26.12.2013 Views

Phenolic Tanning and Pigmentation of the Cuticle in Carcinus maenas

Phenolic Tanning and Pigmentation of the Cuticle in Carcinus maenas

Phenolic Tanning and Pigmentation of the Cuticle in Carcinus maenas

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

333<br />

<strong>Phenolic</strong> <strong>Tann<strong>in</strong>g</strong> <strong>and</strong> <strong>Pigmentation</strong> <strong>of</strong> <strong>the</strong> <strong>Cuticle</strong> <strong>in</strong><br />

Carc<strong>in</strong>us <strong>maenas</strong><br />

By G. KRISHNAN<br />

{From <strong>the</strong> Dept. <strong>of</strong> Zoology, University <strong>of</strong> Manchester; present address, Dept. <strong>of</strong> Zoology,<br />

Presidency College, Madras)<br />

SUMMARY<br />

I . The histochemistry <strong>of</strong> <strong>the</strong> cuticle <strong>in</strong> different stages <strong>of</strong> <strong>the</strong> moult cycle <strong>of</strong> Carc<strong>in</strong>us<br />

<strong>maenas</strong> is described.<br />

3. The newly formed cuticle <strong>of</strong> a crab exposed at moult<strong>in</strong>g shows evidence <strong>of</strong><br />

phenolic tann<strong>in</strong>g <strong>in</strong> <strong>the</strong> epicuticle.<br />

3. The subsequent tann<strong>in</strong>g <strong>of</strong> <strong>the</strong> pigment layer <strong>of</strong> <strong>the</strong> endocuticle is conf<strong>in</strong>ed to a<br />

brief period immediately after moult<strong>in</strong>g.<br />

4. The polyphenol oxidase <strong>of</strong> <strong>the</strong> epicuticle <strong>in</strong>volved <strong>in</strong> tann<strong>in</strong>g disappears soon<br />

after moult<strong>in</strong>g, but some time later an oxidase is aga<strong>in</strong> <strong>in</strong>dicated, this time <strong>in</strong> <strong>the</strong><br />

pigment layer. It appears to be secreted by <strong>the</strong> tegumental gl<strong>and</strong>s.<br />

5. From <strong>the</strong> concurrent appearance <strong>of</strong> a polyphenol oxidase <strong>and</strong> tyros<strong>in</strong>e <strong>and</strong> <strong>the</strong><br />

subsequent formation <strong>of</strong> dihydroxyphenols <strong>and</strong> melan<strong>in</strong>-like substances <strong>in</strong> <strong>the</strong> cuticle,<br />

it is suggested that <strong>the</strong> oxidation products <strong>of</strong> tyros<strong>in</strong>e are responsible for <strong>the</strong> pigmentation<br />

<strong>of</strong> <strong>the</strong> cuticle.<br />

6. <strong>Pigmentation</strong> <strong>of</strong> <strong>the</strong> cuticle is discussed <strong>in</strong> relation to phenolic tann<strong>in</strong>g <strong>in</strong> Crustacea<br />

<strong>and</strong> Insecta.<br />

R<br />

INTRODUCTION<br />

ECENT work has emphasized <strong>the</strong> fundamental similarity <strong>of</strong> <strong>the</strong> crusta-<br />

. cean cuticle to that <strong>of</strong> <strong>in</strong>sects (Drach, 1939; Pryor, 1940; Dennell,<br />

1947 b). The last-mentioned author <strong>in</strong> addition to confirm<strong>in</strong>g <strong>the</strong> occurrence<br />

<strong>of</strong> phenolic tann<strong>in</strong>g <strong>in</strong> Crustacea has suggested that its mechanism may be<br />

essentially similar to that <strong>in</strong> <strong>in</strong>sects. Notwithst<strong>and</strong><strong>in</strong>g <strong>the</strong> homology <strong>of</strong> <strong>the</strong><br />

cuticle <strong>in</strong> <strong>the</strong> two groups mentioned above it is seen that <strong>in</strong> Crustacea tann<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> cuticle is much abbreviated, <strong>the</strong> prime cause <strong>of</strong> harden<strong>in</strong>g be<strong>in</strong>g<br />

calcification (Dennell, 1947 b). In <strong>in</strong>sects it has been shown (Pryor, 1940;<br />

Fraenkel <strong>and</strong> Rudall, 1940, 1947; Dennell, 1946, 1947 a) that <strong>the</strong> harden<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> cuticle is due to <strong>the</strong> passage <strong>in</strong>to it <strong>of</strong> a polyphenol, <strong>the</strong> oxidation<br />

product <strong>of</strong> which forms cross-l<strong>in</strong>kages with<strong>in</strong> <strong>the</strong> prote<strong>in</strong> phase <strong>of</strong> <strong>the</strong> cuticle.<br />

The o<strong>the</strong>r concomitant changes are <strong>the</strong> reorientation <strong>of</strong> <strong>the</strong> chit<strong>in</strong> crystallites,<br />

a loss <strong>of</strong> solubility <strong>of</strong> prote<strong>in</strong>s <strong>and</strong> a darken<strong>in</strong>g effect. It has been po<strong>in</strong>ted out<br />

(Pryor, 1940; Pryor et al., 1947) that harden<strong>in</strong>g <strong>and</strong> darken<strong>in</strong>g <strong>of</strong> <strong>the</strong> cuticle<br />

<strong>of</strong> <strong>in</strong>sects are <strong>the</strong> result <strong>of</strong> tann<strong>in</strong>g, <strong>and</strong> it <strong>the</strong>refore appeared <strong>of</strong> <strong>in</strong>terest to<br />

discover <strong>the</strong> relation exist<strong>in</strong>g <strong>in</strong> Crustacea between tann<strong>in</strong>g <strong>and</strong> <strong>the</strong> formation<br />

<strong>of</strong> melan<strong>in</strong>-like pigments <strong>in</strong> <strong>the</strong> cuticle.<br />

[Quarterly Journal <strong>of</strong> Microscopical Science, Vol. 92, part 3, pp. 333-42, September 1951.]


334 Krishnan—<strong>Phenolic</strong> <strong>Tann<strong>in</strong>g</strong> <strong>of</strong> <strong>the</strong> <strong>Cuticle</strong> <strong>in</strong> Carc<strong>in</strong>us <strong>maenas</strong><br />

METHODS<br />

The material used <strong>in</strong> this work was <strong>the</strong> merus <strong>of</strong> <strong>the</strong> walk<strong>in</strong>g legs <strong>of</strong><br />

Carc<strong>in</strong>us <strong>maenas</strong>, obta<strong>in</strong>ed from Plymouth. Paraff<strong>in</strong>, frozen, <strong>and</strong> h<strong>and</strong> sections<br />

were prepared for study <strong>of</strong> <strong>the</strong> cuticle. Dehydration was carried out with<br />

dioxane to avoid <strong>the</strong> undue harden<strong>in</strong>g that may result from treatment with<br />

higher grades <strong>of</strong> ethyl alcohol. The sta<strong>in</strong>s used were Mallory's triple sta<strong>in</strong><br />

<strong>and</strong> Masson's trichrome sta<strong>in</strong>. The oxidases <strong>of</strong> <strong>the</strong> cuticle were studied<br />

us<strong>in</strong>g <strong>the</strong> nadi reagent (a mixture <strong>of</strong> dimethyl-para-phenylenediam<strong>in</strong>e <strong>and</strong><br />

a-naphthol (Lison, 1936) on frozen <strong>and</strong> h<strong>and</strong> sections. Melan<strong>in</strong>-like substances<br />

were detected by <strong>the</strong> solvent action <strong>of</strong> ethylene chlorhydr<strong>in</strong>. In<br />

addition, a number <strong>of</strong> o<strong>the</strong>r histochemical reagents were used for <strong>the</strong> detection<br />

<strong>of</strong> fats, phenols, <strong>and</strong> am<strong>in</strong>o-acids, <strong>and</strong> are mentioned <strong>in</strong> appropriate places<br />

<strong>in</strong> <strong>the</strong> text.<br />

outer epicubicle<br />

<strong>in</strong>ner epicuticle<br />

endocuticle<br />

epidermis<br />

FIG. 1. Section through <strong>the</strong> newly formed cuticle <strong>of</strong> Carc<strong>in</strong>us <strong>maenas</strong> <strong>in</strong> <strong>the</strong> process <strong>of</strong> shedd<strong>in</strong>g<br />

<strong>the</strong> old shell.<br />

PHENOLIC TANNING AND DARKENING<br />

Dennell (1947 b) described <strong>the</strong> cuticle <strong>of</strong> Crustacea <strong>in</strong> <strong>the</strong> light <strong>of</strong> recent<br />

work on that <strong>of</strong> <strong>in</strong>sects <strong>and</strong> brought forward evidence <strong>of</strong> <strong>the</strong> occurrence <strong>of</strong><br />

tann<strong>in</strong>g <strong>in</strong> <strong>the</strong> epicuticle <strong>and</strong> <strong>the</strong> outer layers <strong>of</strong> <strong>the</strong> endocuticle. The<br />

qu<strong>in</strong>ones responsible for tann<strong>in</strong>g have been shown to be formed by <strong>the</strong><br />

oxidative activity <strong>of</strong> a polyphenol oxidase which is located <strong>in</strong> <strong>the</strong> epicuticle <strong>in</strong><br />

<strong>the</strong> very early stages after moult<strong>in</strong>g. From <strong>the</strong> disappearance <strong>of</strong> <strong>the</strong> oxidase<br />

soon after moult<strong>in</strong>g it appears that <strong>the</strong> tann<strong>in</strong>g <strong>of</strong> <strong>the</strong> cuticle is a brief process<br />

conf<strong>in</strong>ed to a period immediately follow<strong>in</strong>g <strong>the</strong> formation <strong>of</strong> <strong>the</strong> new cuticle.<br />

With a view to throw<strong>in</strong>g more light on this aspect <strong>of</strong> <strong>the</strong> problem, <strong>the</strong> cuticle<br />

was studied from its appearance at <strong>the</strong> time <strong>of</strong> moult<strong>in</strong>g.<br />

The newly formed cuticle <strong>of</strong> a crab at <strong>the</strong> time <strong>of</strong> shedd<strong>in</strong>g <strong>the</strong> old shell<br />

(fig. 1) consists <strong>of</strong> a th<strong>in</strong> epicuticle <strong>and</strong> a homogeneous endocuticle sta<strong>in</strong><strong>in</strong>g<br />

red <strong>and</strong> blue respectively with Mallory's triple sta<strong>in</strong>. Overly<strong>in</strong>g <strong>the</strong> red epicuticle<br />

is a very th<strong>in</strong> blue-sta<strong>in</strong><strong>in</strong>g membrane, <strong>the</strong> outer epicuticle, whose<br />

<strong>in</strong>tegrity as a discrete layer is borne out by its separation from <strong>the</strong> <strong>in</strong>ner<br />

epicuticle due sometimes to mechanical factors <strong>and</strong> noticed <strong>in</strong> fixed prepara-


Krishnan—<strong>Phenolic</strong> <strong>Tann<strong>in</strong>g</strong> <strong>of</strong> <strong>the</strong> <strong>Cuticle</strong> <strong>in</strong> Carc<strong>in</strong>us <strong>maenas</strong> 335<br />

tions <strong>of</strong> <strong>the</strong> cuticle. The <strong>in</strong>ner epicuticle even before <strong>the</strong> old shell is cast<br />

shows evidence <strong>of</strong> tann<strong>in</strong>g. At this stage <strong>in</strong> frozen <strong>and</strong> h<strong>and</strong> sections <strong>the</strong><br />

untreated epicuticle shows an amber coloration but <strong>the</strong> endocuticle is colourless.<br />

That <strong>the</strong> amber coloration <strong>of</strong> <strong>the</strong> epicuticle is due to tann<strong>in</strong>g is <strong>in</strong>dicated<br />

by <strong>the</strong> bleach<strong>in</strong>g <strong>of</strong> <strong>the</strong> amber-coloured zone by diaphanol, which has a<br />

selective action on tanned regions. The occurrence <strong>of</strong> tann<strong>in</strong>g <strong>in</strong> <strong>the</strong> epicuticle<br />

is fur<strong>the</strong>r confirmed by <strong>the</strong> results obta<strong>in</strong>ed with <strong>the</strong> Millon <strong>and</strong> argentaff<strong>in</strong><br />

reactions, both <strong>of</strong> which are positive, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> presence <strong>of</strong> aromatic<br />

outer epicuticle<br />

<strong>in</strong>ner epicuticle<br />

pigmented zone<br />

calcified zope<br />

epidermis<br />

begumenfcal gl<strong>and</strong><br />

FIG. 2. Section <strong>of</strong> <strong>the</strong> cuticle <strong>of</strong> a s<strong>of</strong>t crab about two days after moult<strong>in</strong>g.<br />

substances. The endocuticle is unaffected by such treatment. Sta<strong>in</strong><strong>in</strong>g <strong>of</strong><br />

sections with Sudan black B. <strong>in</strong>dicates that both <strong>the</strong> <strong>in</strong>ner <strong>and</strong> outer epicuticles<br />

conta<strong>in</strong> lipoid substances. Ferric chloride gives a slight green coloration <strong>in</strong><br />

<strong>the</strong> <strong>in</strong>ner epicuticle <strong>and</strong> <strong>in</strong> <strong>the</strong> outer layers <strong>of</strong> <strong>the</strong> endocuticle, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong><br />

presence <strong>of</strong> a dihydroxyphenol. This is consistent with <strong>the</strong> observation<br />

(Dennell, 1947 a) that tann<strong>in</strong>g spreads <strong>in</strong>wards as a result <strong>of</strong> a wave <strong>of</strong><br />

qu<strong>in</strong>one formation <strong>in</strong>duced by <strong>the</strong> polyphenol oxidase activity <strong>in</strong> <strong>the</strong> epicuticle.<br />

The presence <strong>of</strong> polyphenols <strong>in</strong> <strong>the</strong> outer layers <strong>of</strong> <strong>the</strong> endocuticle as<br />

<strong>in</strong>dicated by <strong>the</strong> ferric chloride test suggests impend<strong>in</strong>g tann<strong>in</strong>g <strong>of</strong> this region.<br />

Sections <strong>of</strong> <strong>the</strong> cuticle <strong>of</strong> a s<strong>of</strong>t crab some time after moult<strong>in</strong>g (fig. 2) show<br />

that both <strong>the</strong> epicuticle <strong>and</strong> <strong>the</strong> outer layers <strong>of</strong> <strong>the</strong> endocuticle are tanned.<br />

That <strong>the</strong> tann<strong>in</strong>g <strong>of</strong> <strong>the</strong> cuticle is completed by this stage <strong>in</strong> <strong>the</strong> moult cycle<br />

is suggested by <strong>the</strong> lack <strong>of</strong> a reaction with ferric chloride, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong><br />

absence <strong>of</strong> a dihydroxyphenol. In <strong>the</strong> absence <strong>of</strong> an oxidase <strong>and</strong> extension <strong>of</strong><br />

<strong>the</strong> tanned zone at this stage, dihydroxyphenols <strong>in</strong>volved <strong>in</strong> tann<strong>in</strong>g may not<br />

now occur <strong>in</strong> <strong>the</strong> cuticle. Fig. 3 shows a section <strong>of</strong> <strong>the</strong> hardened cuticle <strong>of</strong>


336 Krishnan—<strong>Phenolic</strong> <strong>Tann<strong>in</strong>g</strong> <strong>of</strong> <strong>the</strong> <strong>Cuticle</strong> <strong>in</strong> Carc<strong>in</strong>us <strong>maenas</strong><br />

Carc<strong>in</strong>us <strong>in</strong> <strong>the</strong> middle <strong>in</strong>termoult stage. It corresponds to that given by<br />

Dennell (1947 b) <strong>of</strong> <strong>the</strong> merus <strong>of</strong> <strong>the</strong> first walk<strong>in</strong>g leg <strong>of</strong> Astacus. A comparison<br />

<strong>of</strong> a section <strong>of</strong> <strong>the</strong> hardened cuticle with <strong>the</strong> exoskeleton <strong>of</strong> a s<strong>of</strong>t<br />

crab shows that <strong>the</strong> epicuticle <strong>and</strong> <strong>the</strong> tanned zone <strong>of</strong> <strong>the</strong> endocuticle are<br />

similar <strong>and</strong> changes are observed only <strong>in</strong> <strong>the</strong> rest <strong>of</strong> <strong>the</strong> endocuticle, which is<br />

considerably extended <strong>and</strong> differentiated <strong>in</strong>to a calcified zone <strong>and</strong> a narrow<br />

•droplet at open<strong>in</strong>g <strong>of</strong><br />

tegumental gl<strong>and</strong><br />

outer epicuticle<br />

<strong>in</strong>ner epicuticle<br />

pigmented zone<br />

'junction between<br />

pigment zone <strong>and</strong><br />

calcfh'ed zone<br />

calcified zone<br />

duct <strong>of</strong> tegumental<br />

gl<strong>and</strong><br />

non-calcified zone<br />

epidermis<br />

1mm.<br />

. FIG. 3. Section <strong>of</strong> <strong>the</strong> hardened cuticle <strong>of</strong> Carc<strong>in</strong>us <strong>maenas</strong> <strong>in</strong> <strong>the</strong> middle <strong>of</strong> <strong>the</strong> <strong>in</strong>termoult<br />

stage.<br />

<strong>in</strong>ner non-calcified layer. At <strong>the</strong> junction <strong>of</strong> <strong>the</strong> calcified <strong>and</strong> pigmented layer<br />

is a narrow zone which sta<strong>in</strong>s <strong>in</strong>tensely blue after Mallory sta<strong>in</strong>. The ducts <strong>of</strong><br />

<strong>the</strong> tegumental gl<strong>and</strong>s pass<strong>in</strong>g through <strong>the</strong> cuticle to open on its surface form<br />

a prom<strong>in</strong>ent feature <strong>of</strong> <strong>the</strong> sections. The contents <strong>of</strong> <strong>the</strong> ducts sta<strong>in</strong> red with<br />

Mallory <strong>and</strong> at <strong>the</strong> open<strong>in</strong>gs <strong>of</strong> <strong>the</strong> ducts red-sta<strong>in</strong><strong>in</strong>g globules are <strong>of</strong>ten seen,<br />

<strong>and</strong> may represent <strong>the</strong> secretion <strong>of</strong> <strong>the</strong> gl<strong>and</strong>s. Their appearance recalls that<br />

observed by Wiggles worth (1947) <strong>in</strong> regard to <strong>the</strong> dermal gl<strong>and</strong>s <strong>of</strong> Rhodnius.<br />

The nature <strong>of</strong> <strong>the</strong> changes undergone by <strong>the</strong> cuticle dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>termoult<br />

stage after <strong>the</strong> <strong>in</strong>itial occurrence <strong>of</strong> tann<strong>in</strong>g are shown <strong>in</strong> Table I, which gives<br />

<strong>the</strong> results <strong>of</strong> histochemical tests on <strong>the</strong> cuticle at an early stage, middle<br />

stage, <strong>and</strong> a late stage <strong>in</strong> <strong>the</strong> <strong>in</strong>termoult period.<br />

The positive Millon <strong>and</strong> argentaff<strong>in</strong> reaction <strong>in</strong> <strong>the</strong> epicuticle <strong>and</strong> pigment<br />

layer is consistent with <strong>the</strong> observation that <strong>the</strong>se regions are hardened by<br />

phenolic tann<strong>in</strong>g at a very early stage <strong>in</strong> <strong>the</strong> moult cycle. The negative reaction


Krishnan—<strong>Phenolic</strong> <strong>Tann<strong>in</strong>g</strong> <strong>of</strong> <strong>the</strong> <strong>Cuticle</strong> <strong>in</strong> Carc<strong>in</strong>us <strong>maenas</strong> 337<br />

TABLE I<br />

Argentaff<strong>in</strong><br />

test<br />

Millon's<br />

reagent<br />

Momer's<br />

reagent<br />

Ferric<br />

chloride<br />

Fehl<strong>in</strong>g's<br />

solution<br />

Nadi (without<br />

KCN)<br />

<strong>Cuticle</strong> after<br />

moult<br />

Early stage<br />

Middle ,<br />

Late<br />

Early ,<br />

Middle ,<br />

Late ,<br />

Early ,<br />

Middle ,<br />

Late ,<br />

Early ,<br />

Middle ,<br />

Late ,<br />

Early<br />

Middle ,<br />

Late ,<br />

Early ,<br />

Middle ,<br />

Late ,<br />

Outer<br />

epicuticle<br />

+ +<br />

4" 4"<br />

4-4-<br />

4-4-<br />

4-4-<br />

+ _<br />

—<br />

—<br />

—<br />

—<br />

_<br />

—<br />

—<br />

__<br />

—<br />

—<br />

Inner<br />

epicuticle<br />

4-4-4-<br />

4" 4- 4-<br />

4-4-4-<br />

4-4- +<br />

-t- + 4-<br />

' _<br />

—<br />

—<br />

——_<br />

4- +<br />

-|- -|-<br />

_<br />

—<br />

—<br />

Pigment<br />

layer<br />

+<br />

—(— —|— —)—<br />

4-4-4-<br />

4- 4-<br />

• 4-4-4-<br />

+<br />

_<br />

4-4-4-<br />

—<br />

—<br />

-)-<br />

_<br />

+ + +<br />

4-4-<br />

Calcified<br />

layer<br />

—<br />

—<br />

—<br />

-<br />

_<br />

—<br />

—<br />

—<br />

4.4-<br />

—<br />

— __<br />

—<br />

—<br />

Noncalcified<br />

layer<br />

—<br />

—<br />

—<br />

—<br />

_<br />

—<br />

—<br />

—<br />

_<br />

_<br />

—<br />

—<br />

_<br />

—<br />

—<br />

with ferric chloride <strong>in</strong> <strong>the</strong> earlier stages <strong>of</strong> <strong>the</strong> <strong>in</strong>termoult period po<strong>in</strong>ts to <strong>the</strong><br />

absence <strong>of</strong> free dihydroxyphenols at this stage, though <strong>the</strong>y reappear later.<br />

The presence <strong>of</strong> dihydroxyphenols at a comparatively late stage <strong>in</strong> <strong>the</strong> moult<br />

cycle appeared <strong>in</strong>explicable <strong>in</strong> view <strong>of</strong> <strong>the</strong> observation that tann<strong>in</strong>g is conf<strong>in</strong>ed<br />

only to a very early stage after moult<strong>in</strong>g. An <strong>in</strong>terest<strong>in</strong>g result was obta<strong>in</strong>ed<br />

by treat<strong>in</strong>g h<strong>and</strong> sections <strong>of</strong> <strong>the</strong> cuticle with <strong>the</strong> nadi reagent which gave an<br />

<strong>in</strong>tense blue colour <strong>in</strong> <strong>the</strong> pigment layer <strong>of</strong> <strong>the</strong> endocuticle. The presence <strong>of</strong><br />

an oxidase appears to be <strong>in</strong>dicated by <strong>the</strong> <strong>in</strong>hibition <strong>of</strong> this reaction by<br />

potassium cyanide <strong>and</strong> by heat<strong>in</strong>g. Treatment <strong>of</strong> h<strong>and</strong> sections <strong>of</strong> <strong>the</strong> cuticle<br />

with aromatic substances showed rapid coloration with catechol, protocatechuic<br />

acid, <strong>and</strong> hydroqu<strong>in</strong>one. Dennell (1947 b) observed that <strong>in</strong> Astacus<br />

<strong>and</strong> o<strong>the</strong>r decapods <strong>the</strong> epicuticle soon after moult<strong>in</strong>g shows <strong>the</strong> presence <strong>of</strong> a<br />

polyphenol oxidase but later <strong>the</strong> nadi reaction is obta<strong>in</strong>ed even <strong>in</strong> <strong>the</strong> presence<br />

<strong>of</strong> cyanide. This later reaction is apparently due, however, to <strong>the</strong> presence <strong>of</strong><br />

o-qu<strong>in</strong>ones, which are capable <strong>of</strong> oxidiz<strong>in</strong>g <strong>the</strong> nadi reagent, <strong>and</strong> is dist<strong>in</strong>ct<br />

from <strong>the</strong> true oxidase reaction mentioned above. The absence <strong>of</strong> a positive<br />

reaction with nadi some time after tann<strong>in</strong>g has taken place, as has been<br />

observed <strong>in</strong> Carc<strong>in</strong>us, may be taken to <strong>in</strong>dicate not only <strong>the</strong> absence <strong>of</strong> an<br />

oxidase, but also that <strong>the</strong> qu<strong>in</strong>ones which reacted at an earlier stage to give a<br />

pseudo-phenoloxidase reaction have now lost <strong>the</strong>ir reactive properties, possibly<br />

due to polymerization or to changes consequent on <strong>the</strong>ir condensation<br />

with <strong>the</strong> prote<strong>in</strong>s <strong>of</strong> <strong>the</strong> cuticle. Later still, however, phenol oxidase reappears,<br />

now <strong>in</strong> <strong>the</strong> pigment layer, <strong>and</strong> represents ei<strong>the</strong>r a fresh secretion on <strong>the</strong> part<br />

<strong>of</strong> <strong>the</strong> structures elaborat<strong>in</strong>g it, or secretion by some o<strong>the</strong>r structure. From an<br />

analogy with <strong>the</strong> condition obta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>in</strong>sects where <strong>the</strong> polyphenol oxidase


338 Krishnan—<strong>Phenolic</strong> <strong>Tann<strong>in</strong>g</strong> <strong>of</strong> <strong>the</strong> <strong>Cuticle</strong> <strong>in</strong> Carc<strong>in</strong>us <strong>maenas</strong><br />

<strong>of</strong> <strong>the</strong> cuticle has been shown to be derived from <strong>the</strong> epidermis (Dennell,<br />

1947 a) it might be expected that this layer <strong>in</strong> Carc<strong>in</strong>us would be <strong>the</strong> site <strong>of</strong><br />

elaboration <strong>of</strong> <strong>the</strong> oxidase. Treatment with nadi reagent did not give a positive<br />

reaction <strong>in</strong> <strong>the</strong> epidermis at any stage <strong>of</strong> <strong>the</strong> moult cycle, but <strong>the</strong> tegumental<br />

gl<strong>and</strong>s which.dur<strong>in</strong>g this stage are found <strong>in</strong> an active secretory state gave<br />

with nadi a blue coloration which was <strong>the</strong>rmolabile <strong>and</strong> cyanide-sensitive.<br />

The ducts <strong>of</strong> <strong>the</strong> gl<strong>and</strong>s penetrat<strong>in</strong>g <strong>the</strong> cuticle also gave a positive reaction<br />

apparently <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> transport <strong>of</strong> <strong>the</strong> oxidase to <strong>the</strong> cuticle. H<strong>and</strong> sections<br />

treated with catechol rapidly gave a dark brown coloration <strong>in</strong> <strong>the</strong> tegumental<br />

gl<strong>and</strong>s <strong>and</strong> <strong>the</strong>ir ducts, so confirm<strong>in</strong>g <strong>the</strong> presence here <strong>of</strong> a polyphenol<br />

oxidase.<br />

Previous work on tegumental gl<strong>and</strong>s records a wide range <strong>of</strong> functions<br />

performed by <strong>the</strong>m. Yonge (1932) has given a critical <strong>and</strong> comprehensive<br />

account <strong>of</strong> <strong>the</strong> work <strong>of</strong> earlier authors <strong>and</strong> has suggested that <strong>the</strong> tegumental<br />

gl<strong>and</strong>s are primarily concerned with <strong>the</strong> secretion <strong>and</strong> preservation <strong>of</strong> <strong>the</strong><br />

epicuticle. The <strong>in</strong>timate association <strong>of</strong> <strong>the</strong> gl<strong>and</strong>s with <strong>the</strong> cuticle led Dennell<br />

(1947 b) to po<strong>in</strong>t out that 'it is difficult to avoid <strong>the</strong> view that <strong>in</strong> Crustacea<br />

<strong>the</strong> activity <strong>of</strong> <strong>the</strong> tegumental gl<strong>and</strong>s is closely connected with <strong>the</strong> structure<br />

<strong>of</strong> <strong>the</strong> cuticle'. He suspected that if <strong>the</strong>y are not concerned directly with <strong>the</strong><br />

secretion <strong>of</strong> <strong>the</strong> cuticle, <strong>the</strong>y may yet be related to <strong>the</strong> subsequent harden<strong>in</strong>g<br />

by <strong>the</strong> elaboration <strong>of</strong> <strong>the</strong> oxidase <strong>in</strong>volved <strong>in</strong> tann<strong>in</strong>g. It is seen from <strong>the</strong><br />

forego<strong>in</strong>g observation <strong>in</strong> Carc<strong>in</strong>us <strong>maenas</strong> that <strong>the</strong> tegumental gl<strong>and</strong>s secrete<br />

a polyphenol oxidase some time after tann<strong>in</strong>g <strong>and</strong> are concerned with an<br />

aspect <strong>of</strong> cuticular development which, it will be shown <strong>in</strong> this paper, is<br />

related to pigmentation.<br />

TYROSINE AND MELANIN FORMATION<br />

In <strong>the</strong> search for a possible substrate for <strong>the</strong> oxidase occurr<strong>in</strong>g late <strong>in</strong> <strong>the</strong><br />

development <strong>of</strong> <strong>the</strong> cuticle, it was <strong>of</strong> <strong>in</strong>terest to note <strong>the</strong> positive reaction<br />

given with Morner's reagent <strong>in</strong> <strong>the</strong> pigment layer <strong>of</strong> <strong>the</strong> cuticle at this time.<br />

That <strong>the</strong> substance giv<strong>in</strong>g <strong>the</strong> green coloration with Morner's reagent is<br />

<strong>in</strong>deed tyros<strong>in</strong>e is confirmed by <strong>the</strong> use <strong>of</strong> a-nitroso-jS-naphthol which gives<br />

a red coloration with tyros<strong>in</strong>e <strong>in</strong> <strong>the</strong> presence <strong>of</strong> nitric acid (Feigl, 1947).<br />

The occurrence <strong>of</strong> tyros<strong>in</strong>e is <strong>in</strong> itself not surpris<strong>in</strong>g as Trim (1941) had<br />

already recorded its presence <strong>in</strong> <strong>the</strong> cuticle <strong>of</strong> <strong>the</strong> lobster. The condition<br />

observed <strong>in</strong> Carc<strong>in</strong>us recalls that found <strong>in</strong> Sarcophaga falculata (Dennell,<br />

1947 a), <strong>in</strong> which tyros<strong>in</strong>e accumulates <strong>in</strong> <strong>the</strong> outer endocuticle preparatory to<br />

<strong>the</strong> tann<strong>in</strong>g <strong>of</strong> this region to form <strong>the</strong> exocuticle <strong>of</strong> <strong>the</strong> puparium. But <strong>in</strong><br />

Carc<strong>in</strong>us <strong>the</strong> presence <strong>of</strong> tyros<strong>in</strong>e <strong>in</strong> <strong>the</strong> pigment layer, which has already<br />

undergone tann<strong>in</strong>g, may. not have <strong>the</strong> same significance as <strong>in</strong> Sarcophaga.<br />

In <strong>the</strong> absence <strong>of</strong> any fur<strong>the</strong>r extension <strong>of</strong> <strong>the</strong> tanned zone <strong>of</strong> <strong>the</strong> cuticle<br />

dur<strong>in</strong>g <strong>the</strong> stages when <strong>the</strong> oxidase <strong>and</strong> substrate are present, it would appear<br />

that at this time <strong>the</strong>y are not <strong>in</strong>volved <strong>in</strong> fur<strong>the</strong>r tann<strong>in</strong>g <strong>of</strong> <strong>the</strong> cuticle. The<br />

assumption that a later process <strong>of</strong> tann<strong>in</strong>g, if it occurs, may result only <strong>in</strong> an<br />

<strong>in</strong>tensification <strong>of</strong> tann<strong>in</strong>g that has taken place, seems <strong>in</strong>consistent with <strong>the</strong>


Krishnan—<strong>Phenolic</strong> <strong>Tann<strong>in</strong>g</strong> <strong>of</strong> <strong>the</strong> <strong>Cuticle</strong> <strong>in</strong> Cardnus <strong>maenas</strong> 339<br />

positive reaction obta<strong>in</strong>ed with ferric chloride <strong>in</strong> <strong>the</strong> endocuticle, show<strong>in</strong>g <strong>the</strong><br />

presence <strong>of</strong> free dihydroxyphenols presumably formed as a result <strong>of</strong> <strong>the</strong><br />

oxidation <strong>of</strong> tyros<strong>in</strong>e by <strong>the</strong> phenolase. Tyros<strong>in</strong>e, as <strong>in</strong>dicated by a feeble<br />

reaction with Morner's reagent, gradually disappears, although free dihydroxyphenol<br />

persists for some time.<br />

Additional support for this view is afforded by exam<strong>in</strong>ation <strong>of</strong> sections <strong>of</strong><br />

hard <strong>and</strong> thickened cuticle after prolonged treatment with diaphanol. Such<br />

sections show <strong>in</strong> <strong>the</strong> pigment zone <strong>and</strong> <strong>the</strong> calcified layer a black coloration,<br />

revealed by <strong>the</strong> disappearance <strong>of</strong> colour due to tann<strong>in</strong>g. When such sections<br />

are treated with ethylene chlorhydr<strong>in</strong>, which is a solvent for melan<strong>in</strong>s, it is<br />

observed that <strong>the</strong> black substance <strong>of</strong> <strong>the</strong> cuticle is rapidly dissolved. That<br />

melan<strong>in</strong>-like substances may be formed from dihydroxyphenols present <strong>in</strong> <strong>the</strong><br />

cuticle is suggested by <strong>the</strong> observation that h<strong>and</strong> sections <strong>of</strong> <strong>the</strong> cuticle when<br />

treated with dihydroxyphenylalan<strong>in</strong>e (DOPA) show with<strong>in</strong> a few m<strong>in</strong>utes a<br />

black coloration <strong>in</strong> <strong>the</strong> endocuticle. When such sections are treated with<br />

ethylene chlorhydr<strong>in</strong>, <strong>the</strong>y are decolorized <strong>in</strong> a manner similar to that occurr<strong>in</strong>g<br />

<strong>in</strong> naturally blackened cuticles under such conditions. From <strong>the</strong> concurrent<br />

appearance <strong>of</strong> a phenol oxidase <strong>and</strong> tyros<strong>in</strong>e <strong>in</strong> <strong>the</strong> pigment layer <strong>and</strong><br />

<strong>the</strong> subsequent formation <strong>of</strong> dihydroxyphenols <strong>and</strong> pigmented products, it<br />

may be justifiable to assume that tyros<strong>in</strong>e is oxidized <strong>in</strong> <strong>the</strong> cuticle to form<br />

dihydroxyphenols, giv<strong>in</strong>g rise to pigmented products <strong>of</strong> <strong>the</strong> nature <strong>of</strong> melan<strong>in</strong>s.<br />

DISCUSSION<br />

Wigglesworth (1948 a) as a result <strong>of</strong> his observations on Tenebrio suggested<br />

that <strong>the</strong> tyros<strong>in</strong>e <strong>of</strong> <strong>the</strong> cuticle may give rise to melan<strong>in</strong>s, for <strong>the</strong> regions <strong>of</strong><br />

<strong>the</strong> cuticle which later become darkened show <strong>the</strong> presence <strong>of</strong> tyros<strong>in</strong>e. In<br />

Cardnus tyros<strong>in</strong>e is not found <strong>in</strong> <strong>the</strong> cuticle <strong>in</strong> <strong>the</strong> early stages <strong>of</strong> <strong>the</strong> moult<br />

cycle. A similar condition to that <strong>in</strong> Cardnus has been observed <strong>in</strong> Sarcophaga<br />

where no free tyros<strong>in</strong>e is found <strong>in</strong> <strong>the</strong> larval cuticle until just before puparium<br />

formation (Dennell, 1946). It may be <strong>in</strong>ferred that <strong>the</strong> tyros<strong>in</strong>e <strong>of</strong> <strong>the</strong> cuticle<br />

is derived from <strong>the</strong> blood. P<strong>in</strong>hey (1930) found that <strong>the</strong> blood <strong>of</strong> Maia<br />

squ<strong>in</strong>ado <strong>and</strong> Cancer pagurus conta<strong>in</strong>s about 0-004 P er cent, <strong>of</strong> tyros<strong>in</strong>e, at all<br />

stages <strong>of</strong> <strong>the</strong> <strong>in</strong>termoult period. Tyros<strong>in</strong>e estimation <strong>of</strong> <strong>the</strong> blood <strong>of</strong> Cardnus<br />

shows that it is similarly more or less constant at about 0-003 P er cent. If, as<br />

has been shown by Dennell (1947 a) <strong>and</strong> Fraenkel <strong>and</strong> Rudall (1947), <strong>the</strong><br />

blood tyros<strong>in</strong>e is <strong>the</strong> source <strong>of</strong> <strong>the</strong> phenol <strong>in</strong>volved <strong>in</strong> tann<strong>in</strong>g <strong>of</strong> <strong>the</strong> cuticle,<br />

<strong>the</strong> more or less constant percentage <strong>of</strong> <strong>the</strong> blood tyros<strong>in</strong>e <strong>in</strong> Cardnus <strong>maenas</strong><br />

would support <strong>the</strong> view that tyros<strong>in</strong>e <strong>of</strong> <strong>the</strong> cuticle is derived from <strong>the</strong> blood.<br />

This is probable because if tyros<strong>in</strong>e is oxidized by tyros<strong>in</strong>ase <strong>in</strong> <strong>the</strong> blood to<br />

form dihydroxyphenols <strong>in</strong> <strong>the</strong> early stages <strong>of</strong> <strong>the</strong> moult cycle as a prelim<strong>in</strong>ary<br />

to tann<strong>in</strong>g, <strong>in</strong> <strong>the</strong> later stages when <strong>the</strong>re is no evidence <strong>of</strong> tann<strong>in</strong>g, tyros<strong>in</strong>e<br />

as such may be transported to <strong>the</strong> cuticle to serve as a substrate for <strong>the</strong> formation<br />

<strong>of</strong> pigmented products. Such a condition might expla<strong>in</strong> why <strong>the</strong> blood<br />

tyros<strong>in</strong>e rema<strong>in</strong>s always more or less constant although tann<strong>in</strong>g is conf<strong>in</strong>ed to<br />

a period just about <strong>the</strong> time <strong>of</strong> moult<strong>in</strong>g. This is <strong>in</strong> contrast to what has been


340 Krishnan—<strong>Phenolic</strong> <strong>Tann<strong>in</strong>g</strong> <strong>of</strong> <strong>the</strong> <strong>Cuticle</strong> <strong>in</strong> Carc<strong>in</strong>us <strong>maenas</strong><br />

observed <strong>in</strong> Sarcophaga where <strong>the</strong> tyros<strong>in</strong>e content <strong>of</strong> <strong>the</strong> blood varies, be<strong>in</strong>g<br />

almost absent <strong>in</strong> <strong>the</strong> young feed<strong>in</strong>g larva, <strong>the</strong>n gradually <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

matur<strong>in</strong>g larva, <strong>and</strong> aga<strong>in</strong> decreas<strong>in</strong>g, presumably as a result <strong>of</strong> its consumption<br />

dur<strong>in</strong>g <strong>the</strong> harden<strong>in</strong>g <strong>and</strong> darken<strong>in</strong>g <strong>of</strong> <strong>the</strong> cuticle. This feature is probably<br />

related to <strong>the</strong> fact that both harden<strong>in</strong>g <strong>and</strong> darken<strong>in</strong>g <strong>of</strong> <strong>the</strong> cuticle takes<br />

place simultaneously, whereas <strong>in</strong> Carc<strong>in</strong>us tann<strong>in</strong>g is followed by <strong>the</strong> development<br />

<strong>of</strong> pigment.<br />

Trim (1941) po<strong>in</strong>ted out that a proportion <strong>of</strong> <strong>the</strong> tyros<strong>in</strong>e derivatives <strong>of</strong> <strong>the</strong><br />

cuticle may be <strong>in</strong> <strong>the</strong> form <strong>of</strong> dihydroxyphenols. The occurrence <strong>of</strong> free<br />

dihydroxyphenols has been noted <strong>in</strong> <strong>the</strong> cuticles <strong>of</strong> various <strong>in</strong>sects (Pryor,<br />

1940). Possibly such dihydroxyphenols are derivatives <strong>of</strong> tyros<strong>in</strong>e formed <strong>in</strong><br />

excess <strong>of</strong> <strong>the</strong> requirements for tann<strong>in</strong>g, <strong>and</strong> <strong>the</strong>refore not l<strong>in</strong>ked up with <strong>the</strong><br />

prote<strong>in</strong> constituents <strong>of</strong> <strong>the</strong> cuticle. In Carc<strong>in</strong>us histochemical tests show that<br />

dihydroxyphenols are transformed <strong>in</strong>to melan<strong>in</strong>-like substances formed<br />

probably as a result <strong>of</strong> fur<strong>the</strong>r oxidation. Support for this view is found <strong>in</strong> <strong>the</strong><br />

observation <strong>of</strong> Verne (1923) that <strong>the</strong> chromogen which gives rise to <strong>the</strong> black<br />

pigmentation <strong>of</strong> <strong>the</strong> eyes, legs, <strong>and</strong> carapace <strong>of</strong> crabs is an am<strong>in</strong>o-acid.<br />

It may be seen from <strong>the</strong> work <strong>of</strong> Pryor (1940), Fraenkel <strong>and</strong> Rudall (1947),<br />

<strong>and</strong> Dennell (1947 a) that <strong>in</strong> <strong>in</strong>sects <strong>the</strong> polyphenol formed <strong>in</strong> <strong>the</strong> blood is<br />

probably deam<strong>in</strong>ated before reach<strong>in</strong>g <strong>the</strong> cuticle where it is oxidized to<br />

qu<strong>in</strong>ones. From <strong>the</strong> close correspondence <strong>of</strong> <strong>the</strong> process <strong>of</strong> tann<strong>in</strong>g <strong>in</strong><br />

Crustacea, a similar deam<strong>in</strong>ation <strong>of</strong> <strong>the</strong> blood phenol may take place <strong>the</strong>re<br />

also. If so, <strong>the</strong> melan<strong>in</strong>s formed <strong>in</strong> <strong>the</strong> cuticle are not to be regarded as aris<strong>in</strong>g<br />

from <strong>the</strong> deam<strong>in</strong>ated blood phenol, as melan<strong>in</strong>s conta<strong>in</strong> <strong>the</strong> NH group.<br />

Keil<strong>in</strong> <strong>and</strong> Hartree (1936) observed that if tyros<strong>in</strong>e is deam<strong>in</strong>ated <strong>and</strong> <strong>the</strong><br />

products oxidized, <strong>the</strong> reaction never gives rise to melan<strong>in</strong>s. Therefore it may<br />

be reasonable to conclude that where darken<strong>in</strong>g is brought about by <strong>the</strong><br />

formation <strong>of</strong> melan<strong>in</strong>-like substances, tyros<strong>in</strong>e derivatives are formed <strong>in</strong> <strong>the</strong><br />

cuticle possibly by <strong>the</strong> transport <strong>of</strong> tyros<strong>in</strong>e as such to <strong>the</strong> cuticle where<br />

fur<strong>the</strong>r oxidation results <strong>in</strong> <strong>the</strong> formation <strong>of</strong> pigmented products <strong>and</strong> <strong>the</strong><br />

excess <strong>of</strong> tyros<strong>in</strong>e derivatives may occur as free dihydroxyphenols. In <strong>in</strong>sects,<br />

s<strong>in</strong>ce darken<strong>in</strong>g <strong>and</strong> harden<strong>in</strong>g <strong>of</strong> <strong>the</strong> cuticle occur toge<strong>the</strong>r, both <strong>the</strong> oxidation<br />

<strong>of</strong> deam<strong>in</strong>ated products <strong>of</strong> <strong>the</strong> blood phenol <strong>and</strong> <strong>the</strong> oxidation <strong>of</strong> <strong>the</strong><br />

tyros<strong>in</strong>e <strong>of</strong> <strong>the</strong> cuticle tak<strong>in</strong>g place co<strong>in</strong>cidentally, it may not appear obvious<br />

that <strong>the</strong> two processes give rise to different end-products. But <strong>in</strong> Carc<strong>in</strong>us<br />

it is found that <strong>the</strong> early <strong>and</strong> slight tann<strong>in</strong>g <strong>of</strong> <strong>the</strong> cuticle is separated by an<br />

<strong>in</strong>terval <strong>of</strong> time from <strong>the</strong> process <strong>in</strong> which tyros<strong>in</strong>e appear<strong>in</strong>g <strong>in</strong> <strong>the</strong> cuticle<br />

is oxidized by <strong>the</strong> phenolase. The sequence <strong>of</strong> appearance <strong>of</strong> <strong>the</strong> tyros<strong>in</strong>e <strong>and</strong><br />

oxidase, <strong>the</strong> dihydroxyphenols, <strong>and</strong> lastly <strong>the</strong> melan<strong>in</strong>s make it possible to<br />

<strong>in</strong>fer that pigmentation <strong>of</strong> <strong>the</strong> cuticle is a separate process though chemically<br />

not unrelated to <strong>the</strong> earlier tann<strong>in</strong>g.<br />

As has been shown, harden<strong>in</strong>g <strong>and</strong> darken<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>in</strong>sect cuticle are due<br />

to <strong>the</strong> tann<strong>in</strong>g action <strong>of</strong> qu<strong>in</strong>ones result<strong>in</strong>g from <strong>the</strong> oxidation <strong>of</strong> dihydroxyphenols<br />

formed <strong>in</strong> <strong>the</strong> blood <strong>and</strong> transported to <strong>the</strong> cuticle. Pryor <strong>and</strong> o<strong>the</strong>rs<br />

(1947) observed that a most likely mode <strong>of</strong> participation <strong>of</strong> such dihydroxy-


Krishnan—<strong>Phenolic</strong> <strong>Tann<strong>in</strong>g</strong> <strong>of</strong> <strong>the</strong> <strong>Cuticle</strong> <strong>in</strong> Carc<strong>in</strong>us <strong>maenas</strong> 341<br />

phenols <strong>in</strong> <strong>the</strong> harden<strong>in</strong>g <strong>of</strong> <strong>the</strong> cuticle is by enzymic oxidation followed by<br />

condensation <strong>of</strong> <strong>the</strong> oxidized material with <strong>the</strong> prote<strong>in</strong>s <strong>of</strong> <strong>the</strong> cuticle so that<br />

stable cross-l<strong>in</strong>ked structures, <strong>in</strong> which <strong>the</strong> nitrogen <strong>of</strong> <strong>the</strong> am<strong>in</strong>o-groups<br />

becomes directly attached to <strong>the</strong> aromatic nuclei, are formed. It is also observed<br />

that prote<strong>in</strong>s tanned by qu<strong>in</strong>ones are dark <strong>in</strong> colour (Pryor, 1948). From this<br />

circumstance it seems to have been <strong>in</strong>ferred that <strong>the</strong> darken<strong>in</strong>g <strong>of</strong> <strong>the</strong> cuticle<br />

is only <strong>in</strong>cidental to that harden<strong>in</strong>g process, be<strong>in</strong>g its natural consequence.<br />

Wigglesworth (1948 b), however, observed that <strong>the</strong> 'coloration <strong>of</strong> <strong>the</strong> tanned<br />

cuticles may be due to <strong>the</strong> presence <strong>of</strong> chromatophore groups such as <strong>the</strong><br />

qu<strong>in</strong>onoid group <strong>in</strong> <strong>the</strong> molecule or it may be due to coloured by-products<br />

aris<strong>in</strong>g from <strong>the</strong> oxidation <strong>of</strong> phenols not attached to any prote<strong>in</strong> cha<strong>in</strong>'.<br />

Such a view is consistent with <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs recorded <strong>in</strong> this paper, for it<br />

contemplates <strong>the</strong> occurrence <strong>of</strong> two processes, one primarily if not solely<br />

lead<strong>in</strong>g to harden<strong>in</strong>g <strong>and</strong> <strong>the</strong> o<strong>the</strong>r contribut<strong>in</strong>g to pigmentation. S<strong>in</strong>ce<br />

phenolic substances are <strong>the</strong> materials <strong>in</strong>volved <strong>in</strong> both processes, <strong>the</strong>y appear •<br />

to be related though separated <strong>in</strong> po<strong>in</strong>t <strong>of</strong> time. Wigglesworth believes that<br />

some undeam<strong>in</strong>ated tyros<strong>in</strong>e <strong>in</strong> <strong>the</strong> cuticle probably serves for melan<strong>in</strong> formation.<br />

It is <strong>in</strong>terest<strong>in</strong>g also to note that Fraenkel <strong>and</strong> Rudall (1947) <strong>in</strong> <strong>the</strong>ir<br />

study <strong>of</strong> <strong>the</strong> structure <strong>of</strong> <strong>in</strong>sect cuticles observe that <strong>the</strong>re may be a degree <strong>of</strong><br />

prote<strong>in</strong> tann<strong>in</strong>g by deam<strong>in</strong>ated tyros<strong>in</strong>e as well as formation <strong>of</strong> melan<strong>in</strong> from<br />

undeam<strong>in</strong>ated tyros<strong>in</strong>e. That tyros<strong>in</strong>e as such may pass <strong>in</strong>to <strong>the</strong> cuticle is<br />

supported by <strong>the</strong> observation that <strong>in</strong> Sarcophaga (Dennell, 1946) tyros<strong>in</strong>e is<br />

<strong>in</strong>dicated <strong>in</strong> <strong>the</strong> presumptive exocuticle <strong>and</strong> is used up dur<strong>in</strong>g puparium formation<br />

as seen by <strong>the</strong> fall <strong>of</strong> tyros<strong>in</strong>e content <strong>of</strong> <strong>the</strong> cuticle from 35 to 20 per<br />

cent. (Trim, 1941). This represents only a fraction <strong>of</strong> <strong>the</strong> total tyros<strong>in</strong>e consumption<br />

as <strong>in</strong>dicated by <strong>the</strong> fall <strong>in</strong> tyros<strong>in</strong>e content <strong>of</strong> <strong>the</strong> whole organism<br />

from 1 -7 to 087 per cent. It is possible that <strong>the</strong> cuticular tyros<strong>in</strong>e contributes<br />

directly to melan<strong>in</strong> formation <strong>and</strong> may not take part <strong>in</strong> tann<strong>in</strong>g <strong>of</strong> <strong>the</strong> cuticle.<br />

The observations made <strong>in</strong> Carc<strong>in</strong>us <strong>maenas</strong> support this view.<br />

The presence <strong>of</strong> melan<strong>in</strong>s <strong>in</strong> <strong>in</strong>sect cuticles has long been recognized.<br />

Gessard (1904) <strong>and</strong> Gortner (1911a, 1911&) have shown that <strong>the</strong> colour<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> <strong>in</strong>sect cuticle is a fermentative process <strong>in</strong>volv<strong>in</strong>g tyros<strong>in</strong>e <strong>and</strong> tyros<strong>in</strong>ase<br />

<strong>of</strong> <strong>the</strong> blood, dihydroxyphenylalan<strong>in</strong>e be<strong>in</strong>g an <strong>in</strong>termediary product<br />

<strong>in</strong> <strong>the</strong> formation <strong>of</strong> melan<strong>in</strong>s. With <strong>the</strong> revival <strong>of</strong> <strong>in</strong>terest <strong>in</strong> <strong>the</strong> subject <strong>of</strong> <strong>the</strong><br />

harden<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>in</strong>sect cuticle as a result <strong>of</strong> <strong>the</strong> work <strong>of</strong> Pryor (1940) it has<br />

been shown that harden<strong>in</strong>g is an enzymatic process very similar to that noted<br />

by Gortner <strong>and</strong> o<strong>the</strong>rs, <strong>and</strong> so harden<strong>in</strong>g <strong>and</strong> darken<strong>in</strong>g have been regarded<br />

by some as two aspects <strong>of</strong> <strong>the</strong> same physico-chemical phenomenon. From <strong>the</strong><br />

observations <strong>in</strong> Carc<strong>in</strong>us recorded here, phenolic harden<strong>in</strong>g <strong>and</strong> darken<strong>in</strong>g<br />

appear to be separate processes although <strong>the</strong> mechanisms underly<strong>in</strong>g <strong>the</strong> two<br />

processes are similar. In <strong>in</strong>sects this separateness is obscured, as <strong>in</strong> Sarcophaga,<br />

where tyros<strong>in</strong>e, although it accumulates <strong>in</strong> <strong>the</strong> cuticle before harden<strong>in</strong>g,<br />

was not recognized as a pigment precursor; but a suggestion that <strong>the</strong>y may be<br />

<strong>in</strong>dependent processes is gleaned from <strong>the</strong> work <strong>of</strong> Dennell (1947 a), who<br />

observed that <strong>the</strong> 'first sign <strong>of</strong> darken<strong>in</strong>g <strong>of</strong> <strong>the</strong> cuticle is seen actually before


342 Krishnan—<strong>Phenolic</strong> <strong>Tann<strong>in</strong>g</strong> <strong>of</strong> <strong>the</strong> <strong>Cuticle</strong> <strong>in</strong> Carc<strong>in</strong>us <strong>maenas</strong><br />

pupal contraction beg<strong>in</strong>s' <strong>and</strong> presumably before <strong>the</strong> harden<strong>in</strong>g <strong>of</strong> <strong>the</strong> cuticle<br />

has commenced. He po<strong>in</strong>ted out that <strong>the</strong> 'occurrence <strong>of</strong> darken<strong>in</strong>g before as<br />

well as after pupal contraction gives an <strong>in</strong>dication that <strong>the</strong> colour<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

cuticle <strong>and</strong> <strong>the</strong> muscular contraction which shapes <strong>the</strong> puparium are <strong>in</strong>dependent<br />

events although both are presumably <strong>in</strong>duced by <strong>the</strong> liberation <strong>of</strong><br />

<strong>the</strong> pupal hormone'.<br />

ACKNOWLEDGEMENTS<br />

I have great pleasure <strong>in</strong> acknowledg<strong>in</strong>g my <strong>in</strong>debtedness to Pr<strong>of</strong>essor R.<br />

Dennell for help <strong>and</strong> guidance given me <strong>in</strong> <strong>the</strong> course <strong>of</strong> this study. I am<br />

grateful also to Pr<strong>of</strong>essor *H. Graham Cannon, F.R.S., for his cont<strong>in</strong>ued<br />

<strong>in</strong>terest <strong>in</strong> <strong>the</strong> work. My thanks are due to <strong>the</strong> Government <strong>of</strong> Madras for <strong>the</strong><br />

award <strong>of</strong> an overseas scholarship dur<strong>in</strong>g <strong>the</strong> tenure <strong>of</strong> which this study was<br />

made.<br />

REFERENCES<br />

DENNELL, R., 1946. Proc. Roy. Soc. B, 133, 348.<br />

1947 a. Ibid., 134, 79.<br />

1947*. Ibid., 134,485.<br />

DRACH, P., 1939. Ann. Inst. Oceanogr. Monaco, 19, 103.<br />

FEIGL, F., 1947. Qualitative analysis by spot tests. New York (Elsevier).<br />

FRAENKEL, G., <strong>and</strong> RUDALL, K. M., 1940. Proc. Roy. Soc. B, 129, 1.<br />

1947- Ibid., 134, <strong>in</strong>.<br />

GESSARD, C, 1904. C. R. Acad. Sci., Paris, 139, 644.<br />

GORTNER, R. A., 1911 a. J. biol. Chem., 10, 89.<br />

1911 b. Amer. Nat., 45, 745.<br />

KEILIN, D., <strong>and</strong> HARTREE, E. G., 1936. Proc. Roy. Soc. B, 119, 114.<br />

LISON, L., 1936. Histochimie animate. Paris (Gauthier-Villars).<br />

PINHEY, K. G., 1930. J. exp. Biol., 7, 19.<br />

PRYOR, M. G. M., 1940. Proc. Roy. Soc. B, 128, 393.<br />

1948. Proc. Roy. Ent. Soc. Lond. A, 23, 96.<br />

, RUSSELL, P. B., <strong>and</strong> TODD, A. R., 1947. Nature, Lond., 159, 399.<br />

TRIM, A. R., 1941. Biochem. J., 35, 1088.<br />

VERNE, J., 1 1923. Arch, de Morph. Gen. et Exp., Fasc. 16.<br />

WIGGLESWORTH, V. B., 1947. Proc. Roy. Soc. B, 134, 163.<br />

1948 a. Quart. J. micr. Sci., 89, 197.<br />

1948 b. Biol. Rev., 23, 408.<br />

YONGE, C. M., 193Z. Proc. Roy. Soc. B, m, 298.<br />

1 Orig<strong>in</strong>al not seen.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!