23.10.2012 Views

(1) I - Research Group in Mathematical Inequalities and Applications

(1) I - Research Group in Mathematical Inequalities and Applications

(1) I - Research Group in Mathematical Inequalities and Applications

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

NOTE ON MATHIEU’S INEQUALITY<br />

BAI-NI GUO<br />

Abstract. In this note, us<strong>in</strong>g the <strong>in</strong>tegral expression of Mathieu’s series <strong>and</strong> <strong>in</strong>equalities for<br />

Fourier s<strong>in</strong>e transformation, we establish some new <strong>in</strong>equalities for Mathieu’s series.<br />

The Mathieu’s series is first def<strong>in</strong>ed <strong>in</strong> [7] as<br />

∞�<br />

S(r) =<br />

1. Introduction<br />

n=1<br />

2n<br />

(n2 + r2 , r > 0. (1)<br />

) 2<br />

In 1890, Mathieu [7] conjectured that S(r) < 1/r 2 . In [6], Makai proved<br />

1<br />

r 2 + 1/2<br />

The <strong>in</strong>tegral expression of Mathieu’s series (1) was given <strong>in</strong> [3, 4] by<br />

S(r) = 1<br />

r<br />

� ∞<br />

0<br />

1<br />

< S(r) < . (2)<br />

r2 x s<strong>in</strong>(rx)<br />

e x −1<br />

Recently, H. Alzer, J. L. Brenner <strong>and</strong> O. G. Ruehr <strong>in</strong> [1] obta<strong>in</strong>ed<br />

dx. (3)<br />

1<br />

x2 1<br />

< S(x) <<br />

+ 1/(2ζ(3)) x2 , (4)<br />

+ 1/6<br />

where ζ denots the zeta function.<br />

The study of Mathieu’s series <strong>and</strong> its <strong>in</strong>equalities has a rich literature, many <strong>in</strong>terest<strong>in</strong>g ref<strong>in</strong>ements<br />

<strong>and</strong> extensions of Mathieu’s <strong>in</strong>equality can be found <strong>in</strong> [1]–[9].<br />

In this paper, us<strong>in</strong>g the <strong>in</strong>tegral expression (3) of Mathieu’s series <strong>and</strong> <strong>in</strong>equalities for Fourier<br />

s<strong>in</strong>e transformation, we will establish some new <strong>in</strong>equalities for Mathieu’s series.<br />

2. Ma<strong>in</strong> Results<br />

We first calculate the <strong>in</strong>tegral of Mathieu’s series on (0, +∞).<br />

Proposition 1. The <strong>in</strong>tegral of the Mathieu’s series on the <strong>in</strong>f<strong>in</strong>ity <strong>in</strong>terval (0, +∞)<br />

� ∞<br />

0<br />

S(r) dr = π3<br />

. (5)<br />

12<br />

1991 Mathematics Subject Classification. Primary 33E20, 40A30; Secondary 26A48, 26D15.<br />

Key words <strong>and</strong> phrases. Inequality, <strong>in</strong>tegral expression, Mathieu’s series, Fourier s<strong>in</strong>e transformation.<br />

The author was supported <strong>in</strong> part by NSF of Henan Prov<strong>in</strong>ce (no. 004051800), SF for Pure <strong>Research</strong> of the<br />

Education Committee of Henan Prov<strong>in</strong>ce (no. 1999110004), <strong>and</strong> Doctor Fund of Jiaozuo Institute of Technology,<br />

The People’s Republic of Ch<strong>in</strong>a.<br />

This paper was typeset us<strong>in</strong>g AMS-LATEX.<br />

1


2 BAI-NI GUO<br />

Proof. It is well-known [11, p. 269 <strong>and</strong> p. 332] that, for any µ > 0, we have<br />

� ∞<br />

0<br />

x<br />

ex π2<br />

dx =<br />

−1 6 ,<br />

� ∞<br />

0<br />

s<strong>in</strong> x<br />

x<br />

dx =<br />

� ∞<br />

0<br />

s<strong>in</strong>(µx)<br />

x<br />

dx = π<br />

. (6)<br />

2<br />

Therefore, from formula (3), the <strong>in</strong>tegral of Mathieu’s series S(r) on the <strong>in</strong>terval (0, +∞) equals<br />

� ∞ � ∞<br />

x<br />

S(r) dr =<br />

ex �� ∞ �<br />

s<strong>in</strong>(rx)<br />

dr dx<br />

−1 r<br />

0<br />

= π<br />

2<br />

0<br />

� ∞<br />

= π3<br />

12 .<br />

The proof of Proposition 1 is complete.<br />

0<br />

0<br />

x<br />

e x −1 dx<br />

Corollary 1. The value ζ(3) of the zeta function ζ at po<strong>in</strong>t 3 satisfies<br />

ζ(3) < π4<br />

. (7)<br />

72<br />

Proof. Integrat<strong>in</strong>g the left h<strong>and</strong> side of <strong>in</strong>equalities (4) on the <strong>in</strong>terval (0, +∞) yields<br />

π �<br />

2ζ(3) =<br />

2<br />

� ∞<br />

This completes the proof of Corollary 1.<br />

0<br />

dx<br />

x 2 + 1/(2ζ(3)) <<br />

� ∞<br />

0<br />

S(x) dx = π3<br />

12 .<br />

In order to obta<strong>in</strong> our ma<strong>in</strong> result, the follow<strong>in</strong>g lemma is necessary.<br />

Lemma 1 ([2, pp. 89–90]). If f ∈ L([0, ∞)) with lim f(t) = 0, then<br />

t→∞<br />

∞�<br />

(−1) k � ∞<br />

∞�<br />

f(kπ) < f(t) cos t dt < (−1) k f(kπ), (8)<br />

∞�<br />

(−1) k f<br />

k=0<br />

k=1<br />

��<br />

k + 1<br />

� �<br />

π <<br />

2<br />

Our ma<strong>in</strong> result is as follows.<br />

Theorem 1. If r > 0, then<br />

π<br />

r3 ∞� (−1) k�k + 1<br />

�<br />

� 2 � <<br />

π/r − 1<br />

k=0<br />

Proof. S<strong>in</strong>ce<br />

exp �� k + 1<br />

2<br />

<strong>and</strong>, for fixed r > 0, let f(t) =<br />

∞�<br />

n=1<br />

0<br />

� ∞<br />

0<br />

k=0<br />

f(t) s<strong>in</strong> t dt < f(0) +<br />

2n<br />

(n2 + r2 1<br />

<<br />

) 2 r2 �<br />

1 + π<br />

r<br />

S(r) = 1<br />

� ∞<br />

r 0<br />

= 1<br />

r3 � ∞<br />

0<br />

x s<strong>in</strong>(rx)<br />

ex −1 dx<br />

t s<strong>in</strong> t<br />

e t/r −1 dt,<br />

t<br />

et/r , then f ∈ L([0, ∞)),<br />

−1<br />

lim f(t) = lim<br />

t→∞ t→∞<br />

∞�<br />

(−1) k f<br />

k=0<br />

∞�<br />

k=0<br />

��<br />

k + 1<br />

� �<br />

π . (9)<br />

2<br />

(−1) k�k + 1<br />

� �<br />

� 2 � . (10)<br />

π/r − 1<br />

exp �� k + 1<br />

2<br />

(11)<br />

t<br />

et/r = 0, (12)<br />

−1


therefore, us<strong>in</strong>g <strong>in</strong>equalities <strong>in</strong> (9), we have<br />

1<br />

r2 ∞� (−1) k�k + 1<br />

�<br />

2 π/r<br />

� � < S(r) <<br />

π/r − 1 1<br />

r2 �<br />

∞�<br />

1 +<br />

k=0<br />

The proof is complete.<br />

Open Problem. Let<br />

exp �� k + 1<br />

2<br />

NOTE ON MATHIEU’S INEQUALITY 3<br />

S(r, t) =<br />

∞�<br />

n=1<br />

k=0<br />

where t > 0 <strong>and</strong> r > 0.<br />

Can one get an <strong>in</strong>tegral expression of S(r, t) similar to (3)?<br />

(−1) k�k + 1<br />

� �<br />

2 π/r<br />

� � .<br />

π/r − 1<br />

exp �� k + 1<br />

2<br />

2n<br />

(n2 + r2 , (13)<br />

) t+1<br />

References<br />

[1] H. Alzer, J. L. Brenner, <strong>and</strong> O. G. Ruehr, On Mathieu’s <strong>in</strong>equality, J. Math. Anal. Appl. 218 (1998), 607–610.<br />

[2] P. S. Bullen, A Dictionary of <strong>Inequalities</strong>, Addison Wesley Longman Limited, 1998.<br />

∞�<br />

[3] A. Elbert, Asymptotic expansion <strong>and</strong> cont<strong>in</strong>ued fraction for Mathieu’s series, Period. Math. Hungar. 13 (1982),<br />

no. 1, 1–8.<br />

[4] O. E. Emersleben, Über die Reihe k(k<br />

k=1<br />

2 + c2 ) −2 , Math. Ann. 125 (1952), 165–171.<br />

[5] Ji-Chang Kuang, Applied <strong>Inequalities</strong>, 2nd edition, Hunan Education Press, Changsha City, Ch<strong>in</strong>a, 1993.<br />

(Ch<strong>in</strong>ese)<br />

[6] E. Makai, On the <strong>in</strong>equality of Mathieu, Publ. Math. Debrecen 5 (1957), 204–205.<br />

[7] E. Mathieu, Traité de physique mathématique, VI–VII: Théorie de l’élasticité des corps solides, Gau-<br />

thier-Villars, Paris, 1890.<br />

[8] D. S. Mitr<strong>in</strong>ović, Analytic <strong>Inequalities</strong>, Spr<strong>in</strong>ger, New York, 1970.<br />

[9] D. S. Mitr<strong>in</strong>ović, J. E. Pečarić, <strong>and</strong> A. M. F<strong>in</strong>k, Classical <strong>and</strong> New <strong>Inequalities</strong> <strong>in</strong> Analysis, Kluwer Academic<br />

Publishers, Dordrecht, 1993.<br />

[10] D. C. Russell, A note on Mathieu’s <strong>in</strong>equality, Æquationes Mathematicæ, 36 (1988), 294–302.<br />

[11] Feng-Wu Zou, Zhong-Zhu Liu, <strong>and</strong> Huai-Chun Zhou, Collection of Integral Formulae (Jifen Biao Huibian),<br />

Space Navigation Press, Beij<strong>in</strong>g, Ch<strong>in</strong>a, 1992. (Ch<strong>in</strong>ese)<br />

Department of Mathematics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, The<br />

People’s Republic of Ch<strong>in</strong>a

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!