Resolution and contrast enhancement in evanescent wave imaging ...
Resolution and contrast enhancement in evanescent wave imaging ...
Resolution and contrast enhancement in evanescent wave imaging ...
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
<strong>Resolution</strong> <strong>and</strong> <strong>contrast</strong> <strong>enhancement</strong> <strong>in</strong> <strong>evanescent</strong> <strong>wave</strong> imag<strong>in</strong>g<br />
Resolutie en <strong>contrast</strong> verbeter<strong>in</strong>g <strong>in</strong> <strong>evanescent</strong>e golf beeldvorm<strong>in</strong>g<br />
Augmentation de la résolution et le <strong>contrast</strong>e en imagerie par onde évanescente<br />
Read<strong>in</strong>g committee:<br />
prof.dr. H. van Amerongen<br />
dr. D.T.F. Dryden<br />
prof.dr. W.J. Parak<br />
dr.ir. E.J.G. Peterman<br />
prof.em. A.J.W.G. Visser,<br />
Additional jury members:<br />
dr. W. Zuschratter<br />
dr. Y. Bollen<br />
dr. K.I. Anderson<br />
Pr<strong>in</strong>ted by Centurion Pr<strong>in</strong>t<strong>in</strong>g B.V., Wormer<br />
Cover images shows total <strong>in</strong>ternal reflection of a helium-neon laser at 632.8 nm <strong>wave</strong>length<br />
reflect<strong>in</strong>g at the surface of a water tank. Copyrights to Marcel van 't Hoff.<br />
The studies presented <strong>in</strong> this thesis were carried out at the University Paris Descartes <strong>in</strong> the<br />
laboratory of Neurophysiology <strong>and</strong> New Microscopies, <strong>in</strong> the group “Biophysics of<br />
gliotransmitter release”, co-directed by Mart<strong>in</strong> Oheim <strong>and</strong> Nicole Ropert. Some experiments<br />
were conducted <strong>in</strong> cooperation with the group of Anne Feltz at the Ecole Normale Supérieure<br />
(ENS) <strong>in</strong> Paris <strong>and</strong> the group of David Dryden at the University of Ed<strong>in</strong>burgh. My research<br />
was f<strong>in</strong>anced by an EU Marie Curie early-research career development fellowship FP6-2005-<br />
019481 ‘From FLIM to FLIN’ (to M.O.).<br />
2010, Marcel van ’t Hoff
VRIJE UNIVERSITEIT<br />
<strong>Resolution</strong> <strong>and</strong> Contrast Enhancement <strong>in</strong> Evanescent Wave Imag<strong>in</strong>g<br />
ACADEMISCH PROEFSCHRIFT<br />
ter verkrijg<strong>in</strong>g van de graad Doctor aan<br />
de Vrije Universiteit Amsterdam,<br />
op gezag van de rector magnificus<br />
prof.dr. L.M. Bouter,<br />
<strong>in</strong> het openbaar te verdedigen<br />
ten overstaan van de promotiecommissie<br />
van de faculteit der Aard- en Levenswetenschappen<br />
op ma<strong>and</strong>ag 21 juni 2010 om 11.45 uur<br />
<strong>in</strong> de aula van de universiteit,<br />
De Boelelaan 1105<br />
door<br />
Marcel van ’t Hoff<br />
geboren te Ouder-Amstel<br />
ii
promotor:<br />
copromotoren:<br />
prof.dr. H. Lill<br />
dr. M. Oheim<br />
dr. D. Bald<br />
dr. V. Emiliani<br />
iii
“See<strong>in</strong>g, contrary to popular wisdom, isn't believ<strong>in</strong>g.<br />
It's where belief stops, because it isn't needed any more.”<br />
Terry Pratchett, Pyramids<br />
iv
Contents<br />
Chapter 1 General <strong>in</strong>troduction 5<br />
Chapter 2<br />
Screen<strong>in</strong>g by imag<strong>in</strong>g: scal<strong>in</strong>g up s<strong>in</strong>gle DNA-molecule<br />
analysis with a novel parabolic VA-TIRF reflector <strong>and</strong> noise<br />
reduction techniques<br />
33<br />
Chapter 3<br />
A programmable light eng<strong>in</strong>e for quantitative s<strong>in</strong>gle molecule<br />
TIRF <strong>and</strong> HILO imag<strong>in</strong>g<br />
53<br />
Chapter 4 Gett<strong>in</strong>g Across the Plasma Membrane <strong>and</strong> Beyond:<br />
Intracellular Uses of Colloidal Semiconductor Nanocrystals<br />
67<br />
Bibliography 81<br />
Summary 93<br />
Samenvatt<strong>in</strong>g 95<br />
List of publications 97<br />
Dankwoord 98<br />
Appendix 99<br />
1
List of abbreviations<br />
2PEF<br />
AOD<br />
AOM<br />
BFP<br />
BSA<br />
CCD<br />
DNA<br />
DTT<br />
EDTA<br />
EFL<br />
EMCCD<br />
FCS<br />
FITC<br />
FRET<br />
FWHM<br />
HILO<br />
IR<br />
LSM<br />
MTF<br />
NA<br />
NC<br />
OTF<br />
PIC<br />
PSF<br />
PTF<br />
SD<br />
SBR<br />
SIM<br />
SMD<br />
SNR<br />
spFRET<br />
two-photon excitation fluorescence<br />
acousto optic deflector<br />
acousto optic modulator<br />
back focal plane<br />
bov<strong>in</strong>e serum album<strong>in</strong><br />
charge coupled device<br />
deoxyribonucleic acid<br />
di-thiothreitol (a reduc<strong>in</strong>g agent)<br />
ethylene diam<strong>in</strong>e tetraacetic acid<br />
effective focal length<br />
electron-multiply<strong>in</strong>g charge-coupled device<br />
fluorescence correlation spectroscopy<br />
fluoresce<strong>in</strong> isothiocyanate<br />
Förster resonance energy transfer<br />
full width at half maximum<br />
highly <strong>in</strong>cl<strong>in</strong>ed lam<strong>in</strong>ated-sheet observation<br />
<strong>in</strong>frared<br />
laser scann<strong>in</strong>g microscope<br />
modulation transfer function<br />
numerical aperture<br />
semiconductor nanocrystals<br />
object transfer function<br />
peripheral <strong>in</strong>terface microcontroller<br />
po<strong>in</strong>t spread function<br />
phase transfer function<br />
st<strong>and</strong>ard deviation<br />
signal to background ratio<br />
structured illum<strong>in</strong>ation microscopy<br />
s<strong>in</strong>gle-molecule detection<br />
signal-to-noise ratio<br />
s<strong>in</strong>gle pair FRET<br />
2
SVD<br />
TIRF<br />
TIRFM<br />
UV<br />
VA-TIRF<br />
YOYO-1<br />
s<strong>in</strong>gle value decomposition<br />
total <strong>in</strong>ternal reflection fluorescence<br />
TIRF microscopy<br />
ultra violet<br />
variable-angle TIRF<br />
1,1'- (4,4,7,7-tetramethyl-4,7-diazaundecamethylene) bis-4-[3-methyl-2,3-dihydro-(benzo-1,3-oxazole)-2<br />
methyidene]-qu<strong>in</strong>ol<strong>in</strong>ium tetraiodide<br />
3
Chapter 1<br />
General <strong>in</strong>troduction<br />
5
General <strong>in</strong>troduction<br />
Introduction<br />
S<strong>in</strong>ce the <strong>in</strong>vention of the first compound microscope around 1595 by Z. Janssen, we are able<br />
to visualize biological samples <strong>in</strong> great detail. In transmission imag<strong>in</strong>g, the transparency of<br />
the sample generates only a limited image <strong>contrast</strong>. Despite the impressive progress offered<br />
by phase <strong>contrast</strong>, differential <strong>in</strong>terference <strong>contrast</strong> <strong>and</strong> oblique illum<strong>in</strong>ation, biological<br />
microscopy has largely preferred fluorescence for <strong>contrast</strong> generation <strong>and</strong> to highlight specific<br />
subcellular structures. This shift was accompanied by the development of monochromatic<br />
light sources, sensitive cameras <strong>and</strong> the availability of ever better filters to separate excitation<br />
light from emission light. Biological samples can be labeled by genetically encoded(1) or<br />
synthetic fluorophores(2) <strong>and</strong> reveal both static <strong>and</strong> dynamic <strong>in</strong>formation about its processes<br />
<strong>and</strong> environment. Vary<strong>in</strong>g from fixed <strong>in</strong> vitro samples(3) to liv<strong>in</strong>g <strong>in</strong> vivo experiments(4),<br />
fluorescent dyes <strong>and</strong> microscopes are the tools used by biologists <strong>and</strong> physicists to observe<br />
biological processes <strong>in</strong> greater detail.<br />
Fluorescence microscopy is a very evolv<strong>in</strong>g field <strong>in</strong> both physics <strong>and</strong> biology.(5) In this thesis<br />
my aim is; to explore the use of a new fluorophore, the quantum dot, to illustrate the<br />
advantage of a new imag<strong>in</strong>g technique, sp<strong>in</strong>n<strong>in</strong>g total <strong>in</strong>ternal reflection fluorescence<br />
microscopy, <strong>and</strong> to propose a technique to upscale biological experiments <strong>in</strong> total <strong>in</strong>ternal<br />
reflection fluorescence microscopy.<br />
I will first focus on the pr<strong>in</strong>ciples of fluorescence microscopy <strong>and</strong> the result<strong>in</strong>g issues with<br />
resolution <strong>and</strong> <strong>contrast</strong> <strong>in</strong> microscopy. Then I will expla<strong>in</strong> the pr<strong>in</strong>ciples of total <strong>in</strong>ternal<br />
reflection <strong>and</strong> its use <strong>in</strong> microscopy. I cont<strong>in</strong>ue on the use of acousto optic deflectors for beam<br />
control <strong>and</strong> its use <strong>in</strong> overcom<strong>in</strong>g the scatter<strong>in</strong>g of excitation photons <strong>in</strong> total <strong>in</strong>ternal<br />
reflection fluorescence imag<strong>in</strong>g.<br />
6
Chapter 1<br />
A new fluorophore for more sensitive TIRF imag<strong>in</strong>g<br />
In fluorescence microscopy, the <strong>in</strong>terest of biologists is to l<strong>in</strong>k morphological <strong>in</strong>formation<br />
from transmission light to functional imag<strong>in</strong>g of, for example, labeled cells, structures,<br />
organelles, prote<strong>in</strong>s or lig<strong>and</strong>s. By us<strong>in</strong>g optical filters, one is able to separate the excitation<br />
light from the emitted fluorescence. With<strong>in</strong> the cell, there are many molecules able to absorb<br />
light. Each molecule has its own absorption spectrum, although some molecules can absorb<br />
better than others. Also, not every molecule is able to convert the absorbed energy <strong>in</strong>to the<br />
emission of photons efficiently. Synthetically eng<strong>in</strong>eered fluorophores have large absorption<br />
cross sections <strong>and</strong> high quantum yields, which is shown by the percentage figure of emitted<br />
<strong>and</strong> absorbed photons, also def<strong>in</strong>ed as the quantum yield. Also, these dyes can be eng<strong>in</strong>eered<br />
<strong>in</strong> such manner that they are sensitive to the local environment, e.g. pH or Ca 2+ .(6,7).<br />
Label<strong>in</strong>g strategies vary from non-specific to specific label<strong>in</strong>g, where the chosen fluorophores<br />
can either label the whole cell, organelles, structures <strong>and</strong> membranes or rather specific<br />
prote<strong>in</strong>s, DNA or lig<strong>and</strong>s. (1,8,9)<br />
Figure 1 shows the absorption spectra (dashed) <strong>and</strong> emission spectra (solid) of six different quantum dots; Qdot<br />
525 (aqua), Qdot 545 (teal), Qdot 565 (lime), Qdot 585 (yellow), Qdot 605 (orange) <strong>and</strong> Qdot 625 (red). Data<br />
from Invitrogen (Carlsbad, CA)<br />
7
General <strong>in</strong>troduction<br />
In TIRF microscopy, it can be of <strong>in</strong>terest to label DNA molecules which are attached to cover<br />
slips for s<strong>in</strong>gle molecules experiments, or rather to use vesicle membrane sta<strong>in</strong><strong>in</strong>g for s<strong>in</strong>gle<br />
vesicle imag<strong>in</strong>g(10) or track<strong>in</strong>g(11), where<strong>in</strong> the <strong>evanescent</strong> <strong>wave</strong> excites the molecules.<br />
It is useful to observe prote<strong>in</strong>s of <strong>in</strong>terest for as long as possible <strong>and</strong> to obta<strong>in</strong> a maximal<br />
number of photons, so as to ensure high signal-to-noise ratios. Therefore, new fluorophores<br />
are designed. A remarkable fluorophore is the semiconductor nanocrystal, which excels <strong>in</strong><br />
brightness, large Stokes shift <strong>and</strong> high photostability <strong>and</strong> which allows the exploration of<br />
biological phenomena at the s<strong>in</strong>gle-molecule scale with superior temporal resolution <strong>and</strong><br />
spatial precision.(12) In Figure 1 are the absorption <strong>and</strong> emission spectra of six quantum dots<br />
as example shown.<br />
Semiconductor nanocrystals are often referred to as quantum dots, which have a core diameter<br />
of around 2-10 nm. However, due to their hydrophobic shell, they are monodispersed <strong>and</strong> are<br />
not water soluble. Capp<strong>in</strong>g with an additional hydrophilic coat<strong>in</strong>g layer is necessary, but<br />
makes the hydrodynamic diameter larger. Synthetic dyes rely on the promotion of an electron<br />
to a higher energy level for excitation, but quantum dots generate an electron-hole pair<br />
(electron <strong>in</strong> conduction banc, hole <strong>in</strong> valence b<strong>and</strong>), which causes the quantum dot to have a<br />
broad absorption spectrum far <strong>in</strong> to the UV. Variations <strong>in</strong> the particle composition <strong>and</strong> size<br />
result <strong>in</strong> different b<strong>and</strong>-gap energies <strong>and</strong> hence different emission spectra, which are narrow<br />
(FWHM of 25 – 35 nm) <strong>and</strong> customizable from the near UV to the IR (400 – 1350 nm).(13)<br />
Table 1 shows the properties of three fluorophores used <strong>in</strong> fluorescence imag<strong>in</strong>g. The relative brightness is<br />
given by the product of the ext<strong>in</strong>ction coefficient <strong>and</strong> the quantum yield .<br />
Fluorophore Size (nm) (M -1 cm -1 ) (M -1 cm -1 ) kDa Ref.<br />
FITC 1 79,000 0.9 71,100 0.5 – 1.5 (14)<br />
eGFP 4 55,000 0.60 33,000 27 (15,16)<br />
Quantum dot 10-20 10,000 – 100,000 0.80 8,000 – 80,000 30 – 150 (17,18)<br />
8
Chapter 1<br />
Imag<strong>in</strong>g fluorescence by microscopy<br />
An imag<strong>in</strong>g system uses an objective for illum<strong>in</strong>ation <strong>and</strong> fluorescence collection<br />
(‘epifluorescence’), a tube lens to form the image <strong>and</strong> a camera as imag<strong>in</strong>g detector.<br />
In order to collect the fluorescence of a mixture of fluorophores, an imag<strong>in</strong>g system needs to<br />
be used. Such an imag<strong>in</strong>g system consists of an objective for illum<strong>in</strong>ation <strong>and</strong> fluorescence<br />
collection (‘epifluorescence’), a tube lens to form the image <strong>and</strong> a camera as the imag<strong>in</strong>g<br />
detector.<br />
The objective is a diffractive optic, which results <strong>in</strong> spatial high-pass filter<strong>in</strong>g for far field<br />
microscopic images, due to the cut-off of spatial frequencies by the limited angular<br />
acceptance (‘numerical aperture’) of the objective. As a result, an <strong>in</strong>f<strong>in</strong>itely small po<strong>in</strong>t source<br />
does not form an <strong>in</strong>f<strong>in</strong>itely small po<strong>in</strong>t image, but a broadened 3-D distribution of light, which<br />
is called the po<strong>in</strong>t spread function (PSF). The image formation of the po<strong>in</strong>t depends on the<br />
<strong>wave</strong>length of the emission <strong>and</strong> on the numerical aperture (NA) of the system. The NA<br />
def<strong>in</strong>es the maximal collection angle of the objective. Also, ‘imag<strong>in</strong>g’ implies mapp<strong>in</strong>g out<br />
the fluorophore distribution <strong>in</strong> the sample, i.e. be<strong>in</strong>g able to separate several po<strong>in</strong>t sources.<br />
This leads to the concept of resolution, which def<strong>in</strong>es the m<strong>in</strong>imal distance between two<br />
fluorophores that can still be separated. Of course, the imag<strong>in</strong>g detector must fulfill the<br />
Nyquist criterium, i.e. the pixel-size must match the diffraction-limited resolution so that two<br />
optically resolved po<strong>in</strong>t sources are not imaged on the same pixel but are separable.(19)<br />
In total <strong>in</strong>ternal reflection fluorescence (TIRF) microscopy, the reflection of laser light at a<br />
dielectric <strong>in</strong>terface creates an <strong>evanescent</strong> <strong>wave</strong>. The limited penetration depth of the<br />
<strong>evanescent</strong> <strong>wave</strong> is smaller than the axial extent of the PSF of a confocal laser scann<strong>in</strong>g<br />
microscope (LSM) <strong>and</strong> thus permits super-resolution <strong>in</strong> axial direction <strong>and</strong> optical section<strong>in</strong>g<br />
of the surface fluorescence <strong>and</strong> the background. (20)<br />
By us<strong>in</strong>g two oppos<strong>in</strong>g highly <strong>in</strong>cl<strong>in</strong>ed laser beams, which both create an <strong>evanescent</strong> <strong>wave</strong>, an<br />
<strong>in</strong>terference pattern creates a spatial frequency excitation profile which is higher than <strong>in</strong><br />
regular TIRF <strong>and</strong> thus offers super-resolution <strong>in</strong> lateral direction.(21)<br />
For high resolution <strong>and</strong> <strong>contrast</strong>, fluorophores are required that are smaller than the resolution<br />
limit. Genetically encoded fluorescent prote<strong>in</strong>s offer much <strong>in</strong>formation about localization,<br />
expression <strong>and</strong> <strong>in</strong>teraction of the labeled prote<strong>in</strong>s, but can suffer from abundant label<strong>in</strong>g.<br />
Meanwhile, s<strong>in</strong>gle molecule label<strong>in</strong>g strategies give much <strong>in</strong>sight <strong>in</strong>to the action of a s<strong>in</strong>gle<br />
labeled prote<strong>in</strong>, but require many repetitions <strong>in</strong> order to obta<strong>in</strong> statistically reliable data.<br />
9
General <strong>in</strong>troduction<br />
However, for obta<strong>in</strong><strong>in</strong>g statistical <strong>in</strong>formation, it is required to do many repetitions. S<strong>in</strong>gle<br />
molecules are of <strong>in</strong>terest: however, a s<strong>in</strong>gle fluorophore can easily disappear from the field of<br />
view by photo-destruction, dark-state transition or just because the fluorophore cannot<br />
produce enough photons to overcome the background signal.(22) New fluorophores are now<br />
available which have better properties. As described before, the quantum dot could be an<br />
useful addition to the palette of tools for s<strong>in</strong>gle molecule detection, due to its higher<br />
brightness, higher photostability, <strong>and</strong> narrower spectral emission compared to conventional<br />
organic fluorophores.(23)<br />
Widefield microscopy is limited <strong>in</strong> resolution<br />
When view<strong>in</strong>g an object with conventional wide-field optics, which are free from significant<br />
aberrations, the image formation is limited <strong>in</strong> resolution.(24)Accord<strong>in</strong>g to geometrical optics,<br />
each po<strong>in</strong>t would result <strong>in</strong> a sharp po<strong>in</strong>t image. However, Abbe found that the presence of a<br />
f<strong>in</strong>ite aperture gives rise to complicated patterns of light spread <strong>in</strong> 3-D. When light is<br />
collected from a po<strong>in</strong>t source, the objective lens acts as an aperture <strong>and</strong> distorts the image.(25)<br />
Located <strong>in</strong> the focal plane, an <strong>in</strong>f<strong>in</strong>itely small po<strong>in</strong>t source becomes a circular Airy diffraction<br />
image with a central bright disk <strong>and</strong> weaker concentric dark <strong>and</strong> bright r<strong>in</strong>gs.(26) The radius<br />
of the first dark r<strong>in</strong>g around the central disk of the Airy diffraction images depends on the NA<br />
of the objective <strong>and</strong> the 0 , the <strong>wave</strong>length <strong>in</strong> vacuum.<br />
<br />
Eq. 1<br />
0<br />
rAiry<br />
0.61<br />
NAobj<br />
In Figure 2 one can see the radius of the Airy disc when imaged or when a l<strong>in</strong>e scan is<br />
applied. If two objects are close to each other <strong>and</strong> are of equal brightness, image formation<br />
makes the two blurred spots overlap, see Figure 3.<br />
10
Chapter 1<br />
Figure 2 Po<strong>in</strong>t spread function (Airy disk pattern) of a po<strong>in</strong>t source. The upper component represents the<br />
perception of the light distribution when view<strong>in</strong>g an Airy disc (shown below).<br />
Figure 3 The distance between two imaged f<strong>in</strong>ite small objects determ<strong>in</strong>es whether the objects can be separated<br />
<strong>and</strong> thus can be seen as two <strong>in</strong>dividual objects, or whether they will appear as one s<strong>in</strong>gle object with twice the<br />
<strong>in</strong>tensity. Only when the distance is larger or equal to the radius of the Airy disc, the two spots can be separated.<br />
Here the <strong>in</strong>tensities of the blue <strong>and</strong> yellow objects are normalized to 1, the lateral distance is normalized by the<br />
NA of the system <strong>and</strong> 0 , <strong>and</strong> therefore is dimensionless. Source: www.olympusfluoview.com<br />
The limitation <strong>in</strong> lateral resolution is less directly visible when imag<strong>in</strong>g one focal plane, but is<br />
clearly visible when mak<strong>in</strong>g stacks <strong>in</strong> depth (z-stacks). In a 3D diffraction pattern, the<br />
distance from the center to the first axial m<strong>in</strong>imum (<strong>in</strong> object space dimension) is given by<br />
11
General <strong>in</strong>troduction<br />
r<br />
n<br />
0<br />
axial<br />
2<br />
Eq. 2<br />
NA<br />
2<br />
obj<br />
where n is the refractive <strong>in</strong>dex of the object medium. z m<strong>in</strong> corresponds to the distance by<br />
which we have to raise the microscope objective <strong>in</strong> order to focus the first <strong>in</strong>tensity m<strong>in</strong>imum<br />
observed along the axis of the 3D diffraction pattern <strong>in</strong>stead of the central medium. (24)<br />
Start<strong>in</strong>g from Eq. 1 <strong>and</strong> Eq. 2, two simple solutions can be used <strong>in</strong> order to <strong>in</strong>crease the<br />
resolution of the microscope. Firstly, short <strong>wave</strong>lengths can be used. For example, the<br />
detection PSF of Alexa 405 is approximately twice smaller than of Alexa 790 (Invitrogen,<br />
Carlsbad, CA), regardless of the numerical aperture of the objective that is used. Secondly, it<br />
is possible to use high numerical aperture (NA) objectives. Objectives with an NA of 1.65 are<br />
currently available (Olympus, Hamburg, Germany), however, due to total <strong>in</strong>ternal reflection<br />
at the cover slip the effective detection NA is limited to approximately the refractive <strong>in</strong>dex of<br />
the sample, for water n water = 1.33. Nevertheless, for low magnification, it can be of <strong>in</strong>terest of<br />
us<strong>in</strong>g an objective with an high NA.<br />
Airy’s criterion applies both to focus<strong>in</strong>g light on to two diffraction-limited spots close to each<br />
other <strong>and</strong> to separat<strong>in</strong>g two po<strong>in</strong>t emitters nearby. Several techniques have been shown to<br />
break this diffraction-limited resolution.(27-32)<br />
The 3-D image of a s<strong>in</strong>gle po<strong>in</strong>t source is called the po<strong>in</strong>t-spread function (PSF) h, which is a<br />
mathematical convolution of the object o. Where r = (x,y,z), the image of an object equals<br />
i( r)<br />
o(<br />
r)<br />
h(<br />
r)<br />
Eq. 3<br />
For an imag<strong>in</strong>g system the unique PSF h(r) can be measured <strong>and</strong>, with this knowledge the<br />
image i(r) can be deconvolved.(33)<br />
The ability to separate two objects is not only limited <strong>in</strong> the lateral direction, but also <strong>in</strong> the<br />
axial direction. Not only is the image formation of a po<strong>in</strong>t source convolved by the PSF, also<br />
the po<strong>in</strong>t formation of a focused beam by the objective is convolved by the PSF. Both depend<br />
on the NA, refractive <strong>in</strong>dex of the medium <strong>and</strong> the <strong>wave</strong>length excitation for po<strong>in</strong>t formation<br />
or <strong>wave</strong>length of emission for image formation.(34) The Fourier transform of the PSF is<br />
called the optical transfer function (OTF), which conta<strong>in</strong>s the modulation transfer function<br />
(MTF) <strong>and</strong> the phase transfer function (PTF).<br />
OTF( ,<br />
)<br />
MTF(<br />
,<br />
)<br />
PTF(<br />
,<br />
)<br />
Eq. 4<br />
12
Chapter 1<br />
where (,) are the spatial frequencies <strong>in</strong> the x- <strong>and</strong> y-plane, respectively. The OTF describes<br />
the spatial (angular) variation as a function of spatial (angular) frequency. In imag<strong>in</strong>g systems,<br />
the phase component is <strong>in</strong> general not captured. Hence the MTF of the OTF is the most<br />
important part.<br />
Microscopy is limited <strong>in</strong> <strong>contrast</strong><br />
When two self-lum<strong>in</strong>ous po<strong>in</strong>ts are viewed by a microscope, they can be only separated if the<br />
Airy discs do not overlap. To be dist<strong>in</strong>ct, the f<strong>in</strong>al image of the two po<strong>in</strong>ts must have a<br />
reasonable 'dip' between the two peaks <strong>and</strong> must create a higher signal than the surround<strong>in</strong>g<br />
background. The relative <strong>in</strong>tensity <strong>contrast</strong> is described by the follow<strong>in</strong>g formula:<br />
C<br />
I<br />
I<br />
max m<strong>in</strong><br />
Eq. 5<br />
max<br />
<br />
<br />
I<br />
I<br />
m<strong>in</strong><br />
where C st<strong>and</strong>s for the <strong>contrast</strong> <strong>and</strong> thus shows the difference between two signals divided by<br />
the sum. It is therefore not only important to have a large difference between the signal <strong>and</strong><br />
the background, but also to have a low background signal. Autofluorescence produces an<br />
<strong>in</strong>tr<strong>in</strong>sic background signal due to unspecific label<strong>in</strong>g or localization. Common fluorophores<br />
used <strong>in</strong> imag<strong>in</strong>g are much brighter than the autofluorescence of cells <strong>and</strong> thus provide a strong<br />
signal, lead<strong>in</strong>g to a strong <strong>contrast</strong>.<br />
13
General <strong>in</strong>troduction<br />
Imag<strong>in</strong>g beyond the resolution limit<br />
We have seen <strong>in</strong> the previous paragraphs that fluorescence microscopy is limited <strong>in</strong> resolution<br />
<strong>and</strong> <strong>contrast</strong>. I will now discuss techniques that are capable of go<strong>in</strong>g beyond these limits.<br />
The PSF <strong>in</strong> confocal imag<strong>in</strong>g for excitation is not identical to the PSF result<strong>in</strong>g from<br />
emission. The emission is red-shifted due to the Stokes shift <strong>and</strong> thus has a larger PSF.(35)<br />
It can be noticed that effectively reduc<strong>in</strong>g the PSF ex or PSF em enhances the resolution of the<br />
system.<br />
One way of enhanc<strong>in</strong>g the resolution is to <strong>in</strong>crease the NA. The NA of objectives depends on<br />
the refractive <strong>in</strong>dices of the medium <strong>and</strong> on the coupl<strong>in</strong>g medium between objectives <strong>and</strong> the<br />
sample. By us<strong>in</strong>g oil as a coupl<strong>in</strong>g medium, the NA of objectives can reach up to 1.65.<br />
Additionally, us<strong>in</strong>g two (or more) objectives positioned around the sample enlarges the<br />
effective NA, thereby <strong>in</strong>creas<strong>in</strong>g the collection efficiency <strong>and</strong> the resolution. However, an<br />
objective with a larger NA than the refractive <strong>in</strong>dex of the medium would not change the<br />
collection efficiency. Instead, the objective’s magnification plays an important role, with low<br />
magnification reach<strong>in</strong>g higher photon collection efficiencies at equal NA.(36-38)<br />
Electron microscopy (EM) improves the resolution due to the short <strong>wave</strong>length of electrons<br />
(up to 0.1 nm resolution). Despite the nanometric resolution atta<strong>in</strong>ed by EM, the technique is<br />
restricted to imag<strong>in</strong>g fixed biological samples. One recent development therefore uses twophoton<br />
excitation fluorescence microscopy (2PEF) <strong>in</strong> order to observe dynamic processes <strong>in</strong><br />
liv<strong>in</strong>g biological samples. When an <strong>in</strong>terest<strong>in</strong>g event has occurred, the sample is quickly<br />
frozen <strong>and</strong> imaged with an EM microscope to visualize the morphology at high spatial<br />
resolution.(39)<br />
Reduction of the PSF has been a challenge that many people pursue <strong>in</strong> order to obta<strong>in</strong> more<br />
dynamic <strong>in</strong>formation on liv<strong>in</strong>g samples. Recent developments can be split <strong>in</strong>to techniques that<br />
effectively enhance the PSF em or the PSF ex .<br />
Recent super-resolution techniques that enhance the PSF em are photo-activatable localization<br />
microscopy (PALM) <strong>and</strong> stochastic optical reconstruction microscopy (STORM), which are<br />
based on the knowledge that at a given frame of a stack, the label<strong>in</strong>g is sparse <strong>and</strong> fluorescent<br />
po<strong>in</strong>t sources are stochastically not able to overlap their PSFs. Fitt<strong>in</strong>g of the PSF results <strong>in</strong><br />
high precision localization of the po<strong>in</strong>t sources, which amounts to super-resolution.<br />
Unfortunately, these techniques require stacks of images <strong>and</strong> do not yet work at video<br />
rate.(27-29)<br />
14
Chapter 1<br />
One technique for reduc<strong>in</strong>g the PSF ex is to use stimulated emission depletion. This<br />
phenomenon is also used <strong>in</strong> lasers, where an excited molecule is depleted to the ground state<br />
by photon-<strong>in</strong>duction. Doughnut-shaped laser beams deplete the outer-regions of the PSF ex <strong>and</strong><br />
thus reduce the effective excitation PSF.(30) Due to the po<strong>in</strong>t scann<strong>in</strong>g nature <strong>and</strong> the<br />
reduction <strong>in</strong> excited fluorophores, video rate imag<strong>in</strong>g is possible. However, the number of<br />
collected photons is m<strong>in</strong>imal.(40)<br />
Total <strong>in</strong>ternal reflection microscopy for axial resolution <strong>enhancement</strong><br />
A popular technique <strong>in</strong> biological imag<strong>in</strong>g is total <strong>in</strong>ternal reflection fluorescence (TIRF). In<br />
TIRF the reflection of the light, at a dielectric <strong>in</strong>terface, sets up an <strong>evanescent</strong> <strong>wave</strong> that<br />
propagates <strong>in</strong> parallel to the <strong>in</strong>terface. The <strong>in</strong>tensity of the <strong>evanescent</strong> <strong>wave</strong> decays<br />
exponentially <strong>in</strong> z-direction over a distance of ~/5, which is much shorter than what can be<br />
atta<strong>in</strong>ed with a diffraction-limited spot. As a result, fluorophores with<strong>in</strong> a th<strong>in</strong> section of about<br />
100 nm from the surface are excited with an exponentially decreas<strong>in</strong>g probability. The<br />
powerful optical section<strong>in</strong>g allows the visualization of dynamic processes near the surface <strong>and</strong><br />
reduces the background signal. Due to its high <strong>contrast</strong>, TIRF is used <strong>in</strong> many s<strong>in</strong>gle molecule<br />
detection (SMD) experiments, as it removes out-of-focus noise <strong>and</strong> reduces photo bleach<strong>in</strong>g<br />
of fluorophores outside the excitation volume. Nevertheless, <strong>in</strong> its st<strong>and</strong>ard configuration, the<br />
lateral resolution of TIRF microscopy is still diffraction limited.<br />
As children, many must have been fasc<strong>in</strong>ated by the bend<strong>in</strong>g of a straw <strong>in</strong> their favorite<br />
(transparent) beverage, or by the reflection of a fish <strong>in</strong> an aquarium. Refraction <strong>and</strong> reflection<br />
have astonished many scientists, among whom was Newton. In his book from 1704 he<br />
observes refraction, reflection, the destruction of reflection <strong>and</strong> variable partial destruction of<br />
the reflection. Newton describes them as follows:<br />
"The Rays of Light <strong>in</strong> go<strong>in</strong>g out of Glass <strong>in</strong>to a Vacuum, are bent towards the Glass; <strong>and</strong> if<br />
they fall too obliquely on the Vacuum, they are bent backwards <strong>in</strong>to the Glass, <strong>and</strong> totally<br />
reflected; <strong>and</strong> this Reflexion cannot be ascribed to the Resistance of an absolute Vacuum, but<br />
must be caused by the Power of the Glass attract<strong>in</strong>g the Rays at their go<strong>in</strong>g out of it <strong>in</strong>to the<br />
Vacuum, <strong>and</strong> br<strong>in</strong>g<strong>in</strong>g them back. For if the farther Surface of the Glass be moisten’d with<br />
Water or clear Oil, or liquid <strong>and</strong> clear Honey, the Rays which would otherwise be reflected<br />
will go <strong>in</strong>to the Water, Oil or Honey, they go on, because the Attraction of the Glass is almost<br />
balanced <strong>and</strong> rendered <strong>in</strong>effectual by the contrary Attraction to balance that of the Glass, the<br />
15
General <strong>in</strong>troduction<br />
Attraction of the Glass either bends <strong>and</strong> refracts them, or br<strong>in</strong>gs them back <strong>and</strong> reflects<br />
them."<br />
Newton, Opticks (41)<br />
This phenomenon can be expla<strong>in</strong>ed by the penetration of the electromagnetic field <strong>in</strong>to the<br />
rarer medium, for only a fraction of a <strong>wave</strong>length beyond the reflect<strong>in</strong>g surface. The object<br />
brought <strong>in</strong>to proximity <strong>in</strong>teracts with this penetrat<strong>in</strong>g field <strong>and</strong> destroys the total reflection.<br />
So how does the total <strong>in</strong>ternal reflection work? To underst<strong>and</strong> more about refraction <strong>and</strong><br />
reflection, one can use Huygens' concept of elementary <strong>wave</strong>s.(42) This method uses<br />
elementary <strong>wave</strong>s to analyze refraction. Every po<strong>in</strong>t on a primary <strong>wave</strong> front serves as the<br />
source of spherical secondary <strong>wave</strong>s <strong>in</strong> such a way that the primary <strong>wave</strong> front at some later<br />
time becomes the envelope of these <strong>wave</strong>s. Moreover, the <strong>wave</strong>s advance with a speed <strong>and</strong><br />
frequency equal to that of the primary <strong>wave</strong> at each po<strong>in</strong>t <strong>in</strong> space, which is shown <strong>in</strong> Figure<br />
4.<br />
n 2<br />
n 1<br />
Figure 4 Refraction of <strong>wave</strong>s accord<strong>in</strong>g to Huygens. Each po<strong>in</strong>t of an advanc<strong>in</strong>g <strong>wave</strong> front is the center of a<br />
new disturbance <strong>and</strong> the source of a new tra<strong>in</strong> of <strong>wave</strong>s. The new advanc<strong>in</strong>g <strong>wave</strong> as a whole may be regarded as<br />
the sum of all the secondary <strong>wave</strong>s aris<strong>in</strong>g from po<strong>in</strong>ts <strong>in</strong> the medium already traversed.<br />
Huygens' pr<strong>in</strong>ciple was slightly modified by Fresnel to expla<strong>in</strong> why no back <strong>wave</strong> was<br />
formed, <strong>and</strong> Kirchhoff demonstrated that the pr<strong>in</strong>ciple could be derived from the <strong>wave</strong><br />
equation <strong>and</strong> used for reflection, refraction <strong>and</strong> diffraction. (43)<br />
16
Chapter 1<br />
Imag<strong>in</strong>e two media with different <strong>in</strong>dices that are connected to each other, with the refractive<br />
<strong>in</strong>dex of the former be<strong>in</strong>g larger than that of the latter (n 1 > n 2 .), e.g. a block of glass <strong>and</strong> air,<br />
where the the refractive <strong>in</strong>dex of glass is larger than air. When light hits the <strong>in</strong>terface of the<br />
glass <strong>and</strong> air with an angle , the light is partially <strong>in</strong>ternally reflected <strong>and</strong> mostly transmitted,<br />
accord<strong>in</strong>g to Fresnel’s coefficients of reflection <strong>and</strong> transmission, see Figure 5.<br />
First, the transmitted <strong>wave</strong> changes its velocity, which results <strong>in</strong> its refraction away from the<br />
surface normal. This effect is described by Snell’s law, which states that the ratio of s<strong>in</strong>es of<br />
the angles of <strong>in</strong>cidence <strong>and</strong> refraction (s<strong>in</strong> , s<strong>in</strong> ) is equal to the ratio of velocities (v 1 , v 2 ) <strong>in</strong><br />
the two media, or equivalent to the <strong>in</strong>verse ratio of the <strong>in</strong>dices of refraction (n 1 , n 2 )<br />
s<strong>in</strong><br />
v <br />
s<strong>in</strong><br />
v<br />
or<br />
1<br />
2<br />
n <br />
n<br />
2<br />
1<br />
Eq. 6<br />
n1 s<strong>in</strong> n2<br />
s<strong>in</strong><br />
Eq. 7<br />
When monochromatic light hits the surface from with<strong>in</strong> the glass <strong>and</strong> on to the air with an<br />
angle , then the light is partially <strong>in</strong>ternal reflected <strong>and</strong> mostly transmitted. The transmitted<br />
light is refracted <strong>and</strong> refracts away from the surface normal, with an angle .<br />
<br />
n 2<br />
n 1<br />
r <br />
Figure 5 An <strong>in</strong>cident beam reflects partially at the surface accord<strong>in</strong>g to Fresnel's equations, where the angle of<br />
reflection r is equal to the angle of <strong>in</strong>cident . Most light is transmitted <strong>and</strong> refracts at the <strong>in</strong>terface accord<strong>in</strong>g to<br />
Snell's law. Here the refractive <strong>in</strong>dex n 1 is larger than n 2 , thus from Eq. 6, the angle of refraction is larger than<br />
the angle of <strong>in</strong>cident .<br />
17
General <strong>in</strong>troduction<br />
Intuitively, at one po<strong>in</strong>t the right side term of Snell’s law Eq. 9 equals n 2 at larger . When<br />
this happens, the angle of <strong>in</strong>cidence is called the critical angle, as the refracted angle equals<br />
90°. Beyond the critical angle, the refracted angle cannot be found anymore, <strong>and</strong> the light can<br />
only be reflected. Therefore, the critical angle is def<strong>in</strong>ed by<br />
n<br />
<br />
c<br />
arcs<strong>in</strong> 2<br />
Eq. 8<br />
n<br />
1<br />
where n 12 = n 1 /n 2 <strong>and</strong> n 21 = n 2 /n 1 , thus<br />
<br />
c<br />
arcs<strong>in</strong> n 21<br />
Eq. 9<br />
Next, although the angle of <strong>in</strong>cidence is equal to the angle of reflection r , both for <strong>in</strong>ternal<br />
<strong>and</strong> external reflection, the amplitude of reflection depends on the polarization of the light.<br />
Light is an electromagnetic <strong>wave</strong>, where the electric component <strong>and</strong> the magnetic component<br />
def<strong>in</strong>e the polarization of the light beam. At perpendicular polarization, the electric field<br />
vector vibrates <strong>in</strong> the plane perpendicular to the plane of <strong>in</strong>cidence. Equally, at parallel<br />
polarization, the electric vector vibrates <strong>in</strong> the plane of <strong>in</strong>cidence. With Fresnel's equations it<br />
will be easier to underst<strong>and</strong> the forthcom<strong>in</strong>g graph featur<strong>in</strong>g reflection curves of<br />
monochromatic light, Figure 6. Fresnel's equations def<strong>in</strong>e the reflected amplitudes of<br />
perpendicular <strong>and</strong> parallel polarization <strong>and</strong> are given by<br />
<br />
<br />
<br />
<br />
s<strong>in</strong> <br />
r <br />
Eq. 10<br />
<br />
s<strong>in</strong> <br />
<strong>and</strong><br />
<br />
<br />
<br />
<br />
tan <br />
r Eq. 11<br />
//<br />
tan <br />
The reflectivity represents the percentage of reflected power <strong>and</strong> is given by the square of the<br />
amplitude R = r 2 . At illum<strong>in</strong>ation near normal <strong>in</strong>cidence, ~ n 12 , the reflectivity is identical<br />
for both components <strong>and</strong> is equal whether the light strikes the <strong>in</strong>terface from the rarer or the<br />
denser medium <strong>and</strong> is given by<br />
R<br />
0<br />
2<br />
<br />
12<br />
1<br />
1 2<br />
<br />
n<br />
n<br />
12<br />
Eq. 12<br />
At perpendicular polarization, the reflectivity R rises monotonically from R 0 to 100% at<br />
graz<strong>in</strong>g <strong>in</strong>cidence. For parallel polarization, the reflectivity R // decreases at first as the angle<br />
of <strong>in</strong>cidence <strong>in</strong>creases <strong>and</strong> becomes zero at Brewster's angle which is given by<br />
arctan n B 12<br />
Eq. 13<br />
18
Chapter 1<br />
<strong>and</strong> is known as the polariz<strong>in</strong>g angle. Also, it should be noted that B <strong>and</strong> B are<br />
complementary angles <strong>and</strong> thus R // must be zero. This results from tan( B + B ) = tan 90° = ∞.<br />
It can be understood from recall<strong>in</strong>g that for propagat<strong>in</strong>g <strong>wave</strong>s the electric field vector<br />
vibrates <strong>in</strong> a perpendicular way to the direction of propagation <strong>and</strong> lies parallel to the plane of<br />
<strong>in</strong>cidence for parallel polarization. S<strong>in</strong>ce the refracted <strong>and</strong> reflected beams are 90° apart, the<br />
electric field oscillates <strong>in</strong> the direction of R // for the refracted beam <strong>and</strong> therefore there can be<br />
no propagation <strong>in</strong> the reflected beam. All of the power is thus transmitted <strong>in</strong>to medium 1, see<br />
Figure 6.<br />
Figure 6 Reflectivity versus angle of <strong>in</strong>cidence for an <strong>in</strong>terface between media with refractive <strong>in</strong>dices, n 1 = 4 <strong>and</strong><br />
n 2 = 1,33, for light polarized perpendicular, R <strong>and</strong> parallel, R // , to plane of <strong>in</strong>cidence for external reflection<br />
(solid l<strong>in</strong>es) <strong>and</strong> <strong>in</strong>ternal reflection (dashed l<strong>in</strong>es). c , B <strong>and</strong> p are the critical angle, Brewster's angle <strong>and</strong><br />
pr<strong>in</strong>ciple angle, respectively.<br />
19
General <strong>in</strong>troduction<br />
For <strong>in</strong>ternal reflection, when the light approaches the <strong>in</strong>terface from the denser medium, the<br />
reflectivity is aga<strong>in</strong> calculated from Eq. 10 <strong>and</strong> Eq. 11. Curves obta<strong>in</strong>ed are similar to those<br />
for external reflection for a much smaller range of angles of <strong>in</strong>cidence, as shown <strong>in</strong> Figure 6.<br />
Both R <strong>and</strong> R // become 100% at the critical angle c from Eq. 9.<br />
There is also an <strong>in</strong>ternal polariz<strong>in</strong>g angle, p , called the pr<strong>in</strong>cipal angle, which is equal to the<br />
refracted Brewster's angle B . p is the complement of B <strong>and</strong> is given by<br />
<br />
p<br />
arctan n 21<br />
Eq. 14<br />
or<br />
<br />
90 <br />
Eq. 15<br />
<br />
p<br />
B<br />
The transmission of the light over distance can be elegantly demonstrated as shown <strong>in</strong><br />
Newton’s observations for visible light, which however also apply to other forms of electromagnetic<br />
radiation.(41,44,45)<br />
When a lens of large radius is brought <strong>in</strong>to contact with the prism <strong>and</strong> the transmitted light is<br />
detected <strong>in</strong> l<strong>in</strong>e with the light source, a bright spot can be seen. However, the spot size is<br />
larger than the area of contact; furthermore, the edge of the transmitted spot is red, while the<br />
edge of the reflected spot is blue, as <strong>in</strong> Figure 7a.<br />
This experiment shows three phenomena. First, it demonstrates the existence of the<br />
<strong>evanescent</strong> <strong>wave</strong> <strong>and</strong> of its f<strong>in</strong>ite penetration beyond the reflect<strong>in</strong>g <strong>in</strong>terface. Second, although<br />
the white light should be equally transmitted <strong>and</strong> reflected, we can see that the edge of the<br />
transmitted spot is red, while the edge of the reflected spot is blue. This <strong>in</strong>dicates the<br />
<strong>wave</strong>length dependency of the <strong>evanescent</strong> <strong>wave</strong>. Third, this frustrated total reflection shows a<br />
non-absorb<strong>in</strong>g coupl<strong>in</strong>g mechanism whereby the reflectivity is non-discrete as shown by the<br />
fact that the spot size is larger than the area of contact. This can be better expla<strong>in</strong>ed by the<br />
follow<strong>in</strong>g experiment.<br />
20
Chapter 1<br />
A<br />
n 2<br />
n 3<br />
n 1<br />
T<br />
R<br />
B<br />
n 2<br />
n 3<br />
C<br />
100%<br />
T<br />
R<br />
n 1<br />
d<br />
T<br />
T,R<br />
50%<br />
0 0.5 1.0<br />
d / <br />
R<br />
Figure 7 A) Depicts Newton’s first experiment, show<strong>in</strong>g that an <strong>evanescent</strong> <strong>wave</strong> can travel through the gap<br />
between the prism <strong>and</strong> the lens. B) By adjust<strong>in</strong>g the distance between two adjacent prisms of the same refractive<br />
<strong>in</strong>dex, the transmission <strong>and</strong> reflection of <strong>in</strong>ternal reflected light can be changed (n 1 = n 3 ). C) When the distance<br />
between the prisms is <strong>in</strong>f<strong>in</strong>ite, the transmission reaches zero; however, it reaches almost 100% when the two<br />
prisms are connected.<br />
21
General <strong>in</strong>troduction<br />
When white light is hits on a 45° prism <strong>and</strong> is detected at an angle of 90°, the total <strong>in</strong>ternal<br />
reflection of the light source is detected. In Figure 7b <strong>and</strong> 6c, one can see that the transmission<br />
<strong>and</strong> the reflection are not discrete, but cont<strong>in</strong>uous <strong>and</strong> vary with distance.<br />
Here, a third medium n 3 is <strong>in</strong>troduced at a distance from medium n 1 , while n 1 = n 3 . The two<br />
prisms are brought together <strong>and</strong> form a cube with an air gap, while the distance between the<br />
two prisms can be reduced. As <strong>in</strong> the previous experiment, light is <strong>in</strong>itially totally reflected.<br />
When the second prism is brought <strong>in</strong>to proximity, the reflectivity can be cont<strong>in</strong>uously<br />
adjusted between 100% <strong>and</strong> 0%, with as a result a transmission adjusted between 0% <strong>and</strong><br />
100%. As there will be no power loss, T + R = 100%. Also, both the reflected beam <strong>and</strong> the<br />
transmitted beam show all of the properties of the <strong>in</strong>com<strong>in</strong>g beam (e.g. coherence). When the<br />
reflection is made less than total, the reflection is said to be frustrated. Consequently, the<br />
beam of light must penetrate transiently <strong>in</strong> n 2 upon reflection. In addition, the energy can be<br />
coupled without any loss to another medium when they are close to each other. When the<br />
prisms are far apart, the <strong>wave</strong> is unaware of the presence of the other medium <strong>and</strong> all of the<br />
light is reflected.<br />
In conclusion, the electric field amplitude dim<strong>in</strong>ishes exponentially with distance from the<br />
surface,<br />
z d p<br />
E E 0<br />
e<br />
Eq. 16<br />
The depth of penetration d p of the <strong>evanescent</strong> <strong>wave</strong> depends on the angle of <strong>in</strong>cidence ,<br />
refractive <strong>in</strong>dices <strong>and</strong> the <strong>wave</strong>length <strong>and</strong> is given by<br />
d p<br />
<br />
<br />
<br />
<br />
2<br />
2 s<strong>in</strong> n<br />
2<br />
21<br />
Eq. 17<br />
Eq. 16 <strong>and</strong> Eq. 17 describe how the electric field decays from the <strong>in</strong>terface <strong>in</strong>to the rarer<br />
medium. Although it describes the decay, the electric <strong>wave</strong> <strong>in</strong>tensity at the surface is not<br />
constant for different angles of <strong>in</strong>cidence.<br />
The electric field amplitudes at the <strong>in</strong>terface <strong>in</strong> the rarer medium are given by<br />
2cos<br />
E y 0<br />
<br />
n<br />
E x 0<br />
E z 0<br />
<br />
<br />
2<br />
1<br />
1 2<br />
21<br />
2<br />
2 1 2<br />
s<strong>in</strong><br />
n21<br />
cos<br />
2<br />
2 2<br />
2 2<br />
2<br />
1<br />
n 1<br />
1<br />
n s<strong>in</strong><br />
n 1 2<br />
21<br />
21<br />
21<br />
Eq. 18<br />
Eq. 19<br />
2 2<br />
2 2<br />
2<br />
1<br />
n 1<br />
1<br />
n s<strong>in</strong><br />
n 1 2<br />
21<br />
2s<strong>in</strong><br />
cos<br />
21<br />
21<br />
Eq. 20<br />
22
Chapter 1<br />
At perpendicular polarization, only the E y0 has <strong>in</strong>fluence on the electric field potential <strong>and</strong> for<br />
parallel polarization, it can be calculated by calculat<strong>in</strong>g the components separately.<br />
E// E<br />
y0<br />
Eq. 21<br />
2 2<br />
E 1 2<br />
x 0<br />
Ez0<br />
E <br />
Eq. 22<br />
Figure 8 shows the curves for the magnitude of the E fields <strong>and</strong> their variation with angle of<br />
<strong>in</strong>cidence for n 1 = 4 <strong>and</strong> n 2 = 1.33.<br />
At the critical angle from Eq. 9,<br />
2<br />
1<br />
n 1 2<br />
cos <br />
Eq. 23<br />
c<br />
<strong>and</strong> thus<br />
21<br />
E<br />
y0<br />
2<br />
Eq. 24<br />
arises from the fact that the <strong>in</strong>com<strong>in</strong>g <strong>and</strong> reflected amplitudes sum up. E x0 is at the critical<br />
angle zero <strong>and</strong> rises quickly as the angle <strong>in</strong>creases <strong>and</strong> reaches a maximum nearly equal to E y0<br />
<strong>and</strong> f<strong>in</strong>ally decreases towards 0 at graz<strong>in</strong>g <strong>in</strong>cidence.<br />
23
General <strong>in</strong>troduction<br />
Figure 8 shows the electric field amplitude of E 0 for x, y <strong>and</strong> z, <strong>in</strong> black, light grey <strong>and</strong> dark grey solid l<strong>in</strong>es<br />
respectively. Refractive <strong>in</strong>dices are n 1 = 4 <strong>and</strong> n 2 = 1.33. The electric field amplitude E is equal to E y0 <strong>and</strong> E ||<br />
equal to the root sum square of E x0 <strong>and</strong> E z0 , shown by a black dotted l<strong>in</strong>e.<br />
24
Chapter 1<br />
Beam control for chang<strong>in</strong>g the angle of <strong>in</strong>cidence<br />
In objective based TIRF, one focuses the beam <strong>in</strong> the back focal plane (BFP) of the objective.<br />
For s<strong>in</strong>gle beam TIRF, this can be done by a translation stage with fiber based delivery or a<br />
periscope, such that the beam is focused off-axis, which results <strong>in</strong> a high angle of <strong>in</strong>cidence<br />
that goes beyond the critical angle, see Figure 9a. For prism-based TIRF, a mirror placed on a<br />
translation stage changes the angle of <strong>in</strong>cidence as it hits a parabolic mirror see Figure 9b.<br />
A<br />
B<br />
d<br />
translation<br />
stage<br />
d<br />
translation<br />
stage<br />
C<br />
D<br />
d<br />
<br />
<br />
scann<strong>in</strong>g<br />
device<br />
scann<strong>in</strong>g<br />
device<br />
Figure 9 The displacement of the off-centric focused laser relates to the angle of <strong>in</strong>cidence on the sample, which<br />
can be done with a translation stage (a-b) or a scann<strong>in</strong>g device (c-d). A scann<strong>in</strong>g device <strong>in</strong> conjunction with an<br />
<strong>in</strong>terferometer results <strong>in</strong> two <strong>in</strong>terfer<strong>in</strong>g beams (d).<br />
25
General <strong>in</strong>troduction<br />
If one desires to remotely steer the beam, a steer<strong>in</strong>g device is required. For constant angle<br />
deflection, a wedge or translation stage can be used. Motorized mirrors are also a good<br />
solution, but, due to their large <strong>in</strong>ertia, allow only slow angle scans <strong>and</strong> no scann<strong>in</strong>g of<br />
r<strong>and</strong>om patterns. (46,47)<br />
A non-mechanical solution is an acoustic optic device, which operates by creat<strong>in</strong>g a deflect<strong>in</strong>g<br />
Bragg grat<strong>in</strong>g. When monochromatic light hits a crystal through which an acoustic <strong>wave</strong><br />
passes, the beam is diffracted <strong>in</strong>to a number of orders<br />
m<br />
d s<strong>in</strong><br />
Eq. 25<br />
d<br />
with m as <strong>in</strong>teger <strong>and</strong> d as the diffraction angle. For non-normal angle of <strong>in</strong>cidence i ,<br />
m<br />
d(s<strong>in</strong><br />
s<strong>in</strong><br />
)<br />
Eq. 26<br />
d<br />
i<br />
When the grat<strong>in</strong>g is 3-D, this condition becomes more selective <strong>and</strong> at Bragg's angle, d = - i ,<br />
a strong first-order will appear at<br />
2d s<strong>in</strong> d<br />
Eq. 27<br />
The grat<strong>in</strong>g constant d depends on the acoustic <strong>wave</strong>length , which directly relates to the<br />
acoustic velocity <strong>in</strong> the crystal <strong>and</strong> the sound frequency f, such that<br />
f<br />
s<strong>in</strong> d<br />
Eq. 28<br />
2v<br />
An acoustic modulator forms a st<strong>and</strong><strong>in</strong>g <strong>wave</strong> by the propagation of high frequency sound<br />
<strong>wave</strong>s through the crystal, which form a diffraction grat<strong>in</strong>g. Modulation of the frequency <strong>and</strong><br />
amplitude allows to effectively modulate the angle, <strong>wave</strong>length transmission <strong>and</strong>/or <strong>in</strong>tensity.<br />
These devices are divided <strong>in</strong>to three classes: the acoustic optic deflector (), the acoustic optic<br />
tunable filter () <strong>and</strong> the acoustic optic modulator (I), with the maximal <strong>in</strong>tensity relat<strong>in</strong>g to<br />
the maximal transmission efficiency.<br />
The acoustic modulator is placed <strong>in</strong> the focus of the scan lens <strong>and</strong> focuses the beam <strong>in</strong> the<br />
BFP of the objective. A change <strong>in</strong> the driv<strong>in</strong>g frequency is l<strong>in</strong>ked to a change <strong>in</strong> the scan<br />
angle, see Figure 9c.<br />
In conjunction with a Michelson <strong>in</strong>terferometer, a second po<strong>in</strong>t-symmetric beam with equal<br />
angle can be created, see Figure 9d.<br />
26
Chapter 1<br />
The effect of scatter<strong>in</strong>g on TIRF microscopy<br />
The beam profiles of most lasers have a Gaussian <strong>in</strong>tensity <strong>in</strong> x <strong>and</strong> y direction. When a laser<br />
beam is totally <strong>in</strong>ternally reflected, the beam <strong>in</strong>tensity profile is extended <strong>in</strong> the y-direction to<br />
an elliptical Gaussian beam shape. Intuitively, the <strong>evanescent</strong> field <strong>in</strong>tensity has a Gaussian<br />
profile both <strong>in</strong> x- <strong>and</strong> y-direction. Although the <strong>evanescent</strong> field should resemble a 2-D<br />
Gaussian, the emission profile of a mixture of dyes <strong>in</strong> solution with TIRFM tends to have an<br />
elongated profile <strong>in</strong> the direction of the laser light, see Figure 10. Scatter<strong>in</strong>g at refractive<strong>in</strong>dex<br />
boundaries like cellular adhesion sites or <strong>in</strong>tracellular organelles can create<br />
heterogeneity. Biological tissue causes mostly forward scatter<strong>in</strong>g. The light conf<strong>in</strong>ement, by<br />
the <strong>evanescent</strong> field, that is at the orig<strong>in</strong> of the <strong>contrast</strong> <strong>enhancement</strong> observed with these<br />
wide-field fluorescence techniques is compromised, as fluorescence is generated by a<br />
superposition of the spatially conf<strong>in</strong>ed <strong>and</strong> diffuse component of scattered excitation light that<br />
varies across the field (7). Although <strong>in</strong> TIRFM, the time average Poynt<strong>in</strong>g's vector equals<br />
zero, the Poynt<strong>in</strong>g's vector <strong>in</strong> the direction of the laser is oriented <strong>in</strong> parallel to the boundary<br />
as it hits the surface. The emission profile of a dye <strong>in</strong> solution upon TIR shows an elongated<br />
Gaussian profile with a larger field of excitation than predicted.<br />
Figure 10 TIRF image of fluoresce<strong>in</strong> isothiocyanate (FITC) <strong>in</strong> solution excited at = 405 nm. The red trace<br />
shows the l<strong>in</strong>e scan of the emission of FITC. The enlarged excitation volume that shapes as a flare <strong>in</strong> direction of<br />
the laser (left to right) can be clearly seen. Inset shows correspond<strong>in</strong>g BFP image. Scale bar is 5 m.<br />
27
General <strong>in</strong>troduction<br />
Future prospects: Us<strong>in</strong>g structured illum<strong>in</strong>ation for imag<strong>in</strong>g beyond resolution<br />
limit<br />
The convolution of a specimen with the PSF is what can be seen <strong>in</strong> light microscopy. The<br />
Fourier space of this convolution is equal to the multiplication of the specimen’s spectrum<br />
with the optical transfer function (OTF), where the latter is the Fourier transform of the<br />
microscope’s po<strong>in</strong>t spread function. The 2-D image of the OTF is shown <strong>in</strong> Figure 11a <strong>and</strong><br />
directly shows the resolution limit. In order to <strong>in</strong>crease the resolution of a microscope, one<br />
needs to make the OTF larger <strong>in</strong> order to obta<strong>in</strong> higher spatial frequencies.<br />
A wide-field super-resolution technique is structured illum<strong>in</strong>ation microscopy (SIM). In SIM,<br />
<strong>in</strong>terference sets up a high spatial frequency pattern of bright <strong>and</strong> dark stripes that illum<strong>in</strong>ate<br />
the sample <strong>and</strong> hence reveal high-frequency <strong>in</strong>formation <strong>in</strong> the sample by selectively<br />
illum<strong>in</strong>at<strong>in</strong>g some fluorophores only. Thus, the pattern has to be shifted to sequentially<br />
illum<strong>in</strong>ate all fluorophores <strong>in</strong> the sample. As seen <strong>in</strong> Figure 11b, four extra images are added<br />
to the first image, <strong>in</strong> which the OTF has a shift <strong>in</strong> x- or y-direction, (1 <strong>and</strong> 3) or (2 <strong>and</strong> 4)<br />
respectively.<br />
Also, to obta<strong>in</strong> an isotropic resolution <strong>enhancement</strong>, multiple rotations of the pattern are<br />
commonly be<strong>in</strong>g used. By saturat<strong>in</strong>g the fluorophores, non-l<strong>in</strong>ear effects are achieved <strong>and</strong><br />
allow lateral resolution <strong>enhancement</strong>s up to a factor of two. (48)<br />
A<br />
B<br />
k y<br />
k y<br />
2<br />
k x<br />
1<br />
k x<br />
3<br />
r<br />
4<br />
r<br />
q<br />
Figure 11 The OTF of conventional fluorescence microscopy (a) <strong>and</strong> of structured illum<strong>in</strong>ation (b). For the<br />
latter, <strong>in</strong> both x- <strong>and</strong> y-direction two additional images are required <strong>in</strong> order to enlarge the OTF. The passb<strong>and</strong><br />
radius r corresponds to the cutoff frequency r = 4NA/ <strong>and</strong> q = r + (4n)s<strong>in</strong>()/, where n st<strong>and</strong>s for the<br />
refractive <strong>in</strong>dex of the cover slip, is the vacuum <strong>wave</strong>length of excitation <strong>and</strong> is the angle of <strong>in</strong>cidence.<br />
28
Chapter 1<br />
The classical resolution limit specifies a maximum spatial frequency k 0 that can be observed<br />
through the microscope. For a light microscope, k 0 = 2NA / em , where em is the observation<br />
<strong>wave</strong>length an NA is the numerical aperture of the objective.(49)<br />
If the illum<strong>in</strong>ation conta<strong>in</strong>s a spatial frequency k 1 , then each frequency k gives rise to Moiré<br />
fr<strong>in</strong>ges at the difference frequency k – k 1 . Those fr<strong>in</strong>ges will be observable <strong>in</strong> the microscope<br />
if |k – k 1 | < k 0 , i.e. if k lies with<strong>in</strong> a circle of radius k 0 around k 1 . To maximize the resolution of<br />
the image, the illum<strong>in</strong>ation should conta<strong>in</strong> as high spatial frequencies k 1 as possible. The<br />
maximal resolution obta<strong>in</strong>able is k 0 + k 1 , which can be at most ≈ 2k 0 .<br />
In two-photon structured illum<strong>in</strong>ation, the <strong>wave</strong>length is doubled. Although <strong>in</strong> two-photon<br />
confocal microscopy, the resolution is <strong>in</strong>creased due to non-l<strong>in</strong>ear absorption, <strong>in</strong> structured<br />
illum<strong>in</strong>ation this would not <strong>in</strong>crease the resolution. However, it can <strong>in</strong>crease the <strong>contrast</strong> due<br />
to the nonl<strong>in</strong>ear dependence of the excitation probability on the <strong>in</strong>tensity.<br />
The <strong>contrast</strong> of a system is how good the separation is between dark <strong>and</strong> light objects, which<br />
is given by the formula:<br />
C<br />
I<br />
I<br />
max m<strong>in</strong><br />
Eq. 29<br />
max<br />
I<br />
I<br />
m<strong>in</strong><br />
In 2PEF microscopy, the excitation probability of a fluorophore depends on the <strong>in</strong>tensity<br />
squared, so that<br />
I<br />
C'<br />
<br />
I<br />
2<br />
max<br />
2<br />
max<br />
I<br />
I<br />
2<br />
m<strong>in</strong><br />
2<br />
m<strong>in</strong><br />
2C<br />
<br />
1<br />
C<br />
2<br />
Eq. 30<br />
Thus, two-photon absorption can significantly enhance the <strong>contrast</strong> <strong>in</strong> wide field structured<br />
illum<strong>in</strong>ation, though at the cost of resolution.(50)<br />
St<strong>and</strong><strong>in</strong>g <strong>wave</strong>-TIRF both benefits from TIRF <strong>and</strong> SIM for isotropic superresolution<br />
In SIM two <strong>in</strong>terfer<strong>in</strong>g beams set up an <strong>in</strong>terference pattern that reveals high spatial<br />
<strong>in</strong>formation. As applied to TIRF, two coherent counter-propagat<strong>in</strong>g <strong>evanescent</strong> <strong>wave</strong>s<br />
<strong>in</strong>terfere, a structured illum<strong>in</strong>ation pattern arises by the generation of a st<strong>and</strong><strong>in</strong>g <strong>evanescent</strong><br />
<strong>wave</strong> field. The closely spaced nodes <strong>and</strong> ant<strong>in</strong>odes of the st<strong>and</strong><strong>in</strong>g <strong>evanescent</strong> field comb<strong>in</strong>e<br />
optical section<strong>in</strong>g of the specimen with high lateral spatial resolution. The <strong>in</strong>cidence-angle<br />
dependent shorten<strong>in</strong>g of the <strong>evanescent</strong>-field <strong>wave</strong> vector allows the node spac<strong>in</strong>g to be<br />
29
General <strong>in</strong>troduction<br />
varied down to a m<strong>in</strong>imum value of /2n.(51) Adjust<strong>in</strong>g the path length of one of the beams<br />
adjusts the phase <strong>and</strong> thus shifts the illum<strong>in</strong>ation pattern.<br />
In one direction, (1-D) SW-TIRF roughly doubles the x-lateral resolution. Full isotropic 100-<br />
nm resolution can be atta<strong>in</strong>ed by rotat<strong>in</strong>g the <strong>evanescent</strong> fields. By focus<strong>in</strong>g from three<br />
directions, the maximal resolution <strong>in</strong> 2-D can be acquired, as the OTF has higher frequencies<br />
<strong>in</strong> all directions. I propose here to use the programmable light eng<strong>in</strong>e shown <strong>in</strong> Chapter 3,<br />
with a 90° apex angle axicon as shown <strong>in</strong> Figure 9d for a 2-D isotropic super-resolution. In<br />
comb<strong>in</strong>ation with two-photon excitation, the resolution is reduced to 'normal' resolution, as<br />
the <strong>wave</strong>length is doubled, though SW-TIRF doubles the resolution. Nevertheless, the<br />
<strong>in</strong>crease of <strong>contrast</strong> by two-photon absorption could have potential for imag<strong>in</strong>g fa<strong>in</strong>t signals<br />
<strong>in</strong> e.g. s<strong>in</strong>gle molecule detection. F<strong>in</strong>ally, by us<strong>in</strong>g two-photon excitation, the amount of<br />
scatter<strong>in</strong>g could be reduced drastically. (52)<br />
30
Chapter 1<br />
Thesis Outl<strong>in</strong>e<br />
The work presented <strong>in</strong> this thesis aims at improv<strong>in</strong>g the signal to noise <strong>and</strong> signal to<br />
background ratios of an <strong>evanescent</strong> <strong>wave</strong>-imag<strong>in</strong>g microscope. Due to the background signal<br />
rejection of the <strong>evanescent</strong> <strong>wave</strong>, the <strong>contrast</strong> is higher than with other techniques, allow<strong>in</strong>g<br />
fa<strong>in</strong>tly labelled objects to be detected. This is beneficial for s<strong>in</strong>gle molecule detection of<br />
sta<strong>in</strong>ed -DNA. The -DNA was labelled with the <strong>in</strong>tercalat<strong>in</strong>g dye YOYO-1, which results<br />
<strong>in</strong> a bright l<strong>in</strong>e when the molecule is stretched out by a hydrodynamic flow. With the use of<br />
noise reduction techniques <strong>in</strong> the data process<strong>in</strong>g, more accurate <strong>in</strong>formation can be obta<strong>in</strong>ed<br />
on the length of the molecule. Chapter 2 conta<strong>in</strong>s the article “Screen<strong>in</strong>g by imag<strong>in</strong>g: scal<strong>in</strong>g<br />
up s<strong>in</strong>gle-DNA-molecule analysis with a novel parabolic VA-TIRF reflector <strong>and</strong> noisereduction<br />
techniques” by Marcel van 't Hoff, Marcel Reuter, David TF Dryden <strong>and</strong> Mart<strong>in</strong><br />
Oheim. This work is published <strong>in</strong> Physical Chemistry, Chemical Physics. The first <strong>and</strong> second<br />
authors <strong>in</strong>itiated the collaboration, performed experiments <strong>and</strong> data analysis <strong>and</strong> wrote a<br />
prelim<strong>in</strong>ary version of the text. Both authors contributed equally. The last author directed the<br />
work <strong>and</strong> was responsible for the contents of Appendix A <strong>and</strong> writ<strong>in</strong>g the f<strong>in</strong>al manuscript.<br />
Excitation photons <strong>in</strong> <strong>evanescent</strong> <strong>wave</strong> imag<strong>in</strong>g scatter <strong>in</strong> the sample when travel<strong>in</strong>g through a<br />
liv<strong>in</strong>g cell. The scatter direction is anisotropic <strong>and</strong> thus enlarges the excitation volume <strong>in</strong> the<br />
direction of the laser light at the po<strong>in</strong>t of reflection. By rotat<strong>in</strong>g the direction of the laser beam<br />
at the po<strong>in</strong>t of reflection, I show that the scatter direction becomes isotropic <strong>and</strong> thus shows a<br />
uniform, but lowered, background. This can be used to image astrocytes sta<strong>in</strong>ed with the lipid<br />
membrane marker FM1-43 that labels astrocytic lysosomes. In the setup proposed <strong>in</strong> Chapter<br />
3, I used acousto optic deflectors for position<strong>in</strong>g a focused beam <strong>in</strong> the pupil plane of a high-<br />
NA objective, which enables rapid objective switch<strong>in</strong>g <strong>in</strong> TIRF <strong>and</strong> high speed imag<strong>in</strong>g of<br />
e.g. bl<strong>in</strong>k<strong>in</strong>g quantum dots. This chapter is the article “A programmable light eng<strong>in</strong>e for<br />
quantitative s<strong>in</strong>gle molecule TIRF <strong>and</strong> HILO imag<strong>in</strong>g.” by Marcel van 't Hoff, V<strong>in</strong>cent de<br />
Sars <strong>and</strong> Mart<strong>in</strong> Oheim <strong>and</strong> is published <strong>in</strong> Optics Express. The first author conceptualized<br />
<strong>and</strong> built the the microscope, programmed the software, performed experiments <strong>and</strong> analyzed<br />
the data. The second author suggested the PIC controller as an <strong>in</strong>expensive computer <strong>in</strong>terface<br />
<strong>and</strong> contributed <strong>in</strong> the design of the electronics. The third author directed the work <strong>and</strong> was<br />
responsible for the writ<strong>in</strong>g.<br />
The previously mentioned quantum dots are a new type of nanoscopic photolum<strong>in</strong>scent label,<br />
which can be used to label cellular compartments or prote<strong>in</strong>s of <strong>in</strong>terest. The rightness, large<br />
Stokes shift, <strong>and</strong> high photo stability of Quantum dots compared to organic fluorophores<br />
31
General <strong>in</strong>troduction<br />
allow the exploration of biological phenomena at the s<strong>in</strong>gle-molecule scale with superior<br />
temporal resolution <strong>and</strong> spatial precision. Chapter 4 reviews the use of quantum dots for<br />
biological samples <strong>and</strong> is the article “Gett<strong>in</strong>g across the plasma membrane <strong>and</strong> beyond:<br />
<strong>in</strong>tracellular uses of colloidal semiconductor nanocrystals” by Camilla Luccard<strong>in</strong>i, Aleksey<br />
Yakovlev, Stéphane Gaillard, Marcel van ‘t Hoff, Alicia Piera Alberola, Jean-Maurice Mallet,<br />
Wolfgang J. Parak, Anne Feltz <strong>and</strong> Mart<strong>in</strong> Oheim. This work is published <strong>in</strong> the Journal of<br />
Biomedic<strong>in</strong>e <strong>and</strong> Biotechnology. The first two authors performed experiments, the third<br />
author synthetized the organic fluorophores, the fourth author did calculation <strong>and</strong> modell<strong>in</strong>g<br />
work for the time-gated detection of the long-lived Quantum dot photolum<strong>in</strong>escence, the fifth<br />
author was responsible for the synthesis of quantum dots, the last four authors directed the<br />
work <strong>and</strong> were responsible for the <strong>in</strong>itiation of the collaboration <strong>and</strong> writ<strong>in</strong>g.<br />
32
Chapter 2<br />
Screen<strong>in</strong>g by imag<strong>in</strong>g: scal<strong>in</strong>g up s<strong>in</strong>gle DNA-molecule analysis with<br />
a novel parabolic VA-TIRF reflector <strong>and</strong> noise reduction techniques<br />
Published <strong>in</strong> collaboration with Marcel Reuter, David T. F. Dryden <strong>and</strong> Mart<strong>in</strong> Oheim<br />
Physical Chemistry <strong>and</strong> Chemical Physics, accepted (2009)<br />
33
VA-TIRF for s<strong>in</strong>gle molecule imag<strong>in</strong>g<br />
Abstract<br />
Bacteriophage -DNA molecules are frequently used as a scaffold to characterize the action<br />
of s<strong>in</strong>gle prote<strong>in</strong>s unw<strong>in</strong>d<strong>in</strong>g, translocat<strong>in</strong>g, digest<strong>in</strong>g or repair<strong>in</strong>g DNA. However, scal<strong>in</strong>g up<br />
such s<strong>in</strong>gle-DNA molecule experiments under identical conditions to atta<strong>in</strong> statistically<br />
relevant sample sizes rema<strong>in</strong>s challeng<strong>in</strong>g. Additionally the movies obta<strong>in</strong>ed are frequently<br />
noisy <strong>and</strong> difficult to analyze with any precision. We address these two problems here us<strong>in</strong>g,<br />
firstly, a novel variable-angle TIRF reflector composed of a m<strong>in</strong>imal set of optical reflective<br />
elements, <strong>and</strong> secondly, us<strong>in</strong>g S<strong>in</strong>gular Value Decomposition (SVD) to improve the signal to<br />
noise ratio prior to analyz<strong>in</strong>g time-lapse image stacks. As an example, we visualize under<br />
identical optical conditions hundreds of surface-tethered s<strong>in</strong>gle -DNA molecules, sta<strong>in</strong>ed<br />
with the <strong>in</strong>tercalat<strong>in</strong>g dye YOYO-1 iodide, <strong>and</strong> stretched out <strong>in</strong> a microcapillary flow.<br />
Another novelty of our approach is that we arrange on a mechanically driven stage several<br />
capillaries conta<strong>in</strong><strong>in</strong>g sal<strong>in</strong>e, calibration buffer <strong>and</strong> -DNA, respectively, thus extend<strong>in</strong>g the<br />
approach to high-content, high-throughput screen<strong>in</strong>g of s<strong>in</strong>gle molecules. Our lengthmeasurements<br />
of <strong>in</strong>dividual DNA molecules from noise-reduced kymograph images us<strong>in</strong>g<br />
SVD, display a 6-fold enhanced precision compared to raw-data analysis, reach<strong>in</strong>g ~1 kbp<br />
resolution. Comb<strong>in</strong><strong>in</strong>g these two methods, our approach provides a straightforward yet<br />
powerful way of collect<strong>in</strong>g statistically relevant amounts of data <strong>in</strong> a semi-automated manner.<br />
We believe that our conceptually simple technique should be of <strong>in</strong>terest for a broader range of<br />
s<strong>in</strong>gle-molecule studies, well beyond the specific example of -DNA shown here.<br />
34
Chapter 2<br />
Introduction<br />
S<strong>in</strong>gle molecule detection (SMD) us<strong>in</strong>g fluorescence has been developed for more than<br />
decade, <strong>and</strong> formerly bulk techniques like Förster resonance energy transfer (FRET) are <strong>in</strong>creas<strong>in</strong>gly<br />
be<strong>in</strong>g scaled down to the s<strong>in</strong>gle-molecule level, where they start to resolve<br />
fundamental questions <strong>in</strong> biology. Rema<strong>in</strong><strong>in</strong>g challenges <strong>in</strong> this field are (i) to further reduce<br />
the background fluorescence, <strong>and</strong> (ii) to improve the signal-to-noise ratio, particularly of<br />
time-resolved measurements.<br />
DNA molecules from bacteriophage provide an ideal scaffold to study prote<strong>in</strong>/enzyme<br />
<strong>in</strong>teractions with double-str<strong>and</strong>ed DNA at the s<strong>in</strong>gle-molecule level(53,54). For example, the<br />
unw<strong>in</strong>d<strong>in</strong>g <strong>and</strong> digestion by helicases <strong>and</strong> nucleases of s<strong>in</strong>gle fluorescently sta<strong>in</strong>ed -DNA<br />
molecules, stretched out <strong>in</strong> a hydrodynamic flow, can be monitored through the displacement<br />
of YOYO-1 iodide. This dye fluoresces strongly only when <strong>in</strong>tercalated between the base<br />
pairs of double-str<strong>and</strong>ed DNA(55,56). S<strong>in</strong>gle-molecule assays provide <strong>in</strong>formation on the<br />
function of <strong>in</strong>dividual enzymes masked by ensemble averag<strong>in</strong>g <strong>in</strong> bulk assays(57) but rema<strong>in</strong><br />
challeng<strong>in</strong>g(58), because <strong>in</strong> order to collect statistically significant amounts of data, experiments<br />
must be scaled up by detect<strong>in</strong>g many s<strong>in</strong>gle-molecule events sequentially or, preferably,<br />
<strong>in</strong> parallel(53,59,60). This raises a concern about achiev<strong>in</strong>g identical experimental<br />
conditions for each measurement. Stretch<strong>in</strong>g out DNA has been achieved by pull<strong>in</strong>g s<strong>in</strong>gle<br />
molecules with magnetic or optical tweezers(61,62), which are <strong>in</strong>tr<strong>in</strong>sically limited to<br />
h<strong>and</strong>l<strong>in</strong>g one DNA molecule at a time <strong>and</strong> hence impose a considerable complexity <strong>and</strong> timeburden<br />
when significant sample sizes must be reached.<br />
In an attempt to scale up such s<strong>in</strong>gle-molecule assays, we comb<strong>in</strong>ed <strong>evanescent</strong>-field<br />
excitation, microfluidics <strong>and</strong> noise-reduction techniques. Our aim was to achieve highcontent,<br />
high-throughput imag<strong>in</strong>g under the precisely controlled optical conditions of variable-angle<br />
total <strong>in</strong>ternal reflection fluorescence microscopy (VA-TIRFM)(63-65). Our setup<br />
uses an off-axis parabolic reflector to focus a 488-nm laser beam to a tight spot on the <strong>in</strong>ner<br />
wall of a glass microcapillary placed upon a th<strong>in</strong> layer of immersion oil on a hemicyl<strong>in</strong>drical<br />
prism. The illum<strong>in</strong>ation spot thus created has dimensions smaller than the flow channel, yet is<br />
big enough to permit the observation of tens of hydrodynamically stretched DNA molecules<br />
at a time, under identical experimental conditions. Thus, the <strong>evanescent</strong> field is unperturbed<br />
by wall-effects otherwise compromis<strong>in</strong>g the near-<strong>in</strong>terface localization of fluorescence<br />
excitation <strong>and</strong> reduc<strong>in</strong>g the signal-to-background ratio (SBR). Mov<strong>in</strong>g the capillary along the<br />
illum<strong>in</strong>ation spot allows the imag<strong>in</strong>g of several tens of fields-of-view, under identical<br />
35
VA-TIRF for s<strong>in</strong>gle molecule imag<strong>in</strong>g<br />
conditions. We also <strong>in</strong>troduce a rig actuated by a l<strong>in</strong>ear scanner <strong>and</strong> capable of hous<strong>in</strong>g tens of<br />
capillaries side by side, each connected to a perfusion <strong>in</strong>let <strong>and</strong> outlet. Rapidly switch<strong>in</strong>g<br />
between capillaries, we can <strong>in</strong>crease the throughput or directly compare a wide range of<br />
different experimental conditions, each prepared from the same sample <strong>and</strong> loaded <strong>in</strong> a<br />
different capillary. Adjust<strong>in</strong>g the beam angle controls both the <strong>in</strong>tensity <strong>and</strong> penetration depth<br />
of the <strong>evanescent</strong> <strong>wave</strong> <strong>and</strong> reproduces identical SBR across these experiments. We validated<br />
our “screen<strong>in</strong>g by imag<strong>in</strong>g” approach by observ<strong>in</strong>g the reversible uncoil<strong>in</strong>g <strong>and</strong> recoil<strong>in</strong>g of<br />
s<strong>in</strong>gle YOYO-1-labelled -DNA molecules from a fluorescent blob to their full contour<br />
length. Their precise extension was measured from time-resolved image stacks, after S<strong>in</strong>gular<br />
Value Decomposition (SVD) to obta<strong>in</strong> noise reduced images. This type of edge-detection is<br />
analogous to Po<strong>in</strong>t-Spread-Function (PSF) analysis for localiz<strong>in</strong>g s<strong>in</strong>gle molecules with<br />
nanometer precision. Our study provides a generally applicable strategy for study<strong>in</strong>g enzyme<br />
k<strong>in</strong>etics, at the s<strong>in</strong>gle molecule level with a simple <strong>and</strong> <strong>in</strong>expensive (
Chapter 2<br />
<strong>in</strong>- <strong>and</strong> outlets. Plastic 1, 2 or 10-ml syr<strong>in</strong>ges <strong>and</strong> a syr<strong>in</strong>ge pump (Pump 11, Harvard<br />
Apparatus, Holliston, MA, U.S.A.) were used to load the capillaries with both clean<strong>in</strong>g <strong>and</strong><br />
buffer solutions <strong>and</strong> for generat<strong>in</strong>g a cont<strong>in</strong>uous flow.<br />
Prior to experiments, capillaries were r<strong>in</strong>sed by first flush<strong>in</strong>g 10 ml ultrapure water <strong>and</strong><br />
<strong>in</strong>cubation for 30-m<strong>in</strong> with 2% v/v basic Hellmanex detergent (Hellma, Mülheim, Germany).<br />
Thereafter, capillaries were r<strong>in</strong>sed a second time with 10 ml water <strong>and</strong> then flushed with 1 ml<br />
buffer A conta<strong>in</strong><strong>in</strong>g NeutrAvid<strong>in</strong> (20 µg/ml, 15 m<strong>in</strong>), <strong>and</strong> f<strong>in</strong>ally r<strong>in</strong>sed aga<strong>in</strong> with 10 ml<br />
buffer A. 0.2 mg/ml BSA <strong>in</strong> buffer B1 was <strong>in</strong>cubated for 15 m<strong>in</strong>. The result is a capillary the<br />
<strong>in</strong>ner walls of which are coated with NeutrAvid<strong>in</strong> <strong>and</strong> blank spots blocked with BSA. Prior to<br />
load<strong>in</strong>g DNA, the capillaries were purged with 2 ml buffer B1 (flow speeds were 1 ml/m<strong>in</strong>) to<br />
flush any unbound material. In our DNA uncoil<strong>in</strong>g experiments us<strong>in</strong>g TIRFM we used flow<br />
speeds of 0.03 ml/m<strong>in</strong>.<br />
-DNA preparation<br />
50 µl ultra-pure water was mixed with 20 µl -DNA (500 µg/ ml, New Engl<strong>and</strong> Biolabs,<br />
Ipswich, MA, U.S.A.), 8 µl (×10) T4 DNA ligase buffer (New Engl<strong>and</strong> Biolabs) <strong>and</strong> 2 µl<br />
(200 µM) of an oligonucleotide with sequence 5’-GGGCGGCGACCT-3’, tagged with biot<strong>in</strong>-<br />
TEG 568 at its 3’ end <strong>and</strong> complementary to the 5’-AGGTCGCCGCCC-3’ cohesive site (generally<br />
termed cos1) of phage DNA (Eurogentec, Sera<strong>in</strong>g, Belgium). This mixture was<br />
heated for 30 m<strong>in</strong> at 75 °C <strong>in</strong> a water bath <strong>and</strong> allowed to cool overnight. 2 µl of T4 DNA<br />
ligase was added <strong>and</strong> the solution was <strong>in</strong>cubated at room temperature (2 h) after which the<br />
enzyme was heat <strong>in</strong>activated at 65 °C (10 m<strong>in</strong>). This preparation was purified twice on Micro-<br />
Sp<strong>in</strong> S-400 HR columns (Amersham Biosciences, Piscataway, NJ, U.S.A.). 20 µl stocks were<br />
kept frozen until used.<br />
For f<strong>in</strong>al sample preparation, 10 µl of the DNA stock was dissolved <strong>in</strong> 1 ml buffer B1 that<br />
conta<strong>in</strong>ed 100 nM YOYO-1 iodide (Qu<strong>in</strong>ol<strong>in</strong>ium, 1,1'-[1,3-propanediylbis[(dimethylim<strong>in</strong>io)-<br />
3,1- propanediyl]]bis[4-[(3-methyl-2(3H)- benzoxazolylidene)methyl]]-, tetraiodide,<br />
Invitrogen Ltd, Paisley, UK) <strong>and</strong> was left for <strong>in</strong>cubation <strong>in</strong> the dark (30 m<strong>in</strong>). YOYO-1 is a<br />
dimeric cyan<strong>in</strong>e dye with a high-aff<strong>in</strong>ity for nucleic acids. Its quantum yield <strong>in</strong>creases ~1000-<br />
fold when bound to DNA(66). From the amount of DNA <strong>and</strong> the 48,502 base pairs (bp) <strong>in</strong><br />
phage , we estimate ~1 dye molecule/25 bp for the -DNA prepared <strong>in</strong> this way. The DNA<br />
solution was applied <strong>and</strong> <strong>in</strong>cubated for one hour before purg<strong>in</strong>g the capillary with buffer B2,<br />
dur<strong>in</strong>g which observation started.<br />
37
VA-TIRF for s<strong>in</strong>gle molecule imag<strong>in</strong>g<br />
Comb<strong>in</strong>ed epifluorescence <strong>and</strong> <strong>evanescent</strong>-field fluorescence microscopy<br />
For s<strong>in</strong>gle-molecule detection (SMD) we used a capillary-based flow cell loaded with<br />
different buffers <strong>and</strong> illum<strong>in</strong>ated by an elliptic excitation spot generated by a totally <strong>in</strong>ternally<br />
reflected laser beam imp<strong>in</strong>g<strong>in</strong>g at a supercritical angle at the lower wall of the capillary,<br />
Figure 12A. We used a custom microscope built from optical components (microbench,<br />
L<strong>in</strong>os, Gött<strong>in</strong>gen, Germany) <strong>and</strong> pieces of a modular microscope (BXFM Olympus Europe,<br />
Hamburg, Germany). For epifluorescence excitation, the narrowb<strong>and</strong> (18-nm full-width at<br />
half-maximum, FWHM) excitation of a Polychrome II (T.I.L.L. Photonics, Gräfelf<strong>in</strong>g, Germany)<br />
was further narrowed down with a D488/10 b<strong>and</strong>-pass filter (Chroma, Rock<strong>in</strong>gham,<br />
VT, U.S.A.) to remove side b<strong>and</strong>s result<strong>in</strong>g from the diffraction groove, reflected with a<br />
520RZ RazorEdge dichroic mirror (Semrock, Rochester, NY, U.S.A.) <strong>and</strong> focused onto the<br />
sample with a ×40 NA-0.75 air objective (UPLAN FLM, Olympus, Hamburg, Germany).<br />
Fluorescence was collected through the same objective <strong>in</strong> an upright backward epifluorescence<br />
configuration <strong>and</strong> projected on a Cascade 128+ electron-multiply<strong>in</strong>g charge-coupled<br />
device (EMCCD, 24-µm pixel size) camera (Roper Scientific, Tucson, MD, U.S.A.). For<br />
<strong>evanescent</strong>-field excitation, the scattered laser light was rejected with a 488-nm holographic<br />
notch filter (Barr, Newbury, UK). The spectrally broader epifluorescence excitation was<br />
removed with a FF514LP emission long-pass (Chroma).<br />
Capillaries loaded with 1-µM fluoresce<strong>in</strong> isothiocyanate, ultra-pure water, or YOYO-1<br />
labelled -DNA were used for center<strong>in</strong>g the illum<strong>in</strong>ation spot, measur<strong>in</strong>g background fluorescence<br />
result<strong>in</strong>g from the glass <strong>and</strong> immersion oil or to perform length measurements,<br />
respectively. Capillaries were connected to their respective <strong>in</strong>lets <strong>and</strong> outlets <strong>and</strong> arranged <strong>in</strong> a<br />
rung-like manner on a custom rig that was scanned across the illum<strong>in</strong>ation spot us<strong>in</strong>g a<br />
motorised stage. A th<strong>in</strong> layer of ultra-low autofluorescence immersion oil (type FF, Cargille,<br />
Cedar Groove, NJ, U.S.A) provided the optical cont<strong>in</strong>uity between the hemicyl<strong>in</strong>drical lens<br />
<strong>and</strong> the capillaries.<br />
We focused at the bottom of the capillary by tun<strong>in</strong>g the T.I.L.L. polychrome to 520 nm, close<br />
to the cut-on <strong>wave</strong>–length of the dichroic <strong>and</strong> imaged the back-reflection from the capillary<br />
wall. F<strong>in</strong>e focus<strong>in</strong>g was achieved with a piezoelectric focus device (PIFOC, PI-Physik<br />
Instrumente, Waldbronn, Germany). For total <strong>in</strong>ternal reflection fluorescence (TIRF), we<br />
isolated the 488-nm l<strong>in</strong>e of a multi-l<strong>in</strong>e Argon-ion laser (Reliant 150, LaserPhysics, Milton<br />
Green, UK) with a holographic notch filter <strong>and</strong> directed the beam horizontally onto a slanted<br />
38
Chapter 2<br />
planar mirror (M1) that could be displaced along the beam direction on a 25-mm precision<br />
translation mount (L<strong>in</strong>os). The beam hit a f = 50.8-mm 90°-off-axis parabola (Edmund<br />
Scientific NT47-099, York, UK, see Appendix A for details) <strong>and</strong> was reflected onto a custom<br />
truncated cyl<strong>in</strong>drical prism made from Heraeus Suprasil 311 quartz glass (n 2 = 1.463 at 488<br />
nm, Bernard Halle Nachf., Berl<strong>in</strong>, Germany). This prism, together with a th<strong>in</strong> film of <strong>in</strong>dexmatched<br />
immersion oil <strong>and</strong> the lower capillary wall, formed a perfect hemicyl<strong>in</strong>der (see<br />
Appendix A for details). Typical laser powers of the <strong>in</strong>cident beam were measured with the<br />
prism removed <strong>and</strong> were of the order of ~750 µW.<br />
Image acquisition <strong>and</strong> control of all microscope components was performed with Metamorph<br />
v.7.1.2 software (Molecular Devices, Down<strong>in</strong>gtown, PA, U.S.A.).<br />
Kymograph analysis<br />
To study DNA uncoil<strong>in</strong>g <strong>and</strong> recoil<strong>in</strong>g we acquired 500 128× 128-pixel images <strong>in</strong> the<br />
‘stream’ mode (50 to 100-ms exposure times, no b<strong>in</strong>n<strong>in</strong>g), start<strong>in</strong>g with rest<strong>in</strong>g flow <strong>and</strong> actuat<strong>in</strong>g<br />
the syr<strong>in</strong>ge pump dur<strong>in</strong>g acquisition. For image analysis, regions of <strong>in</strong>terest (ROIs)<br />
conta<strong>in</strong><strong>in</strong>g a s<strong>in</strong>gle -DNA molecule were excised from the time-lapse movies conta<strong>in</strong><strong>in</strong>g<br />
typically 10 to 30 molecules, Figure 12B. Depend<strong>in</strong>g on their exact location with<strong>in</strong> the<br />
Gaussian illum<strong>in</strong>ation spot, <strong>in</strong>dividual molecules were exposed to different excitation<br />
<strong>in</strong>tensities <strong>and</strong> hence displayed different signal-to-noise ratio (SNR),<br />
N<br />
N 1 i<br />
<br />
<br />
<br />
SNR 1<br />
2<br />
S<br />
Si<br />
S<br />
Eq. 31<br />
1<br />
where i is an <strong>in</strong>dex over time (or frame number) <strong>and</strong> N is the total number of images <strong>in</strong> the<br />
stack.<br />
For rapid data <strong>in</strong>spection, we graphed as a kymograph the evolution with time of the<br />
fluorescence <strong>in</strong> a l<strong>in</strong>e region drawn through a s<strong>in</strong>gle blob of coiled -DNA (see Figure 12C<br />
for an example). On these x-t representations three features of s<strong>in</strong>gle-DNA molecule<br />
dynamics are readily identified; (i) their bl<strong>in</strong>k<strong>in</strong>g result<strong>in</strong>g from the wiggl<strong>in</strong>g of the loose end<br />
of -DNA <strong>in</strong> the liquid flow, (ii) the loss of <strong>contrast</strong> due to the gradual photobleach<strong>in</strong>g of<br />
<strong>in</strong>tercalated YOYO-1 molecules, <strong>and</strong> (iii) the abrupt loss of fluorescence due to the<br />
detachment of the molecule from the capillary surface.<br />
39
VA-TIRF for s<strong>in</strong>gle molecule imag<strong>in</strong>g<br />
Figure 12 A parabolic variable-angle TIRF reflector for s<strong>in</strong>gle-molecule imag<strong>in</strong>g. (A) Left, schematic layout of<br />
the all-mirror based TIRF reflector. Inset shows the elliptical illum<strong>in</strong>ation spot at the bottom face of a DNAloaded<br />
capillary. (B) Example image stack, display<strong>in</strong>g 10 molecules of YOYO-1-labeled -DNA. Exposure time<br />
was 50 ms, scale bar is 15 µm. (C) Kymograph show<strong>in</strong>g the uncoil<strong>in</strong>g of a s<strong>in</strong>gle -DNA molecule of the same<br />
stack (boxed <strong>in</strong> panel B) under the impact of capillary flow. See ma<strong>in</strong> text for details. Scale bar is 15 µm.<br />
40
Chapter 2<br />
To quantify the uncoil<strong>in</strong>g of a s<strong>in</strong>gle -DNA molecule, we used s<strong>in</strong>gular value decomposition<br />
(SVD). SVD is a technique commonly used <strong>in</strong> de-nois<strong>in</strong>g(55,67) <strong>and</strong> data compression(68).<br />
Briefly, SVD discrim<strong>in</strong>ates aga<strong>in</strong>st noise by decompos<strong>in</strong>g the image matrix <strong>in</strong>to a dom<strong>in</strong>ant<br />
<strong>and</strong> a subord<strong>in</strong>ate part, reveal<strong>in</strong>g which of its subspaces can be attributed to the (<strong>in</strong>formationconta<strong>in</strong><strong>in</strong>g)<br />
signal <strong>and</strong> which can be attributed to noise. For de-nois<strong>in</strong>g, the basic idea is to<br />
reta<strong>in</strong> the <strong>in</strong>formation <strong>in</strong> the signal subspace <strong>and</strong> discard the noise subspace.<br />
SVD takes the m×n image matrix A <strong>and</strong> calculates three matrices U, , <strong>and</strong> V for which<br />
A<br />
*<br />
UV<br />
Eq. 32<br />
is the diagonal m×n matrix <strong>and</strong> U <strong>and</strong> V are unitary matrices hav<strong>in</strong>g m×m <strong>and</strong> n×n<br />
dimension, respectively. Calculat<strong>in</strong>g the SVD consists of f<strong>in</strong>d<strong>in</strong>g the eigenvalues <strong>and</strong><br />
eigenvectors of AA * <strong>and</strong> A * A. The eigenvectors of AA * <strong>and</strong> A * A make up the columns of U <strong>and</strong><br />
V, respectively. Their eigenvalues are the squares of the s<strong>in</strong>gular values for A. These are the<br />
diagonal entries of the matrix <strong>and</strong> arranged <strong>in</strong> descend<strong>in</strong>g order,<br />
1<br />
<br />
0<br />
<br />
0<br />
<br />
<br />
<br />
<br />
0<br />
0<br />
<br />
<br />
<br />
0<br />
0<br />
<br />
0<br />
<br />
0<br />
0<br />
<br />
0<br />
2<br />
0<br />
0<br />
<br />
0<br />
0<br />
0<br />
3<br />
<br />
<br />
<br />
0<br />
0<br />
0<br />
r<br />
0<br />
0<br />
0<br />
0<br />
0<br />
0<br />
0<br />
<br />
0<br />
<br />
<br />
<br />
0<br />
<br />
0<br />
0<br />
<br />
<br />
<br />
<br />
0<br />
<br />
0<br />
<br />
<br />
0<br />
<br />
The matrix A can be approximated by a matrix<br />
Eq. 33<br />
Aˆ v *<br />
ui i i<br />
Eq. 34<br />
k<br />
i1<br />
with rank k> 0 for the reconstruction of an image<br />
matrix. In our case, we systematically used the four largest values of i for image reconstruction.<br />
A sigmoid y A A A ) /(1 exp(( x x ) / )) was fitted to the DNA streams <strong>in</strong> the image<br />
(<br />
1 2<br />
0<br />
2<br />
dx<br />
data, us<strong>in</strong>g MatLab (The Mathworks, Natick, MA, U.S.A.). The difference between the left<br />
<strong>and</strong> right x 0 values determ<strong>in</strong>ed the molecule length <strong>and</strong> the residuals were taken as a measure<br />
41
VA-TIRF for s<strong>in</strong>gle molecule imag<strong>in</strong>g<br />
the quality of the fit. Frames dom<strong>in</strong>ated by bl<strong>in</strong>k<strong>in</strong>g <strong>and</strong> excessive photobleach<strong>in</strong>g yielded<br />
aberrant fit parameters <strong>and</strong> were systematically discarded from analysis (data not shown).<br />
Results <strong>and</strong> discussion<br />
We generated an elliptical, exponentially-decay<strong>in</strong>g excitation volume<br />
I x,<br />
y,<br />
z,<br />
w ) I(<br />
x,<br />
y,0,<br />
w ) exp(<br />
z<br />
/ w ) of dimensions large enough to illum<strong>in</strong>ate tens of<br />
(<br />
z<br />
z<br />
z<br />
molecules, yet sufficiently small to fit with<strong>in</strong> the bore of the capillary to avoid light propagation<br />
<strong>in</strong>to the walls. The latter is important, as light propagation <strong>in</strong>side the walls would<br />
enlarge the excitation volume <strong>and</strong> reduce the SBR. We here used for our proof-of-pr<strong>in</strong>ciple a<br />
rectangular duct (where the height <strong>and</strong> width are comparable). A larger flow channel would<br />
allow for an larger surface excitation <strong>and</strong> hence larger number of molecules observed at a<br />
time, but its hydrodynamic properties would still be prescribed by the vertical channel<br />
dimensions, which – with our moderate-magnification air objective required for high-throughput<br />
imag<strong>in</strong>g - are more a function of the objective work<strong>in</strong>g distance. Above,<br />
w z<br />
<br />
is the penetration depth of the <strong>evanescent</strong> <strong>wave</strong> field set up by total<br />
2 2 2<br />
/ 4<br />
n2<br />
n1<br />
0<br />
s<strong>in</strong><br />
<strong>in</strong>ternal reflection, 0 the vacuum <strong>wave</strong>length of excitation, <strong>and</strong> denotes the beam angle of<br />
the light imp<strong>in</strong>g<strong>in</strong>g on the reflect<strong>in</strong>g <strong>in</strong>terface (n 1 ,n 2 ). In the upright backward total <strong>in</strong>ternal<br />
reflection (TIR) geometry used, Figure 12A, the reflect<strong>in</strong>g <strong>in</strong>terface (n 2 >n 1 ) is formed by the<br />
lower <strong>in</strong>ner wall of a borosilicate capillary with 0.1×1.0-mm bore (see <strong>in</strong>set). The size of the<br />
elliptical illum<strong>in</strong>ation spot is thus given by the waist of the laser beam <strong>in</strong> the specimen plane,<br />
with a short axis w y <strong>and</strong> long axis w <br />
x<br />
w y<br />
/ cos<br />
. Any laser beam with a waist w 0 = 0.65 mm<br />
<strong>and</strong> far-field divergence = 0.95 mrad ≈ 0.054° cannot be focused to any better than<br />
w µ = 193µm where arctan<br />
1<br />
µ w EFL<br />
≈ 0.18° is the focus<strong>in</strong>g angle. EFL = 101.6<br />
w y 0<br />
<br />
0 2<br />
mm is the effective focal length (see Appendix A for details) of the 90°-off-axis parabolic<br />
reflector direct<strong>in</strong>g the beam onto the hemi-cyl<strong>in</strong>drical reflection element (see Figure 15).<br />
Thus, the lateral size of the excitation spot (<strong>in</strong> the 1/e² sense) is roughly five times smaller<br />
than the <strong>in</strong>ner width of the capillary. The TIRF image <strong>in</strong> Figure 12B shows the overall shape<br />
of the illum<strong>in</strong>ation spot from the fa<strong>in</strong>t autofluorescence excited <strong>in</strong> the borosilicate glass. A 2-<br />
D Gaussian fit with the image yields an elliptical illum<strong>in</strong>ation spot with full-width half<br />
maxima (FWHM) 42 <strong>and</strong> 145 µm <strong>in</strong> x <strong>and</strong> y, respectively. In the experimental conditions<br />
used, the correspond<strong>in</strong>g 1.41 x 10 -4 cm 2 ellipse conta<strong>in</strong>ed some ten <strong>in</strong>dividual -DNA<br />
molecules stretched out <strong>in</strong> the hydrodynamic flow, but higher densities can be used for<br />
<br />
42
Chapter 2<br />
smaller molecules. As a corollary, the ratio of the half axes of the fitted 2-D Gaussian can be<br />
used to calculate the beam angle as 72.9°, close to the expected value (73°). With 750 µW<br />
average excitation power, the average excitation <strong>in</strong>tensity <strong>in</strong> the illum<strong>in</strong>ation spot is of the<br />
order of ~5.3 W/cm 2 . Thus, focus<strong>in</strong>g a Gaussian laser beam with an off-axis parabolic mirror<br />
produced an excitation spot suited for capillary-based s<strong>in</strong>gle-molecule TIRF imag<strong>in</strong>g.<br />
We next studied the performance of our TIRF setup for the observation of s<strong>in</strong>gle DNAmolecule<br />
dynamics by imag<strong>in</strong>g YOYO-1-labelled -DNA tethered to the <strong>in</strong>ner capillary wall<br />
via a biot<strong>in</strong>-NeutrAvid<strong>in</strong> l<strong>in</strong>ker. Us<strong>in</strong>g a ×40 NA-0.75 air objective (effective magnification<br />
with the used tube lens was ×43), we visualized, on average, 10 ± 5 fluorescently labelled<br />
DNA molecules <strong>in</strong> the excitation area (n = 10 experiments). In the absence of flow, the<br />
YOYO-1-labelled DNA molecules adopted a r<strong>and</strong>om coil configuration <strong>and</strong> appeared as fluorescent<br />
blobs (1.51 ± 0.46 µm), probably due to averag<strong>in</strong>g over thermally driven shape<br />
fluctuations dur<strong>in</strong>g the time of <strong>in</strong>tegration(69). Activat<strong>in</strong>g the microfluidic flow flushed unbound<br />
-DNA <strong>and</strong> stretched out surface-bound molecules to their full contour length.<br />
43
VA-TIRF for s<strong>in</strong>gle molecule imag<strong>in</strong>g<br />
A<br />
B<br />
Figure 13 Noise reduction by SVD for a length measurements of a s<strong>in</strong>gle DNA-molecule. (A) Left top, raw-data<br />
kymograph (time vs. length, 100 ms exposure time) show<strong>in</strong>g the uncoil<strong>in</strong>g <strong>and</strong> subsequent detachment of an<br />
<strong>in</strong>dividual -DNA molecule <strong>in</strong> the hydrodynamic flow. Right top panel shows the s<strong>in</strong>gular values obta<strong>in</strong>ed by<br />
SVD <strong>in</strong> descend<strong>in</strong>g order. We used the four largest values for image reconstruction, the result<strong>in</strong>g kymograph is<br />
shown <strong>in</strong> the left bottom panel. Right bottom, the l<strong>in</strong>e profile across the raw (red) <strong>and</strong> SVD-treated data (black)<br />
shows that noise is elim<strong>in</strong>ated while the length <strong>in</strong>formation is conserved. (B) Histograms show<strong>in</strong>g the DNA<br />
length determ<strong>in</strong>ed <strong>in</strong> each frame by sigmoid fitt<strong>in</strong>g to the left <strong>and</strong> right ends of the DNA molecule. The precision<br />
of a Gaussian fit is <strong>in</strong>creased 6-fold follow<strong>in</strong>g SVD (Number of frames analysed: n = 67 <strong>and</strong> 84 for raw (red)<br />
<strong>and</strong> SVD data (black), respectively).<br />
44
Chapter 2<br />
We observed the reversible uncoil<strong>in</strong>g of -DNA molecules <strong>in</strong> a hydrodynamic flow of 0.03<br />
<strong>and</strong> 0.1 ml/m<strong>in</strong> with<strong>in</strong> 20 <strong>and</strong> 5 s, respectively (data not shown), which correspond to shear<br />
rates of ~300 <strong>and</strong> 1,000 s -1 respectively, calculated by,<br />
3Q<br />
2<br />
<br />
Eq. 35<br />
2<br />
h<br />
2 0<br />
w0<br />
where Q is the volumetric flow rate, h 0 <strong>and</strong> w 0 are, respectively, the height <strong>and</strong> width of the<br />
rectangular flow channel(70).<br />
S<strong>in</strong>gle-molecule optical measurements of enzyme k<strong>in</strong>etics rely on measur<strong>in</strong>g dynamic<br />
changes <strong>in</strong> the contour length of DNA molecules. Their precision critically depends on the<br />
accuracy of the length measurement <strong>and</strong> thus the image signal-to-noise ratio. Our experiments<br />
clearly confirm the advantage of <strong>evanescent</strong>-field epifluorescence excitation for such<br />
measurements. Uncoil<strong>in</strong>g stretched the DNA molecule, reduc<strong>in</strong>g the number of fluorophores<br />
per pixel <strong>and</strong> thus reduc<strong>in</strong>g the available signal <strong>and</strong> decreas<strong>in</strong>g the signal-to-noise ratio. For<br />
TIRF, the SNR of <strong>in</strong>dividual fully stretched -DNA molecules was 4.68 ± 0.95 (n = 17),<br />
compared to (SNR = 1.98 ± 0.49, n = 8) upon epifluorescence excitation.<br />
Not only did <strong>evanescent</strong>-field observation create the conditions for observ<strong>in</strong>g dynamic<br />
parameters of the otherwise barely visible DNA extension, but by adjust<strong>in</strong>g the beam angle <br />
our parabolic reflector allows to ma<strong>in</strong>tenance of a constant SNR at different molecular<br />
extensions or across experiments (see Appendix B for details).<br />
We measured the precise length of <strong>in</strong>dividual DNA molecules on <strong>in</strong>dividual frames of timeresolved<br />
image stacks by first further reduc<strong>in</strong>g the image noise us<strong>in</strong>g SVD <strong>and</strong> then<br />
employ<strong>in</strong>g an edge-detection rout<strong>in</strong>e. Figure 13 shows, for a fully extended DNA molecule,<br />
how SVD improves the accuracy of such length measurements. The ga<strong>in</strong> <strong>in</strong> precision is about<br />
six-fold, as judged from the width of the histogram (13.50 ± 1.00 µm vs. 13.68 ± 0.17 µm<br />
(mean ± SD), n = 67 <strong>and</strong> 84 image planes, respectively, p>0.05). Thus, as expected, SVD<br />
improves the accuracy of s<strong>in</strong>gle-molecule experiments without affect<strong>in</strong>g their population<br />
average, Figure 14. Measured full contour lengths of s<strong>in</strong>gle DNA molecules <strong>in</strong> our experiments<br />
were of the order of 16 µm, close to the reported literature value of 16 to 16.5<br />
µm(71,72). In as much as the measured lengths did not depend on the shear stress <strong>in</strong>duced by<br />
the liquid flow (data not shown) we can discard <strong>in</strong>complete stretch. Thus, rather than be<strong>in</strong>g<br />
limited by the absolute number of photons our length measurements of s<strong>in</strong>gle-molecule<br />
extension are limited by their fluorescence bl<strong>in</strong>k<strong>in</strong>g due to axial wiggl<strong>in</strong>g on the length-scale<br />
probed by the <strong>evanescent</strong> field (~100 nm) of the loose DNA end. F<strong>in</strong>ally, the improved accuracy<br />
of our length measurements allowed observation of the dim fluorescence of molecules<br />
45
VA-TIRF for s<strong>in</strong>gle molecule imag<strong>in</strong>g<br />
that were stretched out to 18-19 µm. Individual YOYO-1 molecules have been reported to<br />
lengthen double-str<strong>and</strong>ed DNA by 0.4 nm(73), although Prasad et al.(53) have challenged this<br />
assertion for a dye/base-pair ratio of 1/100 or less. The 19 µm maximum measured <strong>in</strong> our<br />
experiments matches the theoretical maximum contour value expected accord<strong>in</strong>g to Bellan et<br />
al.(73) with a YOYO-1 to -DNA labell<strong>in</strong>g ratio of 1/25.<br />
Conclusion<br />
Individual events <strong>in</strong> large heterogeneous ensembles can take different paths from the rest of<br />
the ensemble <strong>and</strong> can only be detected at the s<strong>in</strong>gle-molecule level. Dist<strong>in</strong>ct s<strong>in</strong>gle molecule<br />
behavior can arise from multiple stable conformations, changed diffusion rates <strong>and</strong> chemical<br />
microenvironments, spectral fluctuations <strong>and</strong>, of course, different reaction k<strong>in</strong>etics. Another<br />
issue is the difficulty <strong>in</strong> synchronization <strong>in</strong> most bulk experiments, which obscures <strong>in</strong>dividual<br />
time trajectories <strong>and</strong> <strong>in</strong>teraction pathways(56). Whereas there are smooth <strong>and</strong> cont<strong>in</strong>uous<br />
transitions <strong>in</strong> the bulk, processes at the s<strong>in</strong>gle-molecule level are discrete <strong>and</strong> stochastic.<br />
Furthermore, <strong>in</strong> many biomedical applications there is a need to reduce sample sizes <strong>and</strong>/or<br />
observation volume, thus ultimately lead<strong>in</strong>g to SMD. However, SMD typically yields small<br />
data sets, because it relies on isolat<strong>in</strong>g <strong>and</strong> detect<strong>in</strong>g s<strong>in</strong>gle events. Somewhat counter <strong>in</strong>tuitively,<br />
mean<strong>in</strong>gful s<strong>in</strong>gle-molecule experiments rely on large data sets to unravel diversity.<br />
One technique known to improve the conditions for SMD is total <strong>in</strong>ternal reflection<br />
fluorescence (TIRF), which reduces background by conf<strong>in</strong><strong>in</strong>g fluorescence excitation to a<br />
sub-diffraction optical sheet. Widely used <strong>in</strong> SMD(74,75), with applications rang<strong>in</strong>g from<br />
study<strong>in</strong>g the motility of motor prote<strong>in</strong>s, molecule-surface <strong>and</strong> bi-molecular <strong>in</strong>teractions, monitor<strong>in</strong>g<br />
enzymatic reactions, or observ<strong>in</strong>g the conformational dynamics of macromolecules,<br />
recent work has extended these studies to the <strong>in</strong>vestigation of s<strong>in</strong>gle molecules <strong>in</strong> live<br />
cells(76), e.g., for study<strong>in</strong>g <strong>in</strong>dividual ion-channel gat<strong>in</strong>g.<br />
In the present paper, we address two common problems typically encountered with such SMD<br />
experiments: low signal-to-noise ratio <strong>and</strong> <strong>in</strong>sufficient statistics to make biophysical sense of<br />
the data.<br />
We here show that us<strong>in</strong>g a novel TIRF reflector that offers enough flexibility <strong>and</strong> control over<br />
beam parameters to pro duce raw data with a uniform SNR across experiments, <strong>and</strong> postexperiment<br />
data analysis us<strong>in</strong>g s<strong>in</strong>gular value decomposition (SVD) that can can substantially<br />
improve these issues.<br />
46
Chapter 2<br />
Microfluidics <strong>and</strong> SMD have rapidly developed over the past years, but even larger progess is<br />
expected from their <strong>in</strong>tegration on the same chip(77-80). Our multi-capillary-based SMD<br />
assay extends s<strong>in</strong>gle-molecule fluorescence toward a robotic ‘screen<strong>in</strong>g-by-imag<strong>in</strong>g’<br />
approach. With<strong>in</strong> a s<strong>in</strong>gle field of view, we are able to observe under identical experiment<br />
conditions 10 to 15 <strong>in</strong>dividual DNA molecules simultaneously <strong>and</strong> measure their extension<br />
with 190-nm precision, which translates to ~440-bp resolution (1px <strong>in</strong> the sample plane corresponds<br />
to 24 µm /43 = 558 nm <strong>and</strong> hence ~1,400 bp). SVD-based noise reduction proved to<br />
be a critical step for atta<strong>in</strong><strong>in</strong>g a 6-fold ga<strong>in</strong> <strong>in</strong> the precision of DNA-molecule length<br />
measurements, compared to raw-data analysis. Specifically, our results <strong>in</strong>dicate that the first 4<br />
eigenvalues are sufficient for the faithful reconstruction of DNA molecule length, thus<br />
permitt<strong>in</strong>g considerable data compression, which is a concern for h<strong>and</strong>l<strong>in</strong>g the large data sets<br />
collected <strong>in</strong> s<strong>in</strong>gle-molecule experiments. In pr<strong>in</strong>ciple, us<strong>in</strong>g the comb<strong>in</strong>ation of techniques<br />
proposed here, 1.5-nm localization precision could be achieved, similar to po<strong>in</strong>t-spreadfunction<br />
analysis(71), provided that enough fluorescence photons are available.<br />
Figure 14 Summary of analyzed kymograph images derived from a total of ten TIRF time-lapse movies. The<br />
average DNA contour lengths measured <strong>in</strong> the uncoiled state for n = 53 DNA molecules <strong>and</strong> n = 50 DNA<br />
molecules for raw <strong>and</strong> SVD treated data respectively were 13.34 ± 1.16 µm <strong>and</strong> 13.13 ± 1.40 µm. Kymograph<br />
images for raw data (red) <strong>and</strong> SVD-treated data (black).<br />
Laterally scann<strong>in</strong>g the capillary along its axis through the excitation spot allows observation<br />
of hundreds of molecules, the precise number depend<strong>in</strong>g on the capillary length. This number<br />
is superior to that achieved with other methods for prob<strong>in</strong>g s<strong>in</strong>gle DNA molecules, e.g., bead-<br />
47
VA-TIRF for s<strong>in</strong>gle molecule imag<strong>in</strong>g<br />
tethered -DNA held <strong>in</strong> an optical trap(62), electrosp<strong>in</strong>n<strong>in</strong>g(72), AFM(73), molecular<br />
comb<strong>in</strong>g(81) <strong>and</strong> molecular stretch<strong>in</strong>g(82).<br />
One important constra<strong>in</strong>t imposed by our wish for robotic sample h<strong>and</strong>l<strong>in</strong>g was the use of a<br />
dry, long-work<strong>in</strong>g distance objective with moderate NA <strong>and</strong> magnification (×40 NA-0.75 air).<br />
This choice was motivated by the requirement to image through the upper capillary wall from<br />
above, <strong>and</strong> to scan the rig of capillaries without a change <strong>in</strong> the immersion medium. Our<br />
attempts to work with water immersion so as to atta<strong>in</strong> a better light collection <strong>and</strong> higher<br />
resolution (×60 NA-1.1 water) were not successful, ma<strong>in</strong>ly because the water <strong>and</strong> immersion<br />
oil formed an emulsion that impaired the quality of the oil film coupl<strong>in</strong>g the prism to the<br />
capillaries (not shown).<br />
Beyond the particular use for SMD experiments, our parabolic TIRF reflector provides a<br />
versatile <strong>and</strong> simple platform for TIRF experiments that benefit from tight control of beam<br />
parameters, <strong>in</strong>clud<strong>in</strong>g surface-plasmon resonance, surface-second harmonic generation <strong>and</strong><br />
VA-TIRFM.<br />
Appendices<br />
Appendix A: beam steer<strong>in</strong>g with a parabolic mirror<br />
To be comparable, s<strong>in</strong>gle-molecule experiments should display a roughly equal signal-tonoise<br />
ratio (SNR). As both the <strong>evanescent</strong>-field <strong>in</strong>tensity <strong>and</strong> the penetration depth of the<br />
<strong>evanescent</strong> <strong>wave</strong> depend on the angle of <strong>in</strong>cidence, a simple way to ma<strong>in</strong>ta<strong>in</strong> constant SNR<br />
<strong>in</strong>dependent measurements is to adjust the beam angle . Various geometries have been<br />
proposed for prism-based variable-angle total <strong>in</strong>ternal reflection fluorescence (VA-TIRF),<br />
<strong>in</strong>clud<strong>in</strong>g a parabolic reflector(74). The now commonly chosen 4-f geometry uses a rotary<br />
scann<strong>in</strong>g device (galvanometer, AOD, …), a scan lens, projection lens <strong>and</strong> a hemicyl<strong>in</strong>drical<br />
prism(64). In these devices, the optics are designed to keep the illum<strong>in</strong>ation spot at a constant<br />
midpo<strong>in</strong>t dur<strong>in</strong>g the angle sweep. The result is a fairly bulky <strong>and</strong> expensive TIRF illum<strong>in</strong>ator.<br />
Here, us<strong>in</strong>g all mirror-based optics we implement VA-TIRF with a m<strong>in</strong>imal set of<br />
components. The basic idea is the realization that a parabola reflects all beams <strong>in</strong>cident<br />
parallel to its axis of symmetry through a common focus. Thus, plac<strong>in</strong>g the sample <strong>and</strong><br />
microscope so that the parabola focus, the axis of symmetry <strong>and</strong> the optical axis of the<br />
microscope co<strong>in</strong>cide <strong>in</strong> the focal spot is a simple way to implement VA-TIRF with m<strong>in</strong>imal<br />
aberration. Figure 15 zooms <strong>in</strong> on the parabolic reflector as the segment of a parabola<br />
48
Chapter 2<br />
x 2 f <br />
Eq. 36<br />
y 4<br />
Its vertex co<strong>in</strong>cides with the orig<strong>in</strong> of the Cartesian system<br />
O<br />
xyz<br />
<br />
, its directrix is given by<br />
y f <strong>and</strong> its focus lies <strong>in</strong> the orig<strong>in</strong> of the unprimed system Oxyz . Both coord<strong>in</strong>ate systems<br />
1 T<br />
are related by a rotation-translation operator R R for which<br />
x R x<br />
T<br />
, where<br />
cos(<br />
)<br />
<br />
R s<strong>in</strong>( )<br />
<br />
0<br />
Here, arcs<strong>in</strong>e<br />
x<br />
ex<br />
, <strong>and</strong> e x<br />
<strong>and</strong><br />
s<strong>in</strong>( )<br />
cos( )<br />
0<br />
0<br />
<br />
0<br />
1<br />
<br />
<br />
, <strong>and</strong><br />
0 <br />
<br />
<br />
f <br />
<br />
0 <br />
T Eq. 37<br />
e<br />
x<br />
denote the unit vectors along x of the unprimed <strong>and</strong><br />
primed system, respectively. f is the parabola parent focal length (PFL = 50.8 mm).<br />
0<br />
O'<br />
R<br />
y<br />
y' (mm)<br />
-20<br />
-40<br />
-60<br />
A<br />
dx'<br />
D<br />
C<br />
P'<br />
B<br />
P' 0<br />
Q' Q'<br />
0<br />
r'<br />
l'<br />
'<br />
f<br />
O<br />
x<br />
-100 -50 0 50<br />
x' (mm)<br />
Figure 15 Parameters identify<strong>in</strong>g the optical properties of the parabolic mirror. In red, the surface of the<br />
parabolic mirror (Edmund Optic, Barr<strong>in</strong>gton, NJ, U.S.A.), along with the centre (dash-dotted), lower (dashed)<br />
<strong>and</strong> upper limit<strong>in</strong>g beams (dotted). O is the po<strong>in</strong>t of impact of the reflected beam, i.e., the mid-po<strong>in</strong>t of the<br />
elliptic illum<strong>in</strong>ation spot. See Appendix text for details.<br />
49
VA-TIRF for s<strong>in</strong>gle molecule imag<strong>in</strong>g<br />
In our case, we chose the mirror midpo<strong>in</strong>t P 0<br />
so that the parabola segment forms a 90°-off<br />
axis reflector, i.e., light <strong>in</strong>cident along the midl<strong>in</strong>e Q <br />
0<br />
is focused <strong>in</strong>to O. Any displacement<br />
of the <strong>in</strong>cident beam by<br />
0P<br />
dx QQ<br />
0<br />
results <strong>in</strong> an angular scan about O by an angle ’ that is<br />
related to dx’ by re-express<strong>in</strong>g the parabola <strong>in</strong> polar coord<strong>in</strong>ates,<br />
cos<br />
<br />
x<br />
l<br />
rcos<br />
l<br />
1<br />
<br />
<br />
1 s<strong>in</strong><br />
<br />
d Eq. 38<br />
where l r1<br />
s<strong>in</strong>, r <strong>and</strong> 90 are the semi latus rectum, radius <strong>and</strong> azimuth,<br />
respectively. The commonly used angle of <strong>in</strong>cidence is given by<br />
90 <br />
<br />
, <strong>and</strong> OR<br />
co<strong>in</strong>cides with the microscope optical axis. In the jargon of optical component vendors,<br />
l 2 f is often termed EFL, equivalent focal length, <strong>and</strong> def<strong>in</strong>es the distance P 0<br />
O <strong>and</strong> hence<br />
the distance of the midpo<strong>in</strong>t of the parabolic reflector to the po<strong>in</strong>t of symmetry. Hence, a<br />
lateral displacement of 10 mm of mirror M1 <strong>in</strong> Figure 12A translates <strong>in</strong>to an angular beam<br />
scan of 5.9° about O.<br />
Appendix B: DNA/capillary separation distance<br />
Molecular dipoles located on a dielectric <strong>in</strong>terface or close by (z 0 . The radiation pattern has a lobe structure result<strong>in</strong>g from the<br />
far-field <strong>in</strong>terference of plane <strong>wave</strong>s emitted directly <strong>and</strong> after reflection off the surface.<br />
Radiation <strong>in</strong> this direction is typically quenched as z 0 → 0. On the other h<strong>and</strong>, for larger<br />
separation distances than a quarter <strong>wave</strong>length, the modulation <strong>in</strong> fluorescence becomes<br />
negligible <strong>in</strong> the case of a glass-water <strong>in</strong>terface <strong>and</strong> the fluorescence collected fraction atta<strong>in</strong>s<br />
the geometric limit given by the half-angle captured by the objective NA.<br />
For the NeutrAvid<strong>in</strong> spacer used to tether DNA onto the <strong>in</strong>ner wall of the glass capillary, we<br />
can estimate a typical prote<strong>in</strong> size of 5 nm diameter. The hydrodynamic radius of -DNA was<br />
determ<strong>in</strong>ed to be 350 nm with a radius of gyration of 550 nm. In addition, an end-to-end<br />
distance of 1.27 µm for lambda-DNA <strong>in</strong> the r<strong>and</strong>om-coil state (<strong>in</strong> a 10 mM Tris, 1 mM EDTA<br />
50
Chapter 2<br />
buffer solution, pH 7.5 has been reported. The latter figure matches the mean value we could<br />
derive from our epi-fluorescence measurements.<br />
Appendix C: fluorescence properties of YOYO-1<br />
YOYO-1 has 491/509-nm peak fluorescence excitation/emission, a molar ext<strong>in</strong>ction of 98,000<br />
M -1 cm -1 , <strong>and</strong> a quantum yield of 0.52 (compared to fluoresce<strong>in</strong> <strong>in</strong> 0.1 M NaOH, QY = 0.92).<br />
These values were determ<strong>in</strong>ed for DNA complexes <strong>in</strong> (all mM): 10 Tris, 1 EDTA, 50 NaCl,<br />
pH 7.4.<br />
Acknowledgements<br />
We thank Wolfram Lessner <strong>and</strong> Markus Kron (Max-Planck Institut for Experimental<br />
Medic<strong>in</strong>e, Gött<strong>in</strong>gen) as well as Patrick Piart (Ecole Supérieure de Physique et Chimie Industrielles)<br />
<strong>and</strong> Patrice Jegouzo (University Paris Descartes) for technical support. Eric C.<br />
Greene gave advice on the -DNA <strong>and</strong> capillary preparations. The help of José T. Gonçalves<br />
<strong>and</strong> Marc Ros<strong>in</strong> at an early stage of this study is acknowledged. MR <strong>and</strong> MvH were recipients<br />
of a pre-doctoral research tra<strong>in</strong><strong>in</strong>g grant <strong>in</strong> the framework of a jo<strong>in</strong>t Marie-Curie Research<br />
Tra<strong>in</strong><strong>in</strong>g Network “From FLIM to FLIN” (MRTN-CT-2005-019481) to DTFD <strong>and</strong> MO.<br />
S<strong>in</strong>gle-molecule work <strong>in</strong> the Oheim lab is funded by the Groupement d’Intérêt Publique -<br />
Agence National de la Recherche (GIP-ANR), Program Nanoscience (PNANO-05-051) <strong>and</strong><br />
the European Union (FP6-STRP- AUTOSCREEN). Work <strong>in</strong> Ed<strong>in</strong>burgh was supported by the<br />
RASOR grant from the Biotechnology <strong>and</strong> Biological Sciences Research Council <strong>and</strong> was<br />
performed <strong>in</strong> the Collaborative Optical Spectroscopy, Microscopy <strong>and</strong> Imag<strong>in</strong>g Centre<br />
(COSMIC).<br />
51
52<br />
VA-TIRF for s<strong>in</strong>gle molecule imag<strong>in</strong>g
Chapter 3<br />
A programmable light eng<strong>in</strong>e for quantitative<br />
s<strong>in</strong>gle molecule TIRF <strong>and</strong> HILO imag<strong>in</strong>g<br />
Published <strong>in</strong> collaboration with V<strong>in</strong>cent de Sars <strong>and</strong> Mart<strong>in</strong> Oheim<br />
Optics Express 16 (2008): 18495<br />
53
A programmable light eng<strong>in</strong>e<br />
Abstract<br />
We report on a simple yet powerful implementation of objective type total <strong>in</strong>ternal reflection<br />
fluorescence (TIRF) <strong>and</strong> highly <strong>in</strong>cl<strong>in</strong>ed <strong>and</strong> lam<strong>in</strong>ated optical sheet (HILO, a type of darkfield)<br />
illum<strong>in</strong>ation. Instead of focus<strong>in</strong>g the illum<strong>in</strong>at<strong>in</strong>g laser beam to a s<strong>in</strong>gle spot close to the<br />
edge of the microscope objective, we are scann<strong>in</strong>g dur<strong>in</strong>g the acquisition of a fluorescence<br />
image the focused spot <strong>in</strong> a circular orbit, thereby illum<strong>in</strong>at<strong>in</strong>g the sample from various<br />
directions. We measure parameters relevant for quantitative image analysis dur<strong>in</strong>g<br />
fluorescence image acquisition by captur<strong>in</strong>g an image of the excitation light distribution <strong>in</strong> an<br />
equivalent objective backfocal plane (BFP). Operat<strong>in</strong>g at scan rates above 1 MHz, our<br />
programmable light eng<strong>in</strong>e allows directional averag<strong>in</strong>g by circular sp<strong>in</strong>n<strong>in</strong>g the spot even for<br />
sub-millisecond exposure times. We show that restor<strong>in</strong>g the symmetry of TIRF/HILO<br />
illum<strong>in</strong>ation reduces scatter<strong>in</strong>g <strong>and</strong> produces an evenly lit field-of-view that affords on-l<strong>in</strong>e<br />
analysis of <strong>evanescent</strong>-field excited fluorescence without pre-process<strong>in</strong>g. Utiliz<strong>in</strong>g crossed<br />
acousto-optical deflectors, our device generates arbitrary <strong>in</strong>tensity profiles <strong>in</strong> BFP, permitt<strong>in</strong>g<br />
variable angle, multi-color illum<strong>in</strong>ation, or objective lenses to be rapidly exchanged.<br />
Introduction<br />
Objective-type total <strong>in</strong>ternal reflection fluorescence (TIRF) (84) <strong>and</strong> highly <strong>in</strong>cl<strong>in</strong>ed<br />
lam<strong>in</strong>ated optical sheet (HILO) illum<strong>in</strong>ation (85) rely on tightly focus<strong>in</strong>g a laser spot <strong>in</strong> an<br />
eccentric position <strong>in</strong> the back focal plane (BFP) of a high numerical-aperture (NA) objective,<br />
Figure 16(a). Common problems occurr<strong>in</strong>g with this type of illum<strong>in</strong>ation are <strong>in</strong>terference<br />
fr<strong>in</strong>ges <strong>and</strong> uneven illum<strong>in</strong>ation (52,86-89). Scatter<strong>in</strong>g at refractive-<strong>in</strong>dex boundaries like<br />
cellular adhesion sites or <strong>in</strong>tracellular organelles create further <strong>in</strong>homogeneity. Biological<br />
tissue causes mostly forward scatter<strong>in</strong>g. The light conf<strong>in</strong>ement that is at the orig<strong>in</strong> of the<br />
<strong>contrast</strong> <strong>enhancement</strong> observed with these wide-field fluorescence techniques is<br />
compromised, as fluorescence is generated by a superposition of the spatially conf<strong>in</strong>ed <strong>and</strong><br />
diffuse component of scattered excitation light that varies across the field (89). Non-l<strong>in</strong>ear<br />
excitation can be a remedy, because the scattered <strong>in</strong>tensities are too weak to produce twophoton<br />
excited fluorescence (2PEF). However, a 2PEF TIRF setup <strong>in</strong>volves high cost <strong>and</strong><br />
complexity <strong>and</strong>, at least <strong>in</strong> its objective-type variant, imposes constra<strong>in</strong>ts on the excitation<br />
power. Inspired by the r<strong>in</strong>g illum<strong>in</strong>ation used <strong>in</strong> the orig<strong>in</strong>al work (84), a scann<strong>in</strong>g-type of<br />
TIRF illum<strong>in</strong>ator has recently been proposed (46,47) that restores radial symmetry by<br />
54
Chapter 3<br />
circularly sp<strong>in</strong>n<strong>in</strong>g the illum<strong>in</strong>ation spot <strong>in</strong> the BFP. Averag<strong>in</strong>g over different orientations of<br />
the electromagnetic <strong>wave</strong> vector, azimuthally sp<strong>in</strong>n<strong>in</strong>g spatially redistributes <strong>and</strong> dilutes<br />
scattered photons. Hence, the relative contribution of diffuse excitation is reduced. However,<br />
<strong>in</strong> these devices scan speed has been limited, reduc<strong>in</strong>g frame rates to a few Hz.<br />
We here report on a straightforward yet powerful implementation of fast scann<strong>in</strong>g TIRF/-<br />
HILO microscopy. Acousto-optical deflectors (AODs) <strong>in</strong> conjunction with a high-quality scan<br />
lens <strong>and</strong> high-NA objective permit us to po<strong>in</strong>t a focused spot with<strong>in</strong> μs to any po<strong>in</strong>t <strong>in</strong> the<br />
objective BFP. Unlike with rotat<strong>in</strong>g wedges (46) or k<strong>in</strong>ematic mirrors (47), we scan a full<br />
circle at 1.2 kHz, allow<strong>in</strong>g the acquisition of evenly lit <strong>and</strong> highly <strong>contrast</strong>ed fluorescence<br />
images with millisecond exposure time. Circular scans at different radii allow for<br />
accommodat<strong>in</strong>g high-NA objectives of different magnification, <strong>and</strong> permit multi-color<br />
alternat<strong>in</strong>g excitation (ALEX) (90) TIRF while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a constant penetration depth.<br />
Experimental procedures<br />
Eccentric-spot illum<strong>in</strong>ation<br />
Focus<strong>in</strong>g a laser beam <strong>in</strong> the objective aperture plane (or back focal plane, BFP) produces a<br />
th<strong>in</strong> collimated beam emerg<strong>in</strong>g from the objective. Its radial distance r from the optical axis<br />
determ<strong>in</strong>es the beam angle . With Abbe’s s<strong>in</strong>e condition, r=f·NA, <strong>and</strong> NA= n 2 s<strong>in</strong> NA , we<br />
have =arcs<strong>in</strong>[M·r/(n 2·f TL )]. Here, f = f TL /M, f TL <strong>and</strong> M are the objective <strong>and</strong> tube lens focal<br />
lengths, <strong>and</strong> the objective transverse magnification, respectively, Figure 16(b). TIR occurs<br />
above the critical angle c =arcs<strong>in</strong>(n 1 /n 2 ), i.e., for values of r≥r c = n 2·f obj <strong>and</strong> sets up an<br />
<strong>evanescent</strong> <strong>wave</strong> (EW) with a penetration depth w z (4) -1 [(n 2 2 s<strong>in</strong> 2 ) 2 -n 2 1 ] -1/2 , of the order<br />
of ~/5. n 1 <strong>and</strong> n 2 denote the <strong>wave</strong>length of light <strong>and</strong> the sample <strong>and</strong> substrate refractive<br />
<strong>in</strong>dices, respectively. For HILO, we set just beneath c to produce a highly <strong>in</strong>cl<strong>in</strong>ed sheet of<br />
light that transverses the sample at an oblique angle <strong>and</strong> illum<strong>in</strong>ates a th<strong>in</strong> optical section<br />
close to the coverslip (85). In either case, the objective back pupil<br />
∅pupil=2rmax=2n2s<strong>in</strong>NA ·fFL/M determ<strong>in</strong>es the maximal beam angle, NA.<br />
55
A programmable light eng<strong>in</strong>e<br />
Figure 16 Dielectric <strong>in</strong>terface (a) <strong>and</strong> beam parameters (b) for objective-type total <strong>in</strong>ternal reflection (c) Typical<br />
light distributions <strong>in</strong> the objective back focal plane (BFP) for eccentric-spot (left), crescent-(middle) <strong>and</strong> r<strong>in</strong>gshaped<br />
illum<strong>in</strong>ation (bottom). See text for details.<br />
Upon TIR, the average energy flux across the refractive-<strong>in</strong>dex boundary is zero. As the<br />
dom<strong>in</strong>ant component of the <strong>wave</strong> vector <strong>in</strong> HILO illum<strong>in</strong>ation, the Poynt<strong>in</strong>g vector P=E×H of<br />
the <strong>evanescent</strong> <strong>wave</strong> is oriented parallel to the boundary <strong>and</strong> takes, for TE polarization of the<br />
<strong>in</strong>cident beam, the form<br />
P<br />
<br />
<br />
<br />
<br />
<br />
<br />
Pz<br />
<br />
s<strong>in</strong><br />
P<br />
<br />
x<br />
cos<br />
<br />
ωt x<br />
P<br />
<br />
0<br />
s<strong>in</strong> α θ<br />
y<br />
n ω<br />
<br />
n ω<br />
<br />
ωt<br />
x s<strong>in</strong> α θ cosωt<br />
x s<strong>in</strong> α θ <br />
1<br />
c<br />
2<br />
n1ω<br />
c<br />
<br />
1<br />
c<br />
<br />
Eq. 39<br />
Here, denotes the phase, <strong>and</strong> is the solution to tan( /2) =(s<strong>in</strong> 2 -n 2 12 ) 1/2 /cos(91).<br />
Therefore, <strong>in</strong> both TIRF <strong>and</strong> HILO, the commonly used eccentric-spot illum<strong>in</strong>ation breaks the<br />
radial symmetry <strong>and</strong> def<strong>in</strong>es a propagation direction of the electromagnetic <strong>wave</strong> field along<br />
the positive x-axis.<br />
56
Chapter 3<br />
Set-up<br />
Figure 17 shows the optical layout. A 405-nm laser beam (40 mW, Lasos, Jena, Germany) is<br />
cleaned up with a HQ410/40 b<strong>and</strong>-pass, (EX1, AHF Analysentechnik, Tüb<strong>in</strong>gen, Germany)<br />
<strong>and</strong> directed on a pair of crossed acousto-optic devices (AOD1, AA.Opto-Electronique, St.<br />
Rémy-en-Chévreuse, France). Laser <strong>and</strong> AODs are mounted on a tilt <strong>and</strong> pan table for<br />
<strong>in</strong>ject<strong>in</strong>g the (1,1)-order diffracted beam <strong>in</strong>to the microscope. A personal computer (PC) <strong>and</strong><br />
peripheral <strong>in</strong>terface microcontroller (PIC) control the AODs <strong>and</strong> provide trigger signals to<br />
synchronize an AOD-based shutter (AOD2, Brimrose, Baltimore, Maryl<strong>and</strong>, U.S.A.) <strong>and</strong><br />
detectors. A Galilean telescope (f1=100 mm, f2=50 mm) augments the full scan angle to ±2.1°.<br />
A Rodenstock Rodagon (FL, , L<strong>in</strong>os, fFL= 135 mm) focuses the beam <strong>in</strong> the aperture plane of<br />
a NA-1.45 oil objective (see Table 2 for objectives used).<br />
Figure 17 Schematic representation of the optical set-up. Solid l<strong>in</strong>es – laser light; dotted – fluorescence; dashed<br />
– bright-field/epi-illum<strong>in</strong>ation. See text for details<br />
57
A programmable light eng<strong>in</strong>e<br />
Neutral density filters (ND) attenuate the beam to
Chapter 3<br />
thoroughly r<strong>in</strong>s<strong>in</strong>g, they were <strong>in</strong>cubated dur<strong>in</strong>g 1 m<strong>in</strong> with ~10 pM streptavid<strong>in</strong>-conjugated<br />
quantum dots (Qdots565-ITK, Invitrogen, CA, U.S.A.) <strong>in</strong> 50 mM borate buffer (pH 8.3).<br />
Unbound Qdots were flushed with buffer. We used Cargille (Cedar Grove, NJ, U.S.A.) FF<br />
low fluorescence immersion oil (n = 1.489 at 405 nm) for optically coupl<strong>in</strong>g the cover slip<br />
<strong>and</strong> objective. Cortical mouse astrocytes were prepared as described (96). We labeled<br />
astroglial lysosomes (96) with the styryl dyes FM1-43 (1 μM, 10 m<strong>in</strong>, followed by 20 m<strong>in</strong><br />
wash, Invitrogen, Carlsbad). Alternatively, we transfected cells with 1.2 μg/ml v<strong>in</strong>cul<strong>in</strong>-EGFP<br />
(97) (a k<strong>in</strong>d gift of Dr Johannes Hirrl<strong>in</strong>ger, Leipzig) us<strong>in</strong>g lipofectam<strong>in</strong>e 2000 (Invitrogen).<br />
Cells were perfused at 0.5 ml/m<strong>in</strong> with extracellular sal<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g (<strong>in</strong> mM): 140 NaCl, 5.5<br />
KCl, 1.8 CaCl2, 1 MgCl2, 10 HEPES <strong>and</strong> 20 glucose, pH 7.3 (KOH).<br />
Results <strong>and</strong> discussion<br />
Read<strong>in</strong>g out relevant beam parameters from the BFP image<br />
We built a microscope optimized for high-NA illum<strong>in</strong>ation, as used <strong>in</strong> TIRF or HILO<br />
microscopy. In addition to the usual fluorescence image, we simultaneously acquired a BFP<br />
image that conta<strong>in</strong>s all parameters relevant for characteriz<strong>in</strong>g the beam <strong>and</strong> azimuthal angle,<br />
as well as their angular spread, thus permitt<strong>in</strong>g true quantitative fluorescence analysis.<br />
Focused <strong>in</strong> the center of the BFP, an on-axis beam (=0), produced a th<strong>in</strong> collimated beam that<br />
emerged vertically from the objective. To set the midpo<strong>in</strong>t (x0,y0) on the BFP image, we<br />
positioned CCD1 so that it showed a centered spot. We then <strong>in</strong>creased r = (x 2 + y 2 ) ½ until we<br />
observed TIR, mean<strong>in</strong>g that we reached the critical radius rc. The triplet r = 0, r = rc <strong>and</strong> rNA =<br />
rmax forms the basis of a three-po<strong>in</strong>t calibration for (r). Corroborat<strong>in</strong>g earlier observations<br />
(87,88), the EW-excited fluorescence <strong>in</strong> a dilute fluoresce<strong>in</strong> solution revealed an asymmetric<br />
<strong>in</strong>tensity profile, tail<strong>in</strong>g off toward the positive x-axis. Thus, even a low dye concentration is<br />
sufficient to produce observable forward scatter<strong>in</strong>g. We next used our AOD scanners to rotate<br />
the illum<strong>in</strong>ation spot at constant r. Azimuthal sp<strong>in</strong>n<strong>in</strong>g restored the symmetry, averaged over<br />
directional effects <strong>and</strong> generated an even illum<strong>in</strong>ation across the entire field-of-view, Figure<br />
18(a). Sp<strong>in</strong>n<strong>in</strong>g the spot also rotates the polarization vector of a l<strong>in</strong>early polarized <strong>in</strong>put beam<br />
<strong>in</strong> the sample plane, <strong>and</strong> <strong>in</strong>tegration dur<strong>in</strong>g fluorescence image acquisition averages over this<br />
effect. The precise measurement of the beam angle allowed us to generate a look-up table<br />
(r), for each objective lens used. Plott<strong>in</strong>g the fluorescence generated <strong>in</strong> fluoresce<strong>in</strong> solution<br />
vs. the angle of <strong>in</strong>cidence displayed the expected steep drop of fluorescence due to the sudden<br />
conf<strong>in</strong>ement of excitation at c = 60 ± 1°, Figure 18(b).<br />
59
A programmable light eng<strong>in</strong>e<br />
A<br />
B<br />
C<br />
Figure 18 BFP imag<strong>in</strong>g allows quantitative TIRF microscopy. (a) Left, schematic view of the objective BFP.<br />
(x0,y0) def<strong>in</strong>es the optical axis, r = |r| = [(x-x 0 ) 2 +(y-y 0 ) 2 ] 1/2 the off-axis displacement <strong>and</strong> hence beam angle TIR<br />
occurs for r > r c (dashed). r = re -i(t) corresponds to sp<strong>in</strong>n<strong>in</strong>g the spot at a constant radius r, = arccos(x/r).<br />
Middle, fluorescence generated <strong>in</strong> a dilute fluoresce<strong>in</strong> (FITC) solution, for eccentric s<strong>in</strong>gle-spot illum<strong>in</strong>ation<br />
Inset shows correspond<strong>in</strong>g BFP image. Red curve graphs the result<strong>in</strong>g asymmetric <strong>in</strong>tensity l<strong>in</strong>e profile along the<br />
dashed l<strong>in</strong>e across the field-of-view. Right, overlay of 16 images acquired at different values. Scale bars are 5<br />
μm. (b) Left, measurement of beam angles with ~ 1° precision. Objective 60× PlanApochromat TIRFM.<br />
Measured values of (circles) compared favorably with theory (solid l<strong>in</strong>e) <strong>and</strong> generated an 8-bit look-up table<br />
(r). Right, fluorescence generated <strong>in</strong> FITC, as a function of . Dashed part differs from the usual transmitted<br />
<strong>in</strong>tensity given by Fresnel coefficient for refraction because of the f<strong>in</strong>ite thickness of the FITC layer. (c) Left,<br />
sum projection of six BFP images acquired at different r, correspond<strong>in</strong>g =14.5, 28., 45, <strong>and</strong> 72°. Middle, plot<br />
of the average <strong>in</strong>tensity (red) <strong>and</strong> SD (dashed). The angle-dependent diffraction efficiency of the AODs causes a<br />
~20% <strong>in</strong>tensity modulation) along the circular ROI (red). Right, cross-sectional <strong>in</strong>tensity profile along the blue<br />
ROI. Fit of a Gaussian function with the 2 nd r<strong>in</strong>g yields r = 2.09 μm, a width r = 136 μm <strong>and</strong> angular dispersion<br />
of ≈±0.8°. is obta<strong>in</strong>ed from the multi-pixel fit with a precision of ~1 μm, correspond<strong>in</strong>g to ≈ 0.01°.<br />
60
Chapter 3<br />
Circular sp<strong>in</strong>n<strong>in</strong>g permits the on-l<strong>in</strong>e quantification of f<strong>in</strong>e morphological detail<br />
The benefit for biological fluorescence detection of circular sp<strong>in</strong>n<strong>in</strong>g the excitation beam is<br />
evident on fluorescence images of mouse cortical astrocytes sta<strong>in</strong>ed with styryl pyrid<strong>in</strong>ium<br />
dyes excited at angles just below the critical angle (HILO). Astrocytes are a type of macroglia<br />
<strong>and</strong> are the dom<strong>in</strong>ant glial cells of the bra<strong>in</strong>, where they play important roles <strong>in</strong> metabolism<br />
<strong>and</strong> signal<strong>in</strong>g as partners of neurons. In cultured cortical astrocytes styryl dyes specifically<br />
label lysosomal/late endosomal compartments (96). These membrane-delimited <strong>and</strong> optically<br />
dense organelles appear as diffraction-limited spots on EW-excited fluorescence images.<br />
Compared to conventional eccentric-spot illum<strong>in</strong>ation (card<strong>in</strong>al images for NWSE<br />
orienttation), fluorescence flare is absent from the central image acquired while cont<strong>in</strong>uously<br />
sp<strong>in</strong>n<strong>in</strong>g the laser beam <strong>in</strong> the BFP (<strong>in</strong>set). A large <strong>and</strong> evenly lit field-of-view is an<br />
additional benefit, Figure 19(a). Broaden<strong>in</strong>g the <strong>in</strong>cident laser beam, which is easily achieved<br />
by a slight defocus <strong>in</strong> BFP, can also improve the image quality upon illum<strong>in</strong>ation from one<br />
side, but the result<strong>in</strong>g image <strong>in</strong>evitably suffers from power losses <strong>and</strong> effects of forward<br />
scatter<strong>in</strong>g. Zoom<strong>in</strong>g <strong>in</strong> on sub-cellular fluorescence <strong>and</strong> slightly <strong>in</strong>creas<strong>in</strong>g the beam angle<br />
beyond the critical angle provided a crisp TIRF image of near-membrane granular <strong>and</strong> tubular<br />
(probably mitochondrial) fluorescence. Importantly, circular sp<strong>in</strong>n<strong>in</strong>g produced fluorescence<br />
images, from which we directly read off <strong>in</strong>tensity profiles without the usually required<br />
localbackground subtraction, filter<strong>in</strong>g or pre-process<strong>in</strong>g. Hence, restor<strong>in</strong>g symmetry facilitates<br />
<strong>and</strong> speeds up on-l<strong>in</strong>e analysis of TIRF images, Figure 19(b).<br />
61
A programmable light eng<strong>in</strong>e<br />
a<br />
b<br />
HILO<br />
x<br />
y<br />
Figure 19 (a) HILO (=59.5°) fluorescence images of a mouse cortical astrocyte labeled with FM1-43, <strong>and</strong><br />
simultaneously captured BFP images (<strong>in</strong>sets), for different propagation directions of the <strong>wave</strong> vector. Note the<br />
absence of flare <strong>and</strong> enlarged <strong>and</strong> homogenously lit field on fluorescence images excited with sp<strong>in</strong>n<strong>in</strong>g-spot<br />
illum<strong>in</strong>ation (centre image) compared to the four card<strong>in</strong>al images taken with conventional eccentric-spot<br />
illum<strong>in</strong>ation that display pronounced directionality (arrows). (b) F<strong>in</strong>e morphological detail is resolved on this<br />
enlarged view of a circular-sp<strong>in</strong> TIRF image (=63°). Individual lysosomes (bright spots) <strong>and</strong> mitochondria<br />
(dimmer tubules) are easily recognized <strong>and</strong> tracked without further image process<strong>in</strong>g. Bottom curves display<br />
<strong>in</strong>tensity profiles along the dashed l<strong>in</strong>es shown. Scale is 5 µm. Exposure times were 1 ms <strong>and</strong> 100 ms for the -<br />
BFP <strong>and</strong> fluorescence images, respectively. 60× PlanApochromat TIRFM objective.<br />
Chang<strong>in</strong>g magnification while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a constant penetration depth<br />
Conventional fluorescence microscopes accommodate objectives of different magnification<br />
by overfill<strong>in</strong>g the objective back aperture. However, TIRF or HILO, chang<strong>in</strong>g objectives is<br />
then virtually impossible, because the diameter of the objective back pupil (∅pupil) varies<br />
reciprocally with magnification M, <strong>and</strong> so should the illum<strong>in</strong>at<strong>in</strong>g r<strong>in</strong>g to ma<strong>in</strong>ta<strong>in</strong> a constant<br />
penetration depth or <strong>in</strong>cl<strong>in</strong>ed optical sheet. Re-adjust<strong>in</strong>g the beam angle manually can be a<br />
solution, but has usually prohibited experimenters from comb<strong>in</strong><strong>in</strong>g different high-NA<br />
objectives dur<strong>in</strong>g one experiment. On our setup, we are able to swap objectives <strong>and</strong> to adapt<br />
<strong>in</strong>stantly the illum<strong>in</strong>ation pattern under computer control, just by chang<strong>in</strong>g the (r) look-up<br />
62
Chapter 3<br />
table. This feature permits to zoom <strong>in</strong> on characteristic features of the sample under study<br />
without chang<strong>in</strong>g any TIRF parameters. We demonstrate this feature by imag<strong>in</strong>g focal<br />
adhesion contacts (FACs) — molecular structures by which cells make mechanical contact to<br />
the substrate on which they are grown.<br />
We validated our approach by imag<strong>in</strong>g cellular focal adhesion sites labeled with v<strong>in</strong>cul<strong>in</strong>-<br />
EGFP. V<strong>in</strong>cul<strong>in</strong> is a three-doma<strong>in</strong> adaptor prote<strong>in</strong> that mediates focal adhesion by regulat<strong>in</strong>g<br />
<strong>in</strong>tegr<strong>in</strong> dynamics <strong>and</strong> cluster<strong>in</strong>g as well as transduc<strong>in</strong>g force to the act<strong>in</strong> cytoskeleton (97)<br />
<strong>and</strong> is believed to <strong>in</strong>teract transiently with the lipid membrane. However, the nature <strong>and</strong> role<br />
of these <strong>in</strong>teractions <strong>in</strong> situ is poorly understood, because high-resolution imag<strong>in</strong>g of the<br />
strongly scatter<strong>in</strong>g prote<strong>in</strong>-rich FACs has presented a major challenge.<br />
Figure 20 Sp<strong>in</strong>n<strong>in</strong>g TIRFs image mouse cortical astrocyte transiently express<strong>in</strong>g v<strong>in</strong>cul<strong>in</strong>-EGFP. Fluorescence<br />
images of the same cell at different magnification. All objectives had NA1-45, see Table 2. Scale is 5 µm. Insets<br />
show correspond<strong>in</strong>g BFP images.<br />
Table 2 TIRF objectives used <strong>in</strong> this study (Olympus Europe, Hamburg, Germany) had NA-1.45 <strong>and</strong> 0.1-mm<br />
work<strong>in</strong>g distance. We calculated pupil diameters 2NA f TL /M. h is the position of the BFP above the objective<br />
shoulder <strong>and</strong> was constant for the three objectives used <strong>in</strong> Figure 20.<br />
∅ pupil (mm) h (mm)<br />
60× PlanApochromat TIRFM 8.7 25<br />
PLAPON60×O/TIRFM-SP 8.7 25<br />
PLAPO 100×O/TIRFM N 5.2 8.5<br />
UAPO 150×O/TIRFM SP 3.48 19.11<br />
To visualize adhesion sites, we transiently expressed <strong>in</strong> cortical astrocytes a v<strong>in</strong>cul<strong>in</strong>-EGFP<br />
construct. On TIRF images, v<strong>in</strong>cul<strong>in</strong>-EGFP appeared concentrated <strong>in</strong> bright spots, from which<br />
dimmer filaments emerged <strong>and</strong> radiated <strong>in</strong>to deeper cytoplasmic regions, Figure 20. Images at<br />
×60, ×100 <strong>and</strong> ×150-magnification showed the same cell at <strong>in</strong>creas<strong>in</strong>g detail, whereas the<br />
axial section illum<strong>in</strong>ated did not appreciably vary. Thus, our programmable light eng<strong>in</strong>e<br />
63
A programmable light eng<strong>in</strong>e<br />
allows to <strong>in</strong>stantly adapt<strong>in</strong>g the light path to objectives of different magnification. We expect<br />
this feature not only of use for zoom<strong>in</strong>g <strong>in</strong> <strong>and</strong> out, but also for variable-angle scans or<br />
multicolor EW-excitation, where changes <strong>in</strong> penetration depth wz result<strong>in</strong>g from <strong>wave</strong>length<br />
changes can be compensated for by adjust<strong>in</strong>g . Also, this flexibility removes the current<br />
requirement for bulky <strong>and</strong> expensive multiple-port TIRF attachments when multiple lasers are<br />
coupled to one microscope. This feature will also be of particular <strong>in</strong>terest for motorized<br />
microscopes,<br />
kHz circular sp<strong>in</strong>s allow image acquisition with exposure times down to a few ms<br />
S<strong>in</strong>gle-molecule detection (SMD) is an important application for TIRF. The sub-<strong>wave</strong>length<br />
axial optical section<strong>in</strong>g <strong>and</strong> near-field <strong>enhancement</strong> create the conditions for detect<strong>in</strong>g s<strong>in</strong>gle<br />
fluorophores <strong>in</strong> front of a reduced background signal. The same is true for the detection of<br />
s<strong>in</strong>gle-pair Förster resonance energy transfer (spFRET) or the time-lapse observation <strong>and</strong><br />
track<strong>in</strong>g of s<strong>in</strong>gle fluorescently labeled organelles <strong>in</strong> biological TIRF microscopy. By<br />
build<strong>in</strong>g up the ensemble average from <strong>in</strong>dividual events, these techniques reveals<br />
heterogeneity otherwise masked by the average behavior but, <strong>in</strong> turn, require large a number<br />
of <strong>in</strong>dividual observations to discern a statistically relevant pattern. For such a compilation to<br />
be valid, care must be taken to ma<strong>in</strong>ta<strong>in</strong> experimental conditions constant across observations.<br />
We prepared a monolayer of s<strong>in</strong>gle emitters by immobiliz<strong>in</strong>g streptavid<strong>in</strong>e-l<strong>in</strong>ked<br />
semiconductor nanocrystals (‘quantum dots’) on a biot<strong>in</strong>ylated microscope slide to verify if<br />
sp<strong>in</strong>n<strong>in</strong>g the excitation spot improved the conditions for TIRF-based SMD. Circular scan<br />
rates depended on number of orientations to average over for a circular full scan <strong>and</strong> varied<br />
between 0.3 for 256 <strong>and</strong> 1.2 kHz for 64 directions. Thus, with 6-bit azimuthal angle resolution<br />
we could stream images frames at up to 500 Hz with only the number of signal photons<br />
limit<strong>in</strong>g the <strong>in</strong>strument performance. Traces of 405-nm excited photolum<strong>in</strong>escence showed<br />
ON-OFF states associated with <strong>in</strong>dividual quantum dots, or the presence of two quantum dots<br />
<strong>in</strong> the diffraction-limited voxel, recognized as three <strong>in</strong>tensity states, Figure 21. As with earlier<br />
experiments, the spatially <strong>in</strong>variable background <strong>and</strong> signal-to-noise ratio allowed for the<br />
direct comparison of <strong>in</strong>dividual traces, thereby considerably speed<strong>in</strong>g up image analysis.<br />
64
Chapter 3<br />
Figure 21 Quantum dots (QD565-ITK) immobilized on a biot<strong>in</strong>ylated coverslip showed bl<strong>in</strong>k<strong>in</strong>g<br />
photolum<strong>in</strong>escent emission upon 405-nm excitation. Exposure time 2 ms, scale 5 µm.<br />
Discussion <strong>and</strong> conclusion<br />
S<strong>in</strong>ce its <strong>in</strong>troduction <strong>in</strong> 1989 (84), objective-type TIRF is broadly be<strong>in</strong>g used <strong>in</strong> microscopy,<br />
spectroscopy <strong>and</strong> SMD. Unlike the alternative prism-based geometry (see refs. (98-101), it is<br />
easy to set up on an <strong>in</strong>verted microscope, permits the free access to the sample from above,<br />
<strong>and</strong> is readily comb<strong>in</strong>ed with epifluorescence <strong>and</strong> bright-field illum<strong>in</strong>ation. The large-NA<br />
collection permits high lateral resolution (NA -1 , <strong>in</strong> the limit NA≤n 1 ) <strong>and</strong> fluorescence<br />
collection efficiency (½[1-cos NA ]). Dedicated ‘TIRF illum<strong>in</strong>ators’, high numerical aperture<br />
objectives (NA=1.44–1.65, ref.23) <strong>and</strong> compact, fiber-coupled diode lasers have<br />
contributed to its wide use. More recently, isosceles through-the-lens <strong>in</strong>jection of two<br />
collid<strong>in</strong>g high-NA beams has been used to generate the high-frequency illum<strong>in</strong>ation pattern<br />
for structured illum<strong>in</strong>ation <strong>in</strong> objective-base ‘super-resolution’ TIRF (32,102,103). The<br />
conta<strong>in</strong>ment of the beam <strong>in</strong>side the microscope body facilitates compliance with laser safety<br />
regulations, which is a concern for multi-user facilities <strong>and</strong> imag<strong>in</strong>g platforms.<br />
Early objective-type TIRF achieved symmetric illum<strong>in</strong>ation by focuss<strong>in</strong>g a mercury arc <strong>in</strong>to a<br />
r<strong>in</strong>g with r≥rc, <strong>and</strong> block<strong>in</strong>g the central sub-critical rays (84). Olympus (Sh<strong>in</strong>juku-ku, Japan)<br />
developed but never commercialized a variant <strong>in</strong> which a highly aberrant lens images the arc<br />
to a crescent-shaped sector of the high-NA r<strong>in</strong>g (Figure 16(c), middle). However, a<br />
consequence of us<strong>in</strong>g an <strong>in</strong>coherent white-light source are <strong>in</strong>tensity losses, because imag<strong>in</strong>g<br />
the mercury arc of dimension <strong>in</strong>to a r<strong>in</strong>g with width r 2 -r 1 (r 2 >r 1 ≥r c ) decreases its lum<strong>in</strong>ous<br />
density by 2 /[·(r 2 2 -r 2 1 )]
A programmable light eng<strong>in</strong>e<br />
close to n2 are used. Hence, more recently, experimenters have preferred an eccentric focused<br />
laser spot rather than a full r<strong>in</strong>g for provid<strong>in</strong>g supercritical illum<strong>in</strong>ation.<br />
Our AOD-based programmable light eng<strong>in</strong>e restores the illum<strong>in</strong>ation symmetry through beam<br />
scann<strong>in</strong>g <strong>and</strong> thereby comb<strong>in</strong>es the advantages of the orig<strong>in</strong>al r<strong>in</strong>g illum<strong>in</strong>ation <strong>and</strong> the laserbased<br />
eccentric-spot scheme. Unlike other devices, our programmable light eng<strong>in</strong>e offers a<br />
rapid, r<strong>and</strong>om-access computer-controlled beam steer<strong>in</strong>g <strong>in</strong> the objective back focal plane at<br />
moderate cost (
Chapter 4<br />
Chapter 4<br />
Gett<strong>in</strong>g Across the Plasma Membrane <strong>and</strong> Beyond:<br />
Intracellular Uses of Colloidal Semiconductor Nanocrystals<br />
Published <strong>in</strong> collaboration with Camilla Luccard<strong>in</strong>i, Aleksey Yakovlev, Stéphane Gaillard,<br />
Alicia Piera Alberola, Jean-Maurice Mallet, Wolfgang J. Parak, Anne Feltz <strong>and</strong> Mart<strong>in</strong> Oheim<br />
Journal of Biomedic<strong>in</strong>e <strong>and</strong> Biotechnology 2007(7):68963<br />
67
Intracellular uses of colloidal semiconductor nanocrystals<br />
Abstract<br />
Semiconductor nanocrystals (NCs) are <strong>in</strong>creas<strong>in</strong>gly be<strong>in</strong>g used as photolum<strong>in</strong>escent markers<br />
<strong>in</strong> biological imag<strong>in</strong>g. Their brightness, large Stokes shift, <strong>and</strong> high photostability compared<br />
to organic fluorophores permit the exploration of biological phenomena at the s<strong>in</strong>gle-molecule<br />
scale with superior temporal resolution <strong>and</strong> spatial precision. NCs have predom<strong>in</strong>antly been<br />
used as extracellular markers for tagg<strong>in</strong>g <strong>and</strong> track<strong>in</strong>g membrane prote<strong>in</strong>s. Successful<br />
<strong>in</strong>ternalization <strong>and</strong> <strong>in</strong>tracellular labell<strong>in</strong>g with NCs have been demonstrated for both fixed<br />
immunolabelled <strong>and</strong> live cells. However, the precise localization <strong>and</strong> subcellular compartment<br />
labelled are less clear. Generally, live cell studies are limited by the requirement of fairly<br />
<strong>in</strong>vasive protocols for load<strong>in</strong>g NCs <strong>and</strong> the relatively large size of NCs compared to the<br />
cellular mach<strong>in</strong>ery, along with the subsequent sequestration of NCs <strong>in</strong> endosomal/lysosomal<br />
compartments. For long-period observation the potential cytotoxicity of cytoplasmically<br />
loaded NCs must be evaluated. This review focuses on the challenges of <strong>in</strong>tracellular uses of<br />
NCs.<br />
Introduction<br />
Semiconductor nanocrystals (NCs) “quantum dots” are <strong>in</strong>creas<strong>in</strong>gly be<strong>in</strong>g used <strong>in</strong> a wide<br />
range of biomedical applications, from cell biology to medical diagnostics. They have a core<br />
diameter of 2–10 nm <strong>and</strong> significantly larger hydrodynamic diameter, mak<strong>in</strong>g them suitable<br />
as large yet relatively biocompatible markers, <strong>and</strong> have remarkable photophysical properties<br />
related to quantum conf<strong>in</strong>ement effects (104). Their superior brightness, higher photostability,<br />
<strong>and</strong> narrower spectral emission compared to conventional organic fluorophores have<br />
progressively lead biophysicists to adopt them as a new tool for s<strong>in</strong>gle-molecule imag<strong>in</strong>g, <strong>in</strong><br />
vitro <strong>and</strong> <strong>in</strong> vivo. NCs have become an alternative for organic fluorophores <strong>and</strong><br />
complementary tool of fluorescent prote<strong>in</strong>s <strong>in</strong> s<strong>in</strong>gle-molecule fluorescence <strong>and</strong> whole-cell<br />
labell<strong>in</strong>g assays.<br />
In this review, we focus on the <strong>in</strong>tracellular applications of semiconductor nanocrystals <strong>in</strong><br />
biological imag<strong>in</strong>g. We first discuss their unique optical properties, we then <strong>in</strong>troduce some<br />
considerations on their surface chemistry <strong>and</strong> we explore <strong>in</strong> the follow<strong>in</strong>g sections the<br />
different possible strategies to deliver NC <strong>in</strong>side the cell <strong>and</strong> to specifically target them to a<br />
prote<strong>in</strong> of <strong>in</strong>terest. F<strong>in</strong>ally, we report on recent applications of NCs <strong>in</strong> whole animal imag<strong>in</strong>g<br />
<strong>in</strong> vivo <strong>and</strong> address the risk of potential cytotoxicity.<br />
68
Chapter 4<br />
Chemical <strong>and</strong> optical properties<br />
NCs are <strong>in</strong>organic particles of 200 to 1000 atoms. NC cores are commonly synthesized from<br />
group II-VI (e.g., CdSe, CdS, ZnSe, <strong>and</strong> CdTe) <strong>and</strong> III-V (e.g., InAs, InP, <strong>and</strong> PbS)<br />
semiconductor materials. For any energy exceed<strong>in</strong>g the b<strong>and</strong> gap, which depends on the core<br />
diameter, absorption of a photon generates an electron-hole pair, which on recomb<strong>in</strong>ation<br />
results <strong>in</strong> the emission of a less-energetic photon. Due to their broad absorption spectra, NCs<br />
can efficiently be excited with a multitude of laser l<strong>in</strong>es. Variations <strong>in</strong> the particle<br />
composition <strong>and</strong> size result <strong>in</strong> different b<strong>and</strong>-gap energies <strong>and</strong> hence NCs different<br />
photolum<strong>in</strong>escent (PL) emission, rang<strong>in</strong>g from the near UV to the IR (400–1350 nm) (105).<br />
NCs have narrow <strong>and</strong> symmetric photolum<strong>in</strong>escence (PL) emission peaks with typical full<br />
widths at half maximum (FWHM) of 25–35nm (106) that facilitate multicolor imag<strong>in</strong>g by<br />
allow<strong>in</strong>g efficient s<strong>in</strong>gle-color excitation whilst m<strong>in</strong>imiz<strong>in</strong>g emission cross-talk (107), see<br />
(108) for a critical discussion. The PL emission arises both from radiative recomb<strong>in</strong>ation of an<br />
exciton <strong>and</strong> the recomb<strong>in</strong>ation of an electron with a hole <strong>in</strong> the valence b<strong>and</strong>. For NCs,<br />
relaxation to the ground state takes ~10-100 nanoseconds, about one order of magnitude<br />
longer than s<strong>in</strong>glet-s<strong>in</strong>glet electronic transitions <strong>in</strong> organic fluorophores (~0.1-10 ns). The<br />
slow PL decay makes NCs attractive sources for time-gated imag<strong>in</strong>g, which can be used to<br />
reduce the relative contribution of cellular autofluorescence to the total collected signal (109).<br />
Figure 22 graphs the evolution of the collected fraction of long-lived NC emission, relative to<br />
that of the short-lived autofluorescence for different time gates t at a fixed lifetime ratio of<br />
1:10. Larger gates are required to atta<strong>in</strong> the same suppression of background for <strong>in</strong>creas<strong>in</strong>g<br />
levels of autofluorescence. For <strong>in</strong>tensity-based detection NCs benefit from their large<br />
brightness () which results from a 10-to-100 time larger molar ext<strong>in</strong>ction coefficients (<br />
~10 5 –10 6 M -1 cm 1 ) than organic dyes (110,111) at comparable quantum yield . F<strong>in</strong>ally, due to<br />
their significantly higher photostability than organic fluorophores, NCs are attractive for longperiod<br />
observation (LPO). The resistance to photobleach<strong>in</strong>g results from the deposition of an<br />
additional semiconductor shell (e.g., ZnS or CdSe) hav<strong>in</strong>g a larger b<strong>and</strong> gap than the core.<br />
The result is the conf<strong>in</strong>ement of the excitons to the core. However, NCs are not completely<br />
<strong>in</strong>ert to prolonged illum<strong>in</strong>ation. The photophysical properties facilitate LPO at the s<strong>in</strong>gle-NC<br />
level, a particularly <strong>in</strong>terest<strong>in</strong>g property <strong>in</strong> s<strong>in</strong>gle-particle track<strong>in</strong>g (SPT) applications (112),<br />
trac<strong>in</strong>g cell l<strong>in</strong>eage (113), <strong>and</strong> live animal imag<strong>in</strong>g (114), that all comb<strong>in</strong>e the dem<strong>and</strong> for<br />
imag<strong>in</strong>g small numbers of fluorophores over extended observation periods.<br />
69
Intracellular uses of colloidal semiconductor nanocrystals<br />
Beyond their established function as molecular markers, NCs are <strong>in</strong>creas<strong>in</strong>gly be<strong>in</strong>g used for<br />
FRET-based biosens<strong>in</strong>g (see (115) for review). NCs are both a scaffold <strong>and</strong> central donor for<br />
excit<strong>in</strong>g multiple organic acceptor fluorophores <strong>in</strong> these <strong>in</strong>organic/organic hybrid FRET<br />
sensors (116-119). Also, NCs are attractive FRET donors because, through select<strong>in</strong>g the<br />
appropriate size, they can be dialed <strong>in</strong>to almost arbitrary acceptors. The large overlap <strong>in</strong>tegrals<br />
between donor emission <strong>and</strong> acceptor absorbance allow for larger FRET efficiencies or<br />
transfer over larger donor/acceptor distances. Due to the broad absorption b<strong>and</strong>s <strong>and</strong> narrowb<strong>and</strong><br />
emission, one can chose excitation <strong>wave</strong>lengths m<strong>in</strong>imiz<strong>in</strong>g direct acceptor excitation<br />
<strong>and</strong> m<strong>in</strong>imal bleed-through of donor fluorescence <strong>in</strong>to the FRET detection channel.<br />
At the s<strong>in</strong>gle-NC level, the radiative recomb<strong>in</strong>ation of the exciton can temporarily be<br />
prevented despite ongo<strong>in</strong>g excitation, result<strong>in</strong>g <strong>in</strong> <strong>in</strong>termittent PL emission, known as<br />
“bl<strong>in</strong>k<strong>in</strong>g” (120). Bl<strong>in</strong>k<strong>in</strong>g results from the stabilization of the exciton at the NC surface <strong>and</strong><br />
is associated with surface defects. Dark states reduce the duty cycle, complicate the<br />
<strong>in</strong>terpretation of <strong>in</strong>tensity-based measurements, <strong>and</strong> prompt the elaboration of specific<br />
algorithms for quantitative SPT (121). However, bl<strong>in</strong>k<strong>in</strong>g can be turned to an advantage <strong>in</strong> as<br />
much as it allows the identification of s<strong>in</strong>gle NCs <strong>and</strong> the detection of s<strong>in</strong>gle-pair FRET<br />
(spFRET, Figure 23(a)), as shown on panel (b) between a QD565STV NC donor <strong>and</strong> an<br />
AlexaBiot<strong>in</strong> organic fluorophore acceptor (Yakovlev, Luccard<strong>in</strong>i, <strong>and</strong> others’ personal<br />
observations). Bl<strong>in</strong>k<strong>in</strong>g of neighbor<strong>in</strong>g NCs can also be used for ultrahigh resolution studies<br />
beyond the classical resolution limit (122) <strong>and</strong> allows the emission of s<strong>in</strong>gle particle to be<br />
isolated from the crowd. NC detection is not restricted on detect<strong>in</strong>g PL. Their electron density<br />
<strong>and</strong> crystal structure provide sufficient <strong>contrast</strong> <strong>in</strong> transmission electron microscopy (EM)<br />
(112,123). Their use <strong>in</strong> EM is an additional advantage over label<strong>in</strong>g samples with<br />
conventional dyes that need to be photoconverted or require the addition of electron-dense<br />
material to generate <strong>contrast</strong> on EM images. However, the <strong>contrast</strong> obta<strong>in</strong>ed with NCs is<br />
lower than when us<strong>in</strong>g Au nanoparticles for immunolabel<strong>in</strong>g.<br />
Nanocrystal surface chemistry<br />
Successful cell biological applications of semiconductor NCs had to await the development of<br />
reliable protocols for synthesiz<strong>in</strong>g water-soluble <strong>and</strong> colloidally stable nanoparticles. To be of<br />
use <strong>in</strong> cellular imag<strong>in</strong>g, NCs need to be first rendered water-soluble <strong>and</strong> non-aggregat<strong>in</strong>g <strong>and</strong><br />
then functionalized to be specifically targeted to a molecule of <strong>in</strong>terest. They should also be<br />
stable <strong>and</strong> ideally have a long shelf life as well as to allow for experiment series under<br />
70
Chapter 4<br />
reproducible conditions. The time needed to develop potent solubilization <strong>and</strong><br />
functionalization strategies justifies the time elapsed after the first proposition of NCs as<br />
biological probes (106,124) <strong>and</strong> their wider use by the biological community which is only<br />
beg<strong>in</strong>n<strong>in</strong>g. NCs are synthesised <strong>in</strong> organic solvents <strong>and</strong> are subsequently coated with a<br />
hydrophobic shell of surfactant trioctyl phosp<strong>in</strong>e oxide (TOPO) to ma<strong>in</strong>ta<strong>in</strong> the particles<br />
monodispersed <strong>in</strong> organic solvents. Their water solubility is obta<strong>in</strong>ed by capp<strong>in</strong>g the NC<br />
surface with an additional hydrophilic coat<strong>in</strong>g layer. Among the many solubilization<br />
strategies that have been designed the most efficient, <strong>in</strong> terms of colloidal stability <strong>and</strong><br />
biocompatibility, is at present the amphiphilic polymer coat<strong>in</strong>g (125-127). Particle<br />
aggregation can further be reduced through the addition of a polyethylene glycol (PEG) layer,<br />
which also m<strong>in</strong>imizes nonspecific <strong>in</strong>teractions (123,127,128). Taken together, the<br />
improvements <strong>in</strong> underst<strong>and</strong><strong>in</strong>g NC surface chemistry <strong>and</strong> hence controll<strong>in</strong>g their colloidal<br />
properties have prompted an ever <strong>in</strong>creas<strong>in</strong>g number of studies us<strong>in</strong>g colloidal semiconductor<br />
NCs as PL markers <strong>in</strong> cell biological applications (see, e.g., (129,130) for review).<br />
The easier accessibility of extracellular epitopes of cellular membrane antigens readily<br />
motivates the <strong>in</strong>creas<strong>in</strong>g number of studies us<strong>in</strong>g NCs <strong>in</strong>stead of organic-fluorophore<br />
conjugated antibodies as extracellular markers <strong>in</strong> immunofluorescence (112,131,132).<br />
(a)<br />
(b)<br />
Figure 22 Time-gated acquisition of nanocrystal photolum<strong>in</strong>escence suppresses short-lived autofluorescence,<br />
(109). (a) Schematic representation of the relative tim<strong>in</strong>g of the laser pulse (<strong>in</strong>stantaneous, blue), along with the<br />
normalized decays of autofluorescence (AF, purple, t = 1 nanosecond), NC photolum<strong>in</strong>escence (NC, green, t =<br />
10 nanoseconds), <strong>and</strong> their sum (red), respectively. (b) Background rejection versus gate time. SNR is the ratio<br />
of the <strong>in</strong>tegrated signal of the NC divided by the <strong>in</strong>tegrated signal of the AF. The numbers/colors represent 5<br />
different ratios INC/IAF. To obta<strong>in</strong> the same SNR at a higher level of AF, a larger time gate is required. The<br />
shift <strong>in</strong> time is relative to the center of a sigmoidal function 1/(1 + exp (-T/t)) that describes detector gat<strong>in</strong>g. We<br />
assumed a detector on response (10–90%), T = 4.4 nanoseconds. Thus, at t = 0 detection efficiency is 50%.<br />
71
Intracellular uses of colloidal semiconductor nanocrystals<br />
Different l<strong>in</strong>kers have been used for functionaliz<strong>in</strong>g NCs, <strong>in</strong>clud<strong>in</strong>g streptavid<strong>in</strong> (133-135),<br />
receptor lig<strong>and</strong>s (136,137), peptides (138), as well as secondary (139) or primary antibodies<br />
(140). The popularity of NCs for study<strong>in</strong>g molecular migration comes, at least <strong>in</strong> part, from<br />
the fact that NCs often offer a viable compromise between the desired stability <strong>and</strong> the<br />
tolerable degree of <strong>in</strong>vasiveness. On the one h<strong>and</strong>, they are clearly more stable than small<br />
organic fluorophores that <strong>in</strong> turn exert less <strong>in</strong>fluence on the bound lig<strong>and</strong>. On the other h<strong>and</strong>,<br />
over tags offer<strong>in</strong>g a comparable long-term stability, such as the much bigger (<strong>and</strong> hence<br />
<strong>in</strong>vasive) fluorescent nanobeads or light-scatter<strong>in</strong>g gold particles (141), through their smaller<br />
size, so that NCs are less prone to reduce lig<strong>and</strong> mobility <strong>and</strong> access to the b<strong>in</strong>d<strong>in</strong>g site.<br />
Despite their obvious advantage for extracellular labell<strong>in</strong>g, four ma<strong>in</strong> difficulties are<br />
encountered when us<strong>in</strong>g NCs for <strong>in</strong>tracellular labell<strong>in</strong>g of cytoplasmic constituents <strong>in</strong> live<br />
cells. First, to deliver NCs <strong>in</strong>to the cell, the plasma membrane has to be made transiently<br />
permeable for these nanoscale (but <strong>in</strong> a cellular context yet relatively large) objects, while<br />
ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the cell <strong>in</strong>tact <strong>and</strong> viable (142). Second, as NCs are also unspecifically taken up,<br />
probably by a process similar to p<strong>in</strong>ocytosis, any specific uptake has to dom<strong>in</strong>ate over these<br />
Figure 23 Use of bl<strong>in</strong>k<strong>in</strong>g to detect s<strong>in</strong>gle-particle Förster resonance energy transfer (spFRET). (a) Schematic<br />
representation of the donor/acceptor geometry consist<strong>in</strong>g of a central QD565-ITK/STV donor (green) <strong>and</strong><br />
biot<strong>in</strong>ylated Alexa594 acceptor (red). NCs were immobilized on glass slides us<strong>in</strong>g a biot<strong>in</strong>-antibody l<strong>in</strong>ker. (b)<br />
Time-resolved traces of PL <strong>in</strong>tensity simultaneously observed <strong>in</strong> the donor (D565/20 nm) <strong>and</strong> FRET channel<br />
(D655/40 nm) upon donor 440-nm excitation. The green-emitt<strong>in</strong>g NC donor transfers its energy to multiple<br />
orange-red fluoresc<strong>in</strong>g acceptors. Donor bleed through <strong>and</strong> acceptor direct excitation are negligible, <strong>and</strong><br />
contribute less than 0.5% each to the total signal, respectively. Note the concomitant bl<strong>in</strong>k<strong>in</strong>g <strong>in</strong> both channels,<br />
<strong>in</strong>dicat<strong>in</strong>g no energy transfer when the quantum dot donor is <strong>in</strong> an OFF state, a hallmark of spFRET (143). cps =<br />
counts per second.<br />
72
Chapter 4<br />
non-specific uptake mechanisms to ensure a specific label<strong>in</strong>g. P<strong>in</strong>ocytosis occurs <strong>in</strong> all types<br />
of cells, lead<strong>in</strong>g to p<strong>in</strong>osomes which can be bigger than 1 µm (macro-p<strong>in</strong>ocytosis). Because<br />
their size, macrop<strong>in</strong>osomes provide an efficient route for nonselective endocytosis of solute<br />
macromolecules, <strong>and</strong> hence NCs <strong>in</strong> solution. Third, once the NCs have penetrated the cell,<br />
they must stay mono-dispersed <strong>and</strong> reach their molecular target through diffusion or transport.<br />
However, nanometric hard particles are frequently recognized as exogenous objects <strong>and</strong> are<br />
engulfed <strong>in</strong> endosomal <strong>and</strong>/or lysosomal compartments. F<strong>in</strong>ally, even <strong>in</strong> the case of a<br />
successful cytoplasmic load<strong>in</strong>g, the ma<strong>in</strong> obstacle rema<strong>in</strong>s the difficulty <strong>in</strong> address<strong>in</strong>g NCs to<br />
their specific target sites <strong>and</strong> <strong>in</strong> remov<strong>in</strong>g the unbound NC fraction from the cytoplasm.<br />
Cross<strong>in</strong>g the plasma membrane<br />
Whole-cell labell<strong>in</strong>g has been demonstrated with biocompatible, but non-functionalized (bare)<br />
NCs. The addition of NCs to the extracellular medium leads to their spontaneous uptake<br />
(129,144). Not only specialized macrophages <strong>and</strong> fibroblasts but also many cells <strong>in</strong>ternalize<br />
both extracellular particles <strong>and</strong> fluid via phagocytosis <strong>and</strong> p<strong>in</strong>ocytosis, respectively. Virtually<br />
all cells are able to take up NCs via endocytic mechanisms. This uptake leads to endosomes<br />
that are much bigger than the NCs itself (macropynosomes >1 µm, clathr<strong>in</strong> coated pits ~120<br />
nm, caveolae ~60 nm, <strong>and</strong> clathr<strong>in</strong>- <strong>and</strong> caveol<strong>in</strong>-<strong>in</strong>dependent endocytosis ~90nm (145)).<br />
However, these tracks often lead to aggregations of NCs crowded <strong>in</strong> <strong>in</strong>tracellular<br />
compartments (recognized by the absence of bl<strong>in</strong>k<strong>in</strong>g). Thus, additional <strong>and</strong> more specific<br />
load<strong>in</strong>g techniques are required for specific NC load<strong>in</strong>g.<br />
Micro<strong>in</strong>jection is a simple tool for load<strong>in</strong>g mono-dispersed NCs <strong>in</strong>to the cytoplasm (113,137).<br />
Dubertret <strong>and</strong> coworkers <strong>in</strong>jected NCs <strong>in</strong>to Xenopus laevis oocytes <strong>and</strong> traced the cell l<strong>in</strong>eage<br />
throughout embryonic development. S<strong>in</strong>gle-cell electroporation (146) potentially is another<br />
technique for load<strong>in</strong>g charged NCs <strong>in</strong>to <strong>in</strong>dividual cells, but its efficiency critically depends<br />
on the size <strong>and</strong> charge of NCs (Luccard<strong>in</strong>i <strong>and</strong> Yakovlev unpublished observations).<br />
However, similar to patch clamp<strong>in</strong>g or micro<strong>in</strong>jection, it is a time-consum<strong>in</strong>g technique; <strong>and</strong><br />
more efficient techniques are desirable when the load<strong>in</strong>g of larger cell populations is required.<br />
Bulk electroporation of cell suspensions allows the parallel delivery of NCs <strong>in</strong>to thous<strong>and</strong>s of<br />
cells, but has been reported to go along with NC aggregation (137,147). This technique<br />
probably traps NCs on the plasma membrane where they are endocytoted dur<strong>in</strong>g the time that<br />
is required for the cells to settle on the cover glass before imag<strong>in</strong>g (Luccard<strong>in</strong>i <strong>and</strong> Yakovlev,<br />
personal observations). Thus, the osmotic lysis of p<strong>in</strong>osomes (Figure 24, upper panel)<br />
73
Intracellular uses of colloidal semiconductor nanocrystals<br />
provides a simple <strong>and</strong> convenient method to efficiently load mono-dispersed NCs <strong>in</strong>to many<br />
cells simultaneously, under identical conditions. Dur<strong>in</strong>g load<strong>in</strong>g, the cell morphology did not<br />
change <strong>and</strong> plasma membrane <strong>in</strong>tegrity <strong>and</strong> cell viability were not affected through the<br />
osmotic shock <strong>and</strong> <strong>in</strong>clusion of NCs (Figure 24, lower panel). This technique enabled, for<br />
example, the load<strong>in</strong>g of NCs to track s<strong>in</strong>gle k<strong>in</strong>es<strong>in</strong> motors <strong>in</strong> live cells (148). Chemical<br />
methods to deliver NCs to the cytoplasm <strong>in</strong>clude the use of cationic polymers (137,147,149)<br />
<strong>and</strong> cationic lipids (113,150). After liposome formation, NCs penetrate the plasma membrane,<br />
but accumulation <strong>in</strong> endosomal compartments is frequently observed (137,140,151). Also,<br />
liposome-loaded NCs have been found <strong>in</strong> late endosomes/ lysosomes (152), <strong>and</strong> <strong>in</strong> keep<strong>in</strong>g<br />
with this observation, tend to concentrate <strong>in</strong> regions close to the nucleus (113). Overcom<strong>in</strong>g<br />
NC sequestration, encapsulation of NCs <strong>in</strong> a PEG-grafted polyethylenim<strong>in</strong>e coat has been<br />
reported to permit their escape from endosomal compartments (153,154). Another possibility<br />
for NCs delivery <strong>in</strong>to the cytosol is their conjugation to specific peptide sequences (155,156),<br />
similar to what has been used for the delivery of magnetic nanoparticles (157). Although this<br />
is a particularly <strong>in</strong>terest<strong>in</strong>g <strong>and</strong> active area of research, <strong>and</strong> NC translocation to the cytoplasm<br />
(158) <strong>and</strong> specific label<strong>in</strong>g of <strong>in</strong>tracellular organelles such as mitochondria (137,159) or the<br />
nucleus (137,147) have been published, the true impact of these studies can only be evaluated<br />
with a careful study of the three-dimensional (3-D) <strong>in</strong>tracellular localization of the NCs, for<br />
example, comb<strong>in</strong><strong>in</strong>g specific immunosta<strong>in</strong><strong>in</strong>g <strong>and</strong> quantitative 3D imag<strong>in</strong>g (136,160), <strong>and</strong><br />
careful colocalization analysis (108). F<strong>in</strong>ally, the conjugation of NCs to membrane-permeable<br />
tox<strong>in</strong>s like botul<strong>in</strong>um tox<strong>in</strong> should represent an attractive strategy to deliver NC <strong>in</strong>to the<br />
cytoplasm, although further work needs to confirm these <strong>in</strong>itial observations.<br />
In summary, while many different strategies of NC load<strong>in</strong>g have been explored <strong>and</strong> some of<br />
them to produce a mono-dispersed cytoplasmic labell<strong>in</strong>g at least <strong>in</strong> the cell types studied, the<br />
absence of rigorous criteria for successful cytoplasmic load<strong>in</strong>g <strong>and</strong> the lack of appropriate<br />
controls along with the often uncritical <strong>and</strong> overoptimistic <strong>in</strong>terpretation of <strong>in</strong>tracellular<br />
fluorescent puncta make it hard to be directly extrapolated from the published literature on the<br />
own experiment. In pr<strong>in</strong>ciple, if NCs are localized <strong>in</strong> the cytoplasm rather than sequestered <strong>in</strong><br />
some <strong>in</strong>tracellular compartment, they should be evenly distributed <strong>in</strong> <strong>and</strong> r<strong>and</strong>omly diffused<br />
throughout the accessible volume; <strong>in</strong> <strong>contrast</strong>, many images rather show localized<br />
distributions <strong>and</strong> heterogeneous clusters of different sizes <strong>and</strong> brightnesses. A def<strong>in</strong>ite proof<br />
needs SPT <strong>and</strong> the analysis of s<strong>in</strong>gle molecule fluorescence. Bl<strong>in</strong>k<strong>in</strong>g <strong>and</strong> consistent diffusion<br />
coefficients will clarify if particles are mono-dispersed <strong>and</strong> trapped or they can diffuse freely.<br />
As yet, it seems safe to say that the uptake <strong>and</strong> <strong>in</strong>ternalization of nanoscale particles <strong>in</strong>to cells<br />
74
Chapter 4<br />
has not been completely understood <strong>and</strong> probably varies both from cell type to cell type. Also,<br />
it depends on the surface chemistry of the nanoparticles. Additionally, purification steps could<br />
play a crucial role; for example, <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the concentration of excess lig<strong>and</strong>s <strong>in</strong><br />
solution.<br />
Reach<strong>in</strong>g specific <strong>in</strong>tracellular targets<br />
Site-specific labell<strong>in</strong>g of <strong>in</strong>tracellular prote<strong>in</strong>s is far more difficult than extracellular target<br />
recognition, s<strong>in</strong>ce the cytoplasm constitutes a crowded molecular environment, conta<strong>in</strong><strong>in</strong>g a<br />
plethora of prote<strong>in</strong>s, nucleic acids, <strong>and</strong> other molecules. So as to achieve specificity <strong>in</strong><br />
<strong>in</strong>tracellular target<strong>in</strong>g, tagg<strong>in</strong>g strategies rely on specific target recognition (reviewed <strong>in</strong><br />
(115,161)). Another requirement for LPO imag<strong>in</strong>g is that the chemical bond l<strong>in</strong>k<strong>in</strong>g the<br />
cytoplasmic target <strong>and</strong> the label chosen for its detection is stable over the experiment time.<br />
Figure 24 Evaluation of cytoplasmic nanoparticle load<strong>in</strong>g <strong>in</strong> live cells by osmotic lysis of p<strong>in</strong>osomes. COS-7<br />
cells were <strong>in</strong>cubated <strong>in</strong> hypertonic solution (10m<strong>in</strong>utes, 37 °C, Invitrogen I-14402) for p<strong>in</strong>ocytic load<strong>in</strong>g of<br />
QD565ITK nanocrystals (NCs, Quantum dot corporation). Shift<strong>in</strong>g to hypotonic culture medium caused the<br />
osmotic lysis of the <strong>in</strong>ternalized p<strong>in</strong>osomes <strong>and</strong> release of NCs <strong>in</strong>to the cytoplasm. (a) Bright-field image at ×100<br />
magnification. Scale bar for (a) to (c): 4 µm. (b)–(c) Epifluorescence images from a time-resolved image stack of<br />
the same cell. Green circles identify <strong>in</strong>dividual NCs that <strong>in</strong>termittently changed from ON to OFF state (bl<strong>in</strong>k<strong>in</strong>g)<br />
between frame 250 (b) <strong>and</strong> 253 (c). Cell viability follow<strong>in</strong>g load<strong>in</strong>g was tested us<strong>in</strong>g the trypan blue exclusion<br />
assay at low magnification, ×10. Osmotic shock without (d) <strong>and</strong> with 1 nM QD565ITK nanocrystals <strong>in</strong> the<br />
extracellular fluid (e) did not compromise cell viability. (f) In <strong>contrast</strong>, add<strong>in</strong>g ethanol reliably killed cells as<br />
reported by the dark trypan blue label<strong>in</strong>g. Scale bar for (d) to (f): 40 µm.<br />
75
Intracellular uses of colloidal semiconductor nanocrystals<br />
It is <strong>in</strong> response to this need that the Tsien laboratory (University of California, Calif, USA)<br />
<strong>in</strong>troduced genetically encoded fluorescent prote<strong>in</strong>s <strong>in</strong> cell biology (reviewed <strong>in</strong> (162)). An<br />
alternative strategy uses self-label<strong>in</strong>g prote<strong>in</strong> tags. The <strong>in</strong>troduction of a small prote<strong>in</strong> tag or<br />
of a unique comb<strong>in</strong>ation of am<strong>in</strong>o acids on the target prote<strong>in</strong> allows their <strong>in</strong>teraction with a<br />
specific fluorophore-bear<strong>in</strong>g substrate, here an NC. Examples of self-label<strong>in</strong>g prote<strong>in</strong> tags are<br />
biarsenical compounds (163,164), SNAP tag (165), <strong>and</strong> Halo tag (166). These approaches are<br />
helpful for develop<strong>in</strong>g new NC functionalization strategies for specific <strong>in</strong>tracellular target<strong>in</strong>g.<br />
Whole animal imag<strong>in</strong>g, <strong>in</strong> vivo<br />
Compared with applications to sub cellular imag<strong>in</strong>g <strong>in</strong> cell biology, NC-based whole-animal<br />
imag<strong>in</strong>g has developed very fast (167). Due to their long-<strong>wave</strong>length emission, brightness,<br />
<strong>and</strong> long-term photostability, NCs are ideal probes for sensitive <strong>in</strong> vivo imag<strong>in</strong>g <strong>in</strong> deep<br />
tissues of small animals or imag<strong>in</strong>g superficial tissue layers of larger species (114). The<br />
possibility of synthesiz<strong>in</strong>g NCs emitt<strong>in</strong>g <strong>in</strong> the <strong>in</strong>frared <strong>wave</strong>lengths m<strong>in</strong>imizes scatter<strong>in</strong>g,<br />
optimizes depth penetration <strong>and</strong> allows discrim<strong>in</strong>ation aga<strong>in</strong>st collagen autofluorescence <strong>and</strong><br />
thus should permit ultradeep imag<strong>in</strong>g of “optically thick” tissue (38,168), provided that<br />
cytotoxicity is not an issue (see Section 7).<br />
One of the first live-animal applications of NCs was the selective label<strong>in</strong>g of tumor<br />
vasculature <strong>in</strong> mice by us<strong>in</strong>g PEGylated NCs coated with specific peptidic sequences aga<strong>in</strong>st<br />
vascular markers. In 2002 Akerman et al. (127) showed <strong>in</strong> histological sta<strong>in</strong><strong>in</strong>g that after<br />
<strong>in</strong>travenous NC <strong>in</strong>jection, functionalized NCs can be addressed to specific blood vessels. A<br />
high level of PEG substitution on top of the functionalization of the NCs reduced their uptake<br />
<strong>in</strong>to the endothelial reticulum. One year later, Larson et al. were able to image by multiphoton<br />
microscopy NCs through the sk<strong>in</strong> of live mice, <strong>in</strong> capillaries embedded 100 µm <strong>in</strong><br />
tissue (107). Ballou et al. demonstrated the importance of long-cha<strong>in</strong> PEG (5 kDa) coat<strong>in</strong>g for<br />
<strong>in</strong>creas<strong>in</strong>g the duration of NCs circulat<strong>in</strong>g <strong>in</strong> the blood flow of mice (123). They were able to<br />
detect NCs by non<strong>in</strong>vasive whole body fluorescent imag<strong>in</strong>g, up to four months after <strong>in</strong>jection.<br />
The same report also showed that NCs deposit <strong>in</strong> liver, sk<strong>in</strong>, <strong>and</strong> bone marrow <strong>in</strong> a surface<br />
coat<strong>in</strong>g dependent manner <strong>and</strong> that polymer- <strong>and</strong> PEG coated (up to 3,400 Da MW) NCs are<br />
cleared from the blood after <strong>in</strong>jection. Gao et al. developed polymer-coated NCs<br />
functionalized with a monoclonal antibody directed aga<strong>in</strong>st prostate cancer cells as a cellspecific<br />
marker (169). After NC <strong>in</strong>jection <strong>in</strong> mice, transplanted with human cancer prostate<br />
cells, they succeeded <strong>in</strong> specifically detect<strong>in</strong>g <strong>and</strong> imag<strong>in</strong>g the tumor site. However, as their<br />
76
Chapter 4<br />
NCs emitted <strong>in</strong> the visible spectrum, the authors used spectral unmix<strong>in</strong>g algorithms to detect<br />
the NC signal <strong>in</strong> the presence of autofluorescence. Along these l<strong>in</strong>es, Kim et al. (114)<br />
<strong>in</strong>tradermally <strong>in</strong>jected near <strong>in</strong>frared- emitt<strong>in</strong>g NCs <strong>in</strong> mice <strong>and</strong> pigs <strong>and</strong> imaged sent<strong>in</strong>el<br />
lymph nodes (SNL) one cm deep <strong>in</strong> tissue. This work enables for the first time SNL mapp<strong>in</strong>g<br />
<strong>and</strong> cancer surgery under image guidance. Metastatic tumor cell extravasations were<br />
monitored <strong>in</strong> mice by <strong>in</strong>travenous <strong>in</strong>jection of cells labeled with NC, which were exam<strong>in</strong>ed by<br />
fluorescence emission spectroscopy (149). More recently, Stroh et al. comb<strong>in</strong>ed NCs <strong>and</strong><br />
multi-photon <strong>in</strong>travital microscopy to dist<strong>in</strong>guish <strong>in</strong> mice tumor vessels from perivascular<br />
cells <strong>and</strong> extracellular matrix (150). With this approach, they also <strong>in</strong>vestigated the ability of<br />
NC-loaded silica beads (100–500nm diameter) to access the tumor <strong>and</strong> monitored the<br />
traffick<strong>in</strong>g of the precursor cells, a promis<strong>in</strong>g technique for cancer prevention <strong>and</strong> treatment.<br />
So et al. designed recently “self-illum<strong>in</strong>at<strong>in</strong>g” NC conjugates permitt<strong>in</strong>g <strong>in</strong> vivo imag<strong>in</strong>g<br />
without an external light source; <strong>in</strong>stead, luciferase on the NC surface transfers its excitation<br />
to the NC core <strong>in</strong> a biolum<strong>in</strong>escence resonance energy transfer (BRET) assay (170).<br />
Intramuscular or subcutaneous <strong>in</strong>jection <strong>in</strong> mice of 5 pmol of polymer-coated NCs conjugated<br />
to the Renilla reniformis luciferase was enough to image a BRET emanat<strong>in</strong>g from 3-mm<br />
depth tissue, after coelenteraz<strong>in</strong>e <strong>in</strong>jection for activation. We note that this study is one of the<br />
few applications that used NCs as acceptors rather than donors.<br />
Cytotoxicity<br />
As NCs are <strong>in</strong>creas<strong>in</strong>gly be<strong>in</strong>g used as biological photolum<strong>in</strong>escent probes, <strong>in</strong> both acute cell<br />
assays <strong>and</strong> chronic, <strong>in</strong> the entire animal, <strong>in</strong> vivo, it is important to evaluate if they represent a<br />
specific risk of toxicity for the organism under study.<br />
Although probably not classically termed cytotoxicity <strong>in</strong> a strict sense, one obvious problem<br />
result<strong>in</strong>g from the nanoscopic size of nanoparticles is that NCs can directly affect the<br />
biological system under study by impair<strong>in</strong>g the mobility, <strong>in</strong>teraction, b<strong>in</strong>d<strong>in</strong>g, or other<br />
biological action of the lig<strong>and</strong> molecule to which they are attached. Hence, any study us<strong>in</strong>g<br />
NC-conjugated biomolecules must exclude the <strong>in</strong>hibition of the enzyme, receptor, motor, or<br />
other by the NC.<br />
Concerns aga<strong>in</strong>st the use of semiconductor NCs for cell biological applications go well<br />
beyond arguments of steric h<strong>in</strong>drance. It is well known that Cd 2+ can be released from the<br />
CdSe core after oxidative attack (corrosion) (171). Bare CdSe NCs are particularly harmful <strong>in</strong><br />
this regard (137,172), limit<strong>in</strong>g their utility for direct-<strong>in</strong>jection strategies. Additional shells<br />
77
Intracellular uses of colloidal semiconductor nanocrystals<br />
(ZnS) <strong>and</strong> capp<strong>in</strong>g (silanization) can reduce Cd 2+ leakage, <strong>and</strong> further purification steps can<br />
remove already released Cd 2+ (172-174). In our h<strong>and</strong>s, a supplementary purification step prior<br />
to load<strong>in</strong>g NC reduces the toxic action of NCs (175), as measured by a resazur<strong>in</strong> or cell<br />
adhesion assay (Figure 25). Nevertheless, it is important to bear <strong>in</strong> m<strong>in</strong>d that despite sporadic<br />
claims of nanoparticles be<strong>in</strong>g <strong>in</strong>discrim<strong>in</strong>ately harmless (159), there is a general consensus<br />
that NC are toxic <strong>and</strong> that their toxicity depends on their concentration, precise chemical<br />
composition, the particle size, colloidal stability, as well as solubilization <strong>and</strong><br />
functionalization groups. Also, CdSe particles are generally more toxic <strong>in</strong>side the cell than<br />
extracellularly, <strong>in</strong> l<strong>in</strong>e with the known action of Cd 2+ by <strong>in</strong>hibit<strong>in</strong>g prote<strong>in</strong> synthesis,<br />
carbohydrate metabolism <strong>and</strong>—with time— by its accumulation <strong>in</strong> kidney <strong>and</strong> liver (176). At<br />
the same time, the undisputable cytotoxic action of Cd nanoparticles has not precluded acute<br />
sta<strong>in</strong><strong>in</strong>g experiments of cells, because the concentration of NCs can be always kept low<br />
enough to prevent immediate cytotoxic damage with<strong>in</strong> the experimental time w<strong>in</strong>dow, but<br />
still high enough for enough fluorescence (107,123,140,147,149,152). However, because of<br />
the lig<strong>and</strong> desorption over time, a simple lig<strong>and</strong> exchange functionalization is not effective to<br />
durably prevent <strong>in</strong>tracellular NC degradation. S<strong>in</strong>ce as much as NCs are <strong>in</strong>tr<strong>in</strong>sically<br />
colloidally unstable <strong>and</strong> cytotoxic for cells (177), the specific k<strong>in</strong>d of coat<strong>in</strong>g is essential for<br />
at least retard<strong>in</strong>g the cytotoxic effect (130,137,174). PEG coat<strong>in</strong>g can reduce the unspecific<br />
uptake ofNCs, it reduces their toxic effect for extracellular application at the same <strong>in</strong>itial<br />
concentration (130,172).<br />
For biomedical applications as well as chronic animal experiments, the major healthcare<br />
concern of NC labell<strong>in</strong>g is related to the leakage of Cd 2+ <strong>in</strong>to the organism, even at low dose.<br />
Extracellular application of CdSe particles already presents a cytotoxic risk because Cd 2+ does<br />
not only block Ca 2+ ion channels (like Co 2+ as well, which is released from magnetic NCs) but<br />
also it permeates through the channel <strong>and</strong> enters the cytoplasm. We note that the absence of a<br />
visible effect, often based on the detection of cell morphology changes <strong>and</strong> cell viability<br />
assays does not exclude a cumulative poison<strong>in</strong>g of the organism which first impairs the<br />
metabolism of the cells, without be<strong>in</strong>g immediately noxious. Interest<strong>in</strong>gly, a similar debate<br />
has long haunted the evaluation of nonl<strong>in</strong>ear photodamage caused by two-photon fluorescence<br />
excitation, where the <strong>in</strong>troduction of rigorous physiologically relevant criteria based on<br />
microscopic observables like the k<strong>in</strong>etics of Ca 2+ transients (178,179) has ended the futile<br />
discussion.<br />
In conclusion, more work is needed to critically evaluate the cytotoxicity of NCs, both upon<br />
short- <strong>and</strong> long-term exposure. To better underst<strong>and</strong> the deleterious action of different NCs on<br />
78
Chapter 4<br />
the organism under study, st<strong>and</strong>ardized samples, experimental conditions, cells, <strong>and</strong> assays<br />
would be a great leap forward <strong>and</strong> pave the ground for biomedical applications that would<br />
additionally benefit from a tight collaboration with toxicologists.<br />
Figure 25 Experimental evaluation of cytotoxicity of polymercoated CdSe nanoparticles. Toxicity to NIH-3T3<br />
fibroblasts of a NC-conta<strong>in</strong><strong>in</strong>g solution was estimated after 48-hour application. Dose-response curve for cell<br />
viability was measured with a Resazur<strong>in</strong> assay (175). Reazur<strong>in</strong> is a non-fluorescent dye that is metabolized <strong>in</strong><br />
functional mitochondria <strong>and</strong> converted <strong>in</strong>to resoruf<strong>in</strong>, which fluoresces red. Black <strong>and</strong> grey curves show two<br />
experiments (n = 8 measurements each). Normalized survival R(c) after application of a Cd 2+ , concentration<br />
c(Cd) was estimated from the change <strong>in</strong> absorbance of the converted dye measured at 600 nm. Changes <strong>in</strong> R<br />
became significant at c(Cd) around 3–5 µM, whereby c(Cd) refers to the concentration of Cd 2+ on the surface of<br />
the CdSe nanoparticles, which accounts for the different toxicity of different-size NCs. This concentration of<br />
Cd 2+ corresponds to a concentration of CdSe nanoparticles of 50-70 nm. Similar data was obta<strong>in</strong>ed with a cell<br />
adhesion assay (172) (not shown). In <strong>contrast</strong> for free cobalt ions (Co 2+ ), cytotoxic effects became significant at<br />
around 50 µM (data not shown).<br />
79
Intracellular uses of colloidal semiconductor nanocrystals<br />
Conclusions<br />
In this review, we focus on nanocrystal applications <strong>in</strong> vivo, both <strong>in</strong> cell biology <strong>and</strong> medical<br />
diagnostics, <strong>and</strong> on the potential toxicity of NCs for biological imag<strong>in</strong>g. The advances <strong>in</strong><br />
underst<strong>and</strong><strong>in</strong>g NC colloidal properties together with the ability of develop<strong>in</strong>g stable surface<br />
chemistries has brought about a large choice of functionalization strategies which now offer to<br />
biologists a versatile tool kit for many applications that rely on fluorescence <strong>and</strong> electron<br />
microscopy. The ma<strong>in</strong> advantages of NCs over conventional organic fluorophores are the<br />
possibility to detect easily s<strong>in</strong>gle molecules, mostly derived from their superior brightness <strong>and</strong><br />
the long-term photostability; the spectral tunability <strong>and</strong> narrow-b<strong>and</strong> emission; <strong>and</strong>, go<strong>in</strong>g<br />
along with these, the ease of NC use <strong>in</strong> multicolor fluorescence. However, nanoparticles are<br />
not a cure-all. Particularly Cd-based NCs are potentially cytotoxic, <strong>and</strong> the modulation of<br />
their optical properties (e.g., their <strong>in</strong>tr<strong>in</strong>sic fluorescence <strong>in</strong>termittency) through their local<br />
chemical environment (see, e.g., (180)) needs to be considered <strong>in</strong> each application.<br />
Acknowledments<br />
Work <strong>in</strong> laboratories related to this article was partially funded by the French M<strong>in</strong>istry of<br />
Research <strong>and</strong> Technology (Action Concert´ee Incitative (ACI) Nanosciences), by the GIP-<br />
ANR Nanoscience Program (PRA-PNANO-051 “NanoFRET”), <strong>and</strong> the European Union<br />
(NanoInteract toW. J. Parak). C. Luccard<strong>in</strong>i <strong>in</strong>itially recipient of a postdoctoral research<br />
fellowship f<strong>in</strong>anced by the European Union. (Long- Period Observation of S<strong>in</strong>gle<br />
Biomolecules by Novel Non- Invasive Fluorescence Lifetime Imag<strong>in</strong>g Nanoscopy (FLIN),<br />
STRP NMP4-CT-2004-013880 to M. Oheim) is now a Fondation pour la Recherche Médicale<br />
(FRM) fellow <strong>and</strong> A. Yakovlev is a postdoctoral fellow of the Centre National de la<br />
Recherche (CNRS to A. Feltz). S. Gaillard acknowledges support from the GIP-ANR. Marcel<br />
van ‘t Hoff’s work is f<strong>in</strong>anced by a Marie-Curie Research-tra<strong>in</strong><strong>in</strong>g Grant (From FLIM to<br />
FLIN, FP6-2005-019481 to M. Oheim). C. Luccard<strong>in</strong>i, A. Yakovlev, S. Gaillard, J.-M.<br />
Mallet, W. J. Parak, A. Feltz, <strong>and</strong> M. Oheim are members of the “NanoFRET” consortium,<br />
supported by the Groupement d’Intérêt Publique- Agence Nationale de la Recherche,<br />
Programme Nanosciences et Nanotechnologies (GIP-ANR PNANO).<br />
80
Bibliography<br />
Bibliography<br />
1. Chalfie, M. <strong>and</strong> Prasher, D. (2000) US Patent 6,146,826.<br />
2. Kirley, T.L. (1989) Reduction <strong>and</strong> fluorescent label<strong>in</strong>g of cyst (e) <strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g<br />
prote<strong>in</strong>s for subsequent structural analyses. Anal. Biochem., 180, 231.<br />
3. Baschong, W., Suetterl<strong>in</strong>, R. <strong>and</strong> Laeng, R.H. (2001) Control of<br />
autofluorescence of archival formaldehyde-fixed, paraff<strong>in</strong>-embedded tissue <strong>in</strong><br />
confocal laser scann<strong>in</strong>g microscopy (CLSM). J. Histochem. Cytochem., 49,<br />
1565.<br />
4. Stosiek, C., Garaschuk, O., Holthoff, K. <strong>and</strong> Konnerth, A. (2003) In vivo twophoton<br />
calcium imag<strong>in</strong>g of neuronal networks. Proc. Natl. Acad. Sci. U. S. A.,<br />
100, 7319.<br />
5. Hell, S. (2009) Super-resolution microscopy: break<strong>in</strong>g the limits. Nat. Methods,<br />
6, 15.<br />
6. Ohkuma, S. <strong>and</strong> Poole, B. (1978) Fluorescence probe measurement of the<br />
<strong>in</strong>tralysosomal pH <strong>in</strong> liv<strong>in</strong>g cells <strong>and</strong> the perturbation of pH by various agents.<br />
Proc. Natl. Acad. Sci. U. S. A., 75, 3327.<br />
7. Gaillard, S., Yakovlev, A., Luccard<strong>in</strong>i, C., Oheim, M., Feltz, A. <strong>and</strong> Mallet, J.M.<br />
(2007) Synthesis <strong>and</strong> Characterization of a New Red-Emitt<strong>in</strong>g Ca2+ Indicator,<br />
Calcium Ruby. Org. Lett., 9, 2629.<br />
8. van 't Hoff, M., Reuter, M., Dryden, D.T.F. <strong>and</strong> Oheim, M. (2009) Screen<strong>in</strong>g by<br />
imag<strong>in</strong>g: scal<strong>in</strong>g up s<strong>in</strong>gle-DNA-molecule analysis with a novel parabolic VA-<br />
TIRF reflector <strong>and</strong> noise-reduction techniques. Phys. Chem. Chem. Phys.<br />
9. Gubernator, N.G., Zhang, H., Staal, R.G.W., Mosharov, E.V., Pereira, D.B.,<br />
Yue, M., Balsanek, V., Vadola, P.A., Mukherjee, B. <strong>and</strong> Edwards, R.H. (2009)<br />
Fluorescent False Neurotransmitters Visualize Dopam<strong>in</strong>e Release from<br />
Individual Presynaptic Term<strong>in</strong>als. Science, 324, 1441.<br />
10. van 't Hoff, M., de Sars, V. <strong>and</strong> Oheim, M. (2008) A programmable light eng<strong>in</strong>e<br />
for quantitative s<strong>in</strong>gle molecule TIRF <strong>and</strong> HILO imag<strong>in</strong>g. OExpr, 16, 18495.<br />
11. Li, D., Xiong, J., Qu, A. <strong>and</strong> Xu, T. (2004) Three-dimensional track<strong>in</strong>g of s<strong>in</strong>gle<br />
secretory granules <strong>in</strong> live PC12 cells. Biophys. J., 87, 1991.<br />
12. Mallet, J.M., Parak, W.J., Feltz, A. <strong>and</strong> Oheim, M. (2007) Gett<strong>in</strong>g Across the<br />
Plasma Membrane <strong>and</strong> Beyond: Intracellular Uses of Colloidal Semiconductor<br />
Nanocrystals. JBB, 2007, 1.<br />
13. Kim, S., Fisher, B., Eisler, H.J. <strong>and</strong> Bawendi, M. (2003) Type-II quantum dots:<br />
CdTe/CdSe (core/shell) <strong>and</strong> CdSe/ZnTe (core/shell) heterostructures. J. Am.<br />
Chem. Soc., 125, 11466.<br />
14. S<strong>in</strong>ger, V.L. <strong>and</strong> Johnson, I. Fluorophore Characteristics: Mak<strong>in</strong>g Intelligent<br />
Choices <strong>in</strong> Application-Specific Dye Selection. Promega Corporation,<br />
Madison, WI.<br />
15. Michalet, X., P<strong>in</strong>aud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J.,<br />
Sundaresan, G., Wu, A.M., Gambhir, S.S. <strong>and</strong> Weiss, S. (2005) Quantum dots<br />
for live cells, <strong>in</strong> vivo imag<strong>in</strong>g, <strong>and</strong> diagnostics. Science, 307, 538.<br />
16. Pédelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T.C. <strong>and</strong> Waldo, G.S.<br />
(2006) Eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> characterization of a superfolder green fluorescent<br />
prote<strong>in</strong>. Nat. Biotechnol., 24, 79.<br />
17. Reiss, P., Bleuse, J. <strong>and</strong> Pron, A. (2002) Highly lum<strong>in</strong>escent CdSe/ZnSe<br />
core/shell nanocrystals of low size dispersion. Nano letters, 2, 781.<br />
81
Bibliography<br />
18. Giersig, M. <strong>and</strong> Khomutov, G.B. (2008) Nanomaterials for application <strong>in</strong><br />
medic<strong>in</strong>e <strong>and</strong> biology. Spr<strong>in</strong>ger Verlag.<br />
19. Pawley, J. (2006) Po<strong>in</strong>ts, pixels, <strong>and</strong> gray levels: digitiz<strong>in</strong>g image data.<br />
H<strong>and</strong>book of biological confocal microscopy, 20.<br />
20. Axelrod, D., Burghardt, T. <strong>and</strong> Thompson, N. (1984) Total <strong>in</strong>ternal reflection<br />
fluorescence. Annu. Rev. Biophys. Bioeng., 13, 247.<br />
21. Cragg, G. <strong>and</strong> So, P. (2000) Lateral resolution <strong>enhancement</strong> with st<strong>and</strong><strong>in</strong>g<br />
<strong>evanescent</strong> <strong>wave</strong>s. OptL, 25, 46.<br />
22. Peterman, E., Sosa, H. <strong>and</strong> Moerner, W. (2004) S<strong>in</strong>gle-molecule fluorescence<br />
spectroscopy <strong>and</strong> microscopy of biomolecular motors.<br />
23. Bruchez Jr, M., Moronne, M., G<strong>in</strong>, P., Weiss, S. <strong>and</strong> Alivisatos, A. (1998)<br />
Semiconductor nanocrystals as fluorescent biological labels. Science, 281,<br />
2013.<br />
24. Inoué, S. (1995) Foundations of confocal scanned imag<strong>in</strong>g <strong>in</strong> light microscopy.<br />
H<strong>and</strong>book of biological confocal microscopy, 1.<br />
25. Abbe, E. (1873) Beiträge zur Theorie des Mikroskops und der<br />
mikroskopischen Wahrnehmung. Arch Mikrosk Anat, 9, 413.<br />
26. Hecht, E. <strong>and</strong> Zajac, A. (1974) Optics Addison-Wesley. Addison-Wesley Pub.<br />
Co.<br />
27. Hess, S., Girirajan, T. <strong>and</strong> Mason, M. (2006) Ultra-high resolution imag<strong>in</strong>g by<br />
fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258.<br />
28. Betzig, E., Patterson, G., Sougrat, R., L<strong>in</strong>dwasser, O., Olenych, S., Bonifac<strong>in</strong>o,<br />
J., Davidson, M., Lipp<strong>in</strong>cott-Schwartz, J. <strong>and</strong> Hess, H. (2006) Imag<strong>in</strong>g<br />
<strong>in</strong>tracellular fluorescent prote<strong>in</strong>s at nanometer resolution. Science, 313, 1642.<br />
29. Rust, M., Bates, M. <strong>and</strong> Zhuang, X. (2006) Sub-diffraction-limit imag<strong>in</strong>g by<br />
stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793.<br />
30. Hell, S.W. <strong>and</strong> Wichmann, J. (1994) Break<strong>in</strong>g the diffraction resolution limit by<br />
stimulated emission: stimulated-emission-depletion fluorescence microscopy.<br />
OptL, 19, 780.<br />
31. Gustafsson, M., Shao, L., Agard, D. <strong>and</strong> Sedat, J. (2004) Fluorescence<br />
microscopy without resolution limit. Biophotonics/Optical Interconnects <strong>and</strong><br />
VLSI Photonics/WBM Microcavities, 2004 Digest of the LEOS Summer Topical<br />
Meet<strong>in</strong>gs, 2.<br />
32. Chung, E., Kim, D. <strong>and</strong> So, P.T. (2006) Extended resolution wide-field optical<br />
imag<strong>in</strong>g: objective-launched st<strong>and</strong><strong>in</strong>g-<strong>wave</strong> total <strong>in</strong>ternal reflection<br />
fluorescence microscopy. OptL, 31, 945.<br />
33. Agard, D., Hiraoka, Y., Shaw, P. <strong>and</strong> Sedat, J. (1989) Fluorescence<br />
microscopy <strong>in</strong> three dimensions. Fluorescence microscopy of liv<strong>in</strong>g cells <strong>in</strong><br />
culture, 30, 353.<br />
34. Murray, J. (1998) Evaluat<strong>in</strong>g the performance of fluorescence microscopes. J.<br />
Microsc., 191, 128.<br />
35. Lakowicz, J.R. (1983) Pr<strong>in</strong>ciples of fluorescence spectroscopy. New York, NY,<br />
10013.<br />
36. Axelrod, D. (2001) Selective imag<strong>in</strong>g of surface fluorescence with very high<br />
aperture microscope objectives. JBO, 6, 6.<br />
37. Hell, S. <strong>and</strong> Stelzer, E. (1992) Properties of a 4Pi confocal fluorescence<br />
microscope. J. Opt. Soc. Am., 9, 2159.<br />
38. Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J. <strong>and</strong> Charpak, S. (2001)<br />
Two-photon microscopy <strong>in</strong> bra<strong>in</strong> tissue: parameters <strong>in</strong>fluenc<strong>in</strong>g the imag<strong>in</strong>g<br />
depth. Journal of neuroscience methods, 111, 29.<br />
82
Bibliography<br />
39. Verkade, P. (2008) Mov<strong>in</strong>g EM: the Rapid Transfer System as a new tool for<br />
correlative light <strong>and</strong> electron microscopy <strong>and</strong> high throughput for highpressure<br />
freez<strong>in</strong>g. J. Microsc., 230, 317.<br />
40. Nägerl, U., Willig, K., He<strong>in</strong>, B., Hell, S. <strong>and</strong> Bonhoeffer, T. (2008) Live-cell<br />
imag<strong>in</strong>g of dendritic sp<strong>in</strong>es by STED microscopy. Proc. Natl. Acad. Sci. U. S.<br />
A., 105, 18982.<br />
41. Newton, I. (1952) Opticks. Dover Publications.<br />
42. Fresnel, A. (1819) Memoire sur la diffraction de la lumiere. da p. 339 a p. 475:<br />
1 tav. ft; AQ 210.<br />
43. Kirchhoff, G. (1886) Sur la théorie des rayons lum<strong>in</strong>eux. Ann. Scient. de<br />
l’E.N.S., 3, 303.<br />
44. Hall, E.E. (1902) The penetration of totally reflected light <strong>in</strong>to the rarer<br />
medium. Physical Review(Series I), 15, 73.<br />
45. Bose, J.C. (1897) On the <strong>in</strong>fluence of the thickness of air-space on total<br />
reflection of electric radiation. Proceed<strong>in</strong>gs of the Royal Society of London,<br />
300.<br />
46. Mattheyses, A.L., Shaw, K. <strong>and</strong> Axelrod, D. (2006) Effective elim<strong>in</strong>ation of<br />
laser <strong>in</strong>terference fr<strong>in</strong>g<strong>in</strong>g <strong>in</strong> fluorescence microscopy by sp<strong>in</strong>n<strong>in</strong>g azimuthal<br />
<strong>in</strong>cidence angle. Microsc. Res. Tech., 69, 642.<br />
47. Fiolka, R., Belyaev, Y., Ewers, H. <strong>and</strong> Stemmer, A. (2008) Even illum<strong>in</strong>ation <strong>in</strong><br />
total <strong>in</strong>ternal reflection fluorescence microscopy us<strong>in</strong>g laser light. Microsc.<br />
Res. Tech., 71, 45.<br />
48. Gustafsson, M. (2005) Nonl<strong>in</strong>ear structured-illum<strong>in</strong>ation microscopy: Widefield<br />
fluorescence imag<strong>in</strong>g with theoretically unlimited resolution. Proc. Natl.<br />
Acad. Sci. U. S. A., 102, 13081.<br />
49. Goodman, J.W. (2005) Introduction to Fourier optics. Roberts & Co.<br />
50. Huang, Z. <strong>and</strong> Thompson, N.L. (1993) Theory for two-photon excitation <strong>in</strong><br />
pattern photobleach<strong>in</strong>g with <strong>evanescent</strong> illum<strong>in</strong>ation. Biophysical chemistry,<br />
47, 241.<br />
51. Cragg, G.E. <strong>and</strong> So, P.T.C. (2000) Lateral resolution <strong>enhancement</strong> with<br />
st<strong>and</strong><strong>in</strong>g <strong>evanescent</strong> <strong>wave</strong>s. OptL, 25, 46.<br />
52. Oheim, M. <strong>and</strong> Schapper, F. (2005) Non-l<strong>in</strong>ear <strong>evanescent</strong>-field imag<strong>in</strong>g.<br />
JPhD, 38, R185.<br />
53. Prasad, T.K., Yeykal, C.C. <strong>and</strong> Greene, E.C. (2006) Visualiz<strong>in</strong>g the assembly<br />
of human Rad51 filaments on double-str<strong>and</strong>ed DNA. Journal of molecular<br />
biology, 363, 713.<br />
54. Seidel, R., van Noort, J., van der Scheer, C., Bloom, J.G.P., Dekker, N.H.,<br />
Dutta, C.F., Blundell, A., Rob<strong>in</strong>son, T., Firman, K. <strong>and</strong> Dekker, C. (2004) Realtime<br />
observation of DNA translocation by the type I restriction modification<br />
enzyme EcoR124I. Nature structural & molecular biology, 11, 838.<br />
55. Hou, Z. (2003) Adaptive s<strong>in</strong>gular value decomposition <strong>in</strong> <strong>wave</strong>let doma<strong>in</strong> for<br />
image denois<strong>in</strong>g. Pattern Recognition, 36, 1747.<br />
56. Rye, H.S., Yue, S., Wemmer, D.E., Quesada, M.A., Haugl<strong>and</strong>, R.P., Mathies,<br />
R.A. <strong>and</strong> Glazer, A.N. (1992) Stable fluorescent complexes of double-str<strong>and</strong>ed<br />
DNA with bis-<strong>in</strong>tercalat<strong>in</strong>g asymmetric cyan<strong>in</strong>e dyes: properties <strong>and</strong><br />
applications. Nucleic acids research, 20, 2803.<br />
57. Weiss, S. (1999) Fluorescence spectroscopy of s<strong>in</strong>gle biomolecules. Science,<br />
283, 1676.<br />
58. Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. <strong>and</strong> Ha, T. (2008) Advances <strong>in</strong><br />
s<strong>in</strong>gle-molecule fluorescence methods for molecular biology.<br />
83
Bibliography<br />
59. F<strong>in</strong>kelste<strong>in</strong>, I.J. <strong>and</strong> Greene, E.C. (2008) S<strong>in</strong>gle molecule studies of<br />
homologous recomb<strong>in</strong>ation. Molecular BioSystems, 4, 1094.<br />
60. Visnapuu, M.L., Fazio, T., W<strong>in</strong>d, S. <strong>and</strong> Greene, E.C. (2008) Parallel Arrays of<br />
Geometric Nanowells for Assembl<strong>in</strong>g Curta<strong>in</strong>s of DNA with Controlled Lateral<br />
Dispersion. Langmuir, 24, 11293.<br />
61. Benn<strong>in</strong>k, M.L., Scharer, O.D., Kanaar, R., Sakata-Sogawa, K., Sch<strong>in</strong>s, J.M.,<br />
Kanger, J.S., de Grooth, B.G. <strong>and</strong> Greve, J. (1999) S<strong>in</strong>gle-molecule<br />
manipulation of double-str<strong>and</strong>ed DNA us<strong>in</strong>g optical tweezers: <strong>in</strong>teraction<br />
studies of DNA with RecA <strong>and</strong> YOYO-1. Cytometry, 36, 200.<br />
62. Bianco, P.R., Brewer, L.R., Corzett, M., Balhorn, R., Yeh, Y., Kowalczykowski,<br />
S.C. <strong>and</strong> Bask<strong>in</strong>, R.J. (2001) Processive translocation <strong>and</strong> DNA unw<strong>in</strong>d<strong>in</strong>g by<br />
<strong>in</strong>dividual RecBCD enzyme molecules. Nature, 409, 374.<br />
63. Burmeister, J.S., Truskey, G.A. <strong>and</strong> Reicher, W.M. (1994) Quantitative<br />
analysis of variable-angle total <strong>in</strong>ternal reflection fluorescence microscopy(VA-<br />
TIRFM) of cell/substrate contacts. Journal of microscopy(Pr<strong>in</strong>t), 173, 39.<br />
64. Oheim, M., Loerke, D., Preitz, B. <strong>and</strong> Stühmer, W. (1998) A simple optical<br />
configuration for depth-resolved imag<strong>in</strong>g us<strong>in</strong>g variable-angle <strong>evanescent</strong><strong>wave</strong><br />
microscopy. Optical biopsies <strong>and</strong> microscopic techniques III.<br />
65. Olveczky, B.P., Periasamy, N. <strong>and</strong> Verkman, A.S. (1997) Mapp<strong>in</strong>g fluorophore<br />
distributions <strong>in</strong> three dimensions by quantitative multiple angle-total <strong>in</strong>ternal<br />
reflection fluorescence microscopy. Biophysical journal, 73, 2836.<br />
66. Haugl<strong>and</strong>, R.P. The h<strong>and</strong>book: a guide to fluorescent probes <strong>and</strong> label<strong>in</strong>g<br />
technologies.<br />
67. Maj, J.B., Moonen, M. <strong>and</strong> Wouters, J. (2002) SVD-based optimal filter<strong>in</strong>g<br />
technique for noise reduction <strong>in</strong> hear<strong>in</strong>g aids us<strong>in</strong>g two microphones.<br />
EURASIP Journal on Applied Signal Process<strong>in</strong>g, 4, 432.<br />
68. Prasantha, H.S., Shashidhara, H.L. <strong>and</strong> Murthy, K.N.B. (2007). IEEE<br />
Computer Society Wash<strong>in</strong>gton, DC, USA, pp. 143.<br />
69. Cohen, A.E. <strong>and</strong> Moerner, W.E. (2006) Suppress<strong>in</strong>g Brownian motion of<br />
<strong>in</strong>dividual biomolecules <strong>in</strong> solution. Proceed<strong>in</strong>gs of the National Academy of<br />
Sciences, 103, 4362.<br />
70. Busscher, H.J. <strong>and</strong> van der Mei, H.C. (2006) Microbial adhesion <strong>in</strong> flow<br />
displacement systems. Cl<strong>in</strong>ical microbiology reviews, 19, 127.<br />
71. Yildiz, A., Tomishige, M., Vale, R.D. <strong>and</strong> Selv<strong>in</strong>, P.R. (2004). American<br />
Association for the Advancement of Science, Vol. 303, pp. 676.<br />
72. Bellan, L.M., Coates, G.W. <strong>and</strong> Craighead, H.G. (2006) Poly<br />
(dicyclopentadiene) submicron fibers produced by electrosp<strong>in</strong>n<strong>in</strong>g.<br />
Macromolecular rapid communications, 27.<br />
73. Hards, A., Zhou, C., Seitz, M., Brauchle, C. <strong>and</strong> Zumbusch, A. (2005)<br />
Simultaneous AFM manipulation <strong>and</strong> fluorescence imag<strong>in</strong>g of s<strong>in</strong>gle DNA<br />
str<strong>and</strong>s. ChemPhysChem, 6, 534.<br />
74. Axelrod, D. (2001) Total <strong>in</strong>ternal reflection fluorescence microscopy <strong>in</strong> cell<br />
biology. Traffic, 2, 764.<br />
75. Wazawa, T. <strong>and</strong> Ueda, M. (2005) Total <strong>in</strong>ternal reflection fluorescence<br />
microscopy <strong>in</strong> s<strong>in</strong>gle molecule nanobioscience. Advances <strong>in</strong> Biochemical<br />
Eng<strong>in</strong>eer<strong>in</strong>g Biotechnology, 95, 77.<br />
76. Xie, X.S., Choi, P.J., Li, G.W., Lee, N.K. <strong>and</strong> Lia, G. (2008) S<strong>in</strong>gle-molecule<br />
approach to molecular biology <strong>in</strong> liv<strong>in</strong>g bacterial cells.<br />
84
Bibliography<br />
77. Dittrich, P.S. <strong>and</strong> Manz, A. (2005) S<strong>in</strong>gle-molecule fluorescence detection <strong>in</strong><br />
microfluidic channels—the Holy Grail <strong>in</strong> TAS? Analytical <strong>and</strong> bioanalytical<br />
chemistry, 382, 1771.<br />
78. Y<strong>in</strong>, D., Lunt, E.J., Rudenko, M.I., Deamer, D.W., Hawk<strong>in</strong>s, A.R. <strong>and</strong> Schmidt,<br />
H. (2007) Planar optofluidic chip for s<strong>in</strong>gle particle detection, manipulation,<br />
<strong>and</strong> analysis. Lab on a Chip, 7, 1171.<br />
79. Hunt, H.C. <strong>and</strong> Wilk<strong>in</strong>son, J.S. (2008) Optofluidic <strong>in</strong>tegration for microanalysis.<br />
Microfluidics <strong>and</strong> Nanofluidics, 4, 53.<br />
80. Craighead, H. (2006) Future lab-on-a-chip technologies for <strong>in</strong>terrogat<strong>in</strong>g<br />
<strong>in</strong>dividual molecules. Nature, 442, 387.<br />
81. Liu, R.H., Yang, J., Lenigk, R., Bonanno, J. <strong>and</strong> Grodz<strong>in</strong>ski, P. (2004) Selfconta<strong>in</strong>ed,<br />
fully <strong>in</strong>tegrated biochip for sample preparation, polymerase cha<strong>in</strong><br />
reaction amplification, <strong>and</strong> DNA microarray detection. Anal. Chem, 76, 1824.<br />
82. Xiao, M., Phong, A., Ha, C., Chan, T.F., Cai, D., Leung, L., Wan, E., Kistler,<br />
A.L., DeRisi, J.L. <strong>and</strong> Selv<strong>in</strong>, P.R. (2006) Rapid DNA mapp<strong>in</strong>g by fluorescent<br />
s<strong>in</strong>gle molecule detection. Nucleic Acids Research.<br />
83. Mertz, J. (2000) Radiative absorption, fluorescence, <strong>and</strong> scatter<strong>in</strong>g of a<br />
classical dipole near a lossless <strong>in</strong>terface: a unified description. Journal of the<br />
Optical Society of America B, 17, 1906.<br />
84. Stout, A.L. <strong>and</strong> Axelrod, D. (1989) Evanescent field excitation of fluorescence<br />
by epi-illum<strong>in</strong>ation microscopy. ApOpt, 28, 5237.<br />
85. Tokunaga, M., Imamoto, N. <strong>and</strong> Sakata-Sogawa, K. (2008) Highly <strong>in</strong>cl<strong>in</strong>ed th<strong>in</strong><br />
illum<strong>in</strong>ation enables clear s<strong>in</strong>gle-molecule imag<strong>in</strong>g <strong>in</strong> cells. Nat Methods, 5,<br />
159.<br />
86. Chew, H., Wang, D.S. <strong>and</strong> Kerker, M. (1979) Elastic scatter<strong>in</strong>g of <strong>evanescent</strong><br />
electromagnetic <strong>wave</strong>s. Applied Optics, 18, 2679.<br />
87. Rohrbach, A. (2000) Observ<strong>in</strong>g secretory granules with a multiangle<br />
<strong>evanescent</strong> <strong>wave</strong> microscope. Biophys. J., 78, 2641.<br />
88. Schapper, F., Goncalves, J.T. <strong>and</strong> Oheim, M. (2003) Fluorescence imag<strong>in</strong>g<br />
with two-photon <strong>evanescent</strong> <strong>wave</strong> excitation. Eur. Biophys. J., 32, 635.<br />
89. Mattheyses, A.L. <strong>and</strong> Axelrod, D. (2006) Direct measurement of the<br />
<strong>evanescent</strong> field profile produced by objective-based total <strong>in</strong>ternal reflection<br />
fluorescence. JBO, 11, 014006.<br />
90. Lee, N.K., Kapanidis, A.N., Koh, H.R., Korlann, Y., Ho, S.O., Kim, Y.,<br />
Gassman, N., Kim, S.K. <strong>and</strong> Weiss, S. (2007) Three-color alternat<strong>in</strong>g-laser<br />
excitation of s<strong>in</strong>gle molecules: monitor<strong>in</strong>g multiple <strong>in</strong>teractions <strong>and</strong> distances.<br />
Biophysical journal, 92, 303.<br />
91. de Fornel, F. (2001) Evanescent <strong>wave</strong>s: from Newtonian optics to atomic<br />
optics. Spr<strong>in</strong>ger Verlag.<br />
92. Predko, M. <strong>and</strong> Predko, M. (2007) Programm<strong>in</strong>g <strong>and</strong> customiz<strong>in</strong>g the PIC<br />
microcontroller. McGraw-Hill/TAB Electronics.<br />
93. Microchip.<br />
94. M<strong>in</strong>GW. gcc C++ compiler for W<strong>in</strong>dows, http://www.m<strong>in</strong>gw.org/.<br />
95. Trolltech. Qt graphical library, www.trolltech.com.<br />
96. Li, D., Ropert, N., Koulakoff, A., Giaume, C. <strong>and</strong> Oheim, M. (2008) Lysosomes<br />
are the major vesicular compartment undergo<strong>in</strong>g Ca2+-regulated exocytosis<br />
from cortical astrocytes. J. Neurosci., 28, 7648.<br />
97. Humphries, J.D., Wang, P., Streuli, C., Geiger, B., Humphries, M.J. <strong>and</strong><br />
Ballestrem, C. (2007) V<strong>in</strong>cul<strong>in</strong> controls focal adhesion formation by direct<br />
<strong>in</strong>teractions with tal<strong>in</strong> <strong>and</strong> act<strong>in</strong>. Journal of Cell Biology, 179, 1043.<br />
85
Bibliography<br />
98. Schneckenburger, H. (2005) Total <strong>in</strong>ternal reflection fluorescence microscopy:<br />
technical <strong>in</strong>novations <strong>and</strong> novel applications. Current op<strong>in</strong>ion <strong>in</strong> biotechnology,<br />
16, 13.<br />
99. Ambrose, W.P., Goodw<strong>in</strong>, P.M. <strong>and</strong> Nolan, J.P. (1999) S<strong>in</strong>gle-molecule<br />
detection with total <strong>in</strong>ternal reflection excitation: compar<strong>in</strong>g signal-tobackground<br />
<strong>and</strong> total signals <strong>in</strong> different geometries. Cytometry, 36, 224.<br />
100. Conibear, P.B. <strong>and</strong> Bagshaw, C.R. (2000) A comparison of optical geometries<br />
for comb<strong>in</strong>ed flash photolysis <strong>and</strong> total <strong>in</strong>ternal reflection fluorescence<br />
microscopy. Journal of Microscopy, 200, 218.<br />
101. Ölveczky, B.P., Periasamy, N. <strong>and</strong> Verkman, A.S. (1997) Mapp<strong>in</strong>g fluorophore<br />
distributions <strong>in</strong> three dimensions by quantitative multiple angle-total <strong>in</strong>ternal<br />
reflection fluorescence microscopy. Biophys. J., 73, 2836.<br />
102. Gliko, O., Reddy, G.D., Anvari, B., Brownell, W.E. <strong>and</strong> Saggau, P. (2006)<br />
St<strong>and</strong><strong>in</strong>g <strong>wave</strong> total <strong>in</strong>ternal reflection fluorescence microscopy to measure<br />
the size of nanostructures <strong>in</strong> liv<strong>in</strong>g cells. JBO, 11, 064013.<br />
103. Beversluis, M.R., Bryant, G.W. <strong>and</strong> Stranick, S.J. (2008) Effects of<br />
<strong>in</strong>homogeneous fields <strong>in</strong> superresolv<strong>in</strong>g structured-illum<strong>in</strong>ation microscopy.<br />
Journal of the Optical Society of America A, 25, 1371.<br />
104. Alivisatos, P. (2000) Colloidal quantum dots. From scal<strong>in</strong>g laws to biological<br />
applications. Pure <strong>and</strong> applied chemistry, 72, 3.<br />
105. Kim, S., Fisher, B., Eisler, H.J. <strong>and</strong> Bawendi, M. (2003) Type-II quantum dots:<br />
CdTe/CdSe (core/shell) <strong>and</strong> CdSe/ZnTe (core/shell) heterostructures. J. Am.<br />
Chem. Soc, 125, 11466.<br />
106. Chan, W.C.W. <strong>and</strong> Nie, S. (1998) Quantum dot bioconjugates for<br />
ultrasensitive nonisotopic detection. Science, 281, 2016.<br />
107. Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise,<br />
F.W. <strong>and</strong> Webb, W.W. (2003). American Association for the Advancement of<br />
Science, Vol. 300, pp. 1434.<br />
108. Oheim, M. <strong>and</strong> Li, D. (2007) Quantitative co-localisation imag<strong>in</strong>g: concepts,<br />
measurements, <strong>and</strong> pitfalls. Imag<strong>in</strong>g Cellular <strong>and</strong> Molecular Biological<br />
Function, 115.<br />
109. Dahan, M., Laurence, T., P<strong>in</strong>aud, F., Chemla, D.S., Alivisatos, A.P., Sauer, M.<br />
<strong>and</strong> Weiss, S. (2001) Time-gated biological imag<strong>in</strong>g by use of colloidal<br />
quantum dots. Optics Letters, 26, 825.<br />
110. Chan, W.C.W., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M. <strong>and</strong> Nie, S.<br />
(2002) Lum<strong>in</strong>escent quantum dots for multiplexed biological detection <strong>and</strong><br />
imag<strong>in</strong>g. Current Op<strong>in</strong>ion <strong>in</strong> Biotechnology, 13, 40.<br />
111. Yu, W.W., Qu, L., Guo, W. <strong>and</strong> Peng, X. (1998) Experimental determ<strong>in</strong>ation of<br />
the ext<strong>in</strong>ction coefficient of CdTe, CdSe, <strong>and</strong> CdS nanocrystals. Science, 281,<br />
2013.<br />
112. Dahan, M., Levi, S., Luccard<strong>in</strong>i, C., Rosta<strong>in</strong>g, P., Riveau, B. <strong>and</strong> Triller, A.<br />
(2003). American Association for the Advancement of Science, Vol. 302, pp.<br />
442.<br />
113. Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H. <strong>and</strong><br />
Libchaber, A. (2002), Vol. 298, pp. 1759.<br />
114. Kim, S., Lim, Y.T., Soltesz, E.G., De Gr<strong>and</strong>, A.M., Lee, J., Nakayama, A.,<br />
Parker, J.A., Mihaljevic, T., Laurence, R.G. <strong>and</strong> Dor, D.M. (2004) Near-<strong>in</strong>frared<br />
fluorescent type II quantum dots for sent<strong>in</strong>el lymph node mapp<strong>in</strong>g. Nature<br />
Biotechnology, 22, 93.<br />
86
Bibliography<br />
115. Sapsford, K.E., Berti, L. <strong>and</strong> Med<strong>in</strong>tz, I.L. (2006) Materials for fluorescence<br />
resonance energy transfer analysis: beyond traditional donor-acceptor<br />
comb<strong>in</strong>ations. ChemInform, 37.<br />
116. Clapp, A.R., Med<strong>in</strong>tz, I.L., Mauro, J.M., Fisher, B.R., Bawendi, M.G. <strong>and</strong><br />
Mattoussi, H. (2004) Fluorescence resonance energy transfer between<br />
quantum dot donors <strong>and</strong> dye-labeled prote<strong>in</strong> acceptors. Journal of the<br />
American Chemical Society, 126, 301.<br />
117. Clapp, A.R., Med<strong>in</strong>tz, I.L., Uyeda, H.T., Fisher, B.R., Goldman, E.R., Bawendi,<br />
M.G. <strong>and</strong> Mattoussi, H. (2005) Quantum dot-based multiplexed fluorescence<br />
resonance energy transfer. J. Am. Chem. Soc, 127, 18212.<br />
118. Med<strong>in</strong>tz, I.L., Clapp, A.R., Brunel, F.M., Tiefenbrunn, T., Uyeda, H.T., Chang,<br />
E.L., Deschamps, J.R., Dawson, P.E. <strong>and</strong> Mattoussi, H. (2006) Proteolytic<br />
activity monitored by fluorescence resonance energy transfer through<br />
quantum-dot–peptide conjugates. Nature Materials, 5, 581.<br />
119. Med<strong>in</strong>tz, I.L., Konnert, J.H., Clapp, A.R., Stanish, I., Twigg, M.E., Mattoussi,<br />
H., Mauro, J.M. <strong>and</strong> Deschamps, J.R. (2004) A fluorescence resonance<br />
energy transfer-derived structure of a quantum dot-prote<strong>in</strong> bioconjugate<br />
nanoassembly. Proceed<strong>in</strong>gs of the National Academy of Sciences, 101, 9612.<br />
120. Nirmal, M., Dabbousi, B.O., Bawendi, M.G., Mackl<strong>in</strong>, J.J., Trautman, J.K.,<br />
Harris, T.D. <strong>and</strong> Brus, L.E. (1996) Fluorescence <strong>in</strong>termittency <strong>in</strong> s<strong>in</strong>gle<br />
cadmium selenide nanocrystals.<br />
121. Bonneau, S., Dahan, M. <strong>and</strong> Cohen, L.D. (2005) S<strong>in</strong>gle quantum dot track<strong>in</strong>g<br />
based on perceptual group<strong>in</strong>g us<strong>in</strong>g m<strong>in</strong>imal paths <strong>in</strong> a spatiotemporal<br />
volume. IEEE Transactions on Image Process<strong>in</strong>g, 14, 1384.<br />
122. Gordon, M.P., Ha, T. <strong>and</strong> Selv<strong>in</strong>, P.R. (2004) S<strong>in</strong>gle-molecule high-resolution<br />
imag<strong>in</strong>g with photobleach<strong>in</strong>g. Proceed<strong>in</strong>gs of the National Academy of<br />
Sciences, 101, 6462.<br />
123. Ballou, B., Lagerholm, B.C., Ernst, L.A., Bruchez, M.P. <strong>and</strong> Waggoner, A.S.<br />
(2004) Non<strong>in</strong>vasive imag<strong>in</strong>g of quantum dots <strong>in</strong> mice. Bioconjugate Chem, 15,<br />
79.<br />
124. Bruchez Jr, M., Moronne, M., G<strong>in</strong>, P., Weiss, S. <strong>and</strong> Alivisatos, A.P. (1998)<br />
Semiconductor nanocrystals as fluorescent biological labels. Science, 281,<br />
2013.<br />
125. Gao, X., Chung, L.W.K. <strong>and</strong> Nie, S. (2007) Quantum dots for <strong>in</strong> vivo molecular<br />
<strong>and</strong> cellular imag<strong>in</strong>g. METHODS IN MOLECULAR BIOLOGY-CLIFTON THEN<br />
TOTOWA-, 374, 135.<br />
126. Pellegr<strong>in</strong>o, T., Parak, W.J., Boudreau, R., Le Gros, M.A., Gerion, D.,<br />
Alivisatos, A.P. <strong>and</strong> Larabell, C.A. (2003) Quantum dot-based cell motility<br />
assay. Differentiation, 71, 542.<br />
127. Akerman, M.E., Chan, W.C.W., Laakkonen, P., Bhatia, S.N. <strong>and</strong> Ruoslahti, E.<br />
(2002) Nanocrystal target<strong>in</strong>g <strong>in</strong> vivo. Proceed<strong>in</strong>gs of the National Academy of<br />
Sciences, 99, 12617.<br />
128. Sperl<strong>in</strong>g, R.A., Pellegr<strong>in</strong>o, T., Li, J.K., Chang, W.H. <strong>and</strong> Parak, W.J. (2006)<br />
Electrophoretic Separation of Nanoparticles with a Discrete Number of<br />
Functional Groups. Advanced Functional Materials, 16.<br />
129. Parak, W.J., Pellegr<strong>in</strong>o, T. <strong>and</strong> Plank, C. (2005) Labell<strong>in</strong>g of cells with<br />
quantum dots. Nanotechnology, 16, R9.<br />
130. Chang, E., Thekkek, N., Yu, W.W., Colv<strong>in</strong>, V.L. <strong>and</strong> Drezek, R. (2006)<br />
Evaluation of Quantum Dot Cytotoxicity Based on Intracellular Uptake. Small,<br />
2.<br />
87
Bibliography<br />
131. Rosenthal, S.J., Toml<strong>in</strong>son, I., Adk<strong>in</strong>s, E.M., Schroeter, S., Adams, S.,<br />
Swafford, L., McBride, J., Wang, Y., DeFelice, L.J. <strong>and</strong> Blakely, R.D. (2002)<br />
Target<strong>in</strong>g cell surface receptors with lig<strong>and</strong>-conjugated nanocrystals. J. Am.<br />
Chem. Soc, 124, 4586.<br />
132. Howarth, M., Takao, K., Hayashi, Y. <strong>and</strong> T<strong>in</strong>g, A.Y. (2005) Target<strong>in</strong>g quantum<br />
dots to surface prote<strong>in</strong>s <strong>in</strong> liv<strong>in</strong>g cells with biot<strong>in</strong> ligase. Proceed<strong>in</strong>gs of the<br />
National Academy of Sciences, 102, 7583.<br />
133. Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N.,<br />
Peale, F. <strong>and</strong> Bruchez, M.P. (2002) Immunofluorescent label<strong>in</strong>g of cancer<br />
marker Her2 <strong>and</strong> other cellular targets with semiconductor quantum dots.<br />
Nature Biotechnology, 21, 41.<br />
134. Bouzigues, C., Levi, S., Triller, A. <strong>and</strong> Dahan, M. (2007) S<strong>in</strong>gle quantum dot<br />
track<strong>in</strong>g of membrane receptors. Methods <strong>in</strong> Molecular Biology, 374, 81.<br />
135. Lidke, D.S., Nagy, P., Jov<strong>in</strong>, T.M. <strong>and</strong> Arndt-Jov<strong>in</strong>, D.J. (2007) Biot<strong>in</strong>-Lig<strong>and</strong><br />
Complexes With Streptavid<strong>in</strong> Quantum Dots for In Vivo Cell-Label<strong>in</strong>g of<br />
Membrane Receptors. Methods <strong>in</strong> Molecular Biology, 374, 69.<br />
136. Lidke, D.S., Nagy, P., He<strong>in</strong>tzmann, R., Arndt-Jov<strong>in</strong>, D.J., Post, J.N., Grecco,<br />
H.E., Jares-Erijman, E.A. <strong>and</strong> Jov<strong>in</strong>, T.M. (2004) Quantum dot lig<strong>and</strong>s provide<br />
new <strong>in</strong>sights <strong>in</strong>to erbB/HER receptor–mediated signal transduction. Nature<br />
Biotechnology, 22, 198.<br />
137. Derfus, A.M., Chan, W.C.W. <strong>and</strong> Bhatia, S.N. (2004) Prob<strong>in</strong>g the cytotoxicity<br />
of semiconductor quantum dots. Nano Letters, 4, 11.<br />
138. P<strong>in</strong>aud, F., K<strong>in</strong>g, D., Moore, H.P. <strong>and</strong> Weiss, S. (2004) Bioactivation <strong>and</strong> cell<br />
target<strong>in</strong>g of semiconductor CdSe/ZnS nanocrystals with phytochelat<strong>in</strong>-related<br />
peptides. J. Am. Chem. Soc, 126, 6115.<br />
139. Ehrensperger, M.V., Hanus, C., Vannier, C., Triller, A. <strong>and</strong> Dahan, M. (2007)<br />
Multiple association states between glyc<strong>in</strong>e receptors <strong>and</strong> gephyr<strong>in</strong> identified<br />
by SPT analysis. Biophysical journal, 92, 3706.<br />
140. Jaiswal, J.K., Mattoussi, H., Mauro, J.M. <strong>and</strong> Simon, S.M. (2002) Long-term<br />
multiple color imag<strong>in</strong>g of live cells us<strong>in</strong>g quantum dot bioconjugates. Nature<br />
biotechnology, 21, 47.<br />
141. Cognet, L., Tard<strong>in</strong>, C., Boyer, D., Choquet, D., Tamarat, P. <strong>and</strong> Lounis, B.<br />
(2003) S<strong>in</strong>gle metallic nanoparticle imag<strong>in</strong>g for prote<strong>in</strong> detection <strong>in</strong> cells.<br />
Proceed<strong>in</strong>gs of the National Academy of Sciences, 100, 11350.<br />
142. Chithrani, B.D., Ghazani, A.A. <strong>and</strong> Chan, W.C.W. (2006) Determ<strong>in</strong><strong>in</strong>g the size<br />
<strong>and</strong> shape dependence of gold nanoparticle uptake <strong>in</strong>to mammalian cells.<br />
Nano Lett, 6, 662.<br />
143. Fern<strong>and</strong>ez-Arguelles, M.T., Yakovlev, A., Sperl<strong>in</strong>g, R.A., Luccard<strong>in</strong>i, C.,<br />
Gaillard, S., Medel, A.S., Mallet, J.M., Brochon, J.C., Feltz, A. <strong>and</strong> Oheim, M.<br />
(2007) Synthesis <strong>and</strong> characterization of polymer-coated quantum dots with<br />
<strong>in</strong>tegrated acceptor dyes as FRET-based nanoprobes. Nano Lett, 7, 2613.<br />
144. Jaiswal, J.K., Goldman, E.R., Mattoussi, H. <strong>and</strong> Simon, S.M. (2004) Use of<br />
quantum dots for live cell imag<strong>in</strong>g. Nature a-z <strong>in</strong>dex, 1, 73.<br />
145. Parton, R.G. <strong>and</strong> Simons, K. (2007) The multiple faces of caveolae. Nature<br />
Reviews Molecular Cell Biology, 8, 185.<br />
146. Rathenberg, J., Nevian, T. <strong>and</strong> Witzemann, V. (2003) High-efficiency<br />
transfection of <strong>in</strong>dividual neurons us<strong>in</strong>g modified electrophysiology techniques.<br />
Journal of neuroscience methods, 126, 91.<br />
88
Bibliography<br />
147. Chen, F. <strong>and</strong> Gerion, D. (2004) Fluorescent CdSe/ZnS Nanocrystal Peptide<br />
Conjugates for Long-term, Nontoxic Imag<strong>in</strong>g <strong>and</strong> Nuclear Target<strong>in</strong>g <strong>in</strong> Liv<strong>in</strong>g<br />
Cells. Nano Letters, 4, 1827.<br />
148. Courty, S., Luccard<strong>in</strong>i, C., Bellaiche, Y., Cappello, G. <strong>and</strong> Dahan, M. (2006)<br />
Track<strong>in</strong>g <strong>in</strong>dividual k<strong>in</strong>es<strong>in</strong> motors <strong>in</strong> liv<strong>in</strong>g cells us<strong>in</strong>g s<strong>in</strong>gle quantum-dot<br />
imag<strong>in</strong>g. Nano letters, 6, 1491.<br />
149. Voura, E.B., Jaiswal, J.K., Mattoussi, H. <strong>and</strong> Simon, S.M. (2004) Track<strong>in</strong>g<br />
metastatic tumor cell extravasation with quantum dot nanocrystals <strong>and</strong><br />
fluorescence emission-scann<strong>in</strong>g microscopy. Nature medic<strong>in</strong>e, 10, 993.<br />
150. Stroh, M., Zimmer, J.P., Duda, D.G., Levchenko, T.S., Cohen, K.S., Brown,<br />
E.B., Scadden, D.T., Torchil<strong>in</strong>, V.P., Bawendi, M.G. <strong>and</strong> Fukumura, D. (2005)<br />
Quantum dots spectrally dist<strong>in</strong>guish multiple species with<strong>in</strong> the tumor milieu <strong>in</strong><br />
vivo. Nature medic<strong>in</strong>e, 11, 678.<br />
151. Parak, W.J., Boudreau, R., Le Gros, M., Gerion, D., Zanchet, D., Micheel,<br />
C.M., Williams, S.C., Alivisatos, A.P. <strong>and</strong> Larabell, C. (2002) Cell motility <strong>and</strong><br />
metastatic potential studies based on quantum dot imag<strong>in</strong>g of phagok<strong>in</strong>etic<br />
tracks. Advanced Materials, 14.<br />
152. Hanaki, K., Momo, A., Oku, T., Komoto, A., Maenosono, S., Yamaguchi, Y.<br />
<strong>and</strong> Yamamoto, K. (2003) Semiconductor quantum dot/album<strong>in</strong> complex is a<br />
long-life <strong>and</strong> highly photostable endosome marker. Biochemical <strong>and</strong><br />
Biophysical Research Communications, 302, 496.<br />
153. Mattheakis, L.C., Dias, J.M., Choi, Y.J., Gong, J., Bruchez, M.P., Liu, J. <strong>and</strong><br />
Wang, E. (2004) Optical cod<strong>in</strong>g of mammalian cells us<strong>in</strong>g semiconductor<br />
quantum dots. Analytical biochemistry, 327, 200.<br />
154. Duan, H. <strong>and</strong> Nie, S. (2007) Cell-penetrat<strong>in</strong>g quantum dots based on<br />
multivalent <strong>and</strong> endosome-disrupt<strong>in</strong>g surface coat<strong>in</strong>gs. J. Am. Chem. Soc,<br />
129, 3333.<br />
155. Lagerholm, B.C. (2007) Peptide-mediated <strong>in</strong>tracellular delivery of quantum<br />
dots. Methods <strong>in</strong> Molecular Biology, 374, 105.<br />
156. Iyer, G., P<strong>in</strong>aud, F., Tsay, J., Li, J.J., Bentolila, L.A., Michalet, X. <strong>and</strong> Weiss,<br />
S. (2006) Peptide coated quantum dots for biological applications. IEEE<br />
Transactions on Nanobioscience, 5, 231.<br />
157. Lew<strong>in</strong>, M., Carlesso, N., Tung, C.H., Tang, X.W., Cory, D., Scadden, D.T. <strong>and</strong><br />
Weissleder, R. (2000) Tat peptide-derivatized magnetic nanoparticles allow <strong>in</strong><br />
vivo track<strong>in</strong>g <strong>and</strong> recovery of progenitor cells. Nature biotechnology, 18, 410.<br />
158. Delehanty, J.B., Med<strong>in</strong>tz, I.L., Pons, T., Dawson, P.E., Brunel, F.M. <strong>and</strong><br />
Mattoussi, H. (2006) Self-assembled quantum dot-peptide bioconjugates for<br />
selective <strong>in</strong>tracellular delivery. Bioconjugate chemistry, 17, 920.<br />
159. Hosh<strong>in</strong>o, A., Fujioka, K., Oku, T., Suga, M., Sasaki, Y.F., Ohta, T., Yasuhara,<br />
M., Suzuki, K. <strong>and</strong> Yamamoto, K. (2004) Physicochemical properties <strong>and</strong><br />
cellular toxicity of nanocrystal quantum dots depend on their surface<br />
modification. Nano Letters, 4, 2163.<br />
160. Funnell, W.R.J. <strong>and</strong> Mays<strong>in</strong>ger, D. (2006) Three-dimensional reconstruction of<br />
cell nuclei, <strong>in</strong>ternalized quantum dots <strong>and</strong> sites of lipid peroxidation. Journal of<br />
Nanobiotechnology, 4, 10.<br />
161. Chen, I. <strong>and</strong> T<strong>in</strong>g, A.Y. (2005) Site-specific label<strong>in</strong>g of prote<strong>in</strong>s with small<br />
molecules <strong>in</strong> live cells. Current op<strong>in</strong>ion <strong>in</strong> biotechnology, 16, 35.<br />
162. Lipp<strong>in</strong>cott-Schwartz, J. <strong>and</strong> Patterson, G.H. (2003), Vol. 300, pp. 87.<br />
163. Griff<strong>in</strong>, B.A., Adams, S.R. <strong>and</strong> Tsien, R.Y. (1998) Specific covalent label<strong>in</strong>g of<br />
recomb<strong>in</strong>ant prote<strong>in</strong> molecules <strong>in</strong>side live cells. Science, 281, 269.<br />
89
Bibliography<br />
164. Adams, S.R., Campbell, R.E., Gross, L.A., Mart<strong>in</strong>, B.R., Walkup, G.K., Yao,<br />
Y., Llopis, J. <strong>and</strong> Tsien, R.Y. (2002) New biarsenical lig<strong>and</strong>s <strong>and</strong> tetracyste<strong>in</strong>e<br />
motifs for prote<strong>in</strong> label<strong>in</strong>g <strong>in</strong> vitro <strong>and</strong> <strong>in</strong> vivo: synthesis <strong>and</strong> biological<br />
applications. J. Am. Chem. Soc, 124, 6063.<br />
165. Keppler, A., Gendreizig, S., Gronemeyer, T., Pick, H., Vogel, H. <strong>and</strong><br />
Johnsson, K. (2002) A general method for the covalent label<strong>in</strong>g of fusion<br />
prote<strong>in</strong>s with small molecules <strong>in</strong> vivo. Nature biotechnology, 21, 86.<br />
166. Zhang, Y., So, M.K., Loen<strong>in</strong>g, A.M., Yao, H., Gambhir, S.S. <strong>and</strong> Rao, J. (2006)<br />
HaloTag prote<strong>in</strong>-mediated site-specific conjugation of biolum<strong>in</strong>escent prote<strong>in</strong>s<br />
to quantum dots. Angew. Chem. Int. Ed, 45, 4936.<br />
167. Fischer, H.C., Liu, L., Pang, K.S. <strong>and</strong> Chan, W.C.W. (2006) Pharmacok<strong>in</strong>etics<br />
of Nanoscale Quantum Dots: In Vivo Distribution, Sequestration, <strong>and</strong><br />
Clearance <strong>in</strong> the Rat. Advanced Functional Materials, 16.<br />
168. Theer, P. <strong>and</strong> Denk, W. (2006) On the fundamental imag<strong>in</strong>g-depth limit <strong>in</strong> twophoton<br />
microscopy. Journal of the Optical Society of America A, 23, 3139.<br />
169. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K. <strong>and</strong> Nie, S. (2004) In vivo<br />
cancer target<strong>in</strong>g <strong>and</strong> imag<strong>in</strong>g with semiconductor quantum dots. Nature<br />
Biotechnology, 22, 969.<br />
170. So, M.K., Xu, C., Loen<strong>in</strong>g, A.M., Gambhir, S.S. <strong>and</strong> Rao, J. (2006) Selfillum<strong>in</strong>at<strong>in</strong>g<br />
quantum dot conjugates for <strong>in</strong> vivo imag<strong>in</strong>g. Nature biotechnology,<br />
24, 339.<br />
171. Zaitseva, N., Manna, L., Gerion, D. <strong>and</strong> Saw, C.K. (2005) Precipitation of<br />
Selenium from CdSe Nanocrystal Solutions. Advanced Materials, 17.<br />
172. Kirchner, C., Liedl, T., Kudera, S., Pellegr<strong>in</strong>o, T., Javier, A.M., Gaub, H.E.,<br />
Stolzle, S., Fertig, N. <strong>and</strong> Parak, W.J. (2005) Cytotoxicity of colloidal CdSe<br />
<strong>and</strong> CdSe/ZnS nanoparticles. Nano Lett, 5, 331.<br />
173. Selvan, S.T., Tan, T.T. <strong>and</strong> Y<strong>in</strong>g, J.Y. (2005) Robust, Non-Cytotoxic, Silica-<br />
Coated CdSe Quantum Dots with Efficient Photolum<strong>in</strong>escence. Advanced<br />
Materials, 17.<br />
174. Zhang, T., Stilwell, J.L., Gerion, D., D<strong>in</strong>g, L., Elboudwarej, O., Cooke, P.A.,<br />
Gray, J.W., Alivisatos, A.P. <strong>and</strong> Chen, F.F. (2006) Cellular effect of high doses<br />
of silica-coated quantum dot profiled with high throughput gene expression<br />
analysis <strong>and</strong> high content cellomics measurements. Nano Lett, 6, 800.<br />
175. O'Brien, J., Wilson, I., Orton, T. <strong>and</strong> Pognan, F. (2000) Investigation of the<br />
Alamar Blue (resazur<strong>in</strong>) fluorescent dye for the assessment of mammalian cell<br />
cytotoxicity. FEBS Journal, 267, 5421.<br />
176. Nath, R., Prasad, R., Pal<strong>in</strong>al, V.K. <strong>and</strong> Chopra, R.K. (1984) Molecular basis of<br />
cadmium toxicity. Name: Prog. Food Nut. Sci.<br />
177. Lovri, J., Bazzi, H.S., Cuie, Y., Fort<strong>in</strong>, G.R.A., W<strong>in</strong>nik, F.M. <strong>and</strong> Mays<strong>in</strong>ger, D.<br />
(2005) Differences <strong>in</strong> subcellular distribution <strong>and</strong> toxicity of green <strong>and</strong> red<br />
emitt<strong>in</strong>g CdTe quantum dots. Journal of Molecular Medic<strong>in</strong>e, 83, 377.<br />
178. Koester, H.J., Baur, D., Uhl, R. <strong>and</strong> Hell, S.W. (1999) Ca2+ fluorescence<br />
imag<strong>in</strong>g with pico-<strong>and</strong> femtosecond two-photon excitation: signal <strong>and</strong><br />
photodamage. Biophysical journal, 77, 2226.<br />
179. Hopt, A. <strong>and</strong> Neher, E. (2001) Highly nonl<strong>in</strong>ear photodamage <strong>in</strong> two-photon<br />
fluorescence microscopy. Biophysical Journal, 80, 2029.<br />
180. Hohng, S. <strong>and</strong> Ha, T. (2004) Near-complete suppression of quantum dot<br />
bl<strong>in</strong>k<strong>in</strong>g <strong>in</strong> ambient conditions. Journal of the American Chemical Society, 126,<br />
1324.<br />
90
Bibliography<br />
181. Egner, A., Andresen, V. <strong>and</strong> Hell, S.W. (2002) Comparison of the axial<br />
resolution of practical Nipkow-disk confocal fluorescence microscopy with that<br />
of multifocal multiphoton microscopy: theory <strong>and</strong> experiment. J. Microsc., 206,<br />
24.<br />
182. S.A., A. Operat<strong>in</strong>g manual AA opto-electronique AO Deflection system. .<br />
183. Matic, N. <strong>and</strong> Set, I. (2003) PIC microcontrollers.<br />
184. Hennessy, M. (2004) PIC Programm<strong>in</strong>g.<br />
185. Bass, M., Van Stryl<strong>and</strong>, E.W., Williams, D.R. <strong>and</strong> Wolfe, W.L. (1995)<br />
H<strong>and</strong>book of optics. Vol. 2, Devices, measurements, <strong>and</strong> properties. McGraw-<br />
Hill New York, USA.<br />
186. Pawley, J.B. <strong>and</strong> Masters, B.R. (2008) H<strong>and</strong>book of biological confocal<br />
microscopy. JBO, 13, 029902.<br />
187. Chang, I.C. (1994) US patent no. 5,329,397.<br />
91
92<br />
Bibliography
Summary<br />
Summary<br />
Microscopy has been the <strong>in</strong>terest of biologists <strong>and</strong> physicist for many decades. Fluorescence<br />
is <strong>in</strong> imag<strong>in</strong>g an essential tool for underst<strong>and</strong><strong>in</strong>g more about physiological processes. By<br />
label<strong>in</strong>g prote<strong>in</strong>s or structures of cells with fluorescent markers, we are able to have prote<strong>in</strong> or<br />
structure specific spotlights. When us<strong>in</strong>g appropriate filters to separate the emission light<br />
(fluorescence) from the excitation light, we are able to see the spotlights <strong>in</strong> the dark.<br />
One of those specific labels is the semiconductor nanocrystal (NC). These NC are small (2 –<br />
10 nm) beads, which have superior light properties. Although they are not soluble <strong>in</strong> water,<br />
we can make them soluble by capp<strong>in</strong>g with a hydrophilic layer <strong>and</strong> l<strong>in</strong>k them to prote<strong>in</strong>s of<br />
<strong>in</strong>terest. In this manner, they are able to cross the plasma membrane <strong>and</strong> reach specific<br />
<strong>in</strong>tracellular targets. By capp<strong>in</strong>g with additional shells, the toxic reactions can be limited. NC<br />
are about an order of magnitude brighter <strong>and</strong> about thirty times more photostable than a<br />
commonly used dyes. (15,152)<br />
When imag<strong>in</strong>g cells, it is of <strong>in</strong>terest to look at only limited areas of <strong>in</strong>terest. With total<br />
<strong>in</strong>ternal reflection fluorescence microscopy the excitation volume can be effectively reduced.<br />
Upon reflection, an <strong>evanescent</strong> <strong>wave</strong> is created which penetrates transiently <strong>in</strong>to the medium<br />
with a penetration depth around 100 nm from the surface. With TIRF the membrane can be<br />
studied with high resolution <strong>and</strong> high <strong>contrast</strong> due to background rejection. An order of<br />
magnitude <strong>in</strong>crease <strong>in</strong> axial resolution can be obta<strong>in</strong>ed by us<strong>in</strong>g TIRF <strong>in</strong>stead of confocal<br />
microscopy.(15,181)<br />
TIRF is very useful for s<strong>in</strong>gle molecule detection. We labeled DNA str<strong>and</strong>s with the dye<br />
YOYO-1 that couples <strong>in</strong>side the DNA. By attach<strong>in</strong>g the DNA molecules on one side by<br />
l<strong>in</strong>kers to the cover slip, we can stretch the DNA out upon hydrodynamic flow. The DNA<br />
str<strong>and</strong> is near the surface <strong>and</strong> the <strong>evanescent</strong> <strong>wave</strong> excites only bound molecules. As a result<br />
we see long bright str<strong>and</strong>s, which we can measure <strong>in</strong> length, as there are many molecules <strong>in</strong><br />
the field of view we can obta<strong>in</strong> statistical relevant <strong>in</strong>formation. We used here square<br />
capillaries, which reduces the complexity of the system <strong>and</strong> time for development of<br />
dedicated channels, while still hav<strong>in</strong>g large numbers of data. By us<strong>in</strong>g image-denois<strong>in</strong>g<br />
techniques, the precision was <strong>in</strong>creased sixfold.<br />
Photons that go through a medium can scatter <strong>and</strong> diffuse the light path. This effect is<br />
m<strong>in</strong>imal, but scatter<strong>in</strong>g behavior is detectable <strong>and</strong> can enlarge the field of excitation. As the<br />
direction of the scatter<strong>in</strong>g is parallel to the surface <strong>in</strong> direction of the laser reflection, the flare<br />
is relatively narrow distributed <strong>in</strong> <strong>in</strong>itial direction. In order to overcome this problem a<br />
93
Summary<br />
rotation <strong>in</strong> laser directionality is added. By rotat<strong>in</strong>g the direction of the laser on the spot of<br />
reflection, the direction of scatter<strong>in</strong>g becomes uniform <strong>and</strong> diluted over the field of view. This<br />
reduces the background signal at equal signal <strong>and</strong> thus enhances the <strong>contrast</strong>. I used acousto<br />
optic deflectors, which can deflect the laser <strong>and</strong> modulate <strong>in</strong> <strong>in</strong>tensity. With a programmable<br />
light eng<strong>in</strong>e, the control is simplified, but still permits total control over the scann<strong>in</strong>g of the<br />
laser beam. Connectivity by the computer permits rapid switch<strong>in</strong>g of beam parameters. I<br />
showed here; the rapid switch<strong>in</strong>g of objectives with different pupil aperture, chang<strong>in</strong>g onl<strong>in</strong>e<br />
the angle of <strong>in</strong>cidence <strong>and</strong> the possibility to image spTIRF at high frame rates.<br />
94
Samenvatt<strong>in</strong>g<br />
Samenvatt<strong>in</strong>g<br />
S<strong>in</strong>ds vele decennia zijn biologen en natuurkundigen geïnteresseerd <strong>in</strong> microscopie. Voor<br />
beeldvorm<strong>in</strong>g met behulp van microscopie, is fluorescentie een essentieel <strong>in</strong>strument om meer<br />
te begrijpen over fysiologische processen. Door eiwitten of structuren van cellen te merken<br />
met fluorescente labels, hebben we eiwit of structuur specifieke schijnwerpers. Bij het gebruik<br />
van adequate filters zijn we <strong>in</strong> staat emissie (fluorescentie) van de excitatie licht te scheiden,<br />
en zien we dus zaklantaarns <strong>in</strong> het donker.<br />
Één van die specifieke labels is de halfgeleider nanokristal (NC). Deze NC zijn kle<strong>in</strong> balletjes<br />
(2 tot 10 nm), die superieure eigenschappen hebben. Hoewel ze niet oplosbaar <strong>in</strong> water zijn,<br />
kunnen we ze oplosbaar maken door ze te bedekken met een hydrofiele laag en kunnen we ze<br />
aan eiwitten van <strong>in</strong>teresse b<strong>in</strong>den. Op deze manier kunnen zij over de plasmamembraan gaan<br />
en specifieke <strong>in</strong>tracellulaire doelen bereiken. Door bedekk<strong>in</strong>g met extra lagen kunnen de<br />
toxische reacties worden beperkt. NC zijn ongeveer een order van grootte lum<strong>in</strong>euzer zijn en<br />
ongeveer dertig maal meer photostabiel zijn dan algemeen gebruikte fluoroforen.(15,152)<br />
Wanneer er cellen bestudeerd worden, is het een voordeel om je te focussen op slechts een<br />
gereduceerd gebied. Met totale <strong>in</strong>terne reflectie fluorescentiemicroscopie kan het excitatievolume<br />
effectief verm<strong>in</strong>derd worden. Na reflectie ontstaat er een <strong>evanescent</strong>e golf, die niet<br />
ver doordr<strong>in</strong>gt <strong>in</strong> het medium. Deze golf heeft een penetratiediepte van ongeveer 100<br />
nanometer vanaf het oppervlakte. Met TIRF kan het membraan worden bestudeerd met hoge<br />
resolutie en hoog <strong>contrast</strong>, te wijten aan een goede achtergrondsignaalverwerp<strong>in</strong>g. Een orde<br />
van grootte toename <strong>in</strong> axiale resolutie kan worden verkregen door TIRF <strong>in</strong> plaats van<br />
confocale microscopie te gebruiken.(15,181)<br />
TIRF is erg h<strong>and</strong>ig voor enkele-molekuul detectie. Wij labelden DNA-strengen met de<br />
kleurstof YOYO-1, dat b<strong>in</strong>dt aan het DNA. Dan hechten we het DNA met l<strong>in</strong>kers aan het<br />
dekglaasje. De <strong>evanescent</strong>e golf zal alleen de gebonden molekulen aanslaan. Door middel van<br />
een hydrodynamische strom<strong>in</strong>g zal het DNA zich uitrekken tot een lange heldere streng, en<br />
kan de lengte van een enkel DNA-molekuul gemeten worden, maar doordat er vele <strong>in</strong> het<br />
gezichtsveld zijn wordt er nog steeds relevante statistische <strong>in</strong>formatie verkregen. We<br />
gebruikten hier vierkante capillairen, die de complexiteit van het systeem en de tijd voor de<br />
ontwikkel<strong>in</strong>g van specifieke detectie kanalen verm<strong>in</strong>dert, terwijl nog een groot aantal<br />
gegevens <strong>in</strong> korte tijd verkregen kan worden. Door het gebruik van<br />
beeldruisonderdrukk<strong>in</strong>gstechnieken kan de precisie worden verzesvoudigd.<br />
95
Samenvatt<strong>in</strong>g<br />
Fotonen die door een medium gaan kunnen <strong>in</strong> het lichtpad verstrooien. Dit effect is m<strong>in</strong>imaal,<br />
maar het verstrooi<strong>in</strong>gsgedrag kan worden gedetecteerd en kan het excitatievolume vergroten.<br />
Aangezien de richt<strong>in</strong>g van de verstrooi<strong>in</strong>g parallel aan het oppervlak is <strong>in</strong> de richt<strong>in</strong>g van de<br />
laser reflectie, is de distributie relatief smal <strong>in</strong> de vorm van een vlam. Om dit probleem op te<br />
lossen voegen we een draai<strong>in</strong>g toe aan de laserricht<strong>in</strong>g. Door het draaien van de richt<strong>in</strong>g van<br />
de laser op de plek van reflectie, wordt de richt<strong>in</strong>g van verstrooi<strong>in</strong>g uniforme en dus verdeeld<br />
over het gezichtsveld. Dit verm<strong>in</strong>dert de achtergrondsignaal op gelijke <strong>in</strong>tensiteit en dus<br />
verhoogt het het <strong>contrast</strong>. Ik gebruikte akoesto-optische deflectoren die laserlicht kunnen<br />
afbuigen en moduleren <strong>in</strong> <strong>in</strong>tensiteit. Met een programmeerbare lichtmach<strong>in</strong>e wordt de<br />
aanstur<strong>in</strong>g vereenvoudigd., maar laat nog steeds toe de totale controle over het scannen van de<br />
laserstraal. Connectiviteit via de computer laat het toe om snel de lichtstraal te ver<strong>and</strong>eren. Ik<br />
liet hier zien; het snel wisselen tussen verschillende objectieven met verschillende aperturen,<br />
het onl<strong>in</strong>e ver<strong>and</strong>eren van hoek van <strong>in</strong>val en de mogelijkheid om op hoge snelheid beelden te<br />
verkrijgen <strong>in</strong> spTIRF.<br />
96
List of publications<br />
List of publications<br />
Gett<strong>in</strong>g across the plasma membrane <strong>and</strong> beyond: <strong>in</strong>tracellular uses of colloidal<br />
semiconductor nanocrystals.<br />
Luccard<strong>in</strong>i C, Yakovlev A, Gaillard S, van 't Hoff M, Alberola AP, Mallet JM, Parak<br />
WJ, Feltz A, Oheim M.<br />
J Biomed Biotechnol. 2007;(7):68963.<br />
A programmable light eng<strong>in</strong>e for quantitative s<strong>in</strong>gle molecule TIRF <strong>and</strong> HILO imag<strong>in</strong>g.<br />
van 't Hoff M, de Sars V, Oheim M.<br />
Opt Express. 2008;16(22):18495-504.<br />
Screen<strong>in</strong>g by imag<strong>in</strong>g: scal<strong>in</strong>g up s<strong>in</strong>gle-DNA-molecule analysis with a novel parabolic VA-<br />
TIRF reflector <strong>and</strong> noise-reduction techniques<br />
van 't Hoff M, Reuter M, Dryden DTF, Oheim M.<br />
Phys Chem Chem Phys. 2009; (11):7713-7720<br />
97
Dankwoord<br />
Dankwoord<br />
This work was only made possible through the support <strong>and</strong> help of many people. I would like<br />
to thank everyone who worked with me.<br />
First of all, my supervisor dr. Mart<strong>in</strong> Oheim. I owe you many thanks. As mentor, you taught<br />
me the fundaments of optics <strong>and</strong> microscopy. I learned many tricks, new tools <strong>and</strong> techniques<br />
<strong>in</strong> optics, but also the tricks <strong>in</strong> French bureaucracy. Your appreciation for developments <strong>in</strong><br />
<strong>and</strong> your passion for research has <strong>in</strong>spired me a lot.<br />
Second, I thank everyone from the group U603, neurophysiology <strong>and</strong> new microscopies. It<br />
has been joyful work<strong>in</strong>g with you all. Alexis, neighbor & chocolate addict, it feels like that, I<br />
learned most about the French life, culture <strong>and</strong> language from you. Didier, one day you<br />
should <strong>in</strong>vite me for your ‘pendaison de crémaillère’. Elena, although you could have been<br />
my mother, I liked a lot your energetic enthusiasm <strong>and</strong> our shared <strong>in</strong>terests <strong>in</strong> sports, cook<strong>in</strong>g,<br />
ice creams, board games <strong>and</strong> movies. Francesca, bella, I had much pleasure hav<strong>in</strong>g the journal<br />
club, writ<strong>in</strong>g articles <strong>and</strong> discuss<strong>in</strong>g off-topic subjects with you. Kar<strong>in</strong>e, one day I will come<br />
to Poitiers. Maki, my little dragon. I have had much fun with you on holidays, go<strong>in</strong>g out for<br />
dr<strong>in</strong>ks <strong>and</strong> many after work activities. Mateo, I had much fun with you play<strong>in</strong>g<br />
‘Regenwormen’, play<strong>in</strong>g volleyball <strong>and</strong> go<strong>in</strong>g to the Tennessee. Natasha, I loved your neverend<strong>in</strong>g<br />
euphoria. Nicole, thanks for all the proofread<strong>in</strong>g <strong>and</strong> support.<br />
Matthijs, Juliaan, het was altijd weer goed om thuis <strong>in</strong> Amsterdam te komen en jullie weer te<br />
zien en spreken. Wouter, Lizet, jullie zijn het bewijs dat vriendschap op afst<strong>and</strong> geen<br />
probleem is.<br />
Johanne, me<strong>in</strong> Engel, ich b<strong>in</strong> dankbar für diene Unterstützung und de<strong>in</strong>e Liebe, die du mit mir<br />
teilst.<br />
Ans, Ton, als ouders hebben jullie me altijd ondersteunt en vrijgelaten <strong>in</strong> dit avontuur.<br />
98
Appendix<br />
Appendix<br />
Appendix for the practical construction of a spTIRF microscope<br />
Introduction<br />
The follow<strong>in</strong>g appendix gives an overview of the ma<strong>in</strong>tenance <strong>and</strong> usability of the spTIRF<br />
system. The appendix is divided <strong>in</strong>to the optics, hardware <strong>and</strong> software, with each their own<br />
subcategories.<br />
Materials & Methods<br />
Optics<br />
As can be seen <strong>in</strong> Figure 26, <strong>in</strong> the f<strong>in</strong>al setup of a microscope many optical elements are used<br />
for the construction of the spTIRF microscope.<br />
In the com<strong>in</strong>g chapter about the AOM, one can read more about the details of the AOM. Two<br />
important notes here are the follow<strong>in</strong>g. Firstly, the laser has to be <strong>in</strong>jected <strong>in</strong>to the crystal by<br />
an angle equal to half the diffraction angle respective to the plane of the crystal. Secondly, the<br />
deflected first order is not parallel to the direction of the laser beam, thus it is better to<br />
position the AODs on a tilt <strong>and</strong> pan stage <strong>and</strong> preferable also a yz-translation stage. The<br />
deflection angle depends on the composition of the crystal used, which def<strong>in</strong>es the maximal<br />
frequency <strong>and</strong> acoustic velocity <strong>and</strong> f<strong>in</strong>ally the <strong>wave</strong>length of the laser used. As the maximal<br />
scan angle can be limited for the application showed <strong>in</strong> Chapter 3, a compress<strong>in</strong>g telescope<br />
can magnify the scan angles.<br />
A scan lens <strong>and</strong> objective act aga<strong>in</strong> as compress<strong>in</strong>g telescope <strong>and</strong> thus reach<strong>in</strong>g angles of<br />
<strong>in</strong>cidence beyond the critical angle as def<strong>in</strong>ed <strong>in</strong> Eq. 9. When us<strong>in</strong>g the 405 nm laser, care<br />
should be taken for the autofluorescence, which appears <strong>in</strong> many st<strong>and</strong>ard <strong>and</strong> achromatic<br />
lenses. The BK7 lenses have relatively high absorption for near UV <strong>and</strong> Violet light <strong>and</strong> can<br />
cause autofluorescence. Notch or short pass filters should filter out most autofluorescent light.<br />
Although dichroic filters have improved over the last years impressively with high <strong>contrast</strong><br />
ratios <strong>and</strong> steep transmission <strong>and</strong> reflection curves, the slight imperfection is still useful. The<br />
m<strong>in</strong>imal transmission can be focused on a simple <strong>and</strong> cheap CCD camera by relay optics for<br />
imag<strong>in</strong>g the virtual back focal plane (BFP) of the objective.<br />
99
Appendix<br />
Figure 26 Layout of the microscope, L1 & L2, L4 & L5 <strong>and</strong> L6 & condenser form<br />
compress<strong>in</strong>g telescopes. EX1 <strong>and</strong> EX2 are the autofluorescence <strong>and</strong> excitation filters<br />
respectively. The BFP <strong>and</strong> eBFP are both image planes.<br />
Hardware<br />
PIC<br />
To create the circl<strong>in</strong>g focus <strong>in</strong> the back focal plane of the objective, two crossed acoustic<br />
optical deflectors (AODs) were used. In this manner, we can create a TIRF microscope, where<br />
we can control the angle of <strong>in</strong>cidence at the surface lateral <strong>and</strong> rotational around the surface<br />
normal.<br />
Several different devices can control driver for the AODs. The AOD needs an <strong>in</strong>put signal <strong>in</strong><br />
the range of 100 – 145 MHz, which is given by the driver.(182) The driver can give a static<br />
100
Appendix<br />
frequency <strong>and</strong> amplitude for both the x- <strong>and</strong> y-axis, or a function generator can be used for the<br />
<strong>in</strong>put. However, to create a pattern, the x- <strong>and</strong> y-axis needs separately a function generator.<br />
With two function generators, one can select a s<strong>in</strong>usoidal pattern. If one of the function<br />
generators has a phase shift of ½ <strong>and</strong> an equal frequency, the output of the AOD is a circle.<br />
f<br />
i<br />
( r,<br />
) re<br />
Eq. 40<br />
With a triangle <strong>wave</strong>form <strong>in</strong>stead of the s<strong>in</strong>usoidal (with phase shift) the output is a square.<br />
Unfortunately, the options <strong>and</strong> precision of the function generators were limited. The<br />
available function generators could not be coupled or synchronized, so after a while the two<br />
s<strong>in</strong>e functions run out of phase. Therefore, we decided to use a personal computer <strong>in</strong><br />
comb<strong>in</strong>ation with a PIC (peripheral <strong>in</strong>terface controller) microcontroller to drive the AOD.<br />
The PIC microcontroller is of the family of the Harvard architecture. The Harvard architecture<br />
is computer architecture with physically separate storage <strong>and</strong> signal pathways for <strong>in</strong>structions<br />
<strong>and</strong> data, see Figure 27. The term orig<strong>in</strong>ated from the Harvard Mark I relay-based computer,<br />
which stored <strong>in</strong>structions on punched tape (24 digits wide) <strong>and</strong> data <strong>in</strong> electro-mechanical<br />
counters (23 digits wide). The most microcontroller <strong>in</strong>structions are s<strong>in</strong>gle cycle execution<br />
<strong>and</strong> are divided up to 4 clock cycles. The execution of an <strong>in</strong>struction starts by call<strong>in</strong>g an<br />
<strong>in</strong>struction that is next <strong>in</strong> str<strong>in</strong>g. Instructions are called from the program memory on every<br />
first clock cycle <strong>and</strong> are written <strong>in</strong> the <strong>in</strong>struction register on fourth clock cycle. Decod<strong>in</strong>g <strong>and</strong><br />
execution of <strong>in</strong>struction are done between the next the first <strong>and</strong> fourth clock cycles.(183,184)<br />
The <strong>in</strong>struction set conta<strong>in</strong>s an address location <strong>and</strong> data space. Next, there is no dist<strong>in</strong>ction<br />
between data <strong>in</strong> “registers” <strong>and</strong> “memory”, because both are readable <strong>and</strong> accessible.<br />
Depend<strong>in</strong>g on the PIC, the microcontroller has several <strong>in</strong>put <strong>and</strong> output (I/O) p<strong>in</strong>s. These can<br />
be selected to receive <strong>and</strong> transmit signals. Mounted on a pr<strong>in</strong>ted circuit board, fed with<br />
power, the microcontroller acts on its own <strong>and</strong> does what he has been programmed to, noth<strong>in</strong>g<br />
else. The microcontroller is a flexible device <strong>and</strong> can be used for many applications <strong>and</strong> it is<br />
surpris<strong>in</strong>g where you can f<strong>in</strong>d them.<br />
101
Appendix<br />
Program<br />
Memory<br />
Program 14-bits<br />
Address 12-bits<br />
Central<br />
Process<strong>in</strong>g<br />
Unit<br />
Data 8-bits<br />
Address 9-bits<br />
Data<br />
Memory<br />
Data 1-bit<br />
Data 8-bits<br />
Input<br />
Output<br />
Timers<br />
Figure 27 Separation of memory <strong>and</strong> central process<strong>in</strong>g unit. By separat<strong>in</strong>g the program memory, data memory,<br />
<strong>in</strong>put / output, timers <strong>and</strong> the central process<strong>in</strong>g unit. Although the complexity <strong>in</strong>creases with such a structure of<br />
complex electrical circuitry, also is the speed <strong>in</strong>creas<strong>in</strong>g. As the central process<strong>in</strong>g unit can read both an<br />
<strong>in</strong>struction <strong>and</strong> data from memory at the same time <strong>and</strong> is able to fetch the next <strong>in</strong>struction at the same time, its<br />
speed is much higher than the previous used ‘Von Neumann architecture’.<br />
In order to control the behavior of the PIC microcontroller, one needs to program it. When the<br />
PIC microcontroller is programmed <strong>and</strong> connected to a power supply, the circuit runs<br />
autonomously.<br />
The programm<strong>in</strong>g code of the PIC microcontroller is a low-level programm<strong>in</strong>g language<br />
called Assembler. The term “low” refers to the small or non-existent amount of abstraction<br />
between the language <strong>and</strong> the mach<strong>in</strong>e language; because of this, low-level languages are<br />
sometimes described as be<strong>in</strong>g “close to the metal”. It is therefore essential to underst<strong>and</strong> the<br />
microprocessor’s unique architecture, such as its registers <strong>and</strong> <strong>in</strong>structions.(92) Assembler is<br />
the low level programm<strong>in</strong>g language used on the PIC microcontrollers <strong>and</strong> each program is<br />
especially developed for one k<strong>in</strong>d of chip. Each PIC microchip has its own advantages <strong>and</strong><br />
complexity. One selects a PIC microchip especially for its application. The <strong>in</strong>struction set can<br />
vary from about 35 for the low-end PIC microcontrollers to about 70 <strong>in</strong>structions for the highend<br />
PIC microcontrollers <strong>and</strong> vary from 6-p<strong>in</strong> to 40-p<strong>in</strong> packages, see Figure 28..(93)Also,<br />
every PIC microchip has its specific memory allocation table <strong>and</strong> different amounts of<br />
memory <strong>and</strong> banks.<br />
102
Appendix<br />
RA2<br />
RA3<br />
RA4/T0CKI<br />
MCLR<br />
V SS<br />
RB0/INT<br />
RB1<br />
RB2<br />
RB3<br />
•1<br />
2<br />
3<br />
4<br />
5<br />
6<br />
7<br />
8<br />
9<br />
PIC16F84A<br />
18<br />
17<br />
16<br />
15<br />
14<br />
13<br />
12<br />
11<br />
10<br />
RA1<br />
RA0<br />
OSC1/CLKIN<br />
OSC2/CLKOUT<br />
V DD<br />
RB7<br />
RB6<br />
RB5<br />
RB4<br />
Figure 28 Example of I/O p<strong>in</strong>s of the PIC16F84A. This PIC has two ports, A <strong>and</strong> B. Port A has 5 p<strong>in</strong>s (0 – 4)<br />
<strong>and</strong> is considered as a 5 bits port <strong>and</strong> the Port B conta<strong>in</strong>s 8 p<strong>in</strong>s (0 – 7) <strong>and</strong> is considered as an 8 bits port. These<br />
ports are the most <strong>in</strong>terest<strong>in</strong>g <strong>and</strong> relevant for our setup.<br />
103
Appendix<br />
Figure 29 Wir<strong>in</strong>g scheme for pr<strong>in</strong>table circuit board. For <strong>in</strong>creas<strong>in</strong>g the amount of channels latches were used.<br />
Green <strong>and</strong> red l<strong>in</strong>es represent circuit connection respectively on the top <strong>and</strong> bottom of the card.<br />
104
Appendix<br />
AOM<br />
The acousto optic modulator (AOM) conta<strong>in</strong>s a transparent crystal with low absorption when<br />
<strong>in</strong>active. The crystal is made of TeO 2 , as this crystal has low light absorption, high<br />
homogeneity <strong>and</strong> high optical power capability. Nevertheless, light pass<strong>in</strong>g through a TeO 2<br />
along the "slow" direction, will emerge with its polarization direction rotated by 90°.(185)<br />
The performance is based on the optical effects of acoustic fields on birefr<strong>in</strong>gent crystals. The<br />
acoustic field is generated <strong>and</strong> controlled by a piezoelectric crystal attached to one side of the<br />
crystal, work<strong>in</strong>g at a frequency between 50 <strong>and</strong> 150 MHz, <strong>and</strong> a vibration absorber attached to<br />
the other side, see Figure 30.(186,187)<br />
At a specific frequency of the acoustic <strong>wave</strong>, the periodic pattern of compression affects the<br />
local density <strong>and</strong> therefore the refractive <strong>in</strong>dex of the crystal <strong>and</strong> forms a three-dimensional<br />
periodic diffractor. Light pass<strong>in</strong>g through the crystal is diffracted at an angle () that depends<br />
on the frequency of the acoustic <strong>wave</strong> <strong>and</strong> on the <strong>wave</strong>length of the light:<br />
f<br />
a<br />
s<strong>in</strong> <br />
Eq. 41<br />
V<br />
a<br />
where is the optical <strong>wave</strong>length <strong>in</strong> air, V a is the acoustical velocity of the material <strong>and</strong> f a is<br />
the acoustic frequency. For a TeO 2 crystal at 125 MHz, the diffraction angle for a 405 nm<br />
laser is 4,35°. For a AOD with a b<strong>and</strong>width of 50 MHz would give a maximal scan range of<br />
1,75°.<br />
Care should be taken to the proper <strong>in</strong>jection of the laser beam onto the crystal <strong>in</strong> order to have<br />
maximal deflection efficiency. Alignment can be optimized by rotat<strong>in</strong>g or translat<strong>in</strong>g the<br />
crystal.<br />
105
Appendix<br />
Acoustic<br />
absorber<br />
<br />
2<br />
1-order<br />
0-order<br />
Acoustic<br />
<strong>wave</strong>s<br />
Piezo-lectric<br />
transducer<br />
Figure 30 An acousto optic deflector creates a Bragg grat<strong>in</strong>g. When light enters with an angle , light is<br />
diffracted to the first order, which depends on the <strong>wave</strong>length, acoustical velocity of the crystal <strong>and</strong> the acoustic<br />
frequency. Efficiency depends on the acoustic <strong>wave</strong> amplitude.<br />
106
Appendix<br />
Software<br />
Assembler<br />
The PIC runs on software written with MPLAB IDE v7.60 from www.microchip.com. This<br />
free software suite is an <strong>in</strong>tegrated development environment.<br />
In the text field it easy to write the code <strong>and</strong> automatically highlight statements, variables,<br />
comments <strong>and</strong> macros. On the left it is possible to set flags, which <strong>in</strong>dicates the simulator to<br />
stop when reach<strong>in</strong>g at this po<strong>in</strong>t.<br />
After edit<strong>in</strong>g the code has to be compiled for test<strong>in</strong>g <strong>and</strong> runn<strong>in</strong>g on the PIC. On the taskbar<br />
select the pictogram Build All. Errors will occur <strong>in</strong> the w<strong>in</strong>dow Output for analyz<strong>in</strong>g where it<br />
went wrong. For simulat<strong>in</strong>g the program, the simulation can be run fast (Run), slow<br />
(Animate) or stepwise (Step Into). Use flags to go fast forward to the <strong>in</strong>terest<strong>in</strong>g part of the<br />
code.<br />
In the w<strong>in</strong>dow File Registers are all the registers <strong>in</strong> the PIC. These can be predef<strong>in</strong>ed as can<br />
be read <strong>in</strong> the datasheet or selfdef<strong>in</strong>ed variables <strong>in</strong> the free memory block. The addresses are<br />
cont<strong>in</strong>uous but are physically <strong>and</strong> by programm<strong>in</strong>g separated <strong>in</strong>to banks. Attention should be<br />
given <strong>in</strong>to switch<strong>in</strong>g to the right bank for stor<strong>in</strong>g or call<strong>in</strong>g a variable or constant.<br />
In the w<strong>in</strong>dow Stopwatch you are able to test the speed of the program <strong>and</strong> see how many<br />
cycles or microseconds it takes to perform a task. By us<strong>in</strong>g flags <strong>in</strong> the text edit field you can<br />
follow tim<strong>in</strong>gs between flags or measure the speed of a loop.<br />
In the w<strong>in</strong>dow Watch you are able to add variables saved <strong>in</strong> the memory <strong>and</strong> predef<strong>in</strong>ed<br />
switches <strong>in</strong> the PIC <strong>and</strong> follow the changes <strong>in</strong> memory. This can be helpful for follow<strong>in</strong>g the<br />
decimal <strong>and</strong> b<strong>in</strong>ary transitions.<br />
In the w<strong>in</strong>dow Disassembly List<strong>in</strong>g a bitwise <strong>and</strong> simplified code is displayed.<br />
In the w<strong>in</strong>dow Stimulus one can simulate stimuli send to the PIC. This can be useful for<br />
test<strong>in</strong>g serial port communication or switches connected to the I/O port of the PIC.<br />
In the w<strong>in</strong>dow Hardware Stack the stack of the call <strong>and</strong> return addresses can be seen, which is<br />
f<strong>in</strong>ite <strong>in</strong> size. Call<strong>in</strong>g <strong>in</strong> loops should be used with care <strong>and</strong> proper return statements should be<br />
used to make sure that the return addresses are not overwritten.<br />
The RAM of the PIC can be written with the compiled source by W<strong>in</strong>Pic800<br />
107
Appendix<br />
C++<br />
The controller program for controll<strong>in</strong>g the PIC is done by a self-made program, written <strong>in</strong> the<br />
C++ language. The Dev-C++ 4.9.9.2 <strong>in</strong>terface was used with the Qt 4.2.3 compiler. The Qt<br />
moc UI came from the <strong>in</strong>staller. Common <strong>in</strong>stallation <strong>in</strong>structions were followed.<br />
Makefile:<br />
1<br />
2<br />
3<br />
4<br />
5<br />
6<br />
7<br />
8<br />
9<br />
10<br />
11<br />
QT_MOC_UI=qt-moc-ui.exe<br />
all-before: qt_moc_ui $(patsubst %.cpp,%.o,$(wildcard moc_*.cpp)) moclib.a<br />
qt_moc_ui:<br />
$(QT_MOC_UI)<br />
moc_%.o: moc_%.cpp<br />
$(CPP) -c $< -o $@ $(CXXFLAGS)<br />
moclib.a:<br />
ar cq moclib.a $(wildcard moc_*.o)<br />
clean-custom:<br />
${RM} moc_*.cpp<br />
${RM} ui_*.h<br />
The program is easy to make with different <strong>in</strong>terfaces. Refer to the commonly available<br />
manuals for more <strong>in</strong>formation about C++ or Qt.<br />
The C++ code for communicat<strong>in</strong>g with the PIC by the serial port is as follow<strong>in</strong>g:<br />
C++ (.cpp)<br />
1<br />
2<br />
3<br />
4<br />
5<br />
6<br />
7<br />
8<br />
9<br />
10<br />
11<br />
12<br />
13<br />
14<br />
15<br />
16<br />
17<br />
18<br />
19<br />
20<br />
21<br />
22<br />
23<br />
24<br />
25<br />
26<br />
27<br />
28<br />
29<br />
30<br />
31<br />
32<br />
33<br />
34<br />
35<br />
36<br />
void W<strong>in</strong>dow::openSerial()<br />
{<br />
QStr<strong>in</strong>g tmpQstr;<br />
QStr<strong>in</strong>g error;<br />
tmpQstr = "Serial errors: ";<br />
foo = new WCHAR[5];<br />
foo[0]='C';<br />
foo[1]='O';<br />
foo[2]='M';<br />
foo[3]='1';<br />
hSerial = CreateFile(foo,<br />
GENERIC_READ | GENERIC_WRITE,<br />
0,<br />
0,<br />
OPEN_EXISTING,<br />
FILE_ATTRIBUTE_NORMAL,<br />
0);<br />
// COM1 for st<strong>and</strong>ard configuration<br />
if(hSerial==INVALID_HANDLE_VALUE){<br />
if(GetLastError()==ERROR_FILE_NOT_FOUND){<br />
//serial port does not exist. Inform user.<br />
}<br />
//some other error occurred. Inform user.<br />
}<br />
delete[] foo;<br />
dcbSerialParams.DCBlength = sizeof(dcbSerialParams);<br />
if (!GetCommState(hSerial, &dcbSerialParams)) {<br />
//error gett<strong>in</strong>g state<br />
}<br />
dcbSerialParams.BaudRate=CBR_9600;<br />
dcbSerialParams.ByteSize=8;<br />
dcbSerialParams.StopBits=ONESTOPBIT;<br />
108
Appendix<br />
37<br />
38<br />
39<br />
40<br />
41<br />
42<br />
43<br />
44<br />
45<br />
46<br />
47<br />
48<br />
49<br />
50<br />
51<br />
52<br />
53<br />
54<br />
55<br />
56<br />
57<br />
58<br />
59<br />
60<br />
61<br />
62<br />
63<br />
64<br />
65<br />
66<br />
67<br />
68<br />
69<br />
70<br />
71<br />
72<br />
73<br />
74<br />
75<br />
76<br />
77<br />
78<br />
79<br />
80<br />
81<br />
82<br />
83<br />
84<br />
85<br />
86<br />
87<br />
88<br />
89<br />
90<br />
91<br />
92<br />
93<br />
94<br />
95<br />
96<br />
97<br />
}<br />
dcbSerialParams.Parity=NOPARITY;<br />
if(!SetCommState(hSerial, &dcbSerialParams)){<br />
//error sett<strong>in</strong>g serial port state<br />
}<br />
timeouts.ReadIntervalTimeout=50;<br />
timeouts.ReadTotalTimeoutConstant=50;<br />
timeouts.ReadTotalTimeoutMultiplier=10;<br />
timeouts.WriteTotalTimeoutConstant=50;<br />
timeouts.WriteTotalTimeoutMultiplier=10;<br />
if(!SetCommTimeouts(hSerial, &timeouts)){<br />
//error occureed. Inform user<br />
}<br />
void W<strong>in</strong>dow::sendSerialInputField()<br />
{<br />
QStr<strong>in</strong>g tmpQstr;<br />
QStr<strong>in</strong>g error, transmit;<br />
tmpQstr = "Errors: ";<br />
<strong>in</strong>t n = 6;<br />
char szBuff[n + 1];<br />
bool ok;<br />
// Number of entries<br />
// Add EoL<br />
/* --------------------------<br />
| 1) Program select<br />
| 1) circle<br />
| 2) lissjous<br />
| 3) epi<br />
| 4) tornado<br />
| 5) square<br />
|<br />
| 2) s<strong>in</strong>_0<br />
| 3) cos_0<br />
| 4) offset_s<strong>in</strong><br />
| 5) offset_cos<br />
| 6) ga<strong>in</strong>_s<strong>in</strong><br />
| 7) ga<strong>in</strong>_cos<br />
| 8) frequency_s<strong>in</strong><br />
| 9) frequency_cos / ga<strong>in</strong>_s<strong>in</strong>_counter_<strong>in</strong>it<br />
--------------------------*/<br />
}<br />
dwBytesRead = 0;<br />
for (<strong>in</strong>t counter = 0; counter >= 0; counter--)<br />
{<br />
szBuff[0] = 6;<br />
szBuff[1] = nManualInputFieldX;<br />
szBuff[2] = 7;<br />
szBuff[3] = nManualInputFieldY;<br />
}<br />
if(!WriteFile(hSerial, szBuff, n, &dwBytesRead, NULL))<br />
{<br />
//error occurred. Report to user.<br />
error = "uho 6, ";<br />
emit transmitErrorMsg(error);<br />
}<br />
109
Appendix<br />
C++ (.h)<br />
1<br />
2<br />
3<br />
4<br />
5<br />
6<br />
7<br />
8<br />
9<br />
10<br />
11<br />
12<br />
13<br />
14<br />
class W<strong>in</strong>dow : public QWidget<br />
{<br />
Q_OBJECT<br />
private:<br />
char *szBuff[];<br />
HANDLE hSerial;<br />
WCHAR *foo;<br />
DCB dcbSerialParams;<br />
COMMTIMEOUTS timeouts;<br />
DWORD dwBytesRead;<br />
QGridLayout *layout;<br />
};<br />
110
Appendix<br />
All rights reserved. No part of this publication or the <strong>in</strong>formation conta<strong>in</strong>ed here<strong>in</strong> may be<br />
reproduced, stored <strong>in</strong> a retrieval system, or transmitted <strong>in</strong> any form or by any means,<br />
electronic, mechanical, by photocopy<strong>in</strong>g, record<strong>in</strong>g or otherwise, without written prior<br />
permission from the publisher.<br />
Alle rechten voorbehouden. Geen enkel deel van deze publicatie of de hier<strong>in</strong> opgenomen<br />
<strong>in</strong>formatie mag worden verveelvoudigd, opgeslagen <strong>in</strong> een systeem of uitgezonden <strong>in</strong> enige<br />
vorm of op enige wijze, hetzij elektronisch, mechanisch, door fotokopieën, opnamen of <strong>and</strong>ere<br />
manier, zonder voorafga<strong>and</strong>e schriftelijke toestemm<strong>in</strong>g van de uitgever.<br />
111