06.11.2013 Views

Annual Report 2005 - IPHT Jena

Annual Report 2005 - IPHT Jena

Annual Report 2005 - IPHT Jena

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INSTITUT FÜR<br />

PHYSIKALISCHE HOCHTECHNOLOGIE e.V.<br />

JENA<br />

INSTITUTE FOR<br />

PHYSICAL HIGH TECHNOLOGY JENA<br />

JAHRESBERICHT<br />

<strong>2005</strong><br />

ANNUAL REPORT


Institut für Physikalische Hochtechnologie e.V.<br />

Direktor: Prof. Dr. H. Bartelt<br />

Albert-Einstein-Str. 9, D-07745 <strong>Jena</strong><br />

Postfach/P.O.B.: 10 02 39, D-07702 <strong>Jena</strong><br />

Telefon/Phone: +49(0)36 41 2 06 00<br />

Telefax: +49(0)36 41 20 60 99<br />

e-mail: institut@ipht-jena.de<br />

internet: http://www.ipht-jena.de<br />

Titelfoto: Dr. K. Fischer<br />

Herstellung:<br />

Werbeagentur Kirstin Sangmeister<br />

Telefon: 03671/64 12 96<br />

Mobil: 0171 8 43 65 94<br />

e-mail: kirstin.sangmeister@freenet.de


Inhaltsverzeichnis / Content<br />

INHALT / CONTENT<br />

A. Vorwort / Introduction 3<br />

B. Organisation / Organization 7<br />

C. Personal und Finanzen / Staff and Budget 12<br />

D. Forschungsbereiche / Scientific Divisions 12<br />

1. Bereich Magnetik/Quantenelektronik (Prof. Dr. H. E. Hoenig) 12<br />

Magnetics/Quantum Electronics Division<br />

1.1 Überblick / Overview 12<br />

1.2 Scientific results 15<br />

1.2.1 Micro- and nanofabrication 15<br />

1.2.2 SQUID sensors and systems 15<br />

1.2.3 Integrated superconducting circuits 17<br />

1.2.4 Quantum computing 18<br />

1.2.5 Foundry service 19<br />

1.2.6 Domain wall motion in small GMR structures 19<br />

1.2.7 Measurement of coupling strength distribution in exchange bias film systems 21<br />

1.2.8 Electron exited L X-rax spectra of the elements 14


INHALT / CONTENT<br />

2.3 Appendix Partners 51<br />

Publications 52<br />

Presentations/Posters 54<br />

Lectures 56<br />

Patents 57<br />

Diploma/Master Thesis/Laboratory Exercises 57<br />

Guest scientists 57<br />

Memberships 57<br />

Participations in fairs/expositions 58<br />

3. Bereich Mikrosysteme (Prof. Dr. J. Popp) 59<br />

Microsystems Division<br />

3.1 Übersicht / Overview 59<br />

3.2 Scientific results 63<br />

3.2.1 Spectral optical techniques and instrumentation 63<br />

Spectral optical sensing 63<br />

Thermal microsensors 65<br />

3.2.2 Photonic chip systems 67<br />

Molecular nanotechnology and plasmonics 67<br />

DNA-chip technology 69<br />

3.2.3 Micro system technology 69<br />

Microfluidics of liquid-liquid segmented sample streams 70<br />

Chipmodule for analysis of micro combustion 71<br />

3.3 Appendix Partners 72<br />

Editor/Book chapters 73<br />

Publications 73<br />

Presentations/Posters 75<br />

Patents 77<br />

Lectures 77<br />

Diploma thesis 78<br />

Laboratory exercises 78<br />

Practical trainee 78<br />

Guest scientists 78<br />

Memberships 78<br />

Awards 79<br />

Conference organization 79<br />

4. Bereich Lasertechnik (Prof. Dr. H. Stafast) 80<br />

Laser Technology Division<br />

4.1 Überblick / Overview 80<br />

4.2 Selected results 83<br />

4.2.1 Laser chemistry 83<br />

Laser crystallization, Thin film deposition and nanowire growth, Laser ablation 83<br />

4.2.2 Laser diagnostics 84<br />

UV optical materials, Combustion processes 85<br />

4.3 Appendix Partners 86<br />

Publications 87<br />

Presentations/Posters 88<br />

Patents 89<br />

Lectures 89<br />

Diploma Theses 89<br />

Laboratory Exercises 89<br />

Committees 89<br />

Award, Exhibitions 89<br />

New Equipment 89<br />

E. Innovation Project <strong>2005</strong> 90<br />

Nanostructured Ta 2 O 5 layers for optochemical/biophotonic sensors and solar cells 90<br />

2


VORWORT / INTRODUCTION<br />

A. Vorwort<br />

A. Introduction<br />

Das <strong>IPHT</strong> konnte das Jahr <strong>2005</strong> mit einer erfolgreichen<br />

Projektarbeit abschließen. Die Drittmittelquote<br />

liegt deutlich über 50% mit einer bemerkenswerten<br />

Steigerung bei den EU-Projekten.<br />

Als besonders herausragende Beispiele der in<br />

diesem Jahresbericht enthaltenen Darstellung<br />

der Ergebnisse sollen hier genannt werden:<br />

– Erstmalig wurden vier Flussquanten-Qubits als<br />

Vorstufe für einen adiabatischen Quantenrechner<br />

gekoppelt und spektroskopisch charakterisiert.<br />

– Bei der Erzeugung von Einzelpuls-Bragg-Gittern<br />

(Typ I) in optischen Fasern wurden mit bis<br />

zu 50% Reflexionseffizienz internationale Spitzenwerte<br />

erzielt.<br />

– Die Entwicklung eines auf dem Prinzip segmentierter<br />

Probenströme arbeitenden LabOn-<br />

Chip basierten Systems führte zu einer Analysenplattform<br />

für die Krebsdiagnostik, deren<br />

Anwendungspotenzial auf grundlegende molekularbiologische<br />

Fragestellungen erweiterbar<br />

ist.<br />

– durch Laserkristallisation von Silizium auf Glas<br />

wurden mittels eines industrietauglichen Diodenlasers<br />

Keimkristalle mit Abmessungen bis<br />

500 µm erzeugt, die die bisherige Größe um<br />

das 5- bis 10fache übersteigt.<br />

Gleichzeitig wurde während des Jahres eine<br />

Reihe von Weichenstellungen für eine zukunftsorientierte<br />

Aufstellung und Entwicklung der<br />

Arbeitsgebiete des <strong>IPHT</strong> vorbereitet. Dazu gehört<br />

zunächst die Berufung von Prof. Dr. Jürgen Popp<br />

als Leiter des Forschungsbereiches Mikrosysteme<br />

zum 1. Mai <strong>2005</strong>. Er ist gleichzeitig Lehrstuhlinhaber<br />

für Physikalische Chemie an der Universität<br />

<strong>Jena</strong> und ausgewiesener Spezialist auf dem<br />

Forschungsgebiet der Laserspektroskopie und<br />

der Biophotonik. Damit wird die Verbindung von<br />

optischen Technologien und Anwendungen der<br />

Lebenswissenschaften fachlich gestärkt und die<br />

Zusammenarbeit mit der Friedrich-Schiller-Universität<br />

weiter unterstützt. Dr. Helmut Dintner, der<br />

diesen Forschungsbereich während der vergangenen<br />

sechs Jahre geleitet hatte, gebührt unser<br />

Dank für seine umsichtige Leitungstätigkeit<br />

während dieser Zeit.<br />

Zur Frage einer mit dem Umfeld abgestimmten<br />

und zukunftsorientiert ausgerichteten Fokussierung<br />

der Arbeitsgebiete zu photonischen und<br />

optischen Technologien wurde auf Empfehlung<br />

des Wissenschaftlichen Beirats durch das Kuratorium<br />

des <strong>IPHT</strong> eine Strukturkommission unter<br />

Leitung von Prof. Dr. Dietrich Wegener (Universität<br />

Dortmund) mit Beteiligung von Vertretern<br />

des <strong>IPHT</strong>, der Universität und des Landes eingesetzt.<br />

Auf der Basis eines vom <strong>IPHT</strong> vorgelegten<br />

Konzeptes wurden unter besonderer Berücksichtigung<br />

der bestehenden fachlichen Stärken Empfehlungen<br />

zur Fokussierung auf den Gebieten<br />

For the <strong>IPHT</strong>, <strong>2005</strong> was a successful project year.<br />

The share of project-financed activities was well<br />

above the 50% level, with a considerable<br />

increase in EU-funded projects. Here are some<br />

highlights of the results presented in this annual<br />

report:<br />

– For the first time, four flux quantum qubits have<br />

been coupled and spectrally characterized – a<br />

first step towards an adiabatic quantum computer.<br />

– The inscription of single pulse fibre Bragg gratings<br />

(type I) has achieved a reflection efficiency<br />

of 50% – a new international record.<br />

– The development of a LabOnChip based system<br />

using the principle of segmented probe<br />

flow has paved the way for an analysis platform<br />

for cancer diagnosis, which can be further<br />

extended to perform fundamental investigations<br />

in molecular biology.<br />

– By laser crystallisation of silicon on glass with<br />

a diode laser suitable for industrial use, seed<br />

crystals with a size of up to 500 µm have been<br />

produced, which is an improvement by a factor<br />

of 5 to 10.<br />

In addition to the scientific achievements, several<br />

measures were taken to shape the future of the<br />

<strong>IPHT</strong> and to assure the successful development<br />

of its research fields. As one major point, Prof. Dr.<br />

Jürgen Popp was appointed as head of the Micro<br />

Systems research division as of May 1 st , <strong>2005</strong>.<br />

He is also a professor of physical chemistry at<br />

the University of <strong>Jena</strong> and a well-known specialist<br />

in the fields of laser spectroscopy and biophotonics.<br />

This appointment will strengthen the synergy<br />

in our research in optical technologies and<br />

applications in the life sciences as well as intensify<br />

our collaboration with the University of <strong>Jena</strong>.<br />

We are obliged to Dr. Helmut Dintner for his prudent<br />

management of the said research division<br />

during the last six years.<br />

Based on a recommendation by the Institute’s<br />

scientific council, the Supervisory Board of the<br />

<strong>IPHT</strong> appointed a structural commission headed<br />

by Prof. Dr. Dietrich Wegener (University of Dortmund)<br />

with participation of representatives from<br />

the <strong>IPHT</strong>, the University of <strong>Jena</strong> and the State of<br />

Thuringia. This commission has discussed future<br />

focussing directions in the fields of photonic technologies<br />

considering regional interests to<br />

strengthen scientific excellence. Based on a concept<br />

framed by the <strong>IPHT</strong>, the commission investigated<br />

the Institute’s specific strengths and recommended<br />

focussing and further strengthening<br />

in the fields of optical fibres and applications and<br />

photonic instrumentation.<br />

For the magnetics and quantum electronics<br />

research fields, similar and still ongoing discussions<br />

have been held in order to develop strategies<br />

for this important part of the <strong>IPHT</strong>’s activities.<br />

3


VORWORT / INTRODUCTION<br />

4<br />

Optische Fasern und Faseranwendungen und<br />

Photonische Instrumentierung formuliert.<br />

Für die Forschungsgebiete Magnetik und Quantenelektronik<br />

fand ebenfalls eine Reihe von<br />

Abstimmungsgesprächen zur Zukunftsgestaltung<br />

dieses gewichtigen Arbeitsfeldes statt, die aber<br />

noch nicht abgeschlossen sind.<br />

Zur Pflege des wissenschaftlichen Austauschs<br />

war das <strong>IPHT</strong> Ausrichter von Tagungen und<br />

Workshops und beteiligte sich aktiv an Ausstellungen<br />

und internationalen Messen. Im Februar<br />

traf sich der PhotonicNet-Arbeitskreis „Oberflächenbearbeitung“<br />

im <strong>IPHT</strong>. Im Mai organisierte<br />

Dr. Wolfgang Fritzsche ein internationales Symposium<br />

zur Molekularen Plasmonik. Ebenfalls im<br />

Mai versammelten sich unter der Schirmherrschaft<br />

des OPTONET e.V. Spezialisten im <strong>IPHT</strong>,<br />

um im Rahmen eines Workshops über neue<br />

Laserstrahlquellen zu diskutieren.<br />

Die Vermittlung von Forschungsergebnissen an<br />

die Öffentlichkeit war Anliegen der Beteiligung<br />

des <strong>IPHT</strong> an der Präsentation des Beutenberg<br />

Campus in Tokio im Rahmen des „Deutschlandjahres<br />

in Japan <strong>2005</strong>–2006“ sowie an den Ausstellungen<br />

Faszination Licht im Januar und Eiskalte<br />

Energien für Europa im Juli, jeweils in der<br />

<strong>Jena</strong>er Einkaufspassage Goethe-Galerie. Der<br />

öffentlichen Vermittlung von Forschungsarbeiten<br />

diente auch die Lange Nacht der Wissenschaften<br />

in <strong>Jena</strong> im November. Bis nach Mitternacht<br />

drängten sich die Besucher an den Experimenten<br />

und in den Labors.<br />

Lange Nacht der Wissenschaften:<br />

Besucher und Aussteller in Aktion<br />

The “Long Night of the Sciences”:<br />

Visitors and demonstrators in action<br />

Zu einem Ehrenkolloquium war vom <strong>IPHT</strong> aus<br />

Anlass des 75. Geburtstages von Prof. Dr. Günter<br />

Albrecht im März eingeladen worden. Prof.<br />

Albrecht hat in seiner aktiven Zeit an der Universität<br />

die Forschung zur Supraleiterelektronik<br />

maßgeblich etabliert und ist damit einer der<br />

Väter dieser Forschungsrichtung im <strong>IPHT</strong>.<br />

In order to encourage scientific discussion and<br />

exchange, the <strong>IPHT</strong> organized conferences and<br />

workshops and was actively engaged in exhibitions<br />

and international fairs. In February, the PhotonicNet<br />

cluster on surface modification met at<br />

the <strong>IPHT</strong>. Dr. Wolfgang Fritzsche organized an<br />

international symposium on “Molecular Plasmonics”<br />

in May. Also in May a workshop on new laser<br />

sources was held at the <strong>IPHT</strong> under the patronage<br />

of the OPONET cluster.<br />

Several activities were aimed to present our scientific<br />

results to a broad public: the presentation<br />

of the Beutenberg campus in Tokyo/Japan as<br />

part of the German Year <strong>2005</strong>/2006, and the<br />

expositions “Fascinating Light” (in January) and<br />

“Ice-cold Energies for Europe” (in July) in the<br />

<strong>Jena</strong>’s Goethe Gallery shopping mall. With the<br />

same intention, the <strong>IPHT</strong> took part in the first<br />

“Long Night of the Sciences” in <strong>Jena</strong> in November.<br />

Till well after midnight, many interested visitors<br />

crowded the Institute’s laboratories and took<br />

part in scientific experiments.<br />

An honorary colloquium was held on the occasion<br />

of the 75 th birthday of Prof. Dr. Günther<br />

Albrecht in March. During his active years, Prof.<br />

Albrecht was a major force in establishing the<br />

research field of supraconductivity at the <strong>Jena</strong><br />

University and also became a father of this<br />

research direction at the <strong>IPHT</strong>.<br />

Another special highlight at the <strong>IPHT</strong> was a public<br />

colloquium held by Prof. Dr. Anton Zeilinger<br />

(University of Vienna) on quantum information<br />

transmission, a subject which is related to our<br />

activities in quantum electronics research. As<br />

one of a series of talks at Beutenberg campus,<br />

this talk was organized by Prof. E. Hoenig with<br />

great commitment and attracted more than 200<br />

visitors.<br />

The work of Dr. Thomas Henkel for the development<br />

of microfluidic chip systems had been<br />

acknowledged by the 2004 <strong>IPHT</strong> award. Another<br />

<strong>IPHT</strong> research award was presented to Dr. Sonja<br />

Unger, Volker Reichel and Klaus Mörl for their<br />

work on high power laser fibres with a record<br />

result of 1.3 kW output power from a single fibre.<br />

Six students of the University of Applied Sciences<br />

in <strong>Jena</strong> finished their diploma work in 2004<br />

with very good results and marks: Constanze<br />

Döring, Lars Bergmann, Ralf Bitter, Carsten Hartmann,<br />

Matthias Schnepp und Rico Stober .They<br />

received the prizes for the best <strong>IPHT</strong> diploma<br />

work, sponsored by the <strong>Jena</strong>-Saale-Holzland<br />

Savings Bank.<br />

The internal competition for the <strong>2005</strong> innovation<br />

project was decided in favor of Wolfgang Morgenroth,<br />

Dr. Uwe Hübner, Richard Boucher (Magnetics/Quantum<br />

Electronics Division), Sven<br />

Brückner, Uta Jauernig, Dr. Siegmund Schröter,<br />

Dr. Torsten Wieduwilt, Barbara Geisenhainer,<br />

Matthias Giebel, Dr. Günther Schwotzer (Optics<br />

Division), Dr. Andrea Czaki, Andrea Steinbrück,


Ein besonderer Höhepunkt war im Rahmen der<br />

von Prof. E. Hoenig mit großem Engagement<br />

organisierten öffentlichen Vortragsreihe des Beutenberg<br />

Campus eine Veranstaltung im <strong>IPHT</strong> mit<br />

Prof. Dr. Anton Zeilinger aus Wien, die über<br />

200 Besucher anlockte. Prof. Zeilinger sprach<br />

über Quanteninformationsübertragung mit Anknüpfung<br />

an unsere Arbeitsrichtung Quantenelektronik.<br />

VORWORT / INTRODUCTION<br />

Mit einem <strong>IPHT</strong>-Preis 2004 wurden die Arbeiten<br />

von Dr. Thomas Henkel zur Entwicklung mikrofluidischer<br />

Chipsysteme für Kompartimentierung,<br />

Kultivierung und Detektion biologischer Spezies<br />

anerkannt. Ein weiterer <strong>IPHT</strong>-Preis 2004 ging an<br />

Dr. Sonja Unger, Dipl.-Phys. Volker Reichel und<br />

Dipl.-Phys. Klaus Mörl für Arbeiten auf dem<br />

Gebiet der Hochleistungsfaserlaser mit einer<br />

Ausgangsleistung von 1,3 kW aus einer Einzelfaser.<br />

Gleich sechs Diplomanden von der FH <strong>Jena</strong> hatten<br />

ihre Arbeit 2004 mit sehr guten Ergebnissen<br />

abgeschlossen: Constanze Döring, Lars Bergmann,<br />

Ralf Bitter, Carsten Hartmann, Matthias<br />

Schnepp und Rico Stober. Sie wurden mit von<br />

der Sparkasse <strong>Jena</strong>-Saale-Holzland in dankenswerter<br />

Weise zur Verfügung gestellten Preisen<br />

ausgezeichnet.<br />

Den <strong>IPHT</strong>-internen Wettbewerb um das <strong>IPHT</strong>-<br />

Innovationsprojekt <strong>2005</strong> gewannen Wolfgang<br />

Morgenroth, Dr. Uwe Hübner, Richard Boucher<br />

(Bereich Magnetik/Quantenelektronik), Sven<br />

Brückner, Uta Jauernig, Dr. Siegmund Schröter,<br />

Dr. Torsten Wieduwilt, Barbara Geisenhainer,<br />

Matthias Giebel, Dr. Günther Schwotzer (Bereich<br />

Optik), Dr. Andrea Czaki, Andrea Steinbrück,<br />

Dr. Wolfgang Fritzsche (Bereich Mikrosysteme)<br />

und Dr. Gudrun Andrä (Bereich Lasertechnik) mit<br />

der gemeinsamen Thematik „Nanostrukturierte<br />

Ta 2 O 5 -Schichten für optochemische/biophotonische<br />

Sensorik sowie Solarzellen“. Die erzielten<br />

Ergebnisse sind am Ende dieses Jahresberichtes<br />

zusammengefasst.<br />

Die kommerzielle Umsetzung von wissenschaftlichen<br />

Ergebnissen in Produkte ist ein besonderes<br />

Anliegen des <strong>IPHT</strong>. Auf dem Gebiet optischer<br />

Faser-Bragg-Gitter konnte dazu im Oktober <strong>2005</strong><br />

ein Gemeinschaftsunternehmen mit einem belgischen<br />

Partner unter Beteiligung des <strong>IPHT</strong>, die<br />

FBGS Technologies GmbH (Fibre Bragg Grating<br />

Sensor Technologies), mit Sitz in <strong>Jena</strong> gegründet<br />

werden. Geschäftsfelder dieses Unternehmens<br />

sind Forschung, Entwicklung, Produktion und<br />

Vermarktung von optoelektronischen Elementen,<br />

insbesondere spezielle Glasfaser-Bragg-Gitter.<br />

Der Wissenschaftliche Beirat beurteilte auf seiner<br />

jährlichen Sitzung im April die wissenschaftlichen<br />

Leistungen des <strong>IPHT</strong> als sehr beachtlich und<br />

überzeugend. Turnusmäßig ausgeschieden aus<br />

dem Wissenschaftlichen Beirat sind Dr. Siegfried<br />

Birkle (Siemens Erlangen), Prof. Dr. Hans Koch<br />

Die Gewinner des <strong>IPHT</strong>-Preises 2004 /<br />

<strong>IPHT</strong> Prizewinner<br />

a) Dr. Thomas Henkel,<br />

b) Klaus Mörl, Dr. Sonja Unger, Volker Reichel<br />

Dr. Wolfgang Fritzsche (Micro Systems Division)<br />

and Dr. Gudrun Andrä (Laser Technology Division)<br />

who worked on the subject of nanostructured<br />

Ta 2 O 5 layers for optochemical/biophotonic<br />

sensors and solar cells. Results are presented at<br />

the end of this annual report.<br />

The transfer into commercial use of its scientific<br />

results is a matter of special interest to the <strong>IPHT</strong>.<br />

In the field of optical Bragg gratings, we started a<br />

new company in <strong>Jena</strong> in October jointly with a<br />

Belgian company (Fibre Bragg Grating Sensor<br />

Technologies). The objects of the new company<br />

are research, development, production and sale<br />

of optoelectronic components such as especially<br />

fibre Bragg gratings.<br />

The scientific council has reviewed the scientific<br />

results of the <strong>IPHT</strong> regularly and during its<br />

meeting in April appreciated them as highly<br />

respectable and convincing. Dr. Siegfried Birkle<br />

(Siemens Erlangen), Prof. Dr. Hans Koch (PTB<br />

Berlin), and Dr. Augustin Siegel (Carl Zeiss,<br />

Oberkochen) left the council due to the end of<br />

their term. We would like to thank them for their<br />

very constructive work during the last years. New<br />

members appointed to the scientific council are<br />

Prof. Dr. Michael Siegel (Universität Karlsruhe),<br />

a<br />

b<br />

5


VORWORT / INTRODUCTION<br />

(PTB Berlin) und Dr. Augustin Siegel (Carl Zeiss,<br />

Oberkochen). Den ehemaligen Mitgliedern danken<br />

wir für ihre konstruktive Mitarbeit in den vergangenen<br />

Jahren. Als neue Mitglieder wurden<br />

Prof. Dr. Michael Siegel (Universität Karlsruhe),<br />

Dr. Stefan Spaniol (CeramOptec GmbH, Bonn)<br />

und Dr. Martin Wiechmann (Carl Zeiss Meditec<br />

AG, <strong>Jena</strong>) berufen.<br />

Danken möchten wir an dieser Stelle auch dem<br />

Freistaat Thüringen, allen Förderern im Bund und<br />

bei der EU für die stete Unterstützung sowie<br />

unseren Partnern in Wissenschaft, Forschung<br />

und Wirtschaft für die gute Zusammenarbeit.<br />

Dr. Stefan Spaniol (CeramOptec, Bonn), and<br />

Dr. Martin Wiechmann (Carl Zeiss Meditec,<br />

<strong>Jena</strong>).<br />

We thank the State of Thuringia and all our partners<br />

in research and industry for their ongoing<br />

support and cooperation.<br />

H. Bartelt, February 2006<br />

H. Bartelt, im Februar 2006<br />

Beutenberg Campus <strong>2005</strong><br />

Foto: Ballonteam <strong>Jena</strong><br />

6


ORGANISATION / ORGANIZATION<br />

B. Organisation / Organization<br />

Institut für Physikalische Hochtechnologie e.V., <strong>Jena</strong><br />

Institute for Physical High Technology<br />

Dez. <strong>2005</strong><br />

Kuratorium/Supervisory Board<br />

Thüringer Kultusministerium<br />

MDgt. Dr. J. Komusiewicz<br />

Thüringer Ministerium für<br />

Wirtschaft, Technologie und Arbeit<br />

MD Dr. F. Ehrhardt<br />

Friedrich-Schiller-Universität <strong>Jena</strong><br />

Prorektor Prof. Dr. H. Witte<br />

2 gewählte Mitglieder<br />

Dr. E. Hacker, Dr. M. Heming<br />

Mitgliederversammlung<br />

Assembly of Members<br />

Wissenschaftlicher Beirat<br />

Scientific Advisory Council<br />

Sprecher:<br />

Prof. Dr. S. Büttgenbach<br />

Vereinsvorstand/Executive Committee<br />

Vorsitzender = Direktor<br />

Prof. Dr. H. Bartelt<br />

Stellvertretender Direktor<br />

Dr. K. Fischer<br />

Kaufmännischer Direktor<br />

F. Sondermann<br />

Kaufmännischer Bereich<br />

Administrative Division<br />

Kaufmännischer Direktor:<br />

F. Sondermann<br />

Bereichsleiterversammlung<br />

Assembly of Convention<br />

Vereinsvorstand<br />

Betriebsratsvertreter<br />

Forschungsbereichsleiter<br />

Betriebsrat<br />

Works Committee<br />

Vors.: Frau Dr. G. Andrä<br />

Wissenschaftl.-Techn. Rat<br />

Scient.-Techn. Council<br />

Sprecher: Dr. E. Keßler<br />

Forschungsbereich<br />

1<br />

Research Division 1<br />

Magnetik/<br />

Quantenelektronik<br />

Magnetics/<br />

Quantum Electronics<br />

Leiter:<br />

Prof. Dr. H. E. Hoenig<br />

Forschungsbereich<br />

2<br />

Research Division 2<br />

Optik<br />

Optics<br />

Leiter:<br />

Prof. Dr. H. Bartelt<br />

Forschungsbereich<br />

3<br />

Research Division 3<br />

Mikrosysteme<br />

Microsystems<br />

Leiter:<br />

Prof. Dr. J. Popp<br />

Forschungsbereich<br />

4<br />

Research Division 4<br />

Lasertechnik<br />

Laser<br />

Technology<br />

Leiter:<br />

Prof. Dr. H. Stafast<br />

Die Leiter der Forschungsbereiche sind berufene Professoren an der Friedrich-Schiller-Universität <strong>Jena</strong>.<br />

The divisions head are professors at the University of <strong>Jena</strong>.<br />

7


ORGANISATION / ORGANIZATION<br />

Das <strong>IPHT</strong> ist eine gemeinnützige Forschungseinrichtung<br />

in der Rechtsform eines eingetragenen<br />

Vereins und wird institutionell gefördert durch den<br />

Freistaat Thüringen. Mitglieder des Vereins sind<br />

öffentliche Einrichtungen sowie Personen aus<br />

Wissenschaft und Wirtschaft. Im Kuratorium sind<br />

zwei verschiedene Ministerien des Freistaates<br />

Thüringen, die Friedrich-Schiller-Universität <strong>Jena</strong><br />

und die Industrie durch zwei von der Mitgliederversammlung<br />

gewählte Persönlichkeiten vertreten.<br />

Das FuE-Programm unterliegt der Kontrolle<br />

eines Wissenschaftlichen Beirats mit Mitgliedern<br />

sowohl aus der Wissenschaft als auch aus der<br />

Industrie. Das Institut ist in vier Forschungsbereiche<br />

untergliedert, deren Leiter gleichzeitig Mitglieder<br />

der Physikalisch-Astronomischen bzw.<br />

der Chemisch-Geowissenschaftlichen Fakultät<br />

der Friedrich-Schiller-Universität sind.<br />

The <strong>IPHT</strong> is a non-profit association with the legal<br />

status of a convention, institutionally funded by<br />

the Free State of Thuringia, and members from<br />

public institutions as well as private members.<br />

There is a Supervisory Board with two representatives<br />

of two different ministries of the Free<br />

State of Thuringia in Germany, one from the<br />

Friedrich-Schiller-University in <strong>Jena</strong>, and two<br />

R&D managers from the industry. The R&D program<br />

is supervised by a Scientific Advisory<br />

Council with members from the scientific community<br />

and from the industry. The institute is organized<br />

in four research divisions with heads serving<br />

also as members oft he faculties for Physics<br />

and Astronomy as well as for Chemical and Earth<br />

Sciences of the Friedrich-Schiller-University.<br />

Wissenschaftlicher Beirat / Scientific Advisory Council<br />

Prof. Dr. Stephanus Büttgenbach<br />

(Sprecher/Chairman)<br />

Prof. Dr. Bruno Elschner<br />

Dr. Michael Harr<br />

Prof. Dr. Burkard Hillebrands<br />

Prof. Dr. Peter Komarek<br />

Prof. Dr. Siegfried Methfessel<br />

Prof. Dr. Frieder Scheller<br />

Prof. Dr. Paul Seidel<br />

Dr. Thomas Töpfer<br />

Technische Universität Braunschweig<br />

Technische Hochschule Darmstadt<br />

ASTEQ Applied Space Techniques GmbH, Kelkheim<br />

Universität Kaiserslautern<br />

Forschungszentrum Karlsruhe<br />

Witten-Herbede<br />

Universität Potsdam<br />

Friedrich-Schiller-Universität <strong>Jena</strong><br />

Jenoptik AG, <strong>Jena</strong><br />

<strong>2005</strong> ausgeschieden / left in <strong>2005</strong><br />

Dr. Siegfried Birkle<br />

Prof. Dr. Hans Koch<br />

Dr. Augustin Siegel<br />

Siemens AG, Erlangen<br />

Physikalisch-Technische Bundesanstalt, Berlin<br />

Carl Zeiss AG, Oberkochen<br />

<strong>2005</strong> neu hinzugekommen / joined in <strong>2005</strong><br />

Prof. Dr. Michael Siegel<br />

Dr. Stefan Spaniol<br />

Dr. Martin Wiechmann<br />

Universität (TH) Karlsruhe<br />

CeramOptec GmbH, Bonn<br />

Carl Zeiss Meditec AG, <strong>Jena</strong><br />

8


ORGANISATION / ORGANIZATION<br />

Mitglieder des <strong>IPHT</strong> e.V. / Members of the Convention<br />

Institutionelle Mitglieder / Membership of institutions<br />

Thüringer Kultusministerium, Erfurt<br />

Thüringer Ministerium für Wirtschaft,<br />

Technologie und Arbeit, Erfurt<br />

Stadt <strong>Jena</strong><br />

Friedrich-Schiller-Universität <strong>Jena</strong><br />

Fachhochschule <strong>Jena</strong><br />

CiS Institut für Mikrosensorik e.V.,<br />

Erfurt<br />

Leibniz-Institut für Festkörper- und<br />

Werkstoffforschung e.V., Dresden<br />

Sparkasse <strong>Jena</strong><br />

TÜV Thüringen e.V., Erfurt<br />

4H <strong>Jena</strong> Engineering GmbH<br />

Robert Bosch GmbH, Stuttgart<br />

j-fiber GmbH, <strong>Jena</strong><br />

Dr. Gerd Meißner<br />

MD Dr. Frank Ehrhardt<br />

Oberbürgermeister Dr. Peter Röhlinger<br />

Prof. Dr. Herbert Witte<br />

Prof. Dr. Gabriele Beibst<br />

Dr. Hans-Joachim Freitag<br />

Prof. Dr. Helmut Eschrig<br />

Herr Martin Fischer<br />

Herr Bernd Moser<br />

Herr Manfred Koch<br />

Dr. Christoph P. O.Treutler<br />

Herr Lothar Brehm<br />

Persönliche Mitglieder / Personal members<br />

Prof. Dr. Hartmut Bartelt<br />

Dr. Peter Egelhaaf<br />

Prof. Dr. Bruno Elschner<br />

Dr. Klaus Fischer<br />

Prof. Dr. Peter Görnert<br />

Frau Elke Harjes-Ecker<br />

Prof. Dr. Karl-August Hempel<br />

Prof. Dr. Hans Eckhardt Hoenig<br />

Herr Bernd Krekel<br />

Prof. Dr. Siegfried Methfessel<br />

Prof. Dr. Gerhard Schiffner<br />

Herr Frank Sondermann<br />

Prof. Dr. Herbert Stafast<br />

Institut für Physikalische Hochtechnologie, <strong>Jena</strong><br />

Robert Bosch GmbH, Stuttgart<br />

Darmstadt<br />

Institut für Physikalische Hochtechnologie, <strong>Jena</strong><br />

Innovent e.V., <strong>Jena</strong><br />

Thüringer Kultusministerium, Erfurt<br />

RWTH Aachen<br />

Institut für Physikalische Hochtechnologie, <strong>Jena</strong><br />

Commerzbank AG, <strong>Jena</strong><br />

Witten-Herbede<br />

Ruhr-Universität Bochum<br />

Institut für Physikalische Hochtechnologie, <strong>Jena</strong><br />

Institut für Physikalische Hochtechnologie, <strong>Jena</strong><br />

9


PERSONAL UND FINANZEN / STAFF AND BUDGET<br />

C. Personal und Finanzen / Staff and Budget<br />

Kaufmännischer Bereich / Administrative Division<br />

Leitung/Head: F. Sondermann<br />

e-mail: frank.sondermann@ipht-jena.de<br />

Beauftragte für den Haushalt/<br />

Finance Department Head: I. Ring<br />

e-mail: ina.ring@ipht-jena.de<br />

Projektmanagement/<br />

Project Management: Dr. I. Bieber<br />

e-mail: ivonne.bieber@ipht-jena.de<br />

Technik/Technical Infrastructure: Th. Büttner, e-mail: thomas.buettner@ipht-jena.de<br />

Personal des Instituts / Staff of the institute<br />

Mitarbeiterinnen und Mitarbeiter<br />

des Kaufmännischen Bereichs.<br />

The staff of the administrative division.<br />

Institutionelle<br />

Drittmittel/Project funding<br />

Förderung/<br />

Institutional Öfftl. Förderung/ Industrie/<br />

funding Public funding Industrial funding<br />

Wissenschaftler/<br />

Scientists 34 33 13 80<br />

Doktoranden/<br />

Doctoral candidates 14 3 17<br />

Techniker, Mitarbeiter<br />

für den Betrieb/<br />

Engineers, employees<br />

for infrastructure 46 27 15 88<br />

Verwaltung/<br />

Administration 15 15<br />

Personalbestand<br />

am 31.12.<strong>2005</strong>/<br />

Number of employees<br />

per <strong>2005</strong>/12/31 95 74 31 200<br />

Zusätzliches Personal (Gastwissenschaftler, Diplomanden, Praktikanten, Auszubildende)/<br />

Additional staff (visiting scientists, students, trainees): 39<br />

10<br />

Anmerkung: Die Tabelle weist Personen aus, nicht Vollbeschäftigtenäquivalente./<br />

Note: The table states numbers of persons, not of full time-jobs


PERSONAL UND FINANZEN / STAFF AND BUDGET<br />

Finanzen des Instituts / Budget of the institute<br />

Institutionelle Förderung (Freistaat Thüringen)/<br />

Institutional funding (Free State of Thuringia) 7.053,6 T”<br />

Drittmittel/Project funding 8.393,7 T”<br />

Institutionelle Förderung: Verwendung / Institutional funding: use<br />

15.447,3 T ”<br />

Personalmittel/staff 4.276,7 T”<br />

Sachmittel/materials 1.838,4 T”<br />

Investitionsmittel/investments 938,5 T”<br />

Aufgliederung Drittmittel / Subdivision of project funding<br />

7.053,6 T ”<br />

BMBF/Federal Ministry 2.400,6 T”<br />

DFG/German Research County 328,3 T”<br />

Freistaat Thüringen (Projektförderung)/Free State of Thuringia (Projects) 793,6 T”<br />

(davon für Datennetz-Migration/incl. computer network migration 209,3 T”)<br />

Europäische Union/European Union 931,5 T”<br />

Aufträge öffentlicher Einrichtungen/Contracts of public institutions 569,9 T”<br />

Sonstige Zuwendungsgeber/Other fundings 203,9 T”<br />

(Unterauftr. an Dritte in öfftl. gef. Projekten/Subcontracts to others 321,2 T”)<br />

Unteraufträge in Verbundprojekten/Subcontracts 438,8 T”<br />

FuE-Aufträge incl. wiss. techn. Leistungen/R&D contracts 2.727,1 T”<br />

8.393,7 T ”<br />

Gesamtkosten des Projektes beliefen sich auf<br />

279,0 T“, von denen die Europäische Union<br />

209,3 T“ finanziert und das <strong>IPHT</strong> einen Eigenanteil<br />

von 69,7 T“ aufgewendet hat.<br />

The project „Kernnetzmigration“ was cofinanced<br />

by the European Union.<br />

Das Projekt „Kernnetzmigration“ wurde von<br />

der Europäischen Union kofinanziert<br />

Um heutzutage international wettbewerbsfähig<br />

zu sein, benötigt man auch eine moderne DV-<br />

Infrastruktur. Zu diesem Zweck hatte das Institut<br />

für Physikalische Hochtechnologie e.V. im Mai<br />

<strong>2005</strong> einen Antrag an das Thüringer Kultusministerium<br />

auf Förderung des „Ersatzes veralteter<br />

Netzwerkkomponenten des Datennetzwerkes<br />

des <strong>IPHT</strong>“, Kurztitel: „Kernnetzmigration“<br />

gestellt.<br />

Das Projekt wurde dankenswerterweise durch<br />

das Thüringer Kultusministerium bewilligt und<br />

dann, wie geplant, bis Ende <strong>2005</strong> umgesetzt. Die<br />

To be today international competitive a modern<br />

data processing infrastructure is needed. To this<br />

purpose the Institute for Physical High Technology<br />

had applied for a funding at the Thuringian<br />

Ministry of Education an Cultural Affairs in May<br />

<strong>2005</strong> to replace the meanwhile antiquated network<br />

components of the data network of the<br />

<strong>IPHT</strong>, shortened title “Kernnetzmigration” (“Core<br />

Network Migration”).<br />

The project had been gratefully financed by the<br />

Thuringian Ministry of Education and Cultural<br />

Affairs and had been executed till the end of<br />

<strong>2005</strong>. The total costs of the project amounted to<br />

279,0 thousand Euros. From these total costs the<br />

European Union had financed 209.3 thousand<br />

Euros and the <strong>IPHT</strong> had financed an own share<br />

of 69.7 thousand Euros.<br />

11


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

D. Forschungsbereiche / Scientific Divisions<br />

1. Magnetik & Quantenelektronik / Magnetics & Quantum Electronics<br />

Leitung/Head: Prof. Dr. H. E. Hoenig<br />

e-mail: eckhardt.hoenig@ipht-jena.de<br />

Magnetik Magnetoelektronik Quantenelektronik<br />

Magnetics Magnetoelectronics Quantum Electronics<br />

Ltg./Head: Prof. Dr. W. Gawalek Ltg./Head: Dr. R. Mattheis Ltg./Head: Dr. H.-G. Meyer<br />

wolfgang.gawalek@ipht-jena.de roland.mattheis@ipht-jena.de hans-georg.meyer@ipht-jena.de<br />

Kultusminister Prof. Dr. Jens Goebel verleiht<br />

am 3. Februar <strong>2005</strong> in Schmalkalden den<br />

Thüringer Forschungspreis 2004 an<br />

Dr. Andrei Izmalkov, Dr. Thomas Wagner,<br />

Prof. Dr. Miroslav Grajcar und Dr. Evgeni<br />

Ilichev (v.l.n.r).<br />

Science minister Prof. Dr. Jens Goebel presents<br />

the Thuringian Research Award 2004<br />

to Dr. Andrei Izmalkov, Dr. Thomas Wagner,<br />

Prof. Dr. Miroslav Grajcar, and Dr. Evgeni<br />

Ilichev (left to right).<br />

12<br />

1.1 Überblick<br />

Der Forschungsbereich Magnetik/Quantenelektronik<br />

repräsentiert in unserem Hause die<br />

Elektronik und die Materialforschung. Diese<br />

Elektronik stützt sich auf supraleitende bzw.<br />

magnetische Materialien und ist dementsprechend<br />

in Quantenelektronik und Magnetoelektronik<br />

gegliedert. Unter Quantenelektronik verstehen<br />

wir die Nutzung der Quanteneffekte der<br />

Supraleitung in mikro- und nanotechnisch hergestellten<br />

Bauelementen und Schaltungen. Die<br />

Materialforschung betrifft Supraleiter und Magnetpigmente.<br />

Die Abteilung Quantenelektronik, mit mehr als<br />

30 Mitarbeitern die weitaus größte und dynamischste<br />

im Forschungsbereich und im Institut,<br />

betreibt wesentlich unseren Reinraum und versteht<br />

sich als Systementwickler mit und für Partner<br />

und Anwender weltweit. Professionelle Qualität<br />

wird durch eine jährlich aktualisierte ISO-Zertifizierung<br />

gesichert. Eine strategische Partnerschaft<br />

besteht mit dem Fraunhofer-Institut für<br />

Angewandte Optik und Feinmechanik bei Betrieb<br />

und Anwendung der Elektronenstrahllithographie.<br />

Herausragende wissenschaftliche Ergebnisse im<br />

Jahre <strong>2005</strong> waren: (1) Weltweit erstmals wurde<br />

als Vorstufe zu künftigen adiabatischen Quantrenrechnern<br />

vier Flussquanten-Qubits quanten-<br />

1.1 Overview<br />

The division Magnetics/Quantum Electronics represents<br />

the electronics and materials research in<br />

<strong>IPHT</strong>. It is based on superconducting and magnetic<br />

materials and is organized in the Quantum<br />

Electronics and Magnetoelectronics departments<br />

respectively. Quantum Electronics uses quantum<br />

effects of superconductivity in micro- and nanodevices<br />

and circuits. Materials research concerns<br />

superconductors and magnetic nanoparticles.<br />

The Quantum Electronics department, the<br />

largest and most dynamical in house, is main<br />

operator of our clean room and system developer<br />

together with and servicing partners and customers<br />

worldwide. ISO certification assures a<br />

professional quality level and is updated every<br />

year. A strategic partnership has been established<br />

with the nearby Fraunhofer Institute for<br />

Applied Optics and Precision Mechanics operating<br />

and using electron beam lithography.<br />

Highlights in the year <strong>2005</strong> have been: (1) for the<br />

first time worldwide four superconducting flux<br />

qubits have been quantum mechanically coupled<br />

and spectroscopically characterized on the route<br />

to adiabatic quantum computation; a corresponding<br />

European research partnership has been<br />

accomplished; in February the group around<br />

Dr. Ilichev was honoured with the Thuringian<br />

Research Award, (2) again as a worldwide first, a


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

The SQUID system for archaeological prospection, pulled by a jeep, during measurement near Palpa, Peru.<br />

The orange tubes contain the SQUID channels.<br />

New measuring station<br />

used to study domain<br />

wall movement in magnetic<br />

thin film sensors.<br />

In the middle of the coils<br />

two boards are visible.<br />

The upper one contains<br />

the sensor chip<br />

(2 × 2 mm 2 ) and a fast<br />

preamplifier, the lower<br />

board contains a multiplexer.<br />

The mayor of <strong>Jena</strong><br />

C. Schwind, the Thuringian<br />

minister of education<br />

and cultural affairs<br />

Prof. Dr. J. Goebel and<br />

the head of department<br />

Magnetics Prof. Dr.<br />

W. Gawalek during the<br />

opening of the interactive<br />

exhibition “Eiskalte<br />

Energie für Europa”<br />

(June 29–July 02, <strong>2005</strong>,<br />

GoetheGalerie <strong>Jena</strong>)<br />

testing a fly-wheel<br />

energy storage system.<br />

13


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

mechanisch gekoppelt und spektroskopisch charakterisiert.<br />

Eine entsprechende europäische<br />

Forschungspartnerschaft wurde etabliert. Im<br />

Februar wurde der Thüringer Forschungspreis an<br />

unsere Quantenelektronikgruppe verliehen. (2)<br />

Weltweit erstmals konnte mit einem fahrzeugtransportierten<br />

SQUID-System eine professionelle<br />

archäometrische Erkundung zum Erfolg gebracht<br />

werden. (3) Unsere Beiträge zu dem von uns veranstalteten<br />

Symposium „Messen an der Quantengrenze“<br />

bei der Frühjahrstagung der DPG<br />

demonstrierten die Schlüsselstellung der supraleitenden<br />

Quantenelektronik bei Astro-Kameras<br />

und Quantencomputing. Im Rahmen des Jahres<br />

„Deutschland in Japan“ wurden diese Arbeiten<br />

auch in Tokyo als besondere Leistung des Beutenberg<br />

Campus präsentiert.<br />

Unsere Magnetoelektronik stützt sich auf die<br />

Besonderheit einer industriekompatiblen Beschichtungsanlage<br />

für Magnetowiderstands-Multilagen<br />

bis zum Format von 8 Zoll. Professioneller<br />

Betrieb ist erprobt in kundenspezifischen und<br />

kundenvertraulichen Arbeiten. Ein weltweit<br />

erstrangiger Geräteentwickler stützt sich auf<br />

unsere Prozessentwicklung. Wir haben Expertise<br />

in der Charakterisierung der Dünnschicht-Grenzflächen<br />

und das Instrumentarium dafür. Qualitätssicherung<br />

mit Zertifizierung besteht und wird turnusmäßig<br />

erneuert. Highlights sind: (1) GMR-<br />

Viel-Umdrehungszähler für Anwendungen im<br />

Automobil, (2) Analytik-Highlights: Neue L-Röntgenspektren<br />

als Kalibrierreferenz.<br />

Materialentwicklung supraleitender und magnetischer<br />

Materialien für die Energietechnik und<br />

Medizintechnik betreiben wir in unserer Abteilung<br />

Magnetik. Das Projekt DYNASTORE zum<br />

Schwungmassenenergiespeicher wurde verlängert<br />

und steht jetzt vor dem erfolgreichen<br />

Abschluss. Ein großes Projekt mit Partnern zur<br />

Entwicklung hochdynamischer Motoren wurde<br />

begonnen. Mit „Superlife“ wurde eine von uns<br />

mitgestaltete europäische Ausstellung in <strong>Jena</strong><br />

der Öffentlichkeit präsentiert. Das bisher schon<br />

bestehende Zusammengehen mit dem IFW<br />

Dresden wird intensiviert.<br />

Die Nutzung von Magnetpigmenten in der Krebstherapie<br />

in Partnerschaft mit dem Klinikum <strong>Jena</strong><br />

(Forschungsgruppe von Prof. Werner A. Kaiser)<br />

kommt voran. Die Materialentwicklung dazu hat<br />

ihre Basis dazu im Ferrofluid-Verbund der DFG,<br />

an dem wir maßgeblich beteiligt sind.<br />

vehicle carried SQUID-system operated successfully<br />

in archaeometric prospection in Palpa/<br />

Peru, (3) the key role of our Quantum Electronics<br />

in camera development for astrophysics and in<br />

quantum computing circuitry was demonstrated<br />

by our contribution to the symposium “measurements<br />

at the quantum limit” as organized by us at<br />

the spring meeting of the German Physical Society<br />

in Berlin; this work also was presented in<br />

Tokyo within the year “Germany in Japan” as<br />

highlight of the Beutenberg Campus where we<br />

belong to.<br />

Our Magnetoelectronics department features a<br />

deposition system for magneto-resistive multilayer<br />

sputtering on industry compatible 8” substrates.<br />

Professional operation has been<br />

approved in customer-specific and -confidential<br />

work. A top level company providing such<br />

machines to the world marked relies on our<br />

process development.<br />

We are experienced in characterising thin film<br />

interfaces and are well equipped for such investigations.<br />

ISO certification assures quality and is<br />

updated annually. Highlights have been: (1) a<br />

multiturn GMR counter for automotive applications,<br />

(2) new L-x-ray spectra as reference for<br />

instrumentation.<br />

Our Magnetics department developes superconducting<br />

and magnetic materials for power and<br />

medical engineering. The project DYNASTORE<br />

on a flywheel with our superconducting components<br />

has been extended and is expected to be<br />

finished in summer of 2006. A large project has<br />

been started on a superconducting machine testing<br />

high power combustion engines for the car<br />

industry. With “Superlife” we presented a European<br />

exhibition to the public here in <strong>Jena</strong> with our<br />

contributions. We intensify our collaboration with<br />

the IFW Dresden.<br />

Cancer therapy using our magnetic nanoparticles<br />

and corresponding heating system reported<br />

progress (team of Prof. Werner A. Kaiser). The<br />

materials development is based on the ferro-fluid<br />

consortium of the DFG where we contribute and<br />

organize.<br />

14


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

1.2 Scientific results<br />

1.2.1 Micro- and nanofabrication<br />

(Uwe Hübner, Ludwig Fritzsch,<br />

Solveig Anders, Jürgen Kunert)<br />

The microfabrication group is responsible for the<br />

maintenance of the existing micro- and nanotechnological<br />

fabrication processes for quantum<br />

electronic devices (SQUID sensors, voltage standard<br />

chips, Qubits) and other applications such<br />

as nanoscale calibration standards, photonic<br />

crystals and micro optical components, and for<br />

the development of technologies appropriate for<br />

new device requirements. In <strong>2005</strong>, 210 chromium<br />

masks and 240 electron beam direct writing<br />

exposure jobs were made using the ZBA 23H.<br />

120 masks were prepared by using the optical<br />

pattern generator MANN 3600. About 80 high<br />

resolution exposures were made using the<br />

e-beam-tool LION. For the further improvement<br />

of the electron beam lithography the software<br />

tool SCELETON was installed as a proximity<br />

function calculator.<br />

In <strong>2005</strong> a new DFG-project, “Electrooptically Tunable<br />

Photonic Crystals”, was started. The European<br />

project PLATON (PLAnar Technology for<br />

Optical Networks) and the R&D project “KALI II”<br />

were successfully finished. In the “KALI II” project<br />

a new type of nanoscale CD-standard for AFM<br />

and a “Nanoscale Linewidth/Pitch Standard”<br />

were realized. These standards consist of different<br />

grating structures etched in nanocrystalline<br />

silicon on a quartz substrate. They contain<br />

patterns on nanometer scale for the calibration<br />

and resolution-check of high-resolution optical<br />

microscopy techniques, such as deep ultraviolet<br />

microscopy and laser scanning microscopy.<br />

One important task of the year <strong>2005</strong> was to<br />

develop a process to reduce the standard 3.5 µm 2<br />

Nb/Al process to junction dimensions of 1 µm 2 .At<br />

the start of <strong>2005</strong> a chemical-mechanical polishing<br />

(CMP) machine was installed and the process<br />

of SiO 2 -planarization on 4” wafers developed. In<br />

parallel, optical lithography using a g-line stepper<br />

(AÜR, Zeiss <strong>Jena</strong>) and the RIE process for sub-<br />

µm Nb structures were optimized. A first wafer<br />

run with test structures of SQUIDs with Josephson<br />

junctions of different dimensions down to 0.8<br />

µm showed in principal the functionality of the<br />

planarization process. However, there was a<br />

large parameter spread and a small yield, caused<br />

by an insufficient reliability and overlap accuracy<br />

of the stepper and the strong dependence of the<br />

polishing rate on topology and structure dimensions.<br />

Therefore, for the ongoing test runs new<br />

technological concepts were developed including<br />

direct e-beam exposure and the CALDERA<br />

process for the CMP step in order to overcome<br />

the dimensional effects when polishing. Fig. 1.1<br />

shows a cross section of planarized SiO 2 isolated<br />

Nb lines. The standard 3.5 µm 2 Nb/Al process<br />

for SQUIDs was upgraded by integrating<br />

Nb-oxide capacitors with specific capacitances of<br />

app. 4 fF/µm 2 for areas of up to 25 mm 2 . They are<br />

used in highly balanced gradiometers for mobile<br />

SQUID system applications. The development of<br />

large area Josephson junctions for applications<br />

as x-ray detectors in synchrotron radiation experiments<br />

was started with special emphasize on<br />

the minimization of the subgap leakage currents.<br />

The first results are promising and future work will<br />

be concentrated on the preparation of sensor<br />

arrays and the implementation of different<br />

absorber materials.<br />

Fig. 1.1: Cross section of Nb lines with planarized<br />

SiO 2 isolation.<br />

1.2.2 SQUID sensors and systems<br />

(Volkmar Schultze, Ronny Stolz,<br />

Viatcheslav Zakosarenko,<br />

Andreas Chwala, Sven Linzen,<br />

Nilolay Ukhanski, Torsten May)<br />

Except for SQIFs (Superconducting Interference<br />

Filters – a special combination of number of various<br />

SQUIDs) which are developed and produced<br />

within a long-standing cooperation with the University<br />

of Tübingen and the company QEST, all<br />

SQUID projects are based now upon the use of<br />

low temperature superconductors.<br />

In the fourth phase of the development of the<br />

LTS SQUID gradiometer system for mobile applications<br />

the second generation prototype for measuring<br />

the full tensor of the Earth’s magnetic field<br />

gradient with extremely high sensitivity was built.<br />

It features several improvements compared to its<br />

antecessors.<br />

With integrated low pass filters the frequency gap<br />

for disturbances between the system bandwidth<br />

of approximately 4 MHz and 500 MHz of the RFI<br />

screen around the cryostat could be closed.<br />

Here, the main task was the development of a<br />

technology for integrated capacitances up to 80<br />

nF. After several aborts in the past few years the<br />

successful implementation of intrinsic capacitors<br />

is a highlight in the SQUID development in <strong>2005</strong>.<br />

Now, due to these filters the new gradiometer<br />

sensors provide higher stability in environments<br />

with high frequency radiation and their intrinsic<br />

noise could be decreased down to 20 fT/(m·√Hz).<br />

The second task was to reduce the motion noise<br />

15


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

16<br />

of the SQUIDs caused by movements in the<br />

Earth’s magnetic field. By decreasing the width of<br />

all superconducting structures below 5 µm the<br />

critical magnetic field amplitude for flux capture<br />

could be increased up to 65 µT. Furthermore,<br />

using smaller areas of about 3000 µm 2 , the sensitivity<br />

of the three reference SQUID magnetometers<br />

was decreased. Now we are able to<br />

work even in high magnetic field amplitudes like,<br />

for instance, in the north of Canada.<br />

Further development has been done on the data<br />

acquisition unit of the system. It contains now<br />

extremely low noise differential inputs for 21 analogue<br />

channels. They are digitized with 24 bit<br />

ADC. All interactions of this unit with the SQUID<br />

system have been removed. The accuracy of the<br />

determination of the 3D position, flight direction,<br />

and orientation in space is determined from a<br />

low-power differential GPS system and a new<br />

inertial system unit containing high accuracy<br />

fiber-optical gyros. With the implementation of<br />

new lithium ion batteries the weight and geometric<br />

dimensions of the data acquisition unit have<br />

been decreased by simultaneous increase of the<br />

working period to approximately eight hours.<br />

In September <strong>2005</strong> the Earth’s magnetic field<br />

gradient of the same area (approx. 13 km × 7<br />

km), surveyed in South Africa already in 2004,<br />

was measured again. The system was used in a<br />

fixed wing configuration on a CESSNA Grand<br />

Caravan 208 airplane from Fugro Airborne Systems,<br />

where the rigidity of the stinger was<br />

increased compared to the past. In this configuration<br />

the area (1100 line kilometers) was<br />

scanned at altitudes of 80 m and line spacing of<br />

100 m. To compare the system sensitivity with the<br />

best contemporary conventional system (MIDAS<br />

system from Fugro Airborne systems), the survey<br />

was conducted with helicopter based instruments<br />

at altitudes between 35 m and 40 m and a tow<br />

rope length of 40 m. The comparison of the magnetic<br />

maps of both systems showed a superior<br />

sensitivity and spatial resolution of the full-tensor<br />

SQUID device.<br />

The development of a SQUID system for archaeological<br />

prospection within the project<br />

“ArcheNova” was finished with the end of year<br />

<strong>2005</strong>. Via various field trials the system was further<br />

improved compared to the status the year<br />

before. The final examination – and a highlight<br />

of the SQUID activities in this year – was an<br />

expedition to the Nasca/Palpa region in Peru,<br />

about 250 km south of Lima. This region is most<br />

famous because of the large geoglyphes. Our<br />

measurements were performed in coordination<br />

and cooperation with the BMBF project network<br />

“Nasca: Development and adaption of archaeometric<br />

techniques for the investigation of cultural<br />

history”.<br />

All the demands of this application – transport of<br />

the system, provision with liquid Helium, and<br />

especially the measurement in a hyper arid,<br />

dusty area – could be solved well. The measurements<br />

could even be performed with a pickup<br />

truck as a hauling system – despite a very<br />

cragged surface of the explored areas (cf. colored<br />

picture). Mappings on foot, performed for<br />

comparison, proved the same data quality of the<br />

“motorized” ones. So it was possible to map<br />

about one hectare per measurement hour, which<br />

is a remarkable gain compared to common handheld<br />

geomagnetic archaeological prospection<br />

systems. All in all more than 200 line kilometers<br />

were driven. Due to the geo-referenced positioning<br />

with the differential GPS system the results<br />

can easily be fit into photos or maps achieved<br />

with other methods.<br />

One example out of the 10 mapped areas is<br />

shown in Figure 1.2. On the ortho photo only<br />

recent plow furrows are visible. Partially they also<br />

reproduce in the magnetogram. However, there<br />

also an old riverbed comes out, magnetically<br />

detectable due to the deposition of sediments.<br />

This gives an impression on the dramatic<br />

changes the area around Nasca suffered in times<br />

before the Spanish set up to conquer South<br />

America.<br />

On other areas geometric structures came out in<br />

the magnetogram which allude to ancient settlement<br />

residues.<br />

Fig. 1.2: Jauranga – a site near Palpa, Peru.<br />

Top: Ortho photo (by courtesy of the Institute for<br />

Geodesy and Photogrammetry, ETH Zürich),<br />

Bottom: Magnetogram.


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

Even though with the Peru expedition the project<br />

is formally finished, in 2006 some other field trials<br />

in Europe are planned where the potential of our<br />

system shall be used for geomagnetic prospection<br />

of archaeologically interesting sites.<br />

The most common electromagnetic method in<br />

mineral exploration is based on the application<br />

of transient Electro-Magnetics (TEM). Already in<br />

2003 a prototype of a TEM system with LTS<br />

SQUID magnetometers has been developed,<br />

which has been used routinely on several targets<br />

in Australia and South Africa in 2004 with great<br />

success.<br />

In <strong>2005</strong>, the system has been redesigned in various<br />

aspects. All components have been evaluated<br />

for the use of the system under arctic conditions.<br />

A new cryostat with a higher thermal efficiency<br />

(and the same size) helps to save liquid helium,<br />

since it now needs to be refilled every second day<br />

only. The power supply and control unit have<br />

shrunk by almost a factor of two in size. The<br />

mechanical setup has been ruggedized by changing<br />

cable, connectors, switches and cryostat installation.<br />

A new family of SQUIDs has been implemented<br />

to achieve a better stability of the working<br />

point all over the world (with different magnetic<br />

field strengths). At the end of this process it was<br />

possible to out-source the fabrication to our spinoff<br />

‘Supracon’. Two new systems have been produced<br />

there and meet all the required specifications.<br />

The first “production” system was applied in<br />

routine field work for many weeks in Australia.<br />

Already in 2001 a prototype of a directly coupled<br />

SQUID electronics for various applications has<br />

been developed. In between it has been successfully<br />

used in various applications. From 2002 on,<br />

commercial production of this electronics, completed<br />

by a digital control unit, started by our<br />

spin-off ‘Supracon’. In <strong>2005</strong> this electronics has<br />

been redesigned in many aspects. Keeping a<br />

frequency range of 7 MHz and very low input<br />

noise ~0.33 nV/Hz 1/2 (with flicker noise corner<br />

frequency ~0.1 Hz), thermodrift (~5 nV/K), maximum<br />

slew rate (~16 MΦ 0 /s) and dynamic range<br />

(170 dB) have been remarkably improved.<br />

Fig. 1.3: A quadratic, 800 nm thick silicon nitride<br />

membrane patterned in the shape of a spider<br />

web. The width of the legs is 4 µm.<br />

In the frame work of the “LABOCA” project being<br />

executed in close collaboration with the Max<br />

Planck Institute for Radio Astronomy in Bonn our<br />

group has considerably enhanced the performance<br />

of the used transition edge bolometers by<br />

developing a new technology for patterning the<br />

supporting membranes. These structured membranes,<br />

sometimes referred to as “spider-webs”<br />

(Fig. 1.3), help to lower the thermal conductivity<br />

and thereby improve the energy resolution down<br />

to values below 10 –16 W/Hz. Furthermore, we<br />

have developed a new concept of coupling the<br />

first-stage readout SQUID and the second-stage<br />

amplifier SQUID. This approach is particularly<br />

well adapted to the time domain multiplexing concept.<br />

The appropriate electronics was improved<br />

and a production prototype was built, which can<br />

be easily produced in the batches of 30 ones,<br />

needed for the 300 channel array.<br />

In parallel the LABOCA prototype system with<br />

7 channels was successfully used to image<br />

objects from a distance of a few meters in a lab<br />

environment. Imaging in the frequency band<br />

between 0.1 and 1 THz also opens the possibility<br />

of detecting potentially hazardous objects hidden<br />

underneath the clothing of suspects, for<br />

instance in security areas at airports.<br />

Together with the company Vericold Technologies<br />

we have developed and manufactured X-ray<br />

bolometers, operating at a temperature of 100 mK.<br />

They are routinely used to equip the Polaris<br />

spectrometer, an add-on for commercial electron<br />

microscopes, which can be used for finding<br />

defects in semiconducting electronic circuits.<br />

1.2.3 Integrated superconducting circuits<br />

(Gerd Wende, Marco Schubert,<br />

Torsten May, Michael Starkloff,<br />

Birger Steinbach, Hans-Georg Meyer)<br />

In <strong>2005</strong> the project “Quantum Synthesizer<br />

(QuaSy)” was successfully developed further. In<br />

the project three components – an RSFQ pulse<br />

pattern generator, a pulse amplifier, and a<br />

Josephson quantizer – are being developed by<br />

different project partners, and integrated into a<br />

Multi-Chip-Module. Within the scope of the joint<br />

project the <strong>IPHT</strong> is focused on investigations of<br />

superconducting pulse-driven microwave circuits,<br />

the so-called Josephson quantizer, and on the<br />

relevant microwave tests and measurements.<br />

Our main activities were the improvement of the<br />

fabrication technology and testing the Josephson<br />

quantizer microwave circuits. With this new technology<br />

the packing density of the Josephson<br />

17


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

18<br />

junctions (JJs) was increased by about one third.<br />

The critical current spread was reduced from<br />

about 10% to 2–3%. All this together results in a<br />

distinct increase of the yield of fully functional<br />

quantizer circuits.<br />

A new cooperation with the NMi Van Swinden<br />

Laboratorium B.V. in Delft, Netherlands, allowed<br />

to measure our chips in a bipolar pulse driving<br />

mode with pulse repetition frequencies of up to<br />

12 GHz. The pulse pattern generator delivers a<br />

repeating pattern of short current pulses in which<br />

the desired low frequency output waveform is<br />

encoded. By the Josephson quantizer circuit it is<br />

transformed into a pattern of quantized voltage<br />

pulses. Fig. 1.4 shows an example of the operation<br />

of a Josephson quantizer circuit with<br />

2560 JJs. In this case, a 122 kHz ac voltage was<br />

delta-sigma modulated in a 64 Mbit long pattern.<br />

The used clock frequency was 4 GHz. The left<br />

spectrum of Fig. 1.4 is delivered by the generator<br />

itself. It can be seen that there are not only the<br />

distinct higher harmonics of the fundamental but<br />

also other peaks whose origin is not yet clear.<br />

The quantizer circuit driven by the same pattern<br />

removes all of these unwanted signals as seen<br />

in the right hand side spectrum of Fig. 1.4. The<br />

amplitude of the fundamental frequency was<br />

9.5 mV with quantum accuracy and the higher<br />

harmonics were suppressed by –86 dBc. Currently,<br />

the Josephson junction array limits the<br />

maximum usable clock frequency to 4.8 GHz and<br />

the maximum ac voltage amplitude to 9.5 mV.<br />

Therefore, the major task for the next few months<br />

is to increase the chip bandwidth in order to<br />

increase the maximum ac voltage amplitude.<br />

Fig. 1.4: Measured power spectra of a deltasigma<br />

modulated 122 kHz sine wave with an<br />

amplitude of 9.5 mV. The bipolar pulse pattern<br />

generator was clocked at 4 GHz. Left spectrum:<br />

Delivered by the generator itself. Right spectrum:<br />

Output signal of the JJ array quantizer, pulse-driven<br />

by the generator with the same pattern. The<br />

suppression of the higher harmonics is –86 dBc.<br />

Josephson quantizer and 10 V Josephson voltage<br />

standard chips with almost 20,000 JJs are the<br />

most highly integrated superconductive circuits<br />

provided commercially. Worldwide only HYPRES<br />

Inc. (USA) and the <strong>IPHT</strong> are able to offer such<br />

10 V Josephson voltage standard circuits. In <strong>2005</strong><br />

the <strong>IPHT</strong> delivered quantizer chips and 10 V chips<br />

to several national metrology laboratories.<br />

In <strong>2005</strong> a complete microprocessor controlled<br />

10 V Josephson voltage standard system was<br />

developed. The system facilitates a variety of DC<br />

voltage calibrations and measuring functions:<br />

Calibration of secondary DC-reference Zeners<br />

and testing of the linearity and accuracy of DCvoltmeters<br />

and DC-calibrators in the voltage<br />

range of 0 to ±10 V. It was successfully evaluated<br />

at the PTB in Braunschweig. A direct comparison<br />

of the <strong>IPHT</strong> Josephson voltage standard<br />

with the PTB one showed a voltage difference<br />

between both standards of only 0.7 nV, with a<br />

measurement uncertainty of 3.4 nV. This corresponds<br />

to an accuracy of 7 × 10 –11 . So, the <strong>IPHT</strong><br />

system compares to the primary standards of the<br />

national metrology institutes.<br />

1.2.4 Quantum computing<br />

(Evgeni Il’ichev, Miroslav Grajcar,<br />

Andrei Izmalkov, Thomas Wagner,<br />

Sven Linzen, Uwe Hübner,<br />

Simon van der Ploeg, Daniel Wittig)<br />

Approximately ten years ago it was demonstrated<br />

theoretically that a quantum computer can solve<br />

some problems much more effectively than a<br />

classical one. This discovery has stimulated an<br />

effort to find a physical system which can be<br />

used as a qubit, the building block of a quantum<br />

computer.<br />

Amongst the many systems in physics which can<br />

be used as a qubit, one is the so-called persistent<br />

current qubit. This qubit consists of a small<br />

inductance superconducting loop with three<br />

Josephson junctions. Such superconducting<br />

qubits have several advantages over qubits<br />

based on microscopic systems: there is no principal<br />

limitation in their number and they can be<br />

accessed and controlled individually.<br />

We proposed a specific implementation for adiabatic<br />

quantum computing with a set of coupled<br />

superconducting flux qubits, which can be fabricated<br />

with the present state of the art. We could<br />

show that our measurement setup – the impedance<br />

measurement technique – can be effectively<br />

used to read out the results of the adiabatic<br />

evolution algorithm.<br />

In order to demonstrate any quantum algorithm, a<br />

coupling between qubits must be implemented.<br />

We proposed implementing the coupling between<br />

two qubits through a shared Josephson junction.<br />

We have experimentally demonstrated direct antiferromagnetic<br />

Josephson coupling between two<br />

persistent current qubits. The coupling strength<br />

can be of the order of a Kelvin, and agrees with<br />

theoretical predictions to the expected accuracy.<br />

Moreover, the resulting coupling not only is<br />

strong, but can also be varied independent of<br />

other design parameters by choosing the shared<br />

junction’s size.


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

We implemented a “twisted” design which exhibits<br />

the ferromagnetic coupling. It was done by fabricating<br />

and studying a four–qubit circuit (Fig. 1.5)<br />

in which the two types of coupling co-exist. This is<br />

very promising from the perspectives of realizing<br />

nontrivial Ising-spin systems and scalable adiabatic<br />

quantum computing. This world-wide first<br />

coupling of four superconducting qubits clearly is<br />

a highlight of our work in <strong>2005</strong>. The acquired data<br />

fully agree with a quantum-mechanical description<br />

to the experimental accuracy.<br />

For superconducting qubits the problem of decoherence<br />

is one of the most important. In order to<br />

get additional information about the qubits<br />

dynamics we proposed a new tool – low frequency<br />

Rabi spectroscopy for a two-level system. In<br />

principal we have analyzed the interaction of a<br />

dissipative two-level quantum system with highand<br />

low-frequency excitation. The system is continuously<br />

and simultaneously irradiated by these<br />

two waves. If the frequency of the first signal is<br />

close to the level separation, the response of the<br />

system exhibits undamped low-frequency oscillations<br />

whose amplitude has a clear resonance at<br />

the Rabi frequency with the width being dependent<br />

on the damping rates of the system. Therefore,<br />

by analyzing the experimental data, decoherence<br />

as well as relaxation times can be reconstructed.<br />

We have also experimentally and theoretically<br />

investigated combined superconductor-semiconductor<br />

structures. The measurement of the<br />

supercurrent-phase relationship of a ballistic<br />

Nb/InAs(2DES)/Nb junction in the temperature<br />

range from 1.3 K to 9 K using impedance measurement<br />

technique showed at low temperatures<br />

substantial deviations of the supercurrent-phase<br />

relationship from conventional tunnel-junction<br />

behaviour, as has to be expected for highly transparent<br />

interfaces. Reasonable agreement between<br />

theory and experiment was found.<br />

The whole work of the quantum computing group<br />

was honoured already in the preceding year with<br />

the Thuringian Research Award. The actual<br />

awards ceremony happened in the year <strong>2005</strong>,<br />

shown in the colored picture.<br />

These good results, ever again presented in<br />

important scientific journals, also reflect in a<br />

steadily growing embedding in international<br />

cooperation. To allow for the growing number of<br />

measurements coming along with this, a second<br />

mK-cryostat had to be set up, what was connected<br />

with the preparation of an additional specially<br />

prepared room for it.<br />

So, in combination of these further improving<br />

measurement conditions and the scientific potential<br />

of the quantum computing group its position<br />

in the emerging field of quantum computing could<br />

further be strengthened.<br />

Fig. 1.5: Electron micrograph of a four-qubit<br />

sample. The central junctions A1–A3 couple the<br />

Al qubits q1–q4. The surrounding Nb coil is part<br />

of the LC tank circuit, used for measurement and<br />

global flux biasing. The Nb lines I b1 –I b4 allow<br />

asymmetric bias tuning.<br />

1.2.5 Foundry service<br />

(Wolfgang Morgenroth, Ludwig Fritzsch,<br />

Torsten May, Jürgen Kunert,<br />

Birger Steinbach, Gerd Wende,<br />

Hans-Georg Meyer)<br />

The <strong>Jena</strong> Superconductive Electronics Foundry<br />

(JeSEF) was founded in 1997. It uses the knowhow<br />

and the competitive infrastructure for niobium<br />

and YBCO technology of the department of<br />

Quantum Electronics. The foundry provides customers<br />

with LTS SQUIDs and SQUID systems,<br />

RSFQ circuits, Josephson voltage standard circuits,<br />

components and systems, and with microfabrication<br />

items including the design and fabrication<br />

of lithography masks. Further, the foundry<br />

offers technological services like single manufacturing<br />

steps, using our cleanroom facilities, as<br />

well as characterization services of our well<br />

equipped laboratories. JeSEF and the department<br />

of Quantum Electronics have been ISO<br />

9001:2000 certified since 2002.<br />

About 40 orders were processed in <strong>2005</strong>. Our<br />

main customers for SQUIDs and Microfabrication<br />

were Supracon AG, THEVA GmbH, Bruker<br />

BioSpin GmbH, and Jenoptik LOS GmbH. Voltage<br />

standard circuits and components were<br />

delivered to the University of Naples and to the<br />

national metrology laboratories of the Netherlands,<br />

France, and Korea.<br />

1.2.6 Domain wall motion in small GMR<br />

structures<br />

(Roland Mattheis, Hardy Köbe,<br />

Dominique Schmidt, Uwe Hübner,<br />

Wolfgang Morgenroth)<br />

The motion of domain walls in narrow stripes represents<br />

the key element for new magneto-<br />

19


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

20<br />

electronic devices like magnetic logic, stacked<br />

MRAM, and our multiturn sensor. We investigated<br />

domain wall motion in 500 µm long stripes of a<br />

GMR stack with NiFe as the sensing layer. The<br />

stripes were prepared using e-beam lithography<br />

and Ar ion milling.<br />

Fig. 1.6: GMR stripe with domain wall generator:<br />

a) Temporal evolution of voltage (proportional to<br />

R) of a 220 nm wide stripe; b) distribution of the<br />

field strength H inj ; c) distribution of the length covered<br />

during the first domain wall jump; d) distribution<br />

of the field strength H mov > H inj necessary for<br />

completion of the domain wall movement through<br />

the stripe.<br />

Stripe widths of between 150 and 300 nm and<br />

thicknesses of the NiFe layer of between 5 and<br />

20 nm, cause large shape anisotropy and, as a<br />

consequence, high fields H nuc were needed for a<br />

domain wall nucleation in the stripe. Some stripes<br />

have an 6 µm × 10 µm large area (domain wall<br />

generator) at one end, in which a 180° domain<br />

wall is generated upon rotation of a field of<br />

strength H gen and injected into the stripe at a field<br />

strength H inj (with H nuc > H mov > H inj > H gen ). The<br />

field dependencies of the 180° domain wall injection,<br />

of the domain wall velocity, and of the<br />

processes of pinning and depinning in our stripes<br />

were determined from the resistance changes of<br />

the GMR stack, by measuring the R(t)-curve and<br />

statistically interpreting 500 repeated experiments.<br />

As shown in Fig. 1.6a during a linear increase of<br />

the magnetic field a domain wall was injected at<br />

5.3 kA/m and pinned after travelling about 70 µm,<br />

140 µm, and 270 µm, as derived from the relative<br />

voltage jump. The distribution of the injection field<br />

H inj in Fig. 1.6b clearly shows a twofold Gaussian<br />

distribution. These two peaks are presumably<br />

caused by the two possible types of domain<br />

walls, transverse and vortex-like domain walls,<br />

whose injection into the stripe is dependent on<br />

the magnetic reversal process in the domain wall<br />

generator. As displayed in Fig. 1.6c the domain<br />

wall can be pinned during movement through the<br />

stripe at nearly all parts of the wire, thereby<br />

showing the stochastic nature of domain wall<br />

movement. The pinning probability exhibits a<br />

double peak near 100 µm. In most cases the<br />

domain wall is pinned twice during passage. The<br />

magnetic field for passing through the complete<br />

stripe is depictured in Fig 1.6d. The wide distribution<br />

of this field again indicates the stochastical<br />

nature of domain wall motion, pinning and depinning.<br />

Edge roughness probably causes this statistically<br />

distributed pinning. Magnetic fields H mov<br />

of about 9.5 kA/m are sufficient to move the<br />

domain wall completely through the 500 µm long<br />

stripes.<br />

In some stripes with a domain wall generator single<br />

defects seem to occur. These cause strong<br />

pinning for every domain transition. The field<br />

strength necessary to overcome this strong pinning<br />

varies from experiment to experiment within<br />

a factor of 3. One such strong defect near the<br />

domain wall generator enabled us to determine<br />

the field dependence of the domain wall velocity.<br />

As shown in Fig. 1.7 we get a linear field dependence<br />

of the domain wall velocity v. Within some<br />

µs a domain wall can move through the whole<br />

stripe. The domain wall mobility of 17 (m/s)/<br />

(kA/m) is low compared to that obtained in largearea<br />

NiFe layers and is comparable to that found<br />

by other groups in narrow stripes at comparatively<br />

high magnetic fields. The minimum field H inj for<br />

any domain wall movement in 200 nm wide<br />

stripes is of the order of 4 kA/m.


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

Fig. 1.7: Linear dependence of the domain wall<br />

velocity v on the field strength H mov in a stripe with<br />

a defect.<br />

Fig. 1.8: Distribution of the field strength necessary<br />

for nucleation of a domain wall in a GMR<br />

stripe without domain wall generator.<br />

annual report 2004) and included thermal relaxation<br />

processes in our model used to analyse the<br />

experimental non-equilibrium torque curves L(Φ).<br />

Furthermore, we performed time dependent<br />

measurements which directly show relaxation at<br />

T = 10 K.<br />

L(Φ) is the irreversible contribution to the torque<br />

exerted on the F/AF film by an in-plane rotating<br />

strong magnetic field after a rotation reversal<br />

from the cw to ccw sense. Beginning at the reversal<br />

point (Φ = 0), the film grains of coupling<br />

strength j change their magnetic states from one<br />

equilibrium (cw) to a new one (ccw) at characteristic<br />

angles Φ(j). Thus L(Φ) reflects P(j) and we<br />

derive<br />

P(j) = 1/(S(Kt) 2 ) * G(β S (j),Φ) * d 2 L(Φ)/dΦ 2 ,<br />

where S, K, and t are the area, anisotropy constant,<br />

and thickness of the AF film, respectively.<br />

The function G was calculated in the frame of a<br />

Stoner-Wohlfarth model for 3-axial anisotropy<br />

(inset of Fig. 1.9). This model describes for a single<br />

grain the magnetization angles β S (j/Kt) at<br />

which the coupled AF net moment switches from<br />

one AF anisotropy axis to the next, thus contributing<br />

to the irreversible torque L(Φ). Thermal energy<br />

reduces this switching angle β S (j,T)< β S (j,0) as<br />

demonstrated in Fig. 1.9, because within the<br />

measuring time t > τ =10 –9 s * exp(E B /k B T) an<br />

energy barrier E B can be overcome. This must be<br />

considered also at T = 10 K because the grain<br />

volume V E B is very small. As an example<br />

In stripes without a domain wall generator the<br />

domain wall nucleates at one end of the stripe at<br />

a field strength H nuc = 18–26 kA/m and moves<br />

through the line within some µs. The peak field is<br />

inversely proportional to the stripe width and has<br />

a very narrow Gaussian distribution (σ ~ 0.8% of<br />

the peak field) as shown in Fig. 1.8. This field is<br />

larger than the field necessary to overcome every<br />

pinning and corresponds to the coercitive field<br />

strength H C .<br />

1.2.7 Measurement of coupling strength<br />

distribution in exchange bias film<br />

systems<br />

(Klaus Steenbeck, Roland Mattheis)<br />

The exchange bias field and the coercitivity of<br />

ferro-/antiferromagnetic (F/AF) coupled polycrystalline<br />

film systems for magnetoelectronics<br />

strongly depend on the coupling strength j of the<br />

individual grains, with their distribution function<br />

P(j) in the grain ensemble. Until now P(j) was not<br />

measurable.<br />

We quantified our proposed method to determine<br />

P(j) with low temperature torquemetry (see <strong>IPHT</strong><br />

Fig. 1.9: Calculated critical magnetization angles<br />

β S for switching of the AF net moment µ AF to a<br />

neighbouring easy axis as a function of the grain<br />

coupling (j/Kt). The shown parameter is the ratio<br />

(T/K) of temperature and AF anisotropy constant<br />

K.<br />

Inset: Sketch of the rotating magnetization M F<br />

and the coupled AF net moment µ AF in a film crystallite<br />

with 3 easy axes of the AF.<br />

21


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

22<br />

Fig. 1.10: Probability P(j) for a coupling energy<br />

density between j and (j+dj) as a function of j,<br />

determined from torque measurements with a<br />

NiFe / IrMn film at T = 10 K.<br />

Fig. 1.10 shows the distribution function P(j) for a<br />

sputtered NiFe (16 nm) / IrMn (0.8 nm) coupled<br />

film determined from torque measurements at<br />

T = 10 K. Only the range of coupling j > j 1 , which<br />

is responsible for the irreversible torque contributions,<br />

can be recorded by the method. The result<br />

shows that most of the grains have low coupling<br />

energies and that the portion of strongly coupled<br />

grains continuously decreases with increasing j.<br />

The value of K used was estimated using information<br />

from exchange bias measurements.<br />

1.2.8 Electron excited L X-ray spectra of<br />

the elements 14


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

Fig. 1.12: Correlation between the m.a.c. values<br />

and the intensity ratio R = I(20 keV)/I(7 keV).<br />

difference leads to effects of differential absorption,<br />

where the absorption is stronger for<br />

decreasing line energy. For the net peak height<br />

ratio β 1 /α we obtained results which are of the<br />

same order of magnitude as those given by<br />

White and Johnson (W&J) in their popular tables.<br />

However for l/α and β 3,4 /β 1 our results show an<br />

atomic number dependence which is completely<br />

different from those given by W&J.<br />

Fig. 1.13: Melt-textured YBCO monolith prepared<br />

using 7 seeds.<br />

General material development<br />

Any application requires material with good and<br />

reproducible quality. This is provided by our batch<br />

process. We are able to prepare several sizes of<br />

monoliths according to the requirements of the<br />

application (D. Litzkendorf).<br />

To enlarge the monoliths size and to improve the<br />

magnetic properties we concentrated on the<br />

multi-seeding technique where several seeds<br />

were placed on the monoliths.<br />

Both and growth fronts were investigated<br />

used polarised light microscopy (J. Bierlich,<br />

PhD work). In both orientations a transport<br />

current across the grain boundaries is observed<br />

in the trapped field profile. The seeds have to be<br />

oriented with an accuracy of about 3° in a distance<br />

less than 5 mm. Fig. 1.13 shows a monolith<br />

with a size of 78 * 38 * 18 mm 3 where 7 seeds<br />

in orientation were applied. The trapped<br />

field profile (Fig. 1.14) represents a transport current<br />

across all grain boundaries.<br />

1.2.9 Preparation, characterization and<br />

application of melt-textured YBCO<br />

(Wolfgang Gawalek, Tobias Habisreuther)<br />

Our work is based on a stable preparation technology<br />

to prepare high quality material combined<br />

with an adapted characterization technology.<br />

Investigation on the whole chain from precursor<br />

preparation to the system integration of function<br />

elements is performed in order to optimize melttextured<br />

YBCO for applications.<br />

Several projects and co-operations with partners<br />

in research and industry of Germany, Europe and<br />

world wide support our work.<br />

Silvia Kracunovska successfully defended her<br />

PhD thesis on the relation between preparation<br />

and microstructure.<br />

Fig. 1.14: Trapped flux distribution of the multiseeded<br />

monolith. The flux distribution shows a<br />

transport current across all grain boundaries.<br />

Within the EFFORT consortium we use the possibility<br />

to exchange and discuss the latest developments<br />

and results with all European specialists.<br />

Applications<br />

In co-operation with MAI Moscow motor tests at<br />

temperatures at 20 K were performed. Small<br />

scale reluctance motors were tested at the MAI<br />

Moscow. The power output of an YBCO-motor<br />

increased from 500 W at 77 K to 1500 W at 20 K<br />

and 3000 rpm.<br />

In <strong>2005</strong> we and our project-partners Oswald<br />

Elektromotoren GmbH, MAI Moscow, and Arburg<br />

GmbH developed first designs for the BMBF-project<br />

“Hochdynamischer HTSL Motor”.<br />

In the frame of the POWER SCENET W.<br />

Gawalek leads the working group “Rotating<br />

machines”. A meeting with 20 participants from<br />

10 countries was organized in <strong>Jena</strong> from April<br />

11–12, <strong>2005</strong> in <strong>Jena</strong>.<br />

23


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

In <strong>2005</strong> the final detailed system design was realized<br />

for the Dynastore project. We finished the<br />

monoliths for the embedding into the bearing and<br />

transferred them to the company Nexans High<br />

Temperature Superconductors for the system integration.<br />

It is scheduled to test the system in 2006.<br />

Public awareness<br />

Under the patronage of the Thuringian minister<br />

of education and cultural affairs Prof. J. Goebel<br />

we organised an interactive exhibition “Eiskalte<br />

Energie für Europa” from June 29 to July 2 in the<br />

GoetheGalerie <strong>Jena</strong> (Fig. 1.15). The exhibition was<br />

developed in the frame of EU-project “SUPER-<br />

LIFE” in co-operation with the Budapest University<br />

for Technology and Economics (co-ordination),<br />

ICMAB Barcelona, ISMRA Caen, Oxford University,<br />

Ben-Gurion University of the Negev, S-Metall<br />

Budapest and Sydcraft. After contacting schools<br />

within a range of 100 km around <strong>Jena</strong> we organized<br />

50 guided tours through the exhibition to<br />

bring superconductivity near to the young students.<br />

During the exhibition we counted 2000 persons<br />

testing the human levitator.<br />

Fig. 1.16: Rotor of the first MgB 2 HTS motor.<br />

set-up for motor tests at 21K was constructed and<br />

the motor tests were performed. Test results are<br />

shown in Fig. 1.17. At 20 K this motor showed an<br />

output power of 1300 W at 3000 rpm.<br />

24<br />

Fig. 1.15: Visitors watching a levitated train at the<br />

exhibition.<br />

In addition we showed levitation during the “Highlights<br />

der Physik <strong>2005</strong>” in Berlin, at Siemens<br />

Nürnberg, during the “Lange Nacht der Wissenschaften”<br />

in <strong>Jena</strong> and Erlangen, and at the<br />

Solvay headquarters Hannover. Also we contributed<br />

our human levitator to the TV-science<br />

magazine “Galileo”.<br />

1.2.10 Characterization and application<br />

of bulk MgB 2<br />

(Wolfgang Gawalek, Tobias Habisreuther,<br />

Matthias Zeisberger)<br />

The first motor with MgB 2 elements world-wide<br />

was constructed by ISM Kiev, MAI Moscow and<br />

<strong>IPHT</strong> <strong>Jena</strong> (Fig. 1.16).<br />

ISM Kiev produced several MgB 2 plates. In <strong>Jena</strong><br />

they were characterized and machined to function<br />

elements. At the MAI Moscow the experimental<br />

Fig. 1.17: Test results of the MgB 2 motor at 20 K.<br />

The DFG project “Neue Werkstoffe für die<br />

Energietechnik: Magnesiumdiborid” was successfully<br />

enroled.<br />

1.2.11 Preparation of magnetic materials<br />

(Robert Müller)<br />

In the frame of the DFG-priority program spectroscopic<br />

investigations (University Bonn) on glass<br />

crystallised Ba-ferrite BaFe 12–2x Ti x Co x O 19 magnetic<br />

particles were continued with respect to the<br />

problem of reduced magnetisation in nanoparticles<br />

(“magnetic dead layer”).<br />

Experiments to prepare magnetite or maghemite<br />

nanoparticles in the 20 nm-range for medical<br />

applications by glass crystallisation as well as by<br />

cyclic wet chemical precipitation were continued.<br />

Essential points of interest are the optimisation of<br />

nucleation and the growth onto given particles<br />

without further nucleation (see Fig. 1.18), respectively.<br />

Mean particles sizes >30 nm could be


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

Fig. 1.18: Magnetic properties in dependence on<br />

number of cycles (i.e. on increasing mean size<br />

from 11 to 26 nm).<br />

realised. Bigger particles in size distributions with<br />

mean values > ≈25 nm are magnetically too hard<br />

to give a high loss power at the small field amplitudes<br />

required for medical treatment.<br />

Experiments on covering the particles by a biocompatible<br />

layer (dextran) were started in the<br />

frame of a diploma thesis. Stable suspensions with<br />

17 nm-particles (mean value) could be prepared.<br />

Investigations on magnetic properties were done<br />

as well in cooperation with partners on Co-particles,<br />

encapsulated particles (FZK, DFG-program),<br />

hard-magnetic Ba-ferrite particles (TU<br />

Ilmenau), iron oxide particles and ferrofluids with<br />

different polymer surface layers (University Düsseldorf,<br />

DFG-program) and iron oxide microspheres<br />

(HKI <strong>Jena</strong>).<br />

1.2.12 Biomedical applications of magnetic<br />

nanoparticles<br />

(Rudolf Hergt, Matthias Zeisberger)<br />

In the last years magnetic nanoparticles (MNP)<br />

found increasing interest in various biomedical<br />

applications as for instance superparamagnetic<br />

contrast agents for MRI, cellular separation and<br />

refinement, drug delivery, gene magnetofection<br />

and magnetic biochips. One important new therapy<br />

method entering now clinical application is<br />

magnetic particle hyperthermia and thermoablation<br />

which is under development in the group of<br />

the <strong>IPHT</strong> in co-operation with the Institute for<br />

Diagnostic and Interventional Radiology (IDIR,<br />

Prof. W. A. Kaiser) of the Clinics of the University<br />

<strong>Jena</strong>. Within the frame of the DFG-priority program<br />

“Colloidal Magnetic Fluids” foundations for<br />

therapy of breast carcinoma by magnetic particle<br />

injection were provided and the fundamentals of<br />

the second therapy generation, the “Antibody<br />

Mediated Targeting of Nanoparticles” (AMTN)<br />

were laid down. The experimental setup developed<br />

in co-operation with IDIR for first clinical trials<br />

was further improved considering reliability<br />

and comfortability for patients. For the developed<br />

apparatus as well the special magnetic particle<br />

suspension to be injected for tumour therapy two<br />

patents were filed.<br />

The new method of AMTN is presently under<br />

investigation in the frame of the DFG-project<br />

“Magnetic heat treatment of breast tumours with<br />

multivalent magnetic nanoparticles” (HE2878/9-2)<br />

in co-operation with Prof. Kaiser (IDIR). The goal<br />

is the coupling of three strategies of tumour therapy:<br />

combination of hyperthermia by magnetic<br />

nanoparticles with antibody-targeting and chemoor<br />

radiotherapy. Therefore, functional molecular<br />

groups (e.g. tumour-specific antibodies and cisplatin)<br />

will be coupled to the carboxymethyldextran<br />

coating of maghemite nanoparticles. There, a till<br />

now not satisfyingly solved problem is the preparation<br />

of MNP which provide sufficient specific<br />

heating power (SHP). While suitable MNP with<br />

moderate values of SHP are available now for the<br />

direct intratumoural injection method, the target<br />

concentrations expected for AMNT are so low that<br />

at least an order of magnitude higher SHP is<br />

needed. Theoretical modelling of the heat generation<br />

by magnetic nanoparticles in a tumour<br />

showed that for large tumours (some cm) SHP of<br />

more than 1 kW/g is needed, a value which is even<br />

increasing with decreasing tumour size. Such a<br />

high value of SHP was found by our group till now<br />

only for magnetosomes synthesized by magnetotactical<br />

bacteria (co-operation with Dr. Schüler,<br />

MPI Marine Microbiology Bremen). Unfortunately,<br />

those particles are available only in small amounts<br />

and – more importantly – they lack biocompatibility<br />

due to the bacteria proteins of their coating. Our<br />

investigations have shown that a maximum of<br />

magnetic losses occurs in the transition region<br />

between superparamagnetic and stable single<br />

domain particles. For maghemite or magnetite this<br />

is just the mean size of about 30 nm found for<br />

magnetosomes. However, screening with respect<br />

to magnetic properties, in particular losses, for<br />

various MNP types prepared by chemical precipitation<br />

resulted in nearly one order of magnitude<br />

lower SHP. As a reason, the too broad size distribution<br />

as well as a magnetic coupling of MNP is<br />

supposed and is subject of present investigations.<br />

Besides efforts with particle preparation described<br />

in the previous section. An apparatus for magnetic<br />

size fractionation was developed which is under<br />

investigation, now. Another way towards large values<br />

of SHP is the application of MNP with higher<br />

magnetic moment e.g. FePt or Co. The latter ones<br />

are presently magnetically investigated with<br />

encouraging results (co-operation with Prof. Bönnemann,<br />

FKZ).<br />

In co-operation with the University of Applied Sciences<br />

<strong>Jena</strong> (Prof. Andrä, Prof. Bellemann, Dept.<br />

Biomedical Engineering) a pharmaceutical capsule<br />

for the remote controlled drug release is in<br />

development. The release mechanism is based<br />

on the heating of a magnetic absorber in an alternating<br />

magnetic field. By in-vitro investigations<br />

the remote controlled release was realised and a<br />

clinical study is under preparation.<br />

25


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

26<br />

1.3. Appendix<br />

Partners<br />

National cooperation<br />

Thuringia<br />

• B&W Trade Technology, <strong>Jena</strong><br />

• Carl Zeiss <strong>Jena</strong> GmbH<br />

• Docter-Optics GmbH, Neustadt/Orla<br />

• FH <strong>Jena</strong>, FB SciTec, FB Medizintechnik<br />

• Fraunhofer Institut für Angewandte Optik<br />

und Feinmechanik, <strong>Jena</strong><br />

• Friedrich Hagans Plastverarbeitung, Erfurt<br />

• FSU <strong>Jena</strong><br />

• Physikalisch-Astronomische Fakultät und<br />

Chemisch-Geowissenschaftliche Fakultät<br />

• Institut für Diagnostische und<br />

Interventionelle Radiologie<br />

• Institut für Sportwissenschaft<br />

• Klinik für Innere Medizin III<br />

• HITK Hermsdorf<br />

• IMB <strong>Jena</strong><br />

• IMG Nordhausen<br />

• IMMS gGmbH, Ilmenau<br />

• Innovent e.V. <strong>Jena</strong><br />

• j-fiber GmbH, <strong>Jena</strong><br />

• Jenoptik AG, <strong>Jena</strong><br />

• JOLD <strong>Jena</strong><br />

• Landesamt für Archäologie mit Museum für<br />

Ur- und Frühgeschichte Thüringens in Weimar<br />

• Leica Microsystems Lithography GmbH <strong>Jena</strong><br />

• Melexis AG Erfurt<br />

• Schott Lithotec, <strong>Jena</strong><br />

• STS Diagnostics, <strong>Jena</strong><br />

• Supracon AG, <strong>Jena</strong><br />

• SurA Chemicals, <strong>Jena</strong><br />

• TÜV Thüringen e.V., Kalibrierlabor Arnstadt<br />

• TU Ilmenau<br />

Germany<br />

• BAM, Berlin<br />

• Bayerisches Landesamt für Denkmalpflege<br />

(BLfD) München<br />

• Bruker AXS Microanalysis GmbH, Berlin<br />

• BUGH, Wuppertal<br />

• EAS Hanau<br />

• Eberhard Karls Universität Tübingen,<br />

Physikalisches Institut I<br />

• Forschungszentrum Jülich GmbH<br />

• Fraunhofer – INT, Euskirchen<br />

• FRT GmbH – Fries Research & Technology<br />

• FZ Karlsruhe<br />

• FZ Rossendorf<br />

• HL Planartechnik Dortmund<br />

• Hochschule für Technik, Wirtschaft und Kultur<br />

Leipzig<br />

• IFW Dresden<br />

• Infineon AG München<br />

• Infineon AG Regensburg<br />

• Lucent Technologies GmbH Nürnberg<br />

• Max Planck Institut für Radioastronomie Bonn<br />

• Max Planck Institut für Mikrostrukturphysik Halle<br />

• Nanoworld Services GmbH Erlangen<br />

• Naomi technologies Mainz<br />

• Nexans High Temperature Superconductors,<br />

Hürth<br />

• Novotechnik Messwertaufnehmer OHG,<br />

Ostfildern<br />

• OSWALD Elektromotoren GmbH, Miltenberg<br />

• Philips Semiconductor Hamburg<br />

• Physikalisch-Technische Bundesanstalt,<br />

Braunschweig<br />

• Physikalisch-Technische Bundesanstalt, Berlin<br />

• Piller GmbH, Osterode<br />

• PREMA Semiconductor GmbH, Mainz<br />

• QEST GmbH, Tübingen<br />

• RWTH Aachen<br />

• Siemens AG Erlangen<br />

• Singulus AG Kahl<br />

• Solvay Barium Strontium GmbH, Hannover<br />

• Technische Universität Hamburg-Harburg<br />

• TU Kaiserslautern<br />

• Tracto-Technik GmbH, Lennestadt<br />

• TransMIT GmbH, Gießen<br />

• TU Braunschweig<br />

• TU Bergakademie Freiberg<br />

• Universität Bielefeld<br />

• Universität Erlangen<br />

• Universität Gießen<br />

• Universität Heidelberg, Kirchhoff-Institut<br />

für Physik<br />

• Universität Karlsruhe<br />

• Universität Mainz, Institut für Organische<br />

Chemie<br />

• Universität Regensburg<br />

• Vacuumschmelze GmbH & Co KG, Hanau<br />

• VeriCold Technologies Ismaning<br />

• WSK Hanau<br />

International cooperations<br />

• Altis Semiconductor France<br />

• Anglo Operations Ltd., South Africa<br />

• Bar Ilan University, Israel<br />

• Ben-Gurion University of the Negev, Israel<br />

• Budapest University of Technology and<br />

Economy, Hungary<br />

• Cambridge University, UK<br />

• CardioMag Imaging Inc., Schenectady, USA<br />

• CEA Saclay, Gif sur Yvette cedex, France<br />

• CEA/Le Ripault Mounts, France<br />

• Chalmers University of Technology, Sweden<br />

• Chengdu University, China<br />

• CNRS Grenoble, France<br />

• Comenius University, Slovakia<br />

• Commissariat a l’energie atomique, France<br />

• Consiglio Nazionale Delle Ricerche, Italy<br />

• D-wave System Inc. Canada<br />

• Edison Spa, Milano, Italy<br />

• Encom Technology Pty Ltd, Sydney, Australia<br />

• Fugro Airborne Surveys, South Africa<br />

• Geovista, Sweden<br />

• Helsinki University of Technology, Finland<br />

• ICMAB Barcelona, Spain<br />

• Institute for Superhard Materials, Kiev, Ukrain<br />

• Institute of Crystallography Moscow, Russia<br />

• Institute of Radio Engineering and<br />

Electronics Moscow, Russia


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

• Lawrence Berkely National Laboratory, CA,<br />

USA<br />

• Leiden University, Kamerlingh Onnes<br />

Laboratorium, The Netherlands<br />

• Los Alamos National Laboratory, Biophysics<br />

Group, NM, USA<br />

• MAI Moscow, Russia<br />

• Moscow Engineering Physics Institute<br />

(State University), Russia<br />

• National Physical Laboratory, Teddington, UK<br />

• Nederlands Meetinstitut, NMi Van Swinden<br />

Laboratorium B.V., The Netherlands<br />

• NIST, Gaithersburg, MD, USA<br />

• Novosibirsk University, Russia<br />

• Philips Reseach Lab Eindhoven/NL<br />

• PicoImages Limited, South Africa<br />

• SAS Kosice, Slovakia<br />

• SPEZREMONT, Moscow, Russia<br />

• Swiss Federal Institute of Technology<br />

Lausanne, Institute of Applied Optics (IOA),<br />

Suisse<br />

• Technical Research Centre of Finland<br />

• TU Wien, Austria<br />

• University of Oxford, Department of Physics,<br />

Sub-department of Particle Physics, UK<br />

• University of Twente, Faculty of Science and<br />

Technology, The Netherlands<br />

• Vienna Institute for Archaeological Science,<br />

Austria<br />

Publications<br />

M. Schmidt, M. Eich, U. Huebner, R. Boucher:<br />

“Electrooptically tunable photonic crystals”<br />

Appl. Phys. Lett. 87 (<strong>2005</strong>) 121110<br />

M. Grajcar, A. Izmalkov, S. H. W. van der Ploeg,<br />

S. Linzen, E. Il’ichev, Th. Wagner, U. Hübner,<br />

H.-G. Meyer, Alec Maassen van den Brink,<br />

S. Uchaikin, A. M. Zagoskin:<br />

“Direct Josephson coupling between superconducting<br />

flux qubits”<br />

Phys. Rev. B 72 (<strong>2005</strong>) 020503(R)<br />

M. Grajcar, A. Izmalkov, E. Il’ichev:<br />

“Possible implementation of adiabatic quantum<br />

algorithm with superconducting flux qubits”<br />

Phys. Rev. B 71 (<strong>2005</strong>) 144501<br />

Ya. S. Greenberg, E . Il’ichev, A. Izmalkov:<br />

“Low-frequency Rabi spectroscopy for a dissipative<br />

two-level system”<br />

Europhys. Lett., 72 (<strong>2005</strong>) 880–886<br />

Ya. S. Greenberg, I. L. Novikov, V. Schultze,<br />

H.-G. Meyer:<br />

“The influence of the second harmonic in the current-phase<br />

relation on the voltage-current characteristic<br />

of high-T c DC SQUIDs”<br />

Eur. Phys. J. B 44 (<strong>2005</strong>) 57–62<br />

H.-G. Meyer, R. Stolz, A. Chwala, M. Schulz:<br />

“SQUID technology for geophysical exploration”<br />

phys. stat. sol. (c) 2 (<strong>2005</strong>) 1504–1509<br />

M. Schubert, T. May, G. Wende, H.-G. Meyer:<br />

“A Cross-Type SNS Junction Array for a Quantum-Based<br />

Arbitrary Waveform Synthesizer”<br />

IEEE Trans. Appl. Supercond. Vol. 15 (2) 829–<br />

832, <strong>2005</strong><br />

T. May, V. Zakosarenko, E. Kreysa, W. Esch,<br />

S. Anders, L. Fritzsch, R. Boucher, R. Stolz,<br />

J. Kunert, H.-G- Meyer:<br />

“On-chip integrated SQUID readout for superconducting<br />

bolometers”<br />

IEEE Transactions on Applied Superconductivity<br />

Vol. 15 (2) (<strong>2005</strong>) 537–540<br />

W. Krech, D. Born, V. Shnyrkov, Th. Wagner,<br />

M. Grajcar, E. Il’ichev, H.-G. Meyer, Ya. Greenberg:<br />

“Quantum dynamic of the interferometer-type<br />

charge qubit under microwave irradiation”<br />

IEEE Trans. Appl. Supercond. 15 (<strong>2005</strong>) 876<br />

M. Ebel, C. Busch, U. Merkt, M. Grajcar,<br />

T. Plecenik, E. Il’ichev:<br />

“Supercurrent-phase relationship of a Nb/InAs<br />

(2DES)/Nb Josephson junction in overlapping<br />

geometry”<br />

Phys. Rev. B 71, 052506 (<strong>2005</strong>)<br />

R. Boucher:<br />

“Sr 2 FeMoO 6+x : Film structure dependence upon<br />

substrate type and film thickness”<br />

J. Phys. Chem. Solids, 66 (<strong>2005</strong>) 1020<br />

R. Mattheis, K. Steenbeck:<br />

“Beating the superparamagnetic limit of IrMn in<br />

F/AF/AAF stacks”<br />

J. Appl. Phys. 97(<strong>2005</strong>) 10K107<br />

S. Questea, S. Dubourg, O. Acher, J.-C. Soret,<br />

K.-U. Barholz, R. Mattheis:<br />

“Microwave permeability study for antiferromagnet<br />

thickness dependence on exchange bias field<br />

in NiFe/lrMn layers”<br />

J. Magn. Magn. Mater. 288 (<strong>2005</strong>) 60–65<br />

P. A. Warburton, A. R. Kuzhakhmetov, G. Burnell,<br />

M. G. Blamire, Y. Koval, A. Franz, P. Müller, and<br />

H. Schneidewind:<br />

“Fabrication and Characterization of Sub-Micron<br />

Thin Film Intrinsic Josephson Junction Arrays”<br />

IEEE Trans. Appl. Supercond. 15 (<strong>2005</strong>) 237–240<br />

B. Oswald, K. -J. Best, M. Setzer, M. Söll,<br />

W. Gawalek, A. Gutt, L. K. Kovalev, G. Krabbes,<br />

L. Fisher, H. C. Freyhardt:<br />

“Reluctance motors with bulk HTS material”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S24–S29<br />

27


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

28<br />

W. Gawalek, T. Habisreuther, M. Zeisberger,<br />

D. Litzkendorf, O. Surzhenko, S. Kracunovska,<br />

T. A. Prikhna, B. Oswald, L. K. Kovalev,<br />

W. Canders:<br />

“Batch-processed melt-textured YBCO with<br />

improved quality for motor and bearing applications”<br />

Supercond. Sci. Technol. 17 (<strong>2005</strong>) 1185–1188<br />

D. A. Cardwell, M. Murakami, M. Zeisberger,<br />

W. Gawalek, R. Gonzalez-Arrabal, M. Eisterer,<br />

H. W. Weber, G. Fuchs, G. Krabbes, A. Leenders,<br />

H. C. Freyhardt, N. Hari Babu:<br />

“Round robin test on large grain melt processed<br />

Sm-Ba-Cu-O bulk superconductors”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S173–S179<br />

M. Zeisberger, W. Gawalek, G. Giunchi:<br />

“Magnetic levitation using magnesiumdiboride”<br />

J. Appl. Phys. 98 (<strong>2005</strong>) 023905<br />

J. Bierlich, T. Habisreuther, D. Litzkendorf,<br />

C. Dubs, R. Müller, S. Kracunovska, W. Gawalek:<br />

“Growth and investigation of melt-textured<br />

SmBCO in air for preparation of Sm123 seed<br />

crystals”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S194–S197<br />

D. Litzkendorf, T. Habisreuther, J. Bierlich,<br />

O. Surzhenko, M. Zeisberger, S. Kracunovska,<br />

W. Gawalek:<br />

“Increased efficiency of batch-processed melttextured<br />

YBCO”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S206–S208<br />

S. Kracunovska, P. Diko, D. Litzkendorf,<br />

T. Habisreuther, J. Bierlich, W. Gawalek:<br />

“Oxygenation and cracking in melt-textured<br />

YBCO bulk superconductors”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S142–S148<br />

P. Diko, S. Kracunovska, L. Ceniga, J. Bierlich,<br />

M. Zeisberger, W. Gawalek:<br />

“Microstructure of top seeded melt-grown YBCO<br />

bulks with holes”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S1400–S1404<br />

T. A. Prikhna, W. Gawalek, N. V. Novikov,<br />

V. E. Moshchil, V. B. Sverdun, N. V. Sergienko,<br />

A. B. Surzhenko, L. S. Uspenskaya, R. Viznichenko,<br />

A. A. Kordyuk, D. Litzkendorf, T. Habisreuther,<br />

S. Kracunovska and A. V. Vlasenko:<br />

“Formation of superconducting junctions in MT-<br />

YBCO”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S153–S157<br />

E. Bartolome, X. Granados, T. Puig, X. Obradors,<br />

E. S. Reddy and S. Kracunovska:<br />

“Critical State of YBCO Superconductors With<br />

Artificially Patterned Holes”<br />

IEEE Transactions on Applied Superconductivity<br />

15 (<strong>2005</strong>) 2775–2778<br />

M. Zeisberger, T. Habisreuther, D. Litzkendorf,<br />

A. Surzhenko and W. Gawalek:<br />

“Investigation of the structure of melt-textured<br />

YBCO by magnetic measurements”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S90–S94<br />

M. Zeisberger, I. Latka, W. Ecke, T. Habisreuther,<br />

D. Litzkendorf and W. Gawalek:<br />

“Measurement of the thermal expansion of melttextured<br />

YBCO using optical fibre grating sensors”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S202–S205<br />

R. Zboril, L. Machala, M. Mashlan, J. Tucek,<br />

R. Müller, O. Schneeweiss:<br />

“Magnetism of amorphous Fe 2 O 3 nanopowders<br />

synthesized by solid-state reactions”<br />

phys. stat. sol. (c) 1 (2004) 3710–3716<br />

R. Müller, R. Hergt, M. Zeisberger, W. Gawalek:<br />

“Preparation of magnetic nanoparticles with<br />

large specific loss power for heating applications”<br />

J. Magn. Magn. Mater. 289 (<strong>2005</strong>) 13–16<br />

S. Dutz, W. Andrä, H. Danan, C. S. Leopold,<br />

C. Werner, F. Steinke, M. E. Bellemann:<br />

“Remote controlled drug delivery to the gastrointestinal<br />

tract: investigation of release profiles”<br />

Biomedizinische Technik 50 (Suppl. 1) (<strong>2005</strong>)<br />

601–602<br />

C. Werner, W. Andrä, T. Kupfer, J. Seilwinder,<br />

M. E. Bellemann:<br />

“Out-patient magnetic marker monitoring: evaluation<br />

of temporal and spatial resolution”<br />

Biomedizinische Technik 50 (<strong>2005</strong>) Suppl. Vol. 1,<br />

Part 1, 605–606<br />

W. Andrä, M. E. Bellemann:<br />

“Remote controlled drug delivery to the gastrointestinal<br />

tract: optimizing the total system”<br />

Biomedizinische Technik 50 (<strong>2005</strong>) Suppl. Vol. 1,<br />

Part 1, 607–608<br />

S. Dutz, W. Andrä, R. Hergt, R. Müller, J. Mürbe,<br />

J. Töpfer, C. Werner, M. E. Bellemann:<br />

“Magnetic nanoparticles for remote controlled<br />

drug delivery to the gastrointestinal tract”<br />

Biomedizinische Technik 50 (Suppl. 1) (<strong>2005</strong>)<br />

1555–1556<br />

W. Andrä, H. Danan, K. Eitner, M. Hocke,<br />

H.-H. Kramer, H. Parusel, P. Saupe, C. Werner,<br />

M. E. Bellemann:<br />

“A novel magnetic method for examination of<br />

bowel motility”<br />

Med. Phys. 32 (<strong>2005</strong>) 2942–2944<br />

S. Dutz, R. Hergt, R. Müller, M. Zeisberger,<br />

W. Andrä, M. E. Bellemann:<br />

“Application of Magnetic Nanoparticles for Biomedical<br />

Heating Processes”


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

VDI-Berichte Nr. 1920 – 4 th Internat. Nanotechnology<br />

Symposium: 229–232 (<strong>2005</strong>) (Ed.: VDI Wissensforum<br />

IWB GmbH).<br />

R. Müller, H. Steinmetz, R. Hergt, M. Zeisberger,<br />

S. Dutz, W. Gawalek:<br />

“Magnetic iron oxide nanoparticles for medical<br />

applications”<br />

Conference report – Chemical Nanotechnology<br />

Talks VI, (<strong>2005</strong>) Ed.: DECHEMA Frankfurt/M.<br />

M. Zeisberger, S. Dutz, R. Hergt, R. Müller:<br />

“Magnetic Nanoparticles for Hyperthermia”<br />

Conference report – Bioinspired Nanomaterials<br />

for Medicine and Technologies: 62 (<strong>2005</strong>), Ed.:<br />

DECHEMA<br />

R. Hergt, R. Hiergeist, M. Zeisberger, D. Schüler,<br />

U. Heyen, I. Hilger, W. A. Kaiser:<br />

“Magnetic properties of bacterial magnetosomes<br />

as potential diagnostic and therapeutic tools”<br />

J. Magn. Magn. Mater. 293 (<strong>2005</strong>) 80–86<br />

I. Hilger, R. Hergt, W. A. Kaiser:<br />

“Use of magnetic nanoparticle heating in the<br />

treatment of breast cancer”<br />

IEE Proc. Nanobiotechnol. 152 (<strong>2005</strong>) 33–39<br />

I. Hilger, R. Hergt, W. A. Kaiser:<br />

“Towards breast cancer treatment by magnetic<br />

heating”<br />

J. Magn. Magn. Mater. 293 (<strong>2005</strong>) 314–319<br />

I. Hilger, W. Andrä, R. Hergt, R. Hiergeist,<br />

W. A. Kaiser:<br />

„Magnetische Thermotherapie von Tumoren der<br />

Brust: Ein experimenteller Ansatz“<br />

RöFo Fortschr. Röntgenstr. 177 (<strong>2005</strong>) 507–515<br />

Presentations (Talks and Posters)<br />

V. Schultze, A. Chwala, R. Stolz, M. Schulz,<br />

S. Linzen, H.-G. Meyer, T. Schüler:<br />

“A SQUID system for geomagnetic archaeometry”<br />

Proc. 6 th Int. Conf. on Archaeological Prospection<br />

(Archeo<strong>2005</strong>), 14–17 Sept. <strong>2005</strong>, Rom, pp.<br />

245–248, poster<br />

H.-G. Meyer, A. Chwala, R. Stolz, S. Linzen,<br />

V. Schultze, M. Schulz, T. Schüler:<br />

„Aktuelle Anwendungen von SQUIDs zur geomagnetischen<br />

Pospektion“<br />

Proc. Tagung Kryoelektronische Bauelemente<br />

„Kryo’05“, 09–11 Oktober <strong>2005</strong>, Bad Herrenalb,<br />

p. 23, oral presentation<br />

V. Schultze, R. IJsselsteijn, H.-G. Meyer:<br />

„Zur Realisierung von SQIFs mit Hochtemperatur-Supraleitern“<br />

Proc. Tagung Kryoelektronische Bauelemente<br />

„Kryo’05“, 09–11 Oktober <strong>2005</strong>, Bad Herrenalb,<br />

p. 66, poster<br />

V. Schultze, A. Chwala, R. Stolz, M. Schulz,<br />

S. Linzen, T. Schüler, H.-G. Meyer<br />

„SQUID-System für die geomagnetische Archäometrie“<br />

Proc. Tagung Kryoelektronische Bauelemente<br />

„Kryo’05“, 09–11 Oktober <strong>2005</strong>, Bad Herrenalb,<br />

p. 67, poster<br />

R. IJsselsteijn, V. Schultze, H.-G. Meyer:<br />

„Thermozyklieren von HTS-SQIFs und -SQUID“<br />

Proc. Tagung Kryoelektronische Bauelemente<br />

„Kryo’05“, 09–11 Oktober <strong>2005</strong>, Bad Herrenalb,<br />

p. 96, poster<br />

V. Schultze, A. Chwala, R. Stolz, M. Schulz,<br />

S. Linzen, H.-G. Meyer, T. Schüler:<br />

„A SQUID system for geomagnetic archaeometry“<br />

Proc. ISEC ‘05, 05.–09.09.<strong>2005</strong>, Noordwijkerhout,<br />

The Netherlands, P-H.08<br />

V. Schultze, R. IJsselsteijn, H.-G. Meyer:<br />

“How to puzzle out a good high-T c SQIF?”<br />

Proc. ISEC ‘05, 05.–09.09.<strong>2005</strong>, Noordwijkerhout,<br />

The Netherlands, P-K.06<br />

U. Huebner, W. Morgenroth, R. Boucher,<br />

H. G. Meyer, Th. Sulzbach, B. Brendel,<br />

W. Mirandé, E. Buhr, G. Ehret, Th. Fries,<br />

G. Kunath-Fandrei, R. Hild:<br />

“Prototypes of new nanoscale CD-standards for<br />

high resolution optical microscopy and AFM”<br />

in Proceedings of the 5 th international euspen<br />

conference, Montepellier, 185–188, <strong>2005</strong>, poster<br />

U. Huebner, W. Morgenroth, R. Boucher,<br />

W. Mirandé, E. Buhr, Th. Fries, Nadine Schwarz,<br />

G. Kunath-Fandrei, R. Hild:<br />

“Development of a nanoscale linewidth-standard<br />

for high-resolution optical microscopy”<br />

in Optical Fabrication, Testing, and Metrology II,<br />

edited by Angela Duparré, Roland Geyl, David<br />

Rimmer, Lingli Wang, Proc. SPIE Systems<br />

Design <strong>Jena</strong>, Germany, Vol. 5965, (<strong>2005</strong>), poster<br />

U. Huebner, R. Boucher, W. Morgenroth,<br />

M. Schmidt, M. Eich:<br />

“Fabrication of photonic crystal structures in<br />

polymer waveguide material”<br />

Micro & Nano Engineering MNE <strong>2005</strong>, (<strong>2005</strong>),<br />

poster<br />

M. Eich, M. Schmidt, U. Huebner, R. Boucher:<br />

“Electrooptically tunable photonic crystal”<br />

Proceedings of SPIE Optics and Photonics San<br />

Diego, California, (<strong>2005</strong>), 5935–18<br />

29


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

30<br />

G. Wende, M. Schubert, T. May, H.-G. Meyer:<br />

“Pulse Driving of a Josephson Pulse Quantizer<br />

for Quantum-Based Arbitrary Waveform Synthesizers,<br />

Proc. ISEC`05, 05.–09.<strong>2005</strong>, Noordwijkerhout,<br />

The Netherlands, P-K.05<br />

G. Wende, M. Schubert, T. May, H.-G. Meyer:<br />

“Impulsansteuerung eines Josephson-Impuls-<br />

Quantisierers für einen Quantensynthesizer<br />

beliebiger Wellenformen”<br />

Tagung Kryoelektronische Bauelemente “Kryo’05”,<br />

09.–11. Oktober <strong>2005</strong>, Bad Herrenalb, Poster<br />

V. Zakosarenko, S. Anders, T. May, R. Boucher,<br />

H.-G. Meyer, E. Kreysa, N. Jethava, G. Siringo:<br />

“Time domain multiplexing for superconducting<br />

bolometers read out by integrated SQUIDs”<br />

Low Temperature Detectors LTD <strong>2005</strong>, Tokio<br />

(Japan), Poster<br />

N. Oukhanski, R. Stolz, H.-G. Meyer:<br />

“Concept of ultra-low-drift and very fast dc<br />

SQUID readout electronics”<br />

Proc. Tagung Kryoelektronische Bauelemente<br />

“Kryo’05”, 09.–11. Oktober <strong>2005</strong>, Bad Herrenalb,<br />

p. 65, Poster<br />

N. Oukhanski, R. Stolz, H.-G. Meyer:<br />

“Ultra-low-drift and very fast dc SQUID readout<br />

electronics”<br />

Proc. of 7 th European Conference on Applied<br />

Superconductivity (EUCAS’05), Sept. 11–15,<br />

<strong>2005</strong>, Vienna, Austria, P- WE-P3–138<br />

A. Izmalkov, M. Grajcar, S.H. W. van der Ploeg,<br />

S. Linzen, T. Plecenik, Th. Wagner, U. Hübner,<br />

E. Il’ichev, H.-G. Meyer, A. Yu. Smirnov, P. J.Love,<br />

A. Maassen van den Brink, M. H. S. Amin,<br />

S. Uchaikin, A. M. Zagoskin:<br />

“Realization of ferro- and antiferromagnetic coupling<br />

among superconducting qubits through a<br />

common Josephson junction”<br />

“Kryo’05”, 09–11 October <strong>2005</strong>, Bad Herrenalb,<br />

contributed talk<br />

A. Izmalkov, M. Grajcar, E. Il’ichev,<br />

S. H. W. van der Ploeg, S. Linzen, Th. Wagner,<br />

U. Hübner, H.-G. Meyer, A. Yu. Smirnov,<br />

S. Uchaikin, M. H. S. Amin,<br />

A. Maassen van den Brink, A. M. Zagoskin:<br />

“Experimental investigation of coupled flux<br />

qubits”<br />

7 th European Conference on Applied Superconductivity<br />

(EUCAS’05), Sept. 11–15, <strong>2005</strong>,<br />

Vienna, Austria, poster<br />

S. H. W. van der Ploeg, A. Izmalkov, M. Grajcar,<br />

E. Il’ichev, S. Linzen, Th. Wagner, U. Hübner,<br />

H.-G. Meyer, A. Yu. Smirnov, S. Uchaikin,<br />

M. H. S. Amin, Alec Maassen van den Brink,<br />

A. M. Zagoskin:<br />

“Characterization of coupled flux qubits by<br />

impedance measurement technique”<br />

ISEC ‘05, 05.09.09.<strong>2005</strong>, Noordwijkerhout, The<br />

Netherlands, contributed talk<br />

S. H. W. van der Ploeg, A. Izmalkov, A. Maassen<br />

van den Brink, U. Hübner, M. Grajcar,<br />

S. Uchaikin, S. Linzen, E. Il’ichev, H.-G. Meyer:<br />

“Realization of strong and controllable anti-ferromagnetic<br />

coupling between superconducting<br />

flux-qubits”<br />

Tagung Kryoelektronische Bauelemente “Kryo’05”,<br />

09.–11. October <strong>2005</strong>, Bad Herrenalb, contributed<br />

talk<br />

S. Anders, T. May, R. Boucher, H.-G. Meyer,<br />

C. Hollerith, D. Wernicke:<br />

“Transition-edge sensors manufactured on 4-inch<br />

wafers for reliable, cost-effective x-ray detectors”<br />

ISEC ‘05, 05.09.<strong>2005</strong>, Noordwijkerhout, The<br />

Netherlands, poster<br />

S. Anders, R. Boucher, T. May, H.-G. Meyer:<br />

“Kantenbolometer aus dem Zweischichtsystem<br />

Mo/AuPd für Röntgendetektoren”<br />

Tagung Kryoelektronische Bauelemente “Kryo’05”,<br />

09.–11. Oktober <strong>2005</strong>, Bad Herrenalb, poster<br />

J. Fassbender, J. McCord, M. Weisheit,<br />

R. Mattheis:<br />

“Modifikation der magnetischen Dämpfung in<br />

Permalloy-Schichten durch Cr-Implantation”<br />

Vortrag, Verhandlungen Frühjahrstagung DPG,<br />

28.02.–04.03.<strong>2005</strong>, MA 27.7<br />

Ch. Hamann, J. McCord, R. Schäfer,<br />

L. Schultz, R. Mattheis:<br />

“Magnetization reversal in CoFe/IrMn exchange<br />

biased structures”<br />

Vortrag, Verhandlungen Frühjahrstagung DPG<br />

28.02.–04.03.<strong>2005</strong>, MA 15.5<br />

J. McCord, R. Mattheis:<br />

“Asymmetric fixed and rotatable magnetic<br />

anisotropy at the onset of exchange bias”<br />

Poster, Verhandlungen Frühjahrstagung DPG,<br />

28.02.–04.03.<strong>2005</strong>, MA 20.59<br />

J. Fassbender, J. McCord, M. Weisheit,<br />

R. Mattheis:<br />

“Increased magnetic damping of Permalloy upon<br />

Cr implantation”<br />

International Magnetics Conference, Intermag<br />

<strong>2005</strong>, Nagoya, Japan<br />

J. Fassbender, J. McCord, R. Mattheis,<br />

K. Potzger, A. Mücklich, J. v. Borany:<br />

“Doping magnetic materials – tunable properties<br />

due to ion implantation”<br />

European Congress on Advanced materials<br />

and processing, 5.–8.09.<strong>2005</strong>, Prague, Czech<br />

Republics<br />

R. Mattheis, M. Diegel, U. Huebner:<br />

“Domain Wall motion in narrow spin valve strip<br />

lines”<br />

50 th Conference on Magnetism and Magnetic<br />

Materials, San Jose, California, USA


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

J. Fassbender, L. Bischoff, R. Mattheis, P. Fischer:<br />

“Magnetic domains and magnetization reversal of<br />

ion-induced magnetically patterned RKKY-coupled<br />

Ni 81 Fe 19 /Ru/Co 90 Fe 10 films”<br />

50 th Conference on Magnetism and Magnetic<br />

Materials, San Jose, California, USA<br />

M. Mans, A. Grib, M. Büenfeld, R. Bechstein,<br />

F. Schmidl, H. Schneidewind und P. Seidel:<br />

“Elektrische Untersuchung serieller intrinsischer<br />

Josephsonkontaktarrays an dünnen Tl 2 Ba 2 Ca-<br />

Cu 2 O 8+x Schichten auf r-cut Saphir und 20° vizinalem<br />

LaAlO 3 ”<br />

Vortrag, Verhandlungen Frühjahrstagung DPG,<br />

28.02.–04.03.<strong>2005</strong>, TT 10.11<br />

M. Büenfeld, R. Bechstein, M. Mans, F. Schmidl,<br />

A. Grib, H. Schneidewind und P. Seidel:<br />

“Elektrische Untersuchung serieller intrinsischer<br />

Josephsonkontaktarrays an dünnen Tl 2 Ba 2 Ca-<br />

Cu 2 O 8+x Schichten auf r-cut Saphir und 20° vizinalem<br />

LaAlO 3 ”<br />

Poster, Verhandlungen Frühjahrstagung DPG,<br />

28.02.–04.03.<strong>2005</strong>, TT 23.47<br />

H. Schneidewind, M. Mans, M. Büenfeld,<br />

M. Diegel:<br />

“Misaligned Tl-2212 Thin Films with Different Tilt<br />

Angles for Intrinsic Josephson Junctions”<br />

7 th European Conference on Applied Superconductivity<br />

(EUCAS ‘05), Vienna University of Technology,<br />

11 to 15 September <strong>2005</strong>, Austria<br />

M. Büenfeld, M. Mans, A. N. Grib, F. Schmidl,<br />

H. Schneidewind, P. Seidel:<br />

“Untersuchung intrinsischer Josephsonkontaktarrays<br />

aus dünnen Tl 2 Ba 2 CaCu 2 O 8+x Schichten auf<br />

vicinalem LaAlO 3 ”<br />

Tagung Kryoelektronische Bauelemente, 09.–11.<br />

Oktober <strong>2005</strong>, in Bad Herrenalb<br />

A. Assmann, J. Dellith, M. Wendt:<br />

“Electron excited L X-ray spectra of the elements<br />

24


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

32<br />

W. Gawalek, T. A. Prikhna, L. K. Kovalev,<br />

G. Giunchi, M. Zeisberger:<br />

“Bulk MgB 2 -Superconductors: A new material for<br />

Energy technologies?”<br />

Keynote talk JAPMED´4: 4 th Japanese-Mediterranean<br />

Workshop on Applied Electromagnetic<br />

Engineering for Magnetic, Superconducting and<br />

nano materials, Cairo, Egypt, September 17–20,<br />

(<strong>2005</strong>), p. 19<br />

T. A. Prikhna, Ya. M. Savchuk, W. Gawalek,<br />

N. V. Sergienko, V. E. Moshchil, P. A. Nagorny,<br />

V. B. Sverdun, A. V. Vlasenko, L. K. Kovalev,<br />

K. L. Kovalev, V. T. Penkin:<br />

“High-pressure high-temperature synthesis of<br />

Nanostructural magnesium diboride for electromotors<br />

working at liquid hydrogen temperatures”<br />

Proceedings of International Conference “Modern<br />

Materials Science: Achievements and<br />

Problems”, September 26–30, (<strong>2005</strong>), Kiev,<br />

Ukraine<br />

T. A. Prikhna, W. Gawalek, Ya. M. Savchuk,<br />

N. V. Sergienko, V. E. Moshchil, M. Wendt,<br />

M. Zeisberger, T. Habisreuther, S. X. Dou,<br />

S. N. Dub, V. S. Melnikov, Ch. Schmidt, J. Dellith<br />

and P. A. Nagorny:<br />

“Formation of magnesium diboride-based materials<br />

with high critical currents and mechanical<br />

characteristics by high-pressure synthesis”<br />

EUCAS <strong>2005</strong>, Sept. 11–15, <strong>2005</strong>, Vienna, Austria<br />

T. A. Prikhna, W. Gawalek, V. B. Sverdun,<br />

Ya. M. Savchuk, A. V. Vlasenko, X. Chaud,<br />

J. Rabier, A. Joulain, V. E. Moshchil,<br />

P. A. Nagorny, N. V. Sergienko, V. S. Melnikov,<br />

S. N. Dub, T. B. Serbenyuk:<br />

“Improvement of MT-YBCO properties by oxygenation<br />

and treatment under pressure”<br />

Proceedings of International Conference “Modern<br />

Materials Science: Achievements and Problems”,<br />

September 26–30, (<strong>2005</strong>), Kiev, Ukraine<br />

M. Eisterer, S. Haindl, M. Zehetmayer,<br />

R. Gonzalez-Arrabal, H. W. Weber,<br />

D. Litzkendorf, M. Zeisberger, T. Habisreuther,<br />

W. Gawalek, L. Shlyk, G. Krabbes:<br />

“Limitations for the Trapped Field in Large Grain<br />

YBCO Superconductors”<br />

PASREG <strong>2005</strong>, 5 th International Workshop on<br />

Processing and Applications of Superconducting<br />

(RE)BCO Large Grain Materials, October 21–23,<br />

<strong>2005</strong>, Tokyo, Japan<br />

R. Müller, H. Steinmetz, M. Zeisberger,<br />

Ch. Schmidt, S. Dutz, R. Hergt, W. Gawalek:<br />

“Precipitated iron oxide particles by cyclic<br />

growth”<br />

6. Deutschen Ferrofluid-Workshop, 19.–22. 7. 05,<br />

Saarbrücken<br />

S. Dutz, R. Hergt, J. Mürbe, J. Töpfer, R. Müller,<br />

M. Zeisberger, W. Andrä, M. E. Bellemann:<br />

“Preparation of water based dispersions of<br />

magnetic iron oxide nanoparticles in the mean<br />

diameter range of 15 to 30 nm”<br />

6 th German Ferrofluid-Workshop, 19.–22. 7. 05,<br />

Saarbrücken<br />

S. Dutz, N. Buske, R. Hergt, R. Müller, M. Zeisberger,<br />

P. Görnert, M. Röder, M. E. Bellemann:<br />

“Magnetic Nanoparticles for biomedical heating<br />

applications”<br />

6. Deutschen Ferrofluid-Workshop, 19.–22. 7. 05,<br />

Saarbrücken, poster<br />

R. Müller, H. Steinmetz, R. Hergt, Ch. Schmidt,<br />

M. Zeisberger, W. Gawalek:<br />

“Preparation of Iron Oxide Nanoparticles for<br />

Heating Applications”<br />

6 th Colloq. of DFG-Priority Program “Colloidal<br />

magnetic fluids”, Benediktbeuern 25.–28. 9. 05<br />

N. Palina, H. Modrow, R. Müller, J. Hormes, Ya.<br />

B. Losovyj:<br />

“Final results of X-ray absorption spectroscopy<br />

and resonant photo-emission investigations on<br />

doped Bariumhexaferrite nanoparticles”<br />

6 th Colloq. of DFG-Priority Program “Colloidal<br />

magnetic fluids”, Benediktbeuern 25.–28.9.05<br />

S. Dutz, W. Andrä, H. Danan, C. S. Leopold,<br />

C. Werner, F. Steinke, M. E. Bellemann:<br />

“Remote controlled drug delivery to the gastrointestinal<br />

tract: investigation of release profiles”<br />

Jahrestagung der Deutschen Gesellschaft Biomedizinische<br />

Technik, Nürnberg (14.–17.09. <strong>2005</strong>)<br />

S. Dutz:<br />

„Magnetische Nano-Verbundwerkstoffe für die<br />

intrakorporale Erwärmung in der Medizin“ Jahreskolloquium<br />

des Institutes für Keramische<br />

Werkstoffe, Bergakademie Freiberg (20.–21.10.<br />

<strong>2005</strong>).<br />

S. Dutz, R. Hergt, R. Müller, M. Zeisberger:<br />

“Magnetic nanoparticles for hyperthermia”<br />

Mitarbeitertreffen des DFG-Schwerpunktprogramms<br />

“Kolloidale magnetische Flüssigkeiten”.<br />

Erlangen (01.–02.12.<strong>2005</strong>).<br />

S. Dutz, R. Hergt, M. Zeisberger, M. Kettering,<br />

I. Hilger, W. A. Kaiser:<br />

“Magnetic hyperthermia with multivalent magnetic<br />

nanoparticles”<br />

6 th Colloq. of DFG-Priority Program “Colloidal<br />

magnetic fluids”, Benediktbeuern 25.–28.9.<strong>2005</strong><br />

J. Dellith:<br />

„Zur röntgenmikroanalytischen Werkstoffcharakterisierung<br />

mittels niederenergetischer M-Strahlung“<br />

Kolloquium des IKW der TU Freiberg, Oktober<br />

20–21, <strong>2005</strong>


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

J. Bierlich, T. Habisreuther, M. Zeisberger,<br />

D. Litzkendorf, S. Kracunovska, W. Gawalek:<br />

„Multi-Seeding von massiven YBCO Supraleitern“<br />

SDYN-Treffen, 07.–08.07.<strong>2005</strong>, <strong>Jena</strong>, Deutschland<br />

J. Bierlich, T. Habisreuther, S. Kracunovska,<br />

W. Gawalek, E. Müller, F. Schirrmeister:<br />

“Modifizierte Oberflächenbekeimung von schmelztexturierten<br />

YBa 2 Cu 3 O 7-x -Supraleitern”<br />

IKW – Hauskolloquium, 20.–21.10.<strong>2005</strong>, Freiberg,<br />

Deutschland<br />

J. Bierlich, T. Habisreuther, D. Litzkendorf,<br />

M. Zeisberger, S. Kracunovska, W. Gawalek:<br />

“Multi-seeding for single domain melt-textured<br />

YBCO”<br />

ISS <strong>2005</strong>, 18 th International Symposium on<br />

Superconductivity, October 24–26, <strong>2005</strong>, Tsukuba,<br />

Japan<br />

J. Bierlich, T. Habisreuther, D. Litzkendorf,<br />

M. Zeisberger, S. Kracunovska, W. Gawalek:<br />

“Multi-seeding for single domain melt-textured<br />

YBCO”<br />

PASREG <strong>2005</strong>, 5 th International Workshop on<br />

Processing and Applications of Superconducting<br />

(RE)BCO Large Grain Materials, October 21–23,<br />

<strong>2005</strong>, Tokyo, Japan<br />

Invited talks<br />

A. Izmalkov, M. Grajcar, E. Il’ichev,<br />

S. H. W. van der Ploeg, S. Linzen, Th. Wagner,<br />

U. Hübner, H.-G. Meyer, A. Yu. Smirnov,<br />

S. Uchaikin, M. H. S. Amin,<br />

Alec Maassen van den Brink,<br />

A. M. Zagoskin:<br />

“Experimental and theoretical investigation of<br />

multiqubit systems”<br />

International Workshop on Physics of Superconducting<br />

Phase Shift Devices, 2–5 April <strong>2005</strong>,<br />

Ischia, Italy<br />

A. Izmalkov, M. Grajcar, E. Il’ichev, Th. Wagner,<br />

U. Hübner, N. Oukhanski, T. May, H.-G. Meyer,<br />

A. Yu. Smirnov, A. Maassen van den Brink,<br />

M. H. S. Amin, A. M. Zagoskin, Ya. S. Greenberg:<br />

“Macroscopic quantum effects in a flux qubit”<br />

Seminar at Institute of Solid State Physics, 11<br />

May <strong>2005</strong>, Chernogolovka, Russia<br />

E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner,<br />

S. Linzen, T. May, H. E. Hoenig, H.-G. Meyer,<br />

D. Born, W. Krech, A. Smirnov, S. Uchaikin,<br />

A. Zagoskin:<br />

„Supraleitende Qubits auf dem Weg zum Quantenrechner“<br />

Deutschen Physikalischen Gesellschaft (German<br />

Physical Society), Berlin, Germany, March 4–9,<br />

<strong>2005</strong><br />

E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner,<br />

S. Linzen, T. May, U. Hübner, H. E. Hoenig,<br />

H.-G. Meyer, M. H. S. Amin, A. Maasen van den<br />

Brink, A. Smirnov, S. Uchaikin, A. Zagoskin:<br />

“Continuous Impedance Measurements of a<br />

Superconducting Flux Qubit”<br />

American Physical Society, Los Angeles, USA,<br />

March 21–25, <strong>2005</strong><br />

E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner,<br />

S. Linzen, T. May, U. Hübner, H. E. Hoenig,<br />

H.-G. Meyer, A. Maasen van den Brink,<br />

A. Smirnov, S. Uchaikin, A. Zagoskin:<br />

“Impedance Measurement Technique for Investigation<br />

of Superconducting Qubits”<br />

Pishift conference, Ischia (Naples), Italy, 2–5 April<br />

<strong>2005</strong><br />

E. Il’ichev:<br />

“Radio-Frequency Method for Investigation of<br />

Quantum Properties of Superconducting Structures”<br />

International Summer School and Conference on<br />

Arrays of Quantum Dots and Josephson Junctions<br />

Kiten, Bulgaria, 9 th –24 th June, <strong>2005</strong><br />

E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner,<br />

S. Linzen, T. May, U. Hübner, H. E. Hoenig,<br />

H.-G. Meyer, A. Maasen van den Brink,<br />

A. Smirnov, S. Uchaikin, A. Zagoskin:<br />

“Radio-Frequency Method for Investigation of<br />

Quantum Properties of Superconducting Structures”<br />

International ULTRA-1D STREP Workshop<br />

Quantum Coherence and Decoherence at the<br />

Nanoscale (Corfu, Greece) 28 August–2 September<br />

<strong>2005</strong><br />

E. Il’ichev:<br />

“Radio-Frequency Technique for Investigation of<br />

Quantum Properties of Superconducting Structures”<br />

The Mesoscopic Quantum Physics Conference<br />

(Aussois, France) 05–09 October <strong>2005</strong><br />

E. Il’ichev:<br />

“Radio-Frequency Technique for Investigation of<br />

Quantum Properties of Superconducting Structures”<br />

The 5 th International Argonne Fall Workshop on<br />

the Nanohysics Argonne, USA, 13–18 November<br />

R. Mattheis:<br />

„Grundprinzipien von Sensoren auf der Basis<br />

des Magnetowiderstandseffektes und deren<br />

Anwendungsfelder in der Automobil- und Automatisierungstechnik<br />

sowie in der hochempfindlichen<br />

Magnetfeldsensorik“,<br />

Vortrag HdT Essen, Magnetische Erkennung<br />

von Position und Bewegung, Essen, 8. und 9.06.<br />

<strong>2005</strong><br />

33


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

34<br />

R. Mattheis:<br />

„Multiturnsensor mit GMR“<br />

Vortrag 8. Sympsoium „Magnetoresistive Sensoren<br />

Grundlagen-Herstellung-Anwendungen“,<br />

Wetzlar, 8. und 9.03.<strong>2005</strong><br />

M. Wendt:<br />

„Mikrostrukturcharakterisierung mittels Rasterelektronen-<br />

und Rasterkraft-Mikroskopie“<br />

Kolloquium aus Anlass des 60. Geburtstages von<br />

Prof. Dr. Ludwig Josef Balk, Wuppertal, May 30,<br />

<strong>2005</strong><br />

M. Wendt:<br />

„Qualitative Röntgenmikroanalyse mit Si(Li)-<br />

Detektoren“<br />

RÖNTEC – Kundenschulung, Bad Saarow, June<br />

14–16, <strong>2005</strong><br />

M. Wendt:<br />

„Zur Systematik der weichen Röntgenemissionsspektren“<br />

PTB-Kolloquium, Berlin, September 22, <strong>2005</strong><br />

W. Gawalek T. Habisreuther, M. Zeisberger,<br />

D. Litzkendorf:<br />

„Magnetic levitation with Bulk YBCO and MgB 2<br />

Superconductors”<br />

„8 th International Symposium on Magnetic Suspension<br />

Technology“, Dresden, Germany, September<br />

26–28, (<strong>2005</strong>), p.114<br />

K. L. Kovalev, S. M.-A. Koneev, V. N. Poltavets,<br />

W. Gawalek:<br />

“Magnetically Levitated High-Speed Carriages on<br />

the Basis of Bulk Elements”<br />

“8 th International Symposium on Magnetic Suspension<br />

Technology”, Dresden, Germany, September<br />

26–28, (<strong>2005</strong>), p.51<br />

T. Habisreuther:<br />

„VSM – Vibrating Sample Magnetometry – Einsatz<br />

im <strong>IPHT</strong> <strong>Jena</strong>“<br />

Uni Potsdam, Germany, June 1, <strong>2005</strong><br />

T. Habisreuther:<br />

“Processing, Characterisation and Application of<br />

Batch Processed and Multi-Seeded Single<br />

Domain Melt-Textured YBCO”<br />

PASREG <strong>2005</strong>, 5 th International Workshop on<br />

Processing and Applications of Superconducting<br />

(RE)BCO Large Grain Materials, October 21–23,<br />

<strong>2005</strong>, Tokyo, Japan<br />

R. Müller:<br />

„Magnetit – Renaissance eines alten Magnetwerkstoffs“<br />

6 th Colloq. of DFG-Priority Program „Colloidal<br />

magnetic fluids“, Benediktbeuern 25.–28.9.05<br />

R. Müller:<br />

„Eigenschaften magnetischer Eisenoxidpartikel“<br />

Arbeitsgruppenseminar „Grundlagen“, Klinik für<br />

Innere Medizin II, FSU <strong>Jena</strong>, 12.10.05<br />

Th. Klupsch:<br />

“Prediction of macromolecular units and optimum<br />

crystallization conditions by static and dynamic<br />

light scattering”<br />

Crystallization Course CC <strong>2005</strong>, October 10–12,<br />

<strong>2005</strong>, Nove Hrady, Czech Republik<br />

Th. Klupsch:<br />

“Understanding the protein solubility: classical<br />

concepts and novel ideas”<br />

Crystallization Course CC <strong>2005</strong>, October 10–12,<br />

<strong>2005</strong>, Nove Hrady, Czech Republik<br />

Patents<br />

V. Schultze, W. Andrä, K. Peiselt:<br />

„Vorrichtung und Verfahren zur Lokalisierung<br />

eines Gerätes“<br />

DE 10 <strong>2005</strong> 051 357.3 (25.10.<strong>2005</strong>)<br />

R. Müller, H. Steinmetz, W. Gawalek:<br />

„Verfahren zur Herstellung von nanokristallinen<br />

magnetischen Eisenoxidpulvern“<br />

DE 10 <strong>2005</strong> 030 301.3 (05.07.<strong>2005</strong>)<br />

W. Andrä, M. E. Bellemann, H. Danan, S. Dutz,<br />

S. Liebisch, R. Schmieg:<br />

„Kapsel zum Freisetzen von in ihr befindlichen<br />

Wirkstoffen an definierten Orten in einem Körper“<br />

PCT/DE <strong>2005</strong>–001086 (15.6.<strong>2005</strong>)<br />

W. Andrä, R. Hergt, I. Hilger, W. A. Kaiser,<br />

D. Spitzer:<br />

„Vorrichtung zur zielgerichteten Erwärmung“<br />

DE 10 <strong>2005</strong> 062 746.3 (23.12.<strong>2005</strong>)<br />

K.-U. Barholz, M. Diegel, R. Mattheis, G. Rieger,<br />

J. Hauch:<br />

„Stromsensor zur galvanisch getrennten Gleichstrommessung“<br />

DE 10 <strong>2005</strong> 029 269.0 (23.06.<strong>2005</strong>)<br />

Membership<br />

Prof. Dr. H. E. Hoenig<br />

Beirat Institut für Mikroelektronik<br />

und Mechatronik Ilmenau<br />

Beirat Forschungszentrum für Medizintechnik<br />

und Biotechnologie e. V.<br />

Bad Langensalza<br />

Scientific advisor of the Materials Science<br />

Institutes CSIC (Spain)<br />

Auswahlgremium Forschungspreis<br />

des Thüringer Kultusministeriums<br />

Vorstandsvorsitzender im Verein Beutenberg<br />

Campus e. V.<br />

Vorstandsvorsitzender der SUPRACON AG<br />

Scientific board of WOLTE and CRYO


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

Dr. R. Mattheis<br />

Editorial Board IEEE Transactions on Magnetics<br />

Mitglied des FA 9.4 der ITG<br />

Mitglied des Wissenschaftlichen Beirats der<br />

Tagung: „Sensoren und Sensorsysteme 2006“<br />

Freiburg/Breisgau<br />

Prof. Dr. M. Wendt<br />

Mitwirkung im Organisationskomitee der EDO-<br />

Tagung<br />

Prof. W. Gawalek<br />

Head of SCENET-2 Working Group “Rotating<br />

HTS Machines”<br />

International Steering Committee JAPMED´4: 4 th<br />

Japanese-Mediterranean Workshop on Applied<br />

Electromagnetic Engineering for Magnetic,<br />

Superconducting and Nano Materials, Cairo,<br />

Egypt, September 17–20, (<strong>2005</strong>)<br />

Dr. T. Habisreuther<br />

Arbeitsgruppe K184 Supraleiter der DKE und<br />

TC90 WG10<br />

Lectures<br />

Prof. H. E. Hoenig<br />

Vorlesung WS 04/05, Quantencomputing<br />

Vorlesung SS <strong>2005</strong>, Quantencomputing<br />

Prof. M. Wendt<br />

Vorlesung “Einführung in die Analytische Elektronenmikroskopie”<br />

WS 2004/<strong>2005</strong> sowie <strong>2005</strong>/2006 an der FH <strong>Jena</strong><br />

Dr. H.-G. Meyer<br />

Vorlesung SS <strong>2005</strong>, Supraleiterelektronik<br />

Vorlesung WS <strong>2005</strong>/2006, Supraleitende Quanteninterferometer<br />

(SQUID) und ihre Anwendungen<br />

Dr. H. Schneidewind<br />

5 Vorlesungen in „Festkörperphysik für Werkstofftechniker“<br />

von Prof. F. Schirrmeister<br />

Vorlesung an der FH <strong>Jena</strong>, WS <strong>2005</strong>/2006<br />

Dr. H. Schneidewind<br />

“Metallphysik”<br />

Vorlesung an der FH <strong>Jena</strong> im SS <strong>2005</strong><br />

Dr. T. Habisreuther<br />

„Sonder- und Verbundwerkstoffe“<br />

Vorlesung an der FH <strong>Jena</strong>, WS2004/<strong>2005</strong><br />

Vorlesung an der FH <strong>Jena</strong>, WS<strong>2005</strong>/2006<br />

Dr. T. Habisreuther<br />

„Festkörperphysik für Werkstofftechniker“<br />

von Prof. F. Schirrmeister<br />

Vorlesung an der FH <strong>Jena</strong>, WS2004/<strong>2005</strong><br />

Vorlesung an der FH <strong>Jena</strong>, WS<strong>2005</strong>/2006<br />

PhD Thesis<br />

Andrei Izmalkov:<br />

“Macroscopic quantum effects in a flux qubit”<br />

18.05.<strong>2005</strong>, Moscow Engineering Physics Institute<br />

Silvia Kracunovska:<br />

“The influence of preparation parameters on<br />

microstructure and properties of YBCO bulk<br />

superconductors”<br />

Technische Universität Kosice, Slowakische<br />

Republik, 20.09.<strong>2005</strong><br />

Diploma Thesis<br />

André Krüger:<br />

„Entwurf, Aufbau und Inbetriebnahme einer<br />

mehrkanaligen, hochauflösenden 24-Bit Analog-<br />

Digital-Wandlerkarte für ein modulares Datenerfassungssystem“,<br />

22.03.<strong>2005</strong>, Fachhochschule<br />

<strong>Jena</strong>.<br />

Michael Starkloff:<br />

„Entwicklung und Aufbau eines mikroprozessorgesteuerten<br />

Messsystems zur Gleichspannungskalibrierung<br />

von Fluke-Normalen mit dem Josephson-Primärnormal“,<br />

22.03.<strong>2005</strong>, Fachhochschule<br />

<strong>Jena</strong>.<br />

Laboratory Exercises<br />

H. Köbe 18 Wochen, Praktikumssemester FH<br />

<strong>Jena</strong><br />

Praktikums-<br />

Dominique Schmidt 18 Wochen,<br />

semester FH <strong>Jena</strong><br />

Herr Oliver und Joachim Müller, Herr Jens Bartelt<br />

und Felix Oertel, zweiwöchentliches Seminarfach<br />

der Spezialschule Carl Zeiss, <strong>Jena</strong><br />

Christopher Schmidt<br />

“Herstellung und magnetische Eigenschaften von<br />

Eisenoxidpartikeln durch Fällung<br />

FH <strong>Jena</strong><br />

Events/Exhibitions<br />

„Eiskalte Energie für Europa – Supraleiter und<br />

der Traum vom Schweben“<br />

„International Superlife Exhibition“<br />

Goethe-Galerie <strong>Jena</strong>, <strong>Jena</strong>, Germany, June 29–<br />

July 2, (<strong>2005</strong>)<br />

SCENET-2 Workshop “Superconducting Electric<br />

motors with HTS”, <strong>Jena</strong>, Germany, April 11–13,<br />

(<strong>2005</strong>)<br />

35


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

Physik-Ausstellung „Zeit, Licht, Zufall – Physik<br />

seit Einstein“<br />

Highlights der Physik <strong>2005</strong>, 13.–18.06.<strong>2005</strong>,<br />

Berlin, Deutschland<br />

Präsentation „Magnetschweben-Levitator“<br />

Siemens Familien-Tag <strong>2005</strong>, 02.07.<strong>2005</strong>, Nürnberg,<br />

Deutschland<br />

Präsentation „Supraleitung-Schwebendes Logo“<br />

SOLVAY Familientag, 02.09.<strong>2005</strong>, Hannover,<br />

Deutschland<br />

Präsentation „Supraleitung-Levitation“<br />

Sternstunden. Lange Nacht der Wissenschaften<br />

<strong>Jena</strong>, 18.11.<strong>2005</strong>, <strong>Jena</strong>, Deutschland<br />

Studioexperiment „Supraleitung-Levitation“ in der<br />

TV-Sendung Galileo<br />

Gesendet am 14.10.<strong>2005</strong> bei ProSieben<br />

Awards<br />

EMAS young scientists award an Dipl.-Ing. (FH)<br />

Andy Scheffel<br />

New Equipment<br />

Ion-beam-etching-equipment for structuring of<br />

high T c -superconductors at low temperatures<br />

36


OPTIK / OPTICS<br />

2. Optik / Optics<br />

Leitung/Head: Prof. Dr. H. Bartelt<br />

hartmut.bartelt@ipht-jena.de<br />

Optische Fasern Mikrooptik Optische Mikrosysteme<br />

Optical Fibers Microoptics Optical Microsystems<br />

Leitung/Head: Leitung/Head: Leitung/Head:<br />

Dr. J. Kirchhof Dr. H.-R. Müller Prof. Dr. R. Willsch<br />

johannes.kirchhof@ipht-jena.de hans.rainer.mueller@ipht-jena.de reinhardt.willsch@ipht-jena.de<br />

Mikrostrukturtechnik<br />

Micro Structuring Technology<br />

Dr. S. Schröter<br />

siegmund.schroeter@ipht-jena.de<br />

Mitarbeiter des Bereiches Optik <strong>2005</strong> / Staff of the Optics Division in <strong>2005</strong>.<br />

2.1 Übersicht<br />

Das zentrale Arbeitsgebiet des Forschungsbereichs<br />

betrifft „Optische Fasern und Faseranwendungen“.<br />

Die vom Kuratorium des <strong>IPHT</strong> im<br />

Jahr <strong>2005</strong> eingesetzte Strukturkommission hat<br />

die besondere wissenschaftliche und technologische<br />

Position des <strong>IPHT</strong> auf diesem Gebiet hervorgehoben<br />

und eine weitere Stärkung dieser<br />

Arbeitsfelder empfohlen.<br />

2.1 Overview<br />

The main focus of the activities within the Optics<br />

division is on optical fibres and fibre applications.<br />

The structure commission, which was established<br />

for advising future focusing of activities<br />

within the <strong>IPHT</strong>, has emphasized the special scientific<br />

and technological competence of the <strong>IPHT</strong><br />

in this field and has recommended a further<br />

strengthening of this research direction.<br />

37


OPTIK / OPTICS<br />

Characterisation of high<br />

precision multicore fibre<br />

optic waveguide arrays:<br />

cross section of an array<br />

of 61 waveguides and light<br />

propagation patterns.<br />

Demonstrator of an optical<br />

add-drop-multiplexer<br />

(OADM) based on a photosensitive<br />

planar technology<br />

38<br />

Thermal elongation measurement of<br />

melt-textured YBCO in cryogenic temperature<br />

range down to 10 K using a<br />

fibre Bragg grating strain sensor array<br />

(sensors attached in the three principal<br />

axes of the anisotropic sample).


OPTIK / OPTICS<br />

Ein wichtiges internationales Forum zur Diskussion<br />

von modernen Sensoranwendungen optischer<br />

Fasern war die 17. Optical Fibre Sensors<br />

Konferenz (OFS) in Brügge/Belgien im Mai <strong>2005</strong>,<br />

an der das <strong>IPHT</strong> sowohl organisatorisch als auch<br />

inhaltlich maßgeblich mitwirkte (Prof. Reinhardt<br />

Willsch und Dr. Wolfgang Ecke als Conference<br />

Chairs). Das <strong>IPHT</strong> war mit fünf wissenschaftlichen<br />

Beiträgen einschließlich einem eingeladenen<br />

Vortrag (Prof. Hartmut Bartelt) und einem<br />

viel beachteten Ausstellungsstand vertreten, der<br />

unsere starke Stellung auf diesem Forschungsgebiet<br />

deutlich machte. Die internationale<br />

Rekordbeteiligung von ca. 500 Teilnehmern aus<br />

mehr als 40 Ländern an dieser seit 1983 stattfindenden<br />

Konferenz zeigte generell das wachsende<br />

Interesse an Anwendungen optischer Fasern<br />

in der Sensor- und Messtechnik. Dieser internationalen<br />

Entwicklung folgte auch die Ausgründung<br />

zu Fasergitter-Sensorkomponenten unter<br />

dem Namen FBGS Technologies GmbH aus dem<br />

<strong>IPHT</strong> gemeinsam mit einer belgischen Partnerfirma<br />

im Oktober <strong>2005</strong>. Die technischen Grundlagen<br />

zu diesem Arbeitsfeld, nämlich die Möglichkeit<br />

der Erzeugung von Faser-Bragg-Gittern mit<br />

einem einzelnen Laserpuls während des Faserziehens,<br />

wurde dazu im vergangenen Jahr weiter<br />

ausgebaut. Die Herstellung von solchen Gittern<br />

mit bis zu 50% Reflexion (Typ I) demonstriert die<br />

weltweit führende Rolle des <strong>IPHT</strong> und seiner<br />

Ausgründung in dieser Technologie. Mit dem Firmenstandort<br />

im Technologie- und Innovationspark<br />

am Campus Beutenberg in <strong>Jena</strong> ist auch<br />

zukünftig die Basis für eine enge Zusammenarbeit<br />

mit dem <strong>IPHT</strong> gesichert. Anwendungsfelder<br />

der Arbeiten des <strong>IPHT</strong> betrafen im Sensorbereich<br />

im vergangenen Jahr vor allem temperaturbeständige<br />

faseroptische Bragg-Gitter-Sensoren<br />

für das Turbinen- und Triebwerksmonitoring,<br />

Fasergitter-Sensornetzwerke für die strukturintegrierte<br />

Zustandsüberwachung in der Bahntechnik<br />

und in Windenergieanlagen sowie opto-chemische<br />

Fasersensorsysteme für die in-situ-<br />

Gewässeranalytik. Die Entwicklung neuartiger<br />

Fasern etwa unter Nutzung von Mikro- und Nanostrukturen,<br />

die Weiterentwicklung photonischer<br />

Kristallfasern und Arbeiten zu temperaturbeständigen<br />

Coatings bildeten dazu einen wichtigen<br />

technologischen Hintergrund.<br />

Die Arbeiten zu optischen Faserlasern finden<br />

zunehmendes Anwendungsinteresse und wurden<br />

insbesondere unter Aspekten speziell strukturierter<br />

und dotierter Faserkerne zur Optimierung<br />

der Stabilität und der Pumpeffizienz weitergeführt.<br />

Die Aktualität dieses Forschungsgebietes<br />

zeigte sich auch auf einem Workshop des<br />

OptoNet Clusters, „Neue Laserstrahlquellen“, der<br />

im Mai <strong>2005</strong> mit ca. 100 Teilnehmern am <strong>IPHT</strong><br />

organisiert und veranstaltet wurde. Kompetenz<br />

zu strukturierten Wellenleitern konnte erfolgreich<br />

auch für Sensoranwendungen in speziellen planaren<br />

Strukturen genutzt werden.<br />

A major international forum in <strong>2005</strong> for the discussion<br />

of modern sensor applications of optical<br />

fibres was the 17 th Optical Fibre Sensors Conference<br />

(OFS) in May <strong>2005</strong> in Bruges (Belgium) with<br />

major organizational and scientific involvement of<br />

the <strong>IPHT</strong> (Prof. Willsch as technical chair and Dr.<br />

Ecke as program chair). The <strong>IPHT</strong> took part in<br />

this conference with 5 presentations including an<br />

invited talk (Prof. Hartmut Bartelt) and a well-recognized<br />

exhibition booth indicating its strong<br />

position in this research field. The record international<br />

participation (approx. 500 participants from<br />

40 countries) in this conference of a series started<br />

in 1983 underlines the growing interest in<br />

such modern applications of optical fibres. Following<br />

such demands for applications, the <strong>IPHT</strong><br />

became involved (together with a Belgian partner)<br />

in the founding of a new company for the<br />

development and application of draw tower fibre<br />

gratings in October <strong>2005</strong> (FBGS Technologies).<br />

The technological basis of inscribing fibre Bragg<br />

gratings during the fibre drawing process with a<br />

single laser pulse has been further developed in<br />

<strong>2005</strong>. The making of such gratings (type I) with a<br />

reflection efficiency of up to 50% has demonstrated<br />

the international leading competence in<br />

this technology of the <strong>IPHT</strong> and of the newly<br />

founded company. The headquarters of the<br />

FBGS company being placed at the Beutenberg<br />

campus in <strong>Jena</strong> ensures future close cooperation.<br />

Investigations into sensor applications of optical<br />

fibres covered especially temperature-stable fibre<br />

Bragg grating sensor systems for turbine and<br />

engine monitoring, fibre grating sensor networks<br />

for integrated diagnosis in train systems and in<br />

wind energy converters, and opto-chemical sensors<br />

for in-situ water analysis.<br />

The development of new types of fibres with<br />

micro- and nanostructures, developments for<br />

photonic crystal fibres and activities for coatings<br />

with high temperature stability were important<br />

cornerstones for these activities.<br />

The applications of fibre lasers are gaining growing<br />

interest and have been pursued with regard to<br />

specially structured and doped fibre cores, e.g.<br />

for optimization of pumping efficiency and stability.<br />

The general interest in this research field<br />

became obvious also by strong participation (15<br />

scientific presentations, 100 participants) in a<br />

workshop on new laser sources held at the <strong>IPHT</strong><br />

in cooperation with the OptoNet cluster. The competence<br />

in structured waveguides was additionally<br />

exploited for sensor applications in specific planar<br />

waveguides.<br />

The results presented in this report indicate that<br />

optical fibres indeed offer attractive research subjects<br />

for the future and also promise fruitful applications<br />

jointly with the complementary research<br />

field of photonic instrumentation within the <strong>IPHT</strong>.<br />

39


Die nachfolgend präsentierten Ergebnisse in diesem<br />

Jahresbericht machen die hohe Attraktivität<br />

der Forschung zu optischen Fasern und Faseranwendungen<br />

deutlich und bieten in Kombination<br />

mit dem komplementären Arbeitsgebiet zur<br />

photonischen Instrumentierung im <strong>IPHT</strong> breite<br />

zukünftige Anwendungsmöglichkeiten.<br />

OPTIK / OPTICS<br />

40<br />

2.2. Scientific Results<br />

2.2.1 Flame hydrolysis technique (FHD)<br />

for the preparation of advanced<br />

optical materials<br />

(C. Aichele, St. Grimm, M. Köhler,<br />

K. Schuster)<br />

The flame hydrolysis technique allows the production<br />

of highest quality silica. This material is<br />

primarily used for planar optical waveguide<br />

devices and components or for the deposition of<br />

substrate tubes by OVD (Outside Vapor Deposition).<br />

To utilize the potential of this technology we<br />

are engaged in new applications.<br />

The recent concentration of microlithography on<br />

an excitation wavelength of 193 nm requires an<br />

improvement of the optical materials and devices<br />

used.<br />

For high power density and excellent replication<br />

quality, materials are necessary which provide<br />

special, very well-defined properties in terms of<br />

optical quality as well as type and distribution of<br />

the dopant hydrogen. The flame hydrolysis technique<br />

enables the preparation of a high-quality<br />

quartz glass material combined with the implementation<br />

of different dopant distributions in a<br />

wide range.<br />

Fig. 2.1: FHD-configuration.<br />

A further miniaturization of the structure at the<br />

same excitation wavelength can be achieved by<br />

what is known as immersion lithography. Aqueous<br />

fluids (immersions) with a still higher refractive<br />

index than standard materials and good optical<br />

transparency are particularly suitable for<br />

these processes.<br />

By flame hydrolysis it is possible to prepare highly<br />

pure, oxidic particles with a main size of about<br />

5–10 nm and a narrow particle size distribution.<br />

These oxidic materials can be used as additives<br />

to water to increase its refractive index for application<br />

as an immersion medium.<br />

Figure 2.1 shows the burner configuration used<br />

for the FHD technique.<br />

2.2.2 Materials for fibre lasers: Preparation<br />

and properties<br />

(S. Unger, A. Schwuchow, S. Grimm,<br />

V. Reichel, J. Kirchhof)<br />

Recently, the performance of rare earth doped<br />

high-power silica fibre lasers has been dramatically<br />

increased with output powers beyond 1 kW,<br />

high efficiency and excellent beam quality.<br />

This progress is due to new design concepts<br />

such as non-symmetrical double clads and large<br />

mode area core structures, but also by careful tailoring<br />

of the material properties. Extreme power<br />

load and complicated fibre structures make high<br />

demands on preparation technology and materials.<br />

However, up to now still little is known about<br />

the influence of the material and the preparation<br />

technology on the laser efficiency.<br />

Here, the absorption and emission properties of<br />

silica based ytterbium doped preforms, made by<br />

Modified Chemical Vapor Deposition (MCVD)<br />

and solution doping, and of the drawn fibres were<br />

investigated in dependence on the atmosphere<br />

during the preform collapsing.<br />

The preparation was carried out under oxidizing<br />

and reducing conditions (helium/carbon monoxide/hydrogen).<br />

The absorption measurements on<br />

preforms and fibres with nominally identical compositions<br />

have shown the following results:<br />

– All Yb doped preform samples show the typical<br />

Yb 3+ absorption in the wavelength region<br />

between 800 and 1100 nm, and the absorption<br />

coefficient is not remarkably changed by modifications<br />

during the preparation process.


OPTIK / OPTICS<br />

Fig. 2.2: Preform absorption spectra in the UV/VIS<br />

region.<br />

– However, changes are observed in the UV/VIS<br />

region. With an increasingly reducing effect of<br />

the collapsing atmosphere (He


2.2.4 Photonic crystal fibres for innovative<br />

applications and devices<br />

(J. Kobelke, K. Schuster, J. Kirchhof,<br />

A. Schwuchow, K. Mörl, K. Oh)<br />

OPTIK / OPTICS<br />

42<br />

Photonic crystal fibres (PCFs) are commonly<br />

interesting as transmission media over long distances<br />

for their specific light propagation behaviour.<br />

However, the promising application potential<br />

of photonic crystal fibres also takes effect in various<br />

novel devices, e.g. PCFs with defect super<br />

lattice structure and PCF-based NxN fibre couplers.<br />

Such PCF couplers have a power stability<br />

advantage, because they can be manufactured<br />

without any dopants in the basic silica. Moreover,<br />

the transmission behaviour is mostly effected by<br />

air hole confinement light propagation, so a high<br />

numerical aperture is possible. Typical power limitations<br />

of polymer-clad fibre can be avoided by<br />

the air-clad design.<br />

We prepared special large mode area PCFs by<br />

variation of the geometric cross section design<br />

parameters. They were changed by introduction<br />

of a flexible defect in the lattice structure. The<br />

new defect design consists of the central air hole,<br />

surrounded by a holey germanium-doped silica<br />

ring. It provides a large-area annulus-mode light<br />

propagation and a chromatic dispersion with low<br />

slope ~0.05 ps/km nm 2 at 1550 nm.<br />

Fig. 2.4: Calculated dispersion curves of fundamental<br />

modes of different d core /Λ core of the super<br />

lattice PCF. Inset: fibre micrograph.<br />

PCFs with air-clad design are interesting components<br />

for optical devices. 2×2 and 4×4 multimode<br />

air-clad holey fibre couplers were prepared<br />

at the Gwangju Institute of Science and Technology<br />

(GIST), South Korea, based on <strong>IPHT</strong>-manufactured<br />

PCFs. The couplers were fabricated by<br />

a novel fusion tapering technology, starting from<br />

an air-clad fibre with a core diameter of about<br />

130 µm and a very high air fraction of the holey<br />

clad ring. The couplers thus fabricated show a<br />

high port-to-port coupling uniformity over a wide<br />

spectral range from 800 nm to 1650 nm. Due to<br />

the absence of power-limiting low refractive index<br />

polymer materials to achieve the high numerical<br />

aperture, the device shows a strong potential for<br />

future high-power applications.<br />

Fig. 2.5: Scheme of the 4×4 coupler, micrograph<br />

of the used air-clad index-guided PCF and lateral<br />

segments of the 2×2 coupler.<br />

2.2.5 Loss measurements at silica fibres<br />

for cladding pumped applications<br />

(S. Jetschke, A. Schwuchow)<br />

Silica fibres with rare-earth-doped cores for laser<br />

or amplifier applications are often claddingpumped<br />

to benefit from commercial high-power<br />

pump diodes. Thereby, losses of pump power<br />

may occur in the cladding material itself or in the<br />

adjacent coating having a refractive index lower<br />

than silica. We investigated this attenuation in silica<br />

fibres of diameter 125 µm (without core),<br />

drawn from F300 rods and coated with different<br />

materials (see Tab. 2.1).<br />

The loss measurements were done by two different,<br />

but well-known methods:<br />

1. With the cut-back method, the loss spectra<br />

are calculated from transmission measurements<br />

in the 300–1700 nm wavelength range<br />

(Halogen lamp, NA 0.25) in a long (>60 m)<br />

and a shortened fibre (10 m). Although the<br />

fibre NA is not fully illuminated, the characteristic<br />

absorption bands of the coating materials<br />

are clearly seen (Fig. 2.6).<br />

Fig. 2.6: Loss spectra of coated silica fibres,<br />

measured by the cut-back method.


OPTIK / OPTICS<br />

Coating material NA Layer Cut-back method: OTDR:<br />

(coated thickness Loss [dB/km] Loss [dB/km]<br />

silica fibre) [µm]<br />

800nm 1310nm 1550nm 850nm 1310nm 1550nm<br />

Silicone RT601 0.358 50 20 25 250 13 29 n.m.<br />

Ormogel HG-Li-V-T 0.410 5 25 51 150 23 37 (70)<br />

1D3-63 (Acrylate) 0.404 50 34 59 180 (50) 75 n.m.<br />

Luv PC 373 (Acrylate) 0.447–0.127 50 9 17 60 5 16 45<br />

Teflon AF 0.606 5–10 9 7 8 4 5 6<br />

Tab. 2.1: Loss in silica fibres with different coating materials, measured by the cut-back method and by<br />

OTDR (n.m. = not measurable, because of limited dynamic range of OTDR; cut-back method works without<br />

limitation of measurable loss).<br />

2 With the Optical Time Domain Analysis<br />

(OTDR), the loss can be evaluated with a spatial<br />

resolution of some meters, but only at<br />

selected wavelengths. Fibre lengths >60 m<br />

can be analysed; the measurements should be<br />

executed from both fibre ends. One of the<br />

available devices applies a wavelength of<br />

850nm and illuminates the fibre under test with<br />

NA 0.20 (spot size 50 µm); another device for<br />

1310 nm and 1550 nm implements NA 0.10<br />

(spot size 10 µm).<br />

Both methods supplement each other and are<br />

suitable especially for the comparison of losses<br />

in fibres with different coatings, but equal fibre<br />

diameters.<br />

The results obtained with both methods are compared<br />

in Tab. 2.1 (the wavelengths are determined<br />

by the OTDR devices) and indicate a sufficient<br />

consistency.<br />

The low loss and the high NA achieved with the<br />

Teflon AF coating, as well as the absence of<br />

additional absorption bands (apart from OH<br />

absorption) are particularly advantageous for<br />

cladding pumping. But the Teflon layer that can<br />

be implemented is too thin for many applications.<br />

The low-index Acrylate Luv 370–444, but also Silicone<br />

RT601 provide a moderate pump loss and<br />

an adequate layer thickness. However, characteristic<br />

absorption bands may be detrimental, e.g.<br />

the Silicone absorption around the common<br />

pump wavelength of 915 nm.<br />

Besides the effects on fibre loss, the coating<br />

materials differ in their mechanical and thermal<br />

properties, which should also be taken into<br />

account in high pump power applications.<br />

out usually by repeated packaging and stretching<br />

of rare-earth-doped elements made by the well<br />

established MCVD technique, soaking in rareearth<br />

solutions and subsequent drawing of the<br />

microstructured fibre by means of the “stack and<br />

draw“ technique. Fig. 2.7 shows the central part<br />

of a PCF with 7 × 7 active Yb-doped filaments.<br />

Fig. 2.7: Central part of a PCF with 7 × 7 active<br />

doped filaments .<br />

A matter of particular interest is the mode behaviour<br />

of such structures, especially the optical coupling<br />

of the single elements (formation of a<br />

“super-mode”). Fig. 2.8 shows the changing<br />

mode picture at the end of a short piece of the<br />

fibre shown in Fig. 2.7, achieved by launching<br />

2.2.6 Studies of the mode behaviour<br />

of multi-core fibre structures<br />

(K. Mörl, J. Kobelke, K. Schuster)<br />

There are various reasons to build-up the active<br />

cores of microstructured fibres from single doped<br />

filaments. One of them is to achieve a mode field<br />

as large as possible. The preparation is carried<br />

Fig. 2.8: Mode structure at the end of a short<br />

piece of fibre shown in Fig. 2.7, obtained by<br />

launching different wavelengths in the central part.<br />

43


OPTIK / OPTICS<br />

light in the central part of fibre core by means of<br />

a fibre with 7 µm mode field diameter, and scanning<br />

the wavelength. We can see the beating of<br />

modes with a period of about 7 µm. From this and<br />

from the fibre length it is possible to compute the<br />

mode coupling length.<br />

Much more interesting it is to study the mode<br />

behaviour of such multi-filament cores in the<br />

active laser regime. Fig. 2.9 shows the large<br />

mode field of the fundamental laser mode (supermode),<br />

and Fig. 2.10 shows the mode profile of<br />

this mode at the same scale.<br />

Fig. 2.9: Fundamental laser mode (super –mode)<br />

of the fibre shown in Fig. 2.7.<br />

However, because of the necessary weak coupling<br />

between the waveguides, the tolerances of<br />

the optical properties and the relative positions of<br />

the waveguides are quite challenging. With<br />

respect to the state of the art, the precision of the<br />

geometrical and material parameters should be<br />

improved by a factor of 10.<br />

To achieve this requirement we developed a special<br />

technology on the basis of high-quality optical<br />

materials, precision machining and a careful<br />

control of all preparation steps. A first sample<br />

prepared in this way is shown in Fig. 2.11. The<br />

array consists of 61 weakly coupled single-mode<br />

waveguides with a hexagonal symmetry. The<br />

array is surrounded by a microstructured buffer<br />

zone and a jacketing tube. The precision of the<br />

array geometry fulfils the requirements.<br />

Fig. 2.11: Precision fibre<br />

array (designed for λ =<br />

1.5 µm; outer diameter<br />

585 µm); photo-micrograph<br />

with transmitted<br />

light (a) and reflected<br />

light DIC (b) of a cleaved<br />

HF-etched fibre end.<br />

Fig. 2.10: Profile of the mode field of Fig. 2.9 in<br />

comparison to the fibre geometry.<br />

The distribution of light launched into a single<br />

waveguide follows the propagation characteristic<br />

in a regular array. A thorough analysis of this<br />

array sample shows that almost all (but not really<br />

all) waveguides fulfil the requirements.<br />

44<br />

2.2.7 Fibre-optic waveguide arrays<br />

as model systems of discrete optics<br />

(U. Röpke, S. Unger, K. Schuster,<br />

J. Kobelke, H. Bartelt)<br />

The field of optics in discrete systems is evolving<br />

from theoretical concepts into experimental verification<br />

and discussion of its application potential.<br />

In the framework of a DFG research group working<br />

at this topic, we developed fibre-optic waveguide<br />

arrays suitable for optical experiments on<br />

nonlinear dynamics in two-dimensional discrete<br />

systems.<br />

The technology of microstructured fibres, which<br />

succeeds in the preparation of photonic crystal<br />

fibres, also provides a basis for waveguide arrays.<br />

Fig. 2.12: Propagation of light (λ = 1550 nm) in<br />

the array launched into a waveguide at a boundary<br />

corner (L: propagation length).<br />

In conclusion we have shown that fibre-optic<br />

waveguide arrays can be prepared that are suited<br />

as model systems in experiments of nonlinear<br />

discrete optics.


OPTIK / OPTICS<br />

2.2.8 High-reflectivity draw-tower fibre<br />

Bragg gratings (FBG) at 1550 nm<br />

wavelength<br />

(M. Rothhardt, Ch. Chojetzki)<br />

For making Bragg gratings with excellent<br />

mechanical strength during the drawing tower<br />

process of the fibre, there is a limitation in using<br />

single pulses for the inscription of each grating.<br />

To achieve high reflectivity Bragg gratings during<br />

the dynamic inscription of FBG within the fibre<br />

drawing process (draw tower gratings), three<br />

important components are under consideration:<br />

first of all, the laser pulse properties; second, the<br />

UV photosensitivity of the fibre core, and third,<br />

the optical configuration and its alignment. These<br />

three factors have been developed and optimized<br />

during the last years; the result is the achievement<br />

of single pulse gratings with a reflectivity<br />

maximum of R = 51% at 1550 nm.<br />

Useful values for fibre transmission losses of<br />


OPTIK / OPTICS<br />

comprising a semiconductor laser and an extended<br />

external cavity. On the one hand, the FGL concept<br />

for Non-Return-to-Zero (NRZ) data transmission<br />

is considered as a potential low-cost data<br />

transmitter device; on the other hand, the laser<br />

output power and emission wavelength is shown<br />

to be sensitive to packaging, laser temperature<br />

and device current (see <strong>IPHT</strong> annual report<br />

2001).<br />

FGL understanding and optimization require simulation<br />

tools, which have been developed at the<br />

<strong>IPHT</strong>. The numerical method bases on the travelling<br />

wave model for DFB (distributed feedback)<br />

semiconductor lasers. As the lasing condition of<br />

the external cavity laser depends on its own history,<br />

the applied model splits the laser into individual<br />

sections, each with its own treatment of<br />

rate equations, (Bragg) reflections and losses.<br />

The simulation tools give access to the complex<br />

output power behaviour, mode jumps and eye.<br />

Additionally it is now possible to design special<br />

laser architectures like mode-hop-free FGLs with<br />

active wavelength stabilization and wavelengthswitchable<br />

FGLs, which are based on the interaction<br />

between the external cavity with superimposed<br />

Bragg gratings and the internal cavity,<br />

which comprises the semiconductor optical<br />

amplifier section.<br />

2.2.10 Implementation of an OADM with a<br />

data rate of 10 Gbit/s as technology<br />

demonstrator in the PLATON project<br />

(Planar Technology for Optical Networks)<br />

(M. Rothhardt, C. Aichele, M. Becker,<br />

U. Hübner)<br />

The EU-funded PLATON Project involves collaboration<br />

and permanent feedback with a variety of<br />

European research partners: Université des Sciences<br />

et Technologies de Lille (France), Université<br />

Paris Sud (France), Ecole Polytechnique Fédérale<br />

de Lausanne (Switzerland), Technische Universität<br />

Hamburg Harburg (Germany), Instituto de<br />

Engenharia de Sistemas e Computadores do<br />

Porto (Portugal), and two industrial partners,<br />

Lucent Technologies GmbH (Nürnberg, Germany)<br />

and Highwave Optical Technologies (France).<br />

The objective of the PLATON project was to<br />

study, develop and assess photosensitive planar<br />

technology through key pilot devices. The main<br />

subject of interest is demonstrating the feasibility<br />

of the technology for making components like<br />

channel waveguides, multimode interferometers,<br />

Mach-Zehnder structures and Bragg gratings.<br />

The work aims at a reconfigurable optical adddrop<br />

multiplexer (OADM) which will be the final<br />

demonstrator.<br />

Objectives of the <strong>IPHT</strong> were particularly:<br />

(i) Accomplishing an optimized process for optical<br />

layer deposition<br />

(ii) Structuring the optical waveguides of the key<br />

pilot components (OADM)<br />

(iii) Realizing the Bragg gratings inside the optical<br />

waveguides<br />

(iv) UV trimming of the MZI structures (Mach<br />

Zehnder Interferometer) of the OADM’s<br />

(v) Packaging and fibre coupling of the optical<br />

chips.<br />

Fig. 2.16: OADM scheme with MZI structure, sections<br />

for UV trimming, input and output ports and<br />

Bragg grating regions.<br />

46<br />

Fig. 2.15: Simulated eye diagrams of the virtual<br />

fibre-grating-laser at 2.5 Gbit/s. Shown are the<br />

eye diagrams with the emission wavelength at the<br />

Bragg wavelength (top) and at the long-wavelength<br />

slope close to a mode-hop (bottom).<br />

The main results are:<br />

(i) Optical layer deposition<br />

The well-mastered technology at the <strong>IPHT</strong> for<br />

optical silica layer deposition, FHD (Flame Hydrolysis<br />

Deposition) is applied for this project. The<br />

core layer is germanium-doped. Our parameters<br />

achieved are:<br />

Core layer thickness of 4.5 µm/5.2 µm and a<br />

refractive index of n[core] = 1.469. The refractive<br />

index tolerance is δn


OPTIK / OPTICS<br />

a<br />

b<br />

Fig. 2.17:<br />

a. Scheme of cross<br />

sections of etched<br />

waveguides<br />

b. Deposition and<br />

sintering of a<br />

cladding layer.<br />

(iv) UV trimming<br />

The actual trimming process applies a tuneable<br />

laser source, an EDFA and an optical power-versus-time<br />

recorder. The number of trimming sections<br />

is four for symmetry reasons.<br />

The cladding layer is boron co-doped, resulting in<br />

a refractive index of n[clad] = 1,454. A level of<br />

nearly no stress-induced birefringence was<br />

achieved. The resulting core-cladding refractive<br />

index difference is as specified, with ∆n~1.5 * 10 –2 .<br />

(ii) Structuring of the optical waveguides<br />

The techniques used are photolithography and<br />

reactive ion etching (RIE), which allow exact definition<br />

of planar waveguide structures. A square<br />

cross section of the waveguides was achieved.<br />

Fig. 2.20: Set-up scheme for UV trimming of the<br />

MMI structure of the OADM.<br />

The UV trimming procedure was performed two<br />

times: first time with hydrogen- loaded sample<br />

and second with presensitized trimming sections.<br />

The resulting OADM was tested at LUCENT<br />

Technologies in Nuremberg with a bit stream of<br />

10 Gbit/s. The functionality of the OADM was<br />

shown.<br />

Fig. 2.18: Photomicrograph of the optical near<br />

field of the waveguide samples obtained.<br />

(iii) Bragg grating inscription process<br />

For Bragg grating inscription, a two step UVprocess<br />

was applied. It starts with imprinting the<br />

grating’s index modulation and continues with the<br />

correction of the average index modulation envelope.<br />

This final apodisation correction is done by<br />

exposing the grating to the inverse grating envelope<br />

intensity profile. The grating inscription setup<br />

at the <strong>IPHT</strong> uses the holographic Talbot interferometer<br />

inscription technique with a frequency-doubled<br />

argon-ion laser operating cw at 244 nm. The<br />

laser power at the output was 244 mW at 244 nm.<br />

2.2.11 Material processing with DUV/VUV<br />

laser radiation<br />

(S. Brückner)<br />

Because of their short wavelengths and their<br />

high quantum energies, the ArF laser (193 nm)<br />

and the F 2 laser (157 nm) are excellent laser tools<br />

for the precise and efficient micro structuring of<br />

high band gap materials, like fused silica or PTFE<br />

(Teflon). The measurement setups for material<br />

processing in the DUV/VUV spectral range have<br />

been continually improved in recent years. With<br />

both laser systems it is possible now, by the use<br />

of high-resolution mechanical components, to<br />

produce complex microstructures with lateral and<br />

depth resolutions in the sub-µm range.<br />

Different special tasks were successfully processed<br />

with both measurement setups by maskbased<br />

structuring.<br />

By means of the ArF laser, an array of 12 microholes<br />

with diameters smaller than 50 µm was<br />

drilled in a silica-based Photonic Crystal Fibre<br />

(PCF). For the implementation of a chemical sensor<br />

system it was necessary to drill holes through<br />

the fibre cladding exactly up to the fibre core. The<br />

drilling depth is determined by the number of<br />

laser pulses and the fluence. With an energy<br />

dose of 750 J/cm 2 it was possible to drill the hole<br />

just up to the fibre core, as shown in figure 2.21.<br />

Fig. 2.19: Grating transmission spectra after index<br />

modulation inscription before (α) and after (β)<br />

adaptation of the average refractive index profile.<br />

47


OPTIK / OPTICS<br />

Fig. 2.21: Micrographs of the side view (left) and<br />

the fractured surface (right) of a Photonic Crystal<br />

Fibre (PCF) with a drilled hole (produced with<br />

193 nm).<br />

Additionally to a variety of experiments to F 2 laser<br />

material processing of glass, fused silica and<br />

metallic layers, the micro structuring of PTFE<br />

should be mentioned. By the use of specially<br />

designed CaF 2 lenses and an improved experimental<br />

setup, new results at sub-µm structuring<br />

were achieved. Different gratings with sizes of<br />

1mm 2 , line widths up to 1 µm and a depth of<br />

500 nm were produced with fluences from 0.3 to<br />

1.5 mJ/cm 2 . Investigations of the ablation behaviour<br />

of PTFE in a nitrogen atmosphere show an<br />

efficient ablation process with ablation rates of 40<br />

nm/pulse at a fluence of 300 mJ/cm 2 . The assembling<br />

of a new vacuum chamber system permits<br />

material processing with 157 nm in the high-vacuum<br />

range. In further experiments, a comparison<br />

of material processing in vacuum and in a dry<br />

nitrogen atmosphere will be carried out to determine<br />

the ablation behaviour and the deposition of<br />

debris particles on the grating surface.<br />

Although operating at a data rate 500 times higher<br />

than our previous standard design, the sensor<br />

system is very compact (220 × 140 × 60 mm 3 ,<br />

Fig. 2.23) and robust, operates at temperatures<br />

between –40 and +60 °C, and is fully suitable for<br />

use in industrial applications in adverse environments.<br />

Our industrial partner for sensor technologies,<br />

Jenoptik LOS GmbH, is now commercializing<br />

this new high-speed sensor system in addition<br />

to the precursor “StrainaTemp”, which is dedicated<br />

to performing slower temperature and<br />

strain measurements.<br />

Highly topical application fields of fast fibre optic<br />

strain measurements are, e.g., the quality monitoring<br />

of spot welding (cooperation with University<br />

of Applied Sciences <strong>Jena</strong>), defect monitoring<br />

of train overhead contact lines (cooperation in<br />

two European R&D projects), and load monitoring<br />

of wind turbine blades (cooperation with<br />

Enercon GmbH and Jenoptik AG).<br />

48<br />

2.2.12 High-speed optical fibre grating<br />

sensor system<br />

(W. Ecke)<br />

Fibre Bragg grating (FBG) sensor systems find<br />

application in a steadily increasing number of<br />

fields, including fast strain vibrations in electrical<br />

machines, drive units or tools, e.g., train current<br />

collectors, large-scale generators, wind turbines<br />

or spot-welding grippers. These applications<br />

require fast measuring and cost-effective signal<br />

processing equipment. For this purpose, our concept<br />

of an FBG sensor system-based on broadband<br />

illumination and a compact spectrometer<br />

operating at 800 nm wavelength (Fig. 2.22) has<br />

been optimized to achieve a digital signal processing<br />

data rate of up to 1800 measurements<br />

per second, with exactly simultaneous processing<br />

for all the 16 sensors in the fibre network. The<br />

development of new optical mode-equalizing<br />

components now decreases the influence of disturbances<br />

on the fibre transmission lines to well<br />

below the detection limits of Bragg wavelength<br />

excursions (standard deviation down to 0.3 pm).<br />

Repeatability and accuracy of the measured<br />

strain signals have been improved to less than<br />

0.5 µε and 5 µε, respectively.<br />

Fig. 2.22: Schematic of the optical fiber grating<br />

sensor system.<br />

Fig. 2.23: View of the high-speed sensor system<br />

(1800 meas./s for 16 strain/vibration sensors;<br />

Ethernet data output at the rear).


2.2.13 Monitoring of inhomogeneous flow<br />

distributions using fibre-optic Bragg<br />

grating temperature sensor arrays<br />

(I. Latka, W. Ecke)<br />

OPTIK / OPTICS<br />

In many industrial facilities like chemical reactors,<br />

thermodynamic engines, pipes and others, complex<br />

flow distributions occur. Knowledge of the<br />

gas flow distributions may help to achieve an efficient<br />

system performance.<br />

In our approach, fibre Bragg grating (FBG) sensors<br />

have been used for measuring the temperature<br />

of a heated element, in our case a steel capillary,<br />

which is cooled according to the surrounding<br />

mass flow. Because of the multiplexing capability<br />

of FBG sensors, one can measure the temperature<br />

distribution, i.e., the spatial distribution<br />

of the gas mass flow along the sensor array. The<br />

length of the heated and sensor-equipped element<br />

can be easily adapted to the cross section<br />

of the gas flow, from


OPTIK / OPTICS<br />

After long-term laboratory tests of the sensor<br />

system with artificial and natural seawater, field<br />

tests of the sensor system were performed by the<br />

GKSS-Research Centre/Institute for Coastal<br />

Research, Geesthacht on board the ferry ship<br />

„Duchess of Scandinavia“ during a trip between<br />

Cuxhaven (D) and Harwich (GB) [Fig. 2.26]. The<br />

measured nitrate profile, shown in Fig. 2.27,<br />

reflects the nitrate load in the seawater caused by<br />

the rivers Elbe, Weser and Schelde as well as the<br />

nitrate pollution from the North Frisian Islands<br />

and the big harbour cities of the Netherlands and<br />

fits well to measurements obtained by sampling<br />

nutrient analysers on the same ferry route.<br />

Fig. 2.28: Comparison between water samples<br />

measured by sensor and by autoanalyzer.<br />

50<br />

Fig. 2.26: Ferry route from Harwich to Cuxhaven.<br />

Fig. 2.27: Nitrate content profile in the North Sea,<br />

measured during the ferry trip in Fig. 2.26.<br />

Further investigations mainly directed to the<br />

improvement of the long-term stability of the sensor<br />

were performed during a 2-week North Sea<br />

round trip of the German research vessel<br />

“Gauss”. On several stations the nitrate concentration<br />

was measured by the sensor and compared<br />

with the results of a commercial nutrient<br />

autoanalyser [Fig. 2.28].<br />

2.2.15 Novel optical dew point sensor<br />

(T. Wieduwilt, G. Schwotzer)<br />

The dew or frost point is a measure of the water<br />

content of any gas. Commercial optical dew point<br />

hygrometers are based on the “chilled mirror”<br />

principle. The devices consist of polished stainless<br />

steel or platinum mirrors attached to thermoelectric<br />

coolers (Peltier devices). The mirrors are<br />

illuminated (e.g. with LED), and the reflected light<br />

is received by photodiodes.<br />

The gas stream whose humidity is to measure is<br />

directed over the mirror surface. When the mirror<br />

temperature falls below the dew or frost point of<br />

the gas sample water condenses or forms ice<br />

crystals onto the mirror surface. The reflected<br />

light received by the photodiode is abruptly<br />

reduced due to scattering.<br />

The photodiode is tied into a servo loop which<br />

controls the current to the Peltier cooler. This<br />

enables the mirror to be maintained at an equilibrium<br />

temperature where the rates of condensation<br />

and evaporation of water molecules are<br />

equal and therefore, a constant mass of water is<br />

maintained on the mirror. The resulting temperature<br />

of the mirror is then fundamentally, by definition,<br />

equal the dew point temperature. A platinum<br />

resistance thermometer (PRT) embedded<br />

beneath the mirror surface measures this temperature.<br />

An inconvenience of chilled mirror hygrometers<br />

is the falsification of the measuring by contaminations<br />

on the mirror surface. Contaminations<br />

(e.g. organic particle) affect the light reflection<br />

characteristics and cleaning procedures or compensation<br />

methods are necessary. The electronic<br />

schemes used for contamination compensation<br />

are often sophisticated and expensive. Other<br />

problems are the limited miniaturization and the<br />

unsuitable manufacturing technology for mass<br />

production.<br />

In cooperation with BARTEC GmbH a novel optical<br />

dew point sensor has been developed to overcome<br />

these disadvantages.


OPTIK / OPTICS<br />

The operation principle is based on frustrated<br />

total internal light reflection on the glass-air interface<br />

in the presence of dew drops or ice crystals<br />

(patented by Bartec).<br />

The optical principle is shown in Fig. 2.29. Essential<br />

features of the new dew point hygrometer are<br />

the application of a transparent light guiding<br />

glass slide and the reverse illumination of the<br />

glass-gas interface through glass.<br />

To precise measure the dew point temperature, a<br />

platinum resistance thermometer with contact<br />

structures has been deposited on the glass surface<br />

(see Fig. 2.30). The platinum structure is<br />

arranged in the thermoelectric cooled condensation<br />

area. For passivation, the measuring structure<br />

is coated by a thin silicon carbide overlay to<br />

protect the electrical resistance structure. Fig.<br />

2.31 shows a microscopic photo of condensed<br />

water droplets on the sensor surface.<br />

With the presented sensor, an accuracy of ±0.5 K<br />

for the dew point temperature in the range of –15<br />

to +20 °C DP has been measured.<br />

Fig. 2.29: Scheme of the sensor principle.<br />

Without condensed water on the glass surface,<br />

the light from a LED propagates without losses<br />

through the light guide to the photodetector. If<br />

condensed dew droplets are on the glass surface<br />

the light penetrates the glass-droplet interfaces<br />

and is scattered at the droplet-air interface. This<br />

results in a decrease of the intensity at the detector.<br />

The advantage of this principle is the ruggedness<br />

in relation to contamination.<br />

Fig. 2.30: Optical waveguide with platinum resistance<br />

thermometer.<br />

Fig. 2.31: Condensation on the glass surface.<br />

2.3 Appendix<br />

Partners<br />

1. Industrial partners<br />

• Advanced Optic Solutions GmbH, Dresden<br />

• Analytik <strong>Jena</strong> AG<br />

• AIFOTEC Fiber Optics GmbH, Meiningen<br />

• BARTEC Messtechnik & Sensorik GmbH<br />

• Carl Zeiss <strong>Jena</strong>, Oberkochen<br />

• CeramOptec GmbH, Bonn<br />

• Crystal Fibre A/S Lyngby, Dänemark<br />

• DaimlerChrysler AG, Forschungszentrum Ulm<br />

• DSM Research, Geleen, Niederlande<br />

• EADS München-Ottobrunn<br />

• Electro-optics Industries Ltd., Israel<br />

• EPSA GmbH Saalfeld/<strong>Jena</strong><br />

• j-Fiber GmbH,<strong>Jena</strong><br />

• FiberTech GmbH, Berlin<br />

• fiberware GmbH, Mittweida<br />

• FISBA Optik, St. Gallen/Schweiz<br />

• GESO GmbH, <strong>Jena</strong><br />

• GRINTECH GmbH <strong>Jena</strong><br />

• Heraeus Quarzglas GmbH & Co. KG<br />

• Heraeus Tenevo AG<br />

• Hottinger Baldwin Messtechnik GmbH, Darmstadt<br />

• Hybrid Glass Technologies, Princeton, USA<br />

• I.D. FOS Research, Geel, Belgien<br />

• Jenoptik Laserdiode GmbH<br />

• Jenoptik L.O.S. GmbH<br />

• Jenoptik LDT GmbH, Gera<br />

• Jenoptik Mikrotechnik GmbH<br />

• Jenoptik Laser Solution GmbH<br />

• <strong>Jena</strong>-Optronik GmbH<br />

• JETI GmbH <strong>Jena</strong><br />

• Kayser & Threde GmbH München<br />

• Laserline GmbH Mühlheim-Kärlich<br />

• Layertec GmbH Mellingen<br />

• Leica Microsystems Wetzlar<br />

• Mikrotechnik & Sensorik GmbH <strong>Jena</strong><br />

• NTECH Technology, Novara, Italy<br />

• ONERA Paris Palaiseau /Frankreich<br />

• OVD Kinegram Corp., Zug, Schweiz<br />

• piezosystem jena GmbH<br />

• ROFIN SINAR Laser GmbH Hamburg<br />

• Schott Glas, Mainz<br />

• Schott Lithotec AG, <strong>Jena</strong><br />

51


OPTIK / OPTICS<br />

52<br />

• Siemens AG, CT Erlangen und München<br />

• SUPERLUM Ltd. Moskau<br />

• SurA Chemicals GmbH <strong>Jena</strong><br />

• Thales Avionics Massy/Frankreich<br />

• Thales Research and Technology<br />

• Orsay/Frankreich<br />

• TETRA GmbH Ilmenau<br />

• Lucent Technologies Nürnberg<br />

• unique mode AG <strong>Jena</strong><br />

• VITRON Spezialwerkstoffe GmbH <strong>Jena</strong><br />

• Wahl optoparts GmbH, Neustadt<br />

• 4H <strong>Jena</strong> Engineering GmbH<br />

2. Scientific partners<br />

• Bundesanstalt für Materialprüfung und<br />

-forschung (BAM), Berlin<br />

• DBI Gas- und Umwelttechnologie GmbH,<br />

Leipzig<br />

• EMPA Dübendorf/Schweiz<br />

• ESO European Southern Observatory,<br />

Garching<br />

• Fachhochschule Giessen-Friedberg<br />

• Fachhochschule <strong>Jena</strong><br />

• Ferdinand-Braun-Institut für Höchstfrequenztechnik<br />

Berlin<br />

• Fiber Optics Research Center, Moskau<br />

• Fraunhofer Heinrich-Hertz-Institut für<br />

Nachrichtentechnik Berlin<br />

• Fraunhofer Institut Angewandte Optik und<br />

Feinmechanik <strong>Jena</strong><br />

• Fraunhofer Institut für Silicatforschung<br />

Würzburg<br />

• Fraunhofer Institut für Lasertechnik Aachen<br />

• Fraunhofer INT, Euskirchen<br />

• GKSS Forschungszentrum Geesthacht<br />

• Image Processing Systems Institute, Samara,<br />

Russia<br />

• INNOVENT e.V. <strong>Jena</strong><br />

• INESC Porto/Portugal<br />

• Institut für Angewandte Photonik, Berlin<br />

• S.I. Vavilov State Optical Institute,<br />

St. Petersburg, Russia<br />

• Institut für Bioprozess- und Analysenmesstechnik<br />

(IBA) Heiligenstadt<br />

• Institut für Fügetechnik und Werkstoffprüfung<br />

GmbH <strong>Jena</strong><br />

• Institute für Radiotechnik und Elektronik in<br />

Moskau/Uljanovsk und Prag<br />

• Laser Zentrum Hannover<br />

• Max-Planck-Institut für Plasmaphysik, Greifswald<br />

• Max-Born-Institut für Nichtlineare Optik und<br />

Kurzzeitspektroskopie, Berlin<br />

• Physikalisch-Technische Bundesanstalt Braunschweig<br />

• Technische Universität Berlin<br />

• Universität Braunschweig<br />

• Technische Universität Chemnitz<br />

• Technische Universität Darmstadt<br />

• Technische Universität Dresden<br />

• Universität Erlangen<br />

• Technische Universität Hamburg-Harburg<br />

• Technische Universität Ilmenau<br />

• Universität <strong>Jena</strong><br />

• Universität Kaiserslautern<br />

• Technische Universität München<br />

• University of Leeds, U.K.<br />

• University of Pardubice, Tschech. Republik<br />

• University of Rio de Janeiro (PUC), Brasilien<br />

• University of Southampton, U.K.<br />

• Verfahrenstechnisches Institut Saalfeld<br />

• Universite Catholique de Louvain/Belgien<br />

• Universite Paris-Süd/Frankreich<br />

• Universite de Lille/Frankreich<br />

• Gwangju Institute of Science and Technology,<br />

South Korea<br />

Publications<br />

H. Bartelt:<br />

Properties of microstructured and photonic<br />

crystal fibers suitable for sensing application<br />

Proceedings SPIE Vol. 5950, 236–242 (<strong>2005</strong>)<br />

H. Bartelt:<br />

Influences of micro- and nanostructuring on light<br />

guiding<br />

Proceedings SPIE Vol. 5855, 114–117 (<strong>2005</strong>)<br />

Y. Kim, Y. Jeong, K. Oh, J. Kobelke,<br />

K. Schuster, J. Kirchhof:<br />

“Multi-port N × N multimode air-clad holey fiber<br />

coupler for high-power combiner and splitter”<br />

Optics Letters 30, 2697–2699 (<strong>2005</strong>)<br />

Y. Kim, Y. Jung, U. Paek, K. Oh,<br />

U. Röpke, J. Kirchhof, H. Bartelt:<br />

„A new type of index guiding holey fiber with flexible<br />

modal birefringence control“<br />

Proc. SPIE Vol 5855, 306–309 (<strong>2005</strong>)<br />

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster,<br />

K. Mörl, S. Jetschke, A. Schwuchow:<br />

“Materials and technologies for microstructured<br />

high power fiber lasers”<br />

Proc. SPIE 5951, 107/1–12 (<strong>2005</strong>)<br />

C. Chojetzki, M. Rothhardt, J. Ommer,<br />

S. Unger, K. Schuster, H.-R. Müller:<br />

“High-reflectivity draw-tower fiber Bragg gratings<br />

– arrays and single gratings of type II”<br />

Optical Engineering 44, 60503/1–2 (<strong>2005</strong>)<br />

M. Wegmann,J. Heiber, F. Clemens, T. Graule,<br />

D. Hülsenberg, K. Schuster:<br />

“Forming of noncircular cross-section SiO 2 glass<br />

fibers”<br />

Glass Sci. Technol. 78, 69–75 (<strong>2005</strong>)<br />

H. Lehmann, S. Brückner, J. Kobelke,<br />

G. Schwotzer, K. Schuster, R. Willsch:<br />

“Toward photonic crystal fiber based distributed<br />

chemosensors”<br />

Proc. SPIE Vol. 5855, 419–422 (<strong>2005</strong>)


OPTIK / OPTICS<br />

K.-F. Klein, H. S. Eckhardt, C. Vincze,<br />

S. Grimm, J. Kirchhof, J. Kobelke, J. Clarkin,<br />

G. Nelson:<br />

“High NA-fibers: silica-based fibers for new applications”<br />

Proc. SPIE Vol. 5691, 30–41 (<strong>2005</strong>)<br />

J. Kirchhof, S. Unger, A. Schwuchow,<br />

S. Jetschke, B. Knappe:<br />

“Dopant interactions in high power laser fibers”<br />

Proc. SPIE Vol. 5723, 261–272 (<strong>2005</strong>)<br />

J. Kobelke, H. Bartelt, J. Kirchhof, S. Unger,<br />

K. Schuster, K. Mörl, C. Aichele, K. Oh:<br />

„„Dotierte Photonische Kristallfaser – erweiterte<br />

Möglichkeiten zur Modifizierung der Propagationseigenschaften<br />

und zur Verbesserung der Anwendungsmöglichkeiten<br />

mikrostrukturierter Fasern“<br />

DGaO – Proceedings <strong>2005</strong>, ISSN 1614 8436.<br />

W. Ecke, K. Schröder, S. Bierschenk,<br />

R. Willsch:<br />

“Opto-chemical fibre Bragg grating sensors<br />

based on evanescent field interaction with specific<br />

transducer layers”<br />

Proceedings SPIE Vol. 5952, 118–125 (<strong>2005</strong>)<br />

R. Willsch, W. Ecke, G. Schwotzer:<br />

“Spectrally Encoded Optical Fibre Sensor Systems<br />

and their Application in Process Control,<br />

Environmental and Structural Monitoring” (invited<br />

paper)<br />

Proceedings of SPIE, Vol.5952,133–146 (<strong>2005</strong>)<br />

T. Glaser, A. Ihring, W. Morgenroth, N. Seifert,<br />

S. Schröter, V. Baier:<br />

“High temperature resistant antireflective motheye<br />

structures for infrared radiation sensors”<br />

Microsystem Technologies 11, 86–90 (<strong>2005</strong>)<br />

M. Duparré, B. Lüdge, S. Schröter:<br />

“On-line characterization of Nd:YAG laser beams<br />

by means of modal decomposition using diffractive<br />

optical correlation filters”<br />

Proc. SPIE Vol. 5962, 59622G (<strong>2005</strong>)<br />

M. Zeisberger, I. Latka, W. Ecke,<br />

T. Habisreuther, D. Litzkendorf, W. Gawalek:<br />

“Measurement of the thermal expansion of melttextured<br />

YBCO using optical fibre grating sensors”<br />

Supercond. Sci. Technol. Vol. 18, 202–205 (<strong>2005</strong>)<br />

W. Ecke, K. Schröder, M. Kautz, P. Joseph,<br />

S. Willet, T. Bosselmann, M. Jenzer:<br />

“On-line characterization of impacts on electrical<br />

train current collectors using integrated optical<br />

fiber grating sensor network”<br />

Proceedings SPIE, Vol. 5758, 114–123 (<strong>2005</strong>)<br />

I. Latka, W. Ecke, B. Höfer, T. Frangen,<br />

R. Willsch, A. Reutlinger:<br />

“Micro bending beam based optical fiber grating<br />

sensors for physical and chemical measurands”<br />

Proceedings SPIE Vol. 5855, 94–97 (<strong>2005</strong>)<br />

K. Schröder, J. Apitz, W. Ecke, E. Lembke,<br />

G. Lenschow:<br />

“Fibre Bragg grating sensor system monitors<br />

operational load in a wind turbine rotor blade”<br />

Proceedings SPIE Vol. 5855, 270–273 (<strong>2005</strong>)<br />

J. P. Dakin, W. Ecke, M. Reuter:<br />

“Comparison of vibration measurements of elastic<br />

and mechanically lossy (visco-elastic) materials<br />

using fibre grating sensors”<br />

Proceedings SPIE Vol. 5855, 5–8 (<strong>2005</strong>)<br />

C. Chojetzki, M. Rothhardt, J. Ommer,<br />

S. Unger, K. Schuster, H.-R. Müller:<br />

“High reflectivity draw tower fiber Bragg gratings<br />

array and single gratings of type II”<br />

Optical Engineering Jan. (<strong>2005</strong>)<br />

M. Becker, M. Rothhardt und H.-L. Althaus:<br />

„Wavelength-Switchable Fiber Grating Laser with<br />

Active Wavelength Stabilization“, Optical Engineering<br />

Dec. (<strong>2005</strong>)<br />

S. Jetschke, V. Reichel, K. Mörl, S. Unger,<br />

U. Röpke, H.-R. Müller:<br />

“Nd:Yb-codoped Silica Fibers for High Power<br />

Fiber Lasers: Fluorescence and Laser Properties”<br />

Proc. SPIE Vol. 5709, 59–68 (<strong>2005</strong>)<br />

A. Strauss, S. Brueckner, U. Roepke,<br />

H. Bartelt:<br />

“Thermal Poling of Silica”<br />

DGAO-Proceedings, ISSN 1614–8436 (<strong>2005</strong>)<br />

H. Bartelt, S. Schröter, J. Kobelke, K. Schuster<br />

“Photonische Kristalle: neue Funktionalität für<br />

integrierte Optik und optischen Fasern”<br />

Proceedings Symposium “Optik in der Rechentechnik”,<br />

TU Ilmenau Sept. (<strong>2005</strong>)<br />

C. Chojetzki, K. Schröder, M. Rothhardt,<br />

W. Ecke:<br />

“Strukturüberwachung mit Faser-Bragg-Gitter-<br />

Sensoren am Beispiel des Rotorblattes einer<br />

Windkraftanlage”<br />

VDI-Berichte Nr. 1899, 209–217, (<strong>2005</strong>)<br />

M. Rothhardt, C. Chojetzki, H.-R. Müller:<br />

“High mechanical strength single-puls draw<br />

tower gratings”<br />

Proc. SPIE Vol. 5579, 127–135, (<strong>2005</strong>)<br />

Y. Joeng, Y. Kim, K. Mörl, S. Höfer,<br />

A. Tünnermann, K. Oh:<br />

“Q-switching of Yb 3+ -doped fiber laser using a<br />

novel micro-actuating platform light modulator”<br />

Optics Express 13, 10302, (<strong>2005</strong>)<br />

53


OPTIK / OPTICS<br />

54<br />

Presentations/Posters<br />

S. Unger, J. Kirchhof, A. Schwuchow,<br />

S. Jetschke, B. Knappe:<br />

“Dopant interactions in high power laser fibers”<br />

Photonics West/Optoelectronics,<br />

22.01.–27.01.<strong>2005</strong>, San Jose, California/USA<br />

(Poster)<br />

S. Jetschke, V. Reichel, K. Mörl, S. Unger,<br />

U. Röpke, H.-R. Müller:<br />

“Nd:Yb-codoped slica fiber lasers: fluorescence<br />

and laser properties”:<br />

Photonics West <strong>2005</strong>, San Jose USA<br />

24.01.–28.01.<strong>2005</strong><br />

(Paper)<br />

R. Willsch, W. Ecke, G. Schwotzer:<br />

„Faseroptische Sensorsysteme mit Mikro- und<br />

Nanostrukturkomponenten“<br />

VDE /GMM Workshop „Mikrooptik im Fokus der<br />

Photonik“, Karlsruhe 03.02.–04.02.<strong>2005</strong><br />

(Paper)<br />

S. Schröter, U. Hübner, R. Boucher, H. Bartelt:<br />

“Mikrooptische Komponenten auf der Basis von<br />

PC-Strukturen in Ta 2 O 5 -Wechselschichtsystemen”<br />

GMM-Workshop “Mikrooptik im Fokus der Photonik”,<br />

FZ Karlsruhe,03.02.–04.02. <strong>2005</strong><br />

(Paper)<br />

J. Kobelke, J. Kirchhof, K. Schuster, K. Gerth,<br />

S. Unger, C. Aichele, K. Mörl:<br />

“Photonische Kristallfasern – Möglichkeiten zur<br />

Herstellung und Anwendung einer neuen Klasse<br />

optischer Fasern”<br />

Innovationsforum Strukturierung von Gläsern,<br />

14.02.–15.02. <strong>2005</strong>, Barleben.<br />

(Paper)<br />

W. Ecke, K. Schröder, M. Kautz, P. Joseph,<br />

S. Willet, T. Bosselmann, M. Jenzer:<br />

“On-line characterization of impacts on electrical<br />

train current collectors using integrated optical<br />

fiber grating sensor network”<br />

SPIE’s 12 th International Symposium on Smart<br />

Structures and Materials, Conference “Smart<br />

Sensor Technology and Measurement Systems”,<br />

07.03.–09.03 <strong>2005</strong>, San Diego/USA, (Paper)<br />

J. Kobelke, J. Kirchhof, S. Unger, K. Schuster,<br />

K. Mörl, C. Aichele, H. Bartelt:<br />

“Active and passive doped microstructured and<br />

photonic crystal fibres”<br />

Hauptjahrestagung der DPG, 04.–09.03. <strong>2005</strong>,<br />

Berlin.<br />

(Poster)<br />

J. Kirchhof, S. Unger, J. Kobelke, H. Bartelt:<br />

„Hochleistungs-Laserfasern und Photonische<br />

Mikrostrukturen“<br />

DGG Glasforum, 10. 03.<strong>2005</strong>, Würzburg.<br />

(Invited paper)<br />

Y. Kim, W. Shin, S. C. Bae, K. Oh, J. Kobelke,<br />

K. Schuster, J. Kirchhof:<br />

“Air-clad multimode holey fiber coupler for high<br />

power transmission”<br />

CLEO <strong>2005</strong>, section 09, paper CWN1.<br />

(Paper)<br />

W. Ecke, K. Schröder:<br />

“Fiber Optic Health Monitoring Sensor System for<br />

Wind Energy Turbine”<br />

Colloquium at National Wind Technology Center<br />

of US Department of Energy, Boulder, Colorado,<br />

16.03.<strong>2005</strong><br />

(Invited paper)<br />

K. Mörl:<br />

„Arbeiten zu mikrostrukturierten und Hochleistungs-Laserfasern<br />

am <strong>IPHT</strong> <strong>Jena</strong>“<br />

Universität Hamburg, 25.04.<strong>2005</strong><br />

(Invited paper)<br />

V. Reichel:<br />

„Höchstleistungsfaserlaser für cw-Betrieb“<br />

OptoNet Workshop „Neue Laserstrahlquellen“<br />

11.05.<strong>2005</strong>, <strong>IPHT</strong> <strong>Jena</strong><br />

(Invited paper)<br />

J. Kobelke, H. Bartelt, J. Kirchhof, S. Unger,<br />

K. Schuster, K. Mörl, C. Aichele, K. Oh:<br />

“Doped photonic crystal fibres – Enhanced possibilities<br />

for modification of microstructured fibres”<br />

DGaO-Jahrestagung,<br />

17.05.–20.05.<strong>2005</strong> Wroclaw, Polen.<br />

(Paper)<br />

A. Strauss, S. Brueckner, U. Roepke,<br />

H. Bartelt:<br />

“Thermal Poling of Silica“,<br />

106. Jahrestagung der DGaO,<br />

17.05.–20.05. <strong>2005</strong>, Wroclaw/Polen<br />

(Poster)<br />

A. Csaki, A. Steinbrück, S. Schröter, T. Glaser,<br />

W. Fritzsche:<br />

“Fabrication and characterization of nanophotonic<br />

metal structures”<br />

International Symposium Molecular Plasmonics,<br />

<strong>Jena</strong> 19.05.–21.05. <strong>2005</strong><br />

(Poster)<br />

I. Latka, W. Ecke, B. Höfer, T. Frangen,<br />

R. Willsch, A. Reutlinger:<br />

“Micro bending beam based optical fiber grating<br />

sensors for physical and chemical measurands”<br />

17 th International Conference on Optical Fibre<br />

Sensors, 23.05.–27.05.<strong>2005</strong>, Bruges/Belgium,<br />

(Paper)<br />

K. Schröder, J. Apitz, W. Ecke, E. Lembke,<br />

G. Lenschow:<br />

“Fibre Bragg grating sensor system monitors<br />

operational load in a wind turbine rotor blade”<br />

17 th International Conference on Optical Fibre<br />

Sensors, 23.05.–27.05.<strong>2005</strong>, Bruges/Belgium,<br />

(Paper)


OPTIK / OPTICS<br />

J. P. Dakin, W. Ecke, M. Reuter:<br />

“Comparison of vibration measurements of elastic<br />

and mechanically lossy (visco-elastic) materials,<br />

using fibre grating sensors”<br />

17 th International Conference on Optical Fibre<br />

Sensors, 23.05.–27.05.<strong>2005</strong>, Bruges/Belgium,<br />

(Paper)<br />

H. Bartelt:<br />

“Influences of micro- and nanostructuring on light<br />

guiding”<br />

17 th International Conference on Optical<br />

Fibre Sensors, Bruges/Belgium,<br />

23.05.–27.05.<strong>2005</strong><br />

(Invited paper)<br />

C. Aichele, M. Becker, S. Grimm, B. Knappe<br />

M. Rothhardt:<br />

„Eigenschaften dotierter SiO-Wellenleiterschichten<br />

für UV-Strukturierungs-verfahren zur Realisierung<br />

passiver optischer Wellenleiterkomponenten“,<br />

VDE-ITG-Diskussionssitzung“ „Messung<br />

und Modellierung in der Optischen<br />

Nachrichtentechnik“ (MMONT’05), Hamburg,<br />

01.06.–03.06. <strong>2005</strong> (Paper)<br />

M. Becker, M. Rothhardt:<br />

„Simulation direkt modulierbarer Faser-Gitter-<br />

Laser mit dem Wanderwellenmodell, VDE-ITG<br />

Diskussionssitzung „Messung und Model-lierung<br />

optischer Nachrichtensysteme“ (MMONT’05),<br />

Hamburg, 01.06.–03.06.<strong>2005</strong><br />

(Paper)<br />

C. Chojetzki, M. Rothhardt, H.-R. Müller,<br />

M. Becker:<br />

„Ziehturm Faser-Bragg-Gitter – kostengünstige<br />

Bauelemente für die optische Informationstechnik“,<br />

VDE-ITG-Diskussionssitzung<br />

“Messung und Modellierung in der Optischen<br />

Nachrichtentechnik (MMONT’05), Hamburg,<br />

01.06.–03.06.<strong>2005</strong><br />

(Paper)<br />

K.-F. Klein, H. S. Eckhardt, C. Vincze,<br />

J. Kirchhof, J. Kobelke:<br />

„Numerische Apertur von mikrostrukturierten<br />

Multimode-Fasern“<br />

Messung und Modellierung in der optischen<br />

Nachrichtentechnik,<br />

Hamburg, 01.06.–03.06.<strong>2005</strong><br />

(Paper)<br />

U. Röpke, S. Jetschke, S. Unger:<br />

”Investigation of Nd:Yb-codoped Silica Fibers as<br />

a Laser Material”, CLEO Europe <strong>2005</strong>,<br />

WED CJ-14, München, 12.06.–17.06.<strong>2005</strong><br />

(Poster)<br />

H.-R. Müller, J. Kirchhof, V. Reichel, S. Unger:<br />

“Fibres for High-Power Lasers and Amplifiers”<br />

Journees Scientifique de I’ONERA, Paris<br />

27.06.–29.06.<strong>2005</strong><br />

(Invited paper)<br />

B. Knappe, C. Aichele, St. Grimm, M. Alke,<br />

H. Renner, E. Brinkmeyer:<br />

“Ready-to-use silica slab waveguides for pretreatmentless<br />

UV-fabrication of customized planar<br />

lightwave circuits”<br />

BGPP, Sydney, Australia, 04.07.–07.07.<strong>2005</strong>,<br />

(Paper)<br />

M. Rothhardt, C. Chojetzki, H.-R. Müller,<br />

H. Bartelt:<br />

“Large Fiber Bragg Grating Arrays for Motoring<br />

Applications Made by Drauring Tower Inscription”,<br />

BGPP, Sydney, Australia<br />

04.07.–06.07.<strong>2005</strong><br />

(Poster)<br />

J. Kirchhof, S. Unger, C. Aichele, S. Grimm,<br />

J. Dellith:<br />

“Borosilicate optical fibers and planar waveguides<br />

– Technology and properties”<br />

5 th Int. Conf. on Borate Glasses, Crystals and<br />

Melts, Trento, Italy,10.07.–14.07.<strong>2005</strong>,<br />

(Paper)<br />

W. Ecke, K. Schröder, S. Bierschenk,<br />

R. Willsch:<br />

“Opto-chemical fibre Bragg grating sensors<br />

based on evanescent field interaction with specific<br />

transducer layers”<br />

SPIE OOC <strong>2005</strong>, Warsaw/Poland<br />

28.08.–02.09.<strong>2005</strong><br />

(Paper)<br />

R. Willsch, W. Ecke, G. Schwotzer:<br />

“Spectrally Encoded Optical Fiber Sensor Systems<br />

and their Application in Industrial Process<br />

Control, Environmental and Structural Monitoring”<br />

SPIE Optics and Optoelectronics Congress<br />

Warsaw/Poland, 28.08.–02.09.<strong>2005</strong><br />

(Invited paper)<br />

H. Bartelt:<br />

“Properties of microstructured and photonic crystal<br />

fibers suited for sensing applications”<br />

SPIE OOC <strong>2005</strong>, Warsaw/Poland<br />

28.08.–02.09.<strong>2005</strong><br />

(Invited paper)<br />

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster,<br />

K. Mörl:<br />

“Materials and technologies for microstructured<br />

high power fiber lasers”<br />

Optics and Optoelectronics Conference,<br />

28.08.–02.09. <strong>2005</strong>, Warsaw, Poland.<br />

(Paper)<br />

L. Kröckel, G. Schwotzer, M. Koch, K. Bley,<br />

K. H. Venus:<br />

“Fluorimetric Determination of Phosphate by<br />

Reversed-FIA for In-Situ Water Analysis”<br />

AquaLife, Kiel, 20.09.05–22.09.05<br />

(Poster)<br />

55


OPTIK / OPTICS<br />

56<br />

G. Schwotzer:<br />

“Optical Components and Devices for In-Situ<br />

Water Analysis in Project BIOSENS”<br />

AquaLife <strong>2005</strong>, Kiel, 20.09.–22.09.<strong>2005</strong><br />

(Invited paper)<br />

C. Chojetzki, W. Ecke, M. Rothhardt,<br />

K. Schröder:<br />

“Structural monitoring using fibre Bragg gratings<br />

at the example of a wind energy facility”<br />

GESA – Symposium <strong>2005</strong>, Saarbrücken,<br />

21.09.–22.09.<strong>2005</strong><br />

(Paper)<br />

H. Bartelt:<br />

“Optische Fasern – geführtes Licht für Kommunikationstechnik<br />

und Sensorik”<br />

Lehrerfortbildung, <strong>Jena</strong>, 22.09.<strong>2005</strong><br />

H. Bartelt, S. Schröter, J. Kobelke,<br />

K. Schuster:<br />

“Photonische Kristalle: Neue Funktionalität für<br />

integrierte Optik und optische Fasern”<br />

Vortrag auf dem 8. Workshop „Optik in der<br />

Rechentechnik“, TU Ilmenau, 23.09.<strong>2005</strong><br />

(Paper)<br />

H.-R. Müller:<br />

“Fiber Development for Diode Pumped Fiber<br />

Lasers”<br />

Sino-German Workshop GZ 313<br />

“Advances in Diodes and Diode Pumped Lasers”,<br />

Peking, 25.09.–30.09.<strong>2005</strong><br />

(Invited paper)<br />

J. Kirchhof, S. Unger, A. Schwuchow,<br />

S. Grimm, V. Reichel:<br />

“Materials for high-power fiber lasers”<br />

First Conference on Advances in Optical Materials,<br />

12.10.–16.10.<strong>2005</strong>, Tucson, Arizona/USA.<br />

(Poster)<br />

W. Ecke, K. Schröder:<br />

“Optical fibre grating sensors for structural health<br />

monitoring in adverse environment”<br />

Colloquium at Max-Planck-Institute for Plasma<br />

Physics, Greifswald, 04.11.<strong>2005</strong><br />

(Invited paper)<br />

W. Ecke:<br />

“Fibre Bragg grating sensor systems for structural<br />

health monitoring and optochemical measurements”<br />

Colloquium at Institute of Materials Science and<br />

Applied Mechanics of Wroclaw University of<br />

Technology, Wroclaw/Poland, 16.11.<strong>2005</strong><br />

(Paper)<br />

R. Willsch, W. Ecke, G. Schwotzer:<br />

„Spektraloptische Fasersensorsysteme für Prozess-,<br />

Umwelt- und Strukturmonitoring“<br />

17. Internat. Wiss. Konferenz IWKM, Mittweida,<br />

03.11.–04.11.<strong>2005</strong><br />

(Invited paper)<br />

K. Schuster, J. Kobelke, J. Kirchhof,<br />

C. Aichele, K. Mörl, A. Wojcik,:<br />

“High NA fibers – a comparison of optical, thermal<br />

and mechanical properties of ultra low index<br />

coated fibers and air clad MOF’s”<br />

54 th Int. Cable and Wire Symposium,<br />

Providence, RI/USA, 13.11.–16.11.<strong>2005</strong>,<br />

(Paper)<br />

A. Wojcik, K. Schuster, J. Kobelke,<br />

C. Chojetzki, C. Michels, K. Rose,<br />

M. J. Matthewson:<br />

“Novel Protective coatings for high temperature<br />

applications”<br />

54 th Int. Cable and Wire Symposium,<br />

Providence, RI/USA,13.11–16.11. <strong>2005</strong>,<br />

(Paper)<br />

J. Kobelke, K. Schuster, J. Kirchhof, S. Unger,<br />

A. Schwuchow, K. Mörl, S. Brückner:<br />

“Active and passive microstructured fibers”<br />

Int. Workshop on Emerging Areas of Fibre Optics<br />

and Future Applications,<br />

Kalkutta, India<br />

08.12.–10.12.<strong>2005</strong>,<br />

(Invited paper)<br />

Lectures<br />

Prof. Dr. H. Bartelt:<br />

Wahlvorlesung<br />

Friedrich-Schiller-Universität <strong>Jena</strong><br />

Optische Nachrichtentechnik<br />

Winter-Semester<br />

und 2004/<strong>2005</strong><br />

Wahlvorlesung<br />

Friedrich-Schiller-Universität <strong>Jena</strong><br />

Mikrooptik und integrierte Optik<br />

Sommer-Semester <strong>2005</strong><br />

Prof. Dr. R. Willsch:<br />

Fachhochschule <strong>Jena</strong>,<br />

Fachbereiche/Studienrichtungen<br />

Elektrotechnik/Informationstechnik,<br />

Physikalische Technik, Umwelttechnik und<br />

Biotechnologie, “Sensortechnik”<br />

Wintersemester 2004/<strong>2005</strong> und <strong>2005</strong>/2006<br />

Dr.W.Ecke:<br />

Fachhochschule <strong>Jena</strong>,<br />

Masterstudiengang Laser- und Opto-Technologien<br />

LOT “Faseroptik” Sommersemester <strong>2005</strong><br />

Patents<br />

J. Bolle, J. Bliedtner, K. Zweinert, W. Ecke,<br />

R. Willsch, W. Bürger:<br />

„Schweißanordnung, insbesondere zum Verbinden<br />

von Werkstücken durch Widerstands- und<br />

Pressschweißen“<br />

DE 10 <strong>2005</strong> 017 797.2


OPTIK / OPTICS<br />

W. Ecke, K. Schröder:<br />

„Anordnung zur Erhöhung der Messgenauigkeit<br />

von Fasergitter-Sensorsystemen“<br />

DE 10 <strong>2005</strong> 062 749.8 (25.08.<strong>2005</strong>)<br />

H.-R. Müller, S. Unger, K. Mörl, K. Schuster:<br />

„Optische Fasern für polarisiert emittierende<br />

Faserlaser und -verstärker sowie ein Verfahren<br />

zu deren Herstellung“,<br />

DE 10 <strong>2005</strong> 062 749.8 (23.12.<strong>2005</strong>)<br />

Diploma<br />

Y. Eberhardt<br />

„Konzeption, Aufbau und Erprobung von Küvetten<br />

zur Messung kleiner Flüssigkeits-Volumina“<br />

Fachhochschule <strong>Jena</strong>, 15.06.<strong>2005</strong><br />

R. Roth<br />

„Optische Untersuchungen ausgewählter Laserdioden<br />

und VCSEL hinsichtlich ihrer Eignung für<br />

Sensoranwendungen“<br />

Fachhochschule <strong>Jena</strong>, 16.07.<strong>2005</strong><br />

Th. Frangen.<br />

„Entwicklung, Aufbau und Test eines Fasergitter-<br />

Mikrobiegebalkens zur Messung kleiner Biegekräfte<br />

und Anwendung als Viskosimeter“<br />

Fachhochschule <strong>Jena</strong>, 23.09.<strong>2005</strong><br />

L. Kröckel:<br />

„Untersuchungen zum fluorimetrischen Nachweis<br />

von Phosphat in Wasser mittels Fließ-Injektions-<br />

Analyse“<br />

Fachhochschule <strong>Jena</strong>, 28.09.<strong>2005</strong><br />

D. Reinisch:<br />

„Konstruktion eines Simulators für die optische<br />

Messung von Temperatur und Feuchte in Zahnradgetrieben“<br />

Fachhochschule <strong>Jena</strong> 16.12.<strong>2005</strong><br />

Master Thesis<br />

M. Giebel:<br />

„Entwicklung einer Labormesseinrichtung zur<br />

Messung von Brechzahlen in Wasser“<br />

Fachhochschule <strong>Jena</strong>, 24.03.<strong>2005</strong><br />

S. Bierschenk:<br />

“Application of specifically sensibilised layers in<br />

an optical fibre grating refractometer”<br />

Fachhochschule <strong>Jena</strong>, 11.04.<strong>2005</strong><br />

Mirko Wittrin:<br />

„Untersuchungen zum Potential des RNF-Verfahrens<br />

für Brechzahlprofilmessungen an optischen<br />

,Silica on Silicon‘-Wellenleitern“<br />

Fachhochschule <strong>Jena</strong>, Oktober <strong>2005</strong><br />

Laboratory exercises<br />

Th. Frangen 01.01.05–31.01.05<br />

L. Kröckel 21.02.05–31.12.05<br />

D. Mitrenga 14.02.05–31.07.05<br />

E. Lindner 15.02.05–18.02.06<br />

M. Klube 01.03.05–30.04.06<br />

M. Wittrin 01.03.05–30.09.05<br />

D. Reinisch 01.04.05–30.11.05<br />

M. Leich 04.04.05–12.08.05<br />

R. Roth 26.04.04–16.07.05<br />

N. Westphal 18.07.05–29.07.05<br />

T. Rohrbach 05.10.05–21.02.06<br />

T. Rathje 19.10.05–30.06.06<br />

K. Wolter 21.11.05–31.05.06<br />

F. Just 01.12.05–30.06.06<br />

Guest scientists<br />

Dr. Y. Joeng<br />

Gwangju Institute of Science<br />

and Technology, Korea<br />

März <strong>2005</strong><br />

Dr. Aleksey Tchertoriski, Institute for Radio<br />

Engineering and Electronics, Ulyanovsk, Russia,<br />

01.04.–27.06.<strong>2005</strong><br />

Prof. Kyunghwan Oh<br />

Gwangju Institute of Science<br />

and Technology, Korea<br />

01.12.04–28.02.<strong>2005</strong><br />

Memberships<br />

Prof. Dr. H. Bartelt:<br />

• Mitglied im Arbeitskreis Mikrooptik der<br />

Deutschen Gesellschaft für Angewandte Optik<br />

• Deutscher Vertreter in WG7 der ISO zum<br />

Thema „Diffractive Optics“<br />

• Mitglied des Editorial Board der Fachzeitschrift<br />

„Optik“<br />

• Vorstandsmitglied des Mikrotechnik Thüringen<br />

e.V.<br />

• Mitglied im Kuratorium der Stiftung für<br />

Forschung und Technologie STIFT<br />

• Mitglied im wissenschaftlichen Beirat der<br />

<strong>Jena</strong>er Technologietage 2004 und <strong>2005</strong><br />

• Mitglied im Beirat des BioRegio <strong>Jena</strong> e.V.<br />

• Mitglied im Beirat des Technologie- und Innovationspark<br />

<strong>Jena</strong><br />

• Conference Chair Optical sensing II<br />

Photonics Europe, April 2006,<br />

Strasbourg/France<br />

Prof. Dr. R. Willsch:<br />

• Mitglied des Redaktionsbeirates der<br />

Fachzeitschrift „SENSOR report“<br />

• Member of Optical Fibre Sensors (OFS)<br />

International Steering Committee, Chair of<br />

OFS-17, International Conference May <strong>2005</strong><br />

Bruges/Belgium<br />

57


OPTIK / OPTICS<br />

• Mitglied im Kongressbeirat und Session-Chairman<br />

OPTO-Kongress Nürnberg, Mai 2006<br />

• Stellv. Vorsitzender AMA-Fachausschuss<br />

„Optische Sensorik“<br />

Dr.W.Ecke:<br />

• Program Chair and Member of Technical<br />

Program Committee of International Optical<br />

Fiber Sensors Conference OFS-17,<br />

Bruges/Belgium, May <strong>2005</strong><br />

• Co-Chair of Conference „Smart Sensor<br />

Technology and Measurement Systems“<br />

of SPIE International Symposium on Smart<br />

Structures and Materials, San Diego/CA<br />

USA, March <strong>2005</strong><br />

• Member of Technical Program Committees<br />

of Optical Fibre Technology (OFT) and<br />

Optical Fibre Applications (OFA)<br />

conferences of SPIE Optics and Optoelectronics<br />

Congress,<br />

Warsaw/Poland, August <strong>2005</strong><br />

Participation in fairs/expositions<br />

• Exhibition at OFS-17 Conference<br />

23.05.–27.05.<strong>2005</strong> Bruges, Belgium<br />

• „Lange Nacht der Wissenschaften“<br />

18.11.<strong>2005</strong> <strong>IPHT</strong> <strong>Jena</strong><br />

• Optonet Workshop<br />

„Neue Laserstrahlquellen“<br />

11.05. <strong>2005</strong>, <strong>IPHT</strong>, <strong>Jena</strong><br />

• LASER <strong>2005</strong> – World of Photonics,<br />

Neue Messe München,<br />

3.–16. 06.<strong>2005</strong>,<br />

Ausstellung am Gemeinschaftsstand<br />

Sachsen/Thüringen<br />

• TRANSFER X, Messe Dresden,<br />

9.–11.11.05<br />

Gemeinschaftsstand <strong>IPHT</strong><br />

58


MIKROSYSTEME / MICROSYSTEMS<br />

3. Mikrosysteme / Microsystems<br />

Leitung/Head: Prof. Dr. J. Popp<br />

e-mail: juergen.popp@ipht-jena.de<br />

Stellvertreter/Vice Head: Dr. H. Dintner<br />

helmut.dintner@ipht-jena.de<br />

Spektral-optische Verfahren Photonische Chipsysteme Mikrosystemtechnologie<br />

und Instrumentierung Photonic Chip Systems Microsystem Technology<br />

Spectral Optical Techniques<br />

and Instrumentation<br />

Leitung/Head: Prof. Dr. J. Popp Leitung/Head: Dr. W. Fritzsche Leitung/Head: Dr. Th. Henkel<br />

wolfgang.fritzsche@ipht-jena.de thomas.henkel@ipht-jena.de<br />

Spectral Optical Sensing<br />

Dr. R. Riesenberg<br />

rainer.riesenberg@ipht-jena.de<br />

Thermal Microsensors<br />

Dr. E. Keßler<br />

ernst.kessler@ipht-jena.de<br />

Sensor Preparation<br />

Dr. A. Lerm<br />

albrecht.lerm@ipht-jena.de<br />

Microtechnology<br />

Dr. G. Mayer<br />

guenter.mayer@ipht-jena.de<br />

3.1 Überblick<br />

<strong>2005</strong> war für den Bereich „Mikrosysteme“ ein<br />

bewegtes Jahr, das im Rückblick mit den Begriffen<br />

Kontinuität und Veränderung umrissen werden<br />

kann.<br />

Kontinuität insofern, dass in den Gruppen die<br />

fachliche Arbeit auf den verschiedenen Themengebieten<br />

systematisch weiter vorangetrieben<br />

wurde und zu einer Reihe sehr beachtlicher wissenschaftlicher<br />

Ergebnisse, verbunden mit<br />

erfolgreicher Projektakquisition, geführt hat. Die<br />

nachfolgenden Abschnitte geben darüber Auskunft.<br />

Veränderung benennt vor allem zwei wichtige,<br />

eng miteinander verkoppelte Entwicklungen. Zum<br />

Einen hat das Kuratorium mit Wirkung vom 1. Mai<br />

<strong>2005</strong> Prof. Jürgen Popp zum neuen Bereichsleiter<br />

berufen. Prof. Popp ist Lehrstuhlinhaber für<br />

Physikalische Chemie an der hiesigen Universität<br />

und Leiter des Institutes für Physikalische Chemie.<br />

Er wird diese Funktionen auch weiterhin<br />

ausüben, so dass die Verflechtung des <strong>IPHT</strong> mit<br />

der Universität in seiner Person eine substanzielle,<br />

für die Zukunft des <strong>IPHT</strong> entscheidende Stärkung<br />

erfährt. Als weithin anerkannter Experte auf<br />

dem Gebiet der Laserspektroskopie und der Biophotonik<br />

bringt Prof. Popp – mit seiner Gruppe an<br />

der FSU – ein hochaktuelles und zukunftsträchtiges<br />

wissenschaftliches Feld in das <strong>IPHT</strong> ein, welches<br />

sich in idealer Weise mit dem KnowHow<br />

3.1. Overview<br />

<strong>2005</strong> was a rather exciting year for the microsystems<br />

division. The year <strong>2005</strong> can be sketched by<br />

the terms continuity and change.<br />

Continuity insofar as the scientific work of the<br />

various research fields within the division has<br />

been pursued systematically resulting in a lot of<br />

remarkable scientific results and a very successful<br />

acquisition of new projects. The following<br />

chapters provide a more detailed insight into the<br />

recent achievements of the microsystems division.<br />

The term change marks two important and<br />

strongly coupled developments. Firstly, Prof.<br />

Juergen Popp was appointed as the new head of<br />

the division starting at May 1 by the supervisory<br />

board of the institute. Prof. Popp holds a chair at<br />

the Friedrich-Schiller-Universität of <strong>Jena</strong> where<br />

he is the director of the institute for physical<br />

chemistry. Since he will carry on this position, the<br />

scientific interlocking between the <strong>IPHT</strong> and the<br />

university being an essential factor for the future<br />

of the <strong>IPHT</strong> will be strengthened by Prof. Popp in<br />

a substantial manner. As a widely recognized<br />

expert in the field of laser spectroscopy and biophotonics<br />

Prof. Popp – together with his group at<br />

the university – will establish a highly attractive<br />

and longreaching research field at <strong>IPHT</strong> which<br />

can be suitably combined with the know how of<br />

the division on the development of chip systems<br />

59


MIKROSYSTEME / MICROSYSTEMS<br />

The staff of the microsystems division.<br />

Fig. 3A: NIR Raman spectral sensor. The sensor<br />

works in the wavelength range of 780 nm to<br />

1100 nm, is equipped with a 1024 × 128 pixel<br />

CCD and has a spectral resolution of 0.3 nm<br />

(5 cm –1 to 2.5 cm –1 ).<br />

60<br />

Fig. 3B: Relative irradiance on the CCD of the<br />

multi-signal-polychromator. Positions of 4 rows of<br />

25 spectra, dot-distance 31 nm.<br />

Fig. 3C: 16 × 16 thermopile array of a calorimetric<br />

space debris detector on PC.


MIKROSYSTEME / MICROSYSTEMS<br />

Fig. 3D: Silver nanoparticles were coated with a gold shell in order to tune the plasmon surface resonance<br />

band. Spectra (left), scheme (center), photos of droplets with various gold shell thickness (center right) and<br />

SEM and TEM images of the sample (right).<br />

Fig. 3E: Single particle spectroscopy on immobilized 90 nm silver (left) and 110 nm gold (right) nanoparticles.<br />

The presented spectra were measured on a single particle each.<br />

Fig. 3F: LabOnChip system for droplet-based micro flow-trough PCR. Sample droplets are moved along a<br />

winding micro channel over the different temperature zones according the thermal protocol. The fluidic<br />

module is in thermal contact with a micro system-based heat plate. The thermal distribution as measured<br />

with an infrared camera is shown in the upper right corner. A detailed view of sample droplets inside the<br />

microchannel is given in the lower right corner.<br />

61


MIKROSYSTEME / MICROSYSTEMS<br />

62<br />

des Bereiches zur mikrotechnisch basierten<br />

Chip- und Instrumentenentwicklung ergänzt und<br />

das fachliche Profil des Bereiches, aber auch des<br />

<strong>IPHT</strong> insgesamt, maßgeblich prägen wird.<br />

Damit ist zugleich die zweite wesentliche Veränderung<br />

des vergangenen Jahres angesprochen:<br />

Die erreichten Fortschritte in der Diskussion zu<br />

der zukünftigen Ausrichtung und Positionierung<br />

des <strong>IPHT</strong>. Die vom Kuratorium bestellte Strukturkommission<br />

hat für den optisch orientierten Teil<br />

des <strong>IPHT</strong>, und damit auch für den Bereich „Mikrosysteme“,<br />

Empfehlungen zur inhaltlichen Fokussierung<br />

und strukturellen Anpassung ausgesprochen.<br />

Von den beiden identifizierten Forschungsschwerpunkten<br />

Optische Fasern und Photonische<br />

Instrumentierung beschreibt vor allem der<br />

Letztere die avisierte thematische Ausrichtung<br />

des Bereiches, auf welche sich die Arbeiten in<br />

den kommenden Jahren fokussieren werden.<br />

Fachlich bedeutet der Fokussierungsprozess einerseits<br />

die kontinuierliche Fortführung von<br />

Arbeitsrichtungen, welche sich unmittelbar in das<br />

neue Bereichsprofil einordnen (Verknüpfung<br />

optisch basierter Chiparrays, mikroanalytischer<br />

Systeme, infrarotoptischer Sensoren mit laserspektroskopischen<br />

Verfahren). Andererseits sind<br />

mit der Neuausrichtung auch inhaltliche Umorientierungen<br />

verbunden (Mikrosystemkonzepte<br />

außerhalb der Optik) und muss mit Blick auf die<br />

kompetente Besetzung der Forschungsfelder<br />

zusätzliche Expertise auf- bzw. ausgebaut werden<br />

(Plasmonik, molekulares und funktionales<br />

Imaging, THz-Technik). Hierzu sollen insbesondere<br />

Nachwuchsgruppen zeitnah etabliert werden.<br />

Um die fachliche Profilierung zu befördern, hat<br />

sich der Bereich im vergangenen Jahr eine neue<br />

Abteilungsstruktur gegeben, welche im obigen<br />

Organigramm dargestellt ist. Die einzelnen<br />

Arbeitsgruppen sind dabei in sich weitgehend<br />

unverändert geblieben, wurden aber durch die<br />

geänderte Zuordnung in einen neuen Kontext<br />

gestellt. Dies betrifft vor allem die Vereinigung<br />

von spektraloptischer Verfahrens- und Systementwicklung<br />

sowie die Herausstellung der Mikrosystemtechnik<br />

(Mikroreaktorik, Mikrofluidik) als<br />

unverzichtbare enabling technology für die photonische<br />

Instrumentierung.<br />

Damit sind intern bereits wichtige Weichen<br />

gestellt, um den Fokussierungsprozess des<br />

Bereiches forciert weiterzuführen. Zugleich sind<br />

diese Maßnahmen eingebunden in zentrale forschungsstrategische<br />

Aktivitäten der Universität<br />

und des Campus Beutenberg (z.B. Ernst-Abbe-<br />

Center for Photonics, <strong>Jena</strong>er Innovationscluster<br />

„Optische Technologien“). Insgesamt sieht sich<br />

der Bereich „Mikrosysteme“ daher gut aufgestellt,<br />

um die Herausforderungen der inhaltlichen Profilierung<br />

als Chance für die weitere wissenschaftliche<br />

und struklurelle Entwicklung des Bereiches<br />

zu nutzen.<br />

and instruments defining not only the future<br />

scientific profile of the division, but also a main<br />

research topic of the <strong>IPHT</strong>.<br />

For this reason, the second essential change<br />

within the last year was already addressed: the<br />

progress achieved in the discussion about the<br />

future orientation and positioning of the <strong>IPHT</strong>.<br />

The structure commission being established by<br />

the supervisory board submitted a strategic recommendation<br />

for a scientific focusing and structural<br />

adaption of the optical orientated parts of<br />

<strong>IPHT</strong>, hence, also for the microsystems division.<br />

The future scientific direction of the division is<br />

described by “Photonic Instrumentation” being<br />

one of the newly identified research fields “Optical<br />

Fibers” and “Photonic Instrumentation”.<br />

With respect to the research activities of the division<br />

the focusing process stands on the one hand<br />

for a steady continuation of those approaches<br />

which fit into the new scientific profile i.e. combination<br />

of optical based chip arrays, microanalytical<br />

systems and infrared sensors with laser spectroscopic<br />

methods. However on the other hand, a<br />

focusing on photonic instrumentation is associated<br />

with significant changes in some traditional<br />

areas like microsystem concepts not based on<br />

optical principles. Furthermore the establishment<br />

and strengthening of new research fields<br />

requires a build-up or extension of new expertise<br />

like e.g. plasmonics, molecular and functional<br />

imaging, and THz techniques etc. For these purposes,<br />

young scientists groups need to be<br />

installed.<br />

The division has changed its department structure<br />

in accordance to the recommended focusing<br />

process (see scheme given above). In doing so<br />

the various groups remained largely unchanged<br />

however are put into a new context due to the<br />

changed classification. This restructuring process<br />

mainly concerns the association between spectral-optical<br />

techniques and instrumentation as<br />

well as the emphasis on microsystem technology<br />

(including microreactors, microfluidics) as an<br />

essential enabling technology for photonic instrumentation.<br />

All these efforts are setting internally the course<br />

for a successful continuation of the department’s<br />

focusing process. Additionally, these<br />

decisions are embedded into central strategic<br />

activities of the university and the campus (e.g.<br />

Ernst-Abbe-Center for Photonics, <strong>Jena</strong> innovation<br />

cluster “Photonic Technologies”). Overall<br />

the microsystems division is in a very good position<br />

not only to face the challenges arising due<br />

to the new profile of the <strong>IPHT</strong> but also to use this<br />

profiling opportunity as a chance to further pursue<br />

the scientific and structural development of<br />

the division.


MIKROSYSTEME / MICROSYSTEMS<br />

3.2 Scientific Results<br />

3.2.1 Spectral optical techniques and<br />

instrumentation<br />

(J. Popp)<br />

The main objectives of the department “Spectral<br />

optical techniques and instrumentation” are the<br />

development of innovative optical and spectroscopical<br />

techniques as well as the design and<br />

experimental realization of advanced spectral<br />

optical devices and instruments for material and<br />

life sciences applications. A fundamental understanding<br />

of the processes taking place when light<br />

interacts with matter is an indispensable prerequisite<br />

for such developments. The ultimate<br />

goal in life sciences is a deeper understanding of<br />

the molecular processes occuring inside living<br />

cells. Furthermore chemical reactions, metabolite<br />

or bioactive compounds driven functionalities<br />

of biological cells as well as cell-cell communication<br />

need to be studied. Optical and spectroscopical<br />

techniques are extremely capable methods<br />

to study the aforementioned processes on a<br />

molecular level. Based on such knowledge e.g. in<br />

the field of health care the origin of diseases can<br />

be resolved, therapies can be optimized, and the<br />

occurence of diseases might be prevented or at<br />

least minimized.<br />

Apart from the derivation of structure-property<br />

relationships, the derivation of structure-dynamic<br />

relationships is one of the most challenging topics.<br />

Utilizing advanced nanostructuring technologies<br />

artificial bioinspired materials with new<br />

promising properties can be realized.<br />

To achieve all the aformentioned ambitious goals<br />

in material and life sciences innovative optical<br />

components and sophisticated frequency-, timeand<br />

spatially resolved innovative laser spectroscopical<br />

methods and systems ranging from the<br />

UV to the THz with unparalleled functionalities<br />

need to be developed. Therefore, future research<br />

activities have to focus on the development of<br />

innovative optical spectroscopy techniques and<br />

instruments like e.g.:<br />

– Frequency resolved spectroscopical techniques<br />

exploiting novel spectral ranges to access<br />

innovative matter structures,<br />

– Time-resolved methods ranging from nanosecond<br />

to subfemtosecond time resolution to<br />

study the entire range of time dependent structural<br />

changes,<br />

– Functional and molecular imaging – e.g. CARS<br />

microscopy, TIP-SERS,<br />

– High-efficient spectral imaging for diagnostics,<br />

– Applied plasmonics for the ultra-sensitive diagnostics,<br />

– Lensless microscopes,<br />

– THz-spectroscopy and -technique.<br />

Another research topic together with the Department<br />

“Photonic Chip Systems” shall combine the<br />

achievements of photonics especially of biophotonics<br />

with those from micro- and nano-technology.<br />

The main goal is the realization of new industrial<br />

products, like e.g. the development of a new<br />

generation of optical and spectroscopical microchips<br />

for a powerful point-of-care diagnostics.<br />

A. Spectral optical sensing<br />

(R. Riesenberg)<br />

The annual report 2004 was entitled “Micro-aperture<br />

arrays in optics” and that oft 2003 “Ultra-sensitive<br />

optical sensing”. The annual report <strong>2005</strong>,<br />

presents innovative high performance optical<br />

sensing set-ups for spectral sensors, for a multisignal-reader<br />

and for micro-imaging.<br />

Future research topics might be high performance<br />

optical spectral and 5D-sensing architectures<br />

and lensless micro-imaging with synthetic<br />

apertures.<br />

Compact Raman spectral sensors<br />

(A. Wuttig, R. Riesenberg)<br />

The project “OMIB online monitoring and identification<br />

of microorganisms and bio aerosols”<br />

deals with a rapid identification of single microorganisms<br />

by means of micro Raman-spectroscopy<br />

in combination with statistical data evaluation<br />

procedures. Such a point-of-care detection<br />

demands compact high performance sensors.<br />

Therefore, two sensors based on new technologies<br />

were designed and manufactured: one<br />

for the UV-region and another for the NIR-region.<br />

For that reason, a special 2D-entrance aperture<br />

array implementing a set of 10 little different<br />

spectrometers in one design can be applied. The<br />

reconvolution of the different images avoids aberrations<br />

and increases the spectral resolution as<br />

well as the throughput (patent pended arrangements).<br />

The UV spectral sensor established in<br />

2004 has been successfully tested by recording<br />

Raman spectra of bacteria and minerals. More<br />

than 10.000 spectral points are detected by<br />

the UV-sensor exhibiting a detector-array of<br />

2048 × 512 pixels (spectral region 245 nm – 360 nm,<br />

spectral resolution up to 0.035 nm) simultaneously<br />

(see Fig. 3.1).<br />

A second NIR Raman spectral sensor (see<br />

Fig. 3A on color page) operates in the wavelength<br />

range of 780 nm to 1100 nm at a wavelength<br />

resolution of 0.3 nm (corresponding<br />

wavenumber resolution: 5 cm –1 at λ = 780 nm …<br />

2.5 cm –1 at λ = 1100 nm) using only a 1024 × 128<br />

pixel detector.<br />

63


MIKROSYSTEME / MICROSYSTEMS<br />

Unconventional micro-imaging<br />

(R. Riesenberg, A. Grjasnow, M. Kanka,<br />

J. Bergmann)<br />

a)<br />

The coherent illumination of a sample by a pinhole<br />

generates an interference image (inlineholography).<br />

Results are given by unconventional<br />

microscopic imaging by illumination with a pinhole<br />

array, see Fig. 3.2. The microscopy by multiplane<br />

interference detection uses three or more<br />

interference pictures to reconstruct the objects.<br />

The actual technique is adapted to microscopic<br />

imaging. No reference is needed and a sub-pixel<br />

algorithm is implemented.<br />

The lensless technique is applied for wide field<br />

imaging. The illumination by a pinhole-array<br />

leads to a homogenous illumination with more<br />

intensity and so with an increased sensitivity. The<br />

field of view can be extended without loosing resolution<br />

(see Fig. 3.3).<br />

b)<br />

Fig. 3.1: a) View of the compact UV-Raman<br />

spectral sensor (circled) with a commercial<br />

Raman spectrometer HR 600 with nearly the<br />

same performance and b) measured spectra of<br />

bacillus pumius, DSM 361, excitation wavelength<br />

257 nm, with both instruments.<br />

Fig. 3.2.: Arrangement of illumination of the<br />

sample by a pinhole-array and interference<br />

detection by a CCD.<br />

64<br />

Fig. 3.3: a…d above: Digital inline holography. Objects (diameter of 0.5 µm) at the edge of the illumination<br />

cone (object plane in 10 µm distance from the pinhole-plane) can not be detected and reconstructed. For<br />

a pinhole diameter of 1 µm the aperture is limited. The field of view is limited [hologram at a distance of<br />

220 µm from the pinhole-plane, image area (200 µm) 2 , the field of view in the example is limited to about<br />

(9 µm) 2 .<br />

e…h below: The single pinhole is replaced by a pinhole-array (9 pinholes). Nearly all objects can be illuminated<br />

and reconstructed. The field of view is extended.


MIKROSYSTEME / MICROSYSTEMS<br />

Spectral-reader-technologies<br />

(G. Nitzsche, R. Riesenberg)<br />

A concept and an optical design of a fluorescence<br />

reader for real-time PCR was developed<br />

which enables for the first time the detection of<br />

four different dyes in 96 samples simultaneously.<br />

It uses fiber-arrays, a lens-array and microaperture<br />

entrance arrays for parallel illumination as<br />

well as for highly parallel spectral detection. The<br />

design of the multi-signal polychromator with<br />

the 2D-slit-array consists of 4 × 25 single slits<br />

to generate 4 × 25 spectra on the CCD-chip (see<br />

Fig. 3B on color page). The design was adapted<br />

to a CCD-camera with 1024 × 1024 pixels of a<br />

pitch of 13 µm.<br />

B. Thermal microsensors<br />

(E. Keßler)<br />

Two projects (ISEL and FANIMAT-nano) could<br />

be started in <strong>2005</strong> while the MICRO-THERM<br />

project was finished. All these projects fit in the<br />

strategic orientation of the Thermal Microsensors<br />

group aimed at research and development<br />

of miniaturized thermal sensors (in particular<br />

for sensing electromagnetic radiation in<br />

the infrared and neighboring spectral regions)<br />

with a high and relatively uniform sensitivity/<br />

detectivity in a broad spectral region and in a<br />

wide range of operating temperatures up to<br />

200 °C and more based on high-performance<br />

materials of the functional layers, e.g., the<br />

absorber, the thermoelectric transducer and the<br />

isolation/passivation layers.<br />

inalienable condition, the detector operating in a<br />

high-vacuum ambiance.<br />

The floating membrane pattern is generated by<br />

dry etching processes. Several chip designs and<br />

types of thermopiles comprising four and eight<br />

thermocouples with leg widths of 2 and 4 µm,<br />

respectively, deposited on stress-controlled silicon<br />

nitride, have been tested and provided for<br />

packaging (see. Fig. 3.4). Under vacuum conditions,<br />

responsivities of up to approximately<br />

3000 V/W and specific detectivities of 1.4 × 10 9<br />

cm Hz 1/2 /W were measured with the thermoelectric<br />

materials combination BiSb and Sb. Variations<br />

of the multi-layer absorber system aiming at<br />

the lowering of its thermal mass to decrease the<br />

thermal time constant resulted in responsivities of<br />

about 2400 V/W and time constants in the order<br />

of 40 ms for an optimized design.<br />

A significant potential for a further increase in<br />

responsivity and detectivity arises from substituting<br />

the p-material Sb by the high-figure-of-merit<br />

material BiSbTe and by the application of a new<br />

membrane technology based on SU-8. These<br />

efforts were continued after the termination of<br />

the project in September <strong>2005</strong>.<br />

The scaled-down geometrical dimensions of the<br />

micro-thermopiles connected to the accomplishable<br />

high detectivities are an important first step<br />

towards the development of thermopile arrays<br />

with high spatial resolution; hence, this project is<br />

of particular importance for the further development<br />

of thermopile sensors at the <strong>IPHT</strong>.<br />

New generation of micro-thermopiles<br />

with high detectivity (MICRO-THERM)<br />

(E. Kessler, V. Baier, U. Dillner, A. Ihring)<br />

The main goal of the project MICRO-THERM,<br />

started in July 2004, was the development of<br />

microthermopiles for high-resolution low-temperature<br />

radiation thermometry (spectral range 8 to<br />

14 µm). The work was carried out in close cooperation<br />

with Optris GmbH, Berlin and Mikrotechnik<br />

& Sensorik GmbH, <strong>Jena</strong>.<br />

Essential specifications of this new generation of<br />

detectors are reduced dimensions of the receiving<br />

area (diameters ranging from 100 to 150 µm,<br />

thus permitting the enhancement of the distance<br />

ratio and the optical resolution of pyrometers up<br />

to 1:200 even with small optics), high specific<br />

detectivities above 1 × 10 9 cm Hz 1/2 /W and comparatively<br />

low thermal time constants in the range<br />

of 100 ms. These features are achieved by a<br />

thermally optimized thermopile arrangement on a<br />

floating membrane with supporting bridges smaller<br />

than 10 µm and reduced thicknesses of active<br />

and passive layers, thereby reducing parasitic<br />

thermal conductances and masses, and, as an<br />

Fig. 3.4: MICRO-THERM thermopile chip on<br />

TO-5 base plate, wire-bonded.<br />

Infrared sensors having increased standards<br />

of performance (ISEL)<br />

(E. Kessler, V. Baier)<br />

Basically, the aims of this project are both to shift<br />

the long-term operating temperature of thermopile<br />

IR sensors beyond the limit of 180 °C,<br />

reached in the former project HOBI, towards<br />

250 °C and enhancing the responsivity of the<br />

sensors. This shall be achieved by replacing the<br />

65


MIKROSYSTEME / MICROSYSTEMS<br />

typically used thermoelectric materials BiSb and<br />

Sb with materials of higher thermoelectric figures<br />

of merit, which moreover have higher temperature<br />

stabilities. For the prediction of sensor properties<br />

by parametric thermal modeling the transport<br />

coefficients of these materials have to be<br />

characterized up to 300 °C. The according measurement<br />

equipment shall be built in 2006.<br />

The high-effective ternary BiSbTe was chosen<br />

as thermoelectric p-material. It was sputtered<br />

by dc technology under optimized conditions.<br />

Thereby a power factor of P = α 2 σ = 1.9 10 –3 W/<br />

(m K 2 ) (Seebeck coefficient α = 189 µV/K and<br />

electrical conductivity σ = 53 540 (Ω m) –1 ) was<br />

obtained at room temperature. In a first run sensors<br />

of TS 80 type were manufactured for high<br />

temperature applications with this technology<br />

using CuNi as n-material. However, some problems<br />

appeared in the wet-chemical patterning of<br />

the BiSbTe films, which can most likely be attributed<br />

to the specific sputtering conditions. The<br />

averaged responsivity S = 51 V/W is enhanced<br />

by a factor of 1.6 compared with BiSb/Sb and<br />

the temperature coefficient of responsivity is<br />

lowered by a factor of 2.7 in the room temperature<br />

range. Sensors of this type were delivered<br />

for testing and qualifying to the project partner<br />

Micro-Hybrid Electronic.<br />

in vacuum-tight sensor housings are planned to<br />

test the compatibility of the ceramic films with<br />

high-temperature interconnection and packaging<br />

techniques. Thus, the project combines the competence<br />

of the three partners HITK (ceramic<br />

nano-powders), <strong>IPHT</strong> (thermoelectric sensor<br />

functional layers) and MHE (interconnection and<br />

packaging techniques).<br />

In <strong>2005</strong>, first investigations concerning new<br />

absorber layers were carried out. The absorption<br />

coefficients of several high-temperature resistant<br />

layers supplied by HITK and based on different<br />

materials were measured at <strong>IPHT</strong> using a FTIRspectrometer.<br />

Moreover, the morphology of the<br />

layers was characterized by SEM (see Fig. 3.5).<br />

For layers of a special soot, absorption coefficients<br />

exceeding 90% were found in the wavelength<br />

range between 8 and 14 µm.<br />

66<br />

Nanotechnologies for the functionalization<br />

of ceramic materials (FANIMAT-nano)<br />

(E. Kessler, U. Dillner)<br />

FANIMAT-nano represents one so-called “growth<br />

core” in the Program “Innovative Regional<br />

Growth Cores” launched by the Federal Ministry<br />

of Education and Research (BMBF). This is a<br />

development support program aimed towards<br />

regional cooperations with platform technology<br />

and important features which make them unique<br />

in their field of competence. The target region of<br />

FANIMAT-nano is the region <strong>Jena</strong>-Hermsdorf in<br />

the federal state Thuringia. Within the FANIMATnano<br />

growth core, the Thermal Microsensors<br />

group at <strong>IPHT</strong> <strong>Jena</strong> is involved in a project called<br />

“Structurable ceramic thin films for high-temperature<br />

stable infrared (HT-IR) sensors” which started<br />

in September <strong>2005</strong>. Our partners in this project<br />

are the Hermsdorf Institute for Technical<br />

Ceramics (HITK) and the Micro-Hybrid Electronics<br />

GmbH (MHE), also located in Hermsdorf.<br />

The development objectives of this project<br />

include the creation and characterization of<br />

structurable polyceramic or solgel thin film materials<br />

which can be integrated in the stacks of<br />

functional layers of thermoelectric infrared<br />

microsensors as high-temperature resistant<br />

absorber layers and isolation or passivation layers,<br />

respectively. Furthermore, the development<br />

of thermopile sensor chips with operating temperatures<br />

up to 250 °C employing those ceramic<br />

films is envisioned. Investigations of these chips<br />

Fig. 3.5: A SEM micrograph of a special hightemperature<br />

resistant soot absorber layer.<br />

Calorimetric space debris detector<br />

(E. Kessler, V. Baier, U. Dillner, A. Ihring)<br />

A detector array of 16 × 16 thermopile sensors<br />

based on the TS100/Flow design was developed<br />

as an integrated part of a breadboard model of a<br />

new type of in-situ space debris and meteoroid<br />

detector to determine the impact energy of<br />

micron-sized particles by calorimetric measurements<br />

(see Fig. 3C on the color page). The partners<br />

of this project are the eta_max Space<br />

GmbH, Braunschweig, the Physikalisch-Technische<br />

Bundesanstalt, and the TU Braunschweig.<br />

The thermopile array is completed with an appropriate<br />

plate absorber array supported by small<br />

spacing columns of 20 µm height made of SU-8<br />

and thermally connected to the sensitive areas of<br />

the thermopiles each to convert the kinetic energy<br />

of the impacting particles into a temperature<br />

increase. An estimate of an average thermal<br />

effect gives temperature rises of 2…3 mK which<br />

can be clearly detected by the thermopiles. Initial<br />

tests using laser pulse heating were successfully<br />

performed.


MIKROSYSTEME / MICROSYSTEMS<br />

3.2.2 Photonic chip systems<br />

(W. Fritzsche)<br />

The detection and manipulation of molecular<br />

ensembles as well as individual molecules based<br />

on miniaturized and paralleled photonic approaches<br />

represent the main objective of the department.<br />

It is therefore aimed at two main research directions:<br />

(I) molecular construction techniques in<br />

order to develop required novel methods for<br />

manipulation and detection at the molecular level<br />

and (II) chip technology to convert these developments<br />

into (bio)analytical applications.<br />

The ultimate goal for both ultrasensitive bioanalytics<br />

and other possible applications for molecular<br />

complexes (such as nano-electronics and<br />

-optics) is the control of the constructs at the<br />

nanoscale and the single molecule level. During<br />

the last years novel approaches for single molecule<br />

handling have been developed in the<br />

department. They address the integration problem<br />

by aiming at parallel approaches to position<br />

individual molecular structures in prestructured<br />

microsystem environments, such as microelectrode<br />

gaps. In <strong>2005</strong>, this development was<br />

advanced by the adaptation of dielectrophoretic<br />

methods. The last years witnessed also impressive<br />

results in the synthesis and optical characterization<br />

of designer metal nanoparticles, providing<br />

particles with defined spectral properties.<br />

Thereby, the main focus of the department<br />

shifted towards molecular plasmonics, a field<br />

that combines the effect of surface plasmon<br />

resonance at metal nanostructures, such as<br />

metal nanoparticles, with molecular components.<br />

These molecular structures can either be<br />

used to influence the optical properties, thus representing<br />

the analyte (bioanalytics), or to realize<br />

novel nanoscale hybrid complexes of metal<br />

nanoparticles and molecular components. In<br />

these complexes, the molecules act as backbone<br />

to realize a connection with defined geometry<br />

(distance, angle etc.) at the nanometer<br />

scale. This research field was massively pushed<br />

by the international symposium “Molecular Plasmonics”<br />

that was organized in May by the<br />

department and brought many of the world leading<br />

scientists in this field to the <strong>IPHT</strong>.<br />

In order to convert these developments into applications<br />

the established platform technologies for<br />

DNA arraying and model system evaluation has<br />

been further extended. These activities included<br />

the first successful demonstration of the electrical<br />

DNA chip detection system for a biological<br />

application and the further extension of partnerships<br />

with innovative bioanalytic companies in<br />

order to get market-driven and application-oriented<br />

impulses for future research and development<br />

in this promising field.<br />

A. Molecular nanotechnology<br />

and plasmonics<br />

Electrical manipulation of DNA<br />

(A. Csaki, A. Wolff, R. Kretschmer, W. Fritzsche)<br />

The control of a precise positioning of (bio) molecular<br />

complexes onto microstructured substrates<br />

is a key requirement for molecular nanotechnology.<br />

The application of electrical fields<br />

represents an interesting alternative for this purpose.<br />

Electrical fields are a well-established technique<br />

for molecular manipulation and they are<br />

easily directed with microscale precision using<br />

microelectrodes. Therefore, prestructured microelectrodes<br />

that will later act as contacts to the<br />

complexes were utilized to apply fields of alternating<br />

current in order to position polarizable<br />

molecular structures from solution by dielectrophoresis.<br />

Molecules of lambda-phage DNA<br />

(about 16 µm long) could be successfully positioned<br />

in electrode gaps as revealed by fluorescence<br />

and scanning force microscopy.<br />

Fig. 3.6: Defined positioning of DNA molecules in<br />

microelectrode gaps (100 nm gold) on silicon oxide<br />

substrates by dielectrophoresis using 300 ng/µl<br />

lambda-phage DNA and a field with 1 V/µm and<br />

1 MHz. AFM-images (left and center) and fluorescence<br />

image (YOYO-1 as DNA-specific dye).<br />

Substrate-controlled orientation of DNA<br />

superstructures<br />

(J. Vesenka, A. Wolff, A. Reichert, W. Fritzsche)<br />

Another approach for aligned positioning of (bio)<br />

molecular structures is the utilization of substrate-inherent<br />

patterns of e.g. electrostatic<br />

charges. The observed effect of alignment of<br />

DNA superstructures (G wires) on mica substrates<br />

following three major directions was characterized<br />

and studied. By resolving the substrate<br />

of such samples with atomic resolution in the<br />

same experiment, it was found that the G-wires<br />

seem to align with the next nearest neighbor<br />

potassium vacancy sites of mica. Such auto-orientation<br />

phenomena could be utilized to address<br />

the fine-positioning of molecular structures e.g. in<br />

network formation. The self-organization character<br />

and the massive parallelization are features<br />

that make this approach very promising for future<br />

applications.<br />

67


MIKROSYSTEME / MICROSYSTEMS<br />

particles with defined optical features are<br />

required. Therefore, core-shell particles consisting<br />

of Ag/Au or Au/Ag were identified as especially<br />

promising systems to tune the resulting plasmon<br />

resonance (see figure 3D on the color<br />

page).<br />

Moreover, optical characterization at both ensemble<br />

and single particle level are needed. The last<br />

year witnessed the set-up of a spectroscopy system<br />

with single particle capabilities in the department<br />

(see figure 3E on the color page). Experiments<br />

demonstrated the ability to yield UV-VIS<br />

spectra of individual nanoparticles, together with<br />

AFM and optical images of this structure.<br />

Fig. 3.7: Alignment of DNA structures (G wires)<br />

following the atomic arrangement in mica crystal<br />

planes. (Top) Overview AFM image (left) with histogram<br />

of orientation of G wire segments (right),<br />

(bottom) orientation of G wires as compared to<br />

the crystal arrangement of the underlying mica<br />

(insets) on air (left) and in buffer (right).<br />

Metal nanoparticles for molecular plasmonics<br />

(A. Steinbrück, A. Csaki, W. Fritzsche)<br />

Utilizing the optical properties of metal nanoparticles<br />

in combination with molecular complexes<br />

represents a promising recent development in<br />

molecular nanotechnology with envisioned applications<br />

especially for bioanalytics but also in<br />

nanophotonic devices. This field is based on the<br />

surface plasmon resonance effect in the particles.<br />

In order to realize complex systems the optical<br />

properties of the nanostructures have to be<br />

tuned and approaches to synthesize designer<br />

Photonic nanostructures combined<br />

with metal nanoparticles<br />

(A. Csaki, A. Steinbrück, S. Schröter,<br />

W. Fritzsche)<br />

Photonic nanostructures, such as nanoaperture<br />

arrays, show promising novel effects regarding<br />

e.g. transmission of light. The established experience<br />

with nanoparticle handling and ultramicroscopic<br />

characterization was applied in order to<br />

position metal nanoparticles in nanoapertures.<br />

Comparison of the transmission characteristics<br />

of the apertures with and without particles<br />

showed a higher transmission in the case of particle-modified<br />

openings. This effect seemed even<br />

enhanced when the particle where enlarged<br />

using specific metal deposition.<br />

68<br />

Fig. 3.8.: Synthesis of gold-silver core-shell nanoparticles<br />

yields designer particles with adjustable<br />

surface plasmon resonance peak between the<br />

bands of pure gold and pure silver nanoparticles.<br />

The particles were formed using specific silver<br />

deposition onto gold particles using various silver<br />

salt concentrations. All spectra are ensemble<br />

measurements.<br />

Fig. 3.9: Light transmission of microfabricated<br />

holes with sub-wavelength dimensions in a<br />

chromium layer in dependence on the presence<br />

of metal nanoparticles. AFM images (top) and<br />

optical images (bottom) of three holes without<br />

particle (left), with an individual particle (center),<br />

and with a particle aggregate (right).


MIKROSYSTEME / MICROSYSTEMS<br />

B. DNA-chip Technology<br />

Characterization of specific metal deposition<br />

at single particle level<br />

(G. Festag, W. Fritzsche)<br />

Specific reductive deposition of silver on gold<br />

nanoparticles has a tremendous importance for<br />

numerous processes in molecular construction<br />

as well as in various kinds of bioanalytical methods<br />

for signal enhancement. AFM was used to<br />

study this process at the single particle level in<br />

order to reveal the influence of parameters like<br />

particle size, composition of enhancement solution,<br />

length of incubation etc. Because on-line<br />

measurements were not feasible, techniques<br />

were developed to relocate certain positions at<br />

the sample in order to image particle arrangements<br />

after every enhancement step.<br />

Target DNA binding is detected by a significantly<br />

reduced resistance in the respective gap<br />

because binding of the labeled target DNA will<br />

lead to metal deposition in a subsequent signal<br />

enhancement step. The results showed that the<br />

electrical DNA chip detection is able to clearly<br />

differentiate between the different species and<br />

allows for a straightforward identification of<br />

microorganisms.<br />

Fig. 3.10: AFM study of the growth of a silver<br />

shell on gold nanoparticles at the single particle<br />

level. Top: Three images of the same sample<br />

position after different growth times; Bottom:<br />

Dependence of particle height on growth time<br />

and various start diameters.<br />

Fig. 3.11: Measurements from a typical experiment<br />

with the electrical DNA-chip system show a<br />

clear signal for the species K. setea (set, left column)<br />

and the positive control from a consensus<br />

sequence (uni). An optical view on an electrical<br />

chip visualizes the silver deposition (especially in<br />

the 1+2 row and the last one) that leads to the<br />

electrically detectable signal at these positions.<br />

Electrical identification of microorganisms<br />

by DNA-chip technology<br />

(T. Schüler, R. Möller, W. Fritzsche)<br />

The electrical DNA-detection system that has<br />

been developed at the <strong>IPHT</strong> was for the first time<br />

applied to biological samples (PCR fragments).<br />

In collaboration with the Leibniz Institute for Natural<br />

Product Research and Infection Biology –<br />

Hans-Knöll-Institute (HKI) <strong>Jena</strong>, the electrical<br />

DNA detection was utilized to identify species<br />

of microorganisms. Therefore, capture DNA<br />

sequences, specific for each of the studied<br />

species, were immobilized into the electrode<br />

gaps prior to incubation with the target DNA.<br />

3.2.3 Micro system technology<br />

(Th. Henkel)<br />

Photonic instrumentation strongly depends on<br />

the integration of micromechanical and microoptical<br />

components with critical dimensions in the<br />

nanometer scale. Furthermore, LabOnChip systems<br />

for integrated sample placement and sample<br />

preparation are required for high-throughput<br />

microoptical applications, the retrieval of spatialand<br />

time-resolved spectral information and localized<br />

photochemical activation of sample ingredients.<br />

The aim of the microsystem technologies<br />

department is the development and fabrication of<br />

components for photonic instrumentation and the<br />

69


MIKROSYSTEME / MICROSYSTEMS<br />

70<br />

application of LabOnChip based microfluidic<br />

devices for integrated sample preparation and<br />

placement in micro optical systems. The newly<br />

developed technology for the preparation of allglass<br />

microfluidic devices with coplanar faces are<br />

in compliance with the requirements of microoptical<br />

systems.<br />

A. Microfluidics of liquid-liquid<br />

segmented sample streams<br />

Liquid-liquid segmented flow based on highly<br />

integrated LabOnChip devices offers a powerful<br />

and versatile approach for high-throughput processing<br />

of linearly organized sample streams.<br />

Currently, these fluidic networks are built up from<br />

individual chip modules which are interconnected<br />

by HPLC-capillaries. Since all operations have to<br />

be in plug mode, micro droplets need to be large<br />

enough, to seal a given channel completely. For<br />

widely used HPLC capillaries with an inner diameter<br />

of 0.5 mm this critical volume is about<br />

64 nl. With respect to this, modular systems are<br />

limited in compartment size and thus in throughput<br />

and sample density. Processing of segmented<br />

sample streams uses interface-generated<br />

forces for the maniplation of the micro droplets at<br />

functional nodes with optimized geometry and<br />

wetting conditions. Miniaturization of the channel<br />

system and the droplet volume increases the curvature<br />

of the interfaces and thus the pressure<br />

drop generated at the interface. In conclusion,<br />

not only throughput and sample density, but also<br />

reliability of the processes benefit from miniaturization<br />

and integration. Considering this, our work<br />

in development of LabOnChip devices is focused<br />

on the development of integrated LabOnChip<br />

devices for segmented flow based application.<br />

Toolkit for computational fluidic simulation<br />

and interactive parametrization<br />

of segmented-flow based fluidic networks<br />

(N. Gleichmann, M. Kielpinski, D. Malsch,<br />

T. Henkel)<br />

The main objectives of this work are the application<br />

of principles of electronic design automation<br />

(EDA) to the model based design and parameterization<br />

of segmented-flow based micro fluidic<br />

networks. This approach will significantly increase<br />

the efficiency in development of highly<br />

integrated LabOnChip devices for custom fluidic<br />

and micro chemical protocols. By that way,<br />

research and development of micro chemical and<br />

screening applications will benefit of the promising<br />

micro droplet-based approach of segmented<br />

flow. Our toolkit is based on a computational network<br />

of fluidic nodes, which are interconnected<br />

by virtual fluid ports for the transfer of segment<br />

streams. The particular behaviour of a functional<br />

node may be given by user definable rules, which<br />

are derived from experimental data and Computational<br />

Fluid Dynamics (CFD) simulations of the<br />

functional element. The geometry is dynamically<br />

generated from photolithographic mask data and<br />

process parameters. Segmented sample streams<br />

are implemented as lists. For interactive inspection<br />

of the interface geometries inside a functional<br />

node a software interface to the surface evolver<br />

is implemented.<br />

Fig. 3.12: Geometry of a drop passing a T-<br />

shaped junction with nozzle.<br />

The surface evolver starts with a dynamically<br />

generated mesh of the node itself and the correct<br />

position of the micro droplets inside the element.<br />

Wetting conditions and local contact angles<br />

are non-constraints and dynamically calculated<br />

from the interface energies. Channel geometry is<br />

generated from the photo lithographical mask<br />

data and the parameters of the etch process. The<br />

parameterization is realized by interactively<br />

changing the mask geometry of the fluidic nodes<br />

and analysing the results of the fluidic simulation.<br />

A complete run for a dynamic simulation takes a<br />

view minutes only. The network can operate with<br />

pressure and volume flow constraints. Currently it<br />

is implemented for non compressible liquid/liquid<br />

two-phase flows and the micro system technology<br />

of isotropic wet etching. The Toolkit consists of<br />

a C++ class library of components for fluidic network<br />

simulation, for user interaction and network<br />

visualization and for interfacing the surface<br />

evolver. In a first test case it was successfully<br />

applied for modelling a double injector module.<br />

Conceptual work on self-controled fluidic<br />

networks for segmented-flow based applications<br />

(M. Kielpinski, D. Malsch, G. Mayer, J. Albert,<br />

T. Henkel)<br />

Functional elements for sample generation, dosing<br />

of liquid into droplets and retrieval of individual<br />

samples from the sample stack, generation of<br />

stacked sequences and controlled fusion of adjacent<br />

segments within it’s segment stream have<br />

been reported and successfully applied for highthroughput<br />

applications. These processes are<br />

mainly effected and controlled by the dynamics of<br />

interface evolution at functional nodes and spe-


MIKROSYSTEME / MICROSYSTEMS<br />

Fig. 3.14: y-Shaped junction for self syncronized<br />

droplet fusion of two generated sample streams<br />

(above) and microfluidic device, consisting of the<br />

element and a total of four injectors for sample<br />

stream generation and postprocessing by dosing<br />

operations (below).<br />

cial flow dynamics inside the micro droplets.<br />

Additional functionality is requested and proposed.<br />

This includes controlled 1:N fusion of multiple<br />

droplet sequences and controlled 1:N segment<br />

splitting. Unfortunately, these operations<br />

require synchronization of the flow of multiple<br />

droplet sequences and seem to require integration<br />

of actors and sensors for closed loop flow<br />

control into the micro fluidic device. Application of<br />

these approaches to fluidic networks would<br />

require a huge amount of integrated sensors and<br />

actors, each of them interfering with the others<br />

and thus, the software for control of these networks<br />

would be very complicated.<br />

Analyzing a segmented flow based system we<br />

can recognize, that all prerequisites for application<br />

of self control to these special micro fluidic<br />

systems are available. There are mobile interfaces,<br />

which can be used to seal junctions of the<br />

main channels temporarily. Obstructions can be<br />

used to increase or widenings to decrease the<br />

pressure, generated by the curved droplet interface.<br />

By that way, segmented flow provides the<br />

basics for the implementation of self-controlled<br />

functional elements and their integration into<br />

micro fluidic networks.<br />

Actual development has been focused on a first<br />

implementation of these concepts for the selfsynchronized<br />

1:1 fusion of two segment sequences.<br />

The functional node consists of a Y-shaped<br />

junction, where each inlet is equipped with an<br />

obstruction. The two inlet ports are connected by<br />

a bypass. If one segment reaches the obstruction<br />

it stops and the carrier flow is guided along the<br />

bypass to the second inlet of the Y-junction. It<br />

remains at the obstruction until a second droplet<br />

from the opposite channel reaches the junction.<br />

After this, fusion occurs followed by ejection of<br />

the formed droplet.<br />

Microfluidic devices for investigation of the fusion<br />

process have been developed and fabricated.<br />

Fig. 3.13: CFD-Simulation (right column) and<br />

experimental data (left column) of self-synchronized<br />

1:1 droplet fusion at a Y-junction with integrated<br />

bypass. Two sequences of micro droplets<br />

are transported each with constant flow rate to<br />

the Y-junction. The droplet, which first arrives at<br />

the stricture stops (Part B) and the carrier flow is<br />

guided through the bypass until a droplet from the<br />

opposite sequence arrives (Part C). Now droplet<br />

fusion occures (Part D) and the coalesced volume<br />

is ejected from the element.<br />

LabOnChip based system for identification<br />

of cancer cells<br />

(J. Felbel, M. Urban, M. Kielpinski, G. Mayer,<br />

T. Henkel)<br />

Main aim of the collaboration between health professionals,<br />

molecular biologists and micro system<br />

experts is the development of a LabOnChip based<br />

analysis system permitting the partly automated<br />

execution of micro flow-through-RT-PCR for the<br />

detection and counting of cancer cells in samples<br />

71


MIKROSYSTEME / MICROSYSTEMS<br />

72<br />

from cancer patients. The device combines techniques<br />

of segmented flow with thermal management<br />

of sample streams, according the given molecular<br />

biological protocol and real-time optical<br />

readout of the amplification process. The PCR<br />

reaction unit was developed as all-glass microchannel<br />

chip module, which is based on a patented<br />

flow-through thermocycler-chip. Thermal management<br />

is realized by a micro system made heat<br />

plate, providing thermal control and management<br />

for up to four thermal zones with minimized dimensions<br />

of the thermal gap between the heater<br />

zones. The PCR sample droplets are cycled during<br />

the flow over specific temperature zones (see figure<br />

3F on the color page). Main advantage of this<br />

LabOnChip module is the ability to process a high<br />

number of individual samples, each embedded in<br />

a single micro droplet by the serial flow regime.<br />

Possible fields of application of the RT-PCR are<br />

clinical diagnostics. For the establishment of the<br />

system disseminated tumour cells in the blood of<br />

patients with cervical carcinoma will be detected.<br />

A special characteristic of these tumour cells is<br />

the expression of oncogenes encoded by Human<br />

Papillomaviruses (HPV), which can be specifically<br />

amplified by this procedure.<br />

A successful PCR reaction of HPV targets in<br />

microchannels was demonstrated.<br />

B. Chipmodules for analysis<br />

of micro combustion<br />

(G. Mayer, J. Albert, T. Henkel)<br />

Chip modules for investigation of miniaturized<br />

combustion processes have been developed and<br />

successfully tested during an internal collaboration.<br />

Integrated static micro-mixers allow the efficient<br />

mixing of fuel gas and oxygen at macroscopic<br />

explosive conditions and the controlled combustion<br />

at the outlet nozzle. Up to 2300 K may be<br />

generated in micro-flames with a width of 2 mm<br />

and a height of 3 mm during micro combustion of<br />

Fig. 3.15: All-glass chip with integrated static<br />

mixer for analysis of micro flames.<br />

oxygen and hydrogen. Detailed results on the<br />

analysis of these micro chemical high temperature<br />

processes are shown in the contribution of<br />

the laser diagnostics department in this annual<br />

report.<br />

3.3 Appendix<br />

Partners<br />

National co-operation<br />

• Alphacontec, Berlin<br />

• Analytik AG, <strong>Jena</strong><br />

• Applikationszentrum Mikrotechnik, <strong>Jena</strong><br />

• ART-Photonics GmbH, Berlin<br />

• Bartec Componenten und Systeme GmbH,<br />

Gotteszell<br />

• Berliner Glas KGaA Herbert Kubatz GmbH &<br />

Co., Berlin<br />

• Bosch und Siemens Hausgeräte GmbH,<br />

Traunreuth<br />

• Cetoni GmbH, Gera-Korbußen<br />

• Deutsches Zentrum für Luft- und Raumfahrt<br />

e.V., Berlin<br />

• Entec GmbH, Ilmenau<br />

• eta_max space GmbH, Braunschweig<br />

• Fachhochschule <strong>Jena</strong><br />

• Fachhochschule Hannover, FB Elektrotechnik<br />

• Fachhochschule Wiesbaden,<br />

FB Physikalische Technik<br />

• Faseroptik <strong>Jena</strong> GmbH, Bucha<br />

• Fraunhofer Institut für Biomedizinische<br />

Technik (IBMT) Nuthetal<br />

• Friedrich-Schiller-Universität <strong>Jena</strong><br />

– Institut für Materialwissenschaft und Werkstofftechnologie<br />

– Institut für Physikalische Chemie<br />

– Institut für Physiologie II<br />

– Klinik für Frauenheilkunde<br />

• Fritz-Lipmann-Institut, <strong>Jena</strong><br />

• Hans-Knöll-Institut, <strong>Jena</strong><br />

• Hermsdorfer Institut für Technische Keramik<br />

e.V., Hermsdorf<br />

• HL-Planartechnik, Dortmund<br />

• HSG, Institut für Mikrotechnik und Informationstechnik<br />

e.V., Villingen-Schwenningen<br />

• IL Metronic Sensortechnik GmbH, Ilmenau<br />

• IMPAC Infrared GmbH, Frankfurt/Main<br />

• Industrieanlagen-Betriebsgesellschaft mbH,<br />

Ottobrunn<br />

• Institut für Bioprozess- und Analysenmesstechnik<br />

e.V. (iba), Heiligenstadt<br />

• Institut für Mikrotechnik (IMM), Mainz<br />

• <strong>Jena</strong> Bioscience GmbH, <strong>Jena</strong><br />

• JENOPTIK Laser, Optik, Systeme GmbH,<br />

<strong>Jena</strong><br />

• JENOPTIK Mikrotechnik GmbH, <strong>Jena</strong><br />

• Kayser-Threde GmbH, München<br />

• Labor Diagnostik Leipzig GmbH, Leipzig<br />

• Max-Born-Institut, Berlin<br />

• Micro-Hybrid Electronic GmbH, Hermsdorf


MIKROSYSTEME / MICROSYSTEMS<br />

• Mikrotechnik + Sensorik GmbH, <strong>Jena</strong><br />

• NFT Nanofiltertechnik, Bad Homburg<br />

• Optris GmbH, Berlin<br />

• PTB, Labor „Wechsel-Gleich-Transfer“,<br />

Braunschweig<br />

• Quantifoil Instruments GmbH, <strong>Jena</strong><br />

• RapID, GmbH, Berlin<br />

• Raytek GmbH, Berlin<br />

• Scanbec GmbH, Halle/Saale<br />

• Schering AG, Berlin<br />

• Seleon GmbH, Dessau<br />

• SurA Chemicals GmbH, <strong>Jena</strong><br />

• Technische Universität Bergakademie<br />

Freiberg, Institut für Physikalische Chemie<br />

• Technische Universität Ilmenau<br />

– Physikalische Chemie/Mikroreaktionstechnik<br />

– Zentrum für Mikro- und Nanotechnologie<br />

• Universität Leipzig, Institut für Virologie<br />

• Universität Dortmund<br />

• Universität Würzburg<br />

International co-operation<br />

• ALBEDO Technologies, Razès, France<br />

• Anhui Institute of Optics and Fine Mechanics,<br />

Hefei, China<br />

• Bundesamt für Eich- und Vermessungswesen<br />

(BEV), Wien, Austria<br />

• CAL-Sensors, Inc., Santa Rosa, CA, USA<br />

• CEA, Saclay, France<br />

• Centro National de Metrologia (CENAM),<br />

Querétaro, Mexico<br />

• Dalhousie University, Dept. of Physics and<br />

Atmospheric Science, Halifax, Canada<br />

• EDAS-Astrium-CRISA, Madrid, Spain<br />

• Foster-Miller, Waltham, MA, USA<br />

• Hebrew University, Jerusalem, Israel<br />

• HORIBA Jobin Yvon, Villeneuve, France<br />

• IR System Co. Ltd., Tokyo, Japan<br />

• Institutul National de Metrologie (INM)<br />

Bukarest, Romania<br />

• Istituto Elettrotecnico Nazionale (IEN), Turin,<br />

Italy<br />

• Karolinska Institutet, Clinical Research Center,<br />

Stockholm, Sweden<br />

• Key Techno Co., Ltd. Tokyo, Japan<br />

• Nanoprobes, Inc., Yaphank, NY, USA<br />

• Nanotec Electronica S.L., Madrid, Spain<br />

• National Institute of Metrology (NIMT),<br />

Bangkok, Thailand<br />

• National Measurement Institute (MNI),<br />

Lindfield, Australia<br />

• National Metrology Laboratory (NML), Sepang,<br />

Malaysia<br />

• National Research Counsil (NRC), Ottawa,<br />

Canada<br />

• Országos Mérésügyi Hivatal (OMH),<br />

Budapest, Hungary<br />

• Politechnika Śla¸ska, Gliwice, Poland<br />

• Slovenian Institute of Quality and Metrology<br />

(SIQ), Ljubljana, Slovenia<br />

• Standards, Productivity and Innovation Board<br />

(SPRING), Singapore<br />

• Tokyo University, Mechanical Engineering,<br />

Japan<br />

• Ukrmetrteststandart (UkrCSM), Kiev, Ukraine<br />

• Ulusal Metroloji Enstitüsü (UME), Gebze,<br />

Turkey<br />

• University of Bologna, Dipartimento di Biochimica,<br />

Italy<br />

• Universidad Carlos III, Optoelectronics and<br />

Laser Technology Group, Madrid, Spain<br />

• University of Copenhagen, Department Medical<br />

Biochemistry and Genetics, The Panum<br />

Institute, Denmark<br />

• University of Newcastle, Department of<br />

Chemistry, UK<br />

• University Warsaw, Institute of Micromechanics<br />

and Photonics, Poland<br />

Editor<br />

W. Fritzsche, W. Knoll:<br />

Special Issue “Nanoparticles for Biotechnology<br />

Applications”<br />

IEE Proceedings Nanobiotechnology, <strong>2005</strong><br />

Book chapters<br />

G. Festag, U. Klenz, T. Henkel, A. Csáki,<br />

W. Fritzsche:<br />

“Biofunctionalization of metallic nanoparticles<br />

and microarrays for biomolecular detection”<br />

in “Nanotechnologies for the Lifesciences”<br />

(book series) – Vol.1 “Biofunctionalization of<br />

Nanomaterials” (Ed. by C. Kumar, Wiley-VCH,<br />

<strong>2005</strong>)<br />

Publications<br />

V. Baier, R. Födisch, A. Ihring, E. Kessler,<br />

J. Lerchner, G. Wolf, J. M. Köhler, M. Nietzsch,<br />

M. Krügel:<br />

“Highly sensitive thermopile heat power sensor<br />

for micro-fluid calorimetry of biochemical processes”<br />

Sensors and Actuators A 123–124 (<strong>2005</strong>)<br />

354–359<br />

B. Dietzek, R. Maksimenka, W. Kiefer,<br />

G. Hermann, J. Popp, M. Schmitt:<br />

“The excited state dynamics of magnesium<br />

octaethylporphyrin studied by femtosecond timeresolved<br />

four-wave-mixing”<br />

Chem. Phys. Lett. 415, (<strong>2005</strong>) 94–99<br />

T. Eick, A. Berger, D. Behrendt, U. Dillner,<br />

E. Kessler:<br />

“An Alternative Method for Measuring the<br />

Responsivity of Thermopile Infrared Sensors”<br />

Proceedings of Sensor <strong>2005</strong>, 12th International<br />

Conference, Vol. I (<strong>2005</strong>) 109–114<br />

73


MIKROSYSTEME / MICROSYSTEMS<br />

74<br />

J. Felbel, A. Reichert, M. Kielpinski, M. Urban,<br />

D. Malsch, T. Henkel:<br />

„Entwicklung von mikrofluidischen Chipsystemen<br />

für biologische Anwendungen“<br />

7. Dresdner Sensor-Symposium in Dresdner<br />

Beiträge zur Sensorik (Editor: G. Gerlach, H. Kaden),<br />

TUDpress Vol. 24 (<strong>2005</strong>), Ergänzungsband,<br />

Seite LMP3<br />

J. Felbel, A. Sondermann, M. Kielpinski,<br />

M. Urban, T. Henkel, N. Häfner, M. Dürst,<br />

J. Weber, W. Fritzsche:<br />

“Single-cell-diagnostics with in-situ RT-PCR in<br />

flow-through microreactors: thermal and fluidic<br />

concepts”<br />

Proceedings of BioPerspektives <strong>2005</strong>, Pub.<br />

Dechema, Vol. 2 (<strong>2005</strong>) 265<br />

G. Festag, A. Steinbrück, A. Wolff, A. Csaki,<br />

R. Möller, W. Fritzsche:<br />

“Optimization of Gold Nanoparticle-Based DNA<br />

Detection for Microarrays”<br />

Journal of Fluorescence 15 (<strong>2005</strong>) 161–170<br />

T. Funck, M. Kampik, E. Kessler, M. Klonz, H. Laiz,<br />

R. Lapuh:<br />

“Determination of the AC/DC Voltage Transfer<br />

Standards at Low Frequencies”<br />

IEEE Transactions on Instrumentation and Measurement<br />

Vol. 54, No. 2 (<strong>2005</strong>) 807–809<br />

F. Garwe, A. Csaki, G. Maubach, A. Steinbrück,<br />

A. Weise, K. König, W. Fritzsche:<br />

“Laser pulse energy conversion on sequencespecifically<br />

bound metal nanoparticles and its<br />

application for DNA manipulation”<br />

Medical Laser Application 20 (<strong>2005</strong>) 201–206<br />

A. Grjasnow, R. Riesenberg, A. Wuttig:<br />

“Lenseless coherent imaging by multi-plane interference<br />

detection”<br />

Proceedings of the 106 th Conference of the<br />

DGaO (<strong>2005</strong>) A39<br />

P. M. Günther, F. Möller, T. Henkel, J. M. Köhler,<br />

G. A. Groß:<br />

“Formation of Monomeric and Novolak Azo Dyes<br />

in Nanofluid Segments by Use of a Double Injector<br />

Chip Reactor”<br />

Chemical Engineering & Technology 28, Iss. 4<br />

(<strong>2005</strong>) 520–527<br />

Z. Guttenberg, H. Müller, H. Habermüller,<br />

A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski,<br />

J. Scriba, A. Wixforth:<br />

“Planar chip device for PCR and hybridization<br />

with surface acoustic wave pump”<br />

Lab on a Chip, Vol. 5, Iss. 3 (<strong>2005</strong>) 308–317<br />

M. Harz, P. Rösch, K.-D. Peschke,<br />

O. Ronneberger, H. Burkhardt, J. Popp:<br />

“Micro-Raman spectroscopic identification of<br />

bacterial cells of the genus Staphylococcus and<br />

dependence on their cultivation conditions”<br />

Analyst, 130 (<strong>2005</strong>) 1543–1550<br />

E. Kessler, V. Baier, U. Dillner, J. Müller, A. Berger,<br />

R. Gärtner, S. Meitzner, K.-P. Möllmann:<br />

“High-Temperature Resistant Infrared Sensing<br />

Head”<br />

Proceedings of Sensor <strong>2005</strong>, 12 th International<br />

Conference, Vol. I, (<strong>2005</strong>) 73–78<br />

J. M. Köhler, T. Henkel:<br />

“Chip devices for miniaturized biotechnology”<br />

Applied Microbiology and Biotechnology 69,<br />

Iss. 2 (<strong>2005</strong>) 113–125<br />

J. M. Köhler, J. Wagner, J. Albert, G. Mayer,<br />

U. Hübner:<br />

„Bildung von Goldnanopartikeln und Nanopartikelaggregaten<br />

in statischen Mikromischern in<br />

Gegenwart von Rinderserumalbumin“<br />

Chemie Ingenieur Technik 77, No. 7 (<strong>2005</strong>)<br />

867–873<br />

J. Lerchner, A. Wolf, G. Wolf, V. Baier,<br />

E. Kessler:<br />

„Chip-Kalorimeter zur on-line-Detektion biomolekularer<br />

Prozesse“<br />

7. Dresdner Sensor-Symposium (Editor: G. Gerlach,<br />

H. Kaden) TUDpress (<strong>2005</strong>) 211–214<br />

An-Hui Lu, W. Schmidt, S. Tatar, B. Spliethoff,<br />

J. Popp, W. Kiefer, F. Schueth:<br />

“Formation of amorphous carbon nanotubes on<br />

ordered mesoporous silica support”<br />

Carbon, 43(8) (<strong>2005</strong>) 1811–1814<br />

G. Maubach, D. Born, A. Csaki, W. Fritzsche:<br />

“Parallel Fabrication of DNA-Aligned Metal<br />

Nanostructures in Microelectrode Gaps by a Self-<br />

Organization Process”<br />

Small 1 (<strong>2005</strong>) 619–624<br />

R. Möller, R. D. Powell, J. F. Hainfeld<br />

W. Fritzsche:<br />

“Enzymatic control of metal deposition as key<br />

step for a low-background electrical detection for<br />

DNA chips”<br />

Nano Letters (<strong>2005</strong>) 1475–1480<br />

R. Möller, W. Fritzsche:<br />

“Chip-based electrical detection of DNA”<br />

IEE Proceedings Nanobiotechnology 152 (<strong>2005</strong>)<br />

47–51<br />

U. Neugebauer, A. Szeghalmi, M. Schmitt,<br />

W. Kiefer, and J. Popp:<br />

“Vibrational Spectroscopic Characterization of<br />

Fluoroquinolones”<br />

Spectrochimica Acta Part A, 61 (<strong>2005</strong>) 1505–1517<br />

R. Riesenberg:<br />

“Pinhole array and lenseless microscopic microimaging”<br />

Proceedings of the 106 th Conference of the<br />

DGaO (<strong>2005</strong>) A26


MIKROSYSTEME / MICROSYSTEMS<br />

P. Rösch, M. Schmitt, K.-D. Peschke,<br />

O. Ronneberger, H. Burkhardt, H-W. Motzkus,<br />

M. Lankers, S. Hofer, H. Thiele and J. Popp:<br />

“Chemotaxonomic identification of single bacteria<br />

by micro-Raman spectroscopy: Application to<br />

clean room relevant biological contaminations”<br />

Appl. Environm. Mikrobiol. 71 (<strong>2005</strong>) 1626–1637<br />

P. Rösch, M. Harz, M. Schmitt, J. Popp:<br />

“Raman spectroscopic identification of<br />

yeast cells”<br />

J. Raman Spectrosc. 36 (<strong>2005</strong>) 377–379<br />

M. Schmitt and J. Popp:<br />

„Femtosekundenlaser-Mikroskopie“<br />

Laser Technik Journal, 4 (<strong>2005</strong>) 67–71<br />

single<br />

M. A. Strehle, P. Rösch, M. Baranska, H. Schulz,<br />

J. Popp:<br />

“On the way to a quality control of the essential<br />

oil of fennel by means of Raman spectroscopy”<br />

Biopolymers, 77(1) (<strong>2005</strong>) 44–52<br />

A. Wuttig:<br />

“Optimal transformations for optical multiplex<br />

measurements in the presence of photon noise”<br />

Appl. Opt. 44 (14) (<strong>2005</strong>) 2710–2719<br />

Invited talks<br />

W. Fritzsche, G. Maubach, R. Kretschmer,<br />

A. Csáki, D. Born:<br />

“Parallel approaches for the integration of individual<br />

molecular structures into electrode arrangements”<br />

EU Workshop “Nanotechnology Information<br />

Devices”, Madrid (Spain), January 31–February<br />

2, <strong>2005</strong><br />

W. Fritzsche:<br />

“Nanoparticle-Based Detection of DNA”<br />

German BioSensor Symposium, Regensburg,<br />

March 15–18, <strong>2005</strong><br />

W. Fritzsche:<br />

“Nanoparticle-Based DNA Nanotechnology”<br />

German-Israeli Foundation G.I.F. Meeting on<br />

Nanotubes and Nanowires, Dresden, June<br />

18–23, <strong>2005</strong><br />

W. Fritzsche:<br />

„Mikro- und Nanosysteme für die Biosensorik“<br />

2. <strong>Jena</strong>er Technologietag, September 12, <strong>2005</strong><br />

W. Fritzsche:<br />

“Nanoparticle-Based DNA Nanotechnology”<br />

EU Workshop “DNA-Based Nanowires”, Modena<br />

(Italy), October 7–8, <strong>2005</strong><br />

W. Fritzsche:<br />

„Metallische Nanopartikel für die Bioanalytik“<br />

BioHyTec Workshop „Moderne Aspekte der Biosystemtechnik“,<br />

Luckenwalde, November 17, <strong>2005</strong><br />

W. Fritzsche:<br />

“Metal Nanoparticles in Bioanalytics”<br />

Bioinspired Nanomaterials for Medicine and<br />

Technologies BioNanoMaT, DECHEMA Conference,<br />

Marl, November 23–24, <strong>2005</strong><br />

M. Kittler, X. Yu, M. Birkholz, T. Arguirov,<br />

M. Reiche, A. Wolff, W. Fritzsche, M. Seibt:<br />

“Self Organized Pattern Formation Of Biomolecules<br />

At Si Surfaces”<br />

European Materials Research Society Meeting,<br />

Strasbourg (France), May 31–June 3, <strong>2005</strong><br />

R. Möller, W. Fritzsche:<br />

“Metal nanoparticle-based molecular detection:<br />

Principles and applications”<br />

<strong>Annual</strong> Meeting of the German and Austrian<br />

Societies for Clinical Chemistry and Laboratory<br />

Diagnostics, <strong>Jena</strong>, October 6–8, <strong>2005</strong><br />

J. Popp:<br />

“Raman-Spectroscopy for a Rapid Identification<br />

of Single Microorganisms”<br />

5 th International Conference on Photonics,<br />

Devices and Systems, Prague (Czech Republic),<br />

June 8–11, <strong>2005</strong><br />

J. Popp:<br />

“Photonics meets Life Science – Innovative<br />

Aspects of Laser Spectroscopy”<br />

XIV. Krakow – <strong>Jena</strong> Symposium on Physical<br />

Chemistry, Dornburg, October 4–6, <strong>2005</strong><br />

J. Popp:<br />

„Innovative Bioanalytik mit Laserspektroskopischen<br />

Methoden“<br />

<strong>Jena</strong>er Technologie Tage (JETT), <strong>Jena</strong>, September<br />

12, <strong>2005</strong><br />

J. Popp:<br />

„Schwingungsspektroskopie zur Identifikation<br />

von einzelnen Mikroorganismen“<br />

Fraunhofer IPA Technologieforum, Institutszentrum<br />

der Fraunhofer-Gesellschaft, Stuttgart-Vaihingen,<br />

November 24, <strong>2005</strong><br />

J. Popp:<br />

“Rapid Microbe Identification by means of<br />

Raman-Spectroscopy”<br />

ECSBM <strong>2005</strong>, Aschaffenburg, September 3–8,<br />

<strong>2005</strong><br />

J. Popp:<br />

„Vision Biophotonik – Licht für die Gesundheit:<br />

Ein BMBF-Forschungsschwerpunkt stellt sich<br />

vor“<br />

Kaiser-Friedrich-Forschungspreis <strong>2005</strong> – Biophotonik,<br />

Goslar, May 3, <strong>2005</strong>,<br />

J. Popp:<br />

“Biophotonik – Photonics meets Life Science”,<br />

Instituts-Kolloquium, Hochschule Reutlingen –<br />

Reutlingen University, May 18, <strong>2005</strong><br />

75


MIKROSYSTEME / MICROSYSTEMS<br />

76<br />

J. Vesenka:<br />

“Progree Towards Growth and Colloidal Gold<br />

Decoration of G-wire DNA”<br />

EU Workshop “DNA-Based Nanowires”, Modena,<br />

(Italy), October 7–8, <strong>2005</strong><br />

Presentations/Posters<br />

A. Brösing, B. R. Kracht, J. Felbel, M. Urban,<br />

M. Kielpinski, A. Reichert, T. Henkel, J. Weber,<br />

C. Gärtner, H.-P. Saluz, H. Krügel, T. Häfner,<br />

M. Dürst, U. Liebert, J. M. Köhler:<br />

“Serial DNA Amplification in Submicroliter Volumes<br />

by Implementation of Segmented Flow in<br />

Flow-through Micro Devices”<br />

14 th International Conference of Medical Physics<br />

and 39 th <strong>Annual</strong> Meeting of the German Society<br />

for Biomedical Engineering, Nürnberg, September<br />

14–17, <strong>2005</strong>, talk<br />

A. Csáki, G. Maubach, F. Garwe, A. Steinbrück,<br />

K. König, W. Fritzsche:<br />

“A novel DNA restriction technology based on<br />

laser pulse energy conversion on sequence-specific<br />

bound metal nanoparticles”<br />

SPIE Photonics West, San Jose (USA), February<br />

23–28, <strong>2005</strong>, poster<br />

A. Csáki, G. Maubach, F. Garwe, A. Steinbrück,<br />

K. König, W. Fritzsche:<br />

“Sequence-Specific Bound Nanoparticles For A<br />

Novel Sub-Wavelength DNA Restriction Technology<br />

Based On Laser Pulse Energy Conversion”<br />

International Meeting “Focus on Microscopy”,<br />

<strong>Jena</strong>, March 20–23, <strong>2005</strong>, poster<br />

A. Csáki, A. Steinbrück, S. Schröter, T. Glaser,<br />

W. Fritzsche:<br />

“Fabrication and characterization of nanophotonic<br />

metal structures”<br />

Intern. Symposium on Molecular Plasmonics,<br />

<strong>Jena</strong>, May 19–21, <strong>2005</strong>, poster<br />

A. Csáki, F. Garwe, A. Steinbrück, A. Weise,<br />

G. Maubach, K. König, W. Fritzsche:<br />

“Laser-based sequence-specific DNA processing<br />

with sub-wavelength precision using DNAnanoparticle<br />

conjugates”<br />

Intern. Symposium on Molecular Plasmonics,<br />

<strong>Jena</strong>, May 19–21, <strong>2005</strong>, poster<br />

A. Csáki, A. Steinbrück, W. Fritzsche:<br />

“Nanoparticle-based molecular plasmonics”<br />

3. German-Canadian Workshop “Young Scientist<br />

in Photonics”, München, June 10–14, <strong>2005</strong>, talk<br />

A. Csáki, F. Garwe, A. Steinbrück, A. Weise,<br />

G. Maubach, K. König, W. Fritzsche:<br />

“Novel DNA restriction technology based on laser<br />

pulse energy conversion on sequence-specific<br />

bound metal nanoparticles”<br />

3. German-Canadian Workshop “Young Scientist<br />

in Photonics”, München, June 10–14, <strong>2005</strong>, poster<br />

T. Eick, A. Berger, D. Behrendt, U. Dillner,<br />

E. Kessler:<br />

“An Alternative Method for Measuring the<br />

Responsivity of Thermopile Infrared Sensors”<br />

Sensor <strong>2005</strong>, 12 th International Conference,<br />

Nürnberg, May 10–12, <strong>2005</strong>, talk B1.1<br />

J. Felbel, A. Sondermann, M. Kielpinski,<br />

M. Urban, I. Bieber, T. Henkel, W. Fritzsche:<br />

„Chip-Thermocycler für die Polymerase Kettenreaktion<br />

(PCR)“<br />

Micro Systems Technology Congress <strong>2005</strong>,<br />

Freiburg, October 10–12, <strong>2005</strong>, Proceedings: VDE<br />

VERLAG GMBH•Berlin•Offenbach, p. 54, talk<br />

W. Fritzsche, A. Csáki, A. Steinbrück,<br />

M. Raschke:<br />

“Metal nanoparticles as passive and active tools<br />

in bioanalytics”<br />

SPIE Photonics West, San Jose (USA), February<br />

23–28, <strong>2005</strong>, talk<br />

W. Fritzsche, A. Csaki, A. Steinbrück, F. Garwe,<br />

K. König, M. Raschke:<br />

“Metal Nanoparticles As Passive And Active Sub-<br />

Wavelength Tools For Biophotonics”<br />

International Meeting “Focus on Microscopy”,<br />

<strong>Jena</strong>, March 20–23, <strong>2005</strong>, talk<br />

W. Fritzsche:<br />

“DNA-based nanoparticle plasmonics for a highly<br />

parallel and integrated molecular nanotechnology”<br />

International Symposium on Molecular Plasmonics,<br />

<strong>Jena</strong>, May 19–21, <strong>2005</strong>, talk<br />

W. Fritzsche:<br />

“DNA nanotechnology with metal particle conjugates<br />

for applications in bioanalytics and molecular<br />

construction”<br />

University of Southern Danemark, Odense, February<br />

11, <strong>2005</strong>, talk<br />

W. Fritzsche:<br />

„Charakterisierung im Nanobereich“<br />

Weiterbildungsveranstaltung „Nanotechnologie“<br />

im Haus der Technik, Essen, March 4, <strong>2005</strong>, talk<br />

W. Fritzsche, A. Csáki, F. Garwe, G. Maubach,<br />

R. Möller, A. Steinbrück, M. Raschke, K. König:<br />

„Biokonjugierte metallische Nanopartikel als Tool<br />

für optische Detektion und Manipulation mit<br />

molekularer Spezifität“<br />

Symposium im Rahmen des Biophotonik-<br />

Schwerpunkts „Struktur und Dynamik biologischer<br />

Zellen mit optischen Methoden auf der<br />

Spur“, <strong>Jena</strong>, March 15–17, <strong>2005</strong>, talk<br />

W. Fritzsche:<br />

“Nanoparticle-DNA-complexes for bioanalytics,<br />

nanoelectrics and nanophotonics”<br />

Weizmann Institute Rehovot, December 1, <strong>2005</strong><br />

and Hebrew University Jerusalem, December 4,<br />

<strong>2005</strong>, (Israel), talks


MIKROSYSTEME / MICROSYSTEMS<br />

P. Grigaravicius, K. O. Greulich, S. Peters,<br />

P. Schellenberg:<br />

“Examining the influence of immobilization of<br />

proteins and their binding to ligands by probing<br />

their intrinsic UV-fluorescence decay”<br />

BioNanoMaterials, Marl, November 23–24, <strong>2005</strong>,<br />

poster<br />

T. Henkel:<br />

“Measurement of phase internal flow of liquid/<br />

liquid two phase flow in microchannels –<br />

approaches for control of mixing efficiency in<br />

microdroplets”<br />

Joint International PIVNET II/ERCOFTAC Workshop<br />

on Micro PIV and Applications in Microsystems,<br />

Delft (The Netherlands), April 7–8, <strong>2005</strong>,<br />

talk<br />

E. Kessler, V. Baier, U. Dillner, J. Müller, A. Berger,<br />

R. Gärtner, S. Meitzner, K.-P. Möllmann:<br />

“High-Temperature Resistant Infrared Sensing<br />

Head”<br />

Sensor <strong>2005</strong>, 12 th International Conference,<br />

Nürnberg, May 10–12, <strong>2005</strong>, talk A3.1<br />

M. Kittler, X. Yu, O. F. Vyvenko, M. Birkholz,<br />

W. Seifert, M. Reiche, T. Wilhelm, T. Arguirov,<br />

A. Wolff, W. Fritzsche, M. Seibt:<br />

“Self-organized pattern formation of biomolecules<br />

at silicon surfaces”<br />

2 nd International Symposium on Complex Material,<br />

Volkswagen Foundation, Stuttgart, June 2–3,<br />

<strong>2005</strong>, talk<br />

J. Lerchner, A. Wolf, G. Wolf, V. Baier,<br />

E. Kessler:<br />

“A new micro-fluid chip calorimeter for screening<br />

applications”<br />

7 th MEDICTA <strong>2005</strong>, Thessaloniki (Greece), July<br />

2–6, <strong>2005</strong>, talk<br />

J. Lerchner, R. Hüttl, A. Wolf, G. Wolf, V. Baier,<br />

R. Födisch:<br />

“Chip Calorimeter for Bioanalytical Applications”<br />

4. Deutsches BioSensor Symposium <strong>2005</strong>,<br />

Regensburg, March 13–16, <strong>2005</strong>, talk<br />

R. Petry, K. Gaus, K.-D. Peschke, H. Burkhardt,<br />

A. Wuttig, R. Riesenberg, J. Popp:<br />

„Modifiziertes, hochauflösendes UV-Mikro-Raman-Setup<br />

zur schwingungsspektroskopschen<br />

Untersuchung von Mikroorganismen“<br />

Biophotonik-Symposium „Struktur und Dynamik<br />

biologischer Zellen mit optischen Methoden auf<br />

der Spur“, <strong>Jena</strong>, March 15–17, <strong>2005</strong>, poster<br />

R. Riesenberg, A. Wuttig, R. Petry:<br />

„Neue leistungsfähige Spektrometer-Architekturen“<br />

Biophotonik-Symposium „Struktur und Dynamik<br />

biologischer Zellen mit optischen Methoden auf<br />

der Spur“, <strong>Jena</strong>, March 15–17, <strong>2005</strong>, talk<br />

R. Riesenberg:<br />

“Spectral Bioreader, spectral High-Throughput<br />

Screening”<br />

Presentation of the Campus Beutenberg in the<br />

MIREIKAN, Tokyo (Japan), September 11–14,<br />

<strong>2005</strong>, poster<br />

A. Steinbrück, A. Csaki, C.-C. Neacsu,<br />

M. Raschke, W. Fritzsche:<br />

“Preparation and optical characterization of coreshell<br />

bi-metal nanoparticles”<br />

International Symposium on Molecular Plasmonics,<br />

<strong>Jena</strong>, May 19–21, <strong>2005</strong>, poster<br />

A. Steinbrück, A. Csáki, G. Festag, W. Fritzsche:<br />

“Preparation and optical characterization of coreshell<br />

bi-metal nanoparticles”<br />

3. German-Canadian Workshop “Young Scientist<br />

in Photonics”, München, June 10–15, <strong>2005</strong>, poster<br />

A. Steinbrück, J. Vesenka, A. Csaki, G. Festag,<br />

W. Fritzsche:<br />

“Bi-metal nanostructures: Fabrication and characterization”<br />

4. Internationaler Workshop “Scanning Probe<br />

Microscopy in Life Sciences”, Berlin, October 13,<br />

<strong>2005</strong>, poster<br />

J. Vesenka, A. Wolff, A. Reichert, C. Holste,<br />

R. Möller, W. Fritzsche:<br />

“Progress towards growth and decoration of G-<br />

wire DNA with gold nanoparticles”<br />

EU Workshop “DNA-Based Nanowires”, Modena<br />

(Italy), October 7–8, <strong>2005</strong>, poster<br />

J. Weber, J. Felbel, W. Fritzsche:<br />

„Biologische Gefahrstoffe unter Beobachtung –<br />

Biotechnologische Mikrosysteme zur Gewinnung<br />

von Sicherheitsinformationen“<br />

Workshop „Neue Technologien – Ausblick in eine<br />

wehrtechnische Zukunft“, BMVg Bonn, November<br />

17, <strong>2005</strong>, talk<br />

A. Wolff, A. Csaki, W. Fritzsche:<br />

“Directed DNA-Immobilization on Solid Substrates”<br />

2 nd International Symposium on Complex Material,<br />

Volkswagen Foundation, Stuttgart, June 2–3,<br />

<strong>2005</strong>, poster<br />

A. Wolff, A. Csaki, W. Fritzsche:<br />

“DNA Stretching and Positioning for Nano-electronics”<br />

German-Israeli Foundation G.I.F. Meeting on<br />

Nanotubes and Nanowires, Dresden, June 18–23,<br />

<strong>2005</strong>, poster<br />

Patents<br />

R. Riesenberg, A. Wuttig:<br />

„Anordnung zur hochauflösenden digitalen Inline-<br />

Holographie“<br />

DE 10 <strong>2005</strong> 023 137.3 (15.05.<strong>2005</strong>)<br />

77


MIKROSYSTEME / MICROSYSTEMS<br />

78<br />

Lectures<br />

W. Fritzsche:<br />

„Nanobiotechnologie“<br />

FSU <strong>Jena</strong>, Chemisch-Geowissenschaftliche Fakultät,<br />

Sommersemester <strong>2005</strong><br />

W. Fritzsche:<br />

„Metallische Nanopartikel – Präparation, Charakterisierung,<br />

Anwendungen“<br />

FSU <strong>Jena</strong>, Chemisch-Geowissenschaftliche Fakultät,<br />

Wintersemester <strong>2005</strong><br />

W. Fritzsche:<br />

„Nanocharakterisierung“<br />

TU Ilmenau, Fakultät für Mathematik und Naturwissenschaften,<br />

Wintersemester <strong>2005</strong><br />

P. Schellenberg (mit R. Glaser, K. O. Greulich):<br />

„Biophysikalische Chemie II“<br />

FSU <strong>Jena</strong>, Biologisch-Pharmazeutische Fakultät,<br />

Sommersemester <strong>2005</strong><br />

P. Schellenberg:<br />

„Biomoleküle: Visualisierungen und Rechnungen<br />

am Computer“<br />

FSU <strong>Jena</strong>, Biologisch-Pharmazeutische Fakultät<br />

und Multimediazentrum, Wintersemester <strong>2005</strong>/<br />

2006<br />

Diploma Thesis<br />

Thomas Schüler:<br />

„Chip-basierter elektrischer DNA-Nachweis zur<br />

Identifikation von Mikroorganismen“<br />

Fachhochschule <strong>Jena</strong>, FB Medizintechnik, 09/05<br />

Eileen Heinrich:<br />

„Chip-basierter Nachweis von DNA und Proteinen<br />

mittels Molekülklassen-spezifischer Markierung“<br />

Fachhochschule <strong>Jena</strong>, FB Medizintechnik, 12/05<br />

Laboratory exercises<br />

A. Csáki, A. Wolff, W. Fritzsche:<br />

„AFM-Untersuchungen an gestreckt-immobilisierter<br />

DNA“<br />

Praktikum „Biophysikalische Chemie“ (Biochemie<br />

5. Semester) für Studenten der FSU <strong>Jena</strong><br />

WS 2004/<strong>2005</strong>, SS <strong>2005</strong>, WS <strong>2005</strong>/2006<br />

A. Csáki, A. Wolff, W. Fritzsche:<br />

„AFM-Untersuchungen von DNA-Molekülen“<br />

Ergänzungspraktikum für Genetik (11. Klasse)<br />

27.6.<strong>2005</strong>–1.7.<strong>2005</strong><br />

J. Felbel, A. Reichert, W. Fritzsche:<br />

„PCR in Chip-Bauelementen“<br />

Praktikum „Biophysikalische Chemie“ (Biochemie<br />

5. Semester) für Studenten der FSU <strong>Jena</strong><br />

WS 2004/<strong>2005</strong>, SS <strong>2005</strong>, WS <strong>2005</strong>/2006<br />

G. Festag, Th. Schüler:<br />

„DNA-Goldnanopartikel-Addukte auf Chipoberflächen“<br />

Praktikum „Molekulare Nanotechnologie“ für Studenten<br />

der TU Ilmenau, 12.–14.09.<strong>2005</strong><br />

G. Festag, G. Nitzsche:<br />

„Sequenzspezifischer DNA-Nachweis mittels Glasfasern“<br />

Praktikum „Nanobiotechnologie“ für Schüler des<br />

Gymnasiums Rudolstadt (11. Klasse),<br />

17.–28.10.<strong>2005</strong><br />

T. Henkel, D. Malsch:<br />

“Microparticle imaging velocimetry (µ-PIV)”<br />

Praktikum für Studenten der TU Ilmenau<br />

September <strong>2005</strong><br />

R. Möller, G. Festag, W. Fritzsche:<br />

„Mikroskopische Untersuchungen an DNA-Nanopartikel-Komplexen“<br />

Praktikum „Biophysikalische Chemie“ (Biochemie<br />

5. Semester) für Studenten der FSU <strong>Jena</strong><br />

WS 2004/<strong>2005</strong>, SS <strong>2005</strong>, WS <strong>2005</strong>/2006<br />

A. Wolff, A. Csaki:<br />

„Einführung in die Mikrosystemtechnik“<br />

Betriebspraktikum des Carl-Zeiss-Gymnasiums<br />

<strong>Jena</strong> (9. Klasse)<br />

31.01–03.02.05, 30.06.–12.07.05<br />

Practical Trainee<br />

Georg Ziegenhardt:<br />

„Aufbau von Anordnungen zur objektivlosen<br />

Mikroskopie“<br />

practical semester, Fachhochschule <strong>Jena</strong>,<br />

04–09/05<br />

Guest Scientists<br />

Prof. Dr. J. Vesenka<br />

University of New England, Department of<br />

Chemistry and Physics, Biddeford, ME (USA)<br />

September <strong>2005</strong>–January 2006<br />

Dr. Shin-ichi Tanaka<br />

Osaka University, Graduate School of Frontier<br />

Biosciences (Japan)<br />

May 2004–April <strong>2005</strong><br />

Memberships<br />

V. Baier<br />

Deutscher Verband für Schweißen und verwandte<br />

Verfahren e.V. (DVS), AG Waferbonden<br />

H. Dintner<br />

• Member of the Thuringian VDI/VDE working<br />

group „Mikrotechnik”


MIKROSYSTEME / MICROSYSTEMS<br />

• Member of scientific council of AMA, Fachverband<br />

für Sensorik e.V.<br />

W. Fritzsche<br />

• Scientific Advisory Committee of the International<br />

Society for Nanoscale Science, Computation<br />

and Engineering (ISNSCE),<br />

• Working Committee “Micro Systems for Biotechnology”<br />

E. Keßler<br />

Gesellschaft für Thermische Analyse e.V.,<br />

AK Thermophysik<br />

J. Popp<br />

• Editorial Board Member Journal of Raman<br />

Spectroscopy<br />

• Editorial Board Member ChemPhysChem<br />

• Member of Steering committee “International<br />

Conference on Raman Spectroscopy”<br />

• Member of Steering committee “Advanced<br />

Spectroscopies on Biomedical and Nanostructured<br />

Systems”<br />

• Member advisory board BioRegio <strong>Jena</strong> e.V.<br />

• Personal member: DPG, GDCh,<br />

Bunsen society<br />

R. Riesenberg<br />

• IRS2, International Conference and Exhibition<br />

on Infrared Sensors & Systems, programme<br />

committee and chair<br />

• CLEO Europe, 16 th International Conference<br />

on Lasers and Electrooptics Europe of the<br />

Optical Society of America (OSA), programme<br />

committee<br />

• Participant of the Humboldt Foundation,<br />

German-American Frontiers of Engineering<br />

in Optics<br />

• Personal member: SPIE, DPG<br />

Awards<br />

Winner of the Poster Award of the 7. Dresdner<br />

Sensor Symposium, 12.–14.12.<strong>2005</strong>, Dresden,<br />

Poster Title: „Entwicklung von mikrofluidischen<br />

Chipelementen für biologische Anwendungen”<br />

The Cetoni GmbH was the winner of the “Innovationspreis<br />

Thüringen Ost <strong>2005</strong>” for the development<br />

of an innovative microsyringe based multichannel,<br />

high precision liquid handling plattform,<br />

optimized for R&D and automation of microfluidic<br />

applications. The device is based on results of a<br />

joint project, between Cetoni GmbH and the<br />

<strong>IPHT</strong>, funded by the German Federation of Industrial<br />

Cooperative Research Associations “Otto<br />

von Guericke” (AiF).<br />

Conference Organization<br />

W. Fritzsche<br />

International Symposium “Molecular Plasmonics”,<br />

<strong>Jena</strong>, May 19–21, <strong>2005</strong><br />

J. Popp<br />

Symposium „Struktur und Dynamik biologischer<br />

Zellen mit optischen Methoden auf der Spur“,<br />

<strong>Jena</strong>, March 15–17, <strong>2005</strong><br />

79


LASERTECHNIK / LASER TECHNOLOGY<br />

4. Lasertechnik / Laser Technology<br />

Leitung/Head: Prof. Dr. H. Stafast<br />

e-mail: herbert.stafast@ipht-jena.de<br />

Laserchemie / Laser Chemistry<br />

Leitung/Head: PD Dr. F. Falk<br />

fritz.falk@ipht-jena.de<br />

Laserdiagnostik / Laser Diagnostics<br />

Leitung/Head: Prof. Dr. W. Triebel<br />

wolfgang.triebel@ipht-jena.de<br />

80<br />

4.1 Überblick<br />

Der Bereich Lasertechnik nutzt Laser als subtiles<br />

Werkzeug (Laserchemie) und als kontaktfreie<br />

Sonde (Laserdiagnostik). Die Hauptanwendungen<br />

als Werkzeug betreffen die<br />

Laserkristallisation von Silizium-Dünnschichten<br />

hauptsächlich für Solarzellen und zunehmend<br />

die Präparation von Silizium-Nanodrähten. Die<br />

Laserdiagnostik dient im Wesentlichen zur Charakterisierung<br />

von optischen Materialien, Dünnschichten<br />

und Komponenten sowie von Flammen.<br />

Für die Flammendiagnostik unter Mikrogravitation<br />

wird für den Fallturm Bremen ein<br />

abstimmbares und gepulstes UV-Scheibenlasersystem<br />

entwickelt. In allen genannten Gebieten<br />

zeigen die konsequente Aufbauarbeit in der<br />

Lasertechnik und ihre hohen Qualitätsstandards<br />

sehr gute Erfolge.<br />

4.1 Overview<br />

The division for Laser Technology applies lasers<br />

as subtle tools and as remote probes. The most<br />

important applications as a tool refer to laser<br />

crystallisation of silicon thin films for solar cells<br />

and increasingly to the preparation of silicon<br />

nanowires. Laser diagnostics is essentially used<br />

to characterise optical materials, thin films, and<br />

components as well as flames. For flame diagnostics<br />

under microgravity in the drop tower Bremen,<br />

a tuneable and pulsed UV disk laser system<br />

has been developed. Overall, the thorough establishment<br />

of laser technology and high quality<br />

standards are putting forth very good results.<br />

The Laser Chemistry section at <strong>IPHT</strong> is dominantly<br />

active in the field of solar cells (design and<br />

preparation) and is well established in the photo-


LASERTECHNIK / LASER TECHNOLOGY<br />

Combination of prisms and mirror to achieve single line operation in the F 2 laser of TUI Laser company.<br />

Diode laser crystallised seed layer with large grained crystalline silicon on glass (grains 10 – some<br />

100 µm wide, several mm long).<br />

81


LASERTECHNIK / LASER TECHNOLOGY<br />

82<br />

Die Abteilung Laserchemie arbeitet zum größten<br />

Teil auf dem Gebiet der Solarzellen (Design und<br />

Herstellung) und ist in der Photovoltaik(PV) fest<br />

verankert, in F&E-Fachkreisen (z.B. PVUniNetz<br />

und Solar INPUT) und Industriepartnerschaften<br />

(z.B. Firma Ersol, Erfurt und Antec Solar, Arnstadt).<br />

Herausragendes Projektergebnis im Jahr<br />

<strong>2005</strong> ist die produktionsnahe Präparation von<br />

Silizium-Kristallkeimschichten mit einem industrietauglichen<br />

Diodenlasersystem, das neben<br />

einer deutlichen Kapazitätssteigerung durch eine<br />

Laserleistung von 0,7 kW gegenüber 10–20 W<br />

aus einem Ar + -Laser auch eine Kristallkeimvergrößerung<br />

von 0,01–0,1 mm auf 0,1 bis wenige<br />

mm bewirkt (s. Farbbildseite).<br />

In enger Zusammenarbeit mit dem Institut für<br />

Festkörperphysik der Friedrich-Schiller-Universität,<br />

dem MPI für Mikrostrukturphysik, Halle und<br />

der Uníversität Halle ist das neue Arbeitsfeld mit<br />

nanostrukturierten Halbleitern auf eine breitere<br />

Basis gestellt worden. Zu der bereits 2004 etablierten<br />

CVD-Methode sind zur Präparation von<br />

Nanodrähten aus Silizium die Elektronenstrahlverdampfung<br />

und die Laserablation hinzugekommen.<br />

Inzwischen gelingt es, Nanodrähte in<br />

Vorzugsrichtungen wachsen zu lassen (Abb. 4.2).<br />

Die Abteilung Laserdiagnostik hat ihre Methodenvielfalt<br />

um die Frequenzverdopplung (SHG =<br />

second harmonic generation) von Femtosekundenlaserpulsen<br />

an Grenzflächen erweitert (Doktorarbeit<br />

T. Scheidt „summa cum laude“, vgl. auch<br />

Abb. 4.6) und kann damit selbst monomolekulare<br />

Dünnschichten diagnostizieren. Die an optischen<br />

Massivmaterialien erprobten Transmissions- und<br />

Absorptionsmessungen haben mit der Doktorarbeit<br />

von Ch. Mühlig („magna cum laude“) einen<br />

neuen Qualitätsstandard erreicht (Abb. 4.4 und<br />

4.5). Absorptionsmessungen mit Teststrahlablenkung<br />

(LID = laser induced deflection) und die<br />

laserinduzierte Fluoreszenz (LIF) gelingen zunehmend<br />

auch an Dünnschichten und optischen<br />

Komponenten durch Empfindlichkeitssteigerungen<br />

und/oder Konzeptverbesserungen der Messmethoden.<br />

Die Entwicklung des Scheibenlasersystems<br />

(ADL-FT = Advanced Disk Laser für Fallturm)<br />

machte <strong>2005</strong> – in bewährter Zusammenarbeit mit<br />

dem IFSW (Stuttgart) und ZARM (Bremen) –<br />

große Fortschritte. Die Ergebnisse aus den<br />

ersten Fallturm-Abwürfen haben inzwischen zu<br />

Konzeptverbesserungen geführt. Im <strong>IPHT</strong> gelang<br />

mit diesem Lasertyp auch die kurzwellige Anregung<br />

von OH-Radikalen für die Flammendiagnostik,<br />

in Zusammenarbeit mit dem Bereich<br />

Mikrosysteme auch an Mikroflammen (ca. 5 mm<br />

breit, 35 mm hoch, Abb. 4.7). In Kooperation mit<br />

dem Bereich Optik gelang auch die Laserdiagnostik<br />

an Partikel-„beladenen“ Flammen, die beispielsweise<br />

zur Glassynthese dienen.<br />

voltaics R&D community (e.g. PVUniNetz and<br />

Solar INPUT) and in industrial partnerships (e.g.<br />

Ersol company, Erfurt and Antec Solar, Arnstadt).<br />

The prominent success in <strong>2005</strong> consists of the<br />

production relevant preparation of silicon crystalline<br />

seed layers with a laser diode system suitable<br />

for industrial application. Not only was<br />

the throughput increased by using a 0.7 kW<br />

diode laser instead of the previous 10–20 W Ar +<br />

laser but also an enlargement of the crystallite<br />

size from 0.01–0.1 mm to 0.1–several mm was<br />

achieved (cf. coloured page).<br />

In close cooperation with the Institute of Solid<br />

State Physics at the Friedrich-Schiller-University,<br />

the Max-Planck-Institute of Microstructural Physics<br />

at Halle and the University of Halle, the new field<br />

of nanostructured semiconductors has been put<br />

onto an enlarged basis. The CVD method available<br />

in 2004 for nanowire preparation has been<br />

complemented by electron beam evaporation<br />

and laser ablation of silicon. Meanwhile we manage<br />

to grow epitaxial nanowires into preferred<br />

directions (Fig. 4.2).<br />

The Laser Diagnostics section has added frequency<br />

doubling (SHG = second harmonic generation)<br />

of femtosecond laser pulses on surfaces<br />

to its variety of experimental methods (PhD thesis<br />

of T. Scheidt “summa cum laude”, also cf.<br />

Fig. 4.6) enabling to characterize even monomolecular<br />

thin layers. The transmission and absorption<br />

measurement methods established with optical<br />

bulk materials achieved a new quality standard<br />

(PhD thesis of Ch. Mühlig, “magna cum<br />

laude”, also cf. Figs. 4.4 and 4.5). Absorption<br />

measurements with laser induced deflection<br />

(LID) of a probe beam and the laser induced fluorescence<br />

(LIF) now can more and more be<br />

transferred to thin films and optical components<br />

due to sensitivity enhancements and/or improved<br />

concepts of the measurement methods.<br />

The development of the disk laser system (ADL<br />

FT = Advanced Disk Laser for “Fallturm”) showed<br />

– in the experienced cooperation with IFSW<br />

(Stuttgart) and ZARM (Bremen) – much progress<br />

in <strong>2005</strong>. The results of the first experiments in the<br />

drop tower meanwhile induced several conceptual<br />

improvements. At <strong>IPHT</strong>, experiments with this<br />

kind of laser were performed at short wavelengths<br />

suitable to excite OH radicals in flames, in<br />

cooperation with the division for Microsystems<br />

even in microflames (5 mm broad, 35 mm high,<br />

Fig. 4.7). In cooperation with the Optics division<br />

laser diagnostics could be shown for particle<br />

“loaded” flames suitable e.g. for glass synthesis.<br />

Due to the extraordinary efforts of all coworkers<br />

during <strong>2005</strong> the division for Laser Technology<br />

managed to nearly maintain its project funds,<br />

level of publications, and patents in spite of the<br />

tough situation with governmental funds and the


LASERTECHNIK / LASER TECHNOLOGY<br />

Dank besonderem Engagement aller Mitarbeiter<br />

konnte der Bereich Lasertechnik <strong>2005</strong> trotz der<br />

verschärften Situation bei den öffentlichen Fördermitteln<br />

und des allgemein geringen Wirtschaftswachstums<br />

sein Niveau bei den Drittmittelprojekten,<br />

Veröffentlichungen und Patenten wenigstens<br />

in etwa halten. Das Drittmittelaufkommen von rund<br />

1,0 Mio “ liegt merklich unter dem Niveau des Vorjahres<br />

(1,2 Mio “). Insgesamt haben jedoch die<br />

mit dem Umzug erreichten kurzen Wege zu den<br />

anderen <strong>IPHT</strong>-Forschungsbereichen einen deutlichen<br />

Zuwachs bei der bereichsübergreifenden<br />

Zusammenarbeit bewirkt.<br />

generally poor rate of economic growth. The project<br />

funds in <strong>2005</strong> of about 1.0 Mio are close to<br />

the amount of 2004 (1.2 Mio “). Overall the move<br />

to the Beutenberg campus yielded, however, a<br />

considerable strengthening of trans-divisional<br />

cooperation due to the short distances to the<br />

other <strong>IPHT</strong> research divisions.<br />

4.2 Selected Results<br />

4.2.1 Laser chemistry<br />

Laser chemistry at <strong>IPHT</strong> is essentially concerned<br />

with the deposition of thin films and thin film systems,<br />

their physicochemical modification (particularly<br />

laser crystallisation) and some special<br />

items like spectroscopic diagnostics of thin film<br />

processing, nanowire preparation, and fs laser<br />

micromachining.<br />

Laser crystallisation<br />

(Gudrun Andrä, Joachim Bergmann,<br />

Arne Bochmann, Fritz Falk, Annett Gawlik,<br />

Ekkehardt Ose)<br />

For several years, <strong>IPHT</strong> has been aiming at the<br />

preparation of thin film solar cells consisting of<br />

large grained crystalline silicon on glass. The<br />

development of this new cell type is based on the<br />

deposition of amorphous silicon either by plasma<br />

CVD from SiH 4 (13.6 MHz) or by electron beam<br />

evaporation of bulk silicon and its in situ laser<br />

crystallisation. In a first step large crystal grains<br />

are obtained from 300–500 nm thick amorphous<br />

silicon layers by cw laser crystallisation (seed<br />

layer formation). Subsequently the seed layer<br />

undergoes epitaxial thickening by pulsed Layered<br />

Laser Crystallisation (LLC), an <strong>IPHT</strong> patented<br />

method. So far laboratory cells with an open circuit<br />

voltage of 510 mV and a conversion efficiency<br />

of 4.8% based on an absorber thickness of<br />

5 µm were obtained. Recent work addressed the<br />

acceleration (industrial application) and optimisation<br />

of the seed layer formation by applying a<br />

700 W diode laser focused to a line and scanned<br />

across the substrates to achieve crystallite sizes<br />

of 0.1 to several mm (cf. coloured page). Additional<br />

progress for the solar cell performance is<br />

expected from improving light trapping, improving<br />

contact and shunt resistances as well as minimising<br />

charge carrier recombination. The related<br />

work benefits from the discussions and cooperation<br />

with the Hahn-Meitner-Institute (HMI) at<br />

Berlin, Solar-Zentrum Erfurt at CiS, Ersol company<br />

at Erfurt, and INPUT Solar, a Thuringian association<br />

of photovoltaic industrial companies and<br />

R&D institutes.<br />

Thin film deposition and nanowire growth<br />

(Gudrun Andrä, Fritz Falk, Herbert Stafast,<br />

Thomas Stelzner)<br />

The deposition of Si/C/N thin films for tribological<br />

applications by RF plasma enhanced CVD using<br />

single source precursors was performed within<br />

the DFG program SPP 1119 in close cooperation<br />

with TU Darmstadt and RWTH Aachen. <strong>IPHT</strong><br />

contributed to the understanding of the complex<br />

CVD processes by comparing Si/C/N thin films<br />

obtained from two precursors, hexamethyldisilazane<br />

(CH 3 ) 3 Si-NH-Si(CH 3 ) 3 (HMDS) and<br />

bis(trimethylsilyl)carbodiimide (CH 3 ) 3 Si-N=C=N-<br />

Si(CH 3 ) 3 (BTSC). Hard Si/C/N thin films were<br />

obtained on the RF powered, but not on the<br />

grounded electrode. Therefore a heating system<br />

for the RF electrode was developed which<br />

allowed to investigate the substrate temperature<br />

dependence of the thin film properties. As an<br />

example the temperature dependence of the film<br />

hardness is sketched out in Fig. 4.1.<br />

Fig. 4.1: Martens hardness of Si/C/N thin films<br />

obtained from HMDS or BTSC as a function of<br />

the subtrate temperature.<br />

83


LASERTECHNIK / LASER TECHNOLOGY<br />

As a new field of research at <strong>IPHT</strong>, silicon<br />

nanowires are grown by thermal and plasma<br />

enhanced CVD from SiH 4 or electron beam evaporation<br />

via a gold nanodot supported vapor-liquid-solid<br />

mechanism. This work is performed in<br />

close cooperation with the universities of <strong>Jena</strong><br />

and Halle as well as the Max-Planck-Institute of<br />

Microstructural Physics at Halle. Evidently the<br />

nanowire growth conditions now can be sufficiently<br />

controlled to achieve well oriented epitaxial<br />

silicon wires with diameters ranging from<br />

50 nm to 1 µm (Fig. 4.2).<br />

Laser ablation<br />

(Gudrun Andrä, Fritz Falk, Joachim Bergmann,<br />

A. Bochmann)<br />

Femtosecond (fs) laser ablation for micromachining<br />

of hard metal tools as a spin-off from an<br />

InnoRegio project was presented at the LASER<br />

<strong>2005</strong> fair at Munich. The potential of fs laser<br />

micromachining could, in addition, be demonstrated<br />

in case of a diamond tip sharpened by fs<br />

laser ablation (Fig. 4.3). This result demonstrates<br />

the importance of nonlinear processes as diamond<br />

has an indirect bandgap of 5.48 eV (direct:<br />

7.3 eV) which is very large in comparison to the<br />

laser photon energy of 1.6 eV.<br />

Fig. 4.3: Diamond tip sharpened by fs laser ablation.<br />

4.2.2 Laser diagnostics<br />

The Laser Diagnostics section applies different<br />

types of lasers as remote and contactless probes<br />

particularly to characterise optical materials,<br />

components, and thin films and to investigate<br />

flames. Some years ago, the development of<br />

solid state lasers dedicated to flame diagnostics<br />

has been successfully established.<br />

Fig. 4.2: Silicon nanowires grown by CVD on<br />

Si(111), Si(100), and Si(110) surfaces (top to<br />

bottom).<br />

In <strong>2005</strong> two high ranking PhD theses were<br />

submitted to the Friedrich-Schiller-University:<br />

Ch. Mühlig could considerably improve the<br />

understanding of the ArF laser pulse absorption<br />

by fused silica and CaF 2 (magna cum laude). In<br />

both materials laser absorption is related to the<br />

generation and annealing of defects. T. Scheidt<br />

revealed 5 new laser induced effects at the technologically<br />

important Si/SiO 2 interface applying<br />

the surface second harmonic generation (SSHG)<br />

method using fs laser pulses (summa cum<br />

laude). He performed his experiments at the<br />

Laser Research Institute at the University of Stellenbosch,<br />

South Africa, after having built up the fs<br />

laser laboratory from scratch.<br />

84


LASERTECHNIK / LASER TECHNOLOGY<br />

UV optical materials<br />

(Alfons Burkert, Siegfried Kufert,<br />

Christian Mühlig, Wolfgang Triebel)<br />

UV laser lithography and other laser applications<br />

impose severe challenges on the optical quality<br />

and laser durability of bulk and thin film materials.<br />

<strong>IPHT</strong> has specialised for more than one decade<br />

on selected methods for their characterisation.<br />

Experience has been accumulated in close cooperation<br />

with Schott Lithotec company as the longstanding<br />

industrial partner as well as Jenoptik<br />

L.O.S. and Layertec companies and the FhG IOF<br />

within the last few years. The facilities, knowledge<br />

and experience of these institutions and<br />

<strong>IPHT</strong> complement each other to their mutual benefit,<br />

making <strong>Jena</strong> a place of high standards at the<br />

leading edge worldwide.<br />

The measurement methods at <strong>IPHT</strong> using<br />

excimer lasers at 248, 193, and 157 nm comprise<br />

(i) UV laser beam transmission, (ii) measurement<br />

of absorption by the laser induced probe beam<br />

deflection (LID) method, (iii) laser induced fluorescence<br />

(LIF), (iv) pulsed UV laser Raman spectroscopy,<br />

(v) vacuum UV spectroscopy, and (vi)<br />

wavefront deformation (S-H sensor). These have<br />

been complemented by (vii) surface second harmonic<br />

generation (SSHG) using fs laser pulses.<br />

small H values and unequivocally revealed a nonlinear<br />

dependence. This finding has a great<br />

impact on the extrapolation of the α(H=0) values<br />

which usually are used to estimate the materials`<br />

quality and laser durability. The α(H) data are<br />

reproduced by an empirical absorption model in<br />

the whole investigated H range (Fig. 4.4: solid<br />

line).<br />

In addition, the LID method can be calibrated<br />

absolutely and can separate laser absorption in<br />

the bulk material from that on surfaces. Bulk and<br />

surface absorption are calibrated by applying<br />

electrical resistance heaters introduced into the<br />

sample or attached to the selected sample surface<br />

area, respectively (Fig. 4.5). The method of<br />

sample surface heating has also been used to<br />

calibrate laser absorption in optical thin films, e.g.<br />

absorption in dielectric layers of highly reflective<br />

mirrors.<br />

The progress in investigating bulk absorption of<br />

excimer laser pulses by fused silica gained by<br />

applying the LID method becomes easily apparent<br />

in Fig. 4.4. Looking at the fluence dependence<br />

of the ArF laser absorption, it previously<br />

appeared to be a linear relation between the<br />

absorption coefficient α and the fluence H. These<br />

results from the Laser Laboratory Göttingen<br />

obtained by calorimetry were, however, limited to<br />

the high H region. The improved sensitivity of the<br />

LID method at <strong>IPHT</strong> (cf. e.g. annual report 2004)<br />

enabled us to investigate the α(H) behaviour at<br />

Fig. 4.5: Samples prepared for absolute calibration<br />

of laser absorption by using electrical resistance<br />

heaters introduced into the sample (bulk<br />

absorption) or attached to the sample surface<br />

(surface absorption).<br />

Fig. 4.4: ArF laser absorption coefficients α of<br />

fused silica as a function of the applied laser<br />

energy fluence H; α values in high H range<br />

obtained by calorimetry and α values in low H<br />

range by LID method (cf. text).<br />

The investigation of (inner) surfaces and thin<br />

films can be conveniently performed by SSHG.<br />

As an example Fig. 4.6 demonstrates that the<br />

SSHG signal obtained from the interface<br />

between silicon and its 5 nm thin natural oxide<br />

layer is sensitive to p-type doping of the silicon<br />

sample: The electric field induced SH (EFISH)<br />

signal at the beginning of irradiation is very small<br />

(no or low doping, upper part) or large (high doping,<br />

lower part). The signal development during<br />

irradiation shows how the doping induced field<br />

85


LASERTECHNIK / LASER TECHNOLOGY<br />

Fig. 4.7: 2D-LIF image of OH in small flame on<br />

top of microburner with 380 µm channel width.<br />

86<br />

Fig. 4.6: EFISH signal development (cf. text) at<br />

Si/SiO 2 surfaces with oxidized silicon of low<br />

(upper part) and high p-type doping (lower part).<br />

across the Si/SiO 2 interface is steadily compensated<br />

and overwhelmed by laser induced electron<br />

injection into the SiO 2 layer building up an<br />

electric field of opposite direction. In addition the<br />

SSHG method was successfully applied to detect<br />

the damage of monomolecular surface layers<br />

induced by excimer laser irradiation.<br />

Further investigations of optical materials and<br />

components in <strong>2005</strong> refer to the laser durability of<br />

fused silica (undesired microchannel formation),<br />

CaF 2 (HELD = high energy laser durability project),<br />

optical layers (impurity and defect detection)<br />

as well as the performance of optical functional<br />

elements.<br />

Combustion processes<br />

(Dirk Müller, Wolfgang Paa, Wolfgang Triebel)<br />

Laser diagnostics is applied to investigate steady<br />

state and dynamic flames up to pulse repetition<br />

rates of 1 kHz. The well-established detection of<br />

OH radicals by LIF now has – in cooperation with<br />

the Optics division – also successfully been<br />

applied to flames of industrial burners containing<br />

particles (loaded flames) and used to determine<br />

local gas temperatures. On the other hand, the LIF<br />

method is capable of characterising very small<br />

flames created by microburners which were prepared<br />

in the division for Microsystems (Fig. 4.7).<br />

The breadboard model of the advanced disk<br />

laser system (ADL) at <strong>IPHT</strong> <strong>Jena</strong> was further<br />

improved and tested to generate 2D-LIF images<br />

of OH in flames. This required generating the<br />

third harmonic of the ADL pulses efficiently with<br />

sufficiently high pulse energy. Furthermore, some<br />

preliminary work has been performed towards<br />

fast wavelength switching of the ADL system<br />

using the available tuning components at the high<br />

laser pulse repetition rate.<br />

Moreover the ADL-FT (Fallturm) system was tested<br />

in several drops with maximum deceleration of<br />

about 35 g in polystyrene granulate: Evidently the<br />

laser system survives these procedures. Convection,<br />

however, is still present in front of the laser<br />

disk and changes when microgravity conditions<br />

start. These changes are small but sufficient to<br />

influence the laser operation so that some revisions<br />

of the laser system and operation are required.<br />

4.3 Appendix<br />

Partners (in alphabetical sequence)<br />

in <strong>Jena</strong> and Thuringia:<br />

• CiS Institut für Mikrosensorik, Erfurt<br />

• Ersol Solar Energy AG, Erfurt<br />

• Fachhochschule (University of Applied Sciences)<br />

<strong>Jena</strong><br />

• Fraunhofer-Institut für Angewandte Optik und<br />

Feinmechanik (IOF), <strong>Jena</strong><br />

• Friedrich-Schiller-Universität, <strong>Jena</strong><br />

Institut für Festkörperphysik und Astrophysikalisches<br />

Labor<br />

• Institut für Fügetechnik und Werkstoffprüfung<br />

(IFW), <strong>Jena</strong><br />

• ITP GmbH, Weimar<br />

• Jenoptik Laser.Optik.Systeme GmbH, <strong>Jena</strong><br />

• Jenoptik Laserdiode GmbH, <strong>Jena</strong><br />

• Layertec GmbH, Mellingen<br />

• LLT Applikation GmbH, Ilmenau<br />

• MWS Schneidwerkzeuge GmbH&Co. KG,<br />

Schmalkalden


LASERTECHNIK / LASER TECHNOLOGY<br />

• PV Silicon GmbH, Erfurt<br />

• Schott Lithotec AG, <strong>Jena</strong><br />

• Technische Universität Ilmenau, Institut für<br />

Physik<br />

• Technische Universität Ilmenau, Institut für<br />

Werkstofftechnik<br />

• U. Speck Sensorsysteme GmbH, <strong>Jena</strong><br />

in Germany:<br />

• Carl Zeiss Oberkochen GmbH (CZO)<br />

• Carl Zeiss SMT AG<br />

• DLR Verbrennungsforschung, Stuttgart<br />

• Hahn-Meitner-Institut (HMI), Berlin<br />

• Heraeus Tenevo, Bitterfeld<br />

• Innovavent GmbH, Göttingen<br />

• Institut für Solarenergieforschung GmbH,<br />

Hameln<br />

• Lambda Physik AG, Göttingen<br />

• Laser Labor Göttingen (LLG)<br />

• Laser Zentrum Hannover (LZH)<br />

• Leica Microsystems Wetzlar GmbH<br />

• Martin-Luther-Universität Halle, Fachbereich<br />

Physik<br />

• Max-Planck-Institut für Mikrostrukturphysik,<br />

Halle<br />

• Neon Products GmbH (NP), Aachen<br />

• Neon Technik Leipzig GmbH (NEL)<br />

• Öl-Wärme-Institut gGmbH, Aachen<br />

• Schott FT, Mainz<br />

• Technische Universität München, Lehrstuhl für<br />

Thermodynamik<br />

• TUI Laser AG, Germering/München<br />

• Universität Erlangen, Lehrstuhl für Technische<br />

Thermodynamik<br />

• Universität Stuttgart, Institut für Strahlwerkzeuge<br />

• Universität Stuttgart, Institut für Thermodynamik<br />

• TU Dresden, Lehrstuhl für Verbrennungsmotoren<br />

• Zentrum für Angewandte Raumfahrttechnik<br />

and Mikrogravitation (ZARM), Universität<br />

Bremen<br />

in foreign countries:<br />

• NASA, Glenn Research Center, Cleveland,<br />

Ohio, USA<br />

• University of Lund, Sweden, Combustion<br />

Physics<br />

• University of New Mexico, USA, Dept. Physics<br />

and Astronomy<br />

• University of Rennes I, France, Sciences et<br />

Propriete de la Matiere<br />

• University of Stellenbosch, South Africa,<br />

Physics Department<br />

• University of Vigo, Spain, Dept. of Applied<br />

Physics<br />

Publications<br />

G. Andrä, J. Bergmann, F. Falk, E. Ose,<br />

S. Dauwe, T. Kieliba, C. Beneking<br />

“Characterization and Simulation of Multicrystalline<br />

LLC-Si Thin Film Solar Cells”<br />

Proc. 20 th Europ. PVSEC, Barcelona, Spain, June<br />

06–10, <strong>2005</strong>, pp. 1171–1174<br />

G. Andrä, J. Bergmann, F. Falk<br />

“Laser crystallized multicrystalline silicon thin films<br />

on glass”<br />

Thin Solid Films 487 (<strong>2005</strong>) 77–80<br />

A. Baum, D. Grebner, W. Paa, W. Triebel,<br />

M. Larionov, A. Giesen<br />

“Axial Mode Tuning of a Single Frequency Yb:YAG<br />

Thin Disk Laser”<br />

Appl. Phys. B 81 (<strong>2005</strong>) 1091–1096<br />

A. Burkert, W. Triebel, Ch. Mühlig, D. Keutel,<br />

L. Parthier, U. Natura, S. Gliech, S. Schröder,<br />

A. Duparré<br />

“Investigating the ArF laser stability of CaF 2<br />

elevated fluences”<br />

Proc. SPIE 5878 (<strong>2005</strong>) pp. E-1–E-8<br />

F. Garwe, U. Hübner, T. Clausnitzer, E.-B. Kley,<br />

U. Bauerschäfer<br />

“Elongated gold nanostructures in silica for metamaterials:<br />

theory, technology and optical properties”<br />

Proc. SPIE 5955 (<strong>2005</strong>) pp. 59550T-1–59550T- 8<br />

Ch. Mühlig, W. Triebel, J. Bergmann, S. Kufert,<br />

S. Bublitz, H. Bernitzki, M. Klaus<br />

“Absorption and fluorescence measurements of<br />

DUV/VUV coatings”<br />

Proc. SPIE 5963 (<strong>2005</strong>) pp. 59630P-1–59630P-8<br />

D. Müller, W. Paa, W. Triebel, C. Menzel,<br />

K. Lucka, H. Köhne<br />

„PLIF – Diagnostik von Formaldehyd mit kHz-<br />

Repetitionsrate in der Mischzone von flüssigen<br />

Brennstoffen und vorgeheizter Luft“<br />

VDI-Berichte Nr. 1888 (<strong>2005</strong>) 355–360<br />

W. Paa, D. Müller, A. Gawlik, W. Triebel<br />

“Combined Multispecies PLIF Diagnostics with<br />

kHz Rate in a Technical Fuel Mixing System<br />

Relevant for Combustion Processes”<br />

Proc. SPIE 5880 (<strong>2005</strong>) pp. N-1–N-8<br />

D. Probst, H. Hoche, H. Scheerer, E. Broszeit,<br />

C. Berger, Y. Zhou, R. Hauser, R. Riedel,<br />

Th. Stelzner, H. Stafast<br />

“Development of PE-CVD Si/C/N:H-films for Tribological<br />

and Corrosive Complex-Load Conditions”<br />

Surf. Coat. Technol. 200/1-4 (<strong>2005</strong>) 355–359<br />

T. Scheidt, E. G. Rohwer, H. M. v. Bergmann,<br />

H. Stafast<br />

“Femtosecond laser diagnostics of thin films, surfaces<br />

and interfaces”<br />

South African J. Science 101(<strong>2005</strong>) 267–271<br />

T. Scheidt, E. G. Rohwer, H. M. von Bergmann,<br />

E. Saucedo, L. Fornaro, E. Dieguez, H. Stafast<br />

“Optical second harmonic imaging of Pb x Cd 1-x Te<br />

ternary alloys”<br />

J. Appl. Phys. 97 (<strong>2005</strong>) 103104-1–103104-6<br />

Th. Stelzner, M. Arold, F. Falk, H. Stafast,<br />

D. Probst, H. Hoche<br />

“Single source precursors for plasma-enhanced<br />

CVD of SiCN films, investigated by mass spectrometry”<br />

Surf. Coat. Technol. Vol 200/1-4 (<strong>2005</strong>) 372–376<br />

at<br />

87


LASERTECHNIK / LASER TECHNOLOGY<br />

88<br />

Th. Stelzner, F. Falk, H. Stafast, D. Probst,<br />

H. Hoche<br />

“Plasma-enhanced CVD of hard SiCN thin films<br />

using bis-(trimethylsilyl)-carbodiimide or hexamethyl<br />

disilazane as single source precursors”<br />

Proc. Internat. Symp. EUROCVD-15, Bochum<br />

Vol. <strong>2005</strong>-09 pp.1014–1020<br />

W. Triebel, Ch. Mühlig, S. Kufert<br />

“Application of the laser induced deflection (LID)<br />

technique for low absorption measurements in<br />

bulk materials and coatings”<br />

Proc. SPIE 5965 (<strong>2005</strong>) pp 59651J-1–59651J-10<br />

Presentations (Talks and Posters)<br />

H. Stafast<br />

„Der Laser als kontaktfreie Sonde“<br />

Vortragsreihe Heinrich-Böll-Gymnasium/Rotary<br />

Club<br />

Talk at Heinrich-Böll-Gymnasium, Saalfeld,<br />

February 14, <strong>2005</strong><br />

H. Stafast, D. Müller, W. Paa, W. Triebel,<br />

A. Burkert<br />

„Moderne Entwicklungen der planaren<br />

laserinduzierten Fluoreszenz für die Laserdiagnostik<br />

von Verbrennungsprozessen“<br />

Poster at 19. Vortragstagung GDCh-Fachgruppe<br />

Photochemie, <strong>Jena</strong>, March 29–31, <strong>2005</strong><br />

F. Falk<br />

„Laserkristallisation von Halbleitern“<br />

Talk at WIAS-Kolloquium, Berlin, April 4, <strong>2005</strong><br />

H. Stafast<br />

„Laserdiagnostik an Flammen – Methoden- und<br />

Geräteentwicklung“<br />

Talk at Colloquium, Institute of Physical and Theoretical<br />

Chemistry, University of Frankfurt/Main,<br />

May 23, <strong>2005</strong><br />

G. Andrä, J. Bergmann, F. Falk, E. Ose,<br />

S. Dauwe, T. Kieliba, C. Beneking<br />

“Characterization and Simulation of Multicrystalline<br />

LLC-Si Thin Film Solar Cells”<br />

Poster at 20 th Europ. PVSEC, Barcelona, Spain,<br />

June 06–10, <strong>2005</strong><br />

J. Bergmann, A. Bochmann, R. Stober<br />

„Mikromaterialbearbeitung mit dem Ultrakurzpulslaser“<br />

Poster at “Laser <strong>2005</strong>”, München, June 13–16,<br />

<strong>2005</strong><br />

F. Falk<br />

“Laser crystallization – a way to produce crystalline<br />

silicon films on glass or on polymer substrates”<br />

Talk at 16 th Amer. Conf. Crystal Growth and Epitaxy,<br />

Big Sky, Montana, USA, July 10–14, <strong>2005</strong><br />

W. Paa, D. Müller, A. Gawlik, W. Triebel<br />

“Combined Multispecies PLIF Diagnostics with<br />

kHz Rate in a Technical Fuel Mixing System<br />

Relevant for Combustion Processes”<br />

Talk at SPIE Optics & Photonics <strong>2005</strong>, San Diego,<br />

USA, July 31–August 4, <strong>2005</strong><br />

A. Burkert, W. Triebel, Ch. Mühlig, D. Keutel,<br />

L. Partier, U. Natura, S. Gliech, S. Schröder,<br />

A. Duparré<br />

“Investigating the ArF laser stability of CaF 2 at<br />

elevated fluences”<br />

Talk at SPIE Optics & Photonics, San Diego, USA,<br />

July 31–August 4, <strong>2005</strong><br />

F. Garwe, U. Hübner, T. Clausnitzer, E.-B. Kley,<br />

U. Bauerschäfer<br />

“Elongated gold nanostructures in silica for metamaterials:<br />

theory, technology and optical properties”<br />

Talk at SPIE, Warschaw, Poland, August 28–<br />

September 2, <strong>2005</strong><br />

Th. Stelzner, F. Falk, H. Stafast, D. Probst,<br />

H. Hoche<br />

“Plasma-enhanced CVD of hard SiCN thin films<br />

using bis-(trimethylsilyl)-carbodiimide or hexamethyl<br />

disilazane as single source precursors”<br />

Talk at EUROCVD-15, Bochum, September<br />

04–09, <strong>2005</strong><br />

W. Triebel, Ch. Mühlig, S. Kufert<br />

“Application of the laser induced deflection (LID)<br />

technique for low absorption measurements in<br />

bulk materials and coatings”<br />

Talk at SPIE Optical Systems Design, <strong>Jena</strong>, September<br />

12–16, <strong>2005</strong><br />

Ch. Mühlig, W. Triebel, J. Bergmann, S. Kufert,<br />

S. Bublitz, H. Bernitzki, M. Klaus<br />

“Absorption and fluorescence measurements of<br />

DUV/VUV coatings”<br />

Talk at SPIE Optical Systems Design, <strong>Jena</strong>, September<br />

12–16, <strong>2005</strong><br />

W. Triebel<br />

“Characterization of DUV optical materials by LIF<br />

and direct absorption measurements”<br />

Talk at Boulder Damage Symposium, Boulder,<br />

USA, September 19–21, <strong>2005</strong><br />

D. Müller, W. Paa, W. Triebel, C. Menzel,<br />

K. Lucka, H. Köhne<br />

„PLIF – Diagnostik von Formaldehyd mit kHz-<br />

Repetitionsrate in der Mischzone von flüssigen<br />

Brennstoffen und vorgeheizter Luft“<br />

Talk at 22. Deutscher Flammentag, Braunschweig,<br />

September 21–22, <strong>2005</strong><br />

H. Stafast<br />

“Laserdiagnostics in Flames – Development of<br />

methods and tools”<br />

Talk at Colloquium of Laser Research Institute,<br />

University of Stellenbosch, South Africa, October<br />

11, <strong>2005</strong><br />

F. Falk, G. Andrä<br />

„Herstellung von Dünnschichtsolarzellen mit Hilfe<br />

von Excimerlasern“<br />

Talk at Technologieseminar: Laseranwendungen<br />

in der Photovoltaik, Göttingen, November 8, <strong>2005</strong>


LASERTECHNIK / LASER TECHNOLOGY<br />

F. Falk<br />

„Mikromaterialbearbeitung mit dem Ultrakurzpuls-Laser“<br />

Poster at TransferX-Messe, Dresden, November<br />

09–11, <strong>2005</strong><br />

W. Triebel<br />

„Charakterisierung UV-optischer Dünnschichten<br />

durch LIF und direkte Absorptionsmessung“<br />

Talk at TransferX-Messe, Dresden, November<br />

09–11, <strong>2005</strong><br />

Patents<br />

G. Andrä, F. Falk<br />

„Dünnschichtsolarzelle und Verfahren zur Herstellung<br />

eines Halbleiterbauelements“<br />

DE 10 <strong>2005</strong> 045 096.2 (21.09. <strong>2005</strong>)<br />

Lectures<br />

H. Stafast<br />

„Angewandte Lasertechniken“, 2-stündige Wahlvorlesung<br />

über 4 Semester an der Friedrich-<br />

Schiller-Universität, Winter 2004/<strong>2005</strong> bis Winter<br />

<strong>2005</strong>/2006<br />

F. Falk<br />

„Photovoltaik“, 2-stündige Wahlvorlesung an der<br />

Friedrich-Schiller-Universität, Winter 2004/<strong>2005</strong><br />

„Elastizitätstheorie“, 2-stündige Wahlvorlesung<br />

an der Friedrich-Schiller-Universität, Sommer <strong>2005</strong><br />

„Thermodynamik der Phasenübergänge“, 2-<br />

stündige Wahlvorlesung an der Friedrich-Schiller-<br />

Universität, Winter <strong>2005</strong>/2006<br />

PhD Theses<br />

Torsten Scheidt: Charge Carrier Dynamics and<br />

Defect Generation at the Si/SiO 2 Interface<br />

Probed by Femtosecond Optical Second Harmonic<br />

Generation*)<br />

Friedrich-Schiller-University, <strong>Jena</strong>, Faculty of Physics<br />

and Astronomy<br />

Supervisor: Prof. H. Stafast<br />

*) work at University of Stellenbosch, South Africa<br />

Christian Mühlig: Zur Absorption gepulster ArF-<br />

Laserstrahlung in hochtransparenten optischen<br />

Materialien<br />

Friedrich-Schiller-University, <strong>Jena</strong>, Faculty of Physics<br />

and Astronomy<br />

Supervisor: Prof. H. Stafast<br />

Diploma and Bachelor Theses<br />

Markus Arold: Massenspektroskopie an Ausgangsstoffen<br />

zur PE-CVD von Si-C-N-Schichten<br />

Friedrich-Schiller-University, <strong>Jena</strong>, Faculty of Physics<br />

and Astronomy<br />

Supervisor: Prof. H. Stafast<br />

Björn Eisenhawer: Wachstum von Si-Nanowires<br />

mittels Chemical Vapor Deposition<br />

Friedrich-Schiller-University, <strong>Jena</strong>, Faculty of Physics<br />

and Astronomy<br />

Supervisors: Dr. F. Falk/Dr. G. Andrä<br />

Sven Germershausen: Untersuchungen zur<br />

Laserkristallisation von Germaniumschichten auf<br />

Glassubstraten<br />

University of Applied Sciences, <strong>Jena</strong>, SciTec<br />

Supervisor: Dr. G. Andrä<br />

Michael Kaiser: Präparation von Solarzellen in<br />

multikristallinen LLC-Si-Schichten<br />

Technical University of Ilmenau, Mechanical<br />

Engineering<br />

Supervisors: Dr. F. Falk/Dr. G. Andrä<br />

Laboratory Exercises<br />

Ch. Noppeney, Fachhochschule <strong>Jena</strong>, Physikalische<br />

Technik<br />

Ch. Voigtländer, Friedrich-Schiller-Universität, <strong>Jena</strong>,<br />

Technische Physik<br />

J. Grasemann, O. Pabst, D. Rettig, Carl-Zeiss-<br />

Gymnasium (Spezialklasse), <strong>Jena</strong><br />

M. Aubel und R. Pagel, Staatl. Berufsbildendes<br />

Schulzentrum <strong>Jena</strong> Göschwitz, Höhere Berufsfachschule<br />

M. Röder, FH Coburg<br />

Commitees<br />

G. Andrä<br />

– Executive Committee, INPUT Solar, Thuringia<br />

W. Triebel<br />

– Program Committee “Optical Diagnostics”,<br />

SPIE Conf., San Diego, USA, August <strong>2005</strong><br />

– DUV/VUV Optics, Common working group<br />

of PhotonicNet and OptoNet<br />

– GET-UP initiative for start-up companies<br />

Award<br />

H. Stafast, professor extraordinary of University<br />

of Stellenbosch, South Africa<br />

Exhibitions<br />

– LASER <strong>2005</strong>, World of Photonics, Munich<br />

– TransferX fair, Dresden<br />

– Faszination Licht, Goethegalerie, <strong>Jena</strong><br />

New Equipment<br />

Thin film deposition unit with several material<br />

sources<br />

89


INNOVATIONSPROJEKT / INNOVATION PROJECT<br />

E. Innovationsprojekt <strong>2005</strong> / Innovation Project <strong>2005</strong><br />

90<br />

Nanostructured Ta 2 O 5 layers<br />

for optochemical/biophotonic<br />

sensors and solar cells<br />

(S. Schröter, U. Hübner, W. Morgenroth,<br />

R. Boucher, R. Pöhlmann, G. Schwotzer,<br />

T. Wieduwilt, S. Brückner, U. Jauernig,<br />

A. Csáki, W. Fritzsche, G. Andrä, E. Ose)<br />

Tantalum pentoxide layers are particularly suitable<br />

for a variety of optical applications due to<br />

their high refractive index, low absorption from<br />

the visible to the infrared, good adhesion to glass<br />

and silicon substrates, and high resistance to<br />

acids and bases. Furthermore, nanoporous<br />

Ta 2 O 5 layers could be a promising material for<br />

optical sensors. We have investigated several<br />

fabrication technologies for optical waveguide<br />

grating couplers and two-dimensional resonant<br />

gratings in compact and nanoporous Ta 2 O 5 layers<br />

as devices for optochemical and biophotonic sensors,<br />

and characterised their optical properties.<br />

Because of the afore mentioned optical properties<br />

and the high melting point of about 1800 °C,<br />

Ta 2 O 5 has potential as an intermediate layer for<br />

thin film solar cells.<br />

Waveguide grating couplers<br />

Electron beam exposure (LION LV1) or DUV<br />

interference lithography at 244 nm were applied<br />

to the patterning of about 300 nm thick resist<br />

(ZEP or ARP610) gratings with periods of 410 to<br />

420 nm atop a NiCr/C/NiCr hard mask sputtered<br />

onto the Ta 2 O 5 layers on quartz or borofloat glass<br />

substrates. The resist gratings were transferred<br />

by a multi-step etching process into the bottom<br />

NiCr layer, and from this by Ar-IBE, 40 to 70 nm<br />

into the Ta 2 O 5 layer. An example is shown in<br />

Fig. E1.<br />

Fig. E1: SEM picture of a grating with a period of<br />

416 nm etched 67 nm into a 147 nm thick Ta 2 O 5<br />

layer. The visible surface texture is created by the<br />

gold coating for the SEM.<br />

For the nanoporous layers it was necessary to<br />

cool the substrate down to –20 °C during etching<br />

in order to maintain porosity. At higher temperatures<br />

it is supposed that a compaction of the<br />

material occurs. The sensor functionality for the<br />

nanoporous layers was also verified by considering<br />

the adsorption isotherms in water vapour as<br />

an example.<br />

Fig. E2 shows the transmission spectra of a grating<br />

coupler for the case of a grating with a period<br />

of 416 nm etched into a 600 nm thick nanoporous<br />

Ta 2 O 5 layer at two different water vapour<br />

pressures of 3.5·10 –2 mbar (dry) and 22 mbar<br />

(wet). The magnitude of the spectral shifts<br />

depends on the quantity of water molecules<br />

adsorbed in the nanopores and the related<br />

refractive index change.<br />

Fig. E2: Spectral shift of transmission minima<br />

with humidity due to the coupling of the normally<br />

incident TE polarised light with two different<br />

waveguide modes.<br />

The observed shifts of 8.5 and 9.3 nm for the<br />

short and long wavelength minimum, respectively,<br />

are in good agreement with a change in the<br />

refractive index from about 2.01 to 2.05.<br />

2D resonant waveguide gratings<br />

Resonance diffraction effects from 2D dielectric<br />

gratings can be used to create very sensitive<br />

angle and/or wavelength encoded sensors. Ta 2 O 5<br />

layers perforated with square or triangular lattices<br />

of air holes are suitable for this purpose. Gratings<br />

with a period of e.g. 620 nm exhibit, for hole<br />

diameters between about 200 and 400 nm, pronounced<br />

resonant diffraction properties at least<br />

within the spectral region from 700 to 1350 nm.<br />

The fabrication technology was essentially the<br />

same as for the grating couplers. The ARP671<br />

resist masks were created by e-beam exposure<br />

(ZBA23). In order to obtain steep edge profiles an<br />

ECR-RIE process with a CF 4 /CHF 3 plasma was<br />

applied to transfer the pattern from the NiCr mask


into the Ta 2 O 5 layers. Unlike for porous layers the<br />

samples of compact material had to be heated<br />

up to 150 °C for optimal results.<br />

An example of a triangular grating in nanoporous<br />

Ta 2 O 5 is shown in Fig. E3.<br />

INNOVATIONSPROJEKT / INNOVATION PROJECT<br />

Fig. E3: Triangular grating with a period of<br />

620 nm and an average hole diameter of about<br />

230 nm at the top etched 150 nm into a 600 nm<br />

thick layer of porous Ta 2 O 5 imaged at 0° and<br />

60°.<br />

The polarisation independent transmission spectra<br />

for normal incident light for the case of a dry<br />

and wet environment are displayed in Fig. E4.<br />

The pronounced transmission minima at λ ><br />

830 nm are caused by resonant diffraction<br />

effects.<br />

Fig. E5: Simulated transmission properties of a<br />

grating with the parameters given in Fig. E3,<br />

assuming cylindrical holes with a diameter of<br />

210 nm.<br />

A variety of different devices which include the<br />

square lattices of holes have been fabricated in<br />

compact and humidity sensitive Ta 2 O 5 layers and<br />

are currently under detailed investigation.<br />

The nanoporous tantalum pentoxide samples<br />

were provided by the Fraunhofer IOF in <strong>Jena</strong> and<br />

investigated here mainly because it could be possible<br />

selectively to measure the moisture content<br />

of other than water vapour analytes.<br />

The filling of the holes of two-dimensional gratings<br />

with metallic nanoparticles provides an<br />

opportunity for the biosensing of e.g. DNA molecules<br />

immobilised on gold nanoparticles. This<br />

method utilises the special plasmon scattering<br />

properties of the ordered arrays.<br />

Chemically activated samples with 2D-gratings<br />

were placed at an angle into preheated (80 °C)<br />

colloidal nanoparticle solutions (30 nm in diameter)<br />

with a concentration of 2 · 10 11 particles/ml.<br />

During the drying process the receding meniscus<br />

causes an influx of the metal nanoparticles into<br />

the holes, see Fig. E6.<br />

Fig. E4: Spectral shift of the transmission minima<br />

between dry and wet samples (∆λ min = 10.4 and<br />

13.5 nm for the first and second resonance wavelength,<br />

respectively).<br />

By simulating the transmission behaviour with a<br />

rigorous coupled wave method, a sufficient<br />

agreement with the experiment was obtained for<br />

150 nm deep cylindrical holes with a diameter of<br />

210 nm, see Fig. E5.<br />

A change of the refractive index from 1.97 to 2.01<br />

yields ∆λ min = 13 and 15 nm for the first and second<br />

transmission minimum, respectively, and all<br />

wavelengths of the transmission minima differ<br />

from the experimental values by less than 1.5 nm.<br />

Fig. E6: Transmission mode optical micrograph of<br />

a 2D grating in Ta 2 O 5 (square array with a period<br />

of 620 nm) when the holes are partially filled with<br />

gold particles.<br />

91


INNOVATIONSPROJEKT / INNOVATION PROJECT<br />

The varying shades (spectrum from white to<br />

greenish-blue in a colour picture) indicate the different<br />

level of filling and positioning accuracy. In<br />

order to improve the homogeneity a further optimisation<br />

of this technique is required.<br />

Thin film solar cells<br />

For the first time layered laser crystallised (LLC)<br />

thin film solar cells were prepared on borofloat<br />

glass substrates covered with a tantalum pentoxide<br />

layer.<br />

Our standard cell structure is sketched in Fig. E7.<br />

Immediately on top of the borofloat glass sub-<br />

Fig. E7: Design of a standard LLC cell.<br />

strate a multicrystalline silicon layer system with<br />

grains exceeding 100 µm in size is deposited.<br />

The layer system consists of a p + -doped highly<br />

conductive seed layer, a p-doped absorber layer<br />

and an n-doped emitter layer. A metal electrode<br />

acts as a light reflector. The seed layer is prepared<br />

by cw laser crystallisation of amorphous<br />

silicon. The absorber and emitter are prepared by<br />

continuously depositing amorphous silicon on top<br />

of the seed combined with repeated excimer<br />

laser irradiation in order to guarantee epitaxial<br />

growth. In various papers it has been demonstrated<br />

that intermediate layers between the<br />

glass and silicon may increase the cell efficiency<br />

by reducing the reflection loss. Moreover, the barrier<br />

may act as a light trapping structure due to<br />

surface scattering and as a diffusion barrier<br />

against foreign atoms of the glass. In the case of<br />

LLC cells the intermediate layer has to withstand<br />

the laser crystallisation process. Standard layers<br />

usually applied in solar cells such as SnO 2 , ZnO<br />

or a-SiN x :H do not meet this requirement.<br />

Because of its suitable optical properties and<br />

high melting point of above 1800 °C we expect<br />

tantalum pentoxide layers to be an interesting<br />

alternative. Therefore, we tested the laser stability<br />

of this material. We demonstrated that on<br />

Ta 2 O 5 layers LLC solar cells can be prepared successfully.<br />

However, it turned out that Ta 2 O 5 layers<br />

require an excimer laser pretreatment. Without<br />

the pretreatment layer damage was observed<br />

after laser crystallisation of amorphous silicon<br />

due to the formation of gas bubbles. Moreover,<br />

due to the laser pretreatment the Ta 2 O 5 layer surface<br />

roughens so that increased light scattering<br />

is observed which is beneficial for the solar cell.<br />

In Fig. E8 a current-voltage diagram of a 2 µm<br />

thick cell with a tantalum pentoxide intermediate<br />

layer is shown, as compared to a standard cell. In<br />

both cases no metal reflector for light trapping<br />

was present. Even though the Ta 2 O 5 cell has inferior<br />

properties as compared to the standard cell it<br />

is still a positive result. It was demonstrated that<br />

the intermediate layer has the desired properties.<br />

In order to improve the cell parameters the<br />

excimer laser pretreatment has to be optimised<br />

so that the crystal quality of the silicon is<br />

increased to that of the standard cells.<br />

Fig. E8: I–V-diagram of a LLC cell with tantalum<br />

pentoxide intermediate layer (full line) as compared<br />

to a standard LLC cell (broken line).<br />

92

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!