12.10.2013 Views

A model of spray drift for the 21st Century - Defra

A model of spray drift for the 21st Century - Defra

A model of spray drift for the 21st Century - Defra

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <strong>model</strong> <strong>of</strong> <strong>spray</strong> <strong>drift</strong> <strong>for</strong> <strong>the</strong> 21 st <strong>Century</strong><br />

A <strong>model</strong> <strong>of</strong><br />

<strong>spray</strong> <strong>drift</strong> <strong>for</strong><br />

<strong>the</strong> 21 st <strong>Century</strong><br />

Clare Butler Ellis<br />

• Why do we need a <strong>spray</strong> <strong>drift</strong> <strong>model</strong><br />

• How <strong>the</strong> Silsoe <strong>spray</strong> <strong>drift</strong> <strong>model</strong> has been developed<br />

–The BREAM project<br />

• Potential <strong>model</strong> uses<br />

–Regulatory exposure assessment<br />

–Drift mitigation


Spray <strong>drift</strong> matters<br />

• Drifting pesticide is a problem <strong>for</strong> biodiversity, public health, water,<br />

sensitive neighbouring crops<br />

• By law, pesticide should be confined to <strong>the</strong> area to be treated<br />

• Regulatory process recognises that zero <strong>drift</strong> is not feasible and<br />

<strong>the</strong>re<strong>for</strong>e attempts to quantify and restrict exposure to <strong>spray</strong> <strong>drift</strong><br />

Spray <strong>drift</strong> highly dependent on<br />

• Environmental conditions<br />

• Application equipment<br />

• Application practice


Ignoring <strong>the</strong> factors that influence <strong>drift</strong><br />

in <strong>the</strong> risk assessment process:<br />

• Is <strong>of</strong>ten over-protective if a genuine worst case is used<br />

• Is sometimes under-protective if not<br />

• Risks exposure assessment becoming out <strong>of</strong> date if practice<br />

changes<br />

• Does not allow or encourage risk reduction through<br />

appropriate mitigation<br />

Silsoe Spray Drift Model<br />

• Specifically to address <strong>the</strong> issue <strong>of</strong> exposure <strong>of</strong><br />

bystanders/residents to <strong>spray</strong> <strong>drift</strong> from boom <strong>spray</strong>ers<br />

• BREAM project – 3 ½ years developing and validating a <strong>model</strong> <strong>of</strong><br />

exposure <strong>of</strong> people to <strong>spray</strong> and vapour<br />

• BREAM <strong>model</strong> uses <strong>the</strong> Silsoe <strong>spray</strong> <strong>drift</strong> <strong>model</strong>, and based around<br />

specific scenarios.


Development <strong>of</strong> Silsoe <strong>spray</strong><br />

<strong>drift</strong> <strong>model</strong><br />

• Original Silsoe <strong>spray</strong> <strong>drift</strong> <strong>model</strong> developed in 1980s and 1990s<br />

–Droplet tracking <strong>model</strong><br />

–Ballistic near nozzle; random walk fur<strong>the</strong>r downwind<br />

• Now updated<br />

–Includes multiple nozzles and a moving <strong>spray</strong>er<br />

–User-friendly interface <strong>for</strong> inputs<br />

• Specific ‘bystander’ scenarios<br />

–12 – 16 kph, 24 m boom<br />

–Bystanders 2 – 10 m from <strong>spray</strong>er<br />

Model validation<br />

• New data obtained<br />

• Ensure ‘high <strong>drift</strong>’ conditions are included<br />

• Commonly-used nozzle designs<br />

• Airborne and ground deposit<br />

• Bystander contamination


Ground deposit, ml/m2<br />

BREAM field measurements<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Ground deposit<br />

0 5 10<br />

Distance downwind, m<br />

15 20<br />

Standard flat fan<br />

nozzle<br />

Airborne <strong>spray</strong>, ml/m2<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Airborne <strong>spray</strong> 2 m downwind<br />

Comparison with<br />

experimental data<br />

0 0.5 1<br />

Height above ground, m<br />

1.5 2


Ground deposit, ml/m2<br />

Ground deposit, ml/m2<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

XR nozzle<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Ground deposit<br />

0 5 10<br />

Distance downwind, m<br />

15 20<br />

Air induction<br />

nozzle<br />

Airborne <strong>spray</strong>, ml/m2<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Ground deposit<br />

Airborne <strong>spray</strong> 2 m downwind<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

Height above ground, m<br />

0 5 10<br />

Distance downwind, m<br />

15 20<br />

Airbrorne <strong>spray</strong>, ml/m2<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Airborne <strong>spray</strong> at 2 m downwind<br />

0 0.5 1<br />

Height above ground, m<br />

1.5 2


Comparison between predicted and<br />

measured ground deposit – one field trial<br />

Predicted ground deposit,<br />

ml/m2<br />

0.01 0.1 1 10<br />

10<br />

1<br />

0.1<br />

0.01<br />

Measured ground deposit, ml/m2<br />

Comparison between predicted and<br />

measured mean airborne <strong>spray</strong> up to<br />

2.0 m height, measured 2.0 m downwind<br />

Predicted mean airborne<br />

<strong>spray</strong>, ml/m2<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

Measured mean airborne <strong>spray</strong>, ml/m2


Relationship between airborne <strong>spray</strong><br />

and bystander contamination<br />

Bystander contamination, ml<br />

10.00<br />

1.00<br />

0.01 0.10 1.00 10.00 100.00<br />

Modelling variability<br />

0.10<br />

0.01<br />

0.00<br />

Airborne <strong>spray</strong> integrated up to bystander height, ml/m<br />

• Uncertainty over relationship between airborne <strong>spray</strong> and bystander<br />

contamination<br />

• Wind turbulence/ variation<br />

– Short timescale, built into <strong>model</strong><br />

– Medium timescale (few seconds)<br />

– Long timescale (minutes or more)<br />

• Variation in <strong>spray</strong>er operation<br />

– Boom height<br />

– Forward speed – pressure – <strong>spray</strong> characteristics<br />

• Emulator being created to allow inputs to be selected from a distribution<br />

– Include boom height instability and medium timescale wind speed<br />

variation<br />

– Predicted bystander contamination has a distribution


Example <strong>of</strong> use <strong>for</strong> <strong>drift</strong> onto<br />

surface water<br />

• Currently data from Rautmann et al (2001) are used in regulatory<br />

process<br />

• Not necessarily representative <strong>of</strong> application practice across<br />

Europe<br />

–0.5 m boom<br />

–10 m boom width<br />

–6 km/h <strong>for</strong>ward speed<br />

• UK conditions now very different<br />

Rautmann et al (2001) ground deposit<br />

data<br />

Ground depost, % applied dose<br />

10.000<br />

1.000<br />

0.100<br />

0.010<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Distance downwind, m<br />

Rautmann mean values - error bars show 95th%ile


Model simulation: “04” nozzle, 6 km/h speed,<br />

0.5 m boom height, 2.0 m/s wind speed<br />

Ground depost, % applied dose<br />

Ground depost, % applied dose<br />

10.000<br />

1.000<br />

0.100<br />

0.010<br />

0.001<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Distance downwind, m<br />

Rautmann mean values - error bars show 95th%ile Model simulation - typical Rautmann conditions<br />

Typical UK scenario: “03” nozzle, 12 km/h<br />

speed, 0.7 m boom height, 2 m/s wind speed<br />

10.000<br />

1.000<br />

0.100<br />

0.010<br />

0.001<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Distance downwind, m<br />

Rautmann mean values - error bars show 95th%ile Model simulation - typical Rautmann conditions<br />

Model simulation - typical UK scenario


Higher <strong>drift</strong> conditions: “XR 03” nozzle, 16 km/h<br />

speed, 0.9 m boom height, 3 m/s wind speed<br />

Ground depost, % applied dose<br />

10.000<br />

1.000<br />

0.100<br />

0.010<br />

0.001<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Distance downwind, m<br />

Rautmann mean values - error bars show 95th%ile Model simulation - typical Rautmann conditions<br />

Model simulation - typical UK scenario Model simulation - higher <strong>drift</strong> conditions<br />

Potential uses <strong>for</strong> a <strong>spray</strong> <strong>drift</strong> <strong>model</strong>:<br />

• Model can be used to generate more appropriate data sets <strong>for</strong> regulation<br />

– Same <strong>model</strong> across EU<br />

– Different scenarios <strong>for</strong> member states<br />

• Model can be used to explore mitigation approaches<br />

– Distance (buffer zones)<br />

– Nozzle type<br />

– Application practice (boom height, <strong>for</strong>ward speed)<br />

• Empirical data relating <strong>spray</strong> <strong>drift</strong> to contamination <strong>of</strong> species will allow<br />

<strong>model</strong> to be used <strong>for</strong> all assessments <strong>of</strong> exposure to <strong>spray</strong> <strong>drift</strong>.


Conclusions<br />

• A <strong>model</strong> is essential <strong>for</strong> estimating exposures from <strong>spray</strong> <strong>drift</strong><br />

• The Silsoe <strong>spray</strong> <strong>drift</strong> <strong>model</strong> has been validated <strong>for</strong> UK conditions and can<br />

provide more realistic data than is currently used<br />

• The <strong>model</strong> can already be used <strong>for</strong> estimating exposures to bystanders<br />

and to surface water<br />

• Empirical data can be combined with <strong>model</strong> predictions to give estimates<br />

<strong>of</strong> all o<strong>the</strong>r non-target species’ exposure<br />

• Emulators can be developed to allow variability and uncertainty to be taken<br />

into account giving distributions <strong>of</strong> outputs<br />

Thanks to <strong>the</strong> team at Silsoe and<br />

Marc Kennedy, Helen Owen and Richard Glass at<br />

Fera.<br />

Work on <strong>the</strong> BREAM project was funded by<br />

CRD/<strong>Defra</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!