20.11.2013 Views

Fundamental Concepts in Microscopy

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Fundamental</strong> <strong>Concepts</strong><br />

<strong>in</strong> <strong>Microscopy</strong><br />

권오경, Ph.D.<br />

서울대학교 농생명과학공동기기원 (NICEM)


서울대학교 농생명과학공동기기원 (NICEM)<br />

<strong>Microscopy</strong><br />

• Image Formation<br />

• Resolution<br />

• Structure of Microscope<br />

• Fluorescence <strong>Microscopy</strong><br />

• Confocal <strong>Microscopy</strong><br />

• Super-resolution <strong>Microscopy</strong>


서울대학교 농생명과학공동기기원 (NICEM)<br />

<strong>Microscopy</strong><br />

• Image Formation<br />

• Resolution<br />

• Structure of Microscope<br />

• Fluorescence <strong>Microscopy</strong><br />

• Confocal <strong>Microscopy</strong><br />

• Super-resolution <strong>Microscopy</strong>


E<br />

Object<br />

Lens<br />

Image


Lens<br />

PSF


E<br />

Convolution<br />

PSF


Po<strong>in</strong>t Spread Function (PSF)


PSF <strong>in</strong> 3D


서울대학교 농생명과학공동기기원 (NICEM)<br />

<strong>Microscopy</strong><br />

• Image Formation<br />

• Resolution<br />

• Def<strong>in</strong>ition<br />

• PSF and Resolution<br />

• Aperture and PSF<br />

• Aperture and Resolution<br />

• Degradation of Resolution<br />

• Structure of Microscope<br />

• Fluorescence <strong>Microscopy</strong><br />

• Confocal <strong>Microscopy</strong><br />

• Super-resolution <strong>Microscopy</strong>


RESOLUTION


PSF and Resolution


d = l<br />

2NA<br />

Diffraction Limited Resolution


High NA Objective<br />

Low NA Objective


Aperture and Resolution<br />

Objective<br />

Tube lens<br />

Intermediate<br />

image plane<br />

Diffraction spot<br />

on image plane<br />

= Po<strong>in</strong>t Spread Function<br />

Sample<br />

Back focal plane aperture


Aperture and Resolution<br />

Objective<br />

Tube lens<br />

Intermediate<br />

image plane<br />

Diffraction spot<br />

on image plane<br />

= Po<strong>in</strong>t Spread Function<br />

Sample<br />

Back focal plane aperture


Aperture and Resolution<br />

Objective<br />

Tube lens<br />

Intermediate<br />

image plane<br />

Diffraction spot<br />

on image plane<br />

= Po<strong>in</strong>t Spread Function<br />

Sample<br />

Back focal plane aperture


Aperture and Resolution<br />

Objective<br />

Tube lens<br />

Intermediate<br />

image plane<br />

Diffraction spot<br />

on image plane<br />

= Po<strong>in</strong>t Spread Function<br />

Sample<br />

<br />

Back focal plane aperture<br />

• Image resolution improves with Numerical Aperture (NA)<br />

NA = n s<strong>in</strong>()<br />

where:<br />

= light gather<strong>in</strong>g angle<br />

n = refractive <strong>in</strong>dex of sample


서울대학교 농생명과학공동기기원 (NICEM)<br />

What does degrade Resolution?<br />

• Chromatic aberration<br />

• Spherical aberration<br />

• Astigmatism<br />

32


서울대학교 농생명과학공동기기원 (NICEM)<br />

Chromatic Aberration<br />

33


서울대학교 농생명과학공동기기원 (NICEM)<br />

Spherical Aberration<br />

34


서울대학교 농생명과학공동기기원 (NICEM)<br />

Astigmatism<br />

35


서울대학교 농생명과학공동기기원 (NICEM)<br />

What does degrade Resolution?<br />

• Misalignment<br />

• Cleanness of optics<br />

• Improper aperture size<br />

• Quality of record<strong>in</strong>g media<br />

• Improper acquisition parameters<br />

36


서울대학교 농생명과학공동기기원 (NICEM)<br />

<strong>Microscopy</strong><br />

• Image Formation<br />

• Resolution<br />

• Structure of Microscope<br />

• Transmitted Light Microscope<br />

• Objective lens<br />

• Fluorescence <strong>Microscopy</strong><br />

• Confocal <strong>Microscopy</strong><br />

• Super-resolution <strong>Microscopy</strong>


서울대학교 농생명과학공동기기원 (NICEM)<br />

<strong>Microscopy</strong><br />

• Image Formation<br />

• Resolution<br />

• Structure of Microscope<br />

• Fluorescence <strong>Microscopy</strong><br />

• Excitation and Emission<br />

• Filters<br />

• Confocal <strong>Microscopy</strong><br />

• Super-resolution <strong>Microscopy</strong>


Notch


Band Pass Filters<br />

630 nm BandPass Filter<br />

White Light Source<br />

Transmitted Light<br />

Long Pass Filters<br />

620 -640 nm Light<br />

Light Source<br />

520 nm Long Pass Filter<br />

Transmitted Light<br />

Short Pass Filters<br />

Light Source<br />

>520 nm Light<br />

575 nm Short Pass Filter<br />

Transmitted Light<br />


510 LP dichroic Mirror<br />

Dichroic Filter/Mirror at 45 deg<br />

Light Source<br />

Transmitted Light<br />

Reflected light


서울대학교 농생명과학공동기기원 (NICEM)<br />

<strong>Microscopy</strong><br />

• Image Formation<br />

• Resolution<br />

• Structure of Microscope<br />

• Fluorescence <strong>Microscopy</strong><br />

• Confocal <strong>Microscopy</strong><br />

• Fluorescence vs Confocal microscopy<br />

• Confocal <strong>Microscopy</strong> +<br />

• How it works<br />

• Super-resolution <strong>Microscopy</strong>


Tissue culture cell with 60x / 1.4NA objective


Fluorescence vs Confocal <strong>Microscopy</strong><br />

• Common<br />

• Fluorescence dyes<br />

• Filters<br />

• Difference<br />

• Light source: Laser<br />

• Po<strong>in</strong>t Detection: PMT, APD, HyD<br />

• Optical section: P<strong>in</strong>hole 3D image reconstruction<br />

The term “confocal” means “hav<strong>in</strong>g the same focus” This is<br />

accomplished by focus<strong>in</strong>g the condenser lens to the same focal<br />

plane as the objective lens.


Confocal <strong>Microscopy</strong> +<br />

• Reduced blurr<strong>in</strong>g of the image from light scatter<strong>in</strong>g<br />

• Increased effective resolution<br />

• Improved signal to noise ratio<br />

• Clear exam<strong>in</strong>ation of thick specimen<br />

• Z-axis scann<strong>in</strong>g<br />

• Depth perception <strong>in</strong> Z-sectioned images<br />

• Magnification can be adjusted electronically


Scann<strong>in</strong>g<br />

Chang<strong>in</strong>g entrance<br />

angle of illum<strong>in</strong>ation<br />

moves illum<strong>in</strong>ation spot<br />

on sample<br />

Objective lens<br />

Sample<br />

The emission spot<br />

moves, so we have to<br />

make sure p<strong>in</strong>hole is<br />

co<strong>in</strong>cident with it


Select<strong>in</strong>g Proper Dyes and Filters


서울대학교 농생명과학공동기기원 (NICEM)<br />

<strong>Microscopy</strong><br />

• Image Formation<br />

• Resolution<br />

• Structure of Microscope<br />

• Fluorescence <strong>Microscopy</strong><br />

• Confocal <strong>Microscopy</strong><br />

• Super-resolution <strong>Microscopy</strong><br />

• Super-resolution methods<br />

• Confocal vs Super-resolution microscopy<br />

• How it works: Make PSF smaller


Selected Super-resolution Techniques<br />

STED (Stimulation Emission Depletion)<br />

SIM (Structured Illum<strong>in</strong>ation <strong>Microscopy</strong>)<br />

PALM (Photo-Activated Localization <strong>Microscopy</strong>)<br />

STORM (Stochastic Optical Reconstruction <strong>Microscopy</strong>)


Smaller PSF<br />

Better Resolution


Thank you very much<br />

for your attention!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!