13.11.2013 Views

Construction of Green's functions for the two-dimensional static Klein ...

Construction of Green's functions for the two-dimensional static Klein ...

Construction of Green's functions for the two-dimensional static Klein ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS<br />

J. Part. Diff. Eq., Vol. 24, No. 2, pp. 114-139<br />

doi: 10.4208/jpde.v24.n2.2<br />

May 2011<br />

<strong>Construction</strong> <strong>of</strong> Green’s Functions <strong>for</strong> <strong>the</strong> Two-Dimensional<br />

Static <strong>Klein</strong>-Gordon Equation<br />

MELNIKOV Yu. A. ∗<br />

Department <strong>of</strong> Ma<strong>the</strong>matical, Sciences Middle Tennessee State University,<br />

Murfreesboro, Tennessee 37132, USA.<br />

Received 29 December 2009; Accepted 10 March 2011<br />

Abstract. In contrast to <strong>the</strong> cognate Laplace equation, <strong>for</strong> which a vast number <strong>of</strong><br />

Green’s <strong>functions</strong> is available, <strong>the</strong> field is not that developed <strong>for</strong> <strong>the</strong> <strong>static</strong> <strong>Klein</strong>-Gordon<br />

equation. The latter represents, none<strong>the</strong>less, a natural area <strong>for</strong> application <strong>of</strong> some <strong>of</strong><br />

<strong>the</strong> methods that are proven productive <strong>for</strong> <strong>the</strong> Laplace equation. The perspective<br />

looks especially attractive <strong>for</strong> <strong>the</strong> methods <strong>of</strong> images and eigenfunction expansion.<br />

This study is based on our experience recently gained on <strong>the</strong> construction <strong>of</strong> Green’s<br />

<strong>functions</strong> <strong>for</strong> elliptic partial differential equations. An extensive list <strong>of</strong> boundary-value<br />

problems <strong>for</strong>mulated <strong>for</strong> <strong>the</strong> <strong>static</strong> <strong>Klein</strong>-Gordon equation is considered. Computerfriendly<br />

representations <strong>of</strong> <strong>the</strong>ir Green’s <strong>functions</strong> are obtained, most <strong>of</strong> which have<br />

never been published be<strong>for</strong>e.<br />

AMS Subject Classifications: 35J08, 65N80<br />

Chinese Library Classifications: O175.2, O241<br />

Key Words: Static <strong>Klein</strong>-Gordon equation; Green’s function.<br />

1 Introduction<br />

To prevent a possible confusion as to <strong>the</strong> subject <strong>of</strong> <strong>the</strong> present study, note that our focus<br />

is not on <strong>the</strong> hyperbolic <strong>Klein</strong>-Gordon equation representing a classical ma<strong>the</strong>matical<br />

model in quantum field <strong>the</strong>ory and <strong>for</strong> which <strong>the</strong> Green’s function <strong>for</strong>malism is well developed.<br />

This project deals instead with <strong>the</strong> elliptic <strong>two</strong>-<strong>dimensional</strong> <strong>static</strong> <strong>Klein</strong>-Gordon<br />

equation (SKGE)<br />

∇ 2 u(P)−k 2 u(P)=0 (1.1)<br />

with ∇ 2 representing <strong>the</strong> Laplace operator written in <strong>the</strong> coordinates <strong>of</strong> point P and <strong>the</strong><br />

parameter k is a real constant.<br />

∗ Corresponding author. Email address: ymelniko@mtsu.edu (Y. A. Melnikov)<br />

http://www.global-sci.org/jpde/ 114


<strong>Construction</strong> <strong>of</strong> Green’s Functions <strong>for</strong> Static <strong>Klein</strong>-Gordon Equation 115<br />

To our best knowledge, [1] and [2] represent <strong>the</strong> only book-<strong>for</strong>mat publications covering,<br />

to a certain extend, <strong>the</strong> Green’s function topic <strong>for</strong> <strong>the</strong> SKGE. Just a limited number <strong>of</strong><br />

boundary-value problems has been reviewed in those books, with <strong>the</strong> method <strong>of</strong> eigenfunction<br />

expansion being used. The present study aims at obtaining computer-friendly<br />

<strong>for</strong>ms <strong>of</strong> Green’s <strong>functions</strong> <strong>for</strong> a significant list <strong>of</strong> problems stated <strong>for</strong> <strong>the</strong> SKGE.<br />

The Green’s function G(P,Q) <strong>for</strong> <strong>the</strong> SKGE will be introduced, in this study, by setting<br />

up <strong>the</strong> homogeneous boundary-value problem<br />

<strong>for</strong> <strong>the</strong> nonhomogeneous equation<br />

M i u(P)≡α i (P) ∂u(P)<br />

∂n i<br />

+β i (P)u(P)=0, P∈Γ i , (1.2)<br />

∇ 2 u(P)−k 2 u(P)=− f(P), P∈Ω, (1.3)<br />

where: Ω represents a simply connected region in <strong>two</strong>-<strong>dimensional</strong> Euclidean space with<br />

Γ= ⋃ m<br />

i=1 Γ i denoting a piecewise smooth contour <strong>of</strong> Ω; α i (P) and β i (P) represent given<br />

<strong>functions</strong> defined on Γ in such a way that at least one <strong>of</strong> <strong>the</strong>m is nonzero <strong>for</strong> every piece<br />

Γ i <strong>of</strong> Γ; and n i represents <strong>the</strong> normal direction to Γ i at <strong>the</strong> point P. The right-hand side<br />

function f(P) in (1.3) is supposed to be integrable on Ω.<br />

Assume that <strong>the</strong> boundary-value problem in (1.2) and (1.3) is well-posed. This implies,<br />

in fact, that it has a unique solution or, in o<strong>the</strong>r words, <strong>the</strong> corresponding homogeneous<br />

problem, with f(P)≡0, has only <strong>the</strong> trivial u(P)≡0 solution. With this, we define<br />

<strong>the</strong> Green’s function <strong>for</strong> <strong>the</strong> SKGE. That is, if, <strong>for</strong> any integrable on Ω right-hand side<br />

term f(P) in (1.3), <strong>the</strong> solution to <strong>the</strong> boundary-value problem in (1.2) and (1.3) is found<br />

in <strong>the</strong> <strong>for</strong>m<br />

∫ ∫<br />

u(P)= G(P,Q) f(Q)dΩ(Q), (1.4)<br />

Ω<br />

<strong>the</strong>n <strong>the</strong> kernel G(P,Q) <strong>of</strong> <strong>the</strong> above representation is said to be <strong>the</strong> Green’s function <strong>for</strong><br />

<strong>the</strong> homogeneous problem corresponding to that <strong>of</strong> (1.2) and (1.3).<br />

A standard terminology will apply, according to which P and Q in (1.4) are referred<br />

to as <strong>the</strong> field (observation) point and <strong>the</strong> source point, respectively.<br />

For any location <strong>of</strong> <strong>the</strong> source point Q∈Ω, <strong>the</strong> Green’s function, as a function <strong>of</strong> <strong>the</strong><br />

coordinates <strong>of</strong> <strong>the</strong> observation point P, holds <strong>the</strong> following properties (being referred to<br />

herein as <strong>the</strong> defining properties):<br />

1. at any point P∈Ω, except at P=Q, G(P,Q) satisfies <strong>the</strong> homogeneous equation in<br />

(1.1), that is<br />

(∇ 2 −k 2 )G(P,Q)=0, P̸=Q.<br />

2. For P→Q, G(P,Q) approaches infinity like <strong>the</strong> modified cylindrical Bessel (or Macdonald)<br />

function K 0 (k|P−Q|) <strong>of</strong> <strong>the</strong> second kind <strong>of</strong> order zero.<br />

3. G(P,Q) satisfies <strong>the</strong> boundary conditions in (1.2), that is<br />

M i G(P,Q)=0,<br />

P∈Γ i , i=1,m.


116 Y. A. Melnikov / J. Partial Diff. Eq., 24 (2011), pp. 114-139<br />

Due to <strong>the</strong> properties <strong>of</strong> <strong>the</strong> Macdonald function (see, <strong>for</strong> example, [3–5], <strong>the</strong> Green’s<br />

function G(P,Q) <strong>of</strong> <strong>the</strong> SKGE possesses <strong>the</strong> type <strong>of</strong> logarithmic singularity <strong>of</strong> Green’s<br />

function <strong>for</strong> <strong>the</strong> Laplace equation. To support this claim, explore <strong>the</strong> nature <strong>of</strong> <strong>the</strong> Macdonald<br />

function K 0 (x). For this we present its standard series expansion<br />

(<br />

K 0 (x)=− C+ln x ) ∞<br />

x<br />

2 ∑ 2j ∞<br />

j=0<br />

2 2j (j!) 2+ ∑<br />

m=1<br />

x 2m<br />

2 2m (m!) 2 ( m∑<br />

n=1<br />

)<br />

1<br />

, (1.5)<br />

n<br />

where C≈0.5772157 is referred to as <strong>the</strong> Euler’s constant.<br />

The representation in (1.5) appears, in fact, computer-friendly. This is so because both<br />

<strong>of</strong> its infinite series components uni<strong>for</strong>mly converge <strong>for</strong> any value <strong>of</strong> x∈(0,∞); and <strong>the</strong>ir<br />

convergence rate is fairly high.<br />

From <strong>the</strong> definition just introduced, <strong>the</strong> Green’s function <strong>of</strong> <strong>the</strong> homogeneous boundary-value<br />

problem corresponding to (1.2) and (1.3) can be expressed as<br />

G(P,Q)= 1<br />

2π K 0(k|P−Q|)+R(P,Q), (1.6)<br />

where R(P,Q), as a function <strong>of</strong> P, satisfies <strong>the</strong> homogeneous SKGE everywhere on Ω,<br />

regardless <strong>of</strong> a mutual location <strong>of</strong> P and Q.<br />

A special comment is appropriate as to <strong>the</strong> use <strong>of</strong> <strong>the</strong> terms regular component and<br />

singular component <strong>of</strong> <strong>the</strong> Green’s function. Upon explicitly expressing <strong>the</strong> logarithmic<br />

term in (1.5) as<br />

−ln x 2<br />

∞<br />

∑<br />

j=0<br />

x 2j<br />

2 2j (j!) 2 =−ln x 2<br />

(1− x2<br />

4 + x4<br />

64 −···)<br />

,<br />

one realizes that <strong>the</strong> singularity in (1.6) is only associated with <strong>the</strong> j=0 term <strong>of</strong> <strong>the</strong> series.<br />

With this in mind, we are going to refer to <strong>the</strong> additive terms K 0 (k|P−Q|)/2π and<br />

R(P,Q) in (1.6) as <strong>the</strong> singular component and <strong>the</strong> regular component <strong>of</strong> <strong>the</strong> Green’s function,<br />

respectively.<br />

2 Method <strong>of</strong> images<br />

We turn now to <strong>the</strong> construction <strong>of</strong> Green’s <strong>functions</strong> <strong>for</strong> <strong>the</strong> SKGE. The method <strong>of</strong> images<br />

scheme [3, 6–9] will be applied to a variety <strong>of</strong> boundary-value problems.<br />

The singular component[K 0 (k|P−Q|)]/2π <strong>of</strong> G(P,Q) in (1.6) is interpreted, similarly<br />

to <strong>the</strong> term[ln|P−Q|]/2π in <strong>the</strong> case <strong>of</strong> Laplace equation, as <strong>the</strong> response at a field point P<br />

to a unit source placed at an arbitrary point Q. With this, <strong>the</strong> regular component R(P,Q)<br />

<strong>of</strong> G(P,Q) is intended, in <strong>the</strong> method <strong>of</strong> images, to be expressed as a sum <strong>of</strong> a number <strong>of</strong><br />

unit sources and sinks placed at points Q1 ∗, Q∗ 2 , ··· , Q∗ m outside <strong>the</strong> region Ω. This makes<br />

<strong>the</strong> regular component<br />

m<br />

R(P,Q)= ∑± 1<br />

2π K 0(k|P−Q ∗ j |)<br />

j=1


<strong>Construction</strong> <strong>of</strong> Green’s Functions <strong>for</strong> Static <strong>Klein</strong>-Gordon Equation 117<br />

<strong>of</strong> G(P,Q) a function satisfying <strong>the</strong> homogeneous SKGE at any point P in Ω (since all <strong>the</strong><br />

source points Q ∗ j<br />

are outside Ω).<br />

The algorithm <strong>of</strong> <strong>the</strong> method <strong>of</strong> images appears instrumental in obtaining a number<br />

<strong>of</strong> Green’s <strong>functions</strong> <strong>for</strong> <strong>the</strong> SKGE.<br />

Consider a trivial case <strong>of</strong> <strong>the</strong> Dirichlet problem stated <strong>for</strong> <strong>the</strong> SKGE on <strong>the</strong> upper<br />

half-plane<br />

Ω={(x,y) | −∞< x0}.<br />

Influence <strong>of</strong> <strong>the</strong> unit source at a point Q(ξ,η)∈ Ω represents <strong>the</strong> singular component<br />

( )<br />

1<br />

2π K 0 k<br />

√(x−ξ) 2 +(y−η) 2<br />

<strong>of</strong> <strong>the</strong> Green’s function. The above can be compensated with a single unit sink placed at<br />

<strong>the</strong> point Q ∗ (ξ,−η) located at <strong>the</strong> lower half-plane and symmetric to Q(ξ,η) about <strong>the</strong><br />

boundary y=0. Having <strong>the</strong> influence <strong>of</strong> this sink given as<br />

− 1 ( )<br />

2π K 0 k<br />

√(x−ξ) 2 +(y+η) 2 ,<br />

<strong>the</strong> Green’s function <strong>for</strong> <strong>the</strong> upper half-plane is ultimately found as<br />

where <strong>the</strong> complex variable notation<br />

G(x,y;ξ,η)= 1 [ ( )]<br />

K0 (k|z−ζ|)−K 0 k|z−ζ| , (2.1)<br />

2π<br />

z= x+iy and ζ= ξ+iη<br />

is used <strong>for</strong> <strong>the</strong> observation and <strong>the</strong> source point, respectively.<br />

The method <strong>of</strong> images allows us to prove <strong>the</strong> following three statements.<br />

Theorem 2.1. Green’s function <strong>of</strong> <strong>the</strong> Dirichlet problem stated on <strong>the</strong> infinite circular sector<br />

{<br />

Ω= (r,ϕ) ∣ π<br />

}<br />

0


118 Y. A. Melnikov / J. Partial Diff. Eq., 24 (2011), pp. 114-139<br />

Pro<strong>of</strong>. Since <strong>the</strong> distance between <strong>two</strong> points(r 1 ,ϕ 1 ) and(r 2 ,ϕ 2 ) is defined in polar coordinates<br />

as √<br />

r 2 1 −2r 1r 2 cos(ϕ 1 −ϕ 2 )+r 2 2 ,<br />

<strong>the</strong> singular component <strong>of</strong> <strong>the</strong> Green’s function G(r,ϕ;̺,ψ) reads as<br />

( √ )<br />

1<br />

2π K 0 k r 2 −2r̺cos(ϕ−ψ)+̺2 , (2.3)<br />

which represents response <strong>of</strong> <strong>the</strong> field at an observation point(r,ϕ)∈Ω to <strong>the</strong> unit source<br />

acting at (̺,ψ).<br />

In order to compensate <strong>the</strong> trace <strong>of</strong> <strong>the</strong> function in (2.3) (or, in o<strong>the</strong>r words, to support<br />

<strong>the</strong> Dirichlet condition) on <strong>the</strong> boundary segment y=0, we place <strong>the</strong> unit sink at <strong>the</strong> point<br />

(̺,2π−ψ). The influence <strong>of</strong> this sink is given by<br />

− 1 ( √<br />

)<br />

2π K 0 k r 2 −2r̺cos(ϕ−(2π−ψ))+̺2 . (2.4)<br />

Similarly, with <strong>the</strong> unit sink at (̺,π−ψ), whose influence is defined as<br />

− 1 ( √<br />

)<br />

2π K 0 k r 2 −2r̺cos(ϕ−(π−ψ))+̺2 , (2.5)<br />

we compensate <strong>the</strong> trace <strong>of</strong> (2.3) on <strong>the</strong> boundary segment x=0, while to compensate <strong>the</strong><br />

traces <strong>of</strong> <strong>the</strong> <strong>functions</strong> in (2.4) and (2.5) on x=0 and y=0, respectively, <strong>the</strong> unit source is<br />

required at (̺,π+ψ), with <strong>the</strong> influence<br />

( √<br />

)<br />

1<br />

2π K 0 k r 2 −2r̺cos(ϕ−(π+ψ))+̺2 . (2.6)<br />

Hence, <strong>the</strong> Green’s function <strong>of</strong> <strong>the</strong> Dirichlet problem stated on <strong>the</strong> quarter-plane represents<br />

<strong>the</strong> sum <strong>of</strong> <strong>the</strong> components shown in (2.3)–(2.6), which converts to <strong>the</strong> <strong>for</strong>m<br />

shown in (2.2).<br />

Theorem 2.2. Green’s function <strong>of</strong> a mixed boundary-value problem <strong>for</strong> <strong>the</strong> infinite circular sector<br />

with <strong>the</strong> opening angle <strong>of</strong> π/2, with Dirichlet and Neumann boundary conditions imposed on <strong>the</strong><br />

boundary segments y=0 and x=0, respectively, is given as<br />

G(r,ϕ;̺,ψ)= 1<br />

2π<br />

2<br />

∑<br />

n=1<br />

( √<br />

)<br />

[(−1) n K 0 k r 2 −2r̺cos(ϕ−(nπ−ψ))+̺2<br />

√<br />

)]<br />

+(−1) n K 0<br />

(k r 2 −2r̺cos(ϕ−((n−1)π+ψ))+̺2 . (2.7)


<strong>Construction</strong> <strong>of</strong> Green’s Functions <strong>for</strong> Static <strong>Klein</strong>-Gordon Equation 119<br />

Pro<strong>of</strong>. To support <strong>the</strong> Dirichlet condition on <strong>the</strong> boundary segment y=0, we compensate<br />

<strong>the</strong> trace <strong>of</strong> <strong>the</strong> function<br />

( √ )<br />

1<br />

2π K 0 k r 2 −2r̺cos(ϕ−ψ)+̺2<br />

(2.8)<br />

with <strong>the</strong> unit sink at (̺,2π−ψ), <strong>the</strong> influence <strong>of</strong> which is given by<br />

− 1 ( √<br />

)<br />

2π K 0 k r 2 −2r̺cos(ϕ−(2π−ψ))+̺2 . (2.9)<br />

The Neumann condition on <strong>the</strong> boundary segment x=0 will be supported if <strong>the</strong> unit<br />

source is put at (̺,π−ψ), with <strong>the</strong> influence defined as<br />

( √<br />

)<br />

1<br />

2π K 0 k r 2 −2r̺cos(ϕ−(π−ψ))+̺2 , (2.10)<br />

while to support both <strong>the</strong> boundary conditions imposed on x=0 and y=0, <strong>the</strong> unit sink<br />

is required at (̺,π+ψ), with <strong>the</strong> influence<br />

− 1 ( √<br />

)<br />

2π K 0 k r 2 −2r̺cos(ϕ−(π+ψ))+̺2 . (2.11)<br />

Summing up <strong>the</strong> components in (2.8) through (2.11), one obtains <strong>the</strong> Green’s function<br />

<strong>of</strong> <strong>the</strong> mixed problem under consideration in <strong>the</strong> <strong>for</strong>m shown in (2.7).<br />

Theorem 2.3. Green’s function <strong>of</strong> <strong>the</strong> Dirichlet problem set up on <strong>the</strong> infinite circular sector<br />

{<br />

Ω= (r,ϕ) ∣ 0


120 Y. A. Melnikov / J. Partial Diff. Eq., 24 (2011), pp. 114-139<br />

Recall <strong>the</strong> Green’s function exhibited in (2.7) <strong>for</strong> <strong>the</strong> mixed (Dirichlet-Neumann) problem<br />

stated on <strong>the</strong> infinite circular sector with <strong>the</strong> opening angle <strong>of</strong> π/2. We can readily<br />

present, however, an example <strong>of</strong> <strong>the</strong> same type <strong>of</strong> mixed problem, <strong>for</strong> which <strong>the</strong> method<br />

<strong>of</strong> images procedure fails. This claim will be justified by considering <strong>the</strong> Dirichlet-Neumann<br />

problem stated <strong>for</strong> <strong>the</strong> infinite circular sector with <strong>the</strong> opening angle <strong>of</strong> π/3.<br />

Clearly, <strong>the</strong> Dirichlet condition on ϕ=0 is supported with <strong>the</strong> unit sink placed at<br />

(̺,2π−ψ). To allow this sink to support <strong>the</strong> Neumann condition on ϕ=π/3, <strong>the</strong> unit<br />

sink is also required at (̺,2π/3+ψ). As to <strong>the</strong> Neumann condition on ϕ=π/3, <strong>the</strong> unit<br />

source at(̺,ψ) ought to be supported with <strong>the</strong> unit source at(̺,2π/3−ψ), which, in turn,<br />

ought to be accompanied with <strong>the</strong> unit sink placed at (̺,4π/3+ψ). The latter sink has to<br />

be accompanied with <strong>the</strong> unit sink at(̺,4π/3−ψ) <strong>for</strong> <strong>the</strong> Neumann condition supported<br />

on ϕ=π/3. If we now take a look at <strong>the</strong> <strong>two</strong> sinks at(̺,2π/3+ψ) and(̺,4π/3−ψ), <strong>the</strong>y<br />

do not, un<strong>for</strong>tunately, support <strong>the</strong> Dirichlet condition on <strong>the</strong> boundary fragment ϕ=0.<br />

And this is what indicates, in fact, <strong>the</strong> method’s failure <strong>for</strong> <strong>the</strong> mixed problem under<br />

consideration.<br />

Although <strong>the</strong> method <strong>of</strong> images might fail <strong>for</strong> some problems stated on an infinite<br />

circular sector, <strong>the</strong> range <strong>of</strong> problems, <strong>for</strong> which it appears efficient, is not limited to<br />

those considered so far. Indeed, considering <strong>the</strong> case <strong>of</strong> Dirichlet problem stated on <strong>the</strong><br />

infinite circular sector Ω={(r,ϕ) | 0


<strong>Construction</strong> <strong>of</strong> Green’s Functions <strong>for</strong> Static <strong>Klein</strong>-Gordon Equation 121<br />

placed unit sources and sinks. Omitting details, we present just its ultimate expression<br />

G(r,ϕ;̺,ψ)= 1<br />

2π<br />

6<br />

∑<br />

n=1<br />

( √ [K 0 k r 2 −2r̺cos<br />

(ϕ−((n−1) π ) )<br />

3 +ψ) +̺2<br />

√<br />

− K 0<br />

(k r 2 −2r̺cos<br />

(ϕ−(n π )<br />

3 −ψ)<br />

+̺2<br />

)]<br />

. (2.15)<br />

Certain generalizations can be drawn from <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> <strong>for</strong>ms <strong>of</strong> Green’s <strong>functions</strong><br />

derived thus far <strong>for</strong> <strong>the</strong> boundary-value problems stated on an infinite circular sector.<br />

Observing <strong>the</strong> expressions derived earlier <strong>for</strong> <strong>the</strong> Green’s function <strong>of</strong> <strong>the</strong> Dirichlet<br />

problem stated on <strong>the</strong> half-plane, on <strong>the</strong> circular sector with <strong>the</strong> opening angles <strong>of</strong> π/4<br />

and π/2, one arrives at <strong>the</strong> following generalization<br />

G(r,ϕ;̺,ψ)= 1<br />

2π<br />

2 m<br />

∑<br />

n=1<br />

( √ [K 0 k r 2 −2r̺cos<br />

(ϕ−(2(n−1) π ) )<br />

2 m+ψ) +̺2<br />

√<br />

− K 0<br />

(k r 2 −2r̺cos<br />

(ϕ−(2n π )<br />

2 m−ψ)<br />

+̺2<br />

)]<br />

, (2.16)<br />

which represents <strong>the</strong> Green’s function <strong>of</strong> <strong>the</strong> Dirichlet problem stated on <strong>the</strong> set <strong>of</strong> infinite<br />

circular sectors with <strong>the</strong> opening angle <strong>of</strong> π/2 m , where m=0,1,2, ··· .<br />

Note that <strong>the</strong> case <strong>of</strong> m=0, which corresponds to <strong>the</strong> circular sector with <strong>the</strong> opening<br />

angle <strong>of</strong> π or, in o<strong>the</strong>r words, to <strong>the</strong> upper half-plane y>0, reads from (2.16) as<br />

G(r,ϕ;̺,ψ)= 1<br />

2π<br />

( √ [K 0 k r 2 −2r̺cos(ϕ−ψ)+̺2<br />

√ )]<br />

− K 0<br />

(k r 2 −2r̺cos(ϕ+ψ)+̺2 , (2.17)<br />

representing <strong>the</strong> Green’s function derived earlier in (2.1) and expressed here in polar<br />

coordinates.<br />

Ano<strong>the</strong>r significant generalization can be drawn out upon analyzing <strong>the</strong> expressions<br />

in (2.12) and (2.15), from which one derives a Green’s function <strong>of</strong> <strong>the</strong> Dirichlet problem<br />

stated <strong>for</strong> <strong>the</strong> set <strong>of</strong> circular sectors with <strong>the</strong> angle <strong>of</strong> π/(3·2 m ) where m=0,1,2, ··· . It is<br />

found in <strong>the</strong> <strong>for</strong>m<br />

G(r,ϕ;̺,ψ)= 1 3·2 m ( √ (<br />

2π<br />

∑<br />

[K 0 k r 2 −2r̺cos ϕ−(2(n−1) π )<br />

3·2 m+ψ) n=1<br />

√ (<br />

− K 0<br />

(k r 2 −2r̺cos ϕ−( 2nπ )<br />

3·2 m−ψ) +̺2<br />

)<br />

)<br />

+̺2<br />

)]<br />

, (2.18)<br />

with <strong>the</strong> case <strong>of</strong> m=0 staying <strong>for</strong> <strong>the</strong> sector <strong>of</strong> π/3, while <strong>the</strong> case <strong>of</strong> m=1 stays <strong>for</strong> <strong>the</strong><br />

sector <strong>of</strong> π/6.


122 Y. A. Melnikov / J. Partial Diff. Eq., 24 (2011), pp. 114-139<br />

Speaking <strong>of</strong> <strong>the</strong> success or failure <strong>of</strong> <strong>the</strong> method <strong>of</strong> images in constructing Green’s<br />

<strong>functions</strong> <strong>for</strong> infinite circular sectors, remind that earlier we have shown that <strong>the</strong> method<br />

fails <strong>for</strong> a mixed (Dirichlet-Neumann) problem stated on <strong>the</strong> sector with <strong>the</strong> opening<br />

angle <strong>of</strong> π/3. But it is worth noting that <strong>the</strong> method is not necessarily successful <strong>for</strong><br />

Dirichlet problems ei<strong>the</strong>r. The following problem is presented to illustrate <strong>the</strong> point.<br />

Consider <strong>the</strong> Dirichlet problem on <strong>the</strong> infinite sector Ω={(r,ϕ)|0


<strong>Construction</strong> <strong>of</strong> Green’s Functions <strong>for</strong> Static <strong>Klein</strong>-Gordon Equation 123<br />

and y=b, respectively. The responses to <strong>the</strong>se sinks at (x,y) evidently are<br />

G − 1,0 (x,y;ξ,−η)=− 1<br />

)<br />

2π K 0<br />

(√(x−ξ) 2 +(y+η) 2<br />

and<br />

G − 1,b (x,y;ξ,2b−η)=− 1<br />

)<br />

2π K 0<br />

(√(x−ξ) 2 +(y−(2b−η)) 2 .<br />

The <strong>functions</strong> G − 1,0 (x,y;ξ,−η) and G− 1,b<br />

(x,y;ξ,2b−η) do not vanish on <strong>the</strong> boundary<br />

lines y=0 and y=b; and <strong>the</strong>ir traces can, in turn, be compensated with <strong>the</strong> unit sources<br />

S + 2,0 and S+ 2,b<br />

which are located at (ξ,−2b+η) and (ξ,2b+η). The responses to <strong>the</strong>se at<br />

(x,y) are given as<br />

G + 2,0 (x,y;ξ,−2b+η)= 1<br />

)<br />

2π K 0<br />

(√(x−ξ) 2 +(y−(−2b+η)) 2 ,<br />

and<br />

G + 2,b (x,y;ξ,2b+η)= 1<br />

)<br />

2π K 0<br />

(√(x−ξ) 2 +(y−(2b+η)) 2 .<br />

To properly compensate <strong>the</strong> traces <strong>of</strong> <strong>the</strong> <strong>functions</strong> G + 2,0 (x,y;ξ,−2b+η) and G+ 2,b (x,y;<br />

ξ,2b+η) on y=0 and y=b, we place unit sinks S − 3,0 and S− 3,b<br />

at(ξ,−2b−η) and(ξ,4b−η),<br />

respectively.<br />

Upon following <strong>the</strong> described procedure <strong>of</strong> properly placing compensatory unit sources<br />

that alternate with compensatory unit sinks, one expresses <strong>the</strong> Green’s function G=<br />

G(x,y;ξ,η) that we are looking <strong>for</strong> in <strong>the</strong> <strong>for</strong>m<br />

G=G + 0 + ∞<br />

∑<br />

i=1<br />

( )<br />

G − 2i−1,0 +G− 2i−1,b<br />

+<br />

∞<br />

∑<br />

i=1<br />

( )<br />

G + 2i,0 +G+ 2i,b<br />

,<br />

which, after a trivial algebra, trans<strong>for</strong>ms ultimately into <strong>the</strong> single infinite series exhibited<br />

in (2.19).<br />

Since <strong>the</strong> Green’s function in (2.19) is expressed in a series <strong>for</strong>m, convergence <strong>of</strong> <strong>the</strong><br />

latter ought to be specifically addressed to ensure its computability. Note first that <strong>the</strong><br />

singularity in (2.19) is provided by <strong>the</strong> component which is a part <strong>of</strong> a single term (n=0),<br />

and cannot, in any way, affect <strong>the</strong> series convergence.<br />

A close analysis reveals convergence <strong>of</strong> <strong>the</strong> series in (2.19) at a high rate. This makes<br />

it suitable <strong>for</strong> immediate computer implementations. This assertion is supported by <strong>the</strong><br />

observation √<br />

(x−ξ)2 +(y±η±2nb) 2<br />

lim<br />

n→∞<br />

2nb<br />

which implies that <strong>the</strong> arguments <strong>of</strong> <strong>the</strong> Macdonal <strong>functions</strong> in (2.19) are asymptotically<br />

close to 2nb and converge to zero, when n increases, at <strong>the</strong> same rate as terms <strong>of</strong> <strong>the</strong><br />

= 1


124 Y. A. Melnikov / J. Partial Diff. Eq., 24 (2011), pp. 114-139<br />

sequence {K 0 (2nb)}. But <strong>the</strong> Macdonald function K 0 (x) is [10, 11] continuous, positive,<br />

decreasing (at a very high rate) and bounded below by zero. For <strong>the</strong> strip <strong>of</strong> a unit width<br />

(b=1), <strong>for</strong> example, <strong>the</strong> first few terms <strong>of</strong> <strong>the</strong> sequence{K 0 (2nb)} are<br />

K 0 (2)≈.11389, K 0 (4)≈.01116, K 0 (6)≈.00124, K 0 (8)≈.00015<br />

approaching zero at a rate close to that <strong>of</strong> a geometric sequence whose ratio is <strong>of</strong> <strong>the</strong> order<br />

<strong>of</strong> 10 −1 and which <strong>the</strong>re<strong>for</strong>e rapidly converges.<br />

The brief analysis just completed brings a confidence in a practicality <strong>of</strong> <strong>the</strong> representation<br />

in (2.19). One might, however, call in question <strong>the</strong> rigor <strong>of</strong> <strong>the</strong> analysis. Indeed, it<br />

in no ways proves <strong>the</strong> convergence.<br />

Theorem 2.5. Green’s function <strong>of</strong> a mixed problem stated on <strong>the</strong> infinite strip Ω={(x,y)|−∞<<br />

x


<strong>Construction</strong> <strong>of</strong> Green’s Functions <strong>for</strong> Static <strong>Klein</strong>-Gordon Equation 125<br />

The trace <strong>of</strong> <strong>the</strong> function G − 2,b<br />

(x,y;ξ,2b+η) on y=0 can, in turn, be compensated with<br />

a unit source S + 3,0<br />

placed at (ξ,−2b−η), with <strong>the</strong> response<br />

G + 3,0 (x,y;ξ,−2b−η)= 1<br />

)<br />

2π K 0<br />

(√(x−ξ) 2 +(y+(2b+η)) 2 ,<br />

while <strong>the</strong> Neumann condition on y=b can be supported with a unit sink S − 3,b at(ξ,4b−η),<br />

whose response at(x,y) is given as<br />

G − 3,b (x,y;ξ,4b−η)=− 1<br />

)<br />

2π K 0<br />

(√(x−ξ) 2 +(y−(4b−η)) 2 .<br />

Proceeding with this pattern in compliance with <strong>the</strong> approach described in <strong>the</strong> pro<strong>of</strong><br />

<strong>of</strong> Theorem 2.4, <strong>the</strong> Green’s function that we are looking <strong>for</strong> is ultimately obtained in<br />

<strong>the</strong> <strong>for</strong>m <strong>of</strong> (2.20) which convergence at a high rate comparable to that <strong>of</strong> <strong>the</strong> series in<br />

(2.19).<br />

The pattern used in <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Theorems 2.4 and 2.5 appears also workable <strong>for</strong> <strong>the</strong><br />

Dirichlet problem set up on <strong>the</strong> semi-infinite strip Ω={(x,y)| 0


126 Y. A. Melnikov / J. Partial Diff. Eq., 24 (2011), pp. 114-139<br />

imposed on <strong>the</strong> boundary fragments y=0 and y=b, and Neumann condition imposed on<br />

x=0<br />

Similarly to <strong>the</strong> Dirichlet problem considered above, <strong>the</strong> traces <strong>of</strong> <strong>the</strong> fundamental<br />

solution <strong>of</strong> <strong>the</strong> SKGE (<strong>the</strong> field generated by <strong>the</strong> unit source acting at an arbitrary point<br />

(ξ,η) in Ω) on <strong>the</strong> edges y=0 and y=b are compensated with unit sources and sinks<br />

placed at <strong>the</strong> set <strong>of</strong> exterior to Ω points(ξ,−η), (ξ,2b−η), (ξ,−2b+η), (ξ,2b+η), (ξ,−2b−<br />

η), (ξ,4b−η),··· .<br />

As to <strong>the</strong> Neumann condition imposed on <strong>the</strong> boundary fragment x=0, it can be<br />

supported by <strong>the</strong> aggregate influence <strong>of</strong> <strong>the</strong> sources and sinks acting at <strong>the</strong> set <strong>of</strong> points<br />

just specified. The latter can, similarly to <strong>the</strong> Dirichlet problem, be compensated with<br />

unit sources and sinks placed at <strong>the</strong> set <strong>of</strong> exterior to Ω points(−ξ,η), (−ξ,−η), (−ξ,2b−<br />

η),(−ξ,−2b+η), (−ξ,2b+η), (−ξ,−2b−η), (−ξ,4b−η),··· . The order <strong>of</strong> sources and sinks<br />

is, however, different, in this case, <strong>of</strong> that suggested earlier <strong>for</strong> <strong>the</strong> Dirichlet problem.<br />

Combining influence <strong>of</strong> all <strong>the</strong> sources and sinks in compliance with our procedure,<br />

one arrives at <strong>the</strong> rapidly convergent series representation<br />

G(x,y;ξ,η)= 1<br />

2π<br />

∞<br />

∑<br />

n=−∞<br />

[K 0<br />

(√(x−ξ) 2 +(y−η+2nb) 2 )−K 0<br />

(√(x−ξ) 2 +(y+η−2nb) 2 )<br />

+K 0<br />

(√<br />

(x+ξ) 2 +(y−η+2nb) 2 )<br />

−K 0<br />

(√<br />

(x+ξ) 2 +(y+η−2nb) 2 )]<br />

<strong>of</strong> <strong>the</strong> Green’s function <strong>for</strong> <strong>the</strong> mixed problem under consideration.<br />

(2.22)<br />

3 Method <strong>of</strong> eigenfunction expansion<br />

As it was illustrated in Section 2, <strong>the</strong> method <strong>of</strong> images appears successful <strong>for</strong> a number<br />

<strong>of</strong> problem settings with Dirichlet and Neumann conditions imposed. We turn now to <strong>the</strong><br />

method <strong>of</strong> eigenfunction expansion, which is also applicable to all <strong>the</strong> problems workable<br />

with <strong>the</strong> method <strong>of</strong> images, but whose application range is notably wider.<br />

We start with a trivial problems already reviewed in <strong>the</strong> previous section. An alternative<br />

to (2.19) representation will be obtained, in what follows, <strong>for</strong> <strong>the</strong> Green’s function<br />

G(x,y;ξ,η) to <strong>the</strong> homogeneous Dirichlet problem corresponding to<br />

(∇ 2 −k 2 )u(x,y)=− f(x,y), (x,y)∈Ω, (3.1)<br />

u(x,0)=u(x,b)=0, (3.2)<br />

stated on <strong>the</strong> infinite strip Ω={(x,y)|−∞


<strong>Construction</strong> <strong>of</strong> Green’s Functions <strong>for</strong> Static <strong>Klein</strong>-Gordon Equation 127<br />

Express <strong>the</strong> solution u(x,y) to <strong>the</strong> problem in (3.1) and (3.2), and <strong>the</strong> right-hand side<br />

function f(x,y) <strong>of</strong> (3.1) by <strong>the</strong> following Fourier sine-series<br />

and<br />

u(x,y)=<br />

∞<br />

∑<br />

n=1<br />

f(x,y)=<br />

u n (x)sinνy, ν= nπ b , (3.3)<br />

∞<br />

∑<br />

n=1<br />

This yields <strong>the</strong> set <strong>of</strong> self-adjoint boundary-value problems<br />

f n (x)sinνy. (3.4)<br />

d 2 u n (x)<br />

dx 2 −(ν 2 +k 2 )u n (x)=− f n (x), n=1,2,3,··· , (3.5)<br />

|u n (−∞)|


128 Y. A. Melnikov / J. Partial Diff. Eq., 24 (2011), pp. 114-139<br />

where <strong>the</strong> first series uni<strong>for</strong>mly converges and its numerical implementations bring no<br />

problem. The second series in (3.9) does not converge uni<strong>for</strong>mly but allows a complete<br />

summation. The summation is conducted with <strong>the</strong> aid <strong>of</strong> <strong>the</strong> classical [11] summation<br />

<strong>for</strong>mula<br />

∞<br />

p<br />

∑<br />

n<br />

n cosnϑ=−1 2 ln(1−2pcosϑ+p2 ), (3.10)<br />

n=1<br />

that holds <strong>for</strong> p


<strong>Construction</strong> <strong>of</strong> Green’s Functions <strong>for</strong> Static <strong>Klein</strong>-Gordon Equation 129<br />

Accounting <strong>for</strong> <strong>the</strong> fact that ν


130 Y. A. Melnikov / J. Partial Diff. Eq., 24 (2011), pp. 114-139<br />

and integrate it, along with its sum. This yields<br />

∞<br />

∑<br />

n=1<br />

which translates, in our terms, into<br />

∞<br />

∑<br />

n=1<br />

1<br />

( π<br />

)<br />

n expn b (x−ξ)<br />

This ultimately yields <strong>the</strong> following <strong>for</strong>m<br />

1<br />

n expnp=−ln(1−expp),<br />

=−ln<br />

(1−exp( π )<br />

b (x−ξ)) .<br />

|R N (x,y;ξ,η)|<<br />

π{ b [1−exp(k(x−ξ)) ] [ ( ( π<br />

))<br />

ln 1−exp<br />

b (x−ξ)<br />

−<br />

N<br />

∑<br />

n=1<br />

1<br />

( nπ<br />

) ]<br />

n exp b (x−ξ) +k b π<br />

[<br />

π 2<br />

]}<br />

N<br />

6 − 1<br />

∑<br />

n=1<br />

n 2<br />

(3.15)<br />

<strong>for</strong> <strong>the</strong> estimate in (3.14).<br />

Hence, <strong>the</strong> series in (3.11) converges uni<strong>for</strong>mly and can be accurately computed by<br />

a direct truncation, and <strong>the</strong> estimate in (3.15) helps appropriately find a value <strong>of</strong> <strong>the</strong><br />

truncating parameter N required <strong>for</strong> attaining a desired accuracy.<br />

For <strong>the</strong> next example on <strong>the</strong> use <strong>of</strong> <strong>the</strong> method <strong>of</strong> eigenfunction expansion, we set up<br />

<strong>the</strong> mixed boundary-value problem<br />

u(x,0)= ∂u(x,b)<br />

∂y<br />

= 0 (3.16)<br />

posed <strong>for</strong> <strong>the</strong> nonhomogeneous SKGE on <strong>the</strong> infinite strip Ω={(x,y)|−∞


<strong>Construction</strong> <strong>of</strong> Green’s Functions <strong>for</strong> Static <strong>Klein</strong>-Gordon Equation 131<br />

ultimately converts, in <strong>the</strong> current setting, into a quite compact and computer-friendly<br />

<strong>for</strong>m as<br />

G(x,y;ξ,η)= 1<br />

2π ln E 1(z−ζ)E 2 (z−ζ)<br />

E 2 (z−ζ)E 1 (z−ζ)<br />

− 1 b<br />

∞<br />

∑<br />

n=1<br />

[ exp(ν(x−ξ))<br />

ν<br />

− exp(h(x−ξ)) ]<br />

sinνysinνη, (3.18)<br />

h<br />

where <strong>the</strong> real-valued <strong>functions</strong> E 1 (w) and E 2 (w) <strong>of</strong> a complex variable w are defined as<br />

(<br />

∣ πw<br />

)<br />

(<br />

∣ ∣ πw<br />

)<br />

∣<br />

E 1 (w)= ∣exp +1∣, E 2 (w)= ∣exp −1∣.<br />

2b<br />

2b<br />

Notice that <strong>the</strong> coefficient<br />

exp(ν(x−ξ))<br />

− exp(h(x−ξ))<br />

ν<br />

h<br />

<strong>of</strong> <strong>the</strong> series in (3.18) is valid <strong>for</strong> x≤ ξ, whereas its expression <strong>for</strong> x≥ ξ can be obtained<br />

from <strong>the</strong> above by interchanging x with ξ.<br />

The series in (3.18) is uni<strong>for</strong>mly convergent in Ω. Its analysis can be accomplished in<br />

exactly same fashion as <strong>for</strong> <strong>the</strong> Dirichlet problem considered earlier.<br />

Omitting details, we present an ultimate expression <strong>for</strong> <strong>the</strong> Green’s function <strong>of</strong> <strong>the</strong><br />

Dirichlet problem<br />

u(0,y)=u(x,0)=u(x,b)=0<br />

stated <strong>for</strong> <strong>the</strong> SKGE on <strong>the</strong> semi-infinite strip Ω={(x,y)| 0


132 Y. A. Melnikov / J. Partial Diff. Eq., 24 (2011), pp. 114-139<br />

Proceeding in compliance with our approach, <strong>the</strong> Green’s function <strong>for</strong> <strong>the</strong> <strong>for</strong>mulation<br />

in (3.20) is ultimately obtained in <strong>the</strong> <strong>for</strong>m<br />

where<br />

G(x,y;ξ,η)= 1<br />

2π ln E 1(z−ζ)E 2 (z+ζ)E 1 (z+ζ)E 2 (z−ζ)<br />

E 1 (z+ζ)E 2 (z−ζ)E 1 (z−ζ)E 2 (z+ζ)<br />

∞<br />

( coshνx<br />

− 2 b<br />

− 2β b<br />

∑<br />

n=1<br />

∞<br />

∑<br />

n=1<br />

νexpνξ − coshhx<br />

hexphξ<br />

)<br />

sinνysinνη<br />

exp(−h(x+ξ))<br />

sinνysinνt, x≤ ξ, (3.21)<br />

h(h+β)<br />

h= √ ν 2 +k 2 , ν=(2n−1) π 2b . (3.22)<br />

The coefficient <strong>of</strong> <strong>the</strong> first series in (3.21) is valid <strong>for</strong> x≤ξ, while its expression <strong>for</strong> x≥ξ<br />

can be obtained by interchanging x with ξ. Clearly, <strong>the</strong> coefficient <strong>of</strong> <strong>the</strong> second series in<br />

(3.21) remains invariant to <strong>the</strong> interchange.<br />

The series in (3.21) are uni<strong>for</strong>mly convergent, and one can readily estimate <strong>the</strong> remainder<br />

<strong>of</strong> <strong>the</strong> first <strong>of</strong> <strong>the</strong>m by using <strong>the</strong> approach that has already been implemented to<br />

<strong>the</strong> series <strong>of</strong> (3.11). To estimate <strong>the</strong> remainder R N (x,y;ξ,η) <strong>of</strong> <strong>the</strong> second series in (3.21),<br />

we proceed as follows<br />

|R N (x,y;ξ,η)|=<br />

∣<br />

≤<br />

<<br />

∞<br />

∑<br />

n=N+1<br />

∞<br />

∑<br />

n=N+1<br />

∞<br />

∑<br />

n=N+1<br />

∣<br />

exp(−h(x+ξ))<br />

h(h+β)<br />

exp(−h(x+ξ))<br />

h(h+β)<br />

sinνysinνη<br />

∣<br />

∞ ∣ = ∑<br />

n=N+1<br />

exp(−h(x+ξ))<br />

h(h+β)<br />

exp(−ν(x+ξ))<br />

. (3.23)<br />

ν(ν+β)<br />

Recalling from (3.22) <strong>the</strong> expression <strong>for</strong> ν in terms <strong>of</strong> n, we rewrite <strong>the</strong> estimate in (3.23)<br />

in <strong>the</strong> explicit <strong>for</strong>m<br />

( )<br />

|R N (x,y;ξ,η)|< 4b2 exp − π(2n−1)<br />

2b<br />

(x+ξ)<br />

(2n−1)[(2n−1)+β 0 ] ,<br />

∞<br />

π ∑ 2<br />

n=N+1<br />

where β 0 =2bβ/π. The above can be rewritten as<br />

|R N (x,y;ξ,η)|< 4b2<br />

π 2<br />

= 4b2<br />

π 2 p<br />

∞<br />

∑<br />

n=N+1<br />

∞<br />

∑<br />

n=N+1<br />

[ (<br />

exp<br />

− π(x+ξ)<br />

2b<br />

)] 2n−1<br />

(2n−1)[(2n−1)+β 0 ]<br />

p 2n<br />

(2n−1)2n , (3.24)


<strong>Construction</strong> <strong>of</strong> Green’s Functions <strong>for</strong> Static <strong>Klein</strong>-Gordon Equation 133<br />

where we introduce <strong>for</strong> compactness<br />

p=exp<br />

(− π 2b (x+ξ) )<br />

.<br />

To fur<strong>the</strong>r proceed with <strong>the</strong> estimate obtained in (3.24), we will derive <strong>the</strong> summation<br />

<strong>for</strong>mula <strong>for</strong> <strong>the</strong> series<br />

∞<br />

∑<br />

n=1<br />

p 2n<br />

(2n−1)2n ,<br />

whose N-th remainder appears in (3.24). In doing so, let us take advantage <strong>of</strong> <strong>the</strong> standard<br />

[11] relation<br />

∞<br />

p<br />

∑<br />

2n−1<br />

2n−1 = 1 ( ) 1+p<br />

2 ln (3.25)<br />

1−p<br />

n=1<br />

valid <strong>for</strong> p 2


134 Y. A. Melnikov / J. Partial Diff. Eq., 24 (2011), pp. 114-139<br />

We focus now on <strong>the</strong> Dirichlet problem set up on <strong>the</strong> rectangle Ω={(x,y)| 0< x<<br />

a,0< y


<strong>Construction</strong> <strong>of</strong> Green’s Functions <strong>for</strong> Static <strong>Klein</strong>-Gordon Equation 135<br />

valuated by an appropriate truncation. The second series in (3.30) is not, however, uni<strong>for</strong>mly<br />

convergent. It possesses <strong>the</strong> logarithmic singularity which shows up if both <strong>the</strong><br />

field and <strong>the</strong> source point go to <strong>the</strong> edge x=a.<br />

For ano<strong>the</strong>r example on <strong>the</strong> success <strong>of</strong> <strong>the</strong> eigenfunction expansion method in a case<br />

when <strong>the</strong> method <strong>of</strong> images fails, consider <strong>the</strong> boundary-value problem<br />

set up <strong>for</strong> <strong>the</strong> nonhomogeneous SKGE<br />

1<br />

r<br />

(<br />

∂<br />

∂r<br />

r ∂u(r,ϕ)<br />

∂r<br />

u(r,0)=u(r,α)=0 (3.31)<br />

)<br />

+ 1 r 2 ∂ 2 u(r,ϕ)<br />

∂ϕ 2 −k 2 u(r,ϕ)=− f(r,ϕ) (3.32)<br />

on <strong>the</strong> infinite wedge Ω(r,ϕ)={(r,ϕ)|0


136 Y. A. Melnikov / J. Partial Diff. Eq., 24 (2011), pp. 114-139<br />

This yields <strong>the</strong> set <strong>of</strong> boundary-value problems<br />

d 2 u n (r)<br />

dr 2 + 1 )<br />

du n (r)<br />

−<br />

(k 2 + ν2<br />

r dr r 2 u n (r)=− f n (r), n=1,2,3,··· , (3.37)<br />

lim|u n (r)|


<strong>Construction</strong> <strong>of</strong> Green’s Functions <strong>for</strong> Static <strong>Klein</strong>-Gordon Equation 137<br />

representing <strong>the</strong> Green’s function <strong>for</strong> <strong>the</strong> Dirichlet problem stated on <strong>the</strong> quarter-plane<br />

Ω={(r,ϕ)|0


138 Y. A. Melnikov / J. Partial Diff. Eq., 24 (2011), pp. 114-139<br />

Green’s function <strong>for</strong> this problem is found by means <strong>of</strong> our approach as<br />

G(r,ϕ;̺,ψ)= 1 ( √ ) ( √ )]<br />

[K 0 k r<br />

2π<br />

2 −2r̺cos(ϕ−ψ)+̺2 −K 0 k r 2 −2r̺cos(ϕ+ψ)+̺2<br />

− 2 I n (kr)I n (k̺)[K n(kR)+βK ′ n (kR)]<br />

π I n(kR)+βI ′ sinnϕsinnψ. (3.46)<br />

n (kR)<br />

∞<br />

∑<br />

n=1<br />

Green’s <strong>functions</strong> <strong>for</strong> <strong>two</strong> o<strong>the</strong>r boundary-value problems can be obtained from <strong>the</strong><br />

above representation. First, <strong>the</strong> <strong>for</strong>m in (3.46) reduces to <strong>the</strong> expression <strong>of</strong> (3.44) (Dirichlet<br />

problem <strong>for</strong> <strong>the</strong> half-disk), when <strong>the</strong> parameter β in <strong>the</strong> boundary condition <strong>of</strong> (3.45)<br />

approaches infinity. Second, as β goes to zero, <strong>the</strong> representation in (3.46) reduces to <strong>the</strong><br />

Green’s function<br />

G(r,ϕ;̺,ψ)= 1<br />

2π<br />

( √ ) ( √ )]<br />

[K 0 k r 2 −2r̺cos(ϕ−ψ)+̺2 −K 0 k r 2 −2r̺cos(ϕ+ψ)+̺2<br />

− 2 π<br />

∞<br />

∑<br />

n=1<br />

<strong>for</strong> <strong>the</strong> mixed boundary-value problem<br />

stated on <strong>the</strong> half-disk.<br />

I n (kr)I n (k̺)K n(kR)<br />

′<br />

I n(kR) ′ sinnϕsinnψ (3.47)<br />

∂u(R,ϕ)<br />

∂r<br />

= u(r,0)=u(r,π)=0<br />

4 Concluding remarks<br />

Summarizing <strong>the</strong> results <strong>of</strong> <strong>the</strong> present study, point out that a variety <strong>of</strong> boundary-value<br />

problems <strong>for</strong> <strong>the</strong> <strong>static</strong> <strong>Klein</strong>-Gordon equations, <strong>for</strong> which Green’s <strong>functions</strong> can potentially<br />

be constructed by using <strong>the</strong> techniques developed herein, is not limited to <strong>the</strong> cases<br />

just considered. Many o<strong>the</strong>r problems can also be successfully tackled. The presented<br />

work especially aimed at those researchers who might be interested in a numerical implementation<br />

<strong>of</strong> Green’s <strong>functions</strong>, in which case <strong>the</strong> practical computability is a critical<br />

issue.<br />

References<br />

[1] Melnikov Yu. A., Green’s Functions in Applied Mechanics. Computational Mechanics Publications,<br />

Southampton-Boston, 1995.<br />

[2] Melnikov Yu. A., Influence Function and Matrices, Marcel Dekker. New York-Basel, 1998.<br />

[3] Smirnov V. I., A Course <strong>of</strong> Higher Ma<strong>the</strong>matics. Pergamon Press, Ox<strong>for</strong>d-New York, 1964.<br />

[4] Watson G. N., A Treatise on <strong>the</strong> Theory <strong>of</strong> Bessel Functions. Cambridge University Press,<br />

Cambridge, 1966.


<strong>Construction</strong> <strong>of</strong> Green’s Functions <strong>for</strong> Static <strong>Klein</strong>-Gordon Equation 139<br />

[5] Tranter C. J., Bessel Functions with Some Physical Applications. Hard Publishing Company,<br />

New York, 1969.<br />

[6] Morse P. M. and Feshbach H., Methods <strong>of</strong> Theoretical Physics. McGraw Hill, New York-<br />

Toronto-London, 1953.<br />

[7] Courant R. and Hilbert D., Methods <strong>of</strong> Ma<strong>the</strong>matical Physics. Interscience, New York, 1953.<br />

[8] Stakgold I., Green’s Functions and Boundary Value Problems. John Wiley, New York, 1980.<br />

[9] Duffy D., Green’s Functions with Applications. CRC Press, Boca Raton, 2001.<br />

[10] Abramovitz M. and Stegun I., Handbook <strong>of</strong> Ma<strong>the</strong>matical Functions. National Bureau <strong>of</strong><br />

Standards, Washington D.C., 1972.<br />

[11] Gradstein I. S. and Ryzhik I. M., Tables <strong>of</strong> Integrals, Series and Products. Academic Press,<br />

New York, 1980.<br />

[12] Economou E. N., Green’s Functions in Quantum Physics. Springer-Verlag, Berlin, 1983.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!