16.10.2013 Views

Bessel equation

Bessel equation

Bessel equation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Bessel</strong> <strong>equation</strong><br />

Jan Dereziński<br />

Department of Mathematical Methods in Physics<br />

University of Warsaw<br />

Ho˙za 74, 00-682, Warszawa, Poland<br />

March 28, 2013


3<br />

Chapter 1<br />

Modified <strong>Bessel</strong> <strong>equation</strong><br />

1.1 Modified <strong>Bessel</strong> <strong>equation</strong> and related <strong>equation</strong>s<br />

The modified <strong>Bessel</strong> <strong>equation</strong> has the form<br />

(z 2 ∂ 2 z + z∂z − z 2 − m 2 )v(z) = 0.<br />

One sometimes introduces the d-dimensional modified <strong>Bessel</strong> <strong>equation</strong><br />

Note the special cases<br />

d 1−<br />

z 2<br />

<br />

z 2 ∂ 2 z + z∂z − z 2 − (l + d/2 − 1) 2 d −1+<br />

z 2<br />

= (z 2 ∂ 2 z + (d − 1)z∂z + z 2 − l(l + d − 2)).<br />

z −m z 2 ∂ 2 z + z∂z − z 2 − m 2 z m<br />

= z z∂ 2 z + (1 + 2m)∂z − z , (1.1.1)


= z 2<br />

z 1 <br />

2 2 2<br />

z ∂z + z∂z − z 2 − m 2 1 −<br />

z 2<br />

<br />

∂ 2 z − 1 + 1/4 − m 2 1<br />

z 2<br />

More generally, √ tv(tδ ) = w(t) leads to the Schrödinger <strong>equation</strong> of the form<br />

<br />

∂2 t + (δtδ−1 ) 2 + ( 1<br />

4 − m2δ2 ) 1<br />

t2 <br />

+ 1 w(t) = 0. (1.1.2)<br />

Hence, if v 1<br />

ρ+1 is a solution of the modified <strong>Bessel</strong> <strong>equation</strong> with the parameter 1<br />

ρ+1 , then<br />

is a solution of<br />

1.2 Integral representations<br />

u(t) = √ tv 1<br />

ρ+1<br />

<br />

2 ρ<br />

t1+ 2<br />

ρ + 2<br />

(∂ 2 t + t ρ )u = 0.<br />

Theorem 1.2.1 <strong>Bessel</strong>–Schläfli type representations Let ]0, 1[∋ τ ↦→ γ(τ) be a contour such that<br />

<br />

z<br />

2 (t − t−1 <br />

z<br />

) + m exp<br />

2 (t + t−1 <br />

) t −m<br />

<br />

<br />

t=γ(1)<br />

= 0, (1.2.3)<br />

t=γ(0)<br />

Then <br />

γ<br />

<br />

.<br />

<br />

z<br />

exp<br />

2 (t + t−1 <br />

) t −m−1 dt (1.2.4)


Proof. We differentiate the integral with respect to the parameter z:<br />

(z 2 ∂ 2 z + z∂z − z 2 − m 2 <br />

z<br />

) exp<br />

γ 2 (t + t−1 <br />

) t −m−1 dt<br />

z 2 −1<br />

=<br />

t + t<br />

γ 2<br />

2 z −1<br />

+ t + t<br />

2<br />

− z 2 − m 2<br />

<br />

z<br />

exp<br />

2 (t + t−1 <br />

) t −m−1 dt<br />

z 2 −1<br />

=<br />

t − t<br />

γ 2<br />

2 z −1<br />

+ t + t<br />

2<br />

− m 2<br />

<br />

z<br />

exp<br />

2 (t + t−1 <br />

) t −m−1 dt<br />

<br />

z<br />

= ∂t<br />

γ 2 (t − t−1 <br />

z<br />

) + m exp<br />

2 (t + t−1 <br />

) t −m<br />

<br />

dt<br />

<br />

z<br />

=<br />

2 (t − t−1 <br />

z<br />

) + m exp<br />

2 (t + t−1 <br />

) t −m<br />

<br />

<br />

γ(1)<br />

= 0.<br />

γ(0)<br />

✷<br />

Theorem 1.2.2 Poisson type representations Let ]0, 1[∋ τ ↦→ γ(τ) be a contour such that<br />

Then<br />

(1 − t 2 1 m+<br />

)<br />

z m<br />

<br />

is a solution of the modified <strong>Bessel</strong> <strong>equation</strong>.<br />

γ<br />

<br />

<br />

2e zt<br />

γ(1)<br />

γ(0)<br />

= 0.<br />

(1 − t 2 1 m−<br />

) 2e zt dt


Proof. We use (1.1.1).<br />

<br />

2<br />

z∂z + (1 + 2m)∂z − z<br />

<br />

=<br />

γ<br />

<br />

= −<br />

1.3 Modified <strong>Bessel</strong> function<br />

γ<br />

(1 − t 2 1 m−<br />

) 2e zt dt<br />

(1 − t 2 1 m−<br />

) 2(zt 2 + (1 + 2m)t − z)e zt dt<br />

γ<br />

<br />

∂t(1 − t 2 1 m−<br />

) 2e zt<br />

<br />

dt = 0.<br />

The modified <strong>Bessel</strong> <strong>equation</strong> has a regular-singular point at 0 with the indicial <strong>equation</strong><br />

Its indices at 0 are equal to ±m.<br />

The modified <strong>Bessel</strong> function is defined as<br />

λ(λ − 1) + λ − m 2 = 0.<br />

Im(z) =<br />

∞<br />

n=0<br />

<br />

z 2n+m<br />

2<br />

n!Γ(m + n + 1) .<br />

It is a solution of the <strong>Bessel</strong> <strong>equation</strong> with the parameter ±m. Note that 1<br />

Γ(m+1) = 0 dla m =<br />

−1, −2, . . . For m = −1, −2, . . . the function Im is the unique solution of the <strong>Bessel</strong> <strong>equation</strong> satisfying<br />

Im(z) ∼<br />

<br />

z<br />

m 1<br />

, z ∼ 0,<br />

2 Γ(m + 1)<br />

which can be treated as a definition of the modified <strong>Bessel</strong> function. (By f(z) ∼ g(z), z ∼ 0, we<br />

understand that f(z) is analytic around zero and at zero equals 1.


If m ∈ Z, then I−m(z) and Im(z) are linearly independent and span the space of solutions of the<br />

modified <strong>Bessel</strong> <strong>equation</strong>.<br />

We have<br />

Im(e ±iπ z) = e ±iπm Im(z).<br />

1.4 Integral representations of modified <strong>Bessel</strong> function<br />

We start with <strong>Bessel</strong>-Schläfli-type representations. If Rez > 0, then the basic contour integral representation<br />

of Im is<br />

Im(z) = 1<br />

<br />

2πi ]−∞,0 + <br />

z<br />

exp<br />

,−∞[ 2 (t + t−1 <br />

) t −m−1 =<br />

dt (1.4.5)<br />

1<br />

<br />

z<br />

<br />

<br />

m<br />

exp s +<br />

2πi 2<br />

z2<br />

<br />

s<br />

4s<br />

−m−1 ds. (1.4.6)<br />

]−∞,0 + ,−∞[<br />

To see this note that by (1.4.5), Im is holomorphic around zero. Besides, by the Hankel identity<br />

<br />

1 1<br />

= exp (s) s<br />

Γ(m + 1) 2πi<br />

−m−1 ds.<br />

We also have<br />

]−∞,0 + ,−∞[<br />

I−m(z) = 1<br />

<br />

2πi [(0−0) + <br />

z<br />

exp<br />

] 2 (t + t−1 <br />

) t −m−1 dt. (1.4.7)<br />

Here, the contour starts at 0 from the negative side on the lower sheet, encircling 0 in the positive<br />

direction and ends at 0 from the negative side on the upper sheet,<br />

To see this we make a substitution t = s −1 in (1.4.5) noting that dt = −s −2 ds, and then we change<br />

the orientation of the contour.


Schläfli representation is just a simple consequence of (1.4.6):<br />

2π<br />

Im(z) = 1<br />

2π 0<br />

e z cos φ cos(mφ)dφ − 1<br />

π sin(mπ)<br />

0<br />

e −z cosh β−mβ dβ, Rez > 0.<br />

Next we consider various Poisson-type representations. The first is called the Poisson representation<br />

1<br />

<br />

z<br />

<br />

m 1<br />

Im(z) = √ (1 − t<br />

πΓ 2 −1<br />

2 1 m−<br />

) 2e zt dt, m > − 1<br />

2 .<br />

m + 1<br />

2<br />

∞<br />

The following Poisson-type representations are due to Hankel:<br />

1<br />

Im(z) =<br />

2πi √ π Γ<br />

<br />

1<br />

<br />

z<br />

<br />

m<br />

− m<br />

2 2 [1,−1− ,1 + 1 m−<br />

(t − 1) 2(t + 1)<br />

]<br />

1<br />

I−m(z) =<br />

2πi √ π Γ<br />

<br />

1<br />

<br />

z<br />

<br />

m 1 m−<br />

− m<br />

(t − 1) 2(t + 1)<br />

2 2<br />

[−∞,1 + ,−∞]<br />

1.5 Relationship to hypergeometric type functions<br />

m− 1<br />

2e zt dt,<br />

m− 1<br />

2e zt dt.<br />

The modified <strong>Bessel</strong> function and the hypergeometric functions 0F1 and 1F1 are closely related:<br />

m <br />

Im(z) =<br />

1.6 <strong>Bessel</strong> function for integral parameters<br />

Theorem 1.6.1<br />

=<br />

1<br />

<br />

z<br />

0F1 1 + m;<br />

Γ(m + 1) 2<br />

z2<br />

4<br />

1<br />

<br />

z<br />

m e<br />

Γ(m + 1) 2<br />

−z <br />

1F1 m + 1<br />

<br />

; 2m + 1; 2z .<br />

2


Proof. It is enough to assume that m = 0, 1, . . . .<br />

✷<br />

For m ∈ Z we have<br />

Generating function<br />

Im(z) =<br />

=<br />

=<br />

=<br />

∞<br />

n=0<br />

∞<br />

n=0<br />

∞<br />

n=m<br />

∞<br />

n=0<br />

Im(z) = 1<br />

<br />

2πi<br />

= 1<br />

2πi<br />

<br />

z 2n+m<br />

2<br />

n!(n + m)!<br />

<br />

z 2(n+m)−m<br />

2<br />

(n + m)!(n + m − m)!<br />

<br />

z 2n−m<br />

2<br />

n!(n − m)!<br />

(1.6.8)<br />

(1.6.9)<br />

(1.6.10)<br />

<br />

z 2n−m<br />

2<br />

n!Γ(n − m + 1) = I−m(z). (1.6.11)<br />

[0 + ]<br />

z<br />

2<br />

<br />

z<br />

exp<br />

2 (t + t−1 <br />

dt<br />

)<br />

tm+1 <br />

exp s + z2<br />

<br />

ds<br />

4s sm+1. m <br />

[0 + ]<br />

<br />

z<br />

exp<br />

2 (t + t−1 <br />

) =<br />

∞<br />

m=−∞<br />

t m Im(z).


Proof.<br />

✷<br />

∞<br />

m=−∞<br />

t m Im(z) =<br />

1.7 MacDonald/Basset function<br />

= <br />

<br />

n≥0, n+m≥0<br />

<br />

n≥0 n+m≥0<br />

= e z/2t e tz/2 .<br />

t m (z/2) m+2n<br />

n!(n + m)!<br />

(z/2t) n (tz/2) m+n<br />

n!(n + m)!<br />

We define the Macdonald or Basset function by a <strong>Bessel</strong>-Schláfli-type representation:<br />

Km(z) := 1<br />

∞ <br />

exp −<br />

2 0<br />

z<br />

2 (s + s−1 <br />

) s −m−1 ds<br />

= 1<br />

<br />

z<br />

exp<br />

2<br />

2 (t + t−1 <br />

) (−t) −m−1 dt.<br />

Theorem 1.7.1<br />

]−∞,0]<br />

π<br />

K−m(z) = Km(z) =<br />

2 sin πm (I−m(z) − Im(z)), (1.7.12)<br />

Im(z) = 1 <br />

Km(e<br />

iπ<br />

−iπ z) − e iπm Km(z) . (1.7.13)<br />

−1


Consider two contours on the boundary of the Riemann surface of the principal branch of t −m−1 ,<br />

each projecting onto ] − ∞, 0], I+ on the upper sheet and I− on the lower sheet, each oriented in the<br />

direction of an increasing t. We have<br />

<br />

z<br />

exp<br />

2 (t + t−1 <br />

) t −m−1 dt = −e iπm<br />

<br />

<br />

I−<br />

I+<br />

= −2e iπm Km(z),<br />

<br />

z<br />

exp<br />

2 (t + t−1 <br />

) t −m−1 dt = −e −iπm<br />

<br />

exp<br />

I−<br />

I+<br />

= −2e −iπm Km(z).<br />

<br />

z<br />

exp<br />

2 (t + t−1 <br />

) (−t) −m−1 dt<br />

<br />

z<br />

2 (t + t−1 <br />

) (−t) −m−1 dt<br />

Therefore, if I is the contour starting at 0 from the negative side on the lower sheet, encircling 0 in<br />

the positive direction and ending at 0 from the negative side on the upper sheet, we have<br />

−4i sin(πm)Km(z) = −2e iπm Km(z) + 2e −iπm Km(z)<br />

<br />

z<br />

= exp<br />

I− 2 (t + t−1 <br />

) t −m−1 <br />

z<br />

dt − exp<br />

I+ 2 (t + t−1 <br />

) t −m−1 dt<br />

<br />

<br />

z<br />

=<br />

exp<br />

2 (t + t−1 <br />

) t −m−1 <br />

z<br />

dt − exp<br />

2 (t + t−1 <br />

) t −m−1 dt<br />

]−∞,0 + ,−∞[<br />

= 2πi(Im(z) − I−m(z)).<br />

This proves (1.7.12).<br />

Next we write<br />

K(e −iπ π iπm<br />

z) = e I−m(z) − e<br />

2 sin πm<br />

−iπm Im(z) <br />

We subtract from this eiπm times (1.7.12) obtaining<br />

K(e −iπ z) − e iπm π −iπm<br />

K(z) = −e Im(z) + e<br />

2 sin πm<br />

iπm Im(z) = iπIm(z).<br />

I


This proves (1.7.13). ✷<br />

We also have a Poisson-type integral representation:<br />

Km(z) =<br />

Γ(m + 1<br />

2 )(2z)m<br />

√ π<br />

∞<br />

1.8 Asymptotics of the MacDonald/Basset function<br />

Theorem 1.8.1 For | arg z| > π − ɛ,<br />

0<br />

Km(z)<br />

lim<br />

|z|→∞ e−z√ √<br />

π<br />

2z<br />

cos(zt)(t 2 + z 2 1 −m−<br />

) 2dt.<br />

= 1.<br />

Proof. We use the steepest descent method. Set φ(t) := − 1<br />

2 (t + t−1 ). We compute<br />

φ ′ (t) = − 1<br />

2 (1 − t−2 ), φ ′′ (t) = −t −3 .<br />

Hence φ has a critical point at t0 = 1 with φ(t0) = −1 and φ ′′ (t0) = −1. Thus<br />

✷<br />

Km(z) = 1<br />

2<br />

1<br />

2<br />

∞<br />

0 ∞<br />

= 1<br />

2 e−z<br />

t −m−1 exp(zφ(t))dt<br />

<br />

exp zφ(t0) + z φ′′ (t0)<br />

(t − t0)<br />

2<br />

2<br />

<br />

dt<br />

<br />

z<br />

<br />

exp (t − 1)2 dt =<br />

2 1<br />

2 e−z<br />

√<br />

2π<br />

√z .<br />

−∞<br />

∞<br />

−∞


Corollary 1.8.2 As x → ∞ we have<br />

Im(x) ∼<br />

1.9 MacDonald/Basset function for integer parameters<br />

Theorem 1.9.1 Set h(n) := n k=1 1<br />

k . Then for m = 0, 1, 2, . . .<br />

Km(z) = (−1) m+1<br />

<br />

log z<br />

<br />

+ γ Im(z)<br />

2<br />

Proof. Set<br />

Then<br />

Besides,<br />

+ 1<br />

m−1 <br />

2<br />

k=0<br />

(−1) k<br />

<br />

z<br />

2k−m(m − k − 1)!<br />

+<br />

2 k!<br />

(−1)m<br />

2<br />

φ(z) := d 1<br />

dz Γ(z)<br />

1<br />

√ 2πx e x . (1.8.14)<br />

∞<br />

k=0<br />

= − 1<br />

Γ(z) ∂z log Γ(z).<br />

φ(−n) = (−1) n n!, n = 0, 1, 2, . . . ,<br />

φ(n + 1) =<br />

∂mIm(z) = log<br />

γ − h(n)<br />

, n = 0, 1, 2, . . .<br />

n!<br />

<br />

z<br />

<br />

Im(z) +<br />

2<br />

∞<br />

k=0<br />

φ(m + k + 1)<br />

k!<br />

h(k) + h(m + k)<br />

k!(m + k)!<br />

<br />

z<br />

m+2k .<br />

2<br />

<br />

z<br />

2k+m .<br />

2


Hence for m = 0, 1, 2, . . .<br />

<br />

<br />

∂nIn(z) =<br />

n=m<br />

<br />

<br />

∂nIn(z) =<br />

n=−m<br />

The last sum can be written as<br />

✷<br />

<br />

log z<br />

<br />

+ γ Im(z) −<br />

2<br />

∞<br />

k=0<br />

k=0<br />

h(m + k)<br />

<br />

z<br />

m+2k , (1.9.15)<br />

(m + k)!k! 2<br />

<br />

log z<br />

<br />

m−1 <br />

+ γ I−m(z) + (−1)<br />

m−k−1(m − k − 1)!<br />

<br />

z<br />

2k−m 2 k! 2<br />

−<br />

We use the De L’Hopital rule:<br />

∞<br />

k=m<br />

Km(z) = π<br />

2<br />

(1.9.16)<br />

h(−m + k)<br />

<br />

z<br />

−m+2k . (1.9.17)<br />

(−m + k)!k! 2<br />

−<br />

∞<br />

k=m<br />

= (−1)m<br />

2<br />

h(k)<br />

<br />

z<br />

m+2k .<br />

k!(k + m)! 2<br />

d<br />

dm (I−m − Im(z))<br />

d<br />

dm<br />

sin πm<br />

<br />

− d<br />

dn In(z)<br />

<br />

<br />

−<br />

n=−m d<br />

dn In(z)<br />

<br />

<br />

n=m


Corollary 1.9.2 As x → 0, we have<br />

1<br />

<br />

x<br />

m Im(x) ∼<br />

, m = −1, −2, . . . ; (1.9.18)<br />

Γ(m + 1) 2<br />

⎧<br />

Re<br />

⎪⎨<br />

Km(x) ∼<br />

⎪⎩<br />

Γ(m) <br />

2 m<br />

x if Rem = 0, m = 0;<br />

− ln <br />

x<br />

2 − γ if m = 0,<br />

Γ(m) <br />

2 m<br />

(1.9.19)<br />

2 x if Rem > 0;<br />

m if Rem < 0.<br />

1.10 Recurrence relations<br />

Theorem 1.10.1<br />

Proof.<br />

✷<br />

<br />

2∂zIm(z) =<br />

<br />

0 = 2<br />

<br />

z<br />

∂t exp<br />

γ<br />

<br />

= −2m<br />

<br />

z<br />

exp<br />

<br />

+z<br />

γ<br />

γ<br />

exp<br />

Γ(−m)<br />

2<br />

x<br />

2<br />

2∂zIm(z) = Im−1(z) + Im+1(z),<br />

2mIm(z) = zIm−1(z) − zIm+1(z).<br />

γ<br />

<br />

z<br />

exp<br />

2 (t + t−1 <br />

) (t −m + t −m−2 )dt.<br />

<br />

t −m dt<br />

2 (t + t−1 )<br />

2 (t + t−1 <br />

) t −m−1 dt<br />

<br />

z<br />

2 (t + t−1 <br />

) t −m <br />

dt − z<br />

γ<br />

<br />

z<br />

exp<br />

2 (t + t−1 <br />

) t −m−2 dt.


Corollary 1.10.2<br />

Hence<br />

1<br />

z ∂z (z m Im(z)) = z m−1 Im−1(z), or<br />

1<br />

z ∂z<br />

−m<br />

z Im(z) = z −m−1 Im+1(z), or<br />

Analoguous identities hold for Km(z).<br />

1.11 Half-integral parameters<br />

<br />

1<br />

z ∂z<br />

n z m Im(z) = z m−n Im−n(z),<br />

<br />

∂z + m<br />

<br />

Im(z) = Im−1(z),<br />

z<br />

<br />

1<br />

z ∂z<br />

n z −m Im(z) = z −m−n Im+n(z).<br />

I 1(z)<br />

=<br />

2<br />

I 1 − (z) =<br />

2<br />

K 1(z) = K 1(z) =<br />

<br />

∂z − m<br />

<br />

Im(z) = Im+1(z).<br />

z<br />

<br />

z<br />

1<br />

2 1<br />

2 Γ(1 + 1<br />

2 )<br />

sinh z<br />

z =<br />

1<br />

2 2<br />

sinh z<br />

πz<br />

<br />

z<br />

1 − 2 1<br />

2 Γ(1 − 1<br />

1<br />

2 2<br />

cosh z = cosh z,<br />

2 ) πz<br />

<br />

π<br />

1<br />

2<br />

e −z .


One way to derive these identities is<br />

1.12 Wronskian<br />

1 2n+<br />

2 2n!Γ(1/2 + n + 1) =<br />

1 2n−<br />

2 2n!Γ(−1/2 + n + 1) =<br />

π<br />

2 2n n!2 n+1 (1/2)n+1 =<br />

π<br />

2 2n n!2 n (1/2)n =<br />

The Wronskian of two solutions of the modified <strong>Bessel</strong> <strong>equation</strong> satisfies<br />

<br />

∂z + 1<br />

<br />

W (z) = 0.<br />

z<br />

Hence W (z) is proportional to 1<br />

z . Using<br />

I±m(z) ∼<br />

1<br />

Γ(±m + 1)<br />

we can compute the Wronskian of Im and I−m:<br />

W (Im, I−m) = −<br />

<br />

z<br />

±m<br />

, I<br />

2<br />

′ ±m(z) ∼<br />

<br />

π<br />

(2n + 1)!,<br />

2<br />

<br />

π<br />

2 (2n)!.<br />

1<br />

Γ(±m)<br />

2 sin πm<br />

, W (Im, Km) =<br />

πz<br />

1<br />

z .<br />

<br />

z<br />

±m−1<br />

,<br />

2


19<br />

Chapter 2<br />

Standard <strong>Bessel</strong> <strong>equation</strong><br />

2.1 <strong>Bessel</strong> <strong>equation</strong><br />

Replacing z with ±iz in the modified <strong>Bessel</strong> <strong>equation</strong> leads to the standard <strong>Bessel</strong> <strong>equation</strong>:<br />

2.2 Integral representations<br />

(z 2 ∂ 2 z + z∂z + z 2 − m 2 )v(z) = 0.<br />

Theorem 2.2.1 <strong>Bessel</strong>–Schläfli representations Let γ be a contour satisfying<br />

<br />

z<br />

2 (t + t−1 <br />

z<br />

) + m exp<br />

2 (t − t−1 <br />

1<br />

)<br />

tm <br />

γ(1)<br />

<br />

= 0, (2.2.1)<br />

Then<br />

is a solution of the <strong>Bessel</strong> <strong>equation</strong>.<br />

<br />

C<br />

γ<br />

<br />

z<br />

exp<br />

2 (t − t−1 <br />

dt<br />

)<br />

tm+1 γ(0)<br />

(2.2.2)


Theorem 2.2.2 Poisson type representations Let γ be a contour satisfying<br />

(1 − t 2 1 m+<br />

) 2e izt<br />

<br />

<br />

= 0.<br />

Then<br />

is a solution of the <strong>Bessel</strong> <strong>equation</strong>.<br />

2.3 <strong>Bessel</strong> function<br />

The <strong>Bessel</strong> function is defined as<br />

z m<br />

<br />

m iπ<br />

Jm(z) = e 2 Im(−iz)<br />

m −iπ<br />

= e 2 Im(iz)<br />

=<br />

∞<br />

n=0<br />

= 1<br />

iπ<br />

γ<br />

γ(1)<br />

γ(0)<br />

(1 − t 2 1 m−<br />

) 2e izt dt<br />

2n+m<br />

(−1) n z<br />

2<br />

n!Γ(m + n + 1)<br />

−iπ<br />

e m<br />

m<br />

2 iπ<br />

K(−iz) − e 2 K(iz) <br />

Jm(e ±iπ z) = e ±imπ Jm(z).<br />

Theorem 2.3.1 If Rez > 0, then<br />

Jm(z) = 1<br />

<br />

2πi ]−∞,0 + <br />

z<br />

exp<br />

,−∞[ 2 (t − t−1 <br />

dt<br />

)<br />

tm+1 = 1 z m <br />

<br />

exp s − z2 ds<br />

m+1 .


1<br />

Jm(z) = √ <br />

πΓ m + 1<br />

<br />

z<br />

<br />

m 1<br />

(1 − t<br />

2 −1<br />

2<br />

2 1 m−<br />

) 2e izt dt, m > − 1<br />

2 ,<br />

1<br />

Jm(z) =<br />

2πi √ π Γ<br />

<br />

1<br />

<br />

z<br />

<br />

m<br />

− m<br />

2 2 [1,−1− ,1 + 1<br />

1<br />

m−<br />

(t − 1) 2(t<br />

m−<br />

+ 1) 2,<br />

]<br />

J−m(z) = e −iπm 1<br />

2πi √ π Γ<br />

<br />

1<br />

<br />

z<br />

<br />

m 1 m−<br />

− m<br />

(t − 1) 2(t + 1)<br />

2 2<br />

[i∞,−1 + ,1 + ,i∞]<br />

2.4 Relationship to hypergeometric type functions<br />

Jm(z) =<br />

2.5 <strong>Bessel</strong> function for integral parameters<br />

Let m ∈ Z.<br />

Theorem 2.5.1<br />

=<br />

1<br />

<br />

z<br />

m <br />

0F1 1 + m; −<br />

Γ(m + 1) 2<br />

z2<br />

<br />

4<br />

1<br />

<br />

z<br />

m e<br />

Γ(m + 1) 2<br />

−iz <br />

1F1 m + 1<br />

<br />

; 2m + 1; 2iz .<br />

2<br />

Jm(z) = (−1) m J−m(z), m ∈ Z.<br />

m− 1<br />

2,


Theorem 2.5.2<br />

2.6 Hankel functions<br />

Jm(z) = 1<br />

<br />

2πi<br />

= 1<br />

=<br />

<br />

z<br />

2πi 2<br />

1<br />

π<br />

π<br />

0<br />

[0 + ]<br />

<br />

z<br />

exp<br />

2 (t − t−1 <br />

dt<br />

)<br />

tm+1 <br />

exp s − z2<br />

<br />

ds<br />

4s sm+1 m <br />

[0 + ]<br />

cos(z sin φ − mφ)dφ.<br />

There are two Hankel functions. Both are analytic continuations of the MacDonald function – one to<br />

the lower and the other to the upper part of the complex plane:<br />

Note the identities<br />

H ± m(z) = ±2 m<br />

e∓iπ 2 Km(∓iz),<br />

iπ<br />

Km(z) = ± iπ<br />

2 e±imπH ± iπ ±<br />

(e 2 z).<br />

H ± −m(z) = e ±mπi H ± m(z),<br />

Jm(z) = 1<br />

2 (H+ m(z) + H− m(z)) ,<br />

<br />

mπi + e H m(z) + e−mπiH − m(z) ,<br />

J−m(z) = 1<br />

2<br />

H ± (z) = ± ie∓mπi Jm(z)−iJ−m(z) ,


Theorem 2.6.1 The following asymptotic formulas are true for −π + δ < arg z < 2π − δ, δ > 0:<br />

lim<br />

z→∞<br />

lim<br />

z→∞<br />

2<br />

πz<br />

2<br />

πz<br />

H + m(z)<br />

1<br />

2 eize− imπ iπ<br />

2 − 4<br />

H − m(z)<br />

1<br />

imπ iπ<br />

2 e−ize 2 + 4<br />

2.7 Integral representations of Hankel functions<br />

For Rez > 0,<br />

H (1)<br />

m (z) = H + m(z) = − 1<br />

πi<br />

H (2)<br />

m (z) = H − m(z) = 1<br />

<br />

πi<br />

<br />

]−∞,(0+1·0) − [<br />

]−∞,(0+1·0) + [<br />

= 1,<br />

= 1.<br />

<br />

z<br />

exp<br />

2 (t − t−1 <br />

dt<br />

)<br />

tm+1, <br />

z<br />

exp<br />

2 (t − t−1 <br />

dt<br />

)<br />

tm+1. By ] − ∞, (0 + 1 · 0) − [ we understand the contour starting at −∞, encyrcling 0 clockwise and reaching<br />

zero from the positive direction. Similarly, by ] − ∞, (0 + 1 · 0) + [ we understand the contour starting<br />

at −∞, encyrcling 0 counterclockwise and reaching zero from the positive direction.<br />

Note that<br />

<br />

z<br />

lim<br />

t→0+1·0 2 (t + t−1 ) + m<br />

<br />

<br />

z<br />

exp<br />

2 (t − t−1 )<br />

1<br />

= 0,<br />

tm where by t → 0 + 1 · 0 we denote the convergence to zero through positive values of t (sometimes<br />

denoted by t → 0 + ). Hence the contours ] − ∞, (0 + 1 · 0) + [ i ] − ∞, (0 + 1 · 0) − [ satisfy (2.2.1).<br />

If 0 < arg z < π, then a good contour in the representation of H − m is [i∞, 0]. If −π < arg < 0,<br />

then for H + m one can use [−i∞, 0].


An appropriate choice of a contour yields the representations<br />

H − m(z) = −<br />

H + m(z) =<br />

H − m(z) = −<br />

H + m(z) =<br />

imπ<br />

ie− 2<br />

π<br />

imπ<br />

2ie 2<br />

π<br />

−imπ<br />

2ie 2<br />

π<br />

imπ<br />

ie 2<br />

π<br />

∞<br />

−∞ eiz cosh t−mtdt, 0 < arg z < π,<br />

∞<br />

0 eiz cosh t cosh(mt − imπ)dt − i π<br />

0 e−iz cos t <br />

cos mtdt , 0 < arg z < π,<br />

∞<br />

0 e−iz cosh t cosh(mt + imπ)dt + i π<br />

0 eiz cos t <br />

cos mtdt , −π < arg z < 0,<br />

∞<br />

−∞ e−iz cosh t−mtdt, −π < arg z < 0<br />

Poisson type integral representations:<br />

H − m(z) = Γ(1 2 − m)<br />

πi √ <br />

z<br />

<br />

m<br />

π 2<br />

H + m(z) = Γ(1 2 − m)<br />

πi √ <br />

z<br />

<br />

m<br />

π 2<br />

]i∞,1 + ,i∞[<br />

]i∞,−1 − ,i∞[<br />

e izt 1<br />

1<br />

m−<br />

(t − 1) 2(t<br />

m−<br />

+ 1) 2dt,<br />

e izt 1<br />

1<br />

m−<br />

(t − 1) 2(t<br />

m−<br />

+ 1) 2dt.<br />

Poisson type representations valid for m ≥ −1 2 .<br />

H − 2<br />

m(z) = −√<br />

1 πΓ(m + 2 )<br />

<br />

z<br />

<br />

m<br />

e<br />

2 ]1,i∞[<br />

izt (1 − t 2 1 m−<br />

) 2dt<br />

m π<br />

2<br />

2 − 4<br />

= zmei(z−π<br />

π )<br />

Γ(m + 1<br />

2 )<br />

∞<br />

e<br />

0<br />

−zs <br />

1 m−<br />

s 2 1 + is<br />

1 m− 2<br />

dt,<br />

2<br />

H + 2<br />

m(z) = √ 1 πΓ(m + 2 )<br />

<br />

z<br />

<br />

m<br />

e<br />

2 ]−1,i∞[<br />

izt (1 − t 2 1 m−<br />

) 2dt<br />

m π<br />

2<br />

2 − 4<br />

= zme−i(z−π<br />

π )<br />

Γ(m + 1 ∞<br />

e<br />

)<br />

−zs <br />

1 m−<br />

s 2 1 − is<br />

1 m− 2<br />

ds.<br />

2<br />

0


2.8 Neumann function<br />

Neumann function is defined as<br />

We then have<br />

Ym(z) = 2<br />

π<br />

Ym(z) = 1<br />

(1)<br />

2i H m (z) − H (2)<br />

m (z) <br />

= cos πmJm(z)−J−m(z)<br />

sin πm .<br />

H (1)<br />

m (z) = Jm(z) + iYm(z), H (2)<br />

m (z) = Jm(z) − iYm(z).<br />

Theorem 2.8.1 For m ∈ Z we have<br />

<br />

Jm(z)<br />

where h(k) := k<br />

j=1<br />

1<br />

k .<br />

− 1<br />

m−1 <br />

π<br />

k=0<br />

2.9 Recurrence relations<br />

log( z<br />

2 ) + γ<br />

(m−k−1)!<br />

k! ( z<br />

2 )2k−m − 1<br />

π<br />

Theorem 2.9.1 We have the identities<br />

∞<br />

k=0<br />

2∂zJm(z) = Jm−1(z) − Jm+1(z),<br />

2mJm(z) = zJm−1(z) + zJm+1(z).<br />

(−1) k<br />

k!(m+k)! (z<br />

2 )m+2k h(k) + h(m + k) ,<br />

Sometimes, more convenient are the following forms of the recurrence relations:


Corollary 2.9.2<br />

1<br />

z ∂z (z m Jm(z)) = z m−1 <br />

Jm−1(z), czyli ∂z + m<br />

<br />

Jm(z) = Jm−1(z),<br />

z<br />

− 1<br />

z ∂z<br />

−m<br />

z Jm(z) = z −m−1 <br />

Jm+1(z), czyli −∂z + m<br />

<br />

Jm(z) = Jm+1(z).<br />

z<br />

Besides, n 1<br />

<br />

− 1<br />

z ∂z<br />

Analogous identities hold for H ± m(z), and Ym(z).<br />

2.10 Half-integral parameters<br />

z ∂z z m Jm(z) = z m−n Jm−n(z),<br />

n z −m Jm(z) = z −m−n Jm+n(z).<br />

<br />

2<br />

J 1(z)<br />

= =<br />

2<br />

J 1 − (z) =<br />

2<br />

H ± 1 (z) =<br />

2<br />

H ±<br />

− 1<br />

2<br />

(z) =<br />

πz<br />

1<br />

2<br />

sin z,<br />

1<br />

2 2<br />

cos z,<br />

πz<br />

1<br />

2 2<br />

π ±i(z−<br />

e 2<br />

πz<br />

) ,<br />

1<br />

2 2<br />

e<br />

πz<br />

±iz


2.11 Integral of Sonine and Schafheitlin<br />

([1] Exercise 4.14, p. 236):<br />

=<br />

=<br />

∞<br />

Jm(xξ)Jk(yξ)dξ<br />

0 ξλ ykΓ <br />

1+m+k−λ<br />

2<br />

2λx1+k−λΓ(k + 1)Γ <br />

1 − m + k − λ<br />

F<br />

, 1+m−k−λ<br />

2<br />

2<br />

1 + m + k − λ<br />

; k + 1;<br />

2<br />

y2<br />

x2 <br />

, y < x;<br />

xmΓ <br />

1+m+k−λ<br />

2<br />

2λy1+m−λΓ(m + 1)Γ <br />

1 + m − k − λ<br />

F<br />

, 1−m+k−λ<br />

2<br />

2<br />

1 + m + k − λ<br />

; m + 1;<br />

2<br />

x2<br />

y2 <br />

, x < y.<br />

2.12 Wronskians of solutions of the <strong>Bessel</strong> <strong>equation</strong><br />

The Wronskian of two solutions of the <strong>Bessel</strong> <strong>equation</strong> satisfies<br />

Hence W (z) is proportional to 1<br />

z . Using<br />

J±m(z) ∼<br />

<br />

∂z + 1<br />

W (z) = 0.<br />

z<br />

we can compute the Wronskian of Jm(z) and J−m(z):<br />

W (Jm, J−m) = −<br />

1<br />

Γ(±m+1) (z<br />

2 )±m , J ′ ±m(z) ∼ 1<br />

Γ(±m) (z<br />

2 )±m−1 ,<br />

2 sin πm<br />

, W (H<br />

πz<br />

− m, H + m) = − 4i<br />

πz , W (Jm, Ym) = 2<br />

πz .


29<br />

Chapter 3<br />

Separation of variables in the Laplacian<br />

and the <strong>Bessel</strong> <strong>equation</strong><br />

3.1 Euclidean Lie algebra in dimension two<br />

In R2 we introduce the polar coordinates<br />

x = r cos φ = r<br />

2 (w + w−1 ),<br />

y = r sin φ = r<br />

2i (w − w−1 ),<br />

where w = eiφ . The polar coordinates can be interpreted as a unitary map<br />

or<br />

U1 : L 2 (R 2 ) → L 2 ([0, ∞[, r 1/2 ) ⊗ L 2 ([−π, π]),<br />

U1f(r, φ) = f(r cos φ, r sin φ).<br />

U2 : L 2 (R 2 ) → L 2 ([0, ∞[, r 1/2 ) ⊗ L 2 ([−1, 1], (1 − w 2 ) 1/2 ),<br />

U2f(r, w) = f(rw, r(1 − w 2 ) 1/2 ).


Note that<br />

We will use<br />

Note the relations<br />

The <strong>equation</strong><br />

∂x = cos φ∂r − r sin φ∂φ,<br />

∂y = cos φ∂r + r cos φ∂φ.<br />

L := x∂y − y∂x = ∂φ = iw∂w,<br />

A + := ∂x + i∂y = w(∂r + ir −1 ∂φ) = w(∂r − r −1 w∂w),<br />

A − := ∂x − i∂y = w −1 (∂r − ir −1 ∂φ) = w −1 (∂r + r −1 w∂w),<br />

∆ := ∂ 2 x + ∂ 2 y = ∂ 2 r + r −1 ∂r + r −2 ∂ 2 φ = ∂2 r + r −1 ∂r − r −2 (w∂w) 2 .<br />

[A + , A − ] = 0,<br />

[A ± , L] = ±A ± ,<br />

∆ = A + A − = A − A + ,<br />

[∆, L] = [∆, A ± ] = 0.<br />

−∆ = −1,<br />

−∆ = = 1<br />

restricted to the subspace L = m coincides respectively with the modified/unmodified <strong>Bessel</strong> <strong>equation</strong>.<br />

3.2 Helmholtz <strong>equation</strong> in dimension 2<br />

The Helmholtz <strong>equation</strong>


has a solution in the form of a plane wave propagating at the angle ψ, in the Catesian coordinates<br />

equal<br />

and in polar coordinates equal<br />

i(x cos ψ+y sin ψ)<br />

fψ(x, y) := e<br />

fψ(r, φ) = e ir cos(φ−ψ) .<br />

L commutes with ∆, therefore we can look for a solution of<br />

(∆ + 1)f = 0, Lf = imf.<br />

It is solved by a circular wave equal in the polar coordinates<br />

fm(r, φ) = Jm(r)e imφ .<br />

Theorem 3.2.1 A plane wave can be decomposed into circular waves:<br />

∞<br />

fψ(r, φ) =<br />

m=−∞<br />

A circular wave can bedecomposed into plane waves:<br />

i m fm(r, φ) = 1<br />

2π<br />

i m fm(r, φ)e −imψ . (3.2.1)<br />

2π<br />

Proof. To obtain (3.2.1) we take the formula for the generating function<br />

∞<br />

t m Jm(r)<br />

π i(φ−ψ+ and insert t = e 2 ) .<br />

e r<br />

2 (t−t−1 ) =<br />

0<br />

m=−∞<br />

fψ(r, φ)e imψ dψ. (3.2.2)


To obtain (3.2.2) we take<br />

π −i(ψ− substitute t = e 2 ) and multiply by ieimφ . ✷<br />

3.3 Graf addition formula<br />

Jm(r) = 1<br />

<br />

2πi [0] +<br />

e ir(t−t−1 ) −m−1<br />

t dt,<br />

The following formula can be interpreted as follows: a circular wave in one polar coordinate can be<br />

decomposed into circular waves in another polar coordinate system:<br />

Theorem 3.3.1 Assume that R, r, ρ and Φ, φ, ψ are related as<br />

Then<br />

R =<br />

<br />

(reiφ + ρeiψ )(re−iφ + ρe−iψ ), e iΦ <br />

=<br />

Jm(R)e imΦ =<br />

∞<br />

n=−∞<br />

Jm−n(r)e i(m−n)φ Jn(ρ)e inψ .<br />

reiφ + ρeiψ re−iφ .<br />

+ ρe−iψ If m ∈ Z, then there are no restrictions on the parameters in the formula. If m is nonintegral and all<br />

variables real, then one has to assume that ρ < r (or, equivalently, |Φ − φ| < π).<br />

We can then replace<br />

(i)<br />

2


Proof. We put ˜ ψ = ψ − φ, ˜ Φ = Φ − φ. Then the problem is reduced to the case φ = 0.<br />

∞ n=−∞<br />

= 1 ∞ 2πi n=−∞<br />

= 1<br />

2πi<br />

= 1<br />

2πi<br />

inψ<br />

Jm−n(r)Jn(ρ)e<br />

<br />

γ exp r<br />

2 (t − t−1 ) t−m−1Jn(ρ)(teiψ ) n<br />

<br />

γ exp<br />

<br />

r<br />

2 (t − t−1 ) + ρ<br />

iψ iψ −1<br />

2 te − (te ) <br />

t−m−1dt <br />

γ exp R<br />

2 (s − s−1 ) s−m−1dseimΦ = eimΦJm(R), where in the last step we used r + ρe iψ = Re iΦ and turned the contour. ✷<br />

Substituting<br />

we obtain<br />

and the addition formula can be rewritten as<br />

Jm( x 2 + y 2 )<br />

x+iy<br />

√ x 2 +y 2<br />

m<br />

x1 = r cos φ, y = r sin φ,<br />

x2 = ρ cos ψ, y2 = ρ sin ψ,<br />

x = R cos Φ, y = R sin Φ,<br />

(x1, y1) + (x2, y2) = (x + y)<br />

= <br />

n∈Z Jm−n( x 2 1 + y2 1 )<br />

Define an operator on L 2 (Z) given by the matrix<br />

Um,n(x, y) := Jm−n( x 2 + y 2 )<br />

x1+iy1<br />

√ x 2 1 +y 2 1<br />

x+iy<br />

√ x 2 +y 2<br />

Then U(x, y) −1 = U(−x, −y), U(x, y) is a unitary matrix, that is<br />

Un,m(x, y) = Um,n(−x, −y),<br />

m−n Jn( x2 2 + y2 2 )<br />

<br />

x2+iy2 √<br />

x2 2 +y2 n .<br />

2<br />

m−n


and R2 ∋ (x, y) ↦→ U(x, y) is a group representation, that means<br />

∞<br />

Uk,n(x2 + x1, y2 + y1) =<br />

m=−∞<br />

Uk,m(x2, y2)Um,n(x1, y1).<br />

Extend this representation to the affine orthogonal group on R 2 . This group can be parametrized<br />

by R 2 × S 1 . The action is defined as<br />

(x2, y2, θ2)(x1, y1, θ1) = (x2 cos θ1 + y2 sin θ1 + x1, −x2 sin θ1 + y2 sin θ1 + y1, θ2 + θ1).<br />

The representation is defined as follows:<br />

R 2 × S 1 ∋ (x, y, θ) ↦→ U(x, y, θ),<br />

Um,n,θ(x, y) := e imθ Jm−n( x 2 + y 2 )<br />

x+iy<br />

√ x 2 +y 2<br />

m−n<br />

.<br />

Then U(x, y, θ) is a unitary matrix and it is a representation, that means<br />

<br />

<br />

(x2, y2, θ2)(x1, y1, θ1) =<br />

∞<br />

Uk,m(x2, y2, θ2)Um,n(x1, y1, θ1).<br />

3.4 ...<br />

Identity<br />

Uk,n<br />

(2m + κ) (1 − w2 )<br />

∂w + (2m + κ)w∂r =<br />

r<br />

m=−∞<br />

<br />

m + κ<br />

mw 2<br />

+ ∂r + (1 − w )∂w<br />

r<br />

m<br />

2<br />

+ − ∂r − (m + κ)w + (1 − w )∂w .<br />

r


35<br />

Bibliography<br />

[1] Andrews, G.E., Askey, R., Roy, R.: Special functions, Cambridge University Press, 1999<br />

[2] Everitt, W.N. and Kalf, H.: The <strong>Bessel</strong> differential <strong>equation</strong> and the Hankel transform, to appear<br />

in J. Comput. Appl. Math.<br />

[3] Watson, G.N. A treatise on the theory of <strong>Bessel</strong> functions, Cambridge University Press, 2nd ed.<br />

1948<br />

[4] Titchmarsh, E.C.: Eigenfunction expansions I, Oxford University Press, 2nd ed. 1962

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!