20.12.2013 Views

Study on Urban Drainage Modeling in Incheon Gyo ... - HydroAsia

Study on Urban Drainage Modeling in Incheon Gyo ... - HydroAsia

Study on Urban Drainage Modeling in Incheon Gyo ... - HydroAsia

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F<strong>in</strong>al presentati<strong>on</strong><br />

<str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> <strong>Urban</strong> <strong>Dra<strong>in</strong>age</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong><br />

Inche<strong>on</strong> <strong>Gyo</strong> Watershed<br />

Advisors: Gyewo<strong>on</strong> CHOI<br />

Members:<br />

2008. 8. 22<br />

Girish Badgujar,<br />

Nguyen Ha,<br />

Mye<strong>on</strong>g soo Ham ,<br />

Kakuta Fujiwara,<br />

Lei SHI,<br />

Xuan Wang,<br />

Qiang Zhang,<br />

D<strong>on</strong>ge<strong>on</strong> Kim<br />

1


C<strong>on</strong>tent –Team Blue<br />

1. Introducti<strong>on</strong><br />

2. Work Flow for Team Blue<br />

3. <strong>Model<strong>in</strong>g</strong> of Inche<strong>on</strong> <strong>Gyo</strong> Watershed<br />

4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

5. C<strong>on</strong>clusi<strong>on</strong><br />

2


1. Introducti<strong>on</strong><br />

Youngj<strong>on</strong>g<br />

Airport<br />

Yellow sea<br />

S<strong>on</strong>gdo<br />

Seoul<br />

• Located <strong>in</strong> the midwest<br />

Korea pen<strong>in</strong>sula<br />

near Yellow Sea<br />

• With both<br />

<strong>in</strong>ternati<strong>on</strong>al port<br />

and <strong>in</strong>ternati<strong>on</strong>al<br />

airport<br />

• The third biggest<br />

city <strong>in</strong> Korea<br />

• Populati<strong>on</strong> : 2,730<br />

thousand<br />

3


1. Introducti<strong>on</strong> - Recent Floods at Inche<strong>on</strong><br />

Damages<br />

– Flood<strong>in</strong>g <strong>in</strong><br />

1997 to 2001<br />

(except 2000)<br />

–Total 3,318<br />

Houses and<br />

build<strong>in</strong>gs were<br />

flooded <strong>in</strong> 2001<br />

4


1. Introducti<strong>on</strong> - Flood<strong>in</strong>g<br />

Direct damages: Material loss<br />

Indirect damages: Time=$, Traffic, Producti<strong>on</strong>, Diseases<br />

Social c<strong>on</strong>sequences: Decrease of Property value of<br />

flooded areas…<br />

5


1. Introducti<strong>on</strong> - Objectives<br />

Statement of Problem<br />

• Inche<strong>on</strong> City has experienced flood <strong>in</strong> recent years.<br />

• Most of the areas were flooded even with from year 1997 to 2001.<br />

• Hence to overcome flood<strong>in</strong>g situati<strong>on</strong> some technical<br />

recommendati<strong>on</strong>s are needed<br />

Objective of the study<br />

To c<strong>on</strong>struct the model to simulate 1997 year flood c<strong>on</strong>diti<strong>on</strong><br />

To evaluate the exist<strong>in</strong>g sewer system of Inche<strong>on</strong> city<br />

To design and exam<strong>in</strong>e some technical soluti<strong>on</strong> to alleviate the<br />

flood<strong>in</strong>g situati<strong>on</strong><br />

To provide recommendati<strong>on</strong>s for flood alleviati<strong>on</strong>.<br />

6


2. Work Flow for Team Blue<br />

- Water Level<br />

at each node<br />

- L<strong>in</strong>k water<br />

level,<br />

discharge, and<br />

velocity<br />

- Flood extent<br />

and flood<br />

depth, etc.<br />

General Analysis<br />

Data Collecti<strong>on</strong><br />

Analysis of the collected<br />

data<br />

Model Choos<strong>in</strong>g and Setup<br />

Calibrati<strong>on</strong> and Validati<strong>on</strong><br />

of model parameters<br />

Evaluati<strong>on</strong> of the exist<strong>in</strong>g<br />

dra<strong>in</strong>age capacity of the<br />

system<br />

Design and exam<strong>in</strong>e<br />

technical soluti<strong>on</strong>s for flood<br />

alleviati<strong>on</strong><br />

Results and<br />

Recommendati<strong>on</strong>s<br />

- Hydrologic & Hydraulic Data: Ra<strong>in</strong>fall,<br />

ra<strong>in</strong> gauge coord<strong>in</strong>ates, gate and pump<br />

operati<strong>on</strong>, retenti<strong>on</strong> p<strong>on</strong>d c<strong>on</strong>diti<strong>on</strong>, etc.<br />

- Catchment Data: Coord<strong>in</strong>ates, area,<br />

impervious area, populati<strong>on</strong>, time of<br />

c<strong>on</strong>centrati<strong>on</strong>, Length, hydrological losses<br />

for the <strong>in</strong>dividual catchment, Mann<strong>in</strong>g<br />

number, land use type, etc.<br />

- L<strong>in</strong>ks: Material (Mann<strong>in</strong>g number),<br />

l<strong>on</strong>gitud<strong>in</strong>al profile, Cross secti<strong>on</strong> data<br />

(shape, size)<br />

- Nodes: manholes, bas<strong>in</strong>s, outlets,<br />

- Road system, build<strong>in</strong>g system<br />

- Available GIS Digital Map (0bserved<br />

flood <strong>in</strong>undati<strong>on</strong> map, etc.)<br />

7


2. Work Flow for Team Blue<br />

General Analysis of Ra<strong>in</strong>fall Runoff Process for <strong>Urban</strong><br />

watershed<br />

Mark et al, 2004<br />

8


3. <strong>Model<strong>in</strong>g</strong> of Inche<strong>on</strong> <strong>Gyo</strong><br />

Watershed<br />

Approach for model<strong>in</strong>g<br />

• The phenomen<strong>on</strong> of flood could be understood by model<strong>in</strong>g, if we<br />

could represent the reality with some assumpti<strong>on</strong> <strong>in</strong> the model.<br />

• Selecti<strong>on</strong> of Model<br />

Dynamic, User-friendly, Professi<strong>on</strong>al Eng<strong>in</strong>eer<strong>in</strong>g Package<br />

Capabilities like dynamic memory allocati<strong>on</strong> and data structure<br />

It should have produced good applicati<strong>on</strong>s <strong>in</strong> the past<br />

• MOUSE (ma<strong>in</strong>)<br />

MOUSE is advanced, powerful surface runoff, pipe flow<br />

model<strong>in</strong>g package.<br />

It has been used s<strong>in</strong>ce 1970 for urban model<strong>in</strong>g<br />

Capable of simulat<strong>in</strong>g surface flow and pipe flow<br />

•MIKE SWMM (opti<strong>on</strong>al)<br />

MIKE SWMM is a free powerful model but with some limitati<strong>on</strong>s<br />

9


3. <strong>Model<strong>in</strong>g</strong> of Inche<strong>on</strong> <strong>Gyo</strong><br />

Watershed<br />

MOUSE wants follow<strong>in</strong>g data……..<br />

MOUSE will be used here for two purposed<br />

• To produce surface runoff from ra<strong>in</strong>fall<br />

•To produce pipe flow developed from the surface<br />

flow<br />

Data required for MOUSE<br />

Catchment and catchment characteristics for surface flow<br />

Node, L<strong>in</strong>k and hydraulic characteristics for pipe flow<br />

Time series<br />

•Ra<strong>in</strong>fall<br />

• Water level at different outlets<br />

10


3. <strong>Model<strong>in</strong>g</strong> of Inche<strong>on</strong> <strong>Gyo</strong><br />

Watershed<br />

<strong>Dra<strong>in</strong>age</strong> network of Inche<strong>on</strong> <strong>Gyo</strong> Watershed<br />

c<strong>on</strong>structed <strong>in</strong> MOUSE<br />

11


3. <strong>Model<strong>in</strong>g</strong> of Inche<strong>on</strong> <strong>Gyo</strong><br />

Surface Runoff <strong>Model<strong>in</strong>g</strong><br />

Watershed<br />

Runoff was estimated us<strong>in</strong>g Time Area Curve A<br />

The factors affect<strong>in</strong>g runoff process<br />

•Reducti<strong>on</strong> factor<br />

•Average slope<br />

•Time of c<strong>on</strong>centrati<strong>on</strong><br />

•Initial loss<br />

Above factors are depends <strong>on</strong> the follow<strong>in</strong>g catchment characteristics<br />

•Area of the catchment<br />

•Surface cover of the catchment<br />

12


3. <strong>Model<strong>in</strong>g</strong> of Inche<strong>on</strong> <strong>Gyo</strong><br />

Watershed<br />

Assigned different value<br />

Us<strong>in</strong>g the catchment<br />

characteristics<br />

13


3. <strong>Model<strong>in</strong>g</strong> of Inche<strong>on</strong> <strong>Gyo</strong><br />

Watershed<br />

- Land Utilizati<strong>on</strong><br />

Locati<strong>on</strong><br />

Inche<strong>on</strong> <strong>Gyo</strong><br />

Covered<br />

Open<br />

Channel<br />

Sulnam<br />

Hwasu<br />

Left<br />

Right<br />

Subtotal<br />

Total<br />

1,183.6<br />

997.2<br />

2,180.8<br />

910.9<br />

302.8<br />

Residence<br />

734.3<br />

364.8<br />

1,099.1<br />

204.4<br />

161.6<br />

Market<br />

145.9<br />

47.8<br />

193.7<br />

38.4<br />

67.4<br />

Industrial<br />

226.3<br />

353.3<br />

579.6<br />

357.9<br />

61.7<br />

Green<br />

77.1<br />

231.3<br />

308.4<br />

310.2<br />

12.1<br />

Total<br />

3,394.5<br />

(100%)<br />

1,465.1<br />

(43.2%)<br />

299.5<br />

(8.8%)<br />

999.2<br />

(29.4%)<br />

630.7<br />

(18.6%)<br />

• Distributi<strong>on</strong> of Elevati<strong>on</strong><br />

Elevati<strong>on</strong> Range<br />

Less than 5m<br />

5~7m<br />

More than 9m<br />

Total<br />

Area(ha)<br />

20.7<br />

1,102.7<br />

2,271.1<br />

3,394.5<br />

Rate of Compositi<strong>on</strong> (%)<br />

0.6<br />

32.5<br />

66.9<br />

100.0<br />

14


3. <strong>Model<strong>in</strong>g</strong> of Inche<strong>on</strong> <strong>Gyo</strong><br />

Watershed<br />

- Pipe flow computati<strong>on</strong><br />

•Pipe flow starts with <strong>in</strong>flow from<br />

the surface runoff.<br />

•The underground flow is computed<br />

as pipe flow or open channel flow.<br />

•Full form of St Venant equati<strong>on</strong> and<br />

Modified St Venant equati<strong>on</strong><br />

15


3. <strong>Model<strong>in</strong>g</strong> of Inche<strong>on</strong> <strong>Gyo</strong><br />

Watershed<br />

- MOUSE Results<br />

16


3. <strong>Model<strong>in</strong>g</strong> of Inche<strong>on</strong> <strong>Gyo</strong><br />

Watershed<br />

- Calibrati<strong>on</strong>!!!<br />

Why??? :<br />

For the evaluati<strong>on</strong> of the performance of the model<br />

compared preferably aga<strong>in</strong>st measurements<br />

Select<br />

start<strong>in</strong>g<br />

estimate<br />

Run the<br />

model<br />

Compare<br />

computed<br />

&<br />

observed<br />

Ok<br />

?<br />

Ye<br />

s<br />

F<strong>in</strong>ish<br />

No<br />

Improve<br />

estimate<br />

Flow Chart for Calibrati<strong>on</strong><br />

17


3. <strong>Model<strong>in</strong>g</strong> of Inche<strong>on</strong> <strong>Gyo</strong><br />

Watershed<br />

- Calibrati<strong>on</strong> Result for the Flood <strong>in</strong> 1997<br />

Figure: Maximum Flood result at<br />

nodes shown <strong>in</strong> MIKE VIEW for<br />

a storm of 4, Aug. 1997.<br />

Figure: Observed Inundati<strong>on</strong><br />

Map for Year 1997.<br />

18


3. <strong>Model<strong>in</strong>g</strong> of Inche<strong>on</strong> <strong>Gyo</strong> Watershed<br />

- Results from MIKE VIEW for storm <strong>in</strong> year 1997<br />

Figure: Time series flood for a<br />

storm of 4, Aug. 1997 at node<br />

20066<br />

Figure: Water level profile from node<br />

24699 to node 25098 at 03:00 4/8/97.<br />

19


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

- C<strong>on</strong>structi<strong>on</strong> of flood <strong>in</strong>undati<strong>on</strong> map<br />

Generati<strong>on</strong> of DEM from c<strong>on</strong>tour level<br />

‣ DEM should be f<strong>in</strong>e for urban area<br />

‣ Size of 1x1 to 5x5 is recommended for urban analysis<br />

DEM can be created by: c<strong>on</strong>tour map or spot elevati<strong>on</strong><br />

Present case DEM of 5x5 m created us<strong>in</strong>g c<strong>on</strong>tour map as a <strong>in</strong>put<br />

MOUSE output was transferred to GIS us<strong>in</strong>g MIKE 11 GIS<br />

Generati<strong>on</strong> of water surface grids<br />

waterlevel =<br />

h1<br />

h<br />

2<br />

h<br />

+ +<br />

d1<br />

d2<br />

d<br />

1<br />

d + d + d<br />

1<br />

2<br />

3<br />

3<br />

3<br />

Flood<br />

= GeneratedW.<br />

S.<br />

−<br />

DEM<br />

20


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

- 3-D DEM for Inche<strong>on</strong> <strong>Gyo</strong> Watershed<br />

Fig.DEM for Inche<strong>on</strong> <strong>Gyo</strong><br />

Watershed with Build<strong>in</strong>gs<br />

Fig.DEM for Inche<strong>on</strong> <strong>Gyo</strong><br />

Watershed without Build<strong>in</strong>gs<br />

21


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

Comparis<strong>on</strong> of 1997<br />

flood<br />

22


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

- SWMM Input Data<br />

RUNOFF<br />

- Ra<strong>in</strong>fall<br />

- Catchment<br />

EXTRAN<br />

- C<strong>on</strong>duits<br />

-Juncti<strong>on</strong>s<br />

- Outfalls<br />

- Boundary c<strong>on</strong>diti<strong>on</strong>s<br />

23


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

- SWMM C<strong>on</strong>trol Data<br />

RUNOFF<br />

- Infiltrati<strong>on</strong> Equati<strong>on</strong>: Hort<strong>on</strong><br />

- Simulati<strong>on</strong> length: 24 hours<br />

- Time step: 30sec<br />

EXTRAN<br />

- Ehanced Explicit Soluti<strong>on</strong><br />

- Start time:19970804<br />

- Length:24h<br />

24


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

MIKE SWMM Output<br />

The model A<br />

The model B<br />

The runoff output<br />

25


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

- Objective 2: Evaluati<strong>on</strong> of Exist<strong>in</strong>g System!!!<br />

Why Evaluati<strong>on</strong>?????<br />

•The C<strong>on</strong>diti<strong>on</strong>s which system can susta<strong>in</strong> without<br />

Be<strong>in</strong>g produc<strong>in</strong>g harm<br />

• Evaluati<strong>on</strong> by subject<strong>in</strong>g precipitati<strong>on</strong>.<br />

•The ra<strong>in</strong>fall <strong>in</strong>tensity for different return period was available, but<br />

how to generate the storms??????<br />

Generati<strong>on</strong> of Precipitati<strong>on</strong> events us<strong>in</strong>g IDF formulae and<br />

“Alternat<strong>in</strong>g block method”<br />

26


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

- Objective 2: Evaluati<strong>on</strong> of Exist<strong>in</strong>g System!!!<br />

Generated Ra<strong>in</strong>fall Hyetograph for 5 Year Return Period us<strong>in</strong>g<br />

Ra<strong>in</strong>fall Return Period Formula (IDF) and Alternat<strong>in</strong>g Block Method<br />

Ra<strong>in</strong>fall (mm)<br />

Time (m<strong>in</strong>)<br />

27


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

- Objective 2: Evaluati<strong>on</strong> of Exist<strong>in</strong>g System!!!<br />

Evaluati<strong>on</strong> of System with 5 year and 20 year return period 24 hr<br />

storm<br />

5 Year Return Period<br />

20 Year Return Period<br />

Ra<strong>in</strong>fall<br />

Ra<strong>in</strong>fall<br />

28


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

- Objective 3 To design and exam<strong>in</strong>e different technical<br />

Scenarios<br />

1. Effect of retenti<strong>on</strong> p<strong>on</strong>d water level <strong>on</strong> the flood<br />

1a. With 25% higher water level<br />

1b. With 25% lower water level<br />

2. Effect of Manhole diameter <strong>on</strong> the flood<br />

3. Effect of Mann<strong>in</strong>g number <strong>on</strong> the flood<br />

29


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

- Objective 3 To design and exam<strong>in</strong>e different technical Scenarios<br />

Scenario 1a. Effect of higher water level at retenti<strong>on</strong> p<strong>on</strong>d<br />

30


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

- Objective 3 To design and exam<strong>in</strong>e different technical Scenarios<br />

Scenario 1b. Effect of lower water level at retenti<strong>on</strong> p<strong>on</strong>d<br />

31


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

- Objective 3 To design and exam<strong>in</strong>e different technical Scenarios<br />

Scenario 2.Effect of Manhole Diameter <strong>on</strong> Flood<br />

32


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

- Objective 3 To design and exam<strong>in</strong>e different technical Scenarios<br />

Scenario 3: Effect of Mann<strong>in</strong>g’s Number<br />

33


4. Analysis of the <strong>Model<strong>in</strong>g</strong> Result<br />

- Objective 4: Recommendati<strong>on</strong>s<br />

• From Scenario 1a and 1b: The water level at retenti<strong>on</strong> p<strong>on</strong>d affects<br />

flood<strong>in</strong>g. If retenti<strong>on</strong> p<strong>on</strong>d is ma<strong>in</strong>ta<strong>in</strong>ed at higher water level, more<br />

flood<strong>in</strong>g will occur and vice versa. Hence it is important to limit rise of<br />

water level at the retenti<strong>on</strong> p<strong>on</strong>d.<br />

By <strong>in</strong>creas<strong>in</strong>g the p<strong>on</strong>d volume (p<strong>on</strong>d expansi<strong>on</strong> is not possible<br />

because of exist<strong>in</strong>g <strong>in</strong>frastructure, hence dredg<strong>in</strong>g is necessary<br />

Introduce high capacity Pump to discharge water quickly <strong>in</strong>to<br />

the sea<br />

Develop retenti<strong>on</strong> p<strong>on</strong>d operati<strong>on</strong> rules<br />

•From Scenario 2: Effect of the Manhole diameter: Not much<br />

significant.<br />

•From Scenario 3: Effect of Mann<strong>in</strong>g number. Higher mann<strong>in</strong>g number<br />

means more resistance and hence more flood<strong>in</strong>g.<br />

Mann<strong>in</strong>g number depends <strong>on</strong> Material of the Pipe<br />

Scale formati<strong>on</strong> <strong>on</strong> surface of the pipe.<br />

Its impossible to change pipe material throughout the system.<br />

Periodic ma<strong>in</strong>tenance is necessary<br />

34


5. C<strong>on</strong>clusi<strong>on</strong><br />

‣ Flood event for year 1997 was simulated and compared with<br />

observed map.<br />

‣ The exist<strong>in</strong>g network was evaluated with different return period<br />

ra<strong>in</strong>fall events.<br />

‣ Different scenarios were simulated to check the effect <strong>on</strong><br />

flood<strong>in</strong>g and then some recommendati<strong>on</strong>s were subsequently<br />

<strong>in</strong>troduced to alleviate <strong>in</strong>undati<strong>on</strong> problem <strong>in</strong> Inche<strong>on</strong> city<br />

‣ From above analysis it could be c<strong>on</strong>cluded that retenti<strong>on</strong> p<strong>on</strong>d<br />

water level is the major factor affect<strong>in</strong>g the flood<strong>in</strong>g also the scale<br />

formati<strong>on</strong> at the <strong>in</strong>ner surface enhances flood<strong>in</strong>g process. And<br />

hence higher capacity retenti<strong>on</strong> p<strong>on</strong>d or quicker water removal<br />

mechanism would be effective.<br />

35


5. C<strong>on</strong>clusi<strong>on</strong><br />

Limitati<strong>on</strong>s and related recommendati<strong>on</strong>s<br />

‣ Above calibrati<strong>on</strong> result for flood of Aug. 1997 just compared<br />

simulated and observed <strong>in</strong>undati<strong>on</strong> locati<strong>on</strong>s, but not depth and<br />

extent of flood<br />

So, calibrati<strong>on</strong> should carry out with recent flood events and base<br />

<strong>on</strong> field survey at some specific locati<strong>on</strong>s for example:<br />

By Interview<strong>in</strong>g the local people for past events<br />

By <strong>in</strong>stall<strong>in</strong>g depth measurement mechanism<br />

‣ No validati<strong>on</strong><br />

‣ There are some uncerta<strong>in</strong>ties <strong>in</strong> mak<strong>in</strong>g some assumpti<strong>on</strong>s for<br />

the model, hence calibrati<strong>on</strong> result was not really good<br />

To improve calibrati<strong>on</strong> result we should establish reliable<br />

measurements of water level at retenti<strong>on</strong> p<strong>on</strong>d dur<strong>in</strong>g flood<br />

occurr<strong>in</strong>g.<br />

36


The method aga<strong>in</strong>st urban flood<br />

Huge tank underground (Tochigi)<br />

The other methods<br />

(1)River<br />

・divide river <strong>in</strong>to underground<br />

stream<br />

・c<strong>on</strong>struct a super bank<br />

・pomp up<br />

(2)Open channel<br />

・c<strong>on</strong>struct pipes underground<br />

・build a house above flood level<br />

Multiplypurpose p<strong>on</strong>d(Tokyo)<br />

Ma<strong>in</strong>-1<br />

trunk<br />

New<br />

L<strong>in</strong>e 2<br />

New<br />

L<strong>in</strong>e 1<br />

For<br />

Ma<strong>in</strong>-2<br />

catch<br />

ment<br />

Ma<strong>in</strong>-2<br />

trunk<br />

For<br />

Ma<strong>in</strong>-1<br />

catch<br />

ment<br />

Flood <strong>in</strong> 1991<br />

38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!