11.11.2013 Views

Single-Crystal Diamond: - Geophysical Laboratory

Single-Crystal Diamond: - Geophysical Laboratory

Single-Crystal Diamond: - Geophysical Laboratory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Single</strong>-<strong>Crystal</strong> <strong>Diamond</strong>:<br />

NEW DEVELOPMENTS<br />

AND APPLICATIONS<br />

Russell J. Hemley<br />

<strong>Geophysical</strong> <strong>Laboratory</strong><br />

Carnegie Institution of Washington<br />

Washington, DC<br />

AIRAPT-23 International Conference<br />

Mumbai, India, Sept. 27, 2011


<strong>Diamond</strong> and India<br />

KOH-I-NOR<br />

From Mogul<br />

Dynasty to<br />

the British<br />

Crown<br />

The earliest known reference to diamond is a<br />

Sanskrit manuscript, the Arthasastra ("The<br />

Lesson of Profit") by Kautiliya, a minister of the<br />

Mauryan dynasty in 320-296 BCE:<br />

“A diamond that is big, heavy, capable of bearing<br />

blows, with symmetrical points, capable of<br />

scratching from the inside a glass vessel filled<br />

with water, revolving like a spindle and brilliantly<br />

shining is excellent."<br />

HOPE<br />

From<br />

Golconda,<br />

India to<br />

Washington<br />

D.C.<br />

2


<strong>Diamond</strong> Properties: Early Measurements<br />

<strong>Diamond</strong> has the lowest<br />

compressibility of any known<br />

substance …intimately related<br />

to its low expansion coefficient<br />

and its high atomic<br />

frequency..<br />

L. H. Adams, Compressibility of<br />

<strong>Diamond</strong>, J. Wash. Acad. Sci. 11,<br />

45 (1921).<br />

C. Ramaswamy,<br />

“Raman Effect in<br />

<strong>Diamond</strong>, Nature.<br />

Wash. Acad. Sci.<br />

125, 704 (1921).


<strong>Diamond</strong> Physical Properties are Unique<br />

SINGLE CRYSTAL<br />

DIAMOND<br />

• High hardness/strength<br />

• Transparency<br />

• Low friction<br />

• Low adhesion<br />

• High thermal conductivity<br />

• Low thermal expansion<br />

• High refractive index<br />

• Chemical inertness<br />

• Biocompatibility<br />

• Radiation hardness<br />

• Electrical insulator<br />

• Electronic properties


The Rich<br />

Polymorphism<br />

of Carbon<br />

Predicted<br />

[Hemley,<br />

Crabtree<br />

& Buchanan,<br />

Physics Today<br />

(2009)]


OUTLINE<br />

1. Introduction<br />

2. <strong>Diamond</strong> Synthesis<br />

3. Enhancing Properties<br />

4. Applications<br />

5. Outlook and Perspectives


There is a need to expand current high-pressure<br />

technology to tackle a broad range of new problems<br />

H 2<br />

[Ichimura, Phys. Rep. (1995)]<br />

Carnegie Institution


There is a need to expand current high-pressure<br />

technology to tackle a broad range of new problems<br />

• Reach higher pressures (e.g., 1 TPa range) and<br />

temperatures (>1 eV)<br />

• Larger sample volumes needed (neutron, x-ray<br />

inelastic scattering, THz spectra, NMR)<br />

• Further improve accuracy/precision applications<br />

of multiple simultaneous measurements<br />

Ø Not available nature: dan we synthesize<br />

the needed material?<br />

CVD homoepitaxial growth<br />

1.7mm<br />

3.5mm<br />

7.5mm<br />

16.2mm<br />

0.025 ct 0.25 ct 2.5 ct 25 ct<br />

Carnegie Institution


Synthesis of <strong>Diamond</strong><br />

High-pressure, high-temperature (HPHT) synthesis<br />

HPHT Synthesis of<br />

<strong>Diamond</strong> at General<br />

Electric, Co. (1954); 5-6<br />

GPa, >1000 K, catalysts<br />

HPHT <strong>Diamond</strong> Anvils<br />

• Ultrahigh purity possible<br />

• Sizes to


Synthesis of <strong>Diamond</strong><br />

Low-pressure, metastable synthesis:<br />

chemical vapor deposition (CVD)<br />

• Begun in early 1980’s<br />

• Polycrystalline films<br />

• Growth rates ~1 µm/hr<br />

CVD diamond is synthesized in metastable temperature and pressure<br />

conditions. Atomic hydrogen is key to diamond deposition.<br />

Microwaves<br />

H 2 + CH 4<br />

• Co-deposition (sp 2 , sp 3 )<br />

• Etching (sp 2 , sp 3 )<br />

H 2<br />

e-, Δ <br />

CH 4 + H CH 3 + H 2<br />

2 H<br />

CVD diamond<br />

Plasma is created<br />

H<br />

DIFFUSION<br />

H<br />

H<br />

substrate<br />

T s = 800 – 1000 o C<br />

10 10


CVD techniques have enabled new diamond technology<br />

<strong>Diamond</strong> Growing in a Plasma Reactor<br />

Microwave Plasma CVD:<br />

100-200 torr H 2 pressures<br />

[Yan et al., Proc. Nat. Acad. Sci. (2002)]<br />

“Designer Anvils”<br />

[Vohra & Weir, High<br />

Pressure Phen. (2002)]<br />

Production of regular<br />

diamond anvil<br />

• 2.45 mm high<br />

• 0.28 carats<br />

• Grown in 1 day<br />

[Yan et al. Phys. Stat. Sol. (2004)]<br />

[Ho et al., Industrial<br />

<strong>Diamond</strong> Rev. (2006)]<br />

Half-inch single crystal


High-pressure/high-temperature (HPHT) annealing<br />

can enhance optical properties and hardness<br />

• Colored CVD<br />

diamonds made<br />

transparent<br />

• Introduce new<br />

colors<br />

[Charles et al.,<br />

Phys. Stat. Sol. (2004)]<br />

[Yan et al. Phys. Stat. Sol. (2004)] Carnegie Institution


[Meng et al., Proc. Nat. Acad. Sci. (2008)]<br />

Carnegie Institution


Boron-doping of single crystal CVD<br />

diamond at high growth rates<br />

• Solid h-BN introduced<br />

into plasma (B, N codoping)<br />

4 ppm boron<br />

• Boron content from<br />

SIMS and IR spectra<br />

UV-Visible Spectra<br />

Synchrotron Infrared Spectra<br />

[Liang et al., J. Phys.: Condens. Matter (2009)]<br />

Carnegie Institution


There is a significant drop in N-V center<br />

luminescence of the B-boron doped diamond<br />

[Liang et al., J. Phys.: Condens. Matter (2009)]<br />

Carnegie Institution


Fracture toughness is dramatically enhanced<br />

by annealing and B-,N- codoping<br />

• Low-P, high-T annealing can improve SC-CVD diamond<br />

hardness by 50% without reducing fracture toughness<br />

• Boron/nitrogen co-doping can greatly increase fracture toughness<br />

Carnegie Institution


Different MPCVD reactors<br />

are used and being<br />

developed<br />

2.45 GHz, 5-8 kW<br />

Modified Seki AX5400, AX6500<br />

2.45 GHz,<br />

10-15 kW<br />

New Design<br />

915 MHz, 75 kW<br />

Seki AX6600<br />

Multiple diamond growth (>100 pieces)!<br />

and large diamond!<br />

Cross section Electric field<br />

of CVD distribution<br />

chamber<br />

[Hemawan et al., in preparation]


Cutting/<br />

Shaping<br />

Anvils<br />

l<br />

l<br />

l<br />

l<br />

Q-switched Nd:YAG Laser; robotic XYZ stage<br />

Rough diamond to 1 carat anvil in under an hour<br />

Final mechanical polishing/etching/annealing<br />

Sputtering/focused ion beam/fine laser cutting


Anvil surface characterization is essential<br />

for enhanced high P-T performance<br />

[Krasnicki et al.,<br />

to be published]<br />

As measured by profilometer<br />

Three-dimensional view<br />

of culet segment<br />

Polished/etched in-house<br />

Commercial polish<br />

Nanometer smoothness<br />

of carefully polished/etched<br />

diamond<br />

Zygo New View<br />

optical profilometer<br />

Carnegie Institution


Carnegie Institution


CVD single-crystal<br />

diamond anvils<br />

[Meng et al., NDNC (2009)]<br />

2.3 carat<br />

0.3 carat<br />

Carnegie Institution


Large high-purity CVD single crystal<br />

anvils are being produced<br />

[Meng et al., Phys. Status<br />

Solidi. A, in press]<br />

High-purity CVD single-crystal material<br />

has been grown at high growth rates<br />

(around 50 µm/h) in the absence of<br />

impurities (other than hydrogen)<br />

Transmittance<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

This material has high optical quality and<br />

clarity without visible growth interface<br />

UV-VIS transmission<br />

high-purity CVD plate (0.5 mm)<br />

2.4 ct high-purity CVD anvil (4 mm)<br />

400 500 600 700 800<br />

Wavelength (nm)<br />

Second order Raman<br />

Intensity (normalized to diamond peak)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Raman/Photolum<br />

First order Raman<br />

First order Raman<br />

Second order Raman<br />

480 540 600<br />

Wavelength (nm)<br />

Cathodoluminescence<br />

12000<br />

Raman scattering intensity<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

CVD homoepitaxial growth<br />

0<br />

2100 2400 2700<br />

1.7mm<br />

3.5mm<br />

7.5mm<br />

Raman shift (cm -1 )<br />

16.2mm<br />

Quality factor = 5<br />

0.025 ct 0.25 ct 2.5 ct 25 ct<br />

Carnegie Institution


Spectroscopic characterization reveals origin of residual<br />

color and ways to further improve optical quality<br />

Photoluminescence<br />

Mapping<br />

Cathodoluminescence<br />

PL Intensity (normalized to diamond peak)<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

First order Raman<br />

Second order Raman<br />

NV center<br />

480 540 600<br />

Wavelength (nm)<br />

Excited by 457nm laser<br />

Measuring from culet to girdle<br />

The color due to unintentional<br />

leak of nitrogen<br />

Carnegie Institution


High-purity electronic grade<br />

diamond can now be produced<br />

[Meng et al., in preparation]<br />

1<br />

Relative Intensity<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Quality factor QF = (F-B)/(R-B)<br />

B - Background<br />

Intensity<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

1800 2000 2200 2400 2600 2800<br />

Wavenumber (cm -1 )<br />

514.532<br />

B<br />

F<br />

R<br />

Raman scattering intensity<br />

0<br />

0 1000 2000 3000 4000 5000 6000 7000<br />

12500<br />

Wavenumber (cm -1 )<br />

10000<br />

7500<br />

5000<br />

2500<br />

QF = 0.04<br />

0<br />

1800 2000 2200 2400 2600 2800 3000<br />

Raman shift (cm -1 )<br />

Carnegie Institution


16.2mm<br />

1.6mm<br />

10.7mm<br />

Reaching megabar and multimegabar pressures<br />

<strong>Single</strong>-crystal CVD anvils<br />

can generate multimegabar<br />

B<br />

pressures<br />

2.8mmA<br />

[W. Mao et al.,<br />

Appl. Phys.<br />

Lett. (2003)]<br />

seed<br />

CVD homoepitaxial growth<br />

G<br />

12.1mm<br />

H<br />

B<br />

9°<br />

!<br />

Composite<br />

anvil polishing<br />

As-grown CVD anvil<br />

[Zha et al., High Pres. Res. (2009)]<br />

Final polishing<br />

double bevel<br />

Carnegie Institution


Next generation anvil technology: large and small<br />

• <strong>Single</strong> <strong>Crystal</strong> <strong>Diamond</strong> Belt Apparatus<br />

[Boehler and Guthrie,to be published]<br />

• Nanomachining<br />

intelligent devices<br />

[Matsui, to be published]<br />

• Laser machining<br />

• Focused ion beams<br />

• Lithography<br />

[Struzhkin et al., to be published]


Next generation high-pressure devices<br />

with larger sample volume<br />

[Strobel et al.,<br />

in preparation]<br />

NEUTRON SCATTERING<br />

Spallation Neutron Source (SNS)<br />

<br />

D 2 :D 2 O, C 1<br />

(1 GPa, RT)<br />

0.08mm 3<br />

He: ice II<br />

structure R-3<br />

[Londono et<br />

al. Nature 332,<br />

141 (1988)]<br />

SNAP<br />

INSTRUMENT<br />

• A volume reduction of 1,000 relative to<br />

conventional cells (SNS flux)<br />

• On a path for increasing sample volume<br />

with larger, high-strength anvils


<strong>Single</strong>-crystal CVD diamond is an excellent window<br />

for small-angle x-ray scattering (SAXS)<br />

Diameter: 3.0 mm, Thickness: 0.5 mm<br />

The lack of strong cross-shaped scattering and large<br />

dimensions makes CVD diamond promising for high-pressure SAXS<br />

[Meng, Ando, Wang, Gruner<br />

et al., to be published]


Origin of high quality CVD diamond<br />

SAXS windows and test results<br />

[Meng, Ando, Wang, Gruner<br />

et al., to be published]<br />

{004} projection topography of CVD diamond <br />

Diameter: 3.0 mm, Thickness: 0.5 mm<br />

<br />

<br />

<br />

Tests: SAXS spectra of T4<br />

lysozyme mutants during<br />

pressure-induced folding<br />

and unfolding<br />

CVD diamond with nitrogen<br />

has stronger SAXS scattering<br />

!


These techniques are needed to understand the molecular<br />

basis of microbial viability at very high pressures<br />

E. coli viability at 2.5 GPa<br />

[after Bartlett, Sloan Workshop (2008)]<br />

Morphology changes<br />

in pressurized E. coli<br />

from 1 GPa<br />

[Griffin et al.,<br />

to be published]<br />

[Sharma et al., to be published]<br />

Development of new diamondwindowed<br />

high-pressure apparatus<br />

for biology and soft matter


Optically Detected Magnetic Resonance<br />

[Struzhkin et al.,<br />

to be published]<br />

3.4<br />

Pressure dependence <br />

of the ODMR transi9on <br />

First high pressure experiment<br />

3.3<br />

NaCl<br />

Ne<br />

NV -<br />

29 GPa<br />

Frequency (GHz)<br />

3.2<br />

3.1<br />

3.0<br />

2.9<br />

0 10 20 30<br />

Pressure (GPa)


Extending measurements of superconductivity<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

3<br />

1<br />

2<br />

3 1 2<br />

[Chen et al., Nature (2009)]


Prospects for magnetic<br />

sensing with NV - centers<br />

PREDICTED SUPERCONDUCTING/<br />

SUPERFLUID METALLIC HYDROGEN<br />

[Babaev et al., Phys. Refv. Lett. (2005)]<br />

NV -<br />

• ODMR NVmapping<br />

with<br />

pressure<br />

• Compression of<br />

nano-diamonds with<br />

single NV - centers –<br />

detection of small<br />

samples in DACs<br />

• Magnetic mapping using ensembles of NV -<br />

centers in DACs under pressure vortices, flux<br />

lines, domains on micron scales<br />

[Nature Nanotechnology, v.6, 358–363, 2011]<br />

Insert


Catalyst-free high P-T synthesis<br />

of nanopolycrystalline diamond <br />

New form of carbon:<br />

mesoporous diamond <br />

[Zhang et al., Proc. Nat. Acad. Sci. (2010)]<br />

Polynanocrystalline <strong>Diamond</strong><br />

(Ehime Univ.) <br />

[Nakamoto et al., Rev. Sci. Instrum. (2011)]<br />

Polycrystalline graphite transforms <br />

to superhard nanopolycrystalline <br />

diamond at 20 GPa and 2300 °C. <br />

The technique has been extended <br />

to create mesoporous forms. <br />

TEM image reveal a<br />

mesostructure in the diamond


New transformation in sp 3<br />

carbon – ‘amorphous diamond’<br />

[Lin et al., Phys. Rev., Lett., in press] <br />

• Conversion of glassy sp 2 carbon to<br />

all sp 3 carbon<br />

• No glassy carbon observed above 45 GPa<br />

• Reversible transformation


Probing carbon in new P-T regimes<br />

[Smith, Eggert, Braun, Jeanloz, Duffy, et al.] <br />

<br />

<br />

<br />

<strong>Diamond</strong> to 5 TPa <br />

1000<br />

LASER DRIVEN DYNAMIC<br />

COMPRESSION<br />

Distance (pixels)<br />

800<br />

600<br />

400<br />

14<br />

16 18 20<br />

Time (ns)<br />

22ns<br />

• Carbon and other materials at unprecedented compressions<br />

• Equations of state, phase transformations, structures, etc.<br />

Carnegie Institution


iamond is needed for this new generation of static<br />

nd dynamic compression experiments<br />

<br />

<br />

<br />

Combined static/"<br />

dynamic compression"<br />

compression to probe "<br />

ʻcold compressionʼ and"<br />

planetary adiabats"


Applications beyond high-pressure science:<br />

large single crystal diamond in lasers and x-ray optics<br />

X-ray Topography<br />

TILT<br />

Stokes and anti-<br />

Stokes stimulated<br />

Raman spectra of<br />

~670-µm SC-CVD<br />

diamond with<br />

picosecond laser<br />

pumping at 0.532 µm<br />

and 1.064 µm.<br />

STRAIN<br />

[Kaminski et al., Laser Physics Lett. (2007)]<br />

• 400 rocking curves: 0.006º,<br />

(0.003º theoretical limit)<br />

• Separation of tilt and strain<br />

[Krasnicki et al., to be published] 380 µm<br />

X-ray lenses have been<br />

fabricated from<br />

polycrystalline CVD<br />

diamond. <strong>Single</strong> crystal<br />

material is needed for<br />

improved optical and<br />

mechanical properties.<br />

[Evans-Lutterrodt &<br />

Isakovic, to be published]


There are numerous other applications<br />

of single crystal diamond<br />

Tribological surfaces<br />

- bearing linings<br />

Electro-optical devices<br />

- field emitters<br />

Semiconductors<br />

- electrodes<br />

Thermal management<br />

- heat sinks/spreaders<br />

Optical gates<br />

- x-ray windows<br />

Acoustic vibrators<br />

- SAW filters<br />

Dielectric media<br />

- capacitor interlayer<br />

Nuclear detectors<br />

- particle sensors<br />

Chemical barriers<br />

- acid containers<br />

Precision cutting<br />

- nanomachining<br />

Non-linear optics<br />

- Raman shifter<br />

Fusion energy<br />

- ITER, NIF<br />

Thick Disk Laser<br />

Nd:GGG >100 kW<br />

>100 million 0 C, 500 MW fusion power.<br />

Mechanically strong low loss<br />

window and injection materials<br />

Microchannel Cooler<br />

Ø Convert from Cu to <strong>Diamond</strong><br />

Ultrastrong nozzles for water jet machinining<br />

Wear resistant wire dies for ultrafine wire production


• What is the nature of carbon<br />

in extreme environments<br />

such as deep in the Earth<br />

• Where is the carbon in the<br />

Earth and how much is there?<br />

• How does carbon move<br />

between reservoirs?<br />

• Is there a deep source of<br />

organics?<br />

• What is the nature and extent<br />

of deep microbial life?<br />

Ø<br />

Ø<br />

Ø<br />

Major international<br />

academic/ government/<br />

industrial collaboration.<br />

Funded by A. P. Sloan<br />

Foundation ($500 M over<br />

10 years).<br />

To join, visit: http://dco.ciw.edu


CONCLUSIONS AND PERSPECTIVES<br />

1. <strong>Diamond</strong> remains a ‘cornerstone’ of research on<br />

materials in extreme environments.<br />

2. Advances in CVD and other synthesis techniques are<br />

creating new kinds of diamond with an expanded<br />

range of physical properties.<br />

3. Applications of the diamond material in high-pressure<br />

research span the physical and biological sciences.<br />

4. New phases and transformations of carbon continue<br />

to be uncovered.<br />

5. Future prospects are bright with the development of<br />

new technology and new international programs.


ACKNOWLEDGEMENTS<br />

Collaborators<br />

CARNEGIE INSTITUTION<br />

Ho-kwang Mao Alexander Goncharov<br />

Timothy Strobel M. Somayazulu<br />

Viktor Struzhkin Ronald E. Cohen<br />

N. Subramanian Muhetaer Aihaiti<br />

Chih-shue Yan Changsheng Zha<br />

Reini Boehler Yufei Meng<br />

Yingwei Fei<br />

Stephen Gramsch<br />

Jinfu Shu<br />

Qi Liang<br />

Zhenxian Liu Yufei Meng<br />

Guoyin Shen Yue Meng<br />

Jerry Potter<br />

Carnegie Institution<br />

Financial Support<br />

DOE/NNSA, DOE/OS/BES,<br />

NSF, A. P. Sloan Foundation<br />

Carnegie Institution<br />

Deep<br />

Carbon<br />

Observatory<br />

OTHER INSTITUTIONS<br />

Amy Lazicki (Livermore)<br />

K. Litasov (Tohoku)<br />

Jon Eggert (LLNL)<br />

Rip Collins (LLNL)<br />

S. Gruner (Cornell)<br />

S. Ando (Cornell)<br />

E. Gregoryanz (Edinburgh)<br />

Y. Lin (Stanford)<br />

Wendy Mao (Stanford)<br />

Yusheng Zhao (LANL)<br />

Peter Lazor (Uppsala)<br />

Anurag Sharma (Boston)<br />

Adrienne Kish (Orleans)<br />

Burkhard Militzer (UCB)<br />

Neil Ashcroft (Cornell)<br />

Roald Hoffman (Cornell)


Carnegie Institution<br />

Thank you!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!