01.10.2013 Views

What is vacuum?

What is vacuum?

What is vacuum?

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Lecture 6: Vaccum & plasmas<br />

Outline<br />

• <strong>What</strong> <strong>is</strong> <strong>vacuum</strong>?<br />

• Why <strong>vacuum</strong>?<br />

• Basic <strong>vacuum</strong> theory<br />

• Overview of <strong>vacuum</strong> system & components<br />

• Generation of <strong>vacuum</strong>:<br />

Vacuum pumps<br />

• Measuring <strong>vacuum</strong>:<br />

Vacuum gauges<br />

• Practical <strong>vacuum</strong> advice<br />

• <strong>What</strong> <strong>is</strong> a glow d<strong>is</strong>charge or plasma?<br />

• Why glow d<strong>is</strong>charge?<br />

• Types of glow d<strong>is</strong>charges: DC, RF<br />

• High density plasmas: Magnetically confined, ECR, ICP


<strong>What</strong> <strong>is</strong> <strong>vacuum</strong>?<br />

General definition<br />

• <strong>vacuum</strong> = empty space, from vacuus = [Latin] empty<br />

Scientific definitions<br />

• A pressure lower than atmospheric, in an enclosed area.<br />

• A space in which the pressure <strong>is</strong> significantly lower than<br />

atmospheric pressure.<br />

• A condition in which the quantity of atmospheric gas present <strong>is</strong><br />

reduced to the degree that, for the process involved its effect can be<br />

considered negligible.


Why <strong>vacuum</strong>?<br />

• Control a chemical reaction.<br />

Reaction rate, concentration, etc.<br />

• Create suitable condition for plasmas.<br />

~mbar<br />

• Long mean free path.<br />

Physical vapor deposition, cathode ray tube (CRT), etc.<br />

• Cavity free manufacturing.<br />

Vacuum mould, <strong>vacuum</strong> cast, <strong>vacuum</strong> package, etc.<br />

• Create forces and flows.<br />

Vacuum pick-up, <strong>vacuum</strong> cleaner, etc.


Ideal gas law<br />

• Experimentally found by Robert Boyle and publ<strong>is</strong>hed 1662.<br />

pV =<br />

nRT<br />

p = pressure<br />

V = volume<br />

n = number of gas molecules<br />

R = universal gas constant<br />

T = temperature<br />

• Works well for sub atmosphere pressure and normal temperature.<br />

• For better accuracy use a correction factor q(p,T). (gas specific)


Kinetic gas theory<br />

A theory that could explain Robert Boyle’s experimental results.<br />

The gas molecules…<br />

• …are treated as hard spheres.<br />

• …are many, small, and far apart compared to their size.<br />

• …collide elastically with walls and each other.<br />

• …moves randomly with constants speed between coll<strong>is</strong>ions.<br />

• …obey Newton’s laws of motion.


Gas molecule speed d<strong>is</strong>tribution<br />

P<br />

Derived from kinetic gas theory<br />

() v<br />

⎡<br />

= 4π<br />

⎢<br />

⎣<br />

m<br />

2πkT<br />

⎤<br />

⎥<br />

⎦<br />

3<br />

2<br />

v<br />

2<br />

e<br />

−mv<br />

v = gas molecule speed<br />

m = gas molecule mass<br />

k = Boltzmann’s constant<br />

2<br />

2kT


v rms<br />

=<br />

Gas molecule speed & mean free path<br />

Derived from kinetic gas theory<br />

3kT<br />

m<br />

v rms = root mean square velocity<br />

λ =<br />

kT<br />

2π<br />

d<br />

2<br />

p<br />

λ = mean free path<br />

d = gas molecule diameter


Ultra-high <strong>vacuum</strong><br />

High <strong>vacuum</strong><br />

Fore <strong>vacuum</strong><br />

Low <strong>vacuum</strong><br />

General <strong>vacuum</strong> chart<br />

Mean<br />

free path<br />

Air<br />

pressure<br />

[mbar]<br />

1km<br />

100 m<br />

10 m<br />

1m<br />

1dm<br />

1cm<br />

1mm<br />

10 -13<br />

10 -12<br />

10 -11<br />

10 -10<br />

10 -9<br />

10 -8<br />

10 -7<br />

10 -6<br />

10 -5<br />

10 -4<br />

10 -3<br />

10 -2<br />

10 -1<br />

1<br />

10<br />

Altitude<br />

500 km<br />

200 km<br />

100 km<br />

50 km<br />

Application<br />

Advanced scientific research<br />

1000 km Space simulation<br />

High <strong>vacuum</strong> vapor deposition<br />

Industrial hard coating<br />

Space begins<br />

Incandescent lamp manufacturing<br />

Vacuum packaging<br />

100 11 km Commercial jet(250 mbar)<br />

8848 m Mt. Everest (320 mbar)<br />

1000 0m Sea level (1013 mbar)


m<br />

1<br />

10 -1<br />

10 -2<br />

D<br />

10 -5<br />

Molecular<br />

flow<br />

10 -4<br />

10 -3<br />

Intermediate<br />

Gas flow regimes<br />

10 -2<br />

• Mean free path < wall d<strong>is</strong>tance<br />

• Flow limited by molecule-molecule coll<strong>is</strong>ions<br />

• Gas <strong>is</strong> “pushed” around corners<br />

V<strong>is</strong>cous<br />

flow<br />

P<br />

10-1 1 mbar<br />

• Mean free path > wall d<strong>is</strong>tance<br />

• Flow limited by molecule-wall coll<strong>is</strong>ions<br />

• High conductance requires free line-of-sight over large solid angle


C = Q / (P – P p )<br />

S p = Q / P p<br />

3.6 m 3 /h = 1 l/s<br />

P<br />

P p<br />

Gas flow rates<br />

Q = 60sccm = 1 mbar l/s<br />

Q<br />

Q = Gas flow<br />

P = Pressure<br />

P p = Pump inlet pressure<br />

C = Conductance<br />

S p = Pumping speed<br />

Commonly:<br />

Process gas flow [sccm]<br />

Gas leaks [mbar l/s]<br />

Fore <strong>vacuum</strong> pumps [m 3 /h]<br />

High <strong>vacuum</strong> pumps [l/s]


Electrical feedthrough<br />

Ceramics<br />

Chamber walls<br />

Stainless steel<br />

Aluminum<br />

Vacuum system<br />

Motion feedthrough<br />

Metal bellows<br />

Magnetic coupled<br />

Elastomer O-ring<br />

Ferro-fluidic<br />

Windows<br />

Borosilicate glass<br />

Quartz<br />

Sapphire<br />

MgF<br />

Ceramics Flange seal<br />

Elastomer O-ring<br />

Metal seal<br />

Pump<br />

Gauge


Not shown<br />

Intermediate pump<br />

Roots<br />

Fore <strong>vacuum</strong> pump<br />

(Backing pump)<br />

Rotary vane<br />

Scroll<br />

Diaphragm<br />

Generation of <strong>vacuum</strong><br />

High <strong>vacuum</strong><br />

10 -5 -10 -11? mbar<br />

Process gas inlet<br />

Fore <strong>vacuum</strong><br />

10 0 -10 -3 mbar<br />

High <strong>vacuum</strong> pump<br />

Turbo<br />

Cryo<br />

Diffusion<br />

Ion<br />

Atmospheric pressure<br />

Exhausts


B<br />

A<br />

A<br />

Rotary vane pump<br />

• Very common fore <strong>vacuum</strong>- and general<br />

<strong>vacuum</strong> pump.<br />

• Typically 1 or 2 stage configuration.<br />

• Gas <strong>is</strong> moved by rotating vanes.<br />

• Oil <strong>is</strong> used as seal, lubricant, and coolant.<br />

B<br />

A<br />

B<br />

B<br />

A


Rotary vane pump<br />

+ High capacity from 10 3 to ~10 -2 mbar.<br />

- Potential back streaming of oil into <strong>vacuum</strong><br />

chamber.


Scroll pump<br />

• Moving scroll orbiting a fixed scroll.<br />

• Compressed gas volume pushed towards<br />

center outlet.


+ Oil free<br />

+ Reliable, low maintenance.<br />

Scroll pump<br />

- Low to medium capacity (10 3 to ~10 -2 mbar)


Diaphragm pump<br />

+ Oil free<br />

+ Reliable, low maintenance.<br />

- Low capacity (10 3 to ~1 mbar)


Roots pump<br />

• Counter rotating blades moves gas<br />

volume.<br />

• No contact between surfaces → oil free<br />

operation.<br />

• Runs very hot without fore <strong>vacuum</strong><br />

pump.


Roots pump<br />

+ High capacity from 10 to ~10-4 mbar.<br />

(Medium capacity from 1000 to ~10 mbar)<br />

+ Oil free<br />

- Works best together with fore <strong>vacuum</strong> pump.


• Best pump capacity<br />

for heavy (slow) gas<br />

molecules.<br />

Turbo pump<br />

• Fast moving rotor (30k to 90k rpm) with<br />

several stages and many blades per stage.<br />

• High efficiency in the molecular regime<br />

where gas molecules collide with rotor blade<br />

and not each other.<br />

• Some modern pumps have magnetic,<br />

non-contact, bearings.<br />

Stator<br />

blade<br />

Rotor<br />

blade


Turbo pump<br />

+ High capacity from 10 -3 to ~10-8 mbar.<br />

+ Low maintainance.<br />

- Sudden large gas loads may cause severe,<br />

expensive damage.


Cryo pump<br />

Cool head with several plates (stages).<br />

The metal top side of the cool (12K)<br />

plates traps gas molecules by<br />

cryocondensation.<br />

The bottom side of the plates are<br />

coated with active charcoal and traps<br />

gas molecules by cryoadsorption.<br />

The cooling <strong>is</strong> done with a Helium<br />

filled refrigerator loop.<br />

He gas expender<br />

He gas compressor


Cryo pump<br />

+ Very High capacity down to ~10-9 mbar.<br />

+ No contamination.<br />

- Pump saturates if exposed to high pressure or<br />

continuous gas flow.<br />

- Need periodic regeneration of cool head.<br />

Gas Typical pumping speed<br />

[l/s]<br />

Water vapor 9000<br />

Air 3000<br />

Hydrogen 5000<br />

Argon 2500


Diffusion pump<br />

• Hot dense oil vapor <strong>is</strong> forced through<br />

central jets angled downward to give a<br />

conical curtain of vapor.<br />

• Gas molecules are knocked downwards<br />

and eventually reach the fore <strong>vacuum</strong><br />

pump.


Diffusion pump<br />

+ Simple pump without moving parts.<br />

+ High capacity from 10-3 to ~10-8 mbar.<br />

+ Low maintenance.<br />

- Needs cooled baffle to reduce oil contamination of<br />

<strong>vacuum</strong> chamber.


Ion pump<br />

Array of steel tubes<br />

Titanium plate<br />

Magnet<br />

• Free electrons move in helical trajectories towards<br />

the anode, ionizing gas molecules upon coll<strong>is</strong>ions.<br />

• Gas ions strike the Ti cathodes and some gets buried.<br />

• Sputtered Ti deposits inside the tubes and getters gas molecules<br />

through chemical reactions.<br />

B<br />

Ti<br />

U


Ion pump<br />

+ Simple pump without moving parts.<br />

+ Can work at very low pressure ~10 -11 mbar.<br />

+ Oil free.<br />

- Not suitable for gas loads.


Pumping speed diagram<br />

At what Argon gas load [sccm] can we maintain a pump inlet pressure of 1x10-4 mbar?<br />

= p ⋅ P S Q<br />

p<br />

= 3500⋅10<br />

−4<br />

mbar ⋅l<br />

=<br />

s<br />

0.<br />

35<br />

mbar ⋅l<br />

=<br />

s<br />

0.<br />

35⋅<br />

60 sccm<br />

=<br />

21sccm


Measuring <strong>vacuum</strong><br />

10 -12 10 -10 10 -8 10 -6 10 -4 10 -2 10 0<br />

[mbar]<br />

10 2<br />

Bourdon<br />

T/C<br />

Pirani<br />

Capacitive membrane<br />

McLeod<br />

Penning<br />

Schultz-Phelps Ion gauge<br />

Bayard-Apert Ion gauge<br />

Invert Magnetron<br />

RGA


Pirani <strong>vacuum</strong> gauge<br />

• A heated wire res<strong>is</strong>tor in a gauge tube.<br />

• A second wire res<strong>is</strong>tor in a closed reference tube.<br />

• The two wire res<strong>is</strong>tors are 2/4 of a Wheatstone bridge.<br />

• Higher pressure cools the wire and res<strong>is</strong>tance drops.<br />

• The pressure <strong>is</strong> measured from the<br />

unbalanced bridge .<br />

• Pirani gauge works well for pressure<br />

10 1 to ~10 -5 mbar.


Capacitive membrane gauge (CM)<br />

• The unknown pressure P x decide the position of the<br />

metal membrane electrode relative a fixed second<br />

electrode in a closed volume.<br />

• The electrode capacitance can be converted to<br />

pressure.<br />

• Gauge <strong>is</strong> usually calibrated at a pressure


Penning <strong>vacuum</strong> gauge<br />

• Penning gauge often cylindrical in shape.<br />

• DC d<strong>is</strong>charge generated by ~ 2kV.<br />

• Pressure converted from d<strong>is</strong>charge current.<br />

• Penning gauge works well for pressure 10 -2 to<br />

~10 -9 mbar.<br />

B<br />

Magnet<br />

U<br />

I<br />

~ 2kV


I<br />

I g<br />

Ion <strong>vacuum</strong> gauge<br />

• Electrons are emitted from a hot filament.<br />

• Electrons are attracted towards the positive<br />

grid but pass several times before captured.<br />

• Coll<strong>is</strong>ions with gas molecules creates ions<br />

that are collected on negative pin.<br />

• Pressure <strong>is</strong> converted from current I g .<br />

• Ion gauge works well for pressure 10 -4 to<br />

~10 -10 mbar.


Vacuum advice<br />

• The walls of a vented chamber can host a<br />

large amount of condensed matter. Mainly<br />

water.<br />

When the chamber <strong>is</strong> evacuated, the<br />

condensed matter evaporates from the walls.<br />

Th<strong>is</strong> process can prevent good <strong>vacuum</strong> for<br />

weeks.<br />

• Keeping the chamber warm when vented<br />

reduces the condensation on the walls.<br />

• Heating the walls of a evacuated chamber<br />

speed up evaporation rate x2 per 10ºC.<br />

• Do not try to compensate <strong>vacuum</strong> leaks with a<br />

larger pump. Find the leaks and fix them!


<strong>What</strong> <strong>is</strong> a glow d<strong>is</strong>charge?<br />

• Glow d<strong>is</strong>charge also called plasma<br />

• Plasma <strong>is</strong> partially ionized gas.<br />

• The glow <strong>is</strong> excess electromagnetic energy<br />

radiating from excited gas atoms and molecules.


Why glow d<strong>is</strong>charge?<br />

• Neutral particles are difficult to accelerate. Ions<br />

and electrons can be extracted from a glow<br />

d<strong>is</strong>charge and easily accelerated.<br />

• Accelerated inert ions are used for:<br />

Ion milling<br />

Sputter deposition<br />

• Accelerated reactive ions are used for:<br />

Reactive ion beam etching (RIBE)<br />

Reactive ion etching (RIE)<br />

• Accelerated ions can be filtered and counted:<br />

Residual gas analys<strong>is</strong> (RGA)


Why glow d<strong>is</strong>charge?<br />

• Radicals from a plasma <strong>is</strong> used for:<br />

Chemical vapor deposition (PECVD)<br />

Plasma etching<br />

• The electromagnetic radiation from a plasma <strong>is</strong> used for:<br />

General illumination (light tubes, …)<br />

Light sources for optical lithography<br />

LASERs


Glow d<strong>is</strong>charge processes<br />

• D<strong>is</strong>sociation<br />

e* + AB ⇔ A + B + e<br />

• Atomic ionization<br />

e* + A ⇔ A + + e + e<br />

• Molecular ionization<br />

e* + AB ⇔ AB + + e + e<br />

• Atomic excitation<br />

e* + A ⇔ A* + e<br />

• Molecular excitation<br />

e* + AB ⇔ AB* + e<br />

* <strong>is</strong> exited state


DC-plasma reactor<br />

Electrodes must have electrically conducting surfaces.<br />

Pressure<br />

1mTorr – 1Torr


Ionization<br />

DC-plasma reactor<br />

Anode<br />

Cathode<br />

Secondary<br />

electron em<strong>is</strong>sion


Glow, charge, & field d<strong>is</strong>tribution


RF-plasma reactor<br />

Electrically <strong>is</strong>olated electrode surfaces OK.<br />

13.56 MHz<br />

Pressure<br />

1mTorr – 1Torr


Area A 1<br />

DC-bias<br />

V 1 / V 2 ≈ (A 2 / A 1 ) 4<br />

Area A 2


Magnetically confined plasma<br />

Magnetron, commonly used for sputter deposition sources.


Water<br />

Water<br />

Inductively coupled plasma (ICP)<br />

Process gas inlet<br />

Antenna<br />

RF-gen<br />

Z-match Electrostatic shield<br />

Exhausts


B =<br />

e fm 2π<br />

0.<br />

09<br />

T<br />

Electron cyclotron resonance (ECR)<br />

9<br />

2π<br />

⋅2.<br />

54⋅10<br />

⋅9.<br />

3⋅10<br />

−19<br />

1.<br />

6⋅10<br />

=<br />

ω0<br />

=<br />

eB<br />

m<br />

=<br />

= 90 mT<br />

− 31<br />

T<br />

=<br />

2.45 GHz

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!