26.10.2013 Views

Nuisances of SiPMs and how to deal with them in ... - KICP Workshops

Nuisances of SiPMs and how to deal with them in ... - KICP Workshops

Nuisances of SiPMs and how to deal with them in ... - KICP Workshops

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Nuisances</strong> <strong>of</strong> <strong>SiPMs</strong> <strong>and</strong> <strong>how</strong> <strong>to</strong><br />

<strong>deal</strong> <strong>with</strong> <strong>them</strong> <strong>in</strong> Cherenkov<br />

telescopes on the example <strong>of</strong> the<br />

Nepomuk Otte<br />

CTA SC-MST


Overview<br />

The Cherenkov imag<strong>in</strong>g technique<br />

Pho<strong>to</strong>n detec<strong>to</strong>r requirements<br />

SiPM nuisances: Effects, Impacts, Workarounds<br />

Slow output signals<br />

Temperature dependencies<br />

Optical crosstalk<br />

Bias


CTA-US SC telescope<br />

Schwarzschild Couder Optics<br />

Large FoV <strong>of</strong> 8 degrees<br />

Small plate scale -> small<br />

pho<strong>to</strong>n sensors<br />

Camera layout<br />

About 12000 pixel<br />

Grouped <strong>in</strong> modules <strong>of</strong> 64<br />

pixel Effective Mirror<br />

Area per Tel.<br />

Nepomuk Otte<br />

~100 m 2<br />

Field <strong>of</strong> View (FoV) 8 deg.<br />

Pixelation ~0.05 deg.<br />

Angular Resolution 0.02 – 0.05 deg.<br />

3


64 pixel each ~6x6 mm 2<br />

Uses 16 Hamamatsu S12545-<br />

3344M per module<br />

Monolithic SiPM array<br />

16 3x3 mm 2 <strong>SiPMs</strong><br />

4 <strong>SiPMs</strong> connected <strong>to</strong> form one<br />

pixel<br />

HV<br />

SiPM<br />

A Camera Module<br />

1k 100n<br />

Out<br />

Nepomuk Otte<br />

55 mm<br />

4


Module Conceptional Design<br />

Cold f<strong>in</strong>ger (Al) soldered <strong>to</strong> SiPM mount board<br />

Coax ribbon cable<br />

Heats<strong>in</strong>k-Fan combo<br />

<strong>SiPMs</strong> <strong>and</strong> SiPM Mount Board<br />

15x15 mm 2 TE<br />

Note, dimensions not <strong>to</strong> scale<br />

Insulation<br />

Delr<strong>in</strong><br />

Module frame


Gamma<br />

ray<br />

Particle<br />

s<strong>how</strong>er<br />

~ 120 m<br />

~ 1 o<br />

Imag<strong>in</strong>g Technique<br />

~ 10 km<br />

Nepomuk Otte<br />

Cherenkov radiation from e +/-<br />

~1° open<strong>in</strong>g angle<br />

5 pho<strong>to</strong>ns / m 2 for 100 GeV gamma<br />

ray arrive on ground<br />

Flash <strong>with</strong> 2-3 ns duration<br />

6


Night Sky Background Light<br />

From stars, zodiacal light,<br />

air glow, man made, ....<br />

Isotropic<br />

background aga<strong>in</strong>st which Cherenkov flash has <strong>to</strong> be discrim<strong>in</strong>ated<br />

10 8 pho<strong>to</strong>ns sec -1 cm -2<br />

Ways <strong>to</strong> reduce NSB<br />

● Small plate scale<br />

-> smaller pixel sizes<br />

● Filters<br />

● Tailored pho<strong>to</strong>n detec<strong>to</strong>r<br />

response<br />

Nepomuk Otte<br />

Benn, Ellison (1998)<br />

7


Pho<strong>to</strong>ndetec<strong>to</strong>r Requirements<br />

Highest possible pho<strong>to</strong>n detection efficiency (PDE)<br />

<strong>with</strong> peak response between 300 nm <strong>and</strong> 600 nm<br />

Lower energy threshold<br />

Better event reconstruction<br />

S<strong>in</strong>gle pe signal widths about 3 ns <strong>to</strong> 8 ns<br />

● wider signals -> contam<strong>in</strong>ation from NSB<br />

● narrower signals -> Cherenkov pho<strong>to</strong>ns do not pile up<br />

Jitter (e.g. TTS) < 1-2ns<br />

M<strong>in</strong>imized non-Poisson tails <strong>in</strong> pulse height distribution<br />

Afterpuls<strong>in</strong>g (PMTs) / Optical Crosstalk (<strong>SiPMs</strong>)<br />

Reduce accidental trigger<br />

Energy resolution<br />

Nepomuk Otte<br />

Improve SNR:<br />

Cherenkov Signal<br />

Night sky Background<br />

8


Intensities are not <strong>to</strong> scale<br />

Nepomuk Otte<br />

9


Pho<strong>to</strong>ndetec<strong>to</strong>r Requirements<br />

Highest possible pho<strong>to</strong>n detection efficiency (PDE)<br />

<strong>with</strong> peak response between 300 nm <strong>and</strong> 600 nm<br />

Lower energy threshold<br />

Better event reconstruction<br />

S<strong>in</strong>gle pe signal widths about 3 ns <strong>to</strong> 8 ns<br />

● wider signals -> contam<strong>in</strong>ation from NSB<br />

● narrower signals -> Cherenkov pho<strong>to</strong>ns do not pile up<br />

Jitter (e.g. TTS) < 1-2ns<br />

M<strong>in</strong>imized non-Poisson tails <strong>in</strong> pulse height distribution<br />

Afterpuls<strong>in</strong>g (PMTs) / Optical Crosstalk (<strong>SiPMs</strong>)<br />

Reduce accidental trigger<br />

Energy resolution<br />

Nepomuk Otte<br />

Improve SNR:<br />

Cherenkov Signal<br />

Night sky Background<br />

10


P(n) = λ n /n! exp(-λ)<br />

Non-Poisson tails<br />

NSB fluctuations are distributed follow<strong>in</strong>g a Poisson distribution<br />

Physical limit given by NSB<br />

below trigger<br />

Non-poisson tails<br />

Disc. Threshold<br />

Nepomuk Otte<br />

accidental triggers<br />

Otte, (2007)<br />

11


Pho<strong>to</strong>ndetec<strong>to</strong>r Requirements<br />

Highest possible pho<strong>to</strong>n detection efficiency (PDE)<br />

<strong>with</strong> peak response between 300 nm <strong>and</strong> 600 nm<br />

Lower energy threshold<br />

Better event reconstruction<br />

S<strong>in</strong>gle pe signal widths about 3 ns <strong>to</strong> 8 ns<br />

● wider signals -> contam<strong>in</strong>ation from NSB<br />

● narrower signals -> Cherenkov pho<strong>to</strong>ns do not pile up<br />

Jitter (e.g. TTS) < 1-2ns<br />

M<strong>in</strong>imized non-Poisson tails <strong>in</strong> pulse height distribution<br />

Afterpuls<strong>in</strong>g (PMTs) / Optical Crosstalk (<strong>SiPMs</strong>)<br />

Reduce accidental trigger<br />

Energy resolution<br />

Nepomuk Otte<br />

Improve SNR:<br />

Cherenkov Signal<br />

Night sky Background<br />

12


Operational Requirements<br />

Purpose <strong>of</strong> <strong>in</strong>strument is <strong>to</strong> detect air s<strong>how</strong>ers <strong>and</strong> reconstruct primary particle:<br />

Stable operation -> no drift <strong>of</strong> camera response (ga<strong>in</strong>, pulse shapes, PDE, ...)<br />

due <strong>to</strong><br />

Ambient environment (temperature, humidity, ...)<br />

Brightness <strong>of</strong> sky (NSB, stars)<br />

Ag<strong>in</strong>g<br />

...<br />

particle type, arrival direction, energy<br />

<strong>with</strong> as little uncerta<strong>in</strong>ties as possible or <strong>in</strong> other words<br />

the <strong>in</strong>strument should not be the limit<strong>in</strong>g fac<strong>to</strong>r <strong>in</strong> the reconstruction<br />

Uniform camera response (ga<strong>in</strong>, PDE)<br />

Additional practical requirements<br />

Reliability, durability, low costs, ...<br />

Nepomuk Otte<br />

13


<strong>SiPMs</strong> the (almost) perfect Pho<strong>to</strong>n<br />

Detec<strong>to</strong>r for Cherenkov Telescopes<br />

Potential for very high PDE <strong>in</strong> the blue<br />

Robust<br />

Reliable<br />

Cheap<br />

....<br />

<strong>SiPMs</strong> beg<strong>in</strong> <strong>to</strong> outperform classical<br />

PMTs <strong>in</strong> astroparticle applications<br />

Biggest nuisances these days:<br />

Slow signals<br />

Temperature dependence <strong>of</strong> ga<strong>in</strong>, PDE, ...<br />

Optical Crosstalk<br />

All these nuisances can be elim<strong>in</strong>ated at device level<br />

but for the time be<strong>in</strong>g we have <strong>to</strong> <strong>deal</strong> <strong>with</strong> <strong>them</strong><br />

Nepomuk Otte<br />

MEPhI/Pulsar SiPM<br />

14


Output signals


Small signal model <strong>of</strong> an SiPM<br />

Diode<br />

Otte, PhD thesis<br />

Capacitances <strong>and</strong> resistances determ<strong>in</strong>e ga<strong>in</strong> <strong>and</strong> shape <strong>of</strong> output signal<br />

Signal shape not determ<strong>in</strong>ed by diode capacitance <strong>and</strong> resistance<br />

-> larger <strong>SiPMs</strong> -> larger capacitance -> slower signals<br />

Charge <strong>in</strong> output signal determ<strong>in</strong>ed by C_d <strong>and</strong> C_q


Faster output pulses by add<strong>in</strong>g one<br />

dedicated signal l<strong>in</strong>e<br />

SensL: get signal <strong>with</strong> extra l<strong>in</strong>e that is<br />

capacitive coupled between diode <strong>and</strong> resis<strong>to</strong>r<br />

pulse widths ~ ns<br />

from SensL


... or shape output signal <strong>with</strong> high pass<br />

3x3 mm 2 MPPC<br />

before<br />

Pole zero cancellation<br />

not really needed<br />

3 kΩ<br />

~24 pF<br />

Nepomuk Otte<br />

50 Ω<br />

after<br />

Use <strong>in</strong>put impedance<br />

<strong>of</strong> next stage<br />

18


Temperature Dependencies<br />

Critical E-field for breakdown depends on temperature<br />

Temperature dependent breakdown voltage<br />

Temperature dependent ga<strong>in</strong> <strong>and</strong> PDE<br />

Intr<strong>in</strong>sic dark rates are high but not an issue for Cherenkov telescopes<br />

NSB rates are generally higher -> no cool<strong>in</strong>g needed<br />

For example <strong>in</strong> the SCT we expect ~40 MHz NSB <strong>in</strong> a 6x6 mm 2 pixel<br />

-> about 1 MHz NSB per mm 2 sensor area<br />

Compare <strong>to</strong> typical <strong>in</strong>tr<strong>in</strong>sic dark rates <strong>of</strong> MPPCs <strong>of</strong> a few 100 kHz per mm 2<br />

Nepomuk Otte<br />

19


Diode capacitances<br />

G = ΔQ = C * ΔU<br />

Bias above breakdown<br />

Breakdown voltage<br />

<strong>in</strong>creases <strong>with</strong><br />

temperatures<br />

For fixed bias <strong>in</strong>crease<br />

<strong>of</strong> ΔU -> <strong>in</strong>crease <strong>of</strong><br />

ga<strong>in</strong><br />

Ga<strong>in</strong><br />

A typical value for ga<strong>in</strong> change is 2.5%/C (e.g. Hamamatsu MPPC)<br />

Nepomuk Otte<br />

-0.8% / C<br />

But values <strong>of</strong> 0.5% /C are possible if cell capacitances are reduced<br />

20


PDE<br />

Different effects contribute <strong>to</strong> the PDE:<br />

● Reflection <strong>of</strong>f the surface<br />

● Deadlayer<br />

● Geometrical efficiency<br />

● QE (location beneath surface <strong>and</strong><br />

thickness <strong>of</strong> depleted region)<br />

● Breakdown probability (E-field strength<br />

<strong>and</strong> geometry)<br />

Breakdown probability depends on overvoltage above<br />

breakdown (rule <strong>of</strong> thumb bias ~20% above breakdown<br />

for ~100% breakdown probability)<br />

-> temperature dependent breakdown voltage<br />

-> temperature dependent PDE<br />

Nepomuk Otte<br />

21


Slope = capacitance<br />

-> can change <strong>with</strong><br />

temperature <strong>in</strong> some<br />

devices<br />

Does keep<strong>in</strong>g ga<strong>in</strong> stable help?<br />

Operate at same ga<strong>in</strong> => not the same E-field<br />

=> not the same breakdown probability<br />

=> not the same PDE<br />

Alternate methode: operate at stable temperature +/- 0.5 C or better<br />

Nepomuk Otte<br />

U<br />

Q<br />

22


Conceptual Design<br />

Primary goal for cool<strong>in</strong>g is temperature stabilization elim<strong>in</strong>at<strong>in</strong>g need for ga<strong>in</strong> stabilization<br />

Ma<strong>in</strong> concerns waste<br />

power<br />

Pro<strong>to</strong>type tests <strong>of</strong> one module<br />

ambient temperature: 24 C<br />

Cold f<strong>in</strong>ger temp. : 1 C<br />

Waste power: 2 W<br />

~250W heat for entire camera<br />

meets predicted values<br />

Aim for operat<strong>in</strong>g temperature<br />

between 10C <strong>and</strong> 20C -> lower<br />

waste heat<br />

Cold f<strong>in</strong>ger (Al)<br />

Cold Side<br />

Warm side<br />

Heats<strong>in</strong>k-Fan combo<br />

Entrance w<strong>in</strong>dow<br />

15x15 mm 2 TE<br />

Insulation<br />

(Solimide)<br />

Delr<strong>in</strong><br />

Module frame


Optical Crosstalk<br />

Nepomuk Otte<br />

24


Pho<strong>to</strong>n Emission dur<strong>in</strong>g Breakdown<br />

Avalanches produce a lot <strong>of</strong> pho<strong>to</strong>ns,<br />

emission processes are be<strong>in</strong>g debated<br />

Pho<strong>to</strong>ns <strong>in</strong> a very narrow energy<br />

range propagate out <strong>of</strong> their<br />

orig<strong>in</strong>at<strong>in</strong>g cell <strong>and</strong> absorb <strong>in</strong><br />

neighbor<strong>in</strong>g if<br />

Pho<strong>to</strong>n energy is between 1.1 eV <strong>and</strong> 1.4 eV<br />

Pho<strong>to</strong>n <strong>in</strong>tensity: 3x10 -5 pho<strong>to</strong>ns per<br />

avalanche electron<br />

-> Intensity is direct proportional <strong>to</strong> ga<strong>in</strong><br />

ANO NIM A (610) 2009, 105–109<br />

Nepomuk Otte<br />

Picture by C. Merck<br />

25


Outer reflective surface<br />

Optical Crosstalk (OC)<br />

OC is determ<strong>in</strong>ed by geometry <strong>and</strong> ga<strong>in</strong><br />

Direct OC<br />

Indirect OC<br />

Hamamatsu 3x3mm 2 MPPC, shaped signal<br />

Trenches <strong>and</strong> lower cell capacitance help <strong>to</strong> reduce/elim<strong>in</strong>ate OC<br />

Ketek, Excelitas, Hamamatsu, SensL, ST Microelectronics, ....


Non-Poisson tails due <strong>to</strong> optical<br />

crosstalk<br />

For us relevant is only direct OC:<br />

It causes r<strong>and</strong>om large pulses lead<strong>in</strong>g <strong>to</strong> an <strong>in</strong>crease <strong>in</strong><br />

accidental trigger rates <strong>and</strong> worse event reconstruction<br />

P(n) = λ n /n! exp(-λ)<br />

Physical limit<br />

below trigger<br />

Non-poisson tails<br />

Nepomuk Otte<br />

Disc. Threshold<br />

accidental triggers<br />

Otte, (2007)<br />

27


PMT<br />

signals<br />

Concept <strong>of</strong> the SumTrigger <strong>with</strong> Clipp<strong>in</strong>g<br />

Signal<br />

Clipper<br />

Signal<br />

Clipper<br />

Signal<br />

Clipper<br />

Signal<br />

Clipper<br />

.<br />

.<br />

.<br />

Clipp<strong>in</strong>g is an effective way <strong>of</strong> reduc<strong>in</strong>g OC effects at trigger<br />

(orig<strong>in</strong>al idea E. Lorentz)<br />

Σ<br />

Concept proven <strong>in</strong> MAGIC <strong>and</strong> also applied <strong>in</strong> FACT<br />

(see next talk)<br />

For the US SCT we do not plan a clipp<strong>in</strong>g stage <strong>in</strong> the trigger<br />

Because<br />

several <strong>SiPMs</strong> <strong>with</strong> OC elim<strong>in</strong>at<strong>in</strong>g trenches become available<br />

Ketek, ST Microelectronics, Hamamatsu, ....<br />

Optimization <strong>of</strong> po<strong>in</strong>t <strong>of</strong> operation PDE vs. optical crosstalk<br />

See talk by D. Williams


Dependency <strong>of</strong> ga<strong>in</strong> on NSB rate<br />

Larger NSB -> larger current<br />

-> larger voltage drop<br />

over R1 (~10k)<br />

-> lower bias on SiPM<br />

-> lower ga<strong>in</strong> / PDE<br />

Example Hamamatsu:<br />

Change NSB rate by 100 MHz<br />

-> 25% change <strong>in</strong> ga<strong>in</strong><br />

Aga<strong>in</strong>, lower capacitance would help<br />

Replace <strong>with</strong> <strong>in</strong>duc<strong>to</strong>r<br />

Possible solution use <strong>in</strong>duc<strong>to</strong>r <strong>in</strong>stead <strong>of</strong> resis<strong>to</strong>r<br />

Nepomuk Otte<br />

29


Conclusions<br />

● <strong>SiPMs</strong> are great devices but we are still wait<strong>in</strong>g for the perfect<br />

version<br />

● PDE <strong>of</strong> ~60% <strong>in</strong> the blue (the <strong>to</strong>ughest one)<br />

● No optical crosstalk (trenches)<br />

● Fast output signals (tap<strong>in</strong>g at diode)<br />

● Temperature dependence <strong>of</strong> PDE <strong>and</strong> ga<strong>in</strong> ~0.5%/C (small capacitances)<br />

● Cheap (ma<strong>in</strong> costs are lithographic masks)<br />

● Exist<strong>in</strong>g devices are equal <strong>to</strong> or outperform PMTs which is why we<br />

build IACTs <strong>with</strong> <strong>SiPMs</strong> (see next talk)<br />

● Ma<strong>in</strong> nuisances can be worked around but compromises have <strong>to</strong> be<br />

made

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!