27.08.2013 Views

The Scarcity Trap: material bottlenecks The Scarcity Trap: material ...

The Scarcity Trap: material bottlenecks The Scarcity Trap: material ...

The Scarcity Trap: material bottlenecks The Scarcity Trap: material ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

School SRI and of iRI something<br />

FACULTY FACULTIES FACULTY FACULTIES OF OF OTHER ENVIRONMENT and d ENGINEERING<br />

<strong>The</strong> <strong>Scarcity</strong> <strong>Trap</strong>: <strong>material</strong> <strong>bottlenecks</strong><br />

on the road to low-carbon infrastructure<br />

Phil Purnell (iRI (iRI, School of Civil Engineering)<br />

Katy Roelich (iRI & SRI, School of Earth & Environment)<br />

Julia Steinberger (SRI)<br />

DDavid id D Dawson (iRI) (iRI), JJonathan th BBusch h (SRI)<br />

Resilience and Society: Energy Infrastructure: U Northumbria, 26 Apr 2012


Changing infrastructure<br />

• 500 projects; £250 billion<br />

• environmental impacts –<br />

reducing the carbon intensity<br />

• <strong>The</strong> nature of our national<br />

infrastructure needs to be a<br />

primary driver in the move<br />

towards a low carbon<br />

economy …infrastructure<br />

must also be adaptable… to<br />

meet changing demand<br />

through the adoption of new<br />

technologies and <strong>material</strong>s<br />

2


Changing <strong>material</strong> mix<br />

• Embedding new low CO 2<br />

technology will introduce<br />

critical <strong>material</strong>s into<br />

infrastructure: e.g.<br />

• Nd - motors/generators for wind<br />

turbines & electric vehicles<br />

• Cr –low CO 2 reinforced concrete<br />

• Not just elements: e.g. aggregates,<br />

components, lubricants,<br />

polymers polymers…<br />

http://www.cathodic.co.uk/information/19/14/Elgard_General_Information.htm<br />

3


Changing <strong>material</strong> mix<br />

• Scale of infrastructure means<br />

that change in demand can be<br />

a step-change g<br />

• Multiples, not fractions<br />

• eg e.g. low CO 2 concrete: move to 50%<br />

stainless steel rebar would double EU Cr<br />

imports; move to 10% Ti-based cathodic<br />

protection p could x10 EU Ti imports. p<br />

• Previously abundant <strong>material</strong>s<br />

may y become critical<br />

http://www.cathodic.co.uk/information/19/14/Elgard_General_Information.htm<br />

4


Cr Cr: : India,<br />

Kaz’stan Kaz’stan, , Iran<br />

Cr Cr: : SA,<br />

Zimbabwe<br />

Nd Nd: : China<br />

(97%)<br />

• Vulnerability<br />

Vulnerability: EU/UK are often 100% importers<br />

• Passive/reactive price & supply volatility: Geopolitical<br />

issues<br />

Map source: http://ec.europa.eu/commission_2010-2014/tajani/hot-topics/raw-<strong>material</strong>s/index_en.htm 5


Geopolitics<br />

“<strong>The</strong> US and the EU<br />

asked Beijing to clarify<br />

its policy on mineral<br />

exports after China<br />

stopped shipping to<br />

Japan.<br />

“<strong>The</strong> stoppage followed<br />

a spat between China<br />

and Japan last month<br />

over islands whose<br />

ownership is disputed disputed.<br />

”<br />

6


How do we assure supply?<br />

• Strategic stockpiling<br />

• Trade agreements<br />

• Recycling<br />

• collection vs. “mining<br />

iinfrastructure” f t t ”<br />

• urban mining, urban ores,<br />

urban concentrates…<br />

concentrates “Some Some metal has more<br />

• where, when, in what state<br />

are aetthe estoc stocks? s<br />

on‐surface stock than<br />

underground stock”<br />

K HALADA, National Institute for<br />

Materials Science, Japan<br />

7


Existing models: Stocks & Flows<br />

8


S&F Limitations<br />

• One substance at a time<br />

• Existing infrastructure = aggregate stock of a<br />

given substance; no information on location<br />

• Properties or qquality alit of the ssubstances bstances (e (e.g. g<br />

Cr as element or alloy) are not generally<br />

explicitly accounted for for.<br />

9


<strong>The</strong> Project: A New Model<br />

• the flow of <strong>material</strong>s into & out of infrastructure;<br />

• the stocks of <strong>material</strong>s contained within<br />

infrastructure infrastructure, during operation and demolition;<br />

• the location and properties of these <strong>material</strong>s and<br />

the components they are a part of;<br />

• the criticality of key <strong>material</strong>s, in terms of<br />

ssubstitutability bstit tabilit and ssupply ppl risks risks;<br />

• the interactions between these factors.<br />

10


2<strong>The</strong> 2<strong>The</strong> Project: Methodology<br />

11


2Potential 2Potential<br />

initial case studies<br />

• Low carbon concretes • Move to wind power, p tidal<br />

(Halcrow)<br />

generation etc (Halcrow)<br />

• Move to fibre optic control and<br />

HVDC in power distribution<br />

(National Grid)<br />

• New rail electrification<br />

(Halcrow)<br />

• Move to electric vehicles<br />

(U.Newcastle)<br />

• Energy Storage – bulk vs<br />

decentralised (National Grid)<br />

• Underground U degoudvss overground<br />

o egoud conducters (National Grid)<br />

• Treatment at source vs<br />

centralised treatment, anaerobic<br />

digestion & CHP<br />

(United Utilities/Halcrow)<br />

• Zero-carbon buildings (Arup)<br />

• Active comms on road<br />

infrastructure (Halcrow)<br />

• Decision matrix…<br />

12


2Scoring 2Scoring<br />

criteria<br />

• Data availability – S&F of <strong>material</strong>s and components<br />

• Technical competence – expertise within team<br />

• Scale Scale, likelihood & specificity of intervention<br />

• Collaborators on board<br />

• Politics Politics, novelty and impact in multiple sectors – the<br />

‘wow’ factor<br />

• Cross-over with known criticalities or scarcities<br />

• Complexity vs simplicity – system boundary clearly<br />

defined?<br />

13


2Chosen 2Chosen<br />

case studies<br />

Key factors: data, scenarios, <strong>material</strong>s criticality<br />

Wind turbines + low-CO2 reinforced<br />

concrete<br />

Electric vehicles<br />

14


Model Structure<br />

Infrastructure Technology Materials<br />

Abstract<br />

Structure: Components:<br />

Materials<br />

stock of the<br />

physical physical stock<br />

stocks<br />

required<br />

stock of infra- of infrastructure contained in<br />

service level structure that parts p that<br />

both<br />

directly indirectly<br />

infrastructure<br />

supplies the provide the<br />

and<br />

service service<br />

components<br />

15


Case study: wind power<br />

Infrastructure Technology Materials<br />

Wind Power Structures: Components: Neodymium<br />

Onshore and Permanent<br />

offshore wind magnet<br />

turbines generators g<br />

(PMGs); non-<br />

PMGs<br />

Excluded: Transmission; Other renewables generation<br />

16


Model Structure: dynamic S&F<br />

Infrastructure Technology Materials<br />

Infrastructure<br />

stock<br />

K (i) (t)<br />

I (s) (t) I (c) (t) I (m) (t)<br />

Structure<br />

stock<br />

K (s) (t)<br />

Component<br />

stock<br />

K (c) (t)<br />

Materials<br />

stock<br />

K (m) (t)<br />

O (s) (t) O (c) (t) O (m) (t)<br />

17


Model Structure: lifetimes<br />

Infrastructure Technology Materials<br />

Infrastructure<br />

stock<br />

K (i) (t)<br />

Technolog T gy mix<br />

I (s) (t) I (c) (t) I (m) (t)<br />

Structure<br />

stock<br />

K (s) (t)<br />

Compone C nt mix<br />

Component<br />

stock<br />

K (c) (t)<br />

Material M inntensity<br />

Materials<br />

stock<br />

K (m) (t)<br />

O (s) (t) O (c) (t) O (m) (t)<br />

St Structure t lifetime lif ti CComponent t lif lifetime ti MMaterial t i l lif lifetime ti<br />

L (s) (t, t 0)<br />

L (c) (t, t 0)<br />

L (m) (t, t 0)<br />

18


Scenario input: wind power<br />

Scenarios also contain<br />

technology mix (from<br />

which <strong>material</strong>s mix is<br />

derived)<br />

~ current UK electricity capacity<br />

Future UK wind generation<br />

(DECC, 2010)<br />

19


Results – Nd demand<br />

Annual UK Neodymium demand from wind<br />

power technology<br />

20


Results – Nd demand (


Future Additions: Criticality?<br />

Share of o world Ndd<br />

productioon<br />

5%<br />

4%<br />

3%<br />

2%<br />

1%<br />

UK Low Carbon Technology Share of World Production<br />

0%<br />

2010 2015 2020 2025 2030 2035 2040 2045 2050<br />

Wi Wind d % prod d<br />

Car % prod<br />

Combined %<br />

22


Scenario input – electric vehicles<br />

~ current UK vehicles registered<br />

Future UK electric vehicles (total)<br />

23


Results – Li demand<br />

24


Results – Pt potential recyclate<br />

Lowest annual peak is<br />

equivalent to<br />

£6 billion (present<br />

market k t price) i )<br />

25


2Summary 2Summary<br />

• Potential for low-CO low CO 2 infrastructure roll-out roll out to be disrupted<br />

by <strong>material</strong>s criticality: thus assessments of vulnerability<br />

need to be inniiated to inform policy decisions<br />

• Enhanced stocks & flows models can highlight likely<br />

criticalities: advanced models will enumerate vulnerability<br />

• AAs well ll as ‘ ‘scare stories’, t i ’ potential t ti l ffor significant i ifi t resource<br />

recovery from the infrastructure can also be identified<br />

• Work in progress progress…<br />

26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!