(μ A/lm-b)

11.0

9.0


10.5

6.5

6.0



Red /

White

Ratio

Typ.







0.2

0.25

K

Radiant

Typ.

(mA/W)

88

72

29 b

85

50

51

60

65

1250 !8

2250 @2

1500 !8

1000 !8

1000 !8

1500 !8

1000 !8

1000 !8

L

Anode to

Cathode

Supply

Voltage

(Vdc)


100

20

20

8

10

20

Anode Sensitivity

Luminous

Min.

(A/lm)

Typ.

(A/lm)

190

400


100

100

15

30

100

Radiant

Typ.

(A/W)

2.3 × 10 5

4.1 × 10 5

Anode Characteristics

Gain

Typ.

2.0 × 10 6

5.7 × 10 6

1.5 × 104b 5.0 × 105 0.015

9.3 × 104 1.1 × 106 1.2 × 105 2.0 × 106 1.9 × 104 3.8 × 105 1.3 × 104 2.5 × 105 2.8 × 104 4.3 × 105 q R5800 w R2078, R1288 e R1924, R1925, R3550, R5070 r R4998

FACEPLATE

PHOTOCATHODE

25.4 ± 0.5

21 MIN.

14 PIN BASE

13 MAX.

68.0 ± 1.5

FACEPLATE

PHOTOCATHODE

SEMIFLEXIBLE

LEADS

A

12 PIN BASE

JEDEC

No. B12-43

B

(μ A/lm)

25.4 ± A

21 MIN.

37.3 ± 0.5

13 MAX.

43.0 ± 1.5

(μ A/lm)

50 MIN.

4 × 103 b

(A/W)

Typ.

(nA)

2

100

3

20 h

0.1

3

3

Max.

(nA)

15

800

0.1

20

60 h

10

20

20

M

Anode Dark

Current

(After 30 min.)

Time Response

Rise

Time

Typ.

(ns)

1.7

0.7

1.5

2.0

2.0

1.5

2.0

2.0

Electron

Transit

Time

Typ.

(ns)

22

10

14

19

19

14

19

19

Notes

Synthetic silica window type

: R5320 TTS: 160ps

Dark count: 5cps Typ.

Photon counting type: R1924P

Button stem type: R1288-01

Synthetic silica window type

: R1926

A Temporary Base Removed

P IC

DY9 7 8 IC

6 9

DY7 5

10 DY10

DY5 4

11 DY8

DY3 3

12 DY6

2

13

DY1 1 14 DY4

K DY2

SHORT PIN

A

R2078

0.8

R1288

0.5

P

DY9

8

DY7 6

5

DY5 4

DY3 3

DY1 2

17

K

DY10

10

DY8

11

12 DY6

13 DY4

14

DY2

B Bottom View

P DY10

DY9 6 7 DY8

5

8

DY7 4

9 DY6

DY5 3

10 DY4

2

11

DY3

DY2

1 12

DY1 K

A

R5070

46 ± 1.5

Others

43 ± 1.5

P

DY9 7

6

DY7 5

DY5 4

DY3 3

2

DY1 1

K

IC

8 IC

9

10 DY10

11 DY8

12 DY6

13

14 DY4

DY2

B Bottom View

P

DY10

6 DY8

7

DY9 5

8 DY6

DY7 4

9 DY4

(Acc)

3

10

DY5

DY2

2

11

DY3 1 12 G

DY1 K

A Temporary Base Removed

DY10

P

12 DY8

13

14

DY6

DY9

5

15 DY4

DY7 4

(Acc)

16

DY2

3

DY5

17

2

G

DY3 1 18

DY1

K

SHORT PIN

TPMHA0240EA TPMHA0039EA

TPMHA0040EA

TPMHA0093EA

FACEPLATE

PHOTOCATHODE

25.4 ± 0.5

21 MIN.

14 PIN BASE

13 MAX. A

FACEPLATE

PHOTO-

CATHODE

HA COATING

SMA

CONNECTOR

A

12 PIN BASE

JEDEC

No. B12-43

B

26 ± 1

20 MIN.

37.3 ± 0.5

13 MAX.

(at 25°C)

R5800

R4998

R2078

R1924

R3550

R1288

R1925

R5070

A

Type No.

(Unit: mm)

71 ± 1

52 MIN.


Head-On Type Photomultiplier Tubes

R6835

R6836

R6834

R6095

R6427

R374

R5929

R2228

A

Type No.

R316-02

Remarks

28mm (1-1/8") Dia. Types

For VUV range, MgF2 window

For UV range, MgF2 window

For UV range, low profile

For visible range and scintillation

counting

For visible range, fast time response

Multialkali photocathode for UV to

near IR range

Prismatic window, high cathode

sensitivity

Extended red multialkali photocathode

For near IR range,

QE=0.06% Typ. at 1.06 μm

Spectral Response

B

Curve

Code

100M

200M

200S

Range

(nm)

115 to 200

115 to 320

160 to 320

400K 300 to 650

500U

502K

501K

700K

(S-1)

185 to 850

300 to 900

400 to 1200

28mm (1-1/8") Dia. Low Profile Type

C D E F

G Maximum RatingsH Cathode Sensitivity

Peak

Wavelength

Dynode

PhotoOut- Structure

Window

cathodeline

Material No.

Material

No. of

Socket

Socket

Anode to

Cathode

Voltage

J

Average

Anode

Current

Luminous

Min. Typ.

(nm)

Stages Assembly

(Vdc) (mA) (μ A/lm) (μ A/lm)

140

240

420

600

800

Cs-I

Cs-Te

Cs-Te

BA

BA

MA

MA

MA

Ag-O-Cs

E678-14C *

B + L/11

E678-14C *

B + L/11

E678-14C * B + L/11

/¤4¤5

E678-14C * B + L/11

/¤4¤5

E678-14C * /¤2¤3

E678-14C * /¤4¤5

E678-14C * /¤4¤5

E678-14C * /¤4¤5

E678-14C * /¤4¤5

R3998-02 B + L/9 E678-14C 1500 0.1 60 90

*

For visible range and scintillation

300 to 650 420 BA

counting

400K

K r

MF

MF

Q

K

K

U

K

K

K

q

q

w

q

e

q

q

q

q

L/10

B/11

B/11

B/11

B/11

q R6835, R6836, etc. w R6834 e R6427

R6835

R6836

R6095 R374

etc.

Type

No.

R6835

R6836

R6095, R374

R316-02, R2228

R5929 etc.

R6094

Bulb

MgF2 and

Silica bulb

Others Others

A 28.2 ± 0.8 28.5 ± 0.5 28.5 ± 0.5

B 23 MIN. 25 MIN. 25 MIN.

C 92 ± 2 112 ± 2 92 ± 2

R2228 has a plano-concave faceplate.

FACEPLATE

PHOTO-

CATHODE

A

B

14 PIN BASE

C

13 MAX.

P DY10

DY11

6

DY9

5

7 8 DY8

9

10 DY6

DY7 4

11 DY4

DY5

3

12 DY2

2

DY3 1

13

14 K

IC DY1

SHORT PIN

TPMHA0115EC

2500

1500

1500

1500

2000

1500

1500

1500

1500

FACEPLATE

0.01

0.01

0.01

0.1

0.2

0.1

0.1

0.1

0.01

PHOTOCATHODE




60

60

80

130

100

10

28.2 ± 0.8

25 MIN.

14 PIN BASE

92 ± 2

13 MAX.

P DY10

DY11

6

7 8 DY8

9

DY9 5

10 DY6

DY7 4

11 DY4

DY5 3

12 DY2

2

DY3 1

13

14 K

IC DY1

SHORT PIN

TPMHA0226EC




95

95

150

230

200

20

Cathode Sensitivity

38 39

Blue

(5-58)

Typ.

(μ A/lm-b)




11.0

11.0





Red /

White

Ratio

Typ.






0.2

0.25

0.3

0.14 d

K

Radiant

Typ.

(mA/W)

12 a

28 b

28 b

88

88

64

65

40

1.9

L

Anode to

Cathode

Supply

Voltage

(Vdc)

2000 @6

1000 @6

1000 @6

1000 @6

1500 @1

1000 @6

1000 @6

1000 @6

1250 @6


50


20

30

20

5

Anode Sensitivity

Luminous

Min.

(A/lm)

4 ~103b (A/W)

4 ~103b (A/W)

FACEPLATE

PHOTOCATHODE

Typ.

(A/lm)




200

475

80

180

150

10

Radiant

Typ.

(A/W)

Anode Characteristics

Gain

Typ.

1.0 × 105 1.2 × 103a 5.0 × 105 1.4 × 104b 5.0 × 105 1.4 × 104b 28.5 ± 0.5

25 MIN.

14 PIN BASE

2.1 × 106 1.8 × 105 5.0 × 106 4.4 × 105 5.3 × 105 3.4 × 104 7.8 × 105 5.1 × 104 7.5 × 105 3.0 × 104 5.0 × 105 9.5 × 102 85 ± 2

13 MAX.

P DY10

NC

6

7 8 DY8

9

DY9 5

10 DY6

DY7 4

11 DY4

DY5 3

12 DY2

2

DY3 1

13

14 K

IC DY1

SHORT PIN

TPMHA0387EA

Typ.

(nA)

M

Anode Dark

Current

(After 30 min.)

0.03

0.3

0.3

2

10

3

5

8

2000 e

Max.

(nA)

0.05

1

1

10

200

15

25

30

5000 e

Time Response

Rise

Time

Typ.

(ns)

2.8

4

4

4

1.7

15

15

15

10

Electron

Transit

Time

Typ.

(ns)

10.5 – 85 1000 !1 50 120 1.1 × 10 5 1.3 × 10 6 2 10 3.4 23

r R3998-02

22

30

30

30

16

60

60

60

50

Notes

Low profile type : R6094

UV glass window type: R7056

Synthetic silica window type: R7057

Synthetic silica window type: R376

High gain type: R1104

FACEPLATE

PHOTO-

CATHODE

28.5±0.5

25 MIN.

14 PIN BASE

60 ± 2

13 MAX.

P DY9

DY8

6

DY6

5

7 8

DY7

9

10 DY5

IC 4

11 IC

3

DY4

2

DY2 1

12

DY3

13

14 DY1

G K

SHORT PIN

(at 25°C)

R6835

R6836

R6834

R6095

R6427

R374

R5929

R2228

R316-02

A

Type No.

R3998-02

(Unit: mm)

TPMHA0114EA


Head-On Type Photomultiplier Tubes

R980

R3886

R580

R1705

R1387

R2066

R1767

A

Type No.

Remarks

38mm (1-1/2") Dia. Types

For visible range and scintillation

counting

For scintillation counting, low profile

For scintillation counting, fast time

response

High temperature, ruggedized

type

Multialkali photocathode for visible

to near IR range

Extended red multialkali photocathode

For near IR range,

QE=0.08% Typ. at 1.06 μm

400K

401K

500K

(S-20)

501K

700K

(S-1)

Spectral Response

B

Curve

Code

Range

(nm)

300 to 650

300 to 850

300 to 900

400 to 1200

C D E F

G Maximum RatingsH Cathode Sensitivity

Peak

Wavelength

Dynode

PhotoOut- Structure

Window

cathodeline

Material No.

Material

No. of

Socket

Socket

Anode to

Cathode

Voltage

J

Average

Anode

Current

Luminous

Min. Typ.

(nm)

Stages Assembly

(Vdc) (mA) (μ A/lm) (μ A/lm)

420

375

420

600

800

BA

BA

BA

HBA

MA

MA

Ag-O-Cs

K

K

K

K

K

K

K

w

r

q

e

w

w

w

CC/10

CC/10

L/10

CC/10

CC/10

CC/10

CC/10

E678-12A * /¤7¤8

E678-12A * /¤7¤8

E678-12A * /¤7¤83

E678-12A * /¤7¤83

E678-12A * /¤7¤83

E678-12A * /¤7¤83

E678-12A * /¤7¤83

1250

1250

1750

1800

1250

1500

1500

0.1

0.1

0.1

0.02

0.2

0.2

0.01

70

70

70

20

80

120

10

100

90

95

40

150

200

25

Cathode Sensitivity

40 41

Blue

(5-58)

Typ.

(μ A/lm-b)

11.5

10.5

11.0

6.0




Red /

White

Ratio

Typ.

K

Radiant

Typ.

(mA/W)

L

Anode to

Cathode

Supply

Voltage

(Vdc)

10

10

10

5

10

20

1

Anode Sensitivity

Luminous

Min.

(A/lm)

Typ.

(A/lm)

35

45

100

20

50

50

5

Radiant

Typ.

(A/W)

Anode Characteristics

Gain

Typ.

3.7 × 105 3.3 × 104 5.0 × 105 4.3 × 104 1.1 × 106 9.7 × 104 5.0 × 105 2.5 × 104 3.3 × 105 2.1 × 104 2.5 × 105 1.0 × 104 Typ.

(nA)

M

Anode Dark

Current

(After 30 min.)

Max.

(nA)

Time Response

P

DY9 6

5

DY7 4

DY5 3

2

DY3

1

DY1

DY10

7 DY8

8

9 DY6

10 DY4

11

12

DY2

K

R2066 has a planoconcave

faceplate.

38mm (1 1/2")

P

DY9 6

5

DY7 4

DY5 3

2

DY3

1

DY1

DY10

7 DY8

8

9 DY6

10 DY4

11

DY2

12

K

A Temporary Base Removed

DY10

P

9 DY8

6 10

DY9

DY6

5

11

DY7 4

12 DY4

DY5

3

13 DY2

2

DY3 1 15

DY1 K

B Bottom View

P DY10

DY9 6 7 DY8

5

8

DY7 4

9 DY6

DY5 3

10 DY4

2

11

DY3

DY2

1 12

DY1 K

A Temporary Base Removed

DY10

P

9 DY8

6 10

DY9 5

11 DY6

DY7 4

12 DY4

DY5 3

13

DY2

2

DY3 1 15

DY1 K

B Bottom View

P DY10

DY9 6 7 DY8

5

8

DY7 4

9 DY6

3

10

DY5

DY4

2

11

DY3 1 12 DY2

DY1 K

TPMHA0121EA TPMHA0228EA

TPMHA0042EB TPMHA0104EA





0.2

0.3

0.14 d

90

85

88

50

64

40

2.4

1000 !6

1250 !6

1250 !6

1500 !6

1000 !6

1000 !6

1250 !6

3

3

3

0.5

7000e 2.0 × 105 4.8 × 102 q R580 w R980, R1387, R2066, etc.

e R1705 r R3886

FACEPLATE

PHOTO-

CATHODE

12 PIN BASE

JEDEC

No. B12-43

38 ± 1

34 MIN.

37.3 ± 0.5

109 ± 2

127 MAX

FACEPLATE

PHOTO-

CATHODE

12 PIN BASE

JEDEC

No. B12-43

38 ± 1

34 MIN.

37.3 ± 0.5

99 ± 2

116 MAX.

FACEPLATE

PHOTO-

CATHODE

12 PIN BASE

JEDEC

No. B12-43

A

SEMI-FLEXIBLE

LEADS 0.7 MAX.

B

38.0 ± 0.7

34 MIN.

37.3 ± 0.5

13 MAX.

87 ± 2

70 MIN.

4

8

5

5

20

10

25

30

20000 e

Rise

Time

Typ.

(ns)

2.8

2.5

2.7

2.0

2.8

2.8

2.2

Electron

Transit

Time

Typ.

(ns)

40

32

37

35

40

40

37

Notes

Synthetic silica window type: R189

UV glass window type: R1508

Synthetic silica window type: R1509

FACEPLATE

PHOTO-

CATHODE

A

12 PIN BASE

JEDEC

No. B12-43

B

38.0 ± 0.7

34 MIN.

37.3 ± 0.5

13 MAX.

(at 25°C)

A

Type No.

R980

R3886

R580

R1705

R1387

R2066

R1767

(Unit: mm)

63.5 ± 1.5

70 MIN.


Head-On Type Photomultiplier Tubes

R6231

R1306

R2154-02

R1828-01

R3234-01

R550

A

Type No.

Remarks

B

Curve

Code

500K

(S-20)

Spectral Response

Range

(nm)

51mm (2") Dia. Types with Plastic Base

q R550

For visible range and scintillation

counting, low profile type

For visible range and scintillation

counting

For visible range and scintillation

counting

For visible range, fast time response

For photon counting, fast time response

For visible to near IR range

FACEPLATE

PHOTO-

CATHODE

14 PIN BASE

JEDEC

No. B14-38

51.0 ± 0.5

46 MIN.

56.5 ± 0.5

400K

124 ± 2

DY7 DY8

DY6

6

7 8 DY9

9

DY5 5

10 DY10

DY4 4

11 P

DY3 3

12 IC

2

DY2 1

13

14 G

DY1 K

147 MAX.

300 to 650

300 to 850

C D E F

G Maximum RatingsH Cathode Sensitivity

Peak

Wavelength

Dynode

PhotoOut- Structure

Window

cathodeline Material No.

Material

No. of

Socket

Socket

Anode to

Cathode

Voltage

J

Average

Anode

Current

Luminous

Min. Typ.

(nm)

Stages Assembly

(Vdc) (mA) (μ A/lm) (μ A/lm)

420

w R2154-02

BA

BA

BA

BA

BA

MA

FACEPLATE

PHOTO-

CATHODE

14 PIN BASE

JEDEC

No. B14-38

K

K

K

K

K

K

r

e

w

t

y

q

51.0 ± 0.5

46 MIN.

56.5 ± 0.5

B + L/8

B/8

L/10

L/12

L/12

B/10

124 ± 2

DY7 DY8

DY6

6

7 8 DY9

9

DY5 5

10 DY10

DY4 4

11 P

DY3 3

12 IC

2

DY2 1

13

14 G

DY1 K

147 MAX.

E678-14A ■

E678-14A ■ /‹0

E678-14A ■ /‹1

E678-20A * /‹6

E678-20A *

E678-14A ■ /¤9‹2

e R1306

1500

1500

1750

3000

2500

1500

FACEPLATE

PHOTO-

CATHODE

14 PIN BASE

JEDEC

No. B14-38

TPMHA0210EB TPMHA0296EA TPMHA0089EB

0.1

0.1

0.1

0.2

0.1

0.3

80

80

60

60

60

100

51.0 ± 0.5

46 MIN.

56.5 ± 0.5

DY7 DY8

DY6

6

7 8 IC

9

DY5 5

10 IC

DY4 4

11 P

DY3 3

12 IC

2

DY2 1

13

14 G

DY1 K

110

110

90

90

80

150

114 ± 2

137 MAX.

Cathode Sensitivity

42 43

Blue

(5-58)

Typ.

(μ A/lm-b)

12.0

12.0

10.5

10.5

9.0


Red /

White

Ratio

Typ.






0.2

FACEPLATE

PHOTO-

CATHODE

K

Radiant

Typ.

(mA/W)

95

95

85

85

72

64

14 PIN BASE

JEDEC

NO. B14-38

1000 i

1000 w

1250 !6

2500 #2

2000 #7

1000 !4

51.0 ± 0.5

46 MIN.

56.5 ± 0.5

L

Anode to

Cathode

Supply

Voltage

(Vdc)

90 ± 3

3

3

20

200

500

20

113 MAX.

Anode Sensitivity

Luminous

Min.

(A/lm)

Typ.

(A/lm)

30

30

90

1800

2000

100

Radiant

Typ.

(A/W)

2.6 × 10 4

2.6 × 10 4

8.5 × 10 4

1.7 × 10 6

2.0 × 10 6

4.3 × 10 4

Anode Characteristics

Gain

Typ.

2.7 × 10 5

2.7 × 10 5

1.0 × 10 6

2.0 × 10 7

2.5 × 10 7

6.7 × 10 5

Typ.

(nA)

2

2

5

50

1

10

Max.

(nA)

20

20

20

400

10

30

M

Anode Dark

Current

(After 30 min.)

Time Response

Rise

Time

Typ.

(ns)

5.0

7.0

3.4

1.3

1.3

9.0

Electron

Transit

Time

Typ.

(ns)

r R6231 t R1828-01

y R3234-01

DY6 IC

DY5

6

7 8 IC

9

DY4 5

10 DY7

DY3 4

11 DY8

DY2 3

12 P

2

IC 1

13

14 G

DY1 K

TPMHA0388EA

FACEPLATE

PHOTO-

CATHODE

HA COATING

20 PIN BASE

JEDEC

No. B20-102

53.0 ± 1.5

46 MIN.

52.5 MAX.

170 ± 3

10

8

7

6

5

4

3

2

1

9

DY11 P

DY9

11

DY7

1213

DY5

14

NC

15

DY3

16

(G2) & DY1

17

18

19

20

K G

DY12

DY10

DY8

DY6

DY4

NC

NC

NC

DY2

NC

192 MAX.

TPMHA0064EC

48

60

31

28

28

70

Notes

For gamma cameras: R6231-01

Synthetic silica window type

: R2220

Multialkali photocathode type

: R3256

Synthetic silica window type

: R2059

Synthetic silica type: R3235-01

Multialkali type: R3237-01

FACEPLATE

PHOTO-

CATHODE

HA COATING

20 PIN BASE

JEDEC

No. B20-102

53.0 ± 1.5

52.5 MAX.

(at 25°C)

R6231

R1306

R2154-02

R1828-01

R3234-01

R550

A

Type No.

(Unit: mm)

8

7

6

5

4

3

2

IC

9 10 11 DY11 12

DY9

13

14

DY7

15

DY5

16

IC

DY3

DY1

1

17

18

19

20

IC P DY12 DY10

DY8

DY6

DY4

DY4

DY2

IC

NC

K

10 MIN.

146 ± 3

168 MAX.

TPMHA0004EB


Head-On Type Photomultiplier Tubes

R464

For photon counting in visible

range

R329-02

For visible range and scintillation

counting

R331-05

For visible range and liquid scintillation

counting

R2083

For visible range, fast time response

R5496

For visible range, fast time response

R4607-01 High temperature, ruggedized type

R649

A

Type No.

Remarks

B

Curve

Code

400K

Spectral Response

Range

(nm)

51mm (2") Dia. Types with Glass Base

For photon counting in visible to

near IR range

300 to 650

Peak

Wavelength

(nm)

420

375

420

BA

BA

BA

BA

BA

HBA

MA

C

Photocathode

Material

TPMHA0185EC

Window

Material

e R331-05 r R464, R649

K

K

K

K

K

K

K

D

Outline

No.

r

w

e

q

y

t

r

Dynode

Structure

q R2083 w R329-02

FACEPLATE

PHOTO-

CATHODE

HA COATING

19 PIN BASE

FACEPLATE

PHOTO-

CATHODE

HA COATING

401K

500K

(S-20)

53.0 ± 1.5

46 MIN.

SMA

CONNECTOR

300 to 850

53.0 ± 1.5

46 MIN.

50 ± 0.2

21 PIN BASE

121 ± 2

13 MAX.

126 ± 2

13 MAX.

NC NC NC

9 10 11

P 8 12

7

13

6

14

DY7 5

15

DY5 4

16

3

DY3 2

G2 & DY1 1

ACC

17

18

19

K G1

DY8

DY6

DY4

DY4

DY2

IC

SHORT PIN

10 11 12

DY12 9 1314

8

P

7

15

DY11 6

16 DY2

DY9 5

17

4

3

DY5 2

1

DY3

DY1

18

19

21

20

IC SH IC DY10

DY8

DY6

DY4

G

DY7

IC

IC

IC

K

∗CONNECT SH TO DY5

E

No. of

Stages

B/12

L/12

L/12

L/8

L/10

CC/10

B/12

F

E678-21A * /‹5‹7

E678-21A * /‹4‹8›0

E678-21A * /‹4‹8›0

E678-19C *

E678-19A *

E678-15A *

Socket

Socket

Assembly

E678-21A * /‹5‹7

G

FACEPLATE

PHOTO-

CATHODE

HA COATING

LIGHT

TIGHT SHIELD

FACEPLATE

PHOTO-

CATHODE

HA COATING

Maximum RatingsH Cathode Sensitivity

Anode to

J

Average

Luminous

Cathode

Voltage

Anode

Current

Min. Typ.

(Vdc)

1500

2700

2500

3500

3000

1800

1500

53.0 ± 1.5

46 MIN.

21 PIN BASE

52.0 ± 1.5

21 PIN BASE

(mA)

0.01

0.2

0.2

0.2

0.2

0.02

0.01

(μ A/lm)

30

60

60

60

60

20

80

(μ A/lm)

TPMHA0123ED

TPMHA0072EC TPMHA0216EA

5 × 8

13 MAX. 126 ± 2

127 ± 2

13 MAX.

50

90

90

80

80

40

120

IC

DY12

1112

9 1314

P 8

7

15

DY11 6

16 DY2

DY9 5

17

4

3

DY5 2

1

DY3

DY1

18

19

21

20

SH IC DY10 DY8

10

DY6

DY4

G

DY7

IC

IC

IC

K

∗CONNECT SH TO DY5

DY12 11 12

9 1314

P 8

7

15

DY11

6

16 DY2

5

17

DY9

4

18

3

19

DY5 2 20

1 21

DY3

DY1

IC IC IC DY10 DY8

10

DY6

DY4

G

DY7

IC

IC

IC

K

Cathode Sensitivity

44 45

Blue

(5-58)

Typ.

(μ A/lm-b)


10.5

10.5

10.0

10.0

6.0


Red /

White

Ratio

Typ.







0.2

t R4607-01

K

Radiant

Typ.

(mA/W)

50

85

85

80

80

50

51

L

Anode to

Cathode

Supply

Voltage

(Vdc)

1000 #5

1500 #4

1500 #4

3000 e

2500 @2

1500 !6

1000 #5

FACEPLATE

PHOTOCATHODE

100

30

30

50

100

5

100

Anode Sensitivity

Luminous

Min.

(A/lm)

52 ± 1

46 MIN.

15 PIN BASE

Typ.

(A/lm)

300

100

120

200

1000

80 ± 2

13 MAX.

20

800

Radiant

Typ.

(A/W)

3.0 × 10 5

9.4 × 10 4

1.1 × 10 5

2.0 × 10 5

1.0 × 10 6

2.5 × 10 4

3.4 × 10 5

Anode Characteristics

Gain

Typ.

6.0 × 10 6

1.1 × 10 6

1.3 × 10 6

2.5 × 10 6

1.3 × 10 7

5.0 × 10 5

6.7 × 10 6

IC

IC

DY10

P

6

DY9

5

DY8

DY6

DY7 4

DY4

DY5 3

DY2

DY3

2

1

IC

DY1 K

7 8 9

10

11

12

13

14

15

SHORT PIN

Typ.

(nA)

5 h

6

18 k

100

100

3

200 h

y R5496

Max.

(nA)

15 h

40

25 k

800

800

50

M

Anode Dark

Current

(After 30 min.)

350 h

Time Response

Rise

Time

Typ.

(ns)

13

2.6

2.6

0.7

1.5

2.5

13

Electron

Transit

Time

Typ.

(ns)

70

48

48

16

24

29

70

FACEPLATE

PHOTO-

CATHODE

HA

COATING

Notes

Synthetic silica window type: R585

UV glass window type: R5113-02

Synthetic silica window type: R2256-02

Synthetic silica window type: R331

Use of PMT assembly (H2431-50)

is recommended. (See P.75)

TTS: 270ps

53 ± 1

46 MIN.

19 PIN BASE

(at 25°C)

R464

R329-02

R331-05

R2083

R5496

R4607-01

R649

A

Type No.

(Unit: mm)

TPMHA0003EC TPMHA0168EC

13 MAX. 121 ± 2

8

7

6

5

4

3

2

1

9 10 11 IC IC IC

P

12

13

DY9

14

DY7

15

DY5

16

DY3

G2 & DY1

ACC

17

18

19

K G1

DY10

IC

DY8

DY6

DY4

DY2

IC

SHORT PIN


Head-On Type Photomultiplier Tubes

R375

R669

R943-02

R3310-02

R2257

A

Type No.

Remarks

B

Curve

Code

Spectral Response

500S

501K

160 to 850

300 to 900

300 to 1040

300 to 900

420

600

400

600

MA

EMA

650S 160 to 930 300 to 800 GaAs(Cs)

851K

501K

Range

(nm)

51mm (2") Dia. Types with Glass Base

q R375, R669

Multialkali photocathode for UV to

near IR range

Extended red multialkali photocathode

GaAs photocathode for UV to

930nm range

InGaAs photocathode for 300 to

1040nm range

Extended red multialkali photocathode

InGaAs

EMA

(Note) For cooling operation, another ceramic socket, type number E678-21D (option) is recommended.

R669 has a plano-concave faceplate.

FACEPLATE

PHOTO-

CATHODE

C D E F

G Maximum RatingsH Cathode Sensitivity

Peak

Wavelength

Dynode

PhotoOut- Structure

Window

cathodeline

Material No.

Material

No. of

Socket

Socket

Anode to

Cathode

Voltage

J

Average

Anode

Current

Luminous

Min. Typ.

(nm)

Stages Assembly

(Vdc) (mA) (μ A/lm) (μ A/lm)

51.0 ± 1.5

46 MIN.

15 PIN BASE

112 ± 2

13 MAX.

7

6

5

4

3

2

1

8 IC DY7

P 9 DY5

10

IC

11 DY3

DY10

12 DY1

DY8

DY6

13

K

14

15 G

DY4 DY2

DY9

SHORT PIN

Q

K

Q

K

K

q

q

e

e

w

w R2257

B/10

B/10

L/10

L/10

L/12

E678-15A * /›1

E678-15A * /›1

E678-21C * /‹3‹9

E678-21C * (Note)

(Note)

/‹3‹9

E678-21A * /¤9‹4›0

1500

1500

2200

2200

2700

FACEPLATE

PHOTO-

CATHODE

0.1

0.1

0.001

0.001

0.2

80

140

300

80

140

52 ± 1

46 MIN.

21 PIN BASE

13 MAX. 126 ± 2

150

230

600

150

230

DY12 11 12

9 1314

P 8

7

15

DY11

6

16 DY2

DY9 5

17

4

3

DY5 2

1

DY3

DY1

18

19

21

20

IC SH IC DY10 DY8

10

DY6

DY4

G

DY7

IC

IC

IC

K

∗ CONNECT SH TO DY5

Cathode Sensitivity

IC

IC

11 12

9 1314

P 8

7

15

DY10

6

16 DY1

DY8 5

17

4

3

DY4 2

1

DY2

18

19

21

20

IC IC DY9 DY7

10

DY5

DY3

IC

DY6

K

IC

IC

IC

IC

46 47

Blue

(5-58)

Typ.

(μ A/lm-b)






Red /

White

Ratio

Typ.

0.2

0.35

0.58

0.4

0.35

K

Radiant

Typ.

(mA/W)

64

50

71

9.4

(at 852.1nm)

e R943-02, R3310-02

L

Anode to

Cathode

Supply

Voltage

(Vdc)

1000 !4

1000 !4

1500 @0

1500 @0

1500 #4

20

20

150

15

15

Anode Sensitivity

Luminous

Min.

(A/lm)

FACEPLATE

PHOTO-

CATHODE

10 × 10

HA COATING

OPTICAL

SHIELD

21 PIN BASE

TPMHA0211EA TPMHA0359EA TPMHA0021EC

50

Typ.

(A/lm)

80

75

300

50

100

Radiant

Typ.

(A/W)

4.3 × 10 4

1.7 × 10 4

3.6 × 10 4

3.1 × 10 3

(at 852.1nm)

2.2 × 10 4

51 ± 1

Anode Characteristics

5.3 × 10 5

3.3 × 10 5

5.0 × 10 5

3.3 × 10 5

4.3 × 10 5

88 ± 2

14 MAX.

Gain

Typ.

(Unit: mm)

Typ.

(nA)

M

Anode Dark

Current

(After 30 min.)

5

7

20 j

30 j

30

Max.

(nA)

20

15

50 j

150 j

100

Time Response

Rise

Time

Typ.

(ns)

9.0

9.0

3.0

3.0

2.6

Electron

Transit

Time

Typ.

(ns)

70

70

23

23

48

Notes

(at 25°C)

R375

R669

R943-02

R3310-02

R2257

A

Type No.


Head-On Type Photomultiplier Tubes

R1307

R6233

R6091

R877

R1250

R1513

* R1584

A

Type No.

Remarks

76mm (3") Dia. Types

For scintillation counting, 8-stage

dynodes

For scintillation counting, low profile

type

For scintillation counting, 12-stage

dynodes

127mm (5") Dia. Types

For scintillation counting, 10-stage

dynodes

For scintillation counting, 14-stage

dynodes, fast time response

For visible to near IR, variant of

R877 with venetian blind dynodes

For scintillation counting,14-stage

dynodes, fast time response

Spectral Response

B

Curve

Code

400K 300 to 650 420

400K

Range

(nm)

300 to 650

300 to 850

C D E F

G Maximum RatingsH Cathode Sensitivity

Peak

Wavelength

Dynode

PhotoOut- Structure

Window

cathodeline

Material No.

Material

No. of

Socket

Socket

Anode to

Cathode

Voltage

J

Average

Anode

Current

Luminous

Min. Typ.

(nm)

Stages Assembly

(Vdc) (mA) (μ A/lm) (μ A/lm)

420

BA

BA

BA

BA

BA

MA

BA

FACEPLATE

PHOTO-

CATHODE

14 PIN BASE

JEDEC

No. B14-38

K

K

K

K

K

K

K

q

w

e

r

t

r

y

76.0 ± 0.8

70 MIN

51.5 ± 1.5

56.5 ± 0.5

B/8

B + L/8

L/12

B/10

L/14

VB/10

L/14

100 ± 3

DY6 IC

DY5

6

7 8 IC

9

DY4 5

10 DY7

DY3 4

11 DY8

DY2 3

12 P

2

IC 1

13

14 G

DY1 K

123 MAX.

E678-14A ■ /‹0

E678-14A ■

E678-21A *

E678-14A ■ /¤9‹2

E678-20A * /›3›4

E678-14A ■ /¤9‹2

E678-20A *

1500

3000

2000

3000

q R1307 w R6233 e R6091 r R877, R1513 t R1250

FACEPLATE

PHOTO-

CATHODE

14 PIN BASE

JEDEC

No. B14-38

76.0 ± 0.8

70 MIN.

51.5 ± 1.5

56.5 ± 0.5

500K

(S-20)

DY7 DY8

DY6

6

7 8 IC

9

DY5 5

10 IC

DY4 4

11 P

DY3 3

12 IC

2

DY2 1

13

14 G

DY1 K

400U 300 to 850

127 ± 3

150 MAX.

TPMHA0078EA

TPMHA0389EA

1500

1500

2500

0.1

0.1

0.2

0.1

0.2

0.1

0.2

FACEPLATE

PHOTO-

CATHODE

80

80

60

60

55

100

55

76 ± 1

65 MIN.

21 PIN BASE

110

110

90

80

70

150

70

137 ± 2

13 MAX.

IC

DY12

11 12

9 1314

P 8

7

15

DY11 6

16 DY2

DY9 5

17

4

3

DY5 2

1

DY3

DY1

18

19

21

20

SH IC DY10 DY8

10

DY6

DY4

G

DY7

IC

IC

IC

K

∗ CONNECT SH TO DY5

TPMHA0285EB

Cathode Sensitivity

48 49

Blue

(5-58)

Typ.

(μ A/lm-b)

12.0

12.0

10.5

10.0

9.0


9.0

Red /

White

Ratio

Typ.






0.2


K

Radiant

Typ.

(mA/W)

95

95

85

80

72

64

72

L

Anode to

Cathode

Supply

Voltage

FACEPLATE

PHOTO-

CATHODE

14 PIN BASE

JEDEC

No. B14-38

(Vdc)

1000 w

1000 i

1500 #4

1250 !4

2000 $0

1500 !4

2000 $0

133.0 ± 1.5

111 MIN.

53.5 MAX.

56.5 ± 0.5

3

3

50

20

300

10

300

Anode Sensitivity

Luminous

Min.

(A/lm)

DY7 DY8

DY6

6

7 8 DY9

9

DY5 5

10 DY10

DY4 4

11 P

DY3 3

12 IC

2

DY2 1

13

14 G

DY1 K

171 ± 3

194 MAX.

TPMHA0074EB

Typ.

(A/lm)

30

30

450

40

1000

50

1000

Radiant

Typ.

(A/W)

2.6 × 10 4

2.6 × 10 4

4.3 × 10 5

Anode Characteristics

Gain

Typ.

2.7 × 10 5

2.7 × 10 5

5.0 × 10 6

4.0 × 104 5.0 × 105 1.0 × 106 1.4 × 107 2.1 × 104 3.3 × 105 1.0 × 106 1.4 × 107 FACEPLATE

PHOTO-

CATHODE

HA COATING

20 PIN BASE

JEDEC

No. B20-102

Typ.

(nA)

2

2

10

10

50

30

50

133 ± 2

120 MIN.

52.5 MAX.

Max.

(nA)

20

20

60

50

300

150

300

M

Anode Dark

Current

(After 30 min.)

10

8

7

6

5

4

3

2

1

9

IC

P

DY13 11 1213

DY11

14

DY9

15

DY7

16

DY5

DY3

G2 & DY1

IC

17

18

19

20

K G1

DY14

DY12

DY10

DY8

DY6

DY4

DY2

IC

Time Response

Rise

Time

Typ.

(ns)

10.0

259 ± 5

8.0

6.0

2.6

2.5

7.0

2.5

276 ± 5

TPMHA0018EA

Electron

Transit

Time

Typ.

(ns)

64

52

48

90

54

82

54

y R1584

Notes

K-free borosilicate glass type: R1307-07

For gamma cameras: R1307-01

For gamma cameras: R6233-01

K-free borosilicate glass type: R877-01

8-stage dynode type: R4144

FACEPLATE

PHOTOCATHODE

HA COATING

20 PIN BASE

JEDEC No. B20-102

(at 25°C)

R1307

R6233

R6091

R877

R1250

R1513

R1584 *

A

Type No.

133 ± 2

120 MIN.

(Unit: mm)

52.5 MAX.

259 ± 5

10

8

7

6

5

4

3

2

1

9

IC

P

DY13 11 121314

DY11

DY9

15

DY7

16

DY5

DY3

G2 & DY1

IC

17

18

19

20

K G1

DY14

DY12

DY10

DY8

DY6

DY4

DY2

IC

TPMHA0187EB

276 ± 5


Hemispherical Envelope Photomultiplier Tubes

R5912

A

Type No.

R3600-02

Remarks

Spectral Response

B

Curve

Code

Hemispherical Envelope Types

q R5912

For high energy physics research,

8" dia.

For high energy physics research,

20" dia.

Range

(nm)

400K 300 to 650 420

C D E F

G Maximum RatingsH Cathode Sensitivity

Peak

WavelengthPhotoOut-

Window

cathodeline

Material No.

Material

Dynode

Structure

No. of

Socket

Socket

Anode to

Cathode

Voltage

J

Average

Anode

Current

Luminous

Min. Typ.

(nm)

Stages Assembly

(Vdc) (mA) (μ A/lm) (μ A/lm)

BA

BA

K

K

q

w

B + L/10

VB/11

E678-20A *

E678-20A *

INPUT WINDOW

20-PIN BASE

JEDEC No. B20-102

1800

2500

202 ± 5

190 MIN.

R131

R20

84.5 ± 2

52.5MAX.

10

8

7

6

5

4

3

2

1

9

NC

P 11 1213

DY9

14

NC

15

DY7

16

DY5

DY3

Focus3

17

18

19

20

NC

DY1 K Focus2

IC

DY10

DY8

DY6

NC

DY4

DY2

Focus1

(Bottom View)

0.1

0.1

PHOTOCATHODE

62

220 ± 10

290 MAX.



70

60

TPMHA0261EB

Cathode Sensitivity L Anode Characteristics M

Blue

(5-58)

K

Radiant

Typ.

Anode to

Cathode

Supply

Anode Sensitivity

Luminous Radiant Gain

Anode Dark

Current

(After 30 min.)

Typ.

Voltage

Min. Typ. Typ.

Typ.

Typ. Max.

(μ A/lm-b) (mA/W) (Vdc) (A/lm) (A/lm) (A/W)

(nA) (nA)

50 51

9.0

8.0

72

65

w R3600-02

1500 @5

2000 @9



700

600

7.2 × 10 5

6.5 × 10 5

1.0 × 10 7

1.0 × 10 7

50

200

700

1000

FACEPLATE

188

195

Time Response

Rise

Time

Typ.

(ns)

3.8

10

20 PIN BASE

JEDEC No. B20-102

Electron

Transit

Time

Typ.

(ns)

R150

55

95

R315

R30

508 ± 10

460

254 ± 10

82 ± 2

Notes

PHOTOCATHODE

52.5 MAX.

DY10 IC

P DY8

DY11 10 DY6

8

DY9

7

DY4

DY7 6

IC

IC 5

DY2

DY5

4

3

DY3 2

1

DY1

Focus1

Focus2

K

Focus3

IC

9 11 1213

14

15

16

17

18

19

20

175

50

(at 25°C)

R5912

A

Type No.

R3600-02

(Unit: mm)

560 ± 20

683 MAX.

TPMHA0218EB


Special Envelope Photomultiplier Tubes

R6234

R6236

R6235

R6237

A

Type No.

q R6234

Remarks

For scintillation counting, 60mm

dia. hexagonal faceplate, low profile

For scintillation counting,

60 × 60mm square faceplate, low profile

For scintillation counting, 76mm

dia. hexagonal faceplate

For scintillation counting,

76 × 76mm square faceplate, low profile

FACEPLATE

PHOTO-

CATHODE

14 PIN BASE

JEDEC

No. B14-38

B

Curve

Code

Spectral Response

400K 300 to 650 420

59.5 ± 0.5

55 MIN.

51.5 ± 1.5

56.5 ± 0.5

Range

(nm)

60 MIN.

100 ± 3

DY6 IC

DY5

6

7 8 IC

9

DY4 5

10 DY7

DY3 4

11 DY8

DY2 3

12 P

2

IC 1

13

14 G

DY1 K

67.5 ± 0.6

123 MAX

C D E F G Maximum RatingsH Cathode Sensitivity

Cathode Sensitivity L Anode Characteristics M

Peak

Wavelength

(nm)

PhotoOut- Window

cathodeline

Material No.

Material

Dynode

Structure

No. of

Stages

Socket

Socket

Assembly

Anode to

Cathode

Voltage

(Vdc)

J

Average

Anode

Current

(mA)

Luminous

Min. Typ.

(μ A/lm) (μ A/lm)

K

Blue Radiant

(5-58) Typ.

Typ.

(μ A/lm-b) (mA/W)

Anode to

Cathode

Supply

Voltage

(Vdc)

Anode Sensitivity

Luminous

Radiant

Min. Typ. Typ.

(A/lm) (A/lm) (A/W)

Gain

Typ.

Anode Dark

Current

(After 30 min.)

Typ. Max.

(nA) (nA)

BA

BA

BA

BA

K

K

K

K

q

w

e

r

w R6236

B + L/8

B + L/8

B + L/8

B + L/8

E678-14A ■

E678-14A ■

E678-14A ■

E678-14A ■

FACEPLATE

PHOTO-

CATHODE

14 PIN BASE

JEDEC

No. B14-38

1500

1500

1500

1500

59.5 ± 1.0

54 MIN.

51.5 ± 1.5

56.5 ± 0.5

0.1

0.1

0.1

0.1

54 MIN.

DY6 IC

DY5

6

7 8 IC

9

DY4 5

10 DY7

DY3 4

11 DY8

DY2 3

12 P

2

IC 1

13

14 G

DY1 K

59.5 ± 1.0

100 ± 3

123 MAX

80

80

80

80

110

110

110

110

52 53

12.0

12.0

12.0

12.0

95

95

95

95

TPMHA0390EA TPMHA0392EA

TPMHA0391EA

TPMHA0393EA

1000 i

1000 i

1000 i

1000 i

3

3

3

3

30

30

30

30

2.6 × 10 4

2.6 × 10 4

2.6 × 10 4

2.6 × 10 4

2.7 × 10 5

2.7 × 10 5

2.7 × 10 5

2.7 × 10 5

e R6235 r R6237

FACEPLATE

PHOTO-

CATHODE

14 PIN BASE

JEDEC

No. B14-38

76.0 ± 1.5

70 MIN.

51.5 ± 1.5

56.5 ± 0.5

DY6 IC

DY5

6

7 8 IC

9

DY4 5

10 DY7

DY3 4

11 DY8

DY2 3

12 P

2

IC 1

13

14 G

DY1 K

79 MIN.

100 ± 3

85 ± 1

123 MAX

2

2

2

2

20

20

20

20

Time Response

Rise

Time

Typ.

(ns)

6.0

6.0

6.0

6.0

Electron

Transit

Time

Typ.

(ns)

52

52

52

52

FACEPLATE

PHOTO-

CATHODE

14 PIN BASE

JEDEC

No. B14-38

For gamma cameras: R6234-01

For gamma cameras: R6236-01

For gamma cameras: R6235-01

For gamma cameras: R6237-01

76.0 ± 1.5

70 MIN.

51.5 ± 1.5

56.5 ± 0.5

Notes

DY6 IC

DY5

6

7 8 IC

9

DY4 5

10 DY7

DY3 4

11 DY8

DY2 3

12 P

2

IC 1

13

14 G

DY1 K

70 MIN.

100 ± 3

76.0 ± 1.5

123 MAX

(at 25°C)

R6234

R6236

R6235

R6237

A

Type No.

(Unit: mm)


Special Envelope Photomultiplier Tubes

R2248

R2102

R2497

R1548

A

Type No.

q R2248

Remarks

10 × 10mm square envelope

13 × 13mm square envelope

25 × 25mm square envelope

Rectangular dual structure in

single envelope

B

Curve

Code

400K

FACEPLATE

Spectral Response

9.8 ± 0.4

PHOTOCATHODE

Range

(nm)

300 to 650

8 MIN.

11 PIN BASE

DY7

5

DY5

4

DY3 3

P

6

8 MIN.

45.0 ± 1.5

10 MAX.

9.8 ± 0.4

DY8

7

DY6

8

9 DY4

2

10

DY1 1 11 DY2

IC K

SHORT PIN

C D E F G Maximum RatingsH Cathode Sensitivity

Cathode Sensitivity L Anode Characteristics M

Peak

Wavelength

(nm)

PhotoOut- Window

cathodeline

Material No.

Material

Dynode

Structure

No. of

Stages

Socket

Socket

Assembly

Anode to

Cathode

Voltage

(Vdc)

J

Average

Anode

Current

(mA)

Luminous

Min. Typ.

(μ A/lm) (μ A/lm)

K

Blue Radiant

(5-58) Typ.

Typ.

(μ A/lm-b) (mA/W)

Anode to

Cathode

Supply

Voltage

(Vdc)

Anode Sensitivity

Luminous Radiant

Min. Typ. Typ.

(A/lm) (A/lm) (A/W)

Gain

Typ.

Anode Dark

Current

(After 30 min.)

Typ. Max.

(nA) (nA)

420

BA

BA

BA

BA

TPMHA0098EA

K

K

K

K

q

w

e

r

L/8

L/10

L/10

L/10

E678-11N * /v

E678-13A * /m

E678-12A *

E678-17A *

1500

1250

1800

1750

0.03

0.1

0.1

0.1

w R2102 e R2497

FACEPLATE

PHOTOCATHODE

13 PIN BASE

10 MIN.

13.5 ± 0.5

13.5 ± 0.5

10 MIN.

71 ± 2

13 MAX.

DY10

P

6

DY9

5

7

DY8

8

DY6

9

DY7 4

10 DY4

DY5 3

11 DY2

2

DY3

1

12

IC

13

DY1 K

SHORT PIN

60

40

70

60

95

100

115

80

TPMHA0096EA

54 55

9.5

9.5

11.0

9.5

76

76

88

76

1250 q

1000 !3

1500 !9

1250 @1

FACEPLATE

PHOTOCATHODE

SEMI-FLEXIBLE

LEADS

A

12 PIN BASE

JEDEC

No.B12-43

B

30

30

50

50

26.0 ± 0.5

23 MIN.

37.4 ± 0.7

12 PIN BASE

JEDEC No.B12-43

100

100

300

200

26.0 ± 0.5

23 MIN.

13 MAX.

98.0 ± 1.5

50 MIN.

8.0 × 10 4

7.6 × 10 4

2.3 × 10 5

1.9 × 10 5

1.1 × 10 6

1.0 × 10 6

2.6 × 10 6

2.5 × 10 6

A Temporary Base Removed

P

DY9

9 DY10

6

10

DY7

5

11 DY8

DY5 4

3

DY3

18

DY1

B Bottom View

14

15 DY6

17 16

DY4

DY2

K

P DY10

DY9

5

6 7 DY8

8

DY7 4

9 DY6

DY5 3

10 DY4

2

DY3

1

11

12 DY2

DY1 K

TPMHA0105EB

1

1

10

20

50

15

100

250

r R1548

Time Response

Rise

Time

Typ.

(ns)

0.9

2.5

2.4

1.8

Electron

Transit

Time

Typ.

(ns)

9

24

22

20

Notes

Flying lead type: R1548-02

FACEPLATE

PHOTOCATHODE

8 MIN. 8 MIN.

24.0 ± 0.5

17 PIN BASE

18 MIN.

24.0 ± 0.5

70 ± 2

13 MAX.

(at 25°C)

R2248

R2102

R2497

R1548

P2

P1

DY7

DY9

DY6

DY7

DY4

DY5

DY2

DY3 IC

IC

IC K

DY10 DY8

7

6

5

4

3

2

DY1 1

8 9 10 11

12

13

14

15

16

17

SHORT PIN

A

Type No.

(Unit: mm)

TPMHA0223EA


Tubes for Highly Magnetic Environments

Type No.

q R5505

A Spectral Response F G Maximum Ratings H Cathode Sensitivity

Tube

Diameter

mm (inch)

High Gain Types

R5505

R5946

R5924

R6504

R5542

25/(1)

38/(1.5)

51/(2)

64/(2.5)

78/(3)

Outline

No.

q

w

e

r

t

B

Curve

code

Range

(nm)

DY19

DY17

DY15

DY13

DY11

DY9

DY7

DY5 DY3DY1

P

DY18 DY16

DY14

11

10

9

8

14 15

16 DY12

17 DY10

18

DY8

19

20 DY6

7

6

5

4

3

2 1 26

K

21 DY4

22

DY2

Bottom View

Peak

Wavelength

(nm)

400K 300 to 650 420

These tubes use fine mesh dynodes and offer excellent pulse linearity and TTS characteristics.

UV glass window type R5506 (1"), R6148 (1.5"), R6608 (2"), R6505 (2.5"), R5543 (3") are available.

e R5924

FACEPLATE

PHOTOCATHODE

HA COATING

FACEPLATE

PHOTO-

CATHODE

HA COATING

SEMIFLEXIBLE

LEADS 0.7

25.8 ± 0.7

17.5 MIN.

17 PIN BASE

17 16

DY 15

DY 13 P

8 9 10 DY 14

DY 11

7 11

DY 9 6

12 DY 12

DY 7 5

13 DY 10

DY 5 4

14 DY 8

DY 3 3

2

DY 1 1

K

15 DY 6

DY 4

DY 2

SHORT PIN

52 ± 1

39 MIN.

31

40.0 ± 1.5

13 MAX.

TPMHA0236EA

50 ± 2

13 MAX.

TPMHA0337EA

Dynode

Structure

No. of

Stages

FM/15

FM/16

FM/19

FM/19

FM/19

w R5946

r R6504

Socket

Socket

Assembly

E678-17A * /›5

E678-19D




Anode to

Cathode

Voltage

(V)

2300

2300

2300

2300

2300

Average

Anode

Current

(mA)

0.01

0.01

0.1

0.1

0.1

FACEPLATE

PHOTOCATHODE

HA COATING

FACEPLATE

PHOTOCATHODE

HA COATING

SEMIFLEXIBLE

LEADS 0.7

J Quantum

Efficiency

at 390nm

Typ.

(%)

23

23

22

22

22

39 ± 1

27 MIN.

19 PIN BASE

DY19

DY17

DY15

DY13

DY11

DY9

DY7

DY5 DY3DY1

P

DY18 DY16

DY14

11

10

9

8

14 15

16 DY12

17 DY10

18

DY8

19

20 DY6

7

6

5

4

3

2 1 26

K

21 DY4

22

DY2

Bottom View

Luminous

Typ.

(μ A/lm)

80

80

70

70

70

8

7

6

5

4

3

2

1

TPMHA0243EC

9 10 11 DY15 P IC

DY13

DY16

DY11

12 DY14

13

DY9

14 DY12

DY7

15 DY10

DY5

16 DY8

DY3

DY1

K

17

18 DY6

19

DY4

DY2

64 ± 1

51 MIN.

38

50 ± 2

13 MAX.

55 ± 2

13 MAX.

TPMHA0336EA

Cathode Sensitivity

L Anode Characteristics M

(at 25°C)

A

Min.

Blue

Typ.

Anode to

Cathode

Supply

Voltage

Anode

Luminous

Sensitivity

Typ.

at

0

tesla

Gain

at

0.5

tesla

at

1.0

tesla

Anode Dark Current

(After 30 min.)

Typ. Max.

Time Response

Electron

Rise Time Transit Time

Typ. Typ.

Notes Type No.

(μ A/lm-b) (μ A/lm-b) (V) (A/lm) Typ. Typ. Typ. (nA) (nA) (ns) (ns)

DY19

11 12 13

DY17 10 1415

9

DY15

8

16

DY13 7

17

DY11 6

18

DY9 5

19

4

20

DY7

3

21

DY5 2

1 24 23

22

DY3

DY1 K

P IC DY18 DY16

DY14

DY12

DY10

DY8

DY6

DY4

DY2

IC

IC

56 57






t R5542

9.5

9.5

9.0

9.0

9.0

2000 $1

2000 $2

2000 $3

2000 $3

2000 $3

40

80

700

700

600

FACEPLATE

PHOTOCATHODE

HA COATING

SEMIFLEXIBLE

LEADS 0.9

5 × 105 2.3 × 105 1.8 × 104 1 × 106 4.3 × 105 2.9 × 104 1 × 107 4.1 × 106 2.5 × 105 1 × 107 4.1 × 106 2.0 × 105 1 × 107 3.0 × 106 1.7 × 105 78 ± 1

64 MIN.

55

(Unit: mm)

55 ± 2

13 MAX.

TPMHA0264EA

5

5

30

50

80

30

30

200

300

400

1.5

1.9

2.5

2.7

2.9

5.6

7.2

9.5

11.0

12.3

Assembly Type

:H6152-01

Assembly Type

:H6153-01

Assembly Type

:H6614-01

Assembly Type

:H6155-01

R5505

R5946

R5924

R6504

R5542


Position-Sensitive Photomultiplier Tubes

A

Type No.

R2486-02

R2487-02

R3292-02

Remarks

Position-Sensitive Photomultiplier Tubes

q R2486-02

w R2487-02

Cross-wire anode type, 76mm dia.

envelope

Cross-wire anode type, 78 × 78mm

square envelope

Cross-wire anode type, 130mm

dia. envelope

Spectral Response

B

Peak

No. of

Anode Wires

Curve Range Wave- or

Code

length Anode Marixes

(nm)

400K 300 to 650 420

PHOTO-

CATHODE

(nm)

SIGNAL OUTPUT

: 0.8D COAXIAL CABLES

-H.V

: RG-174/U

PHOTOCATHODE

HA COATING

16(X) + 16(Y)

18(X) + 16(Y)

28(X) + 28(Y)

76 ± 1

50 MIN.

SIGNAL OUTPUT

: 0.8D COAXIAL CABLES

-H.V

: RG-174/U

78 ± 1 × 78 ± 1

60(X) × 55(Y) MIN.

20 ± 1 55 ± 2

86.2 ± 3.0

11.2

Effective

Photocathode

Area

TPMHA0160ED

φ50

60(X) × 55(Y)

11.2 20 ± 1 70 ± 2

101.2 ± 3

TPMHA0161EF

(mm)

φ100

Outline

No.

q

w

e

Y16

Y15

Y14

Y13

Y12

Y11

Y10

Y9

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y16

Y15

Y14

Y13

Y12

Y11

Y10

Y9

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

F Maximum Ratings H Cathode Sensitivity

Dynode

Structure Anode to

J

Average

Luminous

No. of

Cathode

Voltage

Anode

Current

Min. Typ.

Stages

(Vdc) (mA) (μ A/lm) (μ A/lm)

CM/12

CM/12

CM/12

1300

1300

1300

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

DY12

DY11

DY10

X1

X2

X3

X4

DY12

DY11

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

Focus

K

2R 1R

2R 2R

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

0.1

0.1

0.1

50

40

50

EACH RESISTOR : 1kΩ

DY9

DY8

DY7

DY6

2R

2R

2R C2

2R

1R : 180kΩ 1/2W

2R : 360kΩ 1/2W

C1 : 0.002μF/2kV

DY5

DY4

2R

2R

C2 : 0.01μF/500V

C3 : 0.01μF/500V

DY3

DY2

2R

2R

DY1

Focus

K

1R

2R C1

10kΩ RG174/U

2R

2R

2R

2R

2R

1R

1R

2R 1R

2R

2R C2

2R

2R

2R

2R

1R

C3

C3

X17

X18

1R : 180kΩ 1/2W

2R : 360kΩ 1/2W

C1 : 0.002μF/2kV

C2 : 0.01μF/500V

C3 : 0.01μF/500V

C1

10kΩ

YD

YC

XB

XA

EACH RESISTOR : 1kΩ

RG174/U

HV

IN

HV

IN

80

80

80

TPMHC0086EC

YD

YC

XB

XA

TPMHC0087EC

Cathode Sensitivity

58 59

Blue

(5-58)

Typ.

(μ A/lm-b)

9.0

9.0

9.0

Red /

White

Ratio

Typ.




e R3292-02

K

Radiant

Typ.

(mA/W)

72

72

72

L

Anode to

Cathode

Supply

Voltage

(Vdc)

1250 #9

1250 #9

1250 #9

R3292-02 Position Signal Linearity

RELATIVE POSITION SIGNAL

TPMHB0449EA

100

80

60

40

20

0

Anode Sensitivity

Luminous

Min.

(A/rm)

5.0

3.0

5.0

Typ.

(A/rm)

8.0

8.0

8.0

10 20 30 40 50 60 70 80 90 100 110 120

X-AXIS (mm)

HA COATING

Radiant

Typ.

(A/W)

7.2 × 10 3

7.2 × 10 3

7.2 × 10 3

PHOTO-

CATHODE

Anode Characteristics

Gain

Typ.

1 × 10 5

1 × 10 5

1 × 10 5

SIGNAL OUTPUT

: 0.8D COAXIAL CABLES

-H.V

: RG-174/U

Typ.

(nA)

20

20

40

Max.

(nA)

50

80

150

R

Anode Dark

Current

(After 30 min.)

132 ± 3

100 MIN

RELATIVE POSITION SIGNAL

100

80

60

40

20

0

Time Response

Rise

Time

Typ.

(ns)

113 ± 2

20 ± 1

5.5

5.5

6.0

133 ± 3

TPMHA0162EE

Electron

Transit

Time

Typ.

(ns)

17

17

20

Y28

Y27

Y26

Y25

Y24

Y5

Y4

Y3

Y2

Y1

X1

X2

X3

X4

X5

DY12

DY11

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

K

Notes

2R

2R

2R

2R

2R

1R

10 20 30 40 50 60 70 80 90 100 110 120

Y-AXIS (mm)

X24

X25

X26

X27

X28

2R

2R

2R

2R

C3

R

2R

2R

C2

2R

C1 RG174/U

10kΩ

(at 25°C)

A

Type No.

R2486-02

R2487-02

R3292-02

(Unit: mm)

1R : 180kΩ

2R : 360kΩ

C1 : 0.002μF/2kV

C2 : 0.01μF/500V

C3 : 0.01μF/500V

HV

IN

YD

YC

XB

XA

TPMHC0088EC


Microchannel Plate-Photomultiplier Tubes (MCP-PMTs)

A

Type No. Remarks Curve

Code

Spectral Response

B

Peak

Range Wavelength

(nm)

Photocathode

Material

Window

Material

Standard Types (Effective Photocathode Area: 11mm Dia.)

R3809U-50 For UV to near IR range

R3809U-51

For UV to near IR range

(Extended red multialkali)

R3809U-52 For UV to visible range

R3809U-57 For UV range

R3809U-58 For UV to near IR range

R3809U-59 For visible to IR range

500S

501S

403K

201M

500M

(nm)

160 to 850

160 to 910

160 to 650

115 to 320

115 to 850

700M 400 to 1200

C D E

Gated Type (Effective Photocathode Area: 10mm Dia.)

Outline

No.

No. of

MCP

Stage

To improve the S/N ratio in low light level detection, an exclusive cooler unit (C4878/E3059-500) for R3809U MCP-PMT is available.

The R5916U has a series of types in the same suffixes as R3809U series. But an exclusive cooler unit shall be made upon custom order only.

High speed amplifier C5594 series (Gain: 36dB Typ., Frequency Bandwidth: 50kHz to 1.5GHz) are avairable.

430

600

400

230

430

800

MA

EMA

BA

Cs-Te

MA

Ag-O-Cs

Q

Q

Q

MgF 2

MgF 2

K

q

q

q

q

q

q

2

q R3809U-50 Series w R5916U-50 Series

Maximum Ratings H Terminals

Cathode Sensitivity

Anode Characteristics N

Supply

Voltage

Anode Current

Continous Pulsed

Peak

-HV

Input

Signal

Output

K

Quantum

Efficiency

Luminous

Min. Typ.

Anode to

Cathode

Supply

Voltage

Anode

Sensitivity

Luminous

Typ.

Gain

Typ.

Anode Dark

Current

Typ. Max.

Time Response

Rise Time Electron

Typ.

Transit

Time Typ.

(Vdc) (nA) (mA)

(%) (μ A/lm) (μ A/lm) (Vdc)

(A/lm)

(nA) (nA) (ns) (ns)

-3400

TPMHC0089EB

100

350

SHV-R

SMA-R

R5916U-50

R5916U-51

High-speed gate operation of less

than 5ns

High-speed gate operation of less

than 5ns

500S

501S

160 to 850

160 to 910

430

600

MA

EMA

Q

Q

w

w 2 -3400 100 350 SHV-R SMA-R

14

7.6

100

200

150

300 -3000

30

60

2 × 10

R5916U-52

403K 160 to 650 400 BA Q w

17

20 45

9

5



10

10

0.18 1.0

High-speed gate operation of less

than 5ns – 0.5 0.15 0.55

EFFECTIVE

PHOTOCATHODE

DIAMETER

11.0MIN.

WINDOW

FACE PLATE

45.0 ± 0.1

K

-HV

SHV-R

12MΩ

11 MIN.

3.2 ± 0.1 7.0 ± 0.2

MCP

24MΩ

3.0 ± 0.2

P

70.2 ± 0.3

52.5 ± 0.1

PHOTOCATHODE

6MΩ

1000pF 1000pF 900pF

SIGNAL

OUTPUT

SMA-R

-H.V INPUT

SHV-R CONNECTOR

ANODE OUTPUT

SMA-R CONNECTOR

13.7 ± 0.1

TPMHA0352EB

60 61

17

8.3

19

11

17

0.16

100

240

20


100

12

150

350

50


150

25

-3000

30

70

10


30

5

EFFECTIVE

PHOTOCATHODE

DIAMETER

10MIN.

WINDOW

FACE PLATE

GND

55.0 ± 0.3

330pF

2 × 10 5

10 MIN.







PHOTOCATHODE

4.6 ± 0.1 7.9

-HV

SHV-R

53.8 ± 0.3

3.0 ± 0.2

PHOTOCATHODE

100kΩ

10kΩ

30kΩ

330pF

50Ω

GATE SIGNAL

INPUT SMA-R

71.5 ± 0.3

MESH

12MΩ

1000pF

GND

7

10

10

0.5

0.1

10

10

MCP

24MΩ

330pF

1000pF

ANODE

450pF

6.2MΩ

0.15

TPMHC0090EB

0.55

SHV-R CONNECTOR

-HV INPUT

SMA-R CONNECTOR

ANODE OUTPUT

SMA-R CONNECTOR

GATE PULSE INPUT

ANODE OUTPUT

SMA-R

TTS

(ps)

25

90

A

Type No.

R3809U-50

R3809U-51

R3809U-52

R3809U-57

R3809U-58

R3809U-59

R5916U-50

R5916U-51

R5916U-52

(Unit: mm)

19

17.5

TPMHA0348EC


Metal Package Photomultiplier Tubes

A

Type No.

R7400U Series

* R7400U

* R7400U-01

* R7400U-02

* R7400U-03

* R7400U-04

* R7400U-06

* R7400U-09

* R7401

* R7402

Remarks

For UV to visible range

Multialkali photocathode for visible

to near IR range

Multialkali photocathode for visible

to near IR range

For UV to visible range

Multialkali photocathode for visible

to near IR range

For UV to visible range

Solar blind

With lens

With lens

q R7400U, -01, -02, -03, -04

15.9 ± 0.4

WINDOW

9.4 ± 0.4

Spectral Response

B

Curve

Code

400K



400U


400S


400K

400K

Range

(nm)

300 to 650

300 to 850

300 to 880

185 to 650

185 to 850

160 to 650

160 to 320

300 to 650

300 to 850

INSULATION COVER (Polyoxymethylene)

11.5 ± 0.4 4.0 ± 0.3

0.5 ± 0.2

5 ± 1

GUIDE MARK

PHOTOCATHODE

8 MIN.

Side View

5.4 ± 0.3

12- 0.45

SHORT PIN DY3

(IC) 2

1

K

12

DY5

3

DY7

4

DY1 11

5 P

5.1

10.2

Bottom View

10

DY2

9

DY4

8

DY6

6

SHORT PIN

7 (IC)

DY8

IC: Internal Connection

(Do not use)

C D E F

G Maximum Ratings H Cathode Sensitivity

Peak

Wavelength

Dynode

PhotoOut- Structure

Window

cathodeline Material

Material No. No. of

Socket

Socket

Anode to

Cathode

Voltage

J

Average

Anode

Current

Luminous

Min. Typ.

(nm)

Stages Assembly

(Vdc) (mA) (μ A/lm) (μ A/lm)

420

400

500

420

400

420

240

420

400

SHORT PIN

10.2

5.1

BA

MA

MA

BA

MA

BA

Cs-Te

BA

MA

TPMHA0411EB

K

K

K

U

U

Q

Q

K

K

q

q

q

q

q

w

w

e

e

MC/8

MC/8

MC/8

MC/8

MC/8

MC/8

MC/8

MC/8

MC/8

w R7400U, -06, -09

15.9 ± 0.4

WINDOW

11.0 ± 0.4

E678-12M ■ /›7

E678-12M ■ /›7

E678-12M ■ /›7

E678-12M ■ /›7

E678-12M ■ /›7

E678-12M ■ /›7

E678-12M ■ /›7

E678-12M ■ /›7

E678-12M ■ /›

12.8 ± 0.5 4.0 ± 0.3

0.3 ± 0.2 5 ± 1

PHOTOCATHODE

8 MIN.

Side View

1000

1000

1000

1000

1000

1000

1000

1000

1000

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

INSULATION COVER (Polyoxymethylene)

5.4 ± 0.3

GUIDE MARK

12- 0.45

SHORT PIN DY3

(IC) 2

1

K

12

DY5

3

DY7

4

DY1 11

5 P

5.1

10.2

Bottom View

10

DY2

9

DY4

8

DY6

6

SHORT PIN

7 (IC)

DY8

IC: Internal Connection

(Do not use)

40

80

150

40

80

40


40

80

SHORT PIN

10.2

5.1

70

150

250

70

150

70


70

150

TPMHA0410EB

Cathode Sensitivity

62 63

Blue

(5-58)

Typ.

(μ A/lm-b)

8.0



8.0


8.0


8.0


Red /

White

Ratio

Typ.


200

250


200




200

e R7401, R7402

15.9 ± 0.4

14 ± 0.3

PHOTOCATHODE

8 MIN.

SR7

K

Radiant

Typ.

(mA/W)

62

60

58

62

60

62

22 b

62

60

19 ± 0.5

11.5 ± 0.4 4.0 ± 0.3

5±1

4 MAX.

Side View

L

Anode to

Cathode

Supply

Voltage

6.0 ± 0.5

(Vdc)

800 o

800 o

800 o

800 o

800 o

800 o

800 o

800 o

800 o

5.4 ± 0.3

Anode Sensitivity

Luminous

Min.

(A/lm)

10

15

15

10

15

10


10

15

GUIDE MARK

12- 0.45

Typ.

(A/lm)

50

75

75

50

75

50


50

75

5.1

10.2

Bottom View

SHORT PIN DY3

(IC) 2

1

K

12

DY5

3

DY7

4

DY1 11

5 P

10

DY2

9

DY4

8

DY6

6

SHORT PIN

7 (IC)

DY8

IC: Internal Connection

(Do not use)

Radiant

Typ.

(A/W)

4.3 × 10 4

3.0 × 10 4

1.7 × 10 4

4.3 × 10 4

3.0 × 10 4

4.3 × 10 4

1100 b

4.3 × 10 4

3.0 × 10 4

Anode Characteristics

Gain

Typ.

7.0 × 10 5

5.0 × 10 5

3.0 × 10 5

7.0 × 10 5

5.0 × 10 5

7.0 × 10 5

5.0 × 10 4

7.0 × 10 5

5.0 × 10 5

(Unit: mm)

SHORT PIN

5.1

10.2

TPMHA0415EB

Typ.

(nA)

M

Anode Dark

Current

(After 30 min.)

0.2

0.4

2.0

0.2

0.4

0.2

0.025

0.2

0.4

Max.

(nA)

2

4

20

2

4

2

0.5

2

4

Time Response

Rise

Time

Typ.

(ns)

0.78

0.78

0.78

0.78

0.78

0.78

0.78

0.78

0.78

Electron

Transit

Time

Typ.

(ns)

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

Notes

Photon counting type

: R7400P

Photon counting type

: R7400P-01

Photon counting type

: R7400P-03

Photon counting type

: R7400P-04

Photon counting type

: R7400P-06

Photon counting type

: R7401P

Photon counting type

: R7402P

(at 25°C)

A

Type No.

R7400U *

R7400U-01 *

R7400U-02 *

R7400U-03 *

R7400U-04 *

R7400U-06 *

R7400U-09 *

R7401 *

R7402 *


Metal Package Photomultiplier Tubes

R5900U

R5900U-00-M4

H6568

A

Type No.

R5900U Series

q R5900U

Remarks

For visible range

Single anode

For visible range

2 × 2 Multianode

For visible range

4 × 4 Multianode

w R5900U-00-M4

0.20

B

Curve

Code

400K

Spectral Response

Range

(nm)

300 to 650 420

30.0 ± 0.5

25.7 ± 0.5

18 MIN.

EFFECTIVE AREA

Top View

30.0 ± 0.5

25.7 ± 0.5

18 MIN.

0.20

Top View

C D E F

G Maximum RatingsH Cathode Sensitivity

Peak

Wavelength

Dynode

PhotoOut- Structure

Window

cathodeline Material

Material No. No. of

Socket

Socket

Anode to

Cathode

Voltage

J

Average

Anode

Current

Luminous

Min. Typ.

(nm)

Stages Assembly

(Vdc) (mA) (μ A/lm) (μ A/lm)

1 MAX.

1 MAX.

BA

BA

BA

22.0 ± 0.5

K

K

K

4 MAX.

12

4.4 ± 0.7

q

w

e

PHOTOCATHODE

INSULATION

COVER

MC/10

MC/10

MC/12

2.54 PITCH

29- 0.45

Side View Bottom View

22.0 ± 0.5 4 MAX.

12

4.4 ± 0.7

PHOTOCATHODE

INSULATION

COVER

2.54 PITCH

30− 0.45

Side View Bottom View

E678-32B ■ /›8

E678-32B■ /›9


IC

IC

P

IC

IC

IC

IC

IC

P1

IC

IC

IC

P2

IC

900

900

1000

0.1

0.1

0.16

K

IC (Dy10)

IC

Dy1

Dy2

Dy3

Dy4

IC (Dy10)

CUT (K)

1 2 3 4 5 6 7 8 9

32 10

31 11

30 12

29 GUIDE 13

28

CORNER

14

27 15

26 16

25 24 23 22 21 20 19 18 17

CUT (K)

Dy10

Dy9

Dy8

Dy7

Dy6

Dy5

IC (Dy10)

CUT (K)

K

Dy

P

CUT

IC

: Photocathode

: Dynode

: Anode

: Short Pin

: Internal Connection

(Don't Use)

Basing Diagram

K

IC (Dy10)

IC

Dy1

Dy2

Dy3

Dy4

IC (Dy10)

CUT (K)

1 2 3 4 5 6 7 8 9

32 10

31 11

30 12

29 GUIDE 13

28 CORNER 14

27 15

26 16

2524 23 22 21 2019 1817

CUT (K)

Dy10

Dy9

Dy8

Dy7

Dy6

Dy5

IC (Dy10)

IC

IC

IC

IC

IC

IC

IC

IC

50

50


IC

P4

IC

IC

IC

P3

IC

K : Photocathode

Dy : Dynode

P : Anode

CUT : Short Pin

IC : Internal Connection

(Don't Use)

Basing Diagram

70

70

70

TPMHA0278EF

TPMHA0297EE

Cathode Sensitivity

64 65

Blue

(5-58)

Typ.

(μ A/lm-b)

8.0

8.0

8.0

e H6568

Red /

White

Ratio

Typ.




K

Radiant

Typ.

(mA/W)

64

72

72

800 @3

800 @4

800 #9

L

Anode to

Cathode

Supply

Voltage

(Vdc)

25

25


Anode Sensitivity

Luminous

Min.

(A/lm)

30.0 ± 0.5

Typ.

(A/lm)

140

140

230

25.7 ± 0.5

450 45 ± 1 0.8 MAX.

Radiant

Typ.

(A/W)




Anode Characteristics

Top View

30.0 ± 0.5

17.5

Side View

Gain

Typ.

2.0 × 10 6

2.0 × 10 6

3.3 × 10 6

Typ.

(nA)

M

Anode Dark

Current

(After 30 min.)

2

0.5

1

4 × 16

4.5 PITCH

Max.

(nA)

20



FILLED WITH

INSULATOR

PHOTOCATHODE

POM CASE

-HV

: RG-174/U (RED)

ANODE OUTPUT

: COAXIAL CABLE

ANODE

INDICATION

Time Response

Rise

Time

Typ.

(ns)

1.5

1.2

0.83

TPMHA0335EB

Electron

Transit

Time

Typ.

(ns)

ANODE1 OUTPUT




ANODE2 OUTPUT

R19

ANODE15 OUTPUT

ANODE16 OUTPUT

R31

R30

Notes

ANODE OUTPUT

COAXIAL CABLE

P1 P2

R18

P15 P16

R16 R13 C3

Dy12

R15 R12 C2

Dy11

R14 R11 C1

Dy10

R10

Dy9

R9

Dy8

R8

Dy7

R7

Dy6

R6

Dy5

R5

Dy4

R4

Dy3

R3

Dy2

Dy1

R2

F

K

R1

R15

Type No.

R5900U

R5900U-00-M4

H6568

(at 25°C)

R1 to R13:

220kΩ

R14 to R16:

51Ω

R17:

1MΩ

R18 to R33:

100kΩ

C1 to C3:

0.01μF

A

-H.V

RG-174/U (RED)

TPMHA0338EC


Metal Package Photomultiplier Tubes

A

Type No.

R5900U Series

R5900U-00-L16

R5900U-00-C8

Remarks

For visible range

16 Linear Multianode

For visible range

4 + 4 Cross plate anode

q R5900U -00 -L16

R5900U -00 -L16 Anode Uniformity

RELATIVE OUTPUT (%)

80

60

40

20

Spectral Response

B

Curve

Code

400K

EFFECTIVE

AREA

1.0 PITCH

Range

(nm)

300 to 650 420

TPMHB0323EB

SUPPLY VOLTAGE : -800 (V)

SPOT DIAMETER : 50 (μm)

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [CH]

0

0 5 10 15 20

POSITION (mm)

C D E F

G Maximum RatingsH Cathode Sensitivity

Peak

Wavelength

Dynode

PhotoOut- Structure

Window

cathodeline Material

Material No. No. of

Socket

Socket

Anode to

Cathode

Voltage

J

Average

Anode

Current

Luminous

Min. Typ.

(nm)

Stages Assembly

(Vdc) (mA) (μ A/lm) (μ A/lm)

30.0 ± 0.5

25.7 ± 0.5

15.8

15.8

Top View

16

0.8

BA

BA

1 MAX.

K

K

q

w

22.0 ± 0.5 4 MAX.

12

MC/10

MC/11

2.54 PITCH

4.4 ± 0.7

30- 0.45

PHOTOCATHODE

INSULATION

COVER

Side View Bottom View

E678-32B ■ /fi0

E678-32B ■ /fi1

20.32

K

Dy2

Dy4

NC

P15

P16

P14

Dy10

900

900

Dy6 P13 P11 P9

0.01

0.1

P7 P5 Dy7

1 2 3 4 5 6 7 8 9

32

10

31

11

30

12

29

28

27

GUIDE

CORNER

13

14

15

26

16

25 24 23 22 21 20 19 18 17

50

Dy8 P12 P10 P8 P6 P4 Dy5 K

Basing Diagram

K : Photocathode

Dy : Dynode (Dy1-Dy10)

P : Anode (P1-P16)

NC : No Connection


Dy9

P3

P1

P2

NC

Dy3

Dy1

70

70

TPMHA0298EE

Cathode Sensitivity

66 67

Blue

(5-58)

Typ.

(μ A/lm-b)

8.0

8.0

Red /

White

Ratio

Typ.



K

Radiant

Typ.

(mA/W)

w R5900U -00 -C8

R5900U -00 -C8 Uniformity

RELATIVE OUTPUT (%)

100

80

60

40

20

0



TPMHB0344EA

800 !3

800 @8

L

Anode to

Cathode

Supply

Voltage

PY1

(Vdc)

PX1

PX2

PX3

PX4

PY2

50


Anode Sensitivity

Luminous

Min.

(A/lm)

Typ.

(A/lm)

140

50

Radiant

Typ.

(A/W)

0 10

20 30

SUPPLY VOLTAGE : -800V

LIGHT SOURCE : W-LAMP

SPOT DIAMETER : 3mm

EFFECTIVE

AREA

18

2.75

PX-ANODE

POSITION (mm)

PY3

0.5

5.5

30 ± 0.5

25.7 ± 0.5

22

2.75

Top View

PY4



Anode Characteristics

1 MAX.

5.5 0.5

Gain

Typ.

2.0 × 10 6

7.0 × 10 5

18

PY1 PY2 PY3 PY4

PY-ANODE

Typ.

(nA)

M

Anode Dark

Current

(After 30 min.)

0.2

2

22.0 ± 0.5 4 MAX.

12

RELATIVE OUTPUT (%)

Max.

(nA)

2


2.54 PITCH

4.4 ± 0.7

21- 0.45

PHOTOCATHODE

INSULATION

COVER

100

80

60

40

20

0

Time Response

Rise

Time

Typ.

(ns)

0.6

1.4

Side View Bottom View

TPMHB0345EA

PX1

Electron

Transit

Time

Typ.

(ns)



PX2

Notes

0 10

20 30

SUPPLY VOLTAGE : -800V

LIGHT SOURCE : W-LAMP

SPOT DIAMETER : 3mm

G

K

Dy2

Dy4

Dy6

Dy8

Dy10

IC

IC

IC

PX3

POSITION (mm)

Dy1 Dy3 Dy5 Dy7 Dy9 Dy11

1 2 3 4 5 6 7 8 9

32

10

31

11

30

12

29

28

27

GUIDE

CORNER

13

14

15

26

16

25 24 23 22 21 20 19 18 17

PY4 IC PY3 IC PY2 IC IC

Basing Diagram

K : Photocathode

Dy : Dynode (Dy1-Dy11)

P : Anode (PX1-PX4)

(PY1-PY4)

IC : Internal Connection

(Do not use)

PX4

(at 25°C)

Type No.

R5900U-00-L16

R5900U-00-C8

IC

PX1

IC

PX2

PY1

PX3

IC

PX4

IC

A

TPMHA0356EB


Photosensor Module

Type No.

H6779

H6779-01

H6779-03

H6779-04

H6779-06

H6780

H6780-01

H6780-03

H6780-04

H6780-06

H5784

H5784-01

H5784-03

H5784-04

H5784-06

Spectral Response

Range

(nm)

300 to 650

300 to 820

185 to 650

185 to 820

185 to 650

300 to 650

300 to 820

185 to 650

185 to 820

185 to 650

300 to 650

300 to 820

185 to 650

185 to 820

185 to 650

TPMHB0443EA

Peak

Wavelength

λp

(nm)

420

420

420

Outline

No.

Radiant

at 420nm

(at +0.8V)

(Note1)

Note1: H6779/H6780 series ... (μA/nW) H5784 series ... (V/nW)

Note2: H6779/H6780 series ... (nA) H5784 series ... Output Offset (mV)

Note3: H6779/H6780 series ... (μA) H5784 series ... (V)

q

w

e

43

30

43

30

43

43

30

43

30

43

43

30

43

30

43

Anode

Dark

Current

(at +0.8V)

(Note2)

0.2

0.4

0.2

0.4

0.2

0.2

0.4

0.2

0.4

0.2

±3

±3

±3

±3

±3

Anode

Pulse

Rise Time

(at +0.8V)

(ns)

Supply

Voltage

(Vdc)

0.78 +11.5 to +15.5

0.78


+11.5 to +15.5

±11.5 to ±15.5

Recommended

Control

Voltage

Range

(V)

+0.25 to +0.95

+0.25 to +0.95

±0.25 to ±0.95

Max.

Supply

Voltage

(Vdc)

+18

+18

±18

Max.

Output

(Note 3)

100

100

10

(at 25°C)

Configuration

PC-board

mounting type

Cable output type

Cable output type

DC to 20kHz

There are the other types of much lower current consumption modules which are H5773 and

H5783 series.

When the system with the photosensor will require the current consumption low, H5773 and

H5783 series are suitable modules, although these types have rather higher ripple noise (current)

and longer settling time than new series.

The H6779 / H6780 / H5784 series are light sensor modules including a compact photomultiplier tube (Metal Package PMT) and operating

power supply. The H6779 series are on-board types which facilitates mounting directly on a printed circuit board and H6780 series have a

cable output. The H5784 series have a low noise amplifier with a cable output.

H6779/H6780/H5784 Series Typical Spectral Response

ANODE RADIANT SENSITIVITY

(µA/nW for H6779/H6780SERIES)

(V/nW for H5784SERIES)

10 2

10 1

10 0

10-1

10-2

100

-06TYPE

-03TYPE

CONTROL VOLTAGE: +0.8V

WAVELENGTH (nm)

H6779/H6780/H5784

200 300 400 500 600 700 800 900

ANODE RADIANT SENSITIVITY

(µA/nW for H6779/H6780SERIES)

(V/nW for H5784SERIES)

102 TPMHB0444EA

10 1

10 0

10-1

10-2

100

-04 TYPE

-01TYPE

CONTROL VOLTAGE: +0.8V

WAVELENGTH (nm)

H6779/H6780/H5784

200 300 400 500 600 700 800 900

q H6779 Series

w H6780 Series

e H5784 Series

68 69

15.24

22 ± 0.5

14 ± 0.2

Top View

12 ± 1 18 ± 0.5 25 ± 0.5

1.5 ± 0.2

12.5

("-06" TYPE:

0 ± 0.2)

10

4-M2 DEPTH: 4

50 ± 0.5

14 ± 0.2

11.5

EFFECTIVE AREA 8

22 ± 0.5

14 ± 0.2

Top View

10

14 ± 0.2

Top View

10

EFFECTIVE AREA 8

WINDOW

Side View

50 ± 0.5

4-M2 DEPTH: 4

1.5 ± 0.2

("-06" TYPE: 0 ± 0.2)

WINDOW

EFFECTIVE AREA 8

4-M2 DEPTH: 4

Side View

60 ± 0.5

1.5 ± 0.2

("-06" TYPE: 0 ± 0.2)

WINDOW

Side View

1

450 ± 10

15.24

450 ± 10

Pin Connection

q

i

12.7 5.08 17.78 5.08

u y

Bottom View

w e

t r

(Unit: mm)

q NC

w Vref (+1.2V)

e Vcontrol (0 to+1.0V)

r Vcc (+15V)

t GND

y SIGNAL GND

u ANODE OUT

i NC

(NC : NO CONNECTION)

TPMHA0197EC

VCC : AWG22 (RED,+15V)

GND : AWG22 (BLACK)

Vref : AWG22 (BLUE,+1.2V)

Vcontrol : AWG22 (WHITE,0 to+1.0V)

ANODE OUT : RG-174/U

TPMHA0198EC

Vcc : AWG22 (RED,+15V)

Vee : AWG22 (GREEN,-15V)

GND : AWG22 (BLACK)

Vref : AWG22 (BLUE,+1.2V)

Vcontrol : AWG22 (WHITE,0 to+1.0V)

ANODE OUT : RG-174/U

TPMHA0288EB