4 years ago



References 50 49.

References 50 49. Augello,A., Kurth,T.B. & De Bari,C. Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. Eur. Cell Mater. 20, 121- 133 (2010). 50. Lodish et al. Molecular Cell Biology. W.H. Freeman and Company, New York (2011). 51. Fuchs,E., Tumbar,T. & Guasch,G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769-778 (2004). 52. De Bari,C. et al. A biomarker-based mathematical model to predict boneforming potency of human synovial and periosteal mesenchymal stem cells. Arthritis Rheum. 58, 240-250 (2008). 53. Lymperi,S., Ferraro,F. & Scadden,D.T. The HSC niche concept has turned 31. Has our knowledge matured? Ann. N. Y. Acad. Sci. 1192, 12-18 (2010). 54. Liao,J. et al. Investigating the role of hematopoietic stem and progenitor cells in regulating the osteogenic differentiation of mesenchymal stem cells in vitro. J. Orthop. Res. (2011). 55. da Silva,M.L., Caplan,A.I. & Nardi,N.B. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26, 2287-2299 (2008). 56. Helmlinger,G., Yuan,F., Dellian,M. & Jain,R.K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med. 3, 177-182 (1997). 57. Colter,D.C., Class,R., DiGirolamo,C.M. & Prockop,D.J. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc. Natl. Acad. Sci. U. S. A 97, 3213-3218 (2000). 58. Haasters,F. et al. Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. J. Anat. 214, 759-767 (2009). 59. Packer,L. & Fuehr,K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267, 423-425 (1977). 60. Sen,C.K., Khanna,S. & Roy,S. Perceived hyperoxia: oxygen-induced remodeling of the reoxygenated heart. Cardiovasc. Res. 71, 280-288 (2006). 61. Chow,D.C., Wenning,L.A., Miller,W.M. & Papoutsakis,E.T. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I. Krogh's model. Biophys. J. 81, 675-684 (2001). 62. Chow,D.C., Wenning,L.A., Miller,W.M. & Papoutsakis,E.T. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys. J. 81, 685-696 (2001). 63. Holzwarth,C. et al. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC. Cell Biol. 11, 11 (2010).

References 51 64. Tamama,K. et al. Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition. J. Cell Biochem. 112, 804- 817 (2011). 65. He,J., Genetos,D.C., Yellowley,C.E. & Leach,J.K. Oxygen tension differentially influences osteogenic differentiation of human adipose stem cells in 2D and 3D cultures. J. Cell Biochem. 110, 87-96 (2010). 66. Merceron,C. et al. Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Am. J. Physiol Cell Physiol 298, C355-C364 (2010). 67. Raheja,L.F., Genetos,D.C. & Yellowley,C.E. The effect of oxygen tension on the long-term osteogenic differentiation and MMP/TIMP expression of human mesenchymal stem cells. Cells Tissues. Organs 191, 175-184 (2010). 68. Fehrer,C. et al. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6, 745- 757 (2007). 69. D'Ippolito,G., Diabira,S., Howard,G.A., Roos,B.A. & Schiller,P.C. Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39, 513-522 (2006). 70. Malladi,P., Xu,Y., Chiou,M., Giaccia,A.J. & Longaker,M.T. Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells. Am. J. Physiol Cell Physiol 290, C1139-C1146 (2006). 71. Volkmer,E. et al. Hypoxic preconditioning of human mesenchymal stem cells overcomes hypoxia-induced inhibition of osteogenic differentiation. Tissue Eng Part A 16, 153-164 (2010). 72. Franceschi,R.T., Ge,C., Xiao,G., Roca,H. & Jiang,D. Transcriptional regulation of osteoblasts. Ann. N. Y. Acad. Sci. 1116, 196-207 (2007). 73. Valorani,M.G. et al. Hypoxia increases Sca-1/CD44 co-expression in murine mesenchymal stem cells and enhances their adipogenic differentiation potential. Cell Tissue Res. 341, 111-120 (2010). 74. Carriere,A. et al. Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. J. Biol. Chem. 279, 40462-40469 (2004). 75. Grayson,W.L., Zhao,F., Bunnell,B. & Ma,T. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem. Biophys. Res. Commun. 358, 948-953 (2007). 76. Lin,Q., Lee,Y.J. & Yun,Z. Differentiation arrest by hypoxia. J. Biol. Chem. 281, 30678-30683 (2006). 77. Fink,T. et al. Induction of adipocyte-like phenotype in human mesenchymal stem cells by hypoxia. Stem Cells 22, 1346-1355 (2004).

author's contributions - HTML
PDF: download this presentation (313 kb) - ecopa
Download the Report - IVG Immobilien AG
Download - UNESCO Deutschland
Download the PDF - Stanford University Press
Download the PDF - Stanford University Press
Download article (PDF) -
Download - Learning Development Institute