27.10.2013 Views

Dirac structures and geometry of nonholonomic constraints

Dirac structures and geometry of nonholonomic constraints

Dirac structures and geometry of nonholonomic constraints

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Dirac</strong> <strong>structures</strong> <strong>and</strong> <strong>geometry</strong> <strong>of</strong> <strong>nonholonomic</strong><br />

<strong>constraints</strong><br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 1 / 26


Introduction<br />

References<br />

Hiroaki Yoshimura, Jerrold E. Marsden : ”<strong>Dirac</strong> <strong>structures</strong> in<br />

Lagrangian Mechanics”, J. Geom. Phys., 57, (2006) Part I 133–156,<br />

Part II 209-250;<br />

W̷lodzimierz M. Tulczyjew: ”A note on holonomic <strong>constraints</strong>” in<br />

Revisiting the Foundations <strong>of</strong> Relativistic Physics, A. Ashtekar et. al.<br />

(eds.), 403-419, 2003 Kluver Academic Press;<br />

Katarzyna Grabowska, Janusz Grabowski: ”Variational calculus with<br />

<strong>constraints</strong> on general algebroids”, J. Phys. A: Math. Theor. 41,<br />

(2008).<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 2 / 26


Introduction<br />

References<br />

Hiroaki Yoshimura, Jerrold E. Marsden : ”<strong>Dirac</strong> <strong>structures</strong> in<br />

Lagrangian Mechanics”, J. Geom. Phys., 57, (2006) Part I 133–156,<br />

Part II 209-250;<br />

W̷lodzimierz M. Tulczyjew: ”A note on holonomic <strong>constraints</strong>” in<br />

Revisiting the Foundations <strong>of</strong> Relativistic Physics, A. Ashtekar et. al.<br />

(eds.), 403-419, 2003 Kluver Academic Press;<br />

Katarzyna Grabowska, Janusz Grabowski: ”Variational calculus with<br />

<strong>constraints</strong> on general algebroids”, J. Phys. A: Math. Theor. 41,<br />

(2008).<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 2 / 26


Introduction<br />

References<br />

Hiroaki Yoshimura, Jerrold E. Marsden : ”<strong>Dirac</strong> <strong>structures</strong> in<br />

Lagrangian Mechanics”, J. Geom. Phys., 57, (2006) Part I 133–156,<br />

Part II 209-250;<br />

W̷lodzimierz M. Tulczyjew: ”A note on holonomic <strong>constraints</strong>” in<br />

Revisiting the Foundations <strong>of</strong> Relativistic Physics, A. Ashtekar et. al.<br />

(eds.), 403-419, 2003 Kluver Academic Press;<br />

Katarzyna Grabowska, Janusz Grabowski: ”Variational calculus with<br />

<strong>constraints</strong> on general algebroids”, J. Phys. A: Math. Theor. 41,<br />

(2008).<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 2 / 26


Contents<br />

<strong>Dirac</strong> structure<br />

<strong>Dirac</strong> structure on T ∗ Q induced by a distribution on Q.<br />

Nonholonomic <strong>constraints</strong> <strong>and</strong> <strong>Dirac</strong> <strong>structures</strong> according to Y & M<br />

My point <strong>of</strong> view<br />

Comments about the terminology (<strong>and</strong> example)<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 3 / 26


Contents<br />

<strong>Dirac</strong> structure<br />

<strong>Dirac</strong> structure on T ∗ Q induced by a distribution on Q.<br />

Nonholonomic <strong>constraints</strong> <strong>and</strong> <strong>Dirac</strong> <strong>structures</strong> according to Y & M<br />

My point <strong>of</strong> view<br />

Comments about the terminology (<strong>and</strong> example)<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 3 / 26


Contents<br />

<strong>Dirac</strong> structure<br />

<strong>Dirac</strong> structure on T ∗ Q induced by a distribution on Q.<br />

Nonholonomic <strong>constraints</strong> <strong>and</strong> <strong>Dirac</strong> <strong>structures</strong> according to Y & M<br />

My point <strong>of</strong> view<br />

Comments about the terminology (<strong>and</strong> example)<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 3 / 26


Contents<br />

<strong>Dirac</strong> structure<br />

<strong>Dirac</strong> structure on T ∗ Q induced by a distribution on Q.<br />

Nonholonomic <strong>constraints</strong> <strong>and</strong> <strong>Dirac</strong> <strong>structures</strong> according to Y & M<br />

My point <strong>of</strong> view<br />

Comments about the terminology (<strong>and</strong> example)<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 3 / 26


Contents<br />

<strong>Dirac</strong> structure<br />

<strong>Dirac</strong> structure on T ∗ Q induced by a distribution on Q.<br />

Nonholonomic <strong>constraints</strong> <strong>and</strong> <strong>Dirac</strong> <strong>structures</strong> according to Y & M<br />

My point <strong>of</strong> view<br />

Comments about the terminology (<strong>and</strong> example)<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 3 / 26


<strong>Dirac</strong> structure<br />

Definition<br />

A <strong>Dirac</strong> structure L on a manifold M is a vector subbundle <strong>of</strong><br />

TM ⊕M T ∗ M which is maximal isotropic with respect to the metric<br />

〈Xp + ϕp | Yp + ψp〉 = 1<br />

2 (〈ψp, Xp〉 + 〈ϕp, Yp〉)<br />

<strong>and</strong> involutve with respect to Dorfman bracket<br />

[X + ϕ, Y + ψ]D = [X , Y ] + (LX ψ − ıY dϕ).<br />

We call L an almost <strong>Dirac</strong> structure when it is maximal isotropic <strong>and</strong> not<br />

involutive.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 4 / 26


<strong>Dirac</strong> structure<br />

Definition<br />

A <strong>Dirac</strong> structure L on a manifold M is a vector subbundle <strong>of</strong><br />

TM ⊕M T ∗ M which is maximal isotropic with respect to the metric<br />

〈Xp + ϕp | Yp + ψp〉 = 1<br />

2 (〈ψp, Xp〉 + 〈ϕp, Yp〉)<br />

<strong>and</strong> involutve with respect to Dorfman bracket<br />

[X + ϕ, Y + ψ]D = [X , Y ] + (LX ψ − ıY dϕ).<br />

We call L an almost <strong>Dirac</strong> structure when it is maximal isotropic <strong>and</strong> not<br />

involutive.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 4 / 26


Almost <strong>Dirac</strong> structure in mechanics<br />

M = T ∗ Q, symplectic form ωQ, associated map βQ:<br />

βQ : TT ∗ Q −→ T ∗ T ∗ Q, β(w) = ωQ(·, w)<br />

∆Q ⊂ TQ is a regular distribution not necessarily involutive,<br />

representing (<strong>nonholonomic</strong>) <strong>constraints</strong>,<br />

∆ ◦ Q ⊂ T∗ Q is an anihilator <strong>of</strong> ∆Q,<br />

πQ : T ∗ Q −→ Q<br />

TπQ : TT ∗ Q −→ TQ<br />

∆T ∗ Q = (TπQ) −1 (∆Q) is a regular distribution on T ∗ Q<br />

∆ ◦ T ∗ Q is an anihilator <strong>of</strong> ∆T ∗ Q,<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 5 / 26


Almost <strong>Dirac</strong> structure in mechanics<br />

M = T ∗ Q, symplectic form ωQ, associated map βQ:<br />

βQ : TT ∗ Q −→ T ∗ T ∗ Q, β(w) = ωQ(·, w)<br />

∆Q ⊂ TQ is a regular distribution not necessarily involutive,<br />

representing (<strong>nonholonomic</strong>) <strong>constraints</strong>,<br />

∆ ◦ Q ⊂ T∗ Q is an anihilator <strong>of</strong> ∆Q,<br />

πQ : T ∗ Q −→ Q<br />

TπQ : TT ∗ Q −→ TQ<br />

∆T ∗ Q = (TπQ) −1 (∆Q) is a regular distribution on T ∗ Q<br />

∆ ◦ T ∗ Q is an anihilator <strong>of</strong> ∆T ∗ Q,<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 5 / 26


Almost <strong>Dirac</strong> structure in mechanics<br />

M = T ∗ Q, symplectic form ωQ, associated map βQ:<br />

βQ : TT ∗ Q −→ T ∗ T ∗ Q, β(w) = ωQ(·, w)<br />

∆Q ⊂ TQ is a regular distribution not necessarily involutive,<br />

representing (<strong>nonholonomic</strong>) <strong>constraints</strong>,<br />

∆ ◦ Q ⊂ T∗ Q is an anihilator <strong>of</strong> ∆Q,<br />

πQ : T ∗ Q −→ Q<br />

TπQ : TT ∗ Q −→ TQ<br />

∆T ∗ Q = (TπQ) −1 (∆Q) is a regular distribution on T ∗ Q<br />

∆ ◦ T ∗ Q is an anihilator <strong>of</strong> ∆T ∗ Q,<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 5 / 26


Almost <strong>Dirac</strong> structure in mechanics<br />

M = T ∗ Q, symplectic form ωQ, associated map βQ:<br />

βQ : TT ∗ Q −→ T ∗ T ∗ Q, β(w) = ωQ(·, w)<br />

∆Q ⊂ TQ is a regular distribution not necessarily involutive,<br />

representing (<strong>nonholonomic</strong>) <strong>constraints</strong>,<br />

∆ ◦ Q ⊂ T∗ Q is an anihilator <strong>of</strong> ∆Q,<br />

πQ : T ∗ Q −→ Q<br />

TπQ : TT ∗ Q −→ TQ<br />

∆T ∗ Q = (TπQ) −1 (∆Q) is a regular distribution on T ∗ Q<br />

∆ ◦ T ∗ Q is an anihilator <strong>of</strong> ∆T ∗ Q,<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 5 / 26


Almost <strong>Dirac</strong> structure in mechanics<br />

M = T ∗ Q, symplectic form ωQ, associated map βQ:<br />

βQ : TT ∗ Q −→ T ∗ T ∗ Q, β(w) = ωQ(·, w)<br />

∆Q ⊂ TQ is a regular distribution not necessarily involutive,<br />

representing (<strong>nonholonomic</strong>) <strong>constraints</strong>,<br />

∆ ◦ Q ⊂ T∗ Q is an anihilator <strong>of</strong> ∆Q,<br />

πQ : T ∗ Q −→ Q<br />

TπQ : TT ∗ Q −→ TQ<br />

∆T ∗ Q = (TπQ) −1 (∆Q) is a regular distribution on T ∗ Q<br />

∆ ◦ T ∗ Q is an anihilator <strong>of</strong> ∆T ∗ Q,<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 5 / 26


Almost <strong>Dirac</strong> structure in mechanics<br />

M = T ∗ Q, symplectic form ωQ, associated map βQ:<br />

βQ : TT ∗ Q −→ T ∗ T ∗ Q, β(w) = ωQ(·, w)<br />

∆Q ⊂ TQ is a regular distribution not necessarily involutive,<br />

representing (<strong>nonholonomic</strong>) <strong>constraints</strong>,<br />

∆ ◦ Q ⊂ T∗ Q is an anihilator <strong>of</strong> ∆Q,<br />

πQ : T ∗ Q −→ Q<br />

TπQ : TT ∗ Q −→ TQ<br />

∆T ∗ Q = (TπQ) −1 (∆Q) is a regular distribution on T ∗ Q<br />

∆ ◦ T ∗ Q is an anihilator <strong>of</strong> ∆T ∗ Q,<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 5 / 26


Almost <strong>Dirac</strong> <strong>structures</strong> in mechanics<br />

Definition<br />

The almost <strong>Dirac</strong> structure on T ∗ Q induced by a distribution ∆Q is the<br />

subbundle<br />

∆ ⊂ TT ∗ Q ⊕T ∗ Q T ∗ T ∗ Q<br />

∆ = {w + ϕ : w ∈ ∆T ∗ Q, ϕ − βQ(w) ∈ ∆ ◦ T ∗ Q }<br />

If ∆Q = TQ then ∆T ∗ Q = TT ∗ Q <strong>and</strong> ∆ is the graph <strong>of</strong> βQ.<br />

If ∆Q is involutive then ∆ is a true <strong>Dirac</strong> structure.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 6 / 26


Almost <strong>Dirac</strong> <strong>structures</strong> in mechanics<br />

Definition<br />

The almost <strong>Dirac</strong> structure on T ∗ Q induced by a distribution ∆Q is the<br />

subbundle<br />

∆ ⊂ TT ∗ Q ⊕T ∗ Q T ∗ T ∗ Q<br />

∆ = {w + ϕ : w ∈ ∆T ∗ Q, ϕ − βQ(w) ∈ ∆ ◦ T ∗ Q }<br />

If ∆Q = TQ then ∆T ∗ Q = TT ∗ Q <strong>and</strong> ∆ is the graph <strong>of</strong> βQ.<br />

If ∆Q is involutive then ∆ is a true <strong>Dirac</strong> structure.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 6 / 26


Almost <strong>Dirac</strong> <strong>structures</strong> in mechanics<br />

Definition<br />

The almost <strong>Dirac</strong> structure on T ∗ Q induced by a distribution ∆Q is the<br />

subbundle<br />

∆ ⊂ TT ∗ Q ⊕T ∗ Q T ∗ T ∗ Q<br />

∆ = {w + ϕ : w ∈ ∆T ∗ Q, ϕ − βQ(w) ∈ ∆ ◦ T ∗ Q }<br />

If ∆Q = TQ then ∆T ∗ Q = TT ∗ Q <strong>and</strong> ∆ is the graph <strong>of</strong> βQ.<br />

If ∆Q is involutive then ∆ is a true <strong>Dirac</strong> structure.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 6 / 26


Almost <strong>Dirac</strong> <strong>structures</strong> in mechanics<br />

Local expressions: For O being an open subset <strong>of</strong> Q we identify<br />

TO O × V ∋ (q, ˙q),<br />

T ∗ O O × V ∗ ∋ (q, p),<br />

TT ∗ O O × V ∗ × V × V ∗ ∋ (q, p, ˙q, ˙p) = w,<br />

T ∗ T ∗ O O × V ∗ × V ∗ × V ∋ (q, p, a, b) = ϕ.<br />

∆Q = {(q, ˙q) : ˙q ∈ ∆Q(q)}, ∆Q(q) ⊂ V ,<br />

∆ ◦ Q = {(q, ˙q) : ˙q ∈ ∆◦ Q (q)}, ∆◦ Q (q) ⊂ V ∗ ,<br />

∆T ∗ Q = {(q, p, ˙q, ˙p) : ˙q ∈ ∆Q(q)},<br />

∆ ◦ T∗Q = {(q, p, a, b) : a ∈ ∆◦Q (q), b = 0}.<br />

∆ = {(q, p, ˙q, ˙p, a, b) : ˙q ∈ ∆Q(q), a + ˙p ∈ ∆ ◦ Q (q), b = ˙q}.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 7 / 26


Almost <strong>Dirac</strong> <strong>structures</strong> in mechanics<br />

Local expressions: For O being an open subset <strong>of</strong> Q we identify<br />

TO O × V ∋ (q, ˙q),<br />

T ∗ O O × V ∗ ∋ (q, p),<br />

TT ∗ O O × V ∗ × V × V ∗ ∋ (q, p, ˙q, ˙p) = w,<br />

T ∗ T ∗ O O × V ∗ × V ∗ × V ∋ (q, p, a, b) = ϕ.<br />

∆Q = {(q, ˙q) : ˙q ∈ ∆Q(q)}, ∆Q(q) ⊂ V ,<br />

∆ ◦ Q = {(q, ˙q) : ˙q ∈ ∆◦ Q (q)}, ∆◦ Q (q) ⊂ V ∗ ,<br />

∆T ∗ Q = {(q, p, ˙q, ˙p) : ˙q ∈ ∆Q(q)},<br />

∆ ◦ T∗Q = {(q, p, a, b) : a ∈ ∆◦Q (q), b = 0}.<br />

∆ = {(q, p, ˙q, ˙p, a, b) : ˙q ∈ ∆Q(q), a + ˙p ∈ ∆ ◦ Q (q), b = ˙q}.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 7 / 26


Almost <strong>Dirac</strong> <strong>structures</strong> in mechanics<br />

Local expressions: For O being an open subset <strong>of</strong> Q we identify<br />

TO O × V ∋ (q, ˙q),<br />

T ∗ O O × V ∗ ∋ (q, p),<br />

TT ∗ O O × V ∗ × V × V ∗ ∋ (q, p, ˙q, ˙p) = w,<br />

T ∗ T ∗ O O × V ∗ × V ∗ × V ∋ (q, p, a, b) = ϕ.<br />

∆Q = {(q, ˙q) : ˙q ∈ ∆Q(q)}, ∆Q(q) ⊂ V ,<br />

∆ ◦ Q = {(q, ˙q) : ˙q ∈ ∆◦ Q (q)}, ∆◦ Q (q) ⊂ V ∗ ,<br />

∆T ∗ Q = {(q, p, ˙q, ˙p) : ˙q ∈ ∆Q(q)},<br />

∆ ◦ T∗Q = {(q, p, a, b) : a ∈ ∆◦Q (q), b = 0}.<br />

∆ = {(q, p, ˙q, ˙p, a, b) : ˙q ∈ ∆Q(q), a + ˙p ∈ ∆ ◦ Q (q), b = ˙q}.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 7 / 26


Constrained Lagrangian system according to Y & M<br />

Let L : TQ → R be a Lagrangian (possibly not hyperregular).<br />

T∗TQ ζ<br />

⑤⑤⑤⑤⑤⑤⑤⑤⑤<br />

❆<br />

π ❆ TQ ❆<br />

<br />

T∗Q❇ TQ<br />

❇<br />

πQ τQ ❇<br />

<br />

⑥⑥⑥⑥⑥⑥⑥⑥⑥<br />

<br />

❲<br />

❆dL<br />

✮<br />

★<br />

❴<br />

❴ ❴ ❴ FL❴<br />

❴ ❴ ❴<br />

Q<br />

Definition<br />

The Legendre map FL : TQ → T ∗ Q is defined by the formula<br />

FL = ζ ◦ dL.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 8 / 26


Constrained Lagrangian system according to Y & M<br />

Let L : TQ → R be a Lagrangian (possibly not hyperregular).<br />

T∗TQ ζ<br />

⑤⑤⑤⑤⑤⑤⑤⑤⑤<br />

❆<br />

π ❆ TQ ❆<br />

<br />

T∗Q❇ TQ<br />

❇<br />

πQ τQ ❇<br />

<br />

⑥⑥⑥⑥⑥⑥⑥⑥⑥<br />

<br />

❲<br />

❆dL<br />

✮<br />

★<br />

❴<br />

❴ ❴ ❴ FL❴<br />

❴ ❴ ❴<br />

Q<br />

Definition<br />

The Legendre map FL : TQ → T ∗ Q is defined by the formula<br />

FL = ζ ◦ dL.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 8 / 26


Constrained Lagrangian system according to Y & M<br />

There exists the canonical isomorphism<br />

Locally for O ⊂ Q we have<br />

<strong>and</strong><br />

γQ : T ∗ TQ −→ T ∗ T ∗ Q<br />

T ∗ TO O × V × V ∗ × V ∗ , T ∗ T ∗ O O × V ∗ × V ∗ × V<br />

γQ(q, ˙q, c, d) = (q, d, −c, ˙q)<br />

It exists for any vector bundle (not only tangent bundle), it is a double<br />

vector bundle isomorphism <strong>and</strong> antisymplectomorphism.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 9 / 26


Constrained Lagrangian system according to Y & M<br />

Definition<br />

For L : TQ → R the composition<br />

γQ ◦ dL : TQ −→ T ∗ T ∗ Q<br />

will be called the <strong>Dirac</strong> differential <strong>of</strong> L <strong>and</strong> denoted by DL<br />

Locally:<br />

DL(q, ˙q) = (q, ∂L<br />

, −∂L , ˙q)<br />

∂ ˙q ∂q<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 10 / 26


Constrained Lagrangian system according to Y & M<br />

Definition<br />

A partial vector field on T ∗ Q is a map<br />

such that<br />

X : TQ ⊕Q T ∗ Q −→ TT ∗ Q<br />

X (v, p) ∈ TpT ∗ Q.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 11 / 26


Constrained Lagrangian system according to Y & M<br />

A Lagrangian system with <strong>nonholonomic</strong> <strong>constraints</strong> ∆Q can be described<br />

by a triple<br />

(L, ∆, X )<br />

where<br />

L is a Lagrangian function, possibly not hyperregular,<br />

∆ is the <strong>Dirac</strong> structure associated to the constraint distribution ∆Q,<br />

X is a partial vector field defined in points<br />

<strong>and</strong> such that<br />

(v, p) ∈ TQ ⊕ T ∗ Q, such that v ∈ ∆Q, p = FL(v)<br />

X (v, p) + DL(v) ∈ ∆<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 12 / 26


Constrained Lagrangian system according to Y & M<br />

A Lagrangian system with <strong>nonholonomic</strong> <strong>constraints</strong> ∆Q can be described<br />

by a triple<br />

(L, ∆, X )<br />

where<br />

L is a Lagrangian function, possibly not hyperregular,<br />

∆ is the <strong>Dirac</strong> structure associated to the constraint distribution ∆Q,<br />

X is a partial vector field defined in points<br />

<strong>and</strong> such that<br />

(v, p) ∈ TQ ⊕ T ∗ Q, such that v ∈ ∆Q, p = FL(v)<br />

X (v, p) + DL(v) ∈ ∆<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 12 / 26


Constrained Lagrangian system according to Y & M<br />

A Lagrangian system with <strong>nonholonomic</strong> <strong>constraints</strong> ∆Q can be described<br />

by a triple<br />

(L, ∆, X )<br />

where<br />

L is a Lagrangian function, possibly not hyperregular,<br />

∆ is the <strong>Dirac</strong> structure associated to the constraint distribution ∆Q,<br />

X is a partial vector field defined in points<br />

<strong>and</strong> such that<br />

(v, p) ∈ TQ ⊕ T ∗ Q, such that v ∈ ∆Q, p = FL(v)<br />

X (v, p) + DL(v) ∈ ∆<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 12 / 26


Constrained Lagrangian system according to Y & M<br />

A Lagrangian system with <strong>nonholonomic</strong> <strong>constraints</strong> ∆Q can be described<br />

by a triple<br />

(L, ∆, X )<br />

where<br />

L is a Lagrangian function, possibly not hyperregular,<br />

∆ is the <strong>Dirac</strong> structure associated to the constraint distribution ∆Q,<br />

X is a partial vector field defined in points<br />

<strong>and</strong> such that<br />

(v, p) ∈ TQ ⊕ T ∗ Q, such that v ∈ ∆Q, p = FL(v)<br />

X (v, p) + DL(v) ∈ ∆<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 12 / 26


Constrained Lagrangian system according to Y & M<br />

A Lagrangian system with <strong>nonholonomic</strong> <strong>constraints</strong> ∆Q can be described<br />

by a triple<br />

(L, ∆, X )<br />

where<br />

L is a Lagrangian function, possibly not hyperregular,<br />

∆ is the <strong>Dirac</strong> structure associated to the constraint distribution ∆Q,<br />

X is a partial vector field defined in points<br />

<strong>and</strong> such that<br />

(v, p) ∈ TQ ⊕ T ∗ Q, such that v ∈ ∆Q, p = FL(v)<br />

X (v, p) + DL(v) ∈ ∆<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 12 / 26


My point <strong>of</strong> view<br />

Lagrangian dynamics without <strong>constraints</strong> according to Y & M (when we<br />

forget partial vector fields)<br />

γQ<br />

T∗T∗Q● TT<br />

✟ ●ξ<br />

✟ ●<br />

πT∗Q ✟<br />

✟<br />

✟<br />

✟<br />

∗ αQ <br />

Q ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ <br />

β ✡<br />

❋ TπQ ❋<br />

✡ ❋<br />

τT∗Q ✡<br />

✡<br />

✡<br />

✡<br />

−1<br />

T<br />

Q<br />

∗ <br />

TQ <br />

dL<br />

✡<br />

❋<br />

❋<br />

ζ ✡ π ❋<br />

TQ <br />

TQ<br />

TQ<br />

✡<br />

✡ TQ<br />

✡<br />

☛ ✡ ☛<br />

τQ ✡ τQ ☛ ✡<br />

☛<br />

✡ ☛ τQ<br />

T<br />

☛<br />

✡ ☛ ☛<br />

✡ ☛ ☛<br />

✡<br />

☛<br />

☛<br />

∗Q❍ T<br />

πQ ❍<br />

❍<br />

∗Q● T<br />

πQ ●<br />

●<br />

∗Q● πQ ●<br />

●<br />

Q Q Q<br />

DL = β −1<br />

Q (γQ(dL(TQ)))<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 13 / 26


My point <strong>of</strong> view<br />

Lagrangian dynamics without <strong>constraints</strong>:<br />

DL <br />

<br />

T∗T∗Q● TT<br />

✟ ●ξ<br />

✟ ●<br />

πT∗Q ✟<br />

✟<br />

✟<br />

✟<br />

∗ ❴<br />

❴ ❴ ❴ ❴ ❴ ❴ ❴ Q ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ <br />

✡<br />

❋<br />

T<br />

βQ<br />

TπQ<br />

αQ<br />

❋<br />

✡ ❋<br />

τT∗Q ✡<br />

✡<br />

✡<br />

✡<br />

∗ α<br />

TQ<br />

✡<br />

❋<br />

❋<br />

ζ ✡ π ❋<br />

TQ <br />

✡<br />

✡<br />

✡<br />

✡<br />

−1<br />

Q<br />

<br />

<br />

dL<br />

TQ<br />

TQ<br />

TQ<br />

✡<br />

☛<br />

☛<br />

τQ ✡ τQ ☛ ☛<br />

✡ ☛ τQ<br />

T<br />

☛<br />

✡ ☛ ☛<br />

✡ ☛ ☛<br />

✡<br />

☛<br />

☛<br />

∗Q❍ T<br />

πQ ❍<br />

❍<br />

∗Q● T<br />

πQ ●<br />

●<br />

∗Q● πQ ●<br />

●<br />

Q Q Q<br />

DL = α −1<br />

Q (dL(TQ))<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 14 / 26


My point <strong>of</strong> view<br />

Lagrangian dynamics with <strong>constraints</strong> according to Y & M<br />

γQ<br />

T∗T∗ ∆ ✤ αQ<br />

Q <br />

●<br />

TT∗Q ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ <br />

✟ ●ξ<br />

❋<br />

T<br />

✡ TπQ ❋<br />

✟ ●<br />

✡ ❋<br />

πT∗Q ✟ τT∗Q ✡<br />

✟ ✡<br />

✟ ✡<br />

✟<br />

✡<br />

∗ <br />

TQ <br />

dL<br />

✡<br />

❋<br />

❋<br />

ζ ✡ π ❋<br />

TQ <br />

TQ<br />

TQ<br />

✡<br />

✡ TQ<br />

✡<br />

☛ ✡ ☛<br />

τQ ✡ τQ ☛ ✡<br />

☛<br />

✡ ☛ τQ<br />

T<br />

☛<br />

✡ ☛ ☛<br />

✡ ☛ ☛<br />

✡<br />

☛<br />

☛<br />

∗Q❍ T<br />

πQ ❍<br />

❍<br />

∗Q● T<br />

πQ ●<br />

●<br />

∗Q● πQ ●<br />

●<br />

Q Q Q<br />

DL = ∆(γQ(dL(TQ)))<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 15 / 26


My point <strong>of</strong> view<br />

Back<br />

We treat ∆ as a relation T ∗ T ∗ Q −− ⊲ TT ∗ Q<br />

We can take a ”short-cut” identifying T ∗ T ∗ Q with T ∗ TQ<br />

Local expressions:<br />

TT∗Q❊ T<br />

✡ TπQ ❊<br />

✡ ❊<br />

τT∗Q ✡<br />

✡<br />

✡<br />

✡<br />

∗ ˜∆ <br />

✤<br />

TQ <br />

dL<br />

✡<br />

❊<br />

❊<br />

ζ ✡ π ❊ TQ <br />

✡<br />

∆Q ✡ ∆Q<br />

✡<br />

✡<br />

T∗Q T∗Q T ∗ TO O × V × V ∗ × V ∗ ∋ (q, ˙q, c, d)<br />

TT ∗ O O × V ∗ × V × V ∗ ∋ (q, p, ˙q, ˙p)<br />

˜∆ : ˙q ∈ ∆Q(q), p = d ˙p − c ∈ ∆ ◦ Q (q)<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 16 / 26


My point <strong>of</strong> view<br />

Back<br />

We treat ∆ as a relation T ∗ T ∗ Q −− ⊲ TT ∗ Q<br />

We can take a ”short-cut” identifying T ∗ T ∗ Q with T ∗ TQ<br />

Local expressions:<br />

TT∗Q❊ T<br />

✡ TπQ ❊<br />

✡ ❊<br />

τT∗Q ✡<br />

✡<br />

✡<br />

✡<br />

∗ ˜∆ <br />

✤<br />

TQ <br />

dL<br />

✡<br />

❊<br />

❊<br />

ζ ✡ π ❊ TQ <br />

✡<br />

∆Q ✡ ∆Q<br />

✡<br />

✡<br />

T∗Q T∗Q T ∗ TO O × V × V ∗ × V ∗ ∋ (q, ˙q, c, d)<br />

TT ∗ O O × V ∗ × V × V ∗ ∋ (q, p, ˙q, ˙p)<br />

˜∆ : ˙q ∈ ∆Q(q), p = d ˙p − c ∈ ∆ ◦ Q (q)<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 16 / 26


My point <strong>of</strong> view<br />

Back<br />

We treat ∆ as a relation T ∗ T ∗ Q −− ⊲ TT ∗ Q<br />

We can take a ”short-cut” identifying T ∗ T ∗ Q with T ∗ TQ<br />

Local expressions:<br />

TT∗Q❊ T<br />

✡ TπQ ❊<br />

✡ ❊<br />

τT∗Q ✡<br />

✡<br />

✡<br />

✡<br />

∗ ˜∆ <br />

✤<br />

TQ <br />

dL<br />

✡<br />

❊<br />

❊<br />

ζ ✡ π ❊ TQ <br />

✡<br />

∆Q ✡ ∆Q<br />

✡<br />

✡<br />

T∗Q T∗Q T ∗ TO O × V × V ∗ × V ∗ ∋ (q, ˙q, c, d)<br />

TT ∗ O O × V ∗ × V × V ∗ ∋ (q, p, ˙q, ˙p)<br />

˜∆ : ˙q ∈ ∆Q(q), p = d ˙p − c ∈ ∆ ◦ Q (q)<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 16 / 26


My point <strong>of</strong> view<br />

Back<br />

We treat ∆ as a relation T ∗ T ∗ Q −− ⊲ TT ∗ Q<br />

We can take a ”short-cut” identifying T ∗ T ∗ Q with T ∗ TQ<br />

Local expressions:<br />

TT∗Q❊ T<br />

✡ TπQ ❊<br />

✡ ❊<br />

τT∗Q ✡<br />

✡<br />

✡<br />

✡<br />

∗ ˜∆ <br />

✤<br />

TQ <br />

dL<br />

✡<br />

❊<br />

❊<br />

ζ ✡ π ❊ TQ <br />

✡<br />

∆Q ✡ ∆Q<br />

✡<br />

✡<br />

T∗Q T∗Q T ∗ TO O × V × V ∗ × V ∗ ∋ (q, ˙q, c, d)<br />

TT ∗ O O × V ∗ × V × V ∗ ∋ (q, p, ˙q, ˙p)<br />

˜∆ : ˙q ∈ ∆Q(q), p = d ˙p − c ∈ ∆ ◦ Q (q)<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 16 / 26


My point <strong>of</strong> view<br />

How to get ˜ ∆ not going to the ”Hamiltonian” side <strong>of</strong> the diagram?<br />

Many <strong>of</strong> the ideas od Analytical Mechanics come from statics,<br />

In statics <strong>constraints</strong> are described by admissible configurations <strong>and</strong><br />

admissible virtual displacements (WMT),<br />

We observed in ”Variational ... in general algebroids” that different<br />

set <strong>of</strong> admissible virtual displacements produce different E-L<br />

equations (vaconomic, <strong>nonholonomic</strong>) for the same set <strong>of</strong> admissible<br />

configurations.<br />

How to put virtual displacements into the game?<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 17 / 26


My point <strong>of</strong> view<br />

How to get ˜ ∆ not going to the ”Hamiltonian” side <strong>of</strong> the diagram?<br />

Many <strong>of</strong> the ideas od Analytical Mechanics come from statics,<br />

In statics <strong>constraints</strong> are described by admissible configurations <strong>and</strong><br />

admissible virtual displacements (WMT),<br />

We observed in ”Variational ... in general algebroids” that different<br />

set <strong>of</strong> admissible virtual displacements produce different E-L<br />

equations (vaconomic, <strong>nonholonomic</strong>) for the same set <strong>of</strong> admissible<br />

configurations.<br />

How to put virtual displacements into the game?<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 17 / 26


My point <strong>of</strong> view<br />

How to get ˜ ∆ not going to the ”Hamiltonian” side <strong>of</strong> the diagram?<br />

Many <strong>of</strong> the ideas od Analytical Mechanics come from statics,<br />

In statics <strong>constraints</strong> are described by admissible configurations <strong>and</strong><br />

admissible virtual displacements (WMT),<br />

We observed in ”Variational ... in general algebroids” that different<br />

set <strong>of</strong> admissible virtual displacements produce different E-L<br />

equations (vaconomic, <strong>nonholonomic</strong>) for the same set <strong>of</strong> admissible<br />

configurations.<br />

How to put virtual displacements into the game?<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 17 / 26


My point <strong>of</strong> view<br />

How to get ˜ ∆ not going to the ”Hamiltonian” side <strong>of</strong> the diagram?<br />

Many <strong>of</strong> the ideas od Analytical Mechanics come from statics,<br />

In statics <strong>constraints</strong> are described by admissible configurations <strong>and</strong><br />

admissible virtual displacements (WMT),<br />

We observed in ”Variational ... in general algebroids” that different<br />

set <strong>of</strong> admissible virtual displacements produce different E-L<br />

equations (vaconomic, <strong>nonholonomic</strong>) for the same set <strong>of</strong> admissible<br />

configurations.<br />

How to put virtual displacements into the game?<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 17 / 26


My point <strong>of</strong> view<br />

How to get ˜ ∆ not going to the ”Hamiltonian” side <strong>of</strong> the diagram?<br />

Many <strong>of</strong> the ideas od Analytical Mechanics come from statics,<br />

In statics <strong>constraints</strong> are described by admissible configurations <strong>and</strong><br />

admissible virtual displacements (WMT),<br />

We observed in ”Variational ... in general algebroids” that different<br />

set <strong>of</strong> admissible virtual displacements produce different E-L<br />

equations (vaconomic, <strong>nonholonomic</strong>) for the same set <strong>of</strong> admissible<br />

configurations.<br />

How to put virtual displacements into the game?<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 17 / 26


My point <strong>of</strong> view<br />

The unconstrained case: all virtual displacements are admissible<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 18 / 26


My point <strong>of</strong> view<br />

The constrained case: we choose admissible displacements<br />

Locally:<br />

U = {u ∈ TTQ : τTQ(u) ∈ ∆Q, TτQ(u) ∈ ∆Q}<br />

u = (q, ˙q, δq, δ ˙q) : ˙q ∈ ∆Q(q), δq ∈ ∆Q(q)<br />

κQ(U) = U<br />

We treat κQ |U as a relation in TTQ <strong>and</strong> we look for the dual relation with<br />

respect to the evaluations 〈·, ·〉, 〈〈·, ·〉〉.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 19 / 26


My point <strong>of</strong> view<br />

The constrained case: we choose admissible displacements<br />

Locally:<br />

U = {u ∈ TTQ : τTQ(u) ∈ ∆Q, TτQ(u) ∈ ∆Q}<br />

u = (q, ˙q, δq, δ ˙q) : ˙q ∈ ∆Q(q), δq ∈ ∆Q(q)<br />

κQ(U) = U<br />

We treat κQ |U as a relation in TTQ <strong>and</strong> we look for the dual relation with<br />

respect to the evaluations 〈·, ·〉, 〈〈·, ·〉〉.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 19 / 26


My point <strong>of</strong> view<br />

The constrained case: we choose admissible displacements<br />

Locally:<br />

U = {u ∈ TTQ : τTQ(u) ∈ ∆Q, TτQ(u) ∈ ∆Q}<br />

u = (q, ˙q, δq, δ ˙q) : ˙q ∈ ∆Q(q), δq ∈ ∆Q(q)<br />

κQ(U) = U<br />

We treat κQ |U as a relation in TTQ <strong>and</strong> we look for the dual relation with<br />

respect to the evaluations 〈·, ·〉, 〈〈·, ·〉〉.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 19 / 26


My point <strong>of</strong> view<br />

The constrained case: we choose admissible displacements<br />

Locally:<br />

U = {u ∈ TTQ : τTQ(u) ∈ ∆Q, TτQ(u) ∈ ∆Q}<br />

u = (q, ˙q, δq, δ ˙q) : ˙q ∈ ∆Q(q), δq ∈ ∆Q(q)<br />

κQ(U) = U<br />

We treat κQ |U as a relation in TTQ <strong>and</strong> we look for the dual relation with<br />

respect to the evaluations 〈·, ·〉, 〈〈·, ·〉〉.<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 19 / 26


My point <strong>of</strong> view<br />

˜∆<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 20 / 26


My point <strong>of</strong> view<br />

Conclusion<br />

The relation ˜∆ is dual to the relation κQ restricted to the set <strong>of</strong> admissible<br />

virtual displacements.<br />

Equations<br />

The equations for a curve t ↦−→ ℘(t) in the phase space T ∗ Q are<br />

Local expressions:<br />

t ↦−→ (q(t), p(t))<br />

t℘(t) ∈ ˜ ∆ ◦ dL(∆Q)<br />

˙q ∈ ∆Q(q(t)), p(t) = ∂L<br />

∂L<br />

(q, ˙q), ˙p(t) ∈<br />

∂ ˙q ∂q (q, ˙q) + ∆◦Q (q(t))<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 21 / 26


My point <strong>of</strong> view<br />

Conclusion<br />

The relation ˜∆ is dual to the relation κQ restricted to the set <strong>of</strong> admissible<br />

virtual displacements.<br />

Equations<br />

The equations for a curve t ↦−→ ℘(t) in the phase space T ∗ Q are<br />

Local expressions:<br />

t ↦−→ (q(t), p(t))<br />

t℘(t) ∈ ˜ ∆ ◦ dL(∆Q)<br />

˙q ∈ ∆Q(q(t)), p(t) = ∂L<br />

∂L<br />

(q, ˙q), ˙p(t) ∈<br />

∂ ˙q ∂q (q, ˙q) + ∆◦Q (q(t))<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 21 / 26


Example<br />

Lagrangian system with <strong>constraints</strong>: a sleigh on a horizontal plane<br />

Q = R 2 × S 1 ∋ (x, y, ϕ),<br />

∆Q(x, y, ϕ) = {( ˙x, ˙y, ˙ϕ) : ˙x sin(ϕ) = ˙y cos(ϕ)},<br />

∆Q = 〈 ∂ ∂<br />

, cos(ϕ)<br />

∂ϕ ∂x<br />

+ sin(ϕ) ∂<br />

∂y 〉<br />

L(x, y, ϕ, ˙x, ˙y, ˙ϕ) = m<br />

2 ( ˙x 2 + ˙y 2 ) + I<br />

2 ˙ϕ2<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 22 / 26


Example<br />

Equations for a curve t ↦−→ (x(t), y(t), ϕ(t), px(t), py (t), π(t))<br />

˙x = px/m, ˙px = µ(t) sin ϕ<br />

˙y = py /m, ˙py = −µ(t) cos ϕ<br />

˙ϕ = π/m, ˙π = 0<br />

˙x sin ϕ = ˙y cos ϕ<br />

Solution (momentum)<br />

π(t) = π0<br />

px(t) = p0 cos( π0<br />

t + ϕ0)<br />

I<br />

py (t) = p0 sin( π0<br />

t + ϕ0)<br />

I<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 23 / 26


Example<br />

Modeling <strong>constraints</strong>: a sleigh subject to strong viscous force<br />

perpendicular to the sleigh<br />

Equations for a curve t ↦−→ (x(t), y(t), ϕ(t), px(t), py (t), π(t)) (γ < 0)<br />

˙x = px/m, ˙px = (γ/m)(py cos ϕ − px sin ϕ)(− sin ϕ)<br />

˙y = py /m, ˙py = (γ/m)(py cos ϕ − px sin ϕ)(cos ϕ)<br />

˙ϕ = π/I , ˙π = 0<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 24 / 26


Example<br />

Initial momentum along the sleigh, π0/I = 1, ϕ0 = 0<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

black: solution with <strong>constraints</strong><br />

red: γ/m = −3<br />

blue: γ/m = −10<br />

green: γ/m = −100<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 25 / 26


Example<br />

Initial momentum perpendicular to the sleigh, π0/I = 1, ϕ0 = 0<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

red: γ/m = −3<br />

blue: γ/m = −10<br />

green: γ/m = −100<br />

KG (KMMF) Seminarium Geometryczne 13 X 2010 26 / 26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!