27.12.2013 Views

Basic Concepts in the Geometry of Banach Spaces

Basic Concepts in the Geometry of Banach Spaces

Basic Concepts in the Geometry of Banach Spaces

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Preface<br />

1. Introduction<br />

The aim <strong>of</strong> this Handbook is to present an overview <strong>of</strong> <strong>the</strong> ma<strong>in</strong> research directions and results<br />

<strong>in</strong> <strong>Banach</strong> space <strong>the</strong>ory obta<strong>in</strong>ed dur<strong>in</strong>g <strong>the</strong> last half century. The scope <strong>of</strong> <strong>the</strong> <strong>the</strong>ory,<br />

hav<strong>in</strong>g widened considerably over <strong>the</strong> years, now has deep and close ties with many areas<br />

<strong>of</strong> ma<strong>the</strong>matics, <strong>in</strong>clud<strong>in</strong>g harmonic analysis, complex analysis, partial differential equations,<br />

classical convexity, probability <strong>the</strong>ory, comb<strong>in</strong>atorics, logic, approximation <strong>the</strong>ory,<br />

geometric measure <strong>the</strong>ory, operator <strong>the</strong>ory, and o<strong>the</strong>rs. In choos<strong>in</strong>g a topic for an article <strong>in</strong><br />

<strong>the</strong> Handbook we considered both <strong>the</strong> <strong>in</strong>terest <strong>the</strong> topic would have for non-specialists as<br />

well as <strong>the</strong> importance <strong>of</strong> <strong>the</strong> topic for <strong>the</strong> core <strong>of</strong> <strong>Banach</strong> space <strong>the</strong>ory, which is <strong>the</strong> study<br />

<strong>of</strong> <strong>the</strong> geometry <strong>of</strong> <strong>in</strong>f<strong>in</strong>ite dimensional <strong>Banach</strong> spaces and n-dimensional normed spaces<br />

with n f<strong>in</strong>ite but large (local <strong>the</strong>ory).<br />

Many <strong>of</strong> <strong>the</strong> lead<strong>in</strong>g experts on <strong>the</strong> various aspects <strong>of</strong> <strong>Banach</strong> space <strong>the</strong>ory have written<br />

an exposition <strong>of</strong> <strong>the</strong> ma<strong>in</strong> results, problems, and methods <strong>in</strong> areas <strong>of</strong> <strong>the</strong>ir expertise. The<br />

enthusiastic response we received from <strong>the</strong> community was gratify<strong>in</strong>g, and we are deeply<br />

appreciative <strong>of</strong> <strong>the</strong> considerable time and effort our contributors devoted to <strong>the</strong> preparation<br />

<strong>of</strong> <strong>the</strong>ir articles.<br />

Our expectation is that this Handbook will be very useful as a source <strong>of</strong> <strong>in</strong>formation and<br />

<strong>in</strong>spiration to graduate students and young research workers who are enter<strong>in</strong>g <strong>the</strong> subject.<br />

The material <strong>in</strong>cluded will be <strong>of</strong> special <strong>in</strong>terest to researchers <strong>in</strong> <strong>Banach</strong> space <strong>the</strong>ory who<br />

may not be aware <strong>of</strong> many <strong>of</strong> <strong>the</strong> beautiful and far reach<strong>in</strong>g facets <strong>of</strong> <strong>the</strong> <strong>the</strong>ory. We ourselves<br />

were surprised by <strong>the</strong> new light thrown by <strong>the</strong> Handbook on directions with which<br />

we were already basically familiar. We hope that <strong>the</strong> Handbook is also valuable for ma<strong>the</strong>maticians<br />

<strong>in</strong> related fields who are <strong>in</strong>terested <strong>in</strong> learn<strong>in</strong>g <strong>the</strong> new directions, problems,<br />

and methods <strong>in</strong> <strong>Banach</strong> space <strong>the</strong>ory for <strong>the</strong> purpose <strong>of</strong> transferr<strong>in</strong>g ideas between <strong>Banach</strong><br />

space <strong>the</strong>ory and o<strong>the</strong>r areas.<br />

Our <strong>in</strong>troductory article, "<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces", is <strong>in</strong>tended<br />

to make <strong>the</strong> Handbook accessible to a wide audience <strong>of</strong> researchers and students. In this<br />

chapter those concepts and results which appear <strong>in</strong> most aspects <strong>of</strong> <strong>the</strong> <strong>the</strong>ory and which go<br />

beyond material covered <strong>in</strong> most textbooks on functional and real analysis are presented<br />

and expla<strong>in</strong>ed. Some <strong>of</strong> <strong>the</strong> results are given with an outl<strong>in</strong>e <strong>of</strong> pro<strong>of</strong>; virtually all are<br />

proved <strong>in</strong> <strong>the</strong> books on <strong>Banach</strong> space <strong>the</strong>ory referenced <strong>in</strong> <strong>the</strong> article. In pr<strong>in</strong>ciple, <strong>the</strong><br />

basic concepts article conta<strong>in</strong>s all <strong>the</strong> background needed for read<strong>in</strong>g any o<strong>the</strong>r chapter <strong>in</strong><br />

<strong>the</strong> Handbook.<br />

Each article past <strong>the</strong> basic concepts one is devoted to one specific direction <strong>of</strong> <strong>Banach</strong><br />

space <strong>the</strong>ory or its applications. Each article conta<strong>in</strong>s a motivated <strong>in</strong>troduction as well as


vi<br />

Preface<br />

an exposition <strong>of</strong> <strong>the</strong> ma<strong>in</strong> results, methods, and open problems <strong>in</strong> its specific direction.<br />

Most have an extensive bibliography. Many articles, even <strong>the</strong> basic concepts one, conta<strong>in</strong><br />

new pro<strong>of</strong>s <strong>of</strong> known results as well as expositions <strong>of</strong> pro<strong>of</strong>s which are hard to locate <strong>in</strong><br />

<strong>the</strong> literature or are only outl<strong>in</strong>ed <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al research papers.<br />

The format <strong>of</strong> <strong>the</strong> chapters is as varied as <strong>the</strong> personal scientific styles and tastes <strong>of</strong> <strong>the</strong><br />

contributors. In our view this makes <strong>the</strong> Handbook more lively and attractive.<br />

There are many strong and <strong>in</strong>tricate <strong>in</strong>terconnections between <strong>the</strong> different subjects<br />

treated <strong>in</strong> <strong>the</strong> various articles, so some articles conta<strong>in</strong> many cross references to o<strong>the</strong>r<br />

articles. But, as mentioned above, no article depends on anyth<strong>in</strong>g past <strong>the</strong> material treated<br />

<strong>in</strong> <strong>the</strong> basic concepts article. Because <strong>of</strong> this lack <strong>of</strong> <strong>in</strong>terdependence, we chose to order <strong>the</strong><br />

chapters after <strong>the</strong> basic concepts article alphabetically accord<strong>in</strong>g to <strong>the</strong> first author <strong>of</strong> <strong>the</strong><br />

chapter. We <strong>in</strong>cluded <strong>in</strong> volume 1 <strong>the</strong> chapters which came first <strong>in</strong> this order among those<br />

articles which were ready by <strong>the</strong> deadl<strong>in</strong>e we set for this volume. The second volume <strong>of</strong><br />

this Handbook will conta<strong>in</strong> <strong>the</strong> chapters which come later <strong>in</strong> <strong>the</strong> alphabetical order as well<br />

as those chapters which were f<strong>in</strong>ished only after <strong>the</strong> deadl<strong>in</strong>e for volume 1.<br />

This volume ends with a subject <strong>in</strong>dex and an author <strong>in</strong>dex for <strong>the</strong> material <strong>of</strong> <strong>the</strong> present<br />

volume. Volume 2 will conta<strong>in</strong> a subject and author <strong>in</strong>dex for <strong>the</strong> entire Handbook.<br />

William B. Johnson and Joram L<strong>in</strong>denstrauss


List <strong>of</strong> Contributors<br />

Abramovich, Yu.A., Indiana University- Purdue University, Indianapolis, IN (Ch. 2)<br />

Aliprantis, C.D., Purdue University, West Lafayette, IN (Ch. 2)<br />

Alspach, D., Oklahoma State University, Stillwater, OK (Ch. 3)<br />

Ball, K., University College London, London (Ch. 4)<br />

Bourga<strong>in</strong>, J., Institute for Advanced Study, Pr<strong>in</strong>ceton, NJ (Ch. 5)<br />

Burkholder, D., University <strong>of</strong> lll<strong>in</strong>ois, Urbana, IL (Ch. 6)<br />

Casazza, E, University <strong>of</strong> Missouri, Columbia, MO (Ch. 7)<br />

Davidson, K.R., University <strong>of</strong> Waterloo, Waterloo (Ch. 8)<br />

Delbaen, E, E.T.H., Zurich (Ch. 9)<br />

Deville, R., University <strong>of</strong> Bordeaux, Bordeaux (Ch. 10)<br />

Diestel, J., Kent State University, Kent, OH (Ch. 11)<br />

Dilworth, S.J., University <strong>of</strong> South Carol<strong>in</strong>a, Columbia, SC (Ch. 12)<br />

Enflo, E, Kent State University, Kent, OH (Ch. 13)<br />

Figiel, T., Institute <strong>of</strong> Ma<strong>the</strong>matics, Sopot (Ch. 14)<br />

Fonf, V.E, Ben Gurion University, Beer-Sheva (Ch. 15)<br />

Gamel<strong>in</strong>, T., The University <strong>of</strong> California, Los Angeles, CA (Ch. 16)<br />

Ghoussoub, N., University <strong>of</strong> British Columbia, Vancouver (Ch. 10)<br />

Giannopoulos, A.A., University <strong>of</strong> Crete, Heraklion (Ch. 17)<br />

Godefroy, G., Universite Paris VI, Paris (Ch. 18)<br />

Jarchow, H., University <strong>of</strong> Zurich, Zurich (Ch. 11)<br />

Johnson, W.B., Texas A&M University, College Station, TX (Chs. 1, 19)<br />

Kisliakov, S., POMI, Sa<strong>in</strong>t Petersburg (Chs. 16, 20)<br />

Koldobsky, A., University <strong>of</strong> Missouri, Columbia, MO (Ch. 21)<br />

K6nig, H., University <strong>of</strong>Kiel, Kiel (Chs. 21, 22)<br />

L<strong>in</strong>denstrauss, J., The Hebrew University <strong>of</strong> Jerusalem, Jerusalem (Chs. 1, 15)<br />

Lomonosov, V. Kent State University, Kent, OH (Ch. 13)<br />

Milman, V.D., Tel-Aviv University, Tel-Aviv (Ch. 17)<br />

Odell, E.W., The University <strong>of</strong> Texas, Aust<strong>in</strong>, TX (Ch. 3)<br />

Phelps, R.R., University <strong>of</strong> Wash<strong>in</strong>gton, Seattle, WA (Ch. 15)<br />

Pietsch, A., Jena University, Jena (Ch. 11)<br />

Schachermayer, W., Vienna University <strong>of</strong> Technology, Vienna (Ch. 9)<br />

Schechtman, G., The Weizmann Institute <strong>of</strong> Science, Rehovot (Ch. 19)<br />

Szarek, S., Case Western Reserve University, Cleveland, OH<br />

and Universit~ Paris VI, Paris (Ch. 8)<br />

Wojtaszczyk, E, Warsaw University, Warsaw (Ch. 14)<br />

vii


CHAPTER 1<br />

<strong>Basic</strong> <strong>Concepts</strong> <strong>in</strong> <strong>the</strong> <strong>Geometry</strong> <strong>of</strong> <strong>Banach</strong> <strong>Spaces</strong><br />

William B. Johnson*<br />

Department <strong>of</strong> Ma<strong>the</strong>matics, Texas A &M University, College Station, TX 77843, USA<br />

E-mail: johnson @math.tamu.edu<br />

Joram L<strong>in</strong>denstrauss t<br />

Institute <strong>of</strong> Ma<strong>the</strong>matics, The Hebrew University <strong>of</strong> Jerusalem, Jerusalem, Israel<br />

E-mail: joram@math.huji.ac.il<br />

Contents<br />

1. Introduction .................................................. 3<br />

2. Notations and special <strong>Banach</strong> spaces ..................................... 3<br />

3. Bases ...................................................... 6<br />

4. Classical spaces ................................................ 13<br />

5. <strong>Banach</strong> lattices ................................................. 20<br />

6. <strong>Geometry</strong> <strong>of</strong> <strong>the</strong> norm ............................................. 30<br />

7. Analysis <strong>in</strong> <strong>Banach</strong> spaces .......................................... 35<br />

8. F<strong>in</strong>ite dimensional <strong>Banach</strong> spaces ...................................... 43<br />

9. Local structure <strong>of</strong> <strong>in</strong>f<strong>in</strong>ite dimensional spaces ................................ 53<br />

10. Some special classes <strong>of</strong> operators ...................................... 61<br />

11. Interpolation .................................................. 74<br />

12. List <strong>of</strong> symbols ................................................ 81<br />

References ..................................................... 83<br />

*Supported <strong>in</strong> part by NSF DMS-9623260 and DMS-9900185, Texas Advanced Research Program 010366-163,<br />

and US-Israel B<strong>in</strong>ational Science Foundation.<br />

+ Supported <strong>in</strong> part by US-Israel B<strong>in</strong>ational Science Foundation and by NSF DMS-9623260 as a participant <strong>in</strong><br />

<strong>the</strong> Workshop <strong>in</strong> L<strong>in</strong>ear Analysis & Probability at Texas A&M University.<br />

HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL. 1<br />

Edited by William B. Johnson and Joram L<strong>in</strong>denstrauss<br />

9 2001 Elsevier Science B.V. All rights reserved


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces<br />

1. Introduction<br />

In this <strong>in</strong>troductory chapter we present results and concepts which are <strong>of</strong>ten used <strong>in</strong> <strong>Banach</strong><br />

space <strong>the</strong>ory and will be used <strong>in</strong> articles <strong>in</strong> this Handbook without fur<strong>the</strong>r reference. The<br />

material we treat, while familiar to experts <strong>in</strong> <strong>Banach</strong> space <strong>the</strong>ory, has not made its way<br />

<strong>in</strong>to <strong>in</strong>troductory courses <strong>in</strong> functional analysis. The ma<strong>in</strong> purpose <strong>of</strong> this article is to make<br />

<strong>the</strong> subsequent articles accessible to anyone whose background <strong>in</strong>cludes basic graduate<br />

courses <strong>in</strong> analysis and functional analysis. Each section <strong>of</strong> this article is devoted to one<br />

aspect <strong>of</strong> <strong>Banach</strong> space <strong>the</strong>ory.<br />

Although this article can <strong>in</strong> no way be considered as an <strong>in</strong>troductory course <strong>in</strong> <strong>Banach</strong><br />

space <strong>the</strong>ory, we do <strong>in</strong>clude <strong>in</strong>dications <strong>of</strong> pro<strong>of</strong> <strong>of</strong> some basic results <strong>in</strong> <strong>the</strong> hope that<br />

this will help <strong>the</strong> reader understand and get a feel<strong>in</strong>g for <strong>the</strong> various concepts which are<br />

discussed. We reference only some <strong>of</strong> <strong>the</strong> (mostly <strong>in</strong>troductory) books which treat <strong>the</strong> basic<br />

material we describe. Orig<strong>in</strong>al sources are referenced <strong>in</strong> <strong>the</strong>se books. We also mention<br />

some results which are not yet <strong>in</strong> elementary books on <strong>Banach</strong> spaces but which help to<br />

clarify <strong>the</strong> general picture. These generally were ei<strong>the</strong>r discovered recently or are more<br />

difficult than <strong>the</strong> rest <strong>of</strong> <strong>the</strong> material. In <strong>the</strong>se cases we refer to specific articles <strong>in</strong> this<br />

Handbook which treat <strong>the</strong> topic.<br />

In general, we do not attach names to <strong>the</strong>orems (except when experts generally refer to<br />

<strong>the</strong> <strong>the</strong>orem with a name attached, such as <strong>the</strong> Hahn-<strong>Banach</strong> <strong>the</strong>orem, <strong>the</strong> Kre<strong>in</strong>-Milman<br />

<strong>the</strong>orem, Rosenthal's s <strong>the</strong>orem .... ) or give any historical background. Instead we refer<br />

to <strong>the</strong> books <strong>in</strong> <strong>the</strong> references as well as <strong>the</strong> articles <strong>in</strong> this Handbook.<br />

2. Notations and special <strong>Banach</strong> spaces<br />

<strong>Banach</strong> spaces will have ei<strong>the</strong>r real or complex scalars. When <strong>the</strong> scalar field matters (for<br />

example, <strong>in</strong> results <strong>in</strong>volv<strong>in</strong>g spectral <strong>the</strong>ory or <strong>in</strong> <strong>the</strong>orems <strong>of</strong> an isometric nature or when<br />

analyticity plays a r61e), <strong>the</strong> scalar field is mentioned explicitly, but <strong>in</strong> <strong>the</strong> notation for<br />

special spaces <strong>the</strong> scalars are not specified.<br />

Operators between <strong>Banach</strong> spaces are bounded and l<strong>in</strong>ear. An <strong>in</strong>vertible operator T is<br />

called an isomorphism. Two norms on a vector space are called equivalent if <strong>the</strong> identity<br />

operator on X (with <strong>the</strong> two given norms) is an isomorphism. If IIT l] = 1 = I1T-1 ]], T is<br />

called an isometric isomorphism or simply an isometry and <strong>the</strong> doma<strong>in</strong> and range <strong>of</strong> T are<br />

said to be isometric. We write X ~ Y to denote that <strong>the</strong> spaces are isomorphic. To denote<br />

isometry we use <strong>the</strong> equal sign. An isomorphism from a <strong>Banach</strong> space onto itself is called<br />

an automorphism. A <strong>Banach</strong> space Y is said to be a quotient <strong>of</strong> <strong>the</strong> <strong>Banach</strong> space X if Y<br />

is isometric to X/Z for some closed subspace Z <strong>of</strong> X. By <strong>the</strong> open mapp<strong>in</strong>g <strong>the</strong>orem, Y is<br />

isomorphic to a quotient <strong>of</strong> X if <strong>the</strong>re is an operator from X onto Y.<br />

If X ~ Y, d(X, Y) denotes <strong>the</strong> <strong>Banach</strong>-Mazur distance between <strong>the</strong> spaces, def<strong>in</strong>ed<br />

to be <strong>the</strong> <strong>in</strong>fimum <strong>of</strong> IITII lIT -1 II as T ranges over all isomorphisms from X onto Y.<br />

So d(X, Y) = 1 if X and Y are isometric; <strong>the</strong> converse is true for f<strong>in</strong>ite dimensional<br />

spaces but not for <strong>in</strong>f<strong>in</strong>ite dimensional spaces. Note that <strong>the</strong> "triangle <strong>in</strong>equality" for <strong>the</strong><br />

<strong>Banach</strong>-Mazur distance is submultiplicative ra<strong>the</strong>r than subadditive; that is, d(X, Y)


- - Cont<strong>in</strong>uous<br />

- - C<br />

- The<br />

W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

A projection is an idempotent operator. A subspace Z <strong>of</strong> X is said to be complemented if<br />

<strong>the</strong>re is a projection from X onto Z. This is <strong>the</strong> case if and only if Z is closed and <strong>the</strong>re is a<br />

closed subspace W <strong>of</strong> X so that W A Z = {0} and X = W + Z; we <strong>the</strong>n write X = W 9 Z<br />

and say that X is <strong>the</strong> direct sum <strong>of</strong> W and Z. In this case W is isomorphic to X/Z by <strong>the</strong><br />

open mapp<strong>in</strong>g <strong>the</strong>orem.<br />

We regard X as a subspace <strong>of</strong> X** under <strong>the</strong> canonical embedd<strong>in</strong>g. Note that <strong>the</strong>re is<br />

always a projection <strong>of</strong> norm one from X*** onto X* (restrict <strong>the</strong> functionals on X** to X).<br />

An operator T :X ~ Y between <strong>Banach</strong> spaces is compact; respectively, weakly compact;<br />

if <strong>the</strong> image T Bx <strong>of</strong> <strong>the</strong> unit ball Bx <strong>of</strong> X has compact; respectively, weakly com-<br />

pact; closure <strong>in</strong> Y. If ei<strong>the</strong>r X or Y is reflexive, <strong>the</strong>n every operator from X to Y is weakly<br />

compact. The identity operator on X is compact if and only if X is locally compact if and<br />

only if X is f<strong>in</strong>ite dimensional.<br />

A sequence {Xn}n~ <strong>in</strong> a <strong>Banach</strong> space X is called weakly Cauchy provided {X*(Xn)}n~=l<br />

converges for every x* <strong>in</strong> X*. Identify<strong>in</strong>g a <strong>Banach</strong> space with a subspace <strong>of</strong> its bidual, and<br />

tak<strong>in</strong>g <strong>in</strong>to account that <strong>the</strong> uniform boundedness pr<strong>in</strong>ciple implies that a weakly Cauchy<br />

sequence is bounded, we see that {Xn }nO~ 1 is weakly Cauchy <strong>in</strong> X if and only if it converges<br />

weak* <strong>in</strong> X**. The space X is said to be weakly sequentially complete provided every<br />

weakly Cauchy sequence {Xn}neC__ 1 <strong>in</strong> X converges weakly, which is <strong>the</strong> same as say<strong>in</strong>g that<br />

<strong>the</strong> weak* limit <strong>of</strong> {Xn}n~176 1 <strong>in</strong> X** is <strong>in</strong> X itself.<br />

Here is a list <strong>of</strong> special classical <strong>Banach</strong> spaces and o<strong>the</strong>r objects. The elementary <strong>the</strong>ory<br />

<strong>of</strong> <strong>the</strong>se can be found <strong>in</strong> beg<strong>in</strong>n<strong>in</strong>g texts <strong>in</strong> real and functional analysis. A more detailed<br />

list <strong>of</strong> symbols, <strong>in</strong>clud<strong>in</strong>g some notation undef<strong>in</strong>ed <strong>in</strong> <strong>the</strong> text because we regard it as<br />

"standard", is conta<strong>in</strong>ed <strong>in</strong> Section 12.<br />

N<br />

R<br />

C<br />

T<br />

C(K;X)<br />

C(K)<br />

Lp(lZ)<br />

L~(#)<br />

Lp(T)<br />

~p(F)<br />

ep<br />

n<br />

,ep<br />

C<br />

co(F)<br />

-- The natural numbers.<br />

= The real numbers.<br />

= The complex numbers.<br />

= The unit circle <strong>in</strong> <strong>the</strong> complex plane.<br />

functions f on <strong>the</strong> (usually) compact Hausdorff space<br />

K tak<strong>in</strong>g values <strong>in</strong> <strong>the</strong> (usually) <strong>Banach</strong> space X, normed by Ilfll =<br />

suPtcg IIf(t)ll.<br />

(K; X) when X is <strong>the</strong> scalar field.<br />

-- The #-measurable functions f for which Ilfllp -- (f Ifl p d/z) 1/p < ~x~.<br />

Here 0 < p < cxz.<br />

#-measurable essentially bounded functions, with norm IIf I1~ --<br />

<strong>in</strong>fuz=0 sup Ifl~l. Lp(O, 1) -- Lp(#) when/z is Lebesgue measure on <strong>the</strong><br />

unit <strong>in</strong>terval.<br />

-- Lp (#) when # is normalized Lebesgue measure on <strong>the</strong> unit circle.<br />

- Lp(lZ) when # is count<strong>in</strong>g measure on <strong>the</strong> set F.<br />

- ~p(F) when F = N.<br />

--gp(/-') when F = {1, 2 ..... n}.<br />

= The subspace <strong>of</strong> eoc <strong>of</strong> scalar sequences which have a limit.<br />

- The closure <strong>in</strong> goc (F) <strong>of</strong> <strong>the</strong> scalar sequences which have f<strong>in</strong>ite support.


c0<br />

Bx<br />

Bx(x,r)<br />

<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces<br />

= co(l-') when F = 1~.<br />

-- The closed unit ball <strong>of</strong> <strong>the</strong> <strong>Banach</strong> space X.<br />

= The closed ball <strong>of</strong> radius r with center x <strong>in</strong> <strong>the</strong> <strong>Banach</strong> space X; denoted<br />

also B(x, r) when X is understood.<br />

When 0 < p < 1, <strong>the</strong> space Lp(#) is not a <strong>Banach</strong> space except <strong>in</strong> <strong>the</strong> trivial cases that<br />

it is zero or one dimensional. The metric on L p(#), 0 < p < 1, is given by p(x, y) =<br />

IIx- yll p.<br />

If {X~}n~__l is a sequence <strong>of</strong> <strong>Banach</strong> spaces and 1


W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

product <strong>of</strong> <strong>the</strong> probability spaces (I-2n, I~'n) and for co = {con}nC~_ 1 <strong>in</strong> 1-2 set gn(co) = fn(con).<br />

In particular, it is possible to def<strong>in</strong>e a sequence <strong>of</strong> <strong>in</strong>dependent random variables hav<strong>in</strong>g<br />

standard Gaussian distribution on <strong>the</strong> <strong>in</strong>f<strong>in</strong>ite product (0, 1)N <strong>of</strong> (0, 1) (with <strong>the</strong> product <strong>of</strong><br />

Lebesgue measure). By <strong>the</strong> isomorphism <strong>the</strong>orem for separable measure algebras [ 18, p.<br />

399], (0, 1)r~ can be replaced by (0, 1) itself, but it is <strong>of</strong>ten more convenient to work on <strong>the</strong><br />

product space.<br />

The characteristic function <strong>of</strong> <strong>the</strong> random variable g is <strong>the</strong> function ~0 :R --+ C def<strong>in</strong>ed<br />

by ~0(t) = Ee itg. Useful algebraic identities <strong>in</strong>clude ~0(-t) = ~0(t); qgag+b(t ) -- e ibt~O(at);<br />

and, especially, qgf+g = qgf~Og, valid when f and g are <strong>in</strong>dependent. The characteristic<br />

function <strong>of</strong> a standard Gaussian random variable is e -t2/2.<br />

A key fact is that two random variables (possibly def<strong>in</strong>ed on different probability spaces)<br />

have <strong>the</strong> same distribution if and only if <strong>the</strong>y have <strong>the</strong> same characteristic function. This is<br />

proved by an <strong>in</strong>version formula [ 10, 2.3.a], ano<strong>the</strong>r simple consequence <strong>of</strong> which is that <strong>the</strong><br />

characteristic function <strong>of</strong> a random variable g is real valued if and only if g is symmetric;<br />

that is, g and -g have <strong>the</strong> same distribution. A (by no means immediate) consequence <strong>of</strong><br />

<strong>the</strong> <strong>in</strong>version formula [10, 2.7] is that for 0 < r < 2 <strong>the</strong> function e -Itlr is <strong>the</strong> characteristic<br />

function <strong>of</strong> a (necessarily symmetric) random variable, called a symmetric r-stable random<br />

variable. The tail distribution ~[Igl > t] <strong>of</strong> a symmetric r-stable random variable g is like<br />

t -r as t ~ c~, so that Ilgllp < ~ for p < r, but Ilgllr - cx~.<br />

Ano<strong>the</strong>r probabilistic notion that plays an important role <strong>in</strong> <strong>Banach</strong> space <strong>the</strong>ory is that<br />

<strong>of</strong> mart<strong>in</strong>gale. First we recall <strong>the</strong> notion <strong>of</strong> conditional expectation. Let ~ be a probability<br />

measure on a a-algebra/3. If ,4 is a sub cr-algebra <strong>of</strong> 13 and f is a ~-<strong>in</strong>tegrable function,<br />

<strong>the</strong>n by <strong>the</strong> Radon-Nikod3~m <strong>the</strong>orem <strong>the</strong>re is a A-measurable function g so that for each<br />

A <strong>in</strong> A, fA f dip -- fA g d~. The function g is called <strong>the</strong> conditional expectation <strong>of</strong> f given<br />

A and is sometimes denoted by E(f I A) Suppose now that {fn}~ is a sequence <strong>of</strong><br />

9<br />

F/=0<br />

random variables on <strong>the</strong> same probability space and/3n is <strong>the</strong> smallest cr-algebra for which<br />

fo, fl,..., fn are measurable. The sequence {fn }n~_0 is called a mart<strong>in</strong>gale provided that<br />

for each n, fn -- E(fn+l I/3n). The sequence {dn}n~=0 <strong>of</strong> differences; do = fo, dn - fn -<br />

fn-1; is <strong>the</strong>n called a mart<strong>in</strong>gale difference sequence. Notice that a sequence {dn}n~=0<br />

<strong>of</strong> <strong>in</strong>dependent random variables is a mart<strong>in</strong>gale difference sequence if and only if dn<br />

has mean zero for all n ~> 1. A simple but important example <strong>of</strong> a mart<strong>in</strong>gale difference<br />

sequence which is not a sequence <strong>of</strong> <strong>in</strong>dependent random variables is <strong>the</strong> Haar system,<br />

discussed <strong>in</strong> Section 4. One basic <strong>the</strong>orem about mart<strong>in</strong>gales, <strong>the</strong> mart<strong>in</strong>gale convergence<br />

<strong>the</strong>orem (see [10, 4.2.10]), states that every L1 bounded mart<strong>in</strong>gale converges a.e., which<br />

means that if {fn }n=0 is a mart<strong>in</strong>gale <strong>of</strong> P-measurable functions and SUPn Elfnl < c~, <strong>the</strong>n<br />

{fn }n~__0 converges a.e. Moreover, if <strong>the</strong> mart<strong>in</strong>gale is uniformly <strong>in</strong>tegrable (see Section 4,<br />

<strong>the</strong>n it also converges <strong>in</strong> L1 (~) (see [10, 4.5.3]).<br />

3. Bases<br />

Except<strong>in</strong>g [2] and [12], which are oriented to <strong>Banach</strong> space <strong>the</strong>ory, few <strong>in</strong>troductory texts<br />

<strong>in</strong> functional analysis treat Schauder bases. Never<strong>the</strong>less, bases are a very useful tool for<br />

<strong>in</strong>vestigat<strong>in</strong>g properties <strong>of</strong> <strong>Banach</strong> spaces.


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces<br />

We prove few statements <strong>in</strong> this section s<strong>in</strong>ce most <strong>of</strong> <strong>the</strong> results are proved <strong>in</strong> [2] and<br />

[12]. The book [14] <strong>of</strong>ten conta<strong>in</strong>s only sketches <strong>of</strong> pro<strong>of</strong>s. Chapter 2 <strong>of</strong> [21] conta<strong>in</strong>s<br />

enough details to be pleasant read<strong>in</strong>g for <strong>the</strong> mature student or experienced ma<strong>the</strong>matician<br />

who is not an expert <strong>in</strong> <strong>Banach</strong> space <strong>the</strong>ory. All <strong>of</strong> <strong>the</strong>se books conta<strong>in</strong> exercises. Many <strong>in</strong><br />

[21 ] are challeng<strong>in</strong>g even after peek<strong>in</strong>g at <strong>the</strong> h<strong>in</strong>ts. Exercises <strong>in</strong> [ 14], as <strong>in</strong> this <strong>in</strong>troductory<br />

article, are scattered throughout <strong>the</strong> text and are sometimes flagged by such expressions as<br />

"clearly", "hence", and <strong>the</strong> like.<br />

A Schauder basis or simply a basis for a <strong>Banach</strong> space X is a sequence {Xn}n~=l <strong>of</strong><br />

vectors <strong>in</strong> X such that every vector <strong>in</strong> X has a unique representation <strong>of</strong> <strong>the</strong> form ~ OlnX n<br />

with each C~n a scalar and where <strong>the</strong> sum is converges <strong>in</strong> <strong>the</strong> norm topology. The mapp<strong>in</strong>g<br />

x w-> Otn <strong>the</strong>n def<strong>in</strong>es for each n a l<strong>in</strong>ear functional x n on X. One checks that <strong>the</strong><br />

expression !xV 9 = SUPn IIE~=I xk (x)x~ll def<strong>in</strong>es a stronger complete norm on X, so that !.!<br />

and II, II are equivalent by <strong>the</strong> open mapp<strong>in</strong>g <strong>the</strong>orem. One deduces from this that <strong>the</strong><br />

biorthogonal functionals for a basis are necessarily cont<strong>in</strong>uous. Moreover, <strong>the</strong> biorthogonal<br />

functionals are a basic sequence <strong>in</strong> X*; that is, <strong>the</strong>y form a basis for <strong>the</strong>ir closed l<strong>in</strong>ear<br />

span. When it is useful to specify <strong>the</strong> biorthogonal functionals, we sometimes refer to <strong>the</strong><br />

"basis" {Xn, x n }n=l"<br />

A sequence {Xn}n~=l is called normalized if each vector Xn has norm one and {Xn}n~__l is<br />

called sem<strong>in</strong>ormalized if it is bounded and bounded away from zero. For most purposes it<br />

is sufficient to consider normalized or at least sem<strong>in</strong>ormalized basic sequences9<br />

The partial sum projections <strong>of</strong> a basis {Xn,'A n*l~ln__l ' def<strong>in</strong>ed for n = 1, 2,... by Pnx --<br />

Y~.<strong>in</strong>l x*(x)xi, are necessarily uniformly bounded and converge strongly to <strong>the</strong> identity;<br />

that is, Ilx - PnX II --+ 0 for each x <strong>in</strong> X. The supremum <strong>of</strong> <strong>the</strong> norms <strong>of</strong> <strong>the</strong>se partial sum<br />

projections is called <strong>the</strong> basis constant. This quantitative notion is <strong>of</strong> <strong>in</strong>terest also if we just<br />

consider f<strong>in</strong>ite basic sequences or bases for f<strong>in</strong>ite dimensional spaces. A sequence {x,},~__l<br />

<strong>of</strong> nonzero vectors is basic with basis constant at most C if and only if for all n < m (and<br />

all scalars O/i) <strong>the</strong> <strong>in</strong>equality II Y~<strong>in</strong>~__l OliXi ]l ~ C II Zi%l Oli Xi II holds. A block basis {yj }j= 1<br />

<strong>of</strong> <strong>the</strong> basis {x~}~__l is a sequence <strong>of</strong> nonzero vectors <strong>of</strong> <strong>the</strong> form yj<br />

m ~-'~nJ<br />

z--~k=nj+l<br />

+1<br />

~kxk for<br />

some sequence n l < n2 < .- .. The basis constant <strong>of</strong> a block basis <strong>of</strong> {Xn }n=~ 1 is no larger<br />

than <strong>the</strong> basis constant <strong>of</strong> {xn}~<br />

n=l"<br />

A basis is called monotone provided that its basis constant is one. One can change to an<br />

equivalent norm, Ill'Ill, <strong>in</strong> which <strong>the</strong> basis is monotone" just set ]llxlll- sup~ IlPnxll. In fact,<br />

if one def<strong>in</strong>es <strong>in</strong>stead Illxlll = SUPn


W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

you select Xn+l SO that maxx,cS [[Xn+l [[-1 [X*(Xn+l)[ is sufficiently small, <strong>the</strong> result<strong>in</strong>g sequence<br />

{Xn}n~__l will have basis constant less than e + I-In~__l Cn. This yields, for example,<br />

that every weakly null, non-norm null sequence has a basic subsequence.<br />

This last result can be improved substantially. Two basic sequences {Xn }n~__l and {Yn }n~=l<br />

are equivalent provided that <strong>the</strong> map Txn = Yn extends to an isomorphism from <strong>the</strong> closed<br />

span <strong>of</strong> {Xn}nC~=l onto <strong>the</strong> closed span <strong>of</strong> {Yn}n~ K-equivalent if [[TllllT-1[[ ~< K (so,<br />

strangely, {Xn}n~__l is 1-equivalent to {2Xn}n~__l, but usually basic sequences are normalized).<br />

The pr<strong>in</strong>ciple <strong>of</strong> small perturbations says that if {Xn}n~__l is a basic sequence <strong>in</strong><br />

X and IlXn - Yn II--+ 0 sufficiently quickly, <strong>the</strong>n {Yn}n~__l is a basic sequence which is<br />

equivalent to {Xn}n~=l. To prove this, let {Xn*}n~__l be Hahn-<strong>Banach</strong> extensions <strong>of</strong> <strong>the</strong> functionals<br />

biorthogonal to {Xn}n~__l to functionals <strong>in</strong> X* and def<strong>in</strong>e an operator S on X by<br />

Sx -- Y~x*(x)(yn -Xn), SO [[S[[ ~ E [[x*[[[[yn --Xn[[. If I]sll < 1, elementary considerations<br />

yield that I + S is an automorphism <strong>of</strong> X which maps Xn to Yn. This also yields<br />

that if { n}n=l is a basis <strong>of</strong> X, <strong>the</strong>n so is {Yn}n~_l. From this one sees that if {Xn}n~__l is<br />

a basis for X with biorthogonal functionals tx n *~ J n=l' if {Yn}n~=l is a sem<strong>in</strong>ormalized sequence<br />

<strong>in</strong> X, and if for each k, x k (Yn) -+ 0 as n --+ cx~, <strong>the</strong>n {y~}n~__l has a subsequence<br />

which is equivalent to some block basis {Zn}n~__l <strong>of</strong> {Xn}n~__l. From this it follows that every<br />

<strong>in</strong>f<strong>in</strong>ite dimensional subspace Y <strong>of</strong> a <strong>Banach</strong> space X with a basis {Xn}n~__l conta<strong>in</strong>s, for<br />

every K > 1, a normalized basic sequence {Zn}n~__l which is K-equivalent to a normalized<br />

block basis {Yn }n~--_ 1 <strong>of</strong> {Xn}~__1. Moreover, <strong>the</strong> small perturbation argument <strong>in</strong>dicated<br />

above shows that <strong>the</strong> generated isomorphism which maps {Yn}n~=l <strong>in</strong>to Y extends to an<br />

automorphism on X.<br />

To see how <strong>the</strong>se basic facts about bases might be used, suppose that T is a noncompact<br />

operator from a subspace X0 <strong>of</strong> a <strong>Banach</strong> space X with basis {Xn, x~ }n~__l <strong>in</strong>to a <strong>Banach</strong><br />

space Y with basis {Zn}n= 1. Then <strong>the</strong>re is a sequence {Yn}n~__l <strong>in</strong> <strong>the</strong> unit ball <strong>of</strong> X0 such<br />

that for some E > 0 and all n ~ m, IITyn - Tym I[ > ~. By pass<strong>in</strong>g to a subsequence <strong>of</strong><br />

differences <strong>of</strong> {Yn}n~=l it can be assumed that for each k, x k (Yn) --+ 0 as n --+ ~. In view<br />

<strong>of</strong> what was discussed <strong>in</strong> <strong>the</strong> previous paragraph, by pass<strong>in</strong>g to ano<strong>the</strong>r subsequence it can<br />

be assumed that {Yn}n~=l is an arbitrarily small perturbation <strong>of</strong> a block basis <strong>of</strong> {Xn}n~__l.<br />

Repeat<strong>in</strong>g <strong>the</strong> same argument for {Tyn}n~=l <strong>in</strong> Y and normaliz<strong>in</strong>g at <strong>the</strong> end, we conclude<br />

that if T is a noncompact operator from a subspace Xo <strong>of</strong> a <strong>Banach</strong> space X with basis<br />

{Xn}n~__l <strong>in</strong>to a <strong>Banach</strong> space Y with basis {Zn}n~=l, <strong>the</strong>n <strong>the</strong>re are automorphisms U on X<br />

and V on Y and a normalized block basis {Yn}n~__l <strong>of</strong> {Xn}n~ with Yn E U-1Xo and such<br />

that {VTUyn}n~__l is a sem<strong>in</strong>ormalized block basis <strong>of</strong> {Zn}n~__l.<br />

This last mentioned result gives considerable <strong>in</strong>formation <strong>in</strong> cases where all block bases<br />

<strong>of</strong> a basis can be characterized. The simplest examples <strong>of</strong> bases are provided by <strong>the</strong> unit<br />

vector basis {en}n~__l for s 1


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces<br />

We should mention that, <strong>in</strong> contrast to <strong>the</strong> case <strong>of</strong> gp and ~r, it generally is quite difficult<br />

to determ<strong>in</strong>e whe<strong>the</strong>r two spaces are isomorphic even when both are presented concretely<br />

as similar but different function spaces.<br />

Ano<strong>the</strong>r consequence <strong>of</strong> <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> small perturbations is that g l has <strong>the</strong> Schur<br />

property, which means that every weakly convergent sequence <strong>in</strong> ~ j is norm convergent.<br />

Indeed, o<strong>the</strong>rwise <strong>the</strong>re would be a weakly null sequence {Xn }n~=l <strong>in</strong> g l which is bounded<br />

away from zero. The sequence {Xn}n~=l is necessarily bounded, so <strong>the</strong> sequence {Xn}n~_l<br />

would have a subsequence {Xnk }~=l which is equivalent to a block basis <strong>of</strong> <strong>the</strong> unit vector<br />

basis <strong>of</strong> g 1 and thus equivalent to <strong>the</strong> unit vector basis <strong>of</strong> g 1. This is a contradiction because<br />

<strong>the</strong> unit vector basis <strong>of</strong> ~l is not weakly null. An easy formal consequence <strong>of</strong> <strong>the</strong> fact that<br />

g l has <strong>the</strong> Schur property is that every weakly Cauchy sequence <strong>in</strong> f j is norm convergent.<br />

In particular, el is weakly sequentially complete.<br />

The most natural basis for Lp(O, 1), 1 ~ p < oo, is <strong>the</strong> Haar system {hn}~_0, where<br />

h0 = 1 [0,1), and for n - 2 j 4- k with j = 0, 1 .... and k = 0, 1 ..... 2 j - 1,<br />

hn = l[k2-J,(2k+l)2-J-1 ) -- l[(2k+l)2-j-~,(k+l)2-j ).<br />

It is easy to check that if 1 ~< p ~< oo, <strong>the</strong>n for each n and all scalars Oti <strong>the</strong> <strong>in</strong>equality<br />

II~,i=o~ihillp n


10 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

A sequence which is an unconditional basis for its closed l<strong>in</strong>ear span is said to be unconditionally<br />

basic. S<strong>in</strong>ce a block basis <strong>of</strong> an unconditional basis is clearly unconditional (with<br />

unconditional constant no larger than that <strong>of</strong> <strong>the</strong> basis itself), <strong>the</strong> perturbation pr<strong>in</strong>ciple described<br />

above yields that every <strong>in</strong>f<strong>in</strong>ite dimensional subspace <strong>of</strong> a space with unconditional<br />

basis conta<strong>in</strong>s an unconditionally basic sequence.<br />

The unit vector bases for ep, 1 ~< p < cx~, and co are <strong>the</strong> simplest examples <strong>of</strong> unconditional<br />

bases. For 1 < p < c~, <strong>the</strong> Haar system forms an unconditional basis for L p (0, 1).<br />

The "modem" pro<strong>of</strong> <strong>of</strong> this proceeds via mart<strong>in</strong>gale <strong>the</strong>ory. The exact unconditional constant<br />

<strong>of</strong> <strong>the</strong> Haar system <strong>in</strong> Lp(O, 1) is computed <strong>in</strong> [23]. In Section 8 we po<strong>in</strong>t out that <strong>the</strong><br />

trigonometric system is an unconditional basis <strong>in</strong> Lp(7~) only for p -- 2.<br />

A basis {Xn}n~__ 1 for X is shr<strong>in</strong>k<strong>in</strong>g provided <strong>the</strong> l<strong>in</strong>ear span <strong>of</strong> <strong>the</strong> biorthogonal functionals<br />

{Xn}n= * ~ 1 is (norm) dense <strong>in</strong> X*, which is to say that {Xn*}n~__l is a basis for X*. Notice<br />

that a bounded shr<strong>in</strong>k<strong>in</strong>g basis necessarily converges weakly to zero. The basis {Xn}n~__l is<br />

boundedly complete provided that whenever <strong>the</strong> sequence {y~<strong>in</strong>__ 101i Xi }nC~_ 1 is bounded, <strong>the</strong>n<br />

it is convergent. If a basis is shr<strong>in</strong>k<strong>in</strong>g, <strong>the</strong>n its biorthogonal functionals are a boundedly<br />

complete basis for X*. Conversely, if <strong>the</strong> biorthogonal functionals form a boundedly complete<br />

basis for <strong>the</strong>ir closed l<strong>in</strong>ear span Y, <strong>the</strong>n <strong>the</strong> basis is shr<strong>in</strong>k<strong>in</strong>g (and hence Y = X*).<br />

Similarly, a basis is boundedly complete if and only if its biorthogonal functionals are a<br />

shr<strong>in</strong>k<strong>in</strong>g basis for <strong>the</strong>ir closed l<strong>in</strong>ear span. If {Xn}n~__l is a boundedly complete basis for<br />

X and Y is <strong>the</strong> normed closed l<strong>in</strong>ear span <strong>of</strong> <strong>the</strong> biorthogonal functionals {xn* }n=l' ~ <strong>the</strong><br />

shr<strong>in</strong>k<strong>in</strong>gness <strong>of</strong> {Xn*}n~__l implies that <strong>the</strong> natural evaluation mapp<strong>in</strong>g from X <strong>in</strong>to Y* is a<br />

surjective isomorphism (which is easily seen to be an isometry if <strong>the</strong> basis is monotone).<br />

Consequently, a space with a boundedly complete basis is isomorphic to a separable conjugate<br />

space. From <strong>the</strong>se facts it follows, <strong>in</strong> particular, that a <strong>Banach</strong> space X with a basis<br />

is reflexive if and only if some (or every) basis for X is both shr<strong>in</strong>k<strong>in</strong>g and boundedly<br />

complete.<br />

If X has an unconditional basis, <strong>the</strong>n some (or every) unconditional basis is boundedly<br />

complete if and only if X has no subspace isomorphic to co, while some (or every) unconditional<br />

basis is shr<strong>in</strong>k<strong>in</strong>g if and only if no (or no complemented) subspace <strong>of</strong> X is<br />

isomorphic to el. Consequently, a space with unconditional basis is reflexive if and only if<br />

no subspace is isomorphic to ei<strong>the</strong>r co or to ~1 if and only if its second dual is separable.<br />

In contrast, <strong>the</strong>re is a nonreflexive space which has both a shr<strong>in</strong>k<strong>in</strong>g basis and a boundedly<br />

complete basis which is <strong>of</strong> codimension one <strong>in</strong> its bidual, [ 14, 1.d.2].<br />

While most <strong>of</strong> <strong>the</strong> separable spaces encountered <strong>in</strong> classical analysis have bases, many<br />

do not have an unconditional basis; <strong>in</strong> particular, <strong>the</strong> spaces L1 (0, 1) and C[0, 1 ]. Indeed,<br />

co does not embed isomorphically <strong>in</strong>to L1 (0, 1) (for example, because L1 (0, 1) is weakly<br />

sequentially complete and co is not; see Section 4), so any unconditional basis for L1 (0, 1)<br />

would have to be boundedly complete and L 1(0, 1) would be isomorphic to a separable<br />

conjugate space. But L 1(0, 1) does not even embed isomorphically <strong>in</strong>to a separable conjugate<br />

space (s<strong>in</strong>ce if L 1(0, 1) C X* and for t E (0, 1) x~ is a weak* cluster po<strong>in</strong>t <strong>of</strong> <strong>the</strong><br />

sequence n -l l(t,t+l/n), <strong>the</strong>n it can be checked that <strong>the</strong>re is an uncountable subset S <strong>of</strong><br />

(0, 1) and 6 > 0 so that for all t :~ s <strong>in</strong> S, IIx? - x* II > 6). A more sophisticated (but actually<br />

technically easier) argument shows even that L1 (0, 1) does not embed isomorphically<br />

<strong>in</strong>to a space with unconditional basis; see [14, 1.d.1]. S<strong>in</strong>ce, as mentioned <strong>in</strong> Section 4,


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 11<br />

every separable space embeds isometrically <strong>in</strong>to C[0, 1 ], C[0, 1 ] also does not embed isomorphically<br />

<strong>in</strong>to a space with unconditional basis.<br />

It is a deep result that <strong>the</strong>re exist <strong>in</strong>f<strong>in</strong>ite dimensional spaces which do not conta<strong>in</strong> an<br />

unconditionally basic sequence (see [37]). The example uses <strong>Banach</strong> spaces whose norm<br />

is not def<strong>in</strong>ed explicitly by a formula but by an implicit procedure. This method <strong>of</strong> def<strong>in</strong><strong>in</strong>g<br />

a <strong>Banach</strong> space (or a norm) is very useful <strong>in</strong> many contexts.<br />

A basis {Xn}n~= 1 is called symmetric provided every permutation <strong>of</strong> {Xn}n~__ 1 is equivalent<br />

to {Xn}n~176. In particular, every permutation <strong>of</strong> {Xn}n~__l is a basis, so a symmetric basis is<br />

unconditional. A basis {Xn}n~__l is called subsymmetric provided it is unconditional and<br />

equivalent to each subsequence <strong>of</strong> itself. A symmetric basis is subsymmetric [14, 3.a.3].<br />

It is evident that if a basis is unconditional, symmetric, or subsymmetric, <strong>the</strong>n <strong>the</strong> same is<br />

true for <strong>the</strong> biorthogonal functionals (<strong>in</strong> <strong>the</strong>ir closed l<strong>in</strong>ear span).<br />

The unit vector bases for ~p, 1 ~< p < ec, and co are symmetric, while <strong>the</strong> L p-<br />

normalization <strong>of</strong> <strong>the</strong> Haar system is not a symmetric basis for L p (0, 1) if p 7~ 2. In fact,<br />

L p(O, 1) has no subsymmetric basis if p 7~ 2. We have already mentioned that L 1(0, 1)<br />

does not have even an unconditional basis. That L p(O, 1), 2 < p < ec, has no subsymmetric<br />

basis follows from <strong>the</strong> dichotomy pr<strong>in</strong>ciple for sequences <strong>in</strong> <strong>the</strong> space, which is<br />

discussed <strong>in</strong> Section 8. This pr<strong>in</strong>ciple says that if {xn}~~ 1 is a sem<strong>in</strong>ormalized basic sequence<br />

<strong>in</strong> Lp(O, 1), 2 < p < ec, <strong>the</strong>n {X~}nOC=l has a subsequence which is equivalent to<br />

<strong>the</strong> unit vector basis for ei<strong>the</strong>r s or g2. S<strong>in</strong>ce, as noted <strong>in</strong> Section 4, Lp(O, 1), p ~ 2, is<br />

not isomorphic to ei<strong>the</strong>r gp or ~2, Lp(O, 1), 2 < p < ec, has no subsymmetric basis. That<br />

L p(0, 1), 1 < p < 2, has no subsymmetric basis <strong>the</strong>n follows by duality.<br />

It is <strong>in</strong>terest<strong>in</strong>g that symmetric bases are never<strong>the</strong>less prevalent. For example, any space<br />

which has an unconditional basis is isomorphic to a complemented subspace <strong>of</strong> a space<br />

which has a symmetric basis (this will be discussed fur<strong>the</strong>r <strong>in</strong> Section 11). In fact, <strong>the</strong>re<br />

is even a space Y which has a symmetric basis and also an unconditional basis {Zn}n~<br />

which is universal for unconditional bases <strong>in</strong> <strong>the</strong> sense that every unconditional basis for<br />

any <strong>Banach</strong> space is equivalent to a subsequence <strong>of</strong> {Zn },c__ 1 ! The space Y and <strong>the</strong> universal<br />

unconditional basis is easy to construct, given <strong>the</strong> fact, to be proved <strong>in</strong> Section 4, that<br />

every separable <strong>Banach</strong> space is isometric to a subspace <strong>of</strong> C[0, 1]. Indeed, one takes a<br />

dense sequence {X~}neC=l <strong>of</strong> nonzero vectors <strong>in</strong> C[0, 1] and lets Y be <strong>the</strong> completion <strong>of</strong> <strong>the</strong><br />

f<strong>in</strong>itely supported scalar sequences under <strong>the</strong> norm II {an }~lll "- sup+ II Zn -+-anXn IIC[0,11.<br />

The unit vector basis <strong>in</strong> Y is a universal unconditional basis. See [14, p. 129] or [41] for<br />

fur<strong>the</strong>r discussion and for <strong>the</strong> pro<strong>of</strong> that <strong>the</strong> space Y has a symmetric basis.<br />

While unconditional bases, symmetric bases, and subsymmetric bases are all useful<br />

streng<strong>the</strong>n<strong>in</strong>gs <strong>of</strong> <strong>the</strong> notion <strong>of</strong> basis, <strong>the</strong>re are equally useful weaken<strong>in</strong>gs. A Schauder<br />

decomposition for a <strong>Banach</strong> space X is a sequence {X~ }n~__l <strong>of</strong> nonzero closed subspaces<br />

<strong>of</strong> X such that every vector x <strong>in</strong> <strong>the</strong> space has a unique representation <strong>of</strong> <strong>the</strong> form x -- ~ Xn<br />

with Xn ~ Xn. If each Xn is f<strong>in</strong>ite dimensional, <strong>the</strong> decomposition is called a f<strong>in</strong>ite dimensional<br />

decomposition, or simply an FDD. A basis can be regarded as an FDD { Xn }~ 1 such<br />

that every space Xn is one dimensional. As <strong>in</strong> <strong>the</strong> case <strong>of</strong> bases, a Schauder decomposition<br />

{Xn}~~1761 for a <strong>Banach</strong> space X determ<strong>in</strong>es a sequence {Pn }~~176 1 (called <strong>the</strong> partial sum<br />

projections <strong>of</strong> <strong>the</strong> decomposition) <strong>of</strong> commut<strong>in</strong>g projections with <strong>in</strong>creas<strong>in</strong>g ranges which<br />

converge strongly to <strong>the</strong> identity operator on X; namely, for x = y~ Xn with x~ E Xn and<br />

n - 1, 2 ..... Pnx - ~-~<strong>in</strong>l xi. Conversely, if {Pn}n~__l is a sequence <strong>of</strong> commut<strong>in</strong>g projec-


12 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

tions with <strong>in</strong>creas<strong>in</strong>g ranges which converge strongly to <strong>the</strong> identity operator on X, <strong>the</strong>n<br />

{(Pn - Pn-1)X}n~=l (P0 "-- 0) is a Schauder decomposition for X for which {Pn }n~_-i is <strong>the</strong><br />

sequence <strong>of</strong> partial sum projections. The biorthogonal functionals for a basis are replaced<br />

<strong>in</strong> <strong>the</strong> case <strong>of</strong> a Schauder decomposition by <strong>the</strong> sequence {(P* - Pn*l)X* }n~=l <strong>of</strong> (even<br />

weak*) closed subspaces <strong>of</strong> X*, which form a Schauder decomposition for <strong>the</strong>ir closed<br />

span. The supremum <strong>of</strong> <strong>the</strong> norms <strong>of</strong> <strong>the</strong> partial sum projections determ<strong>in</strong>ed by a Schauder<br />

decomposition is f<strong>in</strong>ite and is called <strong>the</strong> decomposition constant <strong>of</strong> <strong>the</strong> decomposition, and<br />

<strong>the</strong> Schauder decomposition is called monotone if its decomposition constant is one.<br />

The def<strong>in</strong>itions <strong>of</strong> unconditional, shr<strong>in</strong>k<strong>in</strong>g, and boundedly complete bases generalize<br />

immediately to Schauder decompositions. The structure <strong>the</strong>ory for bases goes over with<br />

little difficulty to FDD's. More importantly, <strong>the</strong>re are useful concepts <strong>in</strong>volv<strong>in</strong>g FDD's<br />

which are not merely generalizations <strong>of</strong> notions about bases. For example, a block<strong>in</strong>g <strong>of</strong><br />

a Schauder decomposition {Xn}n~=l is a sequence <strong>of</strong> <strong>the</strong> form {Xnk "-[-''" + Xnk+l-1}L1<br />

with 1 = n 1 < n2 < .... Any block<strong>in</strong>g <strong>of</strong> a basis (that is, <strong>of</strong> a Schauder decomposition <strong>in</strong>to<br />

one dimensional spaces) produces an FDD which is not a basis. While bases and block<br />

bases are f<strong>in</strong>e <strong>in</strong> situations where passage to subsequences or subspaces <strong>in</strong>volves no loss,<br />

block<strong>in</strong>gs <strong>of</strong> FDD's sometime provide <strong>the</strong> proper framework for <strong>in</strong>vestigations where it<br />

is important to ma<strong>in</strong>ta<strong>in</strong> global control. For example, it was mentioned above that every<br />

normalized basic sequence <strong>in</strong> ep, 1 < p < cx~, has a subsequence equivalent to <strong>the</strong> unit<br />

vector basis <strong>of</strong> ep, but one can prove that every FDD for a subspace <strong>of</strong> gp, 1 < p < ~, has<br />

a block<strong>in</strong>g which is an ep decomposition [14, 2.d.1]. (A Schauder decomposition {Xn}n~__l<br />

is said to be an g.p decomposition provided that for Xn ~ Xn, <strong>the</strong> series y~ Xn converges if<br />

and only if y~ [[Xn[Ip < oo.)<br />

A separable <strong>Banach</strong> space is said to have <strong>the</strong> bounded approximation property or simply<br />

BAP provided <strong>the</strong>re is a sequence { Tn }n~__l <strong>of</strong> f<strong>in</strong>ite rank operators on X which converges<br />

strongly to <strong>the</strong> identity. If <strong>the</strong> operators can be chosen to commute, <strong>the</strong> space has <strong>the</strong> commut<strong>in</strong>g<br />

bounded approximation property (CBAP). In ei<strong>the</strong>r case <strong>the</strong> supremum <strong>of</strong> [[ Tn [[ is<br />

f<strong>in</strong>ite; if at most )~, we say that <strong>the</strong> space has <strong>the</strong> )~-BAP or )~-CBAP, or when )~ = 1 <strong>the</strong> metric<br />

approximation property (MAP) or commut<strong>in</strong>g metric approximation property (CMAP).<br />

F<strong>in</strong>ally, A <strong>Banach</strong> space X has <strong>the</strong> approximation property or simply AP provided that for<br />

every compact subset K <strong>of</strong> X and E > 0, <strong>the</strong>re is a f<strong>in</strong>ite rank operator T on X such that<br />

[Ix - Tx l[ < ~ for every x ~ K. If a space X has <strong>the</strong> AP, <strong>the</strong>n every compact operator S<br />

<strong>in</strong>to X is <strong>the</strong> norm limit <strong>of</strong> a sequence <strong>of</strong> f<strong>in</strong>ite rank operators. Indeed, take for n = 1, 2 ....<br />

a f<strong>in</strong>ite rank operator Tn on X so that for each x <strong>in</strong> <strong>the</strong> image under <strong>of</strong> <strong>the</strong> unit ball <strong>of</strong> <strong>the</strong><br />

doma<strong>in</strong> <strong>of</strong> S <strong>the</strong> <strong>in</strong>equality IIx - Tnxll


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 13<br />

conditions leads to nice <strong>the</strong>orems which do not <strong>in</strong>volve any notion <strong>of</strong> approximation; <strong>in</strong><br />

particular, isomorphic characterizations <strong>of</strong> Hilbert space (see [35]).<br />

The existence <strong>of</strong> spaces fail<strong>in</strong>g <strong>the</strong> AP as well as o<strong>the</strong>r considerations lead to <strong>the</strong> study<br />

<strong>of</strong> o<strong>the</strong>r basis-like structures <strong>in</strong> <strong>Banach</strong> spaces. Probably <strong>the</strong> most useful <strong>of</strong> <strong>the</strong>se is that <strong>of</strong><br />

Markuschevich basis. A Markuschevich basis for a <strong>Banach</strong> space X is a biorthogonal system<br />

{x• x• *}• for which {x• }y~r is fundamental (that is, <strong>the</strong> span <strong>of</strong> <strong>the</strong> x• is dense<br />

<strong>in</strong> X) and {X•215 * is total; that is, <strong>the</strong> x• *'s separate <strong>the</strong> po<strong>in</strong>ts <strong>of</strong> X. The trigonometric<br />

system <strong>in</strong> L I(~') or C(~') is a natural example <strong>of</strong> a Markuschevich basis which is not a<br />

(Schauder) basis <strong>in</strong> any order (but this last statement is not easy to verify). Markuschevich<br />

bases do not always exist <strong>in</strong> <strong>the</strong> nonseparable sett<strong>in</strong>g, but are a useful tool for <strong>in</strong>vestigat<strong>in</strong>g<br />

nonseparable spaces <strong>in</strong> situations where <strong>the</strong>y exist (see [44]). It is easy to see that<br />

any separable space X admits a Markuschevich basis. One starts with l<strong>in</strong>early <strong>in</strong>dependent<br />

sequences {Yn}nCX~ 1 <strong>in</strong> X and {'Yn*'CX~ln--I <strong>in</strong> X* with {Yn}n~ 1_ fundamental and {yn*}n~_l_ total<br />

and applies a Gram-Schmidt type procedure to biorthogonalize <strong>the</strong> sequences (alternat<strong>in</strong>g<br />

between work<strong>in</strong>g <strong>in</strong> X and X*) to produce a Markuschevich basis {Xn,X*}n~__l so that<br />

span{Xn}n~=l -- span{yn}n~_l _ and span{xn*}n~__l = s-an'- p [.Ynln= *~ 1 (see [14, 1.f.3]). A deeper<br />

fact [14, 1.f.4] is that a separable space conta<strong>in</strong>s a Markuschevich basis {Xn,Xn}n: * ~ 1 for<br />

which SUPn IIxn II IIxn*ll ~< 20, and it is known that twenty can be replaced by any number<br />

larger than one. We shall see <strong>in</strong> Section 8 that a f<strong>in</strong>ite dimensional space has a basis<br />

, N<br />

{Xn, x n }n=l for which IIxn II IIx* II - 1 for each n, but it is an open problem whe<strong>the</strong>r every<br />

separable space has a Markuschevich basis with this property. One separable <strong>the</strong>orem <strong>in</strong><br />

which Markuschevich bases are used but do not appear <strong>in</strong> <strong>the</strong> statement is that every separable<br />

space X has a subspace Y such that both Y and X~ Y have an FDD [ 14, 1.g.2]. Incidentally,<br />

it is open whe<strong>the</strong>r <strong>the</strong> conclusion can be improved to "both Y and X~ Y have a basis".<br />

4. Classical spaces<br />

In this section we present some basic facts concern<strong>in</strong>g <strong>the</strong> structure <strong>of</strong> <strong>the</strong> classical spaces<br />

C(K) and Lp(#), <strong>the</strong>ir classification, and <strong>the</strong> relations among <strong>the</strong> spaces. Most books<br />

on real analysis, such as [ 18], conta<strong>in</strong> some elementary results about <strong>the</strong> structure <strong>of</strong> <strong>the</strong>se<br />

spaces. Beyond <strong>the</strong> most basic material, [21 ] is accessible to students and has <strong>the</strong> additional<br />

advantage that some <strong>of</strong> <strong>the</strong> relations between <strong>the</strong>se spaces and o<strong>the</strong>r spaces encountered <strong>in</strong><br />

analysis are touched on. The more narrowly focused book [7] is also directed at students,<br />

conta<strong>in</strong>s several structural results omitted from [21], and <strong>the</strong> author's <strong>of</strong>f-<strong>the</strong>-wall style<br />

makes <strong>the</strong> book fun to read.<br />

A normalized sequence {Xn}n~=l <strong>of</strong> disjo<strong>in</strong>tly supported functions <strong>in</strong> Lp(#), 1 0 <strong>the</strong>re is a subspace Z <strong>of</strong> Y with<br />

d (Z, X) < 1 § ~ and so that <strong>the</strong>re is a projection <strong>of</strong> norm less than 1 + ~ from X onto Z.


14 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

Although general subspaces <strong>of</strong> X, X = s for 1 ~ p 7~ 2 < cc or X = co can be bad <strong>in</strong><br />

that <strong>the</strong>y can fail <strong>the</strong> approximation property and <strong>the</strong>re are many <strong>of</strong> <strong>the</strong>m, <strong>in</strong> a sense that is<br />

made precise <strong>in</strong> [24], <strong>the</strong> isomorphism <strong>the</strong>ory <strong>of</strong> complemented subspaces <strong>of</strong> X is simple:<br />

An <strong>in</strong>f<strong>in</strong>ite dimensional complemented subspace Y <strong>of</strong> X, X = g.p for 1


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 15<br />

Next, if Lp(l z) is separable with # a purely nonatomic probability measure, <strong>the</strong>n <strong>the</strong><br />

isomorphism <strong>the</strong>orem for separable measure algebras [18, p. 399] yields that Lp(tX) is<br />

isometric to L p(O, 1). On <strong>the</strong> o<strong>the</strong>r hand, if <strong>the</strong> measure # is purely atomic with atoms<br />

{A• <strong>the</strong>n <strong>the</strong> function which maps for each y <strong>the</strong> unit vector ey to lZ(Ay) -1/p times<br />

<strong>the</strong> <strong>in</strong>dicator function <strong>of</strong> A• extends to an isometry from g.p(F) onto Lp(lZ). Now if x<br />

and y are <strong>in</strong> Lp(#), 1 ~ p ~ 2 < oc, <strong>the</strong>n x and y are disjo<strong>in</strong>tly supported if and only if<br />

Ilx + yll p = IlXllp + Ilyll p [18, p. 416]. This implies that an isometry from one Lp space<br />

onto ano<strong>the</strong>r preserves disjo<strong>in</strong>tness and <strong>the</strong>refore also atoms. All <strong>the</strong>se remarks comb<strong>in</strong>e to<br />

show that g.np, ~p, Lp(O, 1), s @p Lp(O, 1), ~pn @p Lp(O, 1), n -- 1, 2 .... , is a complete<br />

list<strong>in</strong>g, up to isometry, <strong>of</strong> <strong>the</strong> separable Lp(#) spaces when 1 ~< p 7~ 2 < co, and <strong>the</strong>se are<br />

all mutually nonisometric. Of course, <strong>in</strong> <strong>the</strong> Hilbertian case p - 2, s n -- 1, 2 .... ; ~2 is<br />

<strong>the</strong> appropriate list<strong>in</strong>g.<br />

The decomposition method <strong>the</strong>n yields that s s L p(O, 1) is a complete list<strong>in</strong>g, up<br />

to isomorphism, <strong>of</strong> <strong>the</strong> separable L p spaces. Later <strong>in</strong> this section it is noted that s is not<br />

isomorphic to L p (0, 1) when 1 ~< p 7~ 2 < ec, so this is a list<strong>in</strong>g <strong>of</strong> nonisomorphic spaces<br />

for <strong>the</strong>se values <strong>of</strong> p.<br />

In order to study <strong>the</strong> structure <strong>of</strong> subspaces <strong>of</strong> L p (0, 1) as well as to <strong>in</strong>vestigate many<br />

o<strong>the</strong>r questions about L p for one fixed value <strong>of</strong> p, it is convenient to consider <strong>the</strong> scale<br />

<strong>of</strong> L p spaces as p varies. One reason for this is that (as we shall see) <strong>the</strong>re are spaces <strong>of</strong><br />

functions X on (0, 1) on which <strong>the</strong> norm II" II p, is equivalent to II" II P2 with Pl < P2. Note<br />

that when this occurs, s<strong>in</strong>ce I1" II p ~< I1" IIr when p ~< r, all <strong>the</strong> norms I1" II p are equivalent<br />

on X for pl ~< p ~< p2. In fact, <strong>the</strong> extrapolation pr<strong>in</strong>ciple says that <strong>the</strong>n all <strong>the</strong> norms I1" II p<br />

are equivalent on X for p ~< p2. Indeed, suppose C is a constant so that IIx II p2 ~< C IIx II pl<br />

for x E X, 0 < p < pl, and 0 < )~ < 1 is def<strong>in</strong>ed by <strong>the</strong> formula pl = )~p + (1 - )Qp2.<br />

Then, by H61der's <strong>in</strong>equality, for x E X we have<br />

IIx II p~ ~ IIx II ~p IIx II (1-~)p= ~ C 1-~ IIx II p~l-& IIx II~p<br />

and hence C 1-1/z IIx Ilpl ~ IIx lip ~ IIx IIp~.<br />

The preced<strong>in</strong>g yields particularly good <strong>in</strong>formation <strong>in</strong> case 2 < p and X is a closed<br />

subspace <strong>of</strong> L p(O, 1) which is closed <strong>in</strong> Lr (0, 1) for some r ~: p. By <strong>the</strong> open mapp<strong>in</strong>g<br />

<strong>the</strong>orem, <strong>the</strong> I1" II p and I1" II r norms are equivalent on X, and hence so is <strong>the</strong> I1" 112 norm. This<br />

means that X must be isomorphic to a Hilbert space. Moreover, <strong>the</strong> orthogonal projection<br />

P from L2 (0, 1) onto X <strong>in</strong>duces a bounded l<strong>in</strong>ear projection/3 from L p (0, 1) onto X. The<br />

extrapolation pr<strong>in</strong>ciple <strong>the</strong>n says that I1" lip*, 1/p + I/p* = 1, and I1" 112 are equivalent on<br />

X. The orthogonal projection onto X extends to <strong>the</strong> bounded projection 15, from Lp, (0, 1)<br />

onto X.<br />

Suppose that, on <strong>the</strong> o<strong>the</strong>r hand, X is a closed subspace <strong>of</strong> L p (0, 1), 1 ~< p < ~, and for<br />

some (or, equivalently, every) 0 < r < p <strong>the</strong> I1" II p and I1" Ilr norms are not equivalent on<br />

X. H61der's <strong>in</strong>equality <strong>the</strong>n yields that for any M < cx~ <strong>the</strong> <strong>in</strong>fimum <strong>of</strong> Ilxl[ixl


16 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

<strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> small perturbations, that X conta<strong>in</strong>s a subspace which is isomorphic to s<br />

and complemented <strong>in</strong> L p (0, 1).<br />

These observations yield a dichotomy pr<strong>in</strong>ciple for subspaces <strong>of</strong> L p(O, 1), 2 < p <<br />

cx~ [21, III.A.4]. Let X be a closed subspace <strong>of</strong> L p(O, 1), 2 < p < oe. Then ei<strong>the</strong>r X<br />

is isomorphic to a Hilbert space and complemented <strong>in</strong> L p(O, 1) or, for each C > 1, X<br />

conta<strong>in</strong>s a subspace C-isomorphic to s and C-complemented <strong>in</strong> L p (0, 1). This is stated<br />

for Lp(O, 1), but is valid for general Lp(#) by <strong>the</strong> isometric classification <strong>of</strong> Lp spaces<br />

discussed earlier. Notice also that <strong>the</strong> comments <strong>in</strong> Section 3 about s now yield that if s<br />

embeds isomorphically <strong>in</strong>to L p(#), 0 < r < cx~ and 2 < p < oo, <strong>the</strong>n ei<strong>the</strong>r r = p or<br />

1~ --- 2.<br />

The natural examples <strong>of</strong> <strong>in</strong>f<strong>in</strong>ite dimensional function spaces which are closed <strong>in</strong> L p<br />

for more than one value <strong>of</strong> p come from probability <strong>the</strong>ory. Suppose that {gn}n~=l is a<br />

sequence <strong>of</strong> <strong>in</strong>dependent standard Gaussian random variables, discussed <strong>in</strong> Section 2. From<br />

<strong>the</strong> form <strong>of</strong> <strong>the</strong> distribution <strong>of</strong> g it is evident that ]lg]lp is f<strong>in</strong>ite for all f<strong>in</strong>ite p and {gn}n~=l<br />

is an orthonormal sequence <strong>in</strong> L2 (0, 1). A characteristic function argument yields that if<br />

n 2 n<br />

Y~=l [otk] -- 1, <strong>the</strong>n Y~k= 1 ctk gk is aga<strong>in</strong> a standard Gaussian and hence has <strong>the</strong> same<br />

norm <strong>in</strong> Lp(O, 1) as g. This means that for all 0 < p < oo, <strong>the</strong> mapp<strong>in</strong>g en ~ ][g][plgn,<br />

n = 1, 2 ..... extends to an isometry from s onto a subspace X <strong>of</strong> L p (0, 1) where X does<br />

not even depend on p, and <strong>the</strong> orthogonal projection onto X def<strong>in</strong>es a bounded projection<br />

from L p (0, 1) onto X if 1 < p < oe (<strong>in</strong> Section 10 we expla<strong>in</strong> why no isomorph <strong>of</strong> s<br />

<strong>in</strong> L 1(0, 1) or L~ (0, 1) can be complemented). In particular, <strong>the</strong> dichotomy pr<strong>in</strong>ciple for<br />

subspaces <strong>of</strong> L p, 2 < p < oo, is not a monochotomy pr<strong>in</strong>ciple. This also implies, <strong>in</strong> view<br />

<strong>of</strong> <strong>the</strong> structure <strong>the</strong>ory <strong>of</strong> s discussed earlier, that s and L p (0, 1) are not isomorphic for<br />

0 < p :/: 2 < o~.<br />

A second natural example from probability <strong>the</strong>ory <strong>of</strong> a subspace <strong>of</strong> L p, 0 < p < o0,<br />

which is isomorphic (but not isometric for p # 2) to s comes from consider<strong>in</strong>g a sequence<br />

{en}n~=l <strong>of</strong> <strong>in</strong>dependent random variables each tak<strong>in</strong>g on each <strong>of</strong> <strong>the</strong> values 1 and -1 with<br />

probability 1/2. Such a sequence {en}n~__l is called a Rademacher sequence. Classically<br />

<strong>the</strong> Rademacherfunctions {rn }n~__l are <strong>the</strong> concrete realization <strong>of</strong> such a sequence on [0, 1 ]<br />

m V ~2n - 1<br />

def<strong>in</strong>ed by rn " z_,~=o hz,+k, where {hn}n~__l is <strong>the</strong> Haar system. Kh<strong>in</strong>tch<strong>in</strong>e's <strong>in</strong>equality<br />

says that a Rademacher sequence is equivalent, <strong>in</strong> <strong>the</strong> Lp norm, 0 < p < o~, to <strong>the</strong> unit<br />

vector basis <strong>of</strong> s for future reference we write <strong>the</strong> <strong>in</strong>equality explicitly with <strong>the</strong> best<br />

constants labeled Ap and Bp:<br />

S<strong>in</strong>ce a Rademacher sequence is orthonormal,<br />

llz .ll<br />

it follows that Ap =- 1 for p ~> 2 and Bp = 1 for p ~< 2, and <strong>the</strong> exact values <strong>of</strong> Ap and Bp<br />

are known. The most elementary pro<strong>of</strong> <strong>of</strong> Kh<strong>in</strong>tch<strong>in</strong>e's <strong>in</strong>equality proceeds by check<strong>in</strong>g<br />

<strong>the</strong> right <strong>in</strong>equality <strong>in</strong> (1) for p an even <strong>in</strong>teger. This clearly gives <strong>the</strong> result for all 2 ~<<br />

p < oo and one <strong>the</strong>n obta<strong>in</strong>s <strong>the</strong> result for 0 < p < 2 from <strong>the</strong> extrapolation pr<strong>in</strong>ciple. The


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 17<br />

less computational modern pro<strong>of</strong> <strong>of</strong> Kh<strong>in</strong>tch<strong>in</strong>e's <strong>in</strong>equality gives a vector valued version<br />

<strong>of</strong> Kh<strong>in</strong>tch<strong>in</strong>e's <strong>in</strong>equality called <strong>the</strong> Kahane-Kh<strong>in</strong>tch<strong>in</strong>e <strong>in</strong>equality. This will be done <strong>in</strong><br />

Section 8.<br />

The existence <strong>of</strong> an r-stable variable g (see Section 2) for 0 < r < 2 shows that <strong>the</strong> subspace<br />

structure <strong>of</strong> L p (0, 1), 0 < p < 2, is much more complicated than that <strong>of</strong> L p (0, 1),<br />

2 < p < cx~. Indeed, just as <strong>in</strong> <strong>the</strong> Gaussian case, <strong>the</strong>re exists for 0 < r < 2 a sequence<br />

{gn}n~l <strong>of</strong> symmetric r-stable random variables def<strong>in</strong>ed on (0, 1). If 0 < p < r, <strong>the</strong>n <strong>the</strong>se<br />

random variables are <strong>in</strong> Lp(O, 1). Now if ~k--1 n I~l r 1, <strong>the</strong>n ~=l otkgk is aga<strong>in</strong> symmetric<br />

r-stable and hence has <strong>the</strong> same norm <strong>in</strong> L p(O, 1) as g. This means that for all<br />

0 < p < r, <strong>the</strong> mapp<strong>in</strong>g en ~ Ilgllp<br />

-1<br />

gn, n -- 1, 2 ..... extends to an isometry from er <strong>in</strong>to<br />

L p (0, 1). In Section 9 we expla<strong>in</strong> how to derive from this <strong>the</strong> fact that for 1 ~< p < r < 2,<br />

Lr (0, 1) embeds isometrically <strong>in</strong>to L p(O, 1). It turns out that this covers all <strong>the</strong> cases <strong>in</strong><br />

which er embeds isomorphically <strong>in</strong>to Lp(iZ ) with p and r f<strong>in</strong>ite. The rema<strong>in</strong><strong>in</strong>g cases are<br />

discussed <strong>in</strong> Section 8.<br />

In <strong>the</strong> reflexive range 1 < p < cx~, <strong>in</strong>formation about subspaces <strong>of</strong> Lp,(#), 1/p +<br />

1/p* - 1, given above gives <strong>in</strong>formation on quotients <strong>of</strong> Lp(#). It turns out that <strong>the</strong> case<br />

p = 1 is quite different: Every separable <strong>Banach</strong> space X is isometric to a quotient <strong>of</strong> el.<br />

Indeed, if {Xn}n~=l is dense <strong>in</strong> <strong>the</strong> unit ball <strong>of</strong> X, <strong>the</strong> l<strong>in</strong>ear extension <strong>of</strong> <strong>the</strong> map en ~ Xn<br />

(where {en}~--1 is <strong>the</strong> unit vector basis for el) maps <strong>the</strong> unit ball <strong>of</strong> el onto a dense subset<br />

<strong>of</strong> <strong>the</strong> unit ball <strong>of</strong> X and hence extends to a quotient mapp<strong>in</strong>g from el onto X. Similarly,<br />

if <strong>the</strong> <strong>Banach</strong> space X has density character x, <strong>the</strong>n X is isometric to a quotient <strong>of</strong> el (F)<br />

when F has card<strong>in</strong>ality x.<br />

Ano<strong>the</strong>r useful and <strong>in</strong>terest<strong>in</strong>g property <strong>of</strong> el (which also holds for el(F) for any set<br />

F) is <strong>the</strong> lift<strong>in</strong>g property: If T is an operator from a <strong>Banach</strong> space X onto el <strong>the</strong>n <strong>the</strong>re<br />

is a lift<strong>in</strong>g S <strong>of</strong> T; that is, an operator S :el --+ X for which T S = Ie~. Indeed, by <strong>the</strong> open<br />

mapp<strong>in</strong>g <strong>the</strong>orem <strong>the</strong>re are Xn <strong>in</strong> X with Txn = en and )~ :=- supllxn II < cx~. The mapp<strong>in</strong>g<br />

en ~ Xn <strong>the</strong>n extends to an operator S:e 1 ---+ X with [[Sll - ;~ satisfy<strong>in</strong>g TS = le~.<br />

As noted <strong>in</strong> Section 3, e 1 has <strong>the</strong> Schur property; that is, weakly convergent sequences <strong>in</strong><br />

el are norm convergent. An immediate consequence is that every weakly compact subset<br />

<strong>of</strong> el is norm compact. The weakly compact subsets <strong>of</strong> L 1(0, 1) are more complicated<br />

s<strong>in</strong>ce L 1(0, 1) conta<strong>in</strong>s <strong>in</strong>f<strong>in</strong>ite dimensional reflexive subspaces. There is however a nice<br />

characterization <strong>of</strong> subsets <strong>of</strong> L1 (/z) which have weakly compact closure when /z is a<br />

f<strong>in</strong>ite measure. First, if X is any <strong>Banach</strong> space and W is a subset <strong>of</strong> X such that for each<br />

E > 0 <strong>the</strong>re exists a weakly compact set S so that W C S + EBx, <strong>the</strong>n W has weakly<br />

compact closure (use <strong>the</strong> fact that a bounded subset <strong>of</strong> X is weakly compact if its weak*<br />

closure <strong>in</strong> X** is a subset <strong>of</strong> X). Next, given W C L1 (#) with # a f<strong>in</strong>ite measure, set<br />

for k E N, ak- ak(W) "--sup{llxllxl~klll" x ~ W}. Clearly {ak}~= 1 decreases to some<br />

a = a(W) ~ O. The set W is called uniformly <strong>in</strong>tegrable if a = 0. If a = 0 <strong>the</strong>n W has<br />

weakly compact closure because W is a subset <strong>of</strong> kBL~(~) + akBLl(~) and BL~(u) is<br />

weakly compact <strong>in</strong> L1 (/z).<br />

If a(W) > 0, <strong>the</strong> set W does not have weakly compact closure and <strong>in</strong> fact even conta<strong>in</strong>s<br />

a sequence equivalent to <strong>the</strong> unit vector basis <strong>of</strong> el. To see this, def<strong>in</strong>e two fur<strong>the</strong>r<br />

numerical parameters for a subset W <strong>of</strong> L 1 (#); namely, b(W) := sup limn~ { Ilxn 1 An II1 },<br />

where <strong>the</strong> supremum is over all sequences {Xn}n~__l <strong>in</strong> W and {An}~=l <strong>of</strong> measurable sets<br />

with #An --+ 0; and c(W), def<strong>in</strong>ed <strong>the</strong> same way as b(W) except that <strong>the</strong> supremum is


18 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

over all sequences <strong>of</strong> disjo<strong>in</strong>t measurable sets. It is an elementary exercise <strong>in</strong> measure<br />

<strong>the</strong>ory to verify that a(W) -- b(W) = c(W). Now if c(W) > 0, take a sequence {Xn}n~=l<br />

<strong>in</strong> W and a sequence {An}n~=l <strong>of</strong> disjo<strong>in</strong>t measurable sets so that 0 < [IXn 1an II1 ~ c(W).<br />

Clearly c({xn 1Xn}) = 0, so {Xn 1X, } has weakly compact closure. The sequence {Xn 1 An }nCC_--I<br />

is equivalent to <strong>the</strong> unit vector basis <strong>of</strong> e 1 s<strong>in</strong>ce <strong>the</strong> An's are disjo<strong>in</strong>t and IlXn 1An II is<br />

bounded away from zero. This implies that a subsequence <strong>of</strong> {Xn}nCC=l is also equivalent<br />

to <strong>the</strong> unit vector basis <strong>of</strong> el. (Remark: If {Yn}n~ is bounded <strong>in</strong> any L1 (IX) space<br />

and <strong>the</strong>re is a sequence {Bn}n~__l <strong>of</strong> disjo<strong>in</strong>t measurable sets and b > 0 so that for all n,<br />

Y-~k#n llynlsk 111 ~< b/2 < b


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 19<br />

as T and <strong>the</strong> range <strong>of</strong> T is separable because X~ Y is separable. Thus it is enough to check<br />

that if Z is a separable space which conta<strong>in</strong>s co, <strong>the</strong>n <strong>the</strong>re is a projection <strong>of</strong> norm at most<br />

two from Z onto co. To see this, first let zn * be an extension <strong>of</strong> <strong>the</strong> nth unit vector <strong>in</strong> ~ 1 = Co *<br />

to a norm one element <strong>of</strong> Z*. Let d(., .) be a translation <strong>in</strong>variant metric on Z* which<br />

<strong>in</strong>duces <strong>the</strong> weak* topology on <strong>the</strong> unit ball <strong>of</strong> Z*; for example, if {Xn}n~ is dense <strong>in</strong> <strong>the</strong><br />

unit sphere <strong>of</strong> Z <strong>the</strong> metric can be def<strong>in</strong>ed by d(x*, y*) - y~n~__l 2-n I (x * - y*)(Xn)l. S<strong>in</strong>ce<br />

every weak* limit po<strong>in</strong>t <strong>of</strong> {Zn*}n~ belongs to <strong>the</strong> unit ball B <strong>of</strong> <strong>the</strong> annihilator <strong>of</strong> co <strong>in</strong> Z*,<br />

:r<br />

it follows that d (Zn*, B) --+ 0. Thus we can choose w n * <strong>in</strong> B so that d (z*, w n) --+ O, which<br />

means that Zn * -- W n * --+ 0 weak*. The formula Pz "-- {(z* - w,)(z)* }n=l ~ def<strong>in</strong>es a projection<br />

<strong>of</strong> norm at most two from Z onto co.<br />

That <strong>the</strong> space co is not separably )~-<strong>in</strong>jective for any )~ < 2 can be seen by consider<strong>in</strong>g<br />

P 1 for any projection P from c onto co. More <strong>in</strong>terest<strong>in</strong>g is that <strong>the</strong> separability assumption<br />

is needed: There is no projection from s onto co. Indeed, o<strong>the</strong>rwise we would have<br />

s ~ co (9 g~cc/co. But s is not isomorphic to a subspace <strong>of</strong> s This can be seen by<br />

prov<strong>in</strong>g that c0(R) embeds <strong>in</strong>to got/co but not <strong>in</strong>to s c0(R) admits no countable separat<strong>in</strong>g<br />

family <strong>of</strong> l<strong>in</strong>ear functionals, so it does not embed <strong>in</strong>to s To see that c0(R) embeds<br />

<strong>in</strong>to s take a family {Ar}rER <strong>of</strong> <strong>in</strong>f<strong>in</strong>ite subsets <strong>of</strong> N so that <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> any<br />

two is f<strong>in</strong>ite (replace N by <strong>the</strong> rationals and for each r E IR consider a sequence <strong>of</strong> rationals<br />

which converges to r). Let Xr be <strong>the</strong> image <strong>in</strong> <strong>the</strong> quotient space s <strong>of</strong> <strong>the</strong> <strong>in</strong>dicator<br />

function <strong>of</strong> Ar. It is easy to check that {Xr}rEIR is 1-equivalent to <strong>the</strong> unit vector basis <strong>of</strong><br />

c0(R).<br />

The space co is <strong>the</strong> only (up to isomorphism) separable space which is separably <strong>in</strong>jective<br />

[43]. General C (K) spaces do have ano<strong>the</strong>r useful <strong>in</strong>to extension property" A compact<br />

operator T from a subspace Y <strong>of</strong> a <strong>Banach</strong> space X <strong>in</strong>to C(K) has an extension T to<br />

a compact operator from X <strong>in</strong>to C(K). Indeed, s<strong>in</strong>ce C(K) spaces have <strong>the</strong> BAR T can<br />

be approximated <strong>in</strong> <strong>the</strong> operator norm by operators <strong>of</strong> f<strong>in</strong>ite rank and hence we can write<br />

T = ~--~=0 oc Tn with each Tn <strong>of</strong> f<strong>in</strong>ite rank and II Zn II < 2 -n for n ~> 1. Therefore it is enough<br />

to observe that if S'X --+ C(K) has f<strong>in</strong>ite rank, <strong>the</strong>n S extends to a f<strong>in</strong>ite rank operator<br />

S" X --+ C(K) with IISII ~< (1 + e)llSII (where e > 0 is arbitrary). But by us<strong>in</strong>g partitions<br />

<strong>of</strong> unity and <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> small perturbations one checks that <strong>the</strong>re is a subspace E <strong>of</strong><br />

C (K) so that S X C E and d (E, g n) < 1 + ~, where n -- dim E < ec. Then E is (1 + e)-<br />

<strong>in</strong>jective and hence <strong>the</strong> desired extension <strong>of</strong> S exists. The same argument works when<br />

C(K) is replaced by any/2oc space (def<strong>in</strong>ed <strong>in</strong> Section 9).<br />

Every Loc(#) is isometric to C(K) for some compact Hausdorff space K. This follows<br />

from Gelfand <strong>the</strong>ory, s<strong>in</strong>ce Loc(#) is a commutative B* algebra with unit (see [19,<br />

Chapter 11]). Alternatively, it follows from lattice characterizations <strong>of</strong> C(K) spaces (see<br />

Section 5).<br />

The C (K) spaces play a special r61e <strong>in</strong> <strong>Banach</strong> space <strong>the</strong>ory because <strong>the</strong>y are a universal<br />

class: Every <strong>Banach</strong> space X is isometric to a subspace <strong>of</strong> some C(K) space. This can be<br />

seen by embedd<strong>in</strong>g X <strong>in</strong>to goc (F) for F appropriately large and apply<strong>in</strong>g <strong>the</strong> comment <strong>in</strong><br />

<strong>the</strong> previous paragraph. Alternatively, X isometrically embeds via evaluation <strong>in</strong>to C(K)<br />

with K <strong>the</strong> unit ball <strong>of</strong> X* with <strong>the</strong> weak* topology. This approach is preferable because<br />

<strong>the</strong> unit ball <strong>of</strong> X* is weak* metrizable when X is separable. In fact, every separable<br />

<strong>Banach</strong> space X embeds isometrically <strong>in</strong>to C[0, 1]. First, C(A) embeds isometrically <strong>in</strong>to<br />

C[0, 1 ], where A is <strong>the</strong> usual "middle thirds" Cantor set <strong>in</strong> [0, 1 ], by extend<strong>in</strong>g a cont<strong>in</strong>uous


20 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

function on A aff<strong>in</strong>ely on <strong>the</strong> component <strong>in</strong>tervals <strong>of</strong> <strong>the</strong> complement <strong>of</strong> A <strong>in</strong> [0, 1 ]. Next,<br />

us<strong>in</strong>g that A is homeomorphic to {0, 1 }r~, it can be shown that every compact metric space<br />

K is <strong>the</strong> cont<strong>in</strong>uous image <strong>of</strong> A. Build a tree structure K(il, ie ..... <strong>in</strong>): {il, ie ..... <strong>in</strong>}<br />

{0, 1}n; n = 1, 2 .... } <strong>of</strong> nonempty closed subsets <strong>of</strong> K so that each K(il, i2 ..... <strong>in</strong>) is<br />

<strong>the</strong> union <strong>of</strong> K (il, ie ..... <strong>in</strong>, 0) and K (il, i2 ..... <strong>in</strong>, 1), K -- K0 U K1, and <strong>the</strong> maximum<br />

diameter <strong>of</strong> K(il, i2 .... , <strong>in</strong>) as {il, ie ..... <strong>in</strong>} varies over {0, 1} n tends to zero as n --+ cx~.<br />

This is not hard to do us<strong>in</strong>g compactness <strong>of</strong> K. The map def<strong>in</strong>ed by {ij}7-1 ~ K(il) N<br />

K(il, i2) N K(il, ie, i3) N... is <strong>the</strong>n a cont<strong>in</strong>uous surjection from A = {0, 1} N onto K.<br />

Hav<strong>in</strong>g gotten a cont<strong>in</strong>uous mapp<strong>in</strong>g g from A onto K, one embeds C(K) <strong>in</strong>to C(A) by<br />

<strong>the</strong> formula T x = x o g, x E C (K).<br />

The isometric classification <strong>of</strong> C(K) spaces is easy and can be found <strong>in</strong> beg<strong>in</strong>n<strong>in</strong>g texts<br />

(such as [12, Theorem 231]): The space C(K) is isometric to C(H) if and only if K is<br />

homeomorphic to H. This follows from <strong>the</strong> identification <strong>of</strong> <strong>the</strong> extreme po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> unit<br />

ball <strong>of</strong> C(K)* as <strong>the</strong> evaluation functionals at po<strong>in</strong>ts <strong>of</strong> K (as well as multiples <strong>of</strong> <strong>the</strong>se<br />

functionals by scalars <strong>of</strong> magnitude one). The much harder problem <strong>of</strong> <strong>the</strong> isomorphic classification<br />

<strong>of</strong> C (K) spaces has been accomplished <strong>in</strong> <strong>the</strong> separable case (that is, for compact<br />

metric spaces): If K is an uncountable compact metric space <strong>the</strong>n C(K) is isomorphic to<br />

C (0, 1). If K is a countable compact metric space <strong>the</strong>n K is homeomorphic to <strong>the</strong> space<br />

[ 1, or] <strong>of</strong> all ord<strong>in</strong>als up to <strong>the</strong> ord<strong>in</strong>al ot for some countable ord<strong>in</strong>al c~ <strong>in</strong> <strong>the</strong> order topology.<br />

C (1, or) is isomorphic to C (1, t) when ot < fl if and only if fl < c( ~ See [40] for fur<strong>the</strong>r<br />

discussion <strong>of</strong> <strong>the</strong> separable case. It seems a hopeless task to get an isomorphic classification<br />

<strong>of</strong> general C(K) spaces, but some <strong>in</strong>formation is conta<strong>in</strong>ed <strong>in</strong> [44].<br />

We have already mentioned <strong>in</strong>explicitly that <strong>the</strong> dual <strong>of</strong> an L l(#) space is isometric to<br />

a C (K) space. Similarly, <strong>the</strong> dual <strong>of</strong> a C (K) is isometric to L 1 (//~) for some measure/x.<br />

The usual representation (see [18]) <strong>of</strong> <strong>the</strong> dual <strong>of</strong> C(K) is <strong>the</strong> space M(K) <strong>of</strong> f<strong>in</strong>ite signed<br />

measures on <strong>the</strong> sigma algebra <strong>of</strong> Baire subsets <strong>of</strong> K (that is, <strong>the</strong> sigma algebra generated<br />

by <strong>the</strong> closed G~ subsets <strong>of</strong> K). It is a rout<strong>in</strong>e exercise us<strong>in</strong>g <strong>the</strong> Radon-Nikod3)m <strong>the</strong>o-<br />

rem to verify that if {/x• }•<br />

is a maximal family <strong>of</strong> mutually s<strong>in</strong>gular Baire probability<br />

measures on K, <strong>the</strong>n M(K) is isometric to (Y-~yer L1 (/zy))l.<br />

Once <strong>the</strong> duals <strong>of</strong> C(K) and <strong>of</strong> LI(/Z) are classified, it is natural to ask what are <strong>the</strong><br />

preduals <strong>of</strong> C(K) and L1 (/z)? It turns out that every isometric predual <strong>of</strong> a space C(K)<br />

is isometric to L1 (/z) for some measure # and that all preduals <strong>of</strong> C (K) are mutually isometric.<br />

On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> isomorphic preduals <strong>of</strong>, for example, g~, form a rich class<br />

<strong>of</strong> spaces which are still not well understood. Preduals <strong>of</strong> L1 (/z) spaces are even less well<br />

understood. Here we mention only that <strong>the</strong> space ~1 has uncountably many mutually nonisomorphic<br />

preduals among <strong>the</strong> C(K) spaces (C(K)* is isometric to el if K is a countable<br />

compact space).<br />

5. <strong>Banach</strong> lattices<br />

Most <strong>of</strong> <strong>the</strong> <strong>Banach</strong> spaces that appear naturally <strong>in</strong> analysis carry structure <strong>in</strong> addition<br />

to <strong>the</strong>ir structure as <strong>Banach</strong> spaces. It tums out that this additional structure can affect<br />

properties which are def<strong>in</strong>ed purely <strong>in</strong> terms <strong>of</strong> <strong>Banach</strong> space concepts (such as l<strong>in</strong>ear<br />

operators and duality). An extra structure that classical spaces such as Lp and C (K) spaces


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 21<br />

possess is that <strong>of</strong> a <strong>Banach</strong> lattice, which is a <strong>Banach</strong> space over <strong>the</strong> reals that is equipped<br />

with a partial order ~< for which x v y and x A y exist for all vectors x, y, and such that <strong>the</strong><br />

positive cone is closed under addition and multiplication by nonnegative real numbers and<br />

<strong>the</strong> order is connected to <strong>the</strong> norm by <strong>the</strong> condition that Ixl ~< lYl =r Ilxll ~< IlYlI, where <strong>the</strong><br />

absolute value is def<strong>in</strong>ed by Ix l = x v (-x).<br />

A l<strong>in</strong>ear mapp<strong>in</strong>g from a <strong>Banach</strong> lattice to a <strong>Banach</strong> lattice is positive if it carries positive<br />

vectors to positive vectors. This is equivalent to say<strong>in</strong>g that <strong>the</strong> mapp<strong>in</strong>g is order preserv<strong>in</strong>g.<br />

It is easy to see that a positive l<strong>in</strong>ear mapp<strong>in</strong>g is cont<strong>in</strong>uous, so we call <strong>the</strong>m positive<br />

operators. If a positive operator preserves <strong>the</strong> lattice operations, it is called a lattice homomorphism.<br />

It is clear that a one-to-one surjective positive operator T whose <strong>in</strong>verse is<br />

positive is a lattice isomorphism; that is, both T and T-1 are lattice homomorphisms. The<br />

dual <strong>of</strong> a <strong>Banach</strong> lattice X is aga<strong>in</strong> a <strong>Banach</strong> lattice under <strong>the</strong> standard order<strong>in</strong>g on X* <strong>in</strong><br />

which <strong>the</strong> positive l<strong>in</strong>ear functionals form <strong>the</strong> positive cone. With this def<strong>in</strong>ition it is easy<br />

to see that <strong>the</strong> canonical mapp<strong>in</strong>g from X <strong>in</strong>to X** is positive [ 15, 1.a.2].<br />

While <strong>the</strong>re are <strong>in</strong>terest<strong>in</strong>g functional analytical topics (such as positive operators and<br />

lattice homomorphisms) which are special to <strong>Banach</strong> lattices, we are mostly <strong>in</strong>terested<br />

here <strong>in</strong> <strong>the</strong> <strong>Banach</strong> space properties <strong>of</strong> <strong>Banach</strong> lattices and concentrate on those lattice<br />

properties which affect <strong>the</strong> l<strong>in</strong>ear topological or geometry <strong>of</strong> <strong>the</strong> underly<strong>in</strong>g <strong>Banach</strong> space.<br />

The basic reference for this aspect <strong>of</strong> <strong>Banach</strong> lattices is [ 15]. For a general <strong>in</strong>troduction to<br />

<strong>Banach</strong> lattices which covers <strong>the</strong> basic <strong>the</strong>ory as well as some fairly recent material see [1 ].<br />

The simplest examples <strong>of</strong> <strong>Banach</strong> lattices are <strong>the</strong> spaces with a monotonely unconditional<br />

basis under <strong>the</strong> po<strong>in</strong>twise order on <strong>the</strong> coefficients, which as we have seen are better<br />

behaved, or at least more regularly behaved, than general <strong>Banach</strong> spaces. It turns out that<br />

much <strong>of</strong> <strong>the</strong> structure <strong>the</strong>ory for <strong>the</strong>se spaces carries over to <strong>Banach</strong> lattices.<br />

It was already mentioned that <strong>the</strong> Lp and C(K) spaces are <strong>Banach</strong> lattices. O<strong>the</strong>r examples<br />

are <strong>the</strong> Orlicz spaces and <strong>the</strong> Lorentz spaces. An Orliczfunction is an even convex<br />

function on R which is zero at zero and tends to <strong>in</strong>f<strong>in</strong>ity at <strong>in</strong>f<strong>in</strong>ity. If # is a measure and<br />

M is an Orlicz function, <strong>the</strong> space LM(/Z) is <strong>the</strong> collection <strong>of</strong> all/z-measurable functions<br />

f for which <strong>the</strong>re exists C > 0 so that f M(f/C)d/z < ~. Then II f IIM is def<strong>in</strong>ed to be<br />

<strong>the</strong> <strong>in</strong>fimum <strong>of</strong> those C > 0 for which f M(f/C) d/z < 1. This is a norm on LM(/z) which<br />

makes LM(/z) <strong>in</strong>to a <strong>Banach</strong> lattice. If/z is count<strong>in</strong>g measure on N, LM(/z) is called an<br />

Orlicz sequence space and is denoted by gM. If 1 ~< p < ~ and W is a positive non<strong>in</strong>creas<strong>in</strong>g<br />

cont<strong>in</strong>uous function on (0, ~) so that W(t) --+ ~ as t ~ 0+, W(t) --+ 0 as t --+ c~,<br />

fl W(t) dt -- 1, and fo W(t) dt -- cx~, <strong>the</strong> Lorentz space LW, p(/z) is <strong>the</strong> space <strong>of</strong> all/z<br />

measurable functions f for which IlflIw, p "-(f~xz f,(t)PW(t)dt)l/p ' where f* is <strong>the</strong><br />

decreas<strong>in</strong>g rearrangement <strong>of</strong> Ifl. The space Lw, p(/z) is a <strong>Banach</strong> lattice under <strong>the</strong> norm<br />

II f II W,p. Lorentz sequence spaces are def<strong>in</strong>ed <strong>in</strong> an analogous fashion.<br />

The Orlicz spaces L M (/z) and <strong>the</strong> Lorentz spaces L w, p (/z), like <strong>the</strong> spaces Lp (/z), are<br />

symmetric lattices which are ideals <strong>in</strong> <strong>the</strong> lattice <strong>of</strong> all/z-measurable functions. Here X is<br />

symmetric means that if x E X and y is a/z-measurable function for which x* = y*, <strong>the</strong>n y<br />

is <strong>in</strong> X and IlYllx = Ilxllx. A subspace Y <strong>of</strong> a lattice X is an ideal provided x 6 X, y E Y,<br />

and Ix l ~< l Yl =~ x E Y. Symmetric lattice ideals play an important role <strong>in</strong> <strong>in</strong>terpolation<br />

<strong>the</strong>ory; see Section 11 for a short <strong>in</strong>troduction. (Some sources call a symmetric lattice a<br />

rearrangement <strong>in</strong>variant space; o<strong>the</strong>r references use "rearrangement <strong>in</strong>variant space" to


22 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

mean "symmetric lattice ideal", sometimes with extra conditions. That is why we avoid<br />

<strong>the</strong> term "rearrangement <strong>in</strong>variant" <strong>in</strong> this article.)<br />

It is no accident that <strong>in</strong> <strong>the</strong> examples <strong>of</strong> <strong>Banach</strong> lattices given above <strong>the</strong> lattice order<strong>in</strong>g<br />

is just <strong>the</strong> natural po<strong>in</strong>twise a.e. order<strong>in</strong>g on a space <strong>of</strong> (equivalence classes <strong>of</strong>) real valued<br />

functions on a measure space (for C(K) <strong>the</strong> measure is count<strong>in</strong>g measure on K and for<br />

spaces with unconditional basis <strong>the</strong> measure is count<strong>in</strong>g measure on N). We call such a<br />

<strong>Banach</strong> lattice a <strong>Banach</strong> lattice <strong>of</strong> functions or a <strong>Banach</strong> lattice <strong>of</strong> #-measurable functions<br />

if it is important to specify <strong>the</strong> measure. There are representation <strong>the</strong>orems which say that<br />

<strong>the</strong>re is essentially no loss <strong>of</strong> generality <strong>in</strong> consider<strong>in</strong>g only <strong>Banach</strong> lattices <strong>of</strong> functions.<br />

The most classical <strong>of</strong> <strong>the</strong>se representation <strong>the</strong>orems, called <strong>the</strong> Kakutani representation<br />

<strong>the</strong>orem, gives abstract <strong>Banach</strong> lattice characterizations <strong>of</strong> L1 (/z) and C (K) spaces. A <strong>Banach</strong><br />

lattice X is an abstract Lp space, 1 ~< p < cx~, provided IIx + yll p = Ilxll p + Ilyll p<br />

whenever x and y are disjo<strong>in</strong>t; that is, Ixl A lyl - 0. The Lp version <strong>of</strong> <strong>the</strong> Kakutani representation<br />

<strong>the</strong>orem says that an abstract Lp space is lattice isometric to Lp(#) for some<br />

measure lz (see [ 15, 1.b.2] or [ 1, Theorem 12.26]). Moreover, <strong>the</strong> measure/x can be chosen<br />

to be a f<strong>in</strong>ite measure if <strong>the</strong> abstract L p space X has a weak order unit; that is, a vector<br />

u ) 0 so that u A Ix l- 0 only when x is <strong>the</strong> zero vector. A <strong>Banach</strong> lattice X is an abstract<br />

M space provided IIx + Yll - Ilxll v IlYll whenever x and y are disjo<strong>in</strong>t. The C(K)<br />

representation <strong>the</strong>orem says that an abstract M space is lattice isometric to a sublattice<br />

<strong>of</strong> C(K) for some compact Hausdorff space K (see [15, 1.b.6]). Moreover, if <strong>the</strong> abstract<br />

M space has a strong order unit (that is, a vector u ~> 0 such that <strong>the</strong> unit ball <strong>of</strong> X is <strong>the</strong><br />

order <strong>in</strong>terval [-u, u] := {x: -u ~< x ~< u}), <strong>the</strong>n M is lattice isometric to C(K) itself via<br />

an isomorphism which maps u to Ilu II 1K.<br />

Suppose that <strong>the</strong> <strong>Banach</strong> lattice X admits a strictly positive functional; that is, a positive<br />

l<strong>in</strong>ear functional u* such that u*(Ixl) > 0 for every nonzero vector x <strong>in</strong> X. Def<strong>in</strong>e an<br />

(<strong>in</strong>equivalent) norm I1" Ilu* on X by Ilxllu* := u*(Ixl). This is obviously an (<strong>in</strong>complete)<br />

abstract L1 norm on X from which it follows that <strong>the</strong> completion Xu, <strong>of</strong> (X, IIx Ilu*) is an<br />

abstract L 1 space. S<strong>in</strong>ce <strong>the</strong> formal <strong>in</strong>clusion operator from X to Xu, is an <strong>in</strong>jective lattice<br />

homomorphism, <strong>the</strong> Kakutani representation <strong>the</strong>orem yields that X can be thought <strong>of</strong> as<br />

a <strong>Banach</strong> lattice <strong>of</strong> functions. If X is separable, so is Xu,, and it follows from comments<br />

made <strong>in</strong> Section 4 that Xu, is isometric and order equivalent to a sublattice <strong>of</strong> L l (0, 1), so<br />

that X can be represented as a <strong>Banach</strong> lattice <strong>of</strong> Lebesgue measurable functions on <strong>the</strong> unit<br />

<strong>in</strong>terval.<br />

Not every <strong>Banach</strong> lattice admits a strictly positive functional (co(F) with F uncountable<br />

is a counterexample), but every separable <strong>Banach</strong> lattice X does. Indeed, take {Xn}n~=l<br />

dense <strong>in</strong> <strong>the</strong> unit sphere <strong>of</strong> X and for each n pick a norm one functional x n * which achieves<br />

its norm at Xn. It is easy to check that u* "- ~ 2 -n Ix~*l is a strictly positive functional.<br />

From this comment and <strong>the</strong> representation above it follows that any lattice <strong>in</strong>equality <strong>in</strong>volv<strong>in</strong>g<br />

f<strong>in</strong>itely many vectors which is true for lattices <strong>of</strong> functions must be true <strong>in</strong> a general<br />

<strong>Banach</strong> lattice. This elim<strong>in</strong>ates <strong>the</strong> tedium <strong>of</strong> verify<strong>in</strong>g "obvious" <strong>in</strong>equalities (for example,<br />

V( ~i=1 " ~:iXi 9 ~i -- -+'1} -~- ff-~i=l ]Xi[) directly from <strong>the</strong> axioms for a <strong>Banach</strong> lattice.<br />

The representation <strong>of</strong> <strong>Banach</strong> lattices as lattices <strong>of</strong> functions suggests that abstract L1<br />

spaces are particularly important lattices. The abstract M spaces also arise naturally <strong>in</strong> <strong>the</strong><br />

general <strong>the</strong>ory. If u is a positive vector <strong>in</strong> a <strong>Banach</strong> lattice X and Xu is <strong>the</strong> l<strong>in</strong>ear span <strong>of</strong><br />

<strong>the</strong> order <strong>in</strong>terval [-u, u] with [-u, u] taken as <strong>the</strong> unit ball, <strong>the</strong>n Xu is easily seen to be


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 23<br />

an abstract M space with strong order unit u (Xu is complete because [-u, u] is closed <strong>in</strong><br />

<strong>the</strong> <strong>Banach</strong> space X).<br />

A <strong>Banach</strong> lattice is order complete or Dedek<strong>in</strong>d complete if every nonempty subset<br />

which is bounded above has a least upper bound. A dual <strong>Banach</strong> lattice is order complete;<br />

<strong>in</strong> fact, any norm bounded upwarded directed net <strong>in</strong> a dual <strong>Banach</strong> lattice converges<br />

weak* to <strong>the</strong> least upper bound <strong>of</strong> <strong>the</strong> net.<br />

Suppose that X is order complete and u ~> 0 with llu I] = 1. We look a bit more closely<br />

at <strong>the</strong> C(K) space which is lattice isometric to <strong>the</strong> abstract M space Xu. Given x ~> 0,<br />

def<strong>in</strong>e <strong>the</strong> support <strong>of</strong> x by S(x) := supn(nx)/x u. The supremum exists because X is<br />

order complete. The support S(x) is a component <strong>of</strong> u. (A vector 0 ~< y ~< u is called a<br />

component <strong>of</strong> u [or simply a component if u is understood] provided y is disjo<strong>in</strong>t from<br />

u - y.) If T:X, --+ C(K) is a lattice isometry with Tu = 1K, <strong>the</strong>n Tx is an <strong>in</strong>dicator<br />

function if and only if x is a component. Of course, if A C K, 1 a is <strong>in</strong> C (K) if and only if<br />

A is clopen (i.e., both open and closed). So <strong>the</strong> components form a Boolean algebra (a fact<br />

which is also easy to verify directly) which is complete because X is order complete. Thus<br />

<strong>the</strong> clopen subsets <strong>of</strong> K are also a complete Boolean algebra. An important fact is that <strong>the</strong><br />

clopen subsets <strong>of</strong> K form a base for <strong>the</strong> topology <strong>of</strong> K. One way to see this is to observe<br />

that if 0 ~< x with x <strong>in</strong> Xu and t > 0 satisfies y := (x - tu) v 0 ~ 0, <strong>the</strong>n 0 ~< tS(y) 0] conta<strong>in</strong>s a nonempty clopen subset. S<strong>in</strong>ce K is compact this implies that <strong>the</strong> clopen<br />

subsets <strong>of</strong> K form a base for <strong>the</strong> topology. Us<strong>in</strong>g this and <strong>the</strong> completeness <strong>of</strong> <strong>the</strong> Boolean<br />

algebra <strong>of</strong> clopen sets it is a simple exercise to prove that C (K) is itself an order complete<br />

<strong>Banach</strong> lattice. As was po<strong>in</strong>ted out <strong>in</strong> Section 4, this implies that C (K) is 1-<strong>in</strong>jective.<br />

From <strong>the</strong> discussion <strong>in</strong> <strong>the</strong> previous paragraph we can deduce: IfE is af<strong>in</strong>ite dimensional<br />

subspace <strong>of</strong> an order complete lattice X and ~ > O, <strong>the</strong>n <strong>the</strong>re is a f<strong>in</strong>ite dimensional sublattice<br />

F <strong>of</strong> X and an automorphism T <strong>of</strong> X so that E C T F and ]l I - T ]l < e. Given <strong>the</strong><br />

subspace E, take positive vectors x l .... , xn <strong>in</strong> X whose span conta<strong>in</strong>s E and normalized<br />

so that u := max/xi has norm one. Then F C Xu and Xu is isometric to a C(K) space for<br />

which <strong>the</strong> clopen subsets <strong>of</strong> K form a base for <strong>the</strong> topology, which means that <strong>the</strong> span <strong>of</strong><br />

<strong>in</strong>dicator functions <strong>of</strong> clopen sets is dense <strong>in</strong> C(K). Thus fix<strong>in</strong>g a basis yl ..... yk for E<br />

and 3 > 0, we get a subspace F <strong>of</strong> Xu spanned by disjo<strong>in</strong>t vectors and a vector u <strong>in</strong> F with<br />

]lull = 1 so that for each 1 ~< i ~< k, <strong>the</strong>re is a vector Xi SO that ]Xi -- Zi] ~ (~U (and hence<br />

Ilxi - zi [I ~< ~). Now apply <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> small perturbations.<br />

A <strong>Banach</strong> lattice is order cont<strong>in</strong>uous if every downward directed net whose greatest<br />

lower bound is zero converges <strong>in</strong> norm (or weakly; it is <strong>the</strong> same) to zero. This is equivalent<br />

to say<strong>in</strong>g that every order bounded <strong>in</strong>creas<strong>in</strong>g sequence converges <strong>in</strong> norm (necessarily<br />

to <strong>the</strong> least upper bound <strong>of</strong> <strong>the</strong> sequence) (see [15, 1.a.8] or [1, Theorem 12.9] or <strong>the</strong><br />

beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> argument below). It is also easy to check that an order cont<strong>in</strong>uous <strong>Banach</strong><br />

lattice is order complete [15, 1.a.8]. A <strong>Banach</strong> lattice is not order cont<strong>in</strong>uous if and only<br />

if it conta<strong>in</strong>s a sequence <strong>of</strong> disjo<strong>in</strong>t positive vectors which is equivalent to <strong>the</strong> unit vector<br />

basis for co and is bounded above. The "if" direction is clear. If X is not order cont<strong>in</strong>uous,<br />

one gets an upward directed net <strong>of</strong> positive vectors which is bounded above by, say, x,<br />

with ]ix ]l = 1. The net cannot converge <strong>in</strong> norm, so one gets 0 ~< x l ~< x2 ~< ... ~< x so that


24 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

a := <strong>in</strong>fn Ilxn+~ - Xn II > 0. Let Yn := Xn+l -- Xn ~ O. So we have for every n:<br />

Yn >~ O, IlYn II ~ a, ~ Yk ~< x. (2)<br />

k--1<br />

(Although we do not need it here because we want to "disjo<strong>in</strong>tify" <strong>the</strong> yn'S, it is worth<br />

notic<strong>in</strong>g that (2) implies that Yn --+ 0 weakly and hence {Yn}n~__l has a basic subsequence,<br />

and that any basic subsequence <strong>of</strong> {yn}n~__l is equivalent to <strong>the</strong> unit vector basis for co.)<br />

Take Yn* <strong>in</strong> <strong>the</strong> unit sphere <strong>of</strong> X* so that Y*(Yn)= [[Yn[[. By replac<strong>in</strong>g y~* with [Yn*[ if<br />

necessary, we may assume that y~* ~> 0. For each n <strong>the</strong> nonnegative sum Y~m Y,~ (Ym) is at<br />

most I[x [I. It is an elementary exercise <strong>in</strong> comb<strong>in</strong>atorial reason<strong>in</strong>g to deduce from this that<br />

for any E > 0 <strong>the</strong>re is a subsequence {zk}~__l "-- {Ynk }~--1 <strong>of</strong> {yn}n~__l so that for each k > j,<br />

Z k*(Zj) < 2-J6 2, where z k * "-- Ynk" * Thus for each n,<br />

(Zn+l--6-1~Zk)k=l V0 Zn+ 1 Zn+ l -- 6 1 Zk >~ a - e.<br />

k=l<br />

This means that <strong>the</strong> zn's have big disjo<strong>in</strong>t pieces. More precisely, let e = a/4 and set<br />

(Z +l and Wn := (Vn -- EX) V O.<br />

Then <strong>the</strong> Wn'S are pairwise disjo<strong>in</strong>t positive vectors smaller than x with norms bounded<br />

away from zero.<br />

It is easy to see that {Wn}n~__l must be equivalent to <strong>the</strong> unit vector basis <strong>of</strong> co. This<br />

completes <strong>the</strong> pro<strong>of</strong>, but note that if X is order complete <strong>the</strong> mapp<strong>in</strong>g en ~ Wn from co<br />

<strong>in</strong>to X extends to a mapp<strong>in</strong>g from <strong>the</strong> positive cone <strong>of</strong> s to X by def<strong>in</strong><strong>in</strong>g {~n6n }n~__l<br />

sup n an Wn; this mapp<strong>in</strong>g extends to an order isomorphism from s <strong>in</strong>to X.<br />

O<strong>the</strong>r useful characterizations <strong>of</strong> order cont<strong>in</strong>uous <strong>Banach</strong> lattices are given by <strong>the</strong> follow<strong>in</strong>g<br />

(see [15, 1.b.16] or [1, Theorem 12.9]): X is order cont<strong>in</strong>uous if and only if every<br />

order <strong>in</strong>terval is weakly compact if and only if X is an ideal <strong>in</strong> X**.<br />

S<strong>in</strong>ce c is not order cont<strong>in</strong>uous but is isomorphic to <strong>the</strong> order cont<strong>in</strong>uous <strong>Banach</strong> lattice<br />

co, <strong>the</strong>re is not a l<strong>in</strong>ear topological characterization <strong>of</strong> order cont<strong>in</strong>uity. While it is only a<br />

sufficient condition for order cont<strong>in</strong>uity <strong>of</strong> X that co not embed isomorphically <strong>in</strong>to X, this<br />

condition is only a bit too strong as arguments similar to those given above show that if co<br />

embeds <strong>in</strong>to X <strong>the</strong>n it embeds as a sublattice (see [1, Theorem 14.12]).<br />

The functional representation <strong>the</strong>orems for order cont<strong>in</strong>uous <strong>Banach</strong> lattices are stronger<br />

and more useful than <strong>the</strong> representation already mentioned for <strong>Banach</strong> lattices which have<br />

a strictly positive functional. Here we just <strong>in</strong>dicate what is go<strong>in</strong>g on and refer to [15] for<br />

details. However, <strong>the</strong> motivated reader is encouraged to work out <strong>the</strong> details for himself or<br />

herself (partly because <strong>the</strong> discussion <strong>in</strong> [15] wanders unnecessarily). First, it is not hard to<br />

show that an order cont<strong>in</strong>uous <strong>Banach</strong> lattice which has a weak order unit u also admits a<br />

strictly positive functional u* (see [15, 1.b.15] or [1, 12.14]) and thus can be thought <strong>of</strong> as


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 25<br />

a space <strong>of</strong> <strong>in</strong>tegrable functions on a f<strong>in</strong>ite measure space (S-2,#) with u* (x) = f x d# for<br />

x <strong>in</strong> X. One can assume that u* (u) = 1 = Ilu II and Ilu* II ~< 2. S<strong>in</strong>ce X is order cont<strong>in</strong>uous,<br />

one has for each x ~> 0 <strong>in</strong> X that (nu)/x x converges to x as n --+ cx~, so that Xu is dense<br />

<strong>in</strong> X. By replac<strong>in</strong>g <strong>the</strong> underly<strong>in</strong>g a-algebra with <strong>the</strong> smallest cr-algebra for which all<br />

<strong>the</strong> functions <strong>in</strong> X are measurable, it can be assumed that X is dense <strong>in</strong> L1 (#). Then<br />

necessarily u > 0 a.e. By replac<strong>in</strong>g <strong>the</strong> measure # with u d# and functions f <strong>in</strong> X by f/u,<br />

one can assume u -= 1. Now it is possible to recover <strong>the</strong>/z-measurable sets and <strong>the</strong> measure<br />

#. From <strong>the</strong> density <strong>of</strong> X <strong>in</strong> L 1 (/Z) it follows that <strong>the</strong> <strong>in</strong>dicator function <strong>of</strong> a measurable set<br />

is an element x <strong>in</strong> Xu which is a component <strong>of</strong> u. From this it is essentially obvious that <strong>the</strong><br />

L~(#) norm on Xu agrees with its abstract M space norm. If we represent Xu as a C(K)<br />

space, <strong>the</strong>n <strong>the</strong> sets <strong>of</strong> positive/z measure are mapped onto <strong>the</strong> nonempty clopen subsets <strong>of</strong><br />

K <strong>in</strong> an obvious way so that we can represent X and L l(#) as function spaces on K and<br />

transfer <strong>the</strong> measure # to K. We <strong>the</strong>n get that C(K) C X C L1 (#) with both <strong>in</strong>clusions<br />

hav<strong>in</strong>g dense range. Moreover, C (K) = L~ (#) and every/z-measurable set is equal/z-a.e.<br />

to a clopen subset <strong>of</strong> K. F<strong>in</strong>ally, X is an ideal <strong>in</strong> L1 (/z) (use aga<strong>in</strong> order cont<strong>in</strong>uity and <strong>the</strong><br />

fact that X conta<strong>in</strong>s all <strong>in</strong>dicator functions).<br />

One consequence <strong>of</strong> this representation is: Let X be an order cont<strong>in</strong>uous <strong>Banach</strong> lattice<br />

which has a weak order unit. A closed subspace Y <strong>of</strong> X ei<strong>the</strong>r embeds <strong>in</strong>to L 1 (/z) for some<br />

measure/z or conta<strong>in</strong>s a normalized basic sequence which is equivalent to (even equal to<br />

a small perturbation <strong>of</strong>) a disjo<strong>in</strong>t sequence. For a pro<strong>of</strong> see [ 15, 1.c.8] or modify <strong>the</strong> pro<strong>of</strong><br />

<strong>of</strong> <strong>the</strong> dichotomy pr<strong>in</strong>ciple discussed <strong>in</strong> Section 4. By apply<strong>in</strong>g L1 <strong>the</strong>ory discussed <strong>in</strong><br />

Section 4 one gets that a subspace <strong>of</strong> an order cont<strong>in</strong>uous <strong>Banach</strong> lattice is reflexive if and<br />

only if it does not conta<strong>in</strong> a subspace isomorphic to ei<strong>the</strong>r s or co and that a nonreflexive<br />

<strong>Banach</strong> lattice has a sublattice which is order isomorphic to g l or co. The representation<br />

can also be used to prove that a <strong>Banach</strong> lattice which does not conta<strong>in</strong> a copy <strong>of</strong> co must<br />

be weakly sequentially complete [15, 1.c.4].<br />

Although we have used here <strong>the</strong> representation <strong>the</strong>orem for abstract L 1 spaces, it should<br />

be mentioned that s<strong>in</strong>ce an abstract L1 space is necessarily order cont<strong>in</strong>uous (every normalized<br />

disjo<strong>in</strong>t sequence is obviously 1-equivalent to <strong>the</strong> unit vector basis <strong>of</strong> ~ 1), some <strong>of</strong><br />

<strong>the</strong> ideas (particularly build<strong>in</strong>g components <strong>in</strong> X) can be used to prove Kakutani's representation<br />

<strong>of</strong> an abstract L 1 space which has a weak order unit as a space L 1 (/z) for some<br />

probability measure/z.<br />

Expressions such as (EnL1 ]Xn]P) 1/p, 1


26 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

By work<strong>in</strong>g <strong>in</strong> <strong>the</strong> abstract M space Xu with u "-- ~--~nL 1 Ixnl, <strong>the</strong> C(K) space case gives <strong>the</strong><br />

general case. We can <strong>the</strong>n <strong>in</strong>terpret scalar <strong>in</strong>equalities <strong>in</strong>volv<strong>in</strong>g such expressions <strong>in</strong> general<br />

lattices (ra<strong>the</strong>r than just <strong>in</strong> lattices <strong>of</strong> functions). For example, Kh<strong>in</strong>tch<strong>in</strong>e's <strong>in</strong>equality,<br />

discussed <strong>in</strong> Section 4, reads<br />

A p ~ IXn I 2 ~< E 6nXn<br />

n=l<br />

n=l<br />

Bp [Xn[ 2<br />

n=l<br />

1/2<br />

(3)<br />

Auxiliary lattices such as X (~p) can now be def<strong>in</strong>ed and <strong>the</strong> "obvious" dualities checked.<br />

X (g2) is especially noteworthy, s<strong>in</strong>ce it can be regarded as <strong>the</strong> complexification <strong>of</strong> X by<br />

regard<strong>in</strong>g ~2 as C and def<strong>in</strong><strong>in</strong>g multiplication by complex scalars <strong>in</strong> <strong>the</strong> obvious way (see<br />

[15, p. 43] for details).<br />

Start<strong>in</strong>g from <strong>the</strong> scalar identity Iotl~ 1-~ = <strong>in</strong>fc>oOCl/~ + (1 -O)C~/(~ one<br />

gets <strong>in</strong> a similar way an <strong>in</strong>terpretation for <strong>the</strong> expression Ixl~ ~-~ and that<br />

IIIxl~176 ~ Ilxll~ 1-~ (4)<br />

Also, if 1 ~< p < q ~< cx~, 1/r "--O/p + (1 -O)/q with 0 < 0 < 1 and Ctl ..... OtN are<br />

positive scalars, <strong>the</strong>n for any collection x l ..... xu <strong>of</strong> vectors <strong>in</strong> a <strong>Banach</strong> lattice we have<br />

that<br />

otnlxnl r


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 27<br />

The smallest such M is denoted by M(P)(T). Clearly M(1)(T) -- IITII. Similarly, if for a<br />

l<strong>in</strong>ear mapp<strong>in</strong>g T from a <strong>Banach</strong> lattice <strong>in</strong>to a <strong>Banach</strong> space <strong>the</strong> <strong>in</strong>equality<br />

(i IlTx. IIp<br />

n=l<br />

~M Ixnl p<br />

n--I<br />

1/p<br />

(8)<br />

always holds for some constant M, <strong>the</strong>n T is called p-concave and <strong>the</strong> smallest such M<br />

is denoted by M(p)(T). Clearly M(~)(T) = [[TI[. Evidently if T is p-convex [p-concave]<br />

<strong>the</strong>n it is bounded and M(P)(T) ~ [[TI[ [M(p)(T) ~ [[TI[]. It is not hard to check <strong>the</strong> identities<br />

M(P)(T *) = M(p,)(T) and M(P)(T) -- M(p,)(T*), where 1/p + 1/p* = 1. As functions<br />

<strong>of</strong> p, M(P)(T) is nondecreas<strong>in</strong>g and M(p)(T) is non<strong>in</strong>creas<strong>in</strong>g (see [15, 1.d.5] or<br />

write down a pro<strong>of</strong> for Lp(lZ ) and see that <strong>the</strong> H61der type <strong>in</strong>equalities (4), (5) allow a<br />

translation to <strong>the</strong> lattice sett<strong>in</strong>g).<br />

A <strong>Banach</strong> lattice X is called p-convex (p-concave) if <strong>the</strong> identity operator Ix on X is p-<br />

convex (p-concave) and we <strong>the</strong>n def<strong>in</strong>e M(P)(X) := M(P)(Ix) and M(p)(X) :-- M(p)(Ix).<br />

These constants are called <strong>the</strong> p-convexity and p-concavity constants <strong>of</strong> X. So X is p-<br />

convex (p-concave) if and only if X* is p*-concave (p*-convex).<br />

A p-convex and r-concave <strong>Banach</strong> lattice can be renormed with an equivalent lattice<br />

norm so that <strong>the</strong> p-convexity and r-concavity constants are both one [ 15, 1.d.8]. In particular,<br />

a lattice which is both p-convex and p-concave is lattice isomorphic to an abstract<br />

Lp space.<br />

If T : X --+ Y is a positive operator between <strong>Banach</strong> lattices it is easy to check (see [ 15,<br />

1.d.9]) <strong>the</strong> <strong>in</strong>equality<br />

(i ITx, I p<br />

n=l<br />


28 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

By p-concavity, this last quantity is dom<strong>in</strong>ated by<br />

p) lip<br />

M(p)(X)<br />

M(p) (X) Bp Ixnl 2<br />

1/2<br />

This gives <strong>the</strong> equivalence <strong>of</strong> <strong>the</strong> norm <strong>of</strong> <strong>the</strong> square function <strong>of</strong> X l .... , Xn with a certa<strong>in</strong><br />

Rademacher average:<br />

(5)<br />

p) 1/p<br />

A1 Ixnl 2<br />

n=l<br />


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 29<br />

Let {y*}neC__l be <strong>the</strong> functionals <strong>in</strong> Y* biorthogonal to {Yn}nCC=l. By compos<strong>in</strong>g S with (contractive)<br />

projections onto <strong>the</strong> span <strong>of</strong> <strong>in</strong>itial segments <strong>of</strong> {Yn}oc<br />

n=l' it can be assumed that<br />

Y is f<strong>in</strong>ite dimensional, <strong>in</strong> which case {Yn*} is a monotonely unconditional basis for Y*.<br />

To prove <strong>the</strong> right <strong>in</strong>equality <strong>in</strong> (12), given y~nN=l OtnYn, choose a norm one functional<br />

ZnL 1/3nyn , <strong>in</strong> y, so that II~--~=l N ot~y~ II- Y~'~=l/~ N y,( ~ ~-~=l N ot, y~). Us<strong>in</strong>g (6) and <strong>the</strong> left<br />

<strong>in</strong>equality <strong>in</strong> (10), we <strong>the</strong>n get<br />

N<br />

• Otn Yn -- Z 13notnS* y* (Tyn)<br />

n=l<br />

n--1<br />


30 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

unconditional basis for a complemented subspace <strong>of</strong> an L1 (/Z) space is equivalent to <strong>the</strong><br />

unit vector basis for g~l. S<strong>in</strong>ce C(0, 1) and L 1(0, 1) conta<strong>in</strong> subspaces isomorphic to ~2<br />

while co and ~1 do not, this gives ano<strong>the</strong>r pro<strong>of</strong> that nei<strong>the</strong>r C (0, 1) nor L 1(0, 1) has an<br />

unconditional basis.<br />

By us<strong>in</strong>g a p-convexification procedure, it is possible to build a scale <strong>of</strong> <strong>Banach</strong> lattices<br />

start<strong>in</strong>g with a lattice X <strong>in</strong> a manner analogous to how <strong>the</strong> scale <strong>of</strong> L p(/z) spaces<br />

is constructed from L1 (/Z). For simplicity, we assume that X is a lattice <strong>of</strong>/z-measurable<br />

functions (for <strong>the</strong> general case see [15, p. 53]). For 1 < p < oc, <strong>the</strong> p-convexification <strong>of</strong><br />

X is <strong>the</strong> space X (p) <strong>of</strong> all/z-measurable functions x for which IxlPsign(x) is <strong>in</strong> X. This is<br />

easily seen to be a <strong>Banach</strong> lattice under <strong>the</strong> norm<br />

. - It<br />

1/p<br />

ILx 9<br />

The space X (p) is p-convex with M (p) (X (p)) -- 1. More generally, if X is r-convex and s-<br />

concave, <strong>the</strong>n X (p) is pr-convex and ps-concave with moduli M (pr) (X (p)) ~ M (r) (X) 1/p<br />

and M(ps)(X (p)) O, 1 + tx*(y) = x*(x + ty)


- - p(r)<br />

<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 31<br />

By us<strong>in</strong>g <strong>the</strong> triangle <strong>in</strong>equality one checks that <strong>the</strong> function Ilx+tyll-Ilxllt is an <strong>in</strong>creas<strong>in</strong>g<br />

function <strong>of</strong> t on (0, ec) and thus<br />

Similarly,<br />

x*(y) lim<br />

t-+O+ -t<br />

IIx II<br />

Thus if <strong>the</strong>se two limits co<strong>in</strong>cide, <strong>the</strong> value <strong>of</strong> x* (y) is uniquely determ<strong>in</strong>ed. On <strong>the</strong> o<strong>the</strong>r<br />

hand, if <strong>the</strong>se two limits differ, it follows from <strong>the</strong> Hahn-<strong>Banach</strong> <strong>the</strong>orem that for any X<br />

satisfy<strong>in</strong>g<br />

IIx - ty II - IIx II IIx + ty II - IIx II<br />

lim<br />

~ )~ 0 <strong>the</strong>re exists 6x(e) = 3(E) > 0 so that<br />

sup{ II (x + y)/21l Ilxll- Ilyll- 1; IIx - yll- ~} - 1 - 6(e).<br />

The function 6x(e) is called <strong>the</strong> modulus <strong>of</strong> convexity <strong>of</strong> X. It is geometrically obvious (and<br />

even true) that <strong>in</strong> <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> 3(e), <strong>the</strong> equalities can be replaced by <strong>the</strong> <strong>in</strong>equalities<br />

Ilxll ~< 1, Ilyll ~< 1, IIx - yll/> ~ without chang<strong>in</strong>g <strong>the</strong> value <strong>of</strong> 6(e).<br />

One <strong>of</strong> <strong>the</strong> first <strong>the</strong>orems to relate <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> norm to l<strong>in</strong>ear topological properties<br />

is <strong>the</strong> follow<strong>in</strong>g. A uniformly convex space is reflexive. In order to see this, we may<br />

assume as well that X is separable. If X is not reflexive, <strong>the</strong>n for any )~ > 0 <strong>the</strong>re is x** <strong>in</strong><br />

<strong>the</strong> unit sphere <strong>of</strong> X** whose distance to X exceeds 1 - )~. Let A be a countable subset <strong>of</strong><br />

<strong>the</strong> unit sphere <strong>of</strong> X* which determ<strong>in</strong>es <strong>the</strong> norm <strong>of</strong> Y -- spanX U {x**}; that is, for each<br />

y** <strong>in</strong> Y, Ily**ll - sup{y**(x*)" x* 6 A}. Let {Xn}neC__l be a sequence <strong>in</strong> <strong>the</strong> unit sphere <strong>of</strong><br />

X so that x*(xn) --+ x**(x*) for every x* <strong>in</strong> A. Then limn,m-+,c Ilxn + xmll -- 2, while for<br />

every n, lim<strong>in</strong>fm-+ec Ilxn -- Xm II ~> 1 - )~. This argument shows that for nonrettexive X,<br />

~x(e) = 0 for every 0 < e < 1 and <strong>in</strong> particular that X is not uniformly convex.<br />

A <strong>Banach</strong> space X is said to be uniformly smooth if <strong>the</strong> function<br />

--sup/IIx + rYll + Ilx - ryll<br />

px(r)<br />

/ 2<br />

- 1. IIx II - Ily II - 1 }<br />

satisfies p(r) = o(r) as r --+ 0. Aga<strong>in</strong> one checks easily that a uniformly smooth <strong>Banach</strong><br />

space is reflexive.


32 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

There is a complete duality between uniform convexity and uniform smoothness. The<br />

space X is uniformly convex if and only if X* is uniformly smooth. This follows from a<br />

formula which connects <strong>the</strong> moduli 8x and Px*"<br />

px, (r) -- sup{rE/2 - 8x(~)" 0 sup{rE/2 - 8x(~): 0 ~< ~ ~< 2}. Conversely, given r > 0 and x*,<br />

y* <strong>in</strong> <strong>the</strong> unit sphere <strong>of</strong> X*, take x and y <strong>in</strong> <strong>the</strong> unit sphere <strong>of</strong> X so that (x* + ry*)(x) =<br />

IIx* + rY*ll and (x* - ry*)(x) = IIx* - ry*ll (if one wishes to avoid reflexivity at this stage<br />

one can choose x and y where <strong>the</strong> norms <strong>of</strong> <strong>the</strong> functionals are almost atta<strong>in</strong>ed). Then<br />

IIx* + ry*ll + IIx* - ry*ll ~< x*(x + y) + ry*(x - y)<br />

IIx + yll + rllx - yll - 28x(~) + ~r,<br />

where E - IIx - y II. This proves <strong>the</strong> reverse <strong>in</strong>equality.<br />

The moduli <strong>of</strong> convexity and smoothness <strong>of</strong> a Hilbert space H can be easily computed<br />

from <strong>the</strong> parallelogram identity:<br />

pH(r)<br />

E2 E 2<br />

1 = )<br />

4 8<br />

-- v/1 + "r 2- 1 = r<br />

T +<br />

2<br />

Hilbert spaces are <strong>the</strong> "most uniformly convex" and "most uniformly smooth" spaces <strong>in</strong><br />

<strong>the</strong> sense that if X is any space whose dimension is at least two, <strong>the</strong>n 8/-/(E)/> 8x(E) and<br />

p/-/(r) ~< px(r). For <strong>in</strong>f<strong>in</strong>ite dimensional X this is an immediate consequence <strong>of</strong> Dvoretzky's<br />

<strong>the</strong>orem, to be discussed <strong>in</strong> Section 8, but a direct 2-dimensional geometrical argument<br />

gives <strong>the</strong> general case.<br />

The moduli <strong>of</strong> convexity and smoothness <strong>of</strong> <strong>the</strong> L p spaces can be computed exactly. It<br />

is somewhat easier to describe <strong>the</strong>ir asymptotic behavior near zero, and this is what really<br />

matters for <strong>Banach</strong> space <strong>the</strong>ory. The result is<br />

E 2<br />

(p- 1)--~- + o(e2), if 1 < p ~< 2,<br />

p2P '<br />

if2~


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 33<br />

z'P jr_ O(rP),<br />

p - _<br />

IO L p ( r: ) -- 7:2<br />

ifl < p~ 0 (see [15, If.l]).<br />

S<strong>in</strong>ce it is easier to do analysis on a <strong>Banach</strong> space which has a norm with good geometric<br />

properties than on a general space, it is important to know which <strong>Banach</strong> spaces can<br />

be equivalently renormed so as to become strictly convex or smooth or uniformly convex<br />

or uniformly smooth, and it is useful to have <strong>in</strong> <strong>the</strong>se last cases moduli which are as good<br />

as possible. The simplest, but never<strong>the</strong>less useful, renorm<strong>in</strong>g technique is as follows. Suppose<br />

that T is an <strong>in</strong>jective operator from a <strong>Banach</strong> space X <strong>in</strong>to a strictly convex <strong>Banach</strong><br />

space Y. Then it is easy to check that IIIxlll := Ilxll + IITxll is an equivalent strictly convex<br />

norm on X. Moreover, if T is an isomorphism and Y is uniformly convex, <strong>the</strong>n II1" III is an<br />

equivalent uniformly convex norm on X. Now if X is separable, <strong>the</strong>n <strong>the</strong>re is an <strong>in</strong>jective<br />

operator T from X <strong>in</strong>to ~2, so Ilxlll = IIx II + IITx II is an equivalent strictly convex norm<br />

on X. Also, <strong>the</strong>re is an operator S from ~2 <strong>in</strong>to X with dense range, so S* is an <strong>in</strong>jective<br />

operator from X* <strong>in</strong>to ~ --~2 and IIx*l12- IIx*ll + IIS*x*ll def<strong>in</strong>es an equivalent strictly<br />

convex norm on X*. S<strong>in</strong>ce <strong>the</strong> adjo<strong>in</strong>t operator S* is weak* to weak cont<strong>in</strong>uous, I1" 112 is<br />

dual to a (necessarily smooth) norm I1" 112 on X. If X is smooth and T is an <strong>in</strong>jective operator<br />

from X <strong>in</strong>to ~2 <strong>the</strong>n (llx II 2 + II Zx II 2) ~/2 is an equivalent norm which is both strictly<br />

convex and smooth. Hence every separable <strong>Banach</strong> space has an equivalent norm which<br />

is both strictly convex and smooth.<br />

For certa<strong>in</strong> nonseparable spaces; <strong>in</strong> particular, ~ (F) with F uncountable (see [6, Chapter<br />

II.7]), <strong>the</strong>re may be no equivalent strictly convex or smooth norm.<br />

If we are <strong>in</strong>terested <strong>in</strong> obta<strong>in</strong><strong>in</strong>g a uniformly convex or smooth equivalent norm we<br />

have to restrict attention to reflexive spaces. However, not every reflexive space can be so<br />

OO /7 .<br />

renormed. For example, if ~,=1 g l )2 had an equivalent uniformly convex norm II II and<br />

I1" II, denotes <strong>the</strong> restriction <strong>of</strong> I1" Ilto <strong>the</strong> nth coord<strong>in</strong>ate space ~, <strong>the</strong>n <strong>the</strong> expression<br />

IIIx III := lim IIx II, (where "lim" is <strong>in</strong>terpreted to be a limit over some free ultrafilter on N or<br />

a <strong>Banach</strong> limit or <strong>the</strong> limit along an appropriate subsequence) def<strong>in</strong>es an equivalent norm<br />

on <strong>the</strong> f<strong>in</strong>itely supported vectors <strong>in</strong> el which extends uniquely to an equivalent uniformly<br />

convex norm on ~1, but this is impossible.<br />

There is a characterization <strong>of</strong> those spaces on which <strong>the</strong>re is an equivalent uniformly<br />

convex norm. These spaces, called superreflexive spaces, are discussed <strong>in</strong> Section 9. The<br />

superreflexive spaces are also <strong>the</strong> class <strong>of</strong> spaces on which <strong>the</strong>re is an equivalent uniformly<br />

smooth norm. (These deep facts are discussed <strong>in</strong> [29].) If a space X has an equivalent<br />

uniformly convex norm II1" III, <strong>the</strong>n <strong>the</strong> equivalent uniformly convex norms are dense <strong>in</strong> <strong>the</strong><br />

metric space <strong>of</strong> equivalent norms (considered as bounded functions on <strong>the</strong> unit sphere <strong>of</strong><br />

X). Take, for example, I1" II +E II1"111. The uniformly convex equivalent norms also form a G~<br />

set s<strong>in</strong>ce those whose modulus <strong>of</strong> convexity at 1/n is positive forms an open set. Thus <strong>the</strong><br />

equivalent uniformly convex norms on X is a dense G~ <strong>in</strong> <strong>the</strong> space <strong>of</strong> equivalent norms<br />

on X. S<strong>in</strong>ce, as we mentioned, X* also admits an equivalent uniformly convex norm, it


34 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

follows by duality that <strong>the</strong> equivalent uniformly smooth norms on X is also a dense G~ <strong>in</strong><br />

<strong>the</strong> space <strong>of</strong> equivalent norms on X, hence so is <strong>the</strong> family <strong>of</strong> equivalent norms which are<br />

simultaneously uniformly convex and uniformly smooth.<br />

In Section 8 it is po<strong>in</strong>ted out that an <strong>in</strong>f<strong>in</strong>ite dimensional L p (#) space cannot be equivalently<br />

renormed so as to have a better modulus <strong>of</strong> convexity or smoothness than that <strong>of</strong> <strong>the</strong><br />

natural norm.<br />

There has long been a desire to describe reflexivity geometrically (that is, to show that a<br />

space is reflexive if and only if <strong>the</strong>re is an equivalent norm on <strong>the</strong> space that satisfies some<br />

geometrical condition), and <strong>the</strong> notion <strong>of</strong> uniform convexity pushed <strong>in</strong> that direction. This<br />

problem was recently solved (at least for separable spaces) and is discussed <strong>in</strong> [29].<br />

Early <strong>in</strong> a first course <strong>in</strong> functional analysis a student learns that a <strong>Banach</strong> space is reflexive<br />

if and only if its closed unit ball is weakly compact. There is a beautiful and useful<br />

characterization <strong>of</strong> weak compactness, called James' <strong>the</strong>orem, which does not explicitly<br />

<strong>in</strong>volve <strong>the</strong> weak topology: A nonempty closed convex subset C <strong>of</strong> a <strong>Banach</strong> space X is<br />

weakly compact if and only if every x* <strong>in</strong> X* atta<strong>in</strong>s its maximum on C. The only if part<br />

is <strong>of</strong> course trivial. For <strong>the</strong> hard direction see [11, Theorem 79] or [26] for an accessible<br />

pro<strong>of</strong> when X is separable. This <strong>the</strong>orem says that on a nonreflexive space X <strong>the</strong>re exist<br />

l<strong>in</strong>ear functionals which do not atta<strong>in</strong> <strong>the</strong>ir norm on <strong>the</strong> unit ball <strong>of</strong> X. Never<strong>the</strong>less, <strong>the</strong><br />

functionals which atta<strong>in</strong> <strong>the</strong>ir norm on <strong>the</strong> unit ball is a rich set: The Bishop-Phelps <strong>the</strong>orem<br />

says: Let C be a nonempty closed bounded subset <strong>of</strong> a <strong>Banach</strong> space X. Then <strong>the</strong><br />

functionals which atta<strong>in</strong> <strong>the</strong>ir maximum on C is (norm) dense <strong>in</strong> X*. This <strong>the</strong>orem, which<br />

is <strong>the</strong> start<strong>in</strong>g po<strong>in</strong>t <strong>of</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> optimization on <strong>Banach</strong> spaces, has many extensions<br />

and applications (see [25]).<br />

We outl<strong>in</strong>e <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> Bishop-Phelps <strong>the</strong>orem. First note that if f is a cont<strong>in</strong>uous<br />

bounded function on a complete metric space (U, d), <strong>the</strong>n <strong>the</strong>re is, for every E > 0, a po<strong>in</strong>t<br />

u0 <strong>in</strong> U so that f(u) fl for (x, t) <strong>in</strong> Kl and<br />

u*(x) + at


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 35<br />

bounded closed convex set C <strong>in</strong> a complex <strong>Banach</strong> space X so that for every x* <strong>in</strong> X*, Ix*l<br />

does not atta<strong>in</strong> its maximum on C. This is discussed <strong>in</strong> [26].<br />

We conclude this section by mention<strong>in</strong>g <strong>the</strong> geometric mean<strong>in</strong>g <strong>of</strong> <strong>the</strong> Radon-Nikod3)m<br />

property or RNP, an analytical concept that will be discussed <strong>in</strong> Section 7. A slice <strong>of</strong><br />

a closed bounded convex set C is a set <strong>of</strong> <strong>the</strong> form S(C,x*,~) = {x E C: x*(x) >1<br />

SUpyec x*(y) - c~} with x* <strong>in</strong> X* and ot > 0. C is called dentable provided that for each<br />

E > 0 <strong>the</strong>re is a slice <strong>of</strong> C which has diameter smaller than ~. In [8, Th. V 3.9] and [3,<br />

Th. 5.8] it is shown that X has <strong>the</strong> RNP if and only if every nonempty closed bounded<br />

convex subset <strong>of</strong> X is dentable. Here we show how dentability can be used to derive o<strong>the</strong>r<br />

geometric conditions, <strong>in</strong> particular, a version <strong>of</strong> <strong>the</strong> Kre<strong>in</strong>-Milman <strong>the</strong>orem valid for noncompact<br />

subsets <strong>of</strong> a space which has <strong>the</strong> RNE If X has <strong>the</strong> RNP, <strong>the</strong>n every closed bounded<br />

convex subset C <strong>of</strong> X is <strong>the</strong> closed convex hull <strong>of</strong> its extreme po<strong>in</strong>ts. Recall that a face <strong>of</strong> a<br />

convex set C is a nonempty (necessarily convex) subset F such that if )~x + (1 - ;~)y E F<br />

with x, y <strong>in</strong> C and 0 < )~ < 1 <strong>the</strong>n x and y are <strong>in</strong> F. Extreme po<strong>in</strong>ts are faces consist<strong>in</strong>g<br />

<strong>of</strong> a s<strong>in</strong>gle po<strong>in</strong>t. From <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> slice it is obvious that if I(x* - Y*)(Y) I ~< 3 for all<br />

y <strong>in</strong> C <strong>the</strong>n S(C, y*, ~ - 23) C S(C, x*, ~) as long as ot > 23. We first show that C has<br />

an extreme po<strong>in</strong>t. Take any slice S(C, x*, c~) <strong>of</strong> C whose diameter is less than one. By <strong>the</strong><br />

observation above and <strong>the</strong> Bishop-Phelps <strong>the</strong>orem, <strong>the</strong>re is a y* arbitrarily near x* which<br />

atta<strong>in</strong>s a maximum on C and so that <strong>the</strong> po<strong>in</strong>ts P1 <strong>in</strong> C at which y* atta<strong>in</strong>s its maximum<br />

is conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> slice S(C, x*, ~) and thus has diameter less than one. Evidently P1 is<br />

a closed face <strong>of</strong> C and <strong>of</strong> course is dentable s<strong>in</strong>ce X has <strong>the</strong> RNE By <strong>in</strong>duction we get a<br />

sequence {Pn}~~ so that Pn+l is a face <strong>of</strong> Pn and diamPn ~< 1/n. S<strong>in</strong>ce a face <strong>of</strong> a face<br />

is a face, all <strong>the</strong> Pn's are faces <strong>of</strong> C and <strong>the</strong>ir <strong>in</strong>tersection is an extreme po<strong>in</strong>t <strong>of</strong> C which<br />

is <strong>in</strong> <strong>the</strong> slice S(C, x*, ~). To f<strong>in</strong>ish <strong>the</strong> pro<strong>of</strong>, let K be <strong>the</strong> closed convex hull <strong>of</strong> <strong>the</strong> extreme<br />

po<strong>in</strong>ts <strong>of</strong> C. If K were properly conta<strong>in</strong>ed <strong>in</strong> C, <strong>the</strong>n <strong>the</strong> separation <strong>the</strong>orem and <strong>the</strong><br />

Bishop-Phelps <strong>the</strong>orem would yield a functional x* which atta<strong>in</strong>s a maximum on C and so<br />

that <strong>the</strong> set <strong>of</strong> po<strong>in</strong>ts P <strong>in</strong> C at which x* atta<strong>in</strong>s its maximum is disjo<strong>in</strong>t from K. By what<br />

we have proved P has an extreme po<strong>in</strong>t which is afortiori an extreme po<strong>in</strong>t <strong>of</strong> C, which<br />

contradicts <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> K.<br />

It is open whe<strong>the</strong>r this extreme po<strong>in</strong>t property for every nonempty closed bounded convex<br />

subset <strong>of</strong> a space actually characterizes spaces with <strong>the</strong> RNE The statement about extreme<br />

po<strong>in</strong>ts is however valid <strong>in</strong> a stronger form which trivially implies that <strong>the</strong> dentability<br />

condition is equivalent to <strong>the</strong> RNE A po<strong>in</strong>t x <strong>in</strong> C is called a exposed po<strong>in</strong>t <strong>of</strong> C if <strong>the</strong>re is<br />

x* <strong>in</strong> X* which atta<strong>in</strong>s its maximum on C exactly at <strong>the</strong> s<strong>in</strong>gle po<strong>in</strong>t x. If also <strong>the</strong> diameter<br />

<strong>of</strong> <strong>the</strong> slice S(C, x*, c~) tends to zero as ot --+ 0+, <strong>the</strong>n x is called a strongly exposed po<strong>in</strong>t<br />

<strong>of</strong> C. For example, every po<strong>in</strong>t on <strong>the</strong> unit sphere <strong>of</strong> a uniformly convex space is a strongly<br />

exposed po<strong>in</strong>t <strong>of</strong> <strong>the</strong> unit ball. The stronger statement to which we alluded above is: Every<br />

nonempty closed bounded convex subset <strong>of</strong> a space with <strong>the</strong> RNP is <strong>the</strong> closed convex hull<br />

<strong>of</strong> its strongly exposed po<strong>in</strong>ts.<br />

7. Analysis <strong>in</strong> <strong>Banach</strong> spaces<br />

In this section we describe <strong>the</strong> basic facts concern<strong>in</strong>g <strong>in</strong>tegration and differentiation <strong>in</strong><br />

<strong>Banach</strong> spaces as well as <strong>the</strong> connection <strong>of</strong> <strong>the</strong>se topics to convexity. Our "po<strong>in</strong>t <strong>of</strong> view"


36 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

is to take as known <strong>the</strong> scalar <strong>the</strong>ory but not assume that <strong>the</strong> reader has any familiarity with<br />

<strong>the</strong> vector valued <strong>the</strong>ory. Much <strong>of</strong> what we treat <strong>in</strong> this section is conta<strong>in</strong>ed ei<strong>the</strong>r <strong>in</strong> [8] or<br />

<strong>in</strong> [ 11,12]. Almost everyth<strong>in</strong>g is <strong>in</strong> [3].<br />

Let (s #) be a complete a-f<strong>in</strong>ite measure space and X a <strong>Banach</strong> space. A function<br />

from s --~ X <strong>of</strong> <strong>the</strong> form ~<strong>in</strong>=l xi 1 ai with each Ai a measurable subset <strong>of</strong> s is called a<br />

simple function. A function f : ~2 --+ X is called strongly measurable or just measurable<br />

if it is <strong>the</strong> limit almost everywhere <strong>of</strong> a sequence <strong>of</strong> simple functions. A function f is<br />

called scalarly measurable provided x*f is measurable for each x* <strong>in</strong> X*. A function<br />

f is measurable if and only if it is scalarly measurable and <strong>the</strong> range <strong>of</strong> f is essentially<br />

separable, which means that for some set A <strong>of</strong> measure zero, f[X2 ~ A] is separable. The<br />

only if assertion is clear. To verify <strong>the</strong> if part, we may assume that X is separable and<br />

#<br />

select a sequence ~x*/cc <strong>in</strong> <strong>the</strong> unit ball <strong>of</strong> X* so that Ilxll - SUPn Xn (X) for every x <strong>in</strong><br />

t n "n=l<br />

X. Thus for each fixed x <strong>in</strong> X, <strong>the</strong> function II f - x II is a measurable real valued function<br />

on Y2. S<strong>in</strong>ce X is separable, given e > 0 <strong>the</strong>re is a sequence {xn}~ec__ 1 <strong>in</strong> X and a sequence<br />

{An}n~l <strong>of</strong> disjo<strong>in</strong>t measurable subsets <strong>of</strong> s so that Ilf- ~nXnlAnll < ~. That is, f can<br />

be approximated uniformly by functions tak<strong>in</strong>g only countably many values and hav<strong>in</strong>g all<br />

level sets measurable and hence f is <strong>the</strong> limit a.e. <strong>of</strong> a sequence <strong>of</strong> simple functions.<br />

We next def<strong>in</strong>e <strong>the</strong> notion <strong>of</strong> <strong>the</strong> Bochner <strong>in</strong>tegral <strong>of</strong> a vector valued function. This is <strong>the</strong><br />

"strongest" <strong>of</strong> <strong>the</strong> various vector valued <strong>in</strong>tegrals which have been considered and is <strong>the</strong><br />

one most useful for <strong>the</strong> topics treated <strong>in</strong> this Handbook.<br />

If f is a simple function supported on a set <strong>of</strong> f<strong>in</strong>ite measure, def<strong>in</strong>e f f d/x =<br />

~x~X Iz[f = x]x. This is <strong>of</strong> course a f<strong>in</strong>ite sum. It is easy to see directly, and also follows<br />

from <strong>the</strong> scalar case by compos<strong>in</strong>g with l<strong>in</strong>ear functionals, that <strong>the</strong> <strong>in</strong>tegral is l<strong>in</strong>ear<br />

on this class <strong>of</strong> simple functions. If f is <strong>the</strong> a.e. limit <strong>of</strong> a sequence {fn }n~_-i <strong>of</strong> simple functions<br />

supported on sets <strong>of</strong> f<strong>in</strong>ite measure and limn,m f IlL - fm II d# = 0, <strong>the</strong>n f f d# is<br />

def<strong>in</strong>ed to be limn f f~ d~. It is easy to check that f f d# does not depend on <strong>the</strong> particular<br />

sequence {fn }n~_-i and that f f d# exists if and only if f is measurable and f Ilfll d# < oe.<br />

That <strong>the</strong> <strong>in</strong>tegral has <strong>the</strong> expected properties ei<strong>the</strong>r follows from <strong>the</strong> scalar case by compos<strong>in</strong>g<br />

with l<strong>in</strong>ear functionals or is easy to check directly; see [8, pp. 44-52]. In particular,<br />

II f f d# II ~< f II f II d# and T f f dlz = f Tf d# whenever f is <strong>in</strong>tegrable and T is an operator.<br />

That <strong>the</strong> usual differentiability properties hold for <strong>the</strong> Bochner <strong>in</strong>tegral can be deduced<br />

from <strong>the</strong> scalar <strong>the</strong>orems even without recall<strong>in</strong>g <strong>the</strong> pro<strong>of</strong>s <strong>in</strong> that case. Suppose that f is<br />

a Lebesgue <strong>in</strong>tegrable X valued function on R n . Then for a.e. u <strong>in</strong> R n, we have<br />

lim m(B(O, r)) -1<br />

r--+O (u,r) Iif(v) - f(u)II dv = 0 (13)<br />

and thus also f(u) - limr~om(B(O, r)) -1 fB(u,r) f(v) dv (here <strong>in</strong>tegration is with respect<br />

to Lebesgue measure m on Rn). Indeed, we may assume that X is separable and {Xn}n~<br />

is dense <strong>in</strong> X. Then by <strong>the</strong> scalar <strong>the</strong>orem,<br />

lim m(B(O, r)) -1 s<br />

r--+O<br />

II f(v) - xnll dv = IIf(u) - Xnll<br />

(u,r)


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 37<br />

for a.e. u and every n. For a po<strong>in</strong>t u for which this holds for every n we have<br />

limsupm(B(O, r)) -1 fB<br />

r--+O<br />

(u,r)<br />

fll<br />

lif(v) - f(u)ll dv<br />


38 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

Chapter 3]) is that a function f from <strong>the</strong> complex plane <strong>in</strong>to Y is analytic if y* f is analytic<br />

for each y* <strong>in</strong> Y*.<br />

One important <strong>Banach</strong> space <strong>the</strong>ory property that comes from differentiation <strong>the</strong>ory is<br />

<strong>the</strong> Radon-Nikodjm property or RNP. One way to def<strong>in</strong>e this notion is <strong>the</strong> follow<strong>in</strong>g: The<br />

space X has <strong>the</strong> RNP if every Lipschitz function from N <strong>in</strong>to X is differentiable a.e. Here<br />

we do not need to specify G~teaux or Fr6chet differentiability s<strong>in</strong>ce <strong>the</strong> notions obviously<br />

co<strong>in</strong>cide for all functions from R. The RNP is usually def<strong>in</strong>ed by <strong>the</strong> requirement that<br />

<strong>the</strong> Radon-Nikod~m <strong>the</strong>orem holds for X valued measures <strong>of</strong> f<strong>in</strong>ite total variation (see,<br />

for example, [8]). We shall discuss that aspect and o<strong>the</strong>r equivalences <strong>of</strong> <strong>the</strong> RNP later <strong>in</strong><br />

this section. Here just note that a <strong>Banach</strong> space valued Lipschitz function f on [0, 1 ] has<br />

separable range, so its a.e. derivative fl, if it exists, is also separably valued and thus is a<br />

measurable function s<strong>in</strong>ce x*f is measurable for each x* <strong>in</strong> X*.<br />

First let us get a feel<strong>in</strong>g for which spaces have <strong>the</strong> RNP. It is clear from <strong>the</strong> def<strong>in</strong>ition<br />

that a subspace <strong>of</strong> a space with <strong>the</strong> RNP has <strong>the</strong> RNP and that a space all <strong>of</strong> whose<br />

separable subspaces have <strong>the</strong> RNP has <strong>the</strong> RNP as well. The mapp<strong>in</strong>g t w-~ l(0,t) from<br />

(0, 1) <strong>in</strong>to L 1(0, 1) shows that L 1(0, 1) fails <strong>the</strong> RNP. Also co fails <strong>the</strong> RNP. This is seen<br />

by consider<strong>in</strong>g <strong>the</strong> function f'R --+ co @~ co def<strong>in</strong>ed by f(t) - {fo s<strong>in</strong>nsds}n~--1 9<br />

{fo cosns ds}n~__l . That f maps <strong>in</strong>to co follows from <strong>the</strong> Riemann-Lebesgue lemma but<br />

<strong>the</strong> only possible candidate for a derivative is {s<strong>in</strong>ns}n~__l 9 {cosns}n~__l which is not <strong>in</strong> co<br />

for any s.<br />

Separable conjugate spaces have <strong>the</strong> RNP and thus all reflexive spaces have <strong>the</strong> RNP<br />

(<strong>in</strong>cidentally, this yields ano<strong>the</strong>r pro<strong>of</strong> <strong>of</strong> <strong>the</strong> fact mentioned <strong>in</strong> Section 3 that L 1 (0, 1) does<br />

not embed <strong>in</strong>to a separable conjugate space). To see this, let f be a Lipschitz function <strong>in</strong>to<br />

a separable conjugate space Z* and let {Zn }ne~=l be dense <strong>in</strong> Z. For all n, <strong>the</strong> scalar Lipschitz<br />

function f(t)(Zn) is differentiable for a.e.t. At a po<strong>in</strong>t to where all <strong>of</strong> <strong>the</strong>se functions are<br />

differentiable, f(to)(z) is differentiable for every z <strong>in</strong> Z (observe that h-l(f(to -+- h) -<br />

f (to))(z) - k -1 (f (to + k) - f (to))(z) --+ 0 as h, k --+ 0 because <strong>the</strong> difference quotient is<br />

uniformly bounded s<strong>in</strong>ce f is Lipschitz and tends to zero on <strong>the</strong> dense set {Zn }n~=l). From<br />

this we conclude that <strong>the</strong> limit g(t) := limh__,oh-l(f(t + h) - f(t)) exists a.e., but <strong>the</strong><br />

limit is only <strong>in</strong> <strong>the</strong> weak* sense. This is all that can be said us<strong>in</strong>g just <strong>the</strong> separability <strong>of</strong> Z.<br />

However, s<strong>in</strong>ce Z* is separable, we deduce that g is measurable (g has separable range and<br />

Jig(t) - z* II is clearly measurable for every z* <strong>in</strong> Z*; this is all that was used <strong>in</strong> <strong>the</strong> pro<strong>of</strong> <strong>of</strong><br />

measurability <strong>in</strong> <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> this section). Also g is bounded by <strong>the</strong> Lipschitz constant<br />

<strong>of</strong> f, so <strong>the</strong> Bochner <strong>in</strong>tegral G(s) "- fo g(t)dt is well def<strong>in</strong>ed for all s. Evaluat<strong>in</strong>g both<br />

sides at an arbitrary z <strong>in</strong> Z we see from <strong>the</strong> scalar <strong>the</strong>ory that G(s)(z) = (f(s) - f(0))(z)<br />

so that f(s) -- G(s) + f(O) and hence by what we proved on <strong>the</strong> differentiation <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>tegral we conclude that f'(s) = G'(s) = g(s) a.e. also <strong>in</strong> <strong>the</strong> sense that Ilh -1 (f(s + h) -<br />

f(s)) - g(s)ll ~ 0 as h -+ 0.<br />

Thus every subspace <strong>of</strong> a separable conjugate space has <strong>the</strong> RNP and a space with <strong>the</strong><br />

RNP has no subspace isomorphic to co or L 1(0, 1). These facts give useful criteria for<br />

<strong>the</strong> RNP and <strong>in</strong> certa<strong>in</strong> cases, such as spaces with an unconditional basis, allow a complete<br />

determ<strong>in</strong>ation whe<strong>the</strong>r a space has <strong>the</strong> RNR However, <strong>the</strong>re do exist separable spaces<br />

with <strong>the</strong> RNP which do not embed <strong>in</strong>to a separable conjugate space and <strong>the</strong>re are spaces<br />

fail<strong>in</strong>g <strong>the</strong> RNP which do not conta<strong>in</strong> isomorphic copies <strong>of</strong> ei<strong>the</strong>r co or L 1(0, 1) (see [3,<br />

Section 3.4]).


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 39<br />

Before stat<strong>in</strong>g <strong>the</strong> usual def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> RNP we need to <strong>in</strong>troduce <strong>the</strong> notion <strong>of</strong> what<br />

is termed <strong>in</strong> [8] a "countably additive vector measure on a a-algebra". If X is a <strong>Banach</strong><br />

space, an X valued measure r is a countably additive function from a a-algebra <strong>in</strong>to X. For<br />

this to make sense, <strong>the</strong> series y~ r(A,) must converge unconditionally for each sequence<br />

{An}n~__l <strong>of</strong> disjo<strong>in</strong>t sets <strong>in</strong> <strong>the</strong> o--algebra. One def<strong>in</strong>es <strong>the</strong> total variation It] <strong>of</strong> an X valued<br />

measure by ]r ](A) = sup ~n lit (A,)11, where <strong>the</strong> supremum is over all partitions <strong>of</strong> A <strong>in</strong>to<br />

f<strong>in</strong>itely many (or countably many; it is <strong>the</strong> same) disjo<strong>in</strong>t sets <strong>in</strong> <strong>the</strong> cr-algebra (s The<br />

measure r is said to be <strong>of</strong>f<strong>in</strong>ite variation provided ]r 1(s < cx~. If r is <strong>of</strong> f<strong>in</strong>ite variation,<br />

<strong>the</strong>n It] is a f<strong>in</strong>ite scalar measure. For example, if s = 1~,/3 is <strong>the</strong> collection <strong>of</strong> all subsets<br />

<strong>of</strong> I~t, and {x,},~__l is a sequence <strong>in</strong> <strong>the</strong> <strong>Banach</strong> space X, <strong>the</strong>n <strong>the</strong> assignment r{n} "- Xn<br />

extends to an X valued measure on/3 if and only if ~n x. converges unconditionally. The<br />

measure is <strong>the</strong>n <strong>of</strong> f<strong>in</strong>ite variation if and only if ~.n ]]Xn 11 < c~. An example <strong>of</strong> an L p (0, 1),<br />

1 ~< p < cxz, valued measure is gotten by tak<strong>in</strong>g <strong>the</strong> Lebesgue measurable subsets <strong>of</strong> [0, 1 ]<br />

and def<strong>in</strong><strong>in</strong>g r(A) = 1a. This measure has f<strong>in</strong>ite variation only if p = 1.<br />

The <strong>the</strong>ory <strong>of</strong> X valued measures and more general vector measures is exposed <strong>in</strong> [8].<br />

In addition to <strong>the</strong>ir importance for <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces, vector measures are<br />

centrally important for spectral <strong>the</strong>ory; <strong>the</strong> ones encountered <strong>the</strong>re typically do not have<br />

f<strong>in</strong>ite variation.<br />

An X valued measure r is absolutely cont<strong>in</strong>uous with respect to <strong>the</strong>f<strong>in</strong>ite scalar measure<br />

# provided r (A) = 0 for every set <strong>of</strong> # measure zero. Because # is f<strong>in</strong>ite, this is equivalent<br />

to say<strong>in</strong>g that for every ~ > 0 <strong>the</strong>re is ~ > 0 so that Ilr(A)]l < ~ whenever #(A) < 6 (see<br />

[8, p. 10]). If r is an X valued measure <strong>of</strong> f<strong>in</strong>ite variation it is clear that r is absolutely<br />

cont<strong>in</strong>uous with respect to its total variation It] and even satisfies (14) below (with # :--<br />

Irl).<br />

An X valued measure r is differentiable with respect to a scalar measure lz provided that<br />

<strong>the</strong>re is an X valued measurable function g so that r(A) = fa g d# for every measurable set<br />

A. We say that <strong>the</strong> Radon-Nikodym <strong>the</strong>orem holds <strong>in</strong> X provided that if r is an X valued<br />

measure <strong>of</strong> f<strong>in</strong>ite variation and r is absolutely cont<strong>in</strong>uous with respect to a f<strong>in</strong>ite scalar<br />

measure #, <strong>the</strong>n r is differentiable with respect to #. If X satisfies this condition only for<br />

all separable f<strong>in</strong>ite scalar measures, we say that <strong>the</strong> separable Radon-Nikodym <strong>the</strong>orem<br />

holds <strong>in</strong> X (a measure # is called separable provided L1 (#) is separable). The usual<br />

def<strong>in</strong>ition is that a <strong>Banach</strong> space X has <strong>the</strong> RNP provided <strong>the</strong> Radon-Nikodym <strong>the</strong>orem<br />

holds <strong>in</strong> X and this is equivalent to say<strong>in</strong>g that <strong>the</strong> separable Radon-Nikod3~m <strong>the</strong>orem<br />

holds <strong>in</strong> X (see [8, Chapter III]). Later we prove this equivalence for separable X, but first<br />

we show a general space X has <strong>the</strong> RNP if and only if <strong>the</strong> separable Radon-NikodSm<br />

<strong>the</strong>orem holds <strong>in</strong> X.<br />

Suppose that <strong>the</strong> separable Radon-Nikod3)m <strong>the</strong>orem holds <strong>in</strong> X and let f'[0, 1 ] ~ X<br />

be a Lipschitz function. One def<strong>in</strong>es a l<strong>in</strong>ear mapp<strong>in</strong>g T from <strong>the</strong> step functions on [0, 1]<br />

<strong>in</strong>to X by sett<strong>in</strong>g Tl[a,b] := f(b) - f(a) for a sub<strong>in</strong>terval <strong>of</strong> [0, 1] and extend<strong>in</strong>g l<strong>in</strong>early.<br />

S<strong>in</strong>ce f is a Lipschitz function, <strong>the</strong> mapp<strong>in</strong>g T is cont<strong>in</strong>uous when <strong>the</strong> step functions are<br />

given <strong>the</strong> L 1(0, 1) norm, and hence T uniquely extends to an operator (also denoted by T)<br />

from L1 (0, 1) <strong>in</strong>to X. The assignment r(A) :-- T1A obviously def<strong>in</strong>es an X valued measure<br />

<strong>of</strong> f<strong>in</strong>ite variation which is absolutely cont<strong>in</strong>uous with respect to Lebesgue measure<br />

m, so we get an X valued measurable function g on [0, 1] for which r(A) = fag dm for<br />

every Lebesgue measurable subset <strong>of</strong> [0, 1 ]. In particular, f (t) -- f0 gdm + f (0) and thus


40 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

by what we proved <strong>in</strong> <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> this section f'(t) exists a.e. on [0, 1 ] (and is equal<br />

to g(t)).<br />

Suppose that X has <strong>the</strong> RNE To see that <strong>the</strong> separable Radon-Nikod3~m <strong>the</strong>orem holds<br />

<strong>in</strong> X, suppose first that <strong>the</strong> scalar "control measure" Ix is Lebesgue measure on [0, 1] and<br />

that <strong>the</strong> X valued measure r satisfies<br />

[[r(A)I[ ~ 0 so that #(A) = fA f dv for every v-measurable set A. Of<br />

course, IX is <strong>the</strong>n also a separable measure and, as we have already remarked, r satisfies<br />

(14), so from what we already have proved <strong>the</strong>re is an X valued Ix-measurable function<br />

g so that r(A) = fAg dix for every Ix-measurable set A. Then f.g is v-measurable and<br />

r(A) = fA f" g dv for every v-measurable set A.<br />

Observe that <strong>the</strong> simple argument reduc<strong>in</strong>g <strong>the</strong> study <strong>of</strong> an X valued measure which<br />

is absolutely cont<strong>in</strong>uous with respect to a f<strong>in</strong>ite control measure to <strong>the</strong> case where <strong>the</strong> X<br />

valued measure satisfies (14) yields ano<strong>the</strong>r characterization <strong>of</strong> <strong>the</strong> RNP; more precisely,<br />

that <strong>the</strong> (separable) Radon-Nikodym <strong>the</strong>orem holds <strong>in</strong> X if and only if for each operator T<br />

from an L 1 (Ix) space with tx f<strong>in</strong>ite (and separable) <strong>in</strong>to X <strong>the</strong>re is an X valued measurable<br />

function g so that Tf = f f g dix for all f <strong>in</strong> L I(IX). From this it is easy to see that if<br />

X is separable and <strong>the</strong> separable Radon-Nikod3)m <strong>the</strong>orem holds <strong>in</strong> X <strong>the</strong>n <strong>the</strong> Radon-<br />

Nikod2~m <strong>the</strong>orem holds <strong>in</strong> X. Indeed, let IX be a f<strong>in</strong>ite measure on a cr-algebra B and let<br />

T'LI(Ix) --+ X be an operator. S<strong>in</strong>ce X is separable <strong>the</strong>re is a sequence {X*}n~ <strong>in</strong> X*<br />

which separates <strong>the</strong> po<strong>in</strong>ts <strong>of</strong> X. Let A be a countably generated sub ~r-algebra <strong>of</strong> 13 so<br />

that all <strong>the</strong> Loc(Ix) functions T* x n * are A-measurable. S<strong>in</strong>ce {Xn}n=l , oc separates po<strong>in</strong>ts <strong>of</strong><br />

X, Tf = TE(f I A) for each f <strong>in</strong> L1 (Ix). The restriction <strong>of</strong> Ix to A is a separable measure<br />

s<strong>in</strong>ce A is countably generated. Thus we get an X valued A-measurable function g so that<br />

Tf = f f. g dIx for each A-measurable function f <strong>in</strong> L l (IX). But <strong>the</strong>n for a general f <strong>in</strong><br />

L1 (Ix) we have Tf = TE(f I A) = f E(f I A)g dIx = f f. g dIx s<strong>in</strong>ce g is A-measurable.<br />

One <strong>of</strong> many places where <strong>the</strong> RNP arises naturally is <strong>in</strong> <strong>the</strong> study <strong>of</strong> vector valued L p<br />

spaces. There is a natural isometric identification <strong>of</strong> Lp,(Ix, X*), 1/p + 1/p* = 1, with<br />

a subspace <strong>of</strong> Lp(Ix, X)*, and for 1 ~ p < (x~, Lp(Ix, X)* = Lp,(Ix, X*) for allf<strong>in</strong>ite (or<br />

cr-f<strong>in</strong>ite) measures Ix if and only if X* has <strong>the</strong> RNP (see [8, Chapter IV]).<br />

There are o<strong>the</strong>r important analytic characterizations <strong>of</strong> spaces with <strong>the</strong> RNP <strong>in</strong> terms <strong>of</strong><br />

mart<strong>in</strong>gales. In particular, <strong>the</strong> RNP spaces are exactly those <strong>Banach</strong> spaces <strong>in</strong> which <strong>the</strong><br />

mart<strong>in</strong>gale convergence <strong>the</strong>orem is valid <strong>in</strong> <strong>the</strong> sense that X has <strong>the</strong> RNP if and only if<br />

every L1 bounded X valued mart<strong>in</strong>gale converges a.e. (see [8, Chapter V]).


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 41<br />

It turns out that <strong>in</strong> many places where one might assume reflexivity <strong>in</strong> order to use weak<br />

compactness <strong>of</strong> <strong>the</strong> unit ball it suffices to assume that <strong>the</strong> space has <strong>the</strong> RNP.<br />

We now discuss <strong>the</strong> differentiability <strong>of</strong> (real valued) convex cont<strong>in</strong>uous functions on a<br />

<strong>Banach</strong> space X. Part <strong>of</strong> <strong>the</strong> importance <strong>of</strong> this topic derives from <strong>the</strong> fact that <strong>the</strong> norm<br />

is a convex cont<strong>in</strong>uous function and differentiability <strong>of</strong> <strong>the</strong> norm is <strong>in</strong>tr<strong>in</strong>sically related to<br />

its smoothness. The most elementary reference for <strong>the</strong> differentiability <strong>of</strong> convex functions<br />

and related topics is probably [11, Chapter 5].<br />

An easy consequence <strong>of</strong> <strong>the</strong> def<strong>in</strong>ition is that a locally bounded convex function is cont<strong>in</strong>uous<br />

and even locally Lipschitz. By us<strong>in</strong>g <strong>the</strong> separation <strong>the</strong>orem <strong>in</strong> X | IR it follows<br />

that whenever f is convex and cont<strong>in</strong>uous <strong>in</strong> a neighborhood <strong>of</strong> a po<strong>in</strong>t x0 <strong>the</strong> set (called<br />

<strong>the</strong> subdifferential <strong>of</strong>f) Of(XO) :"- {X* E X*: x*(x -- xo) ~ f(x) -- f(xo) for all x 6 X} is<br />

nonempty. From <strong>the</strong> <strong>the</strong>ory <strong>of</strong> convex functions on R we know that for each u <strong>the</strong> right and<br />

left derivatives <strong>of</strong> <strong>the</strong> function t ~ f (xo + tu) exist at t = 0. These one-sided derivatives<br />

agree for every u (that is, all directional derivatives exist at x0) if and only if Of(xo) is<br />

a s<strong>in</strong>gle po<strong>in</strong>t which is <strong>the</strong>n necessarily <strong>the</strong> G-derivative <strong>of</strong> f at x0. Consequently f is<br />

G-differentiable at x0 if and only if for every u, f(xo + tu) + f(xo - tu) - 2f(x0) -- o(t)<br />

as t --+ 0.<br />

By consider<strong>in</strong>g f(x) = Ilxll we recover <strong>the</strong> fact mentioned <strong>in</strong> Section 6 that <strong>the</strong> norm<br />

is G-differentiable at x0 <strong>in</strong> <strong>the</strong> unit sphere <strong>of</strong> X if and only if x0 is a smooth po<strong>in</strong>t <strong>of</strong> <strong>the</strong><br />

unit ball <strong>of</strong> X. It also follows that f is F-differentiable at x0 if and only if f(xo + u) +<br />

f (xo - u) - 2f(x0) = o(llull) as Ilull -+ 0. If a convex function f is F-differentiable <strong>in</strong> a<br />

neighborhood <strong>of</strong>xo <strong>the</strong>n D f (x) is cont<strong>in</strong>uous <strong>the</strong>re; that is, F-differentiability <strong>of</strong> a convex<br />

function on an open set implies that it is C 1 <strong>the</strong>re. Indeed, suppose that Xn --+ xo and set<br />

tO* "- Df(xo); u* "-- Df(xn). Given E > 0 <strong>the</strong>re is 6 > 0 so that f(xo + y) - f(xo) -<br />

w*(y) /(~/2)llu~* - w*ll<br />

for all n. Then s<strong>in</strong>ce u, * - Df(xn), we have by <strong>the</strong> convexity <strong>of</strong> f that<br />

6 + tO* (Yn) + f (xo) >~ f (xo + y/7) >~ u* (Yn - Xn + xo) + f (Xn)<br />

or<br />

(~/2)llun* -- tO* II ~< (Un* -- tO* )(Yn)


42 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

The space X is uniformly smooth if <strong>the</strong> norm is uniformly F-differentiable on <strong>the</strong> unit<br />

sphere; that is, if <strong>the</strong> limit limt~0 t -1 (llx + tull - Ilxll) exists uniformly <strong>in</strong> both x and u<br />

on <strong>the</strong> unit sphere.<br />

The classical G~teaux differentiability <strong>the</strong>orem for convex functions says: A cont<strong>in</strong>uous<br />

convex function f on a separable <strong>Banach</strong> space X is G-differentiable on a dense G~<br />

set. Indeed, if {Xn }n--1 ~ is dense <strong>in</strong> X <strong>the</strong>n <strong>the</strong> set <strong>of</strong> G-differentiability <strong>of</strong> f is <strong>the</strong> set<br />

('~n,m Gn,m, where Gn,m is <strong>the</strong> set <strong>of</strong> po<strong>in</strong>ts x <strong>in</strong> X for which <strong>the</strong>re exists 6 > 0 so that<br />

f(x + 6Un) + f(x - gUn) - 2f(x) ~< 6/m. It is readily verified that each Gn,m is open and<br />

dense.<br />

For Fr6chet differentiability, <strong>the</strong> situation is much different even for norms. The norm <strong>of</strong><br />

el is G-differentiable at any po<strong>in</strong>t all <strong>of</strong> whose coord<strong>in</strong>ates are nonzero but is nowhere F-<br />

differentiable. This is typical <strong>in</strong> <strong>the</strong> sense that if X is separable and X* is nonseparable <strong>the</strong>n<br />

X admits an equivalent norm that is nowhere F-differentiable (see [11, Theorem 106]). On<br />

<strong>the</strong> o<strong>the</strong>r hand: If X* is separable <strong>the</strong>n every convex function f on X is F-differentiable<br />

on a dense G~. That <strong>the</strong> set <strong>of</strong> po<strong>in</strong>ts <strong>of</strong> F-differentiability is a G~ is easy to check (and<br />

for this no separability assumption is needed); it is equal to ("In Gn where Gn is <strong>the</strong> set<br />

<strong>of</strong> po<strong>in</strong>ts x <strong>in</strong> X for which <strong>the</strong>re exists 6 > 0 so that suPllull


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 43<br />

8. F<strong>in</strong>ite dimensional <strong>Banach</strong> spaces<br />

S<strong>in</strong>ce all f<strong>in</strong>ite dimensional spaces <strong>of</strong> <strong>the</strong> same dimension over <strong>the</strong> same scalar field are<br />

mutually isomorphic, for results on f<strong>in</strong>ite dimensional spaces to be mean<strong>in</strong>gful <strong>the</strong>y must<br />

be <strong>of</strong> a quantitative nature. The notion <strong>of</strong> <strong>Banach</strong>-Mazur distance is <strong>of</strong> central importance<br />

<strong>in</strong> this context. Evaluat<strong>in</strong>g or even estimat<strong>in</strong>g <strong>the</strong> distance between spaces is <strong>of</strong>ten hard<br />

s<strong>in</strong>ce it generally is quite difficult to f<strong>in</strong>d an operator T for which IIT II II T-1II is m<strong>in</strong>imal<br />

or close to m<strong>in</strong>imal.<br />

We illustrate <strong>the</strong> computation <strong>of</strong> <strong>the</strong> <strong>Banach</strong>-Mazur distance by evaluat<strong>in</strong>g (or <strong>in</strong> some<br />

cases just giv<strong>in</strong>g <strong>the</strong> order <strong>of</strong> magnitude) <strong>the</strong> quantity d (s s While relatively easy, even<br />

<strong>in</strong> this simple situation it is by no means trivial to calculate or even closely estimate <strong>the</strong><br />

distance when p and r are on different sides <strong>of</strong> two. The topic <strong>of</strong> <strong>Banach</strong>-Mazur distances<br />

between f<strong>in</strong>ite dimensional space is treated <strong>in</strong> many more <strong>in</strong>volved situations <strong>in</strong> [20].<br />

Denote <strong>the</strong> formal identity mapp<strong>in</strong>g from ~ to ~n by Ip,r. It is trivial to check that<br />

IIIp,rll = 1 when p ~ r. Consequently, if 1 ~< p < r ~<<br />

ec, <strong>the</strong>n d(gp, ~) ~< n 1/p-1/r. The simplest and most important case occurs when p (or<br />

r) is two. Ei<strong>the</strong>r by <strong>in</strong>duction from <strong>the</strong> case n -- 2, where <strong>the</strong> follow<strong>in</strong>g equality is just <strong>the</strong><br />

parallelogram law, or by us<strong>in</strong>g <strong>the</strong> orthonormality <strong>of</strong> a Rademacher sequence and tak<strong>in</strong>g<br />

<strong>the</strong> vectors xi to be <strong>in</strong>, e.g., L2(0, 1) and exchang<strong>in</strong>g <strong>the</strong> order <strong>of</strong> <strong>in</strong>tegration over [0, 1]<br />

with <strong>the</strong> expectation, one sees that vectors x l ..... x/7 <strong>in</strong> a Hilbert space satisfy <strong>the</strong> identity<br />

~6iXi<br />

i=1<br />

2<br />

- Ilxi ll2.<br />

i--1<br />

(15)<br />

Suppose that 2 < r ~< cx~ and T's --+ ~ is an isomorphism normalized to sat-<br />

isfy IIT-1II = 1 (so that IlTx[]2 /~ []Xl[r for all x). Denot<strong>in</strong>g as usual <strong>the</strong> unit vectors<br />

basis as {ei}, we see from (15) that n


44 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

By consider<strong>in</strong>g Vn* as <strong>the</strong> composition I2,1V*Icc,2 we see that IlVn*ll~,l ~< n. S<strong>in</strong>ce<br />

Vn* = Vn 1 , it follows that d(g.~, gn)


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 45<br />

ot(T) Y<br />

is def<strong>in</strong>ed by lett<strong>in</strong>g Tkei be xi when i --/= k and Tkek = x.<br />

We turn to <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Lewis' lemma. S<strong>in</strong>ce <strong>the</strong> volume <strong>of</strong> T C for any measurable set<br />

is a constant multiple <strong>of</strong> [det(T) Ivol(C), for any operator S:X ---> Y we have<br />

det(To+S)<br />

ot(r0 + S)<br />

~< Idet(T0) I. (18)<br />

Certa<strong>in</strong>ly To must be <strong>in</strong>vertible, so by divid<strong>in</strong>g (18) by Idet(T0)l we can rewrite (18) as<br />

Idet(Ix + To'S) l


46 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

N ~< 2n2; see [20, 8.6].) Hav<strong>in</strong>g done <strong>the</strong>se prelim<strong>in</strong>aries, we can state a nice geometric<br />

reformulation <strong>of</strong> <strong>the</strong> case or(.) = I1" II <strong>in</strong> Lewis' lemma. Aga<strong>in</strong> identify both spaces X and<br />

Y with ~n or C n. When one convex body conta<strong>in</strong>s ano<strong>the</strong>r, a po<strong>in</strong>t x is called a contact<br />

po<strong>in</strong>t <strong>of</strong> <strong>the</strong> bodies if it is <strong>in</strong> <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> <strong>the</strong>ir boundaries (so if <strong>the</strong> bodies are unit<br />

balls associated with two norms, a contact po<strong>in</strong>t is a po<strong>in</strong>t <strong>in</strong> <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> <strong>the</strong> two<br />

unit spheres).<br />

Assume that Bx C By and vol(Bx) ~> vol(TBx) for every operator T on ~n [C n] for<br />

which TBx C Br. Then <strong>the</strong>re exist contactpo<strong>in</strong>ts xl ..... XN <strong>of</strong> Bx and Br and contact<br />

po<strong>in</strong>ts x 1 .... , x N <strong>of</strong> Bx, and Br', and ck ~ 0 so that I = ~=l ckx~ | xk. Also, N


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 47<br />

each n spaces Xn and Yn <strong>of</strong> dimension n so that <strong>in</strong>fd(Xn, Yn)/n > 0. If one puts 2n pairs<br />

<strong>of</strong> symmetric po<strong>in</strong>ts on <strong>the</strong> unit sphere <strong>of</strong> ~, where <strong>the</strong> po<strong>in</strong>ts are chosen <strong>in</strong>dependently<br />

and are distributed uniformly on that sphere, and <strong>the</strong>n takes <strong>the</strong> symmetric convex hull <strong>of</strong><br />

<strong>the</strong> union <strong>of</strong> <strong>the</strong>se po<strong>in</strong>ts with <strong>the</strong> unit vector basis, one obta<strong>in</strong>s a unit ball for a (random)<br />

space. If one takes two <strong>of</strong> <strong>the</strong>se random spaces, <strong>the</strong>n with big probability (that is, with<br />

probability tend<strong>in</strong>g to one as n --+ cx~) <strong>the</strong> <strong>Banach</strong>-Mazur distance between <strong>the</strong> two spaces<br />

exceeds gn for some constant g > 0 <strong>in</strong>dependent <strong>of</strong> n. Although this construction is easy to<br />

describe, <strong>the</strong> computations are delicate and <strong>the</strong> reader is referred to [20, 38.1 ] for details.<br />

The probabilistic approach has many o<strong>the</strong>r applications. For example, from <strong>the</strong> estimate<br />

d(X, s 0 <strong>the</strong>re exists no - no(e, k) so that if dim(X) ~ no <strong>the</strong>n X conta<strong>in</strong>s a<br />

subspace Y with d(Y, ~) < 1 + e. There are known good estimates on n0(e, k) (and even<br />

better estimates for special classes <strong>of</strong> spaces). For general spaces n0(e, k) ~< exp(otk/e 2)<br />

for some constant a. Dvoretzky's <strong>the</strong>orem is treated <strong>in</strong> detail <strong>in</strong> several books, <strong>in</strong>clud<strong>in</strong>g<br />

[9, 19.1], [17, 4.3], [16, 1.5.8]. An exposition <strong>of</strong> Dvoretzky's <strong>the</strong>orem and related results<br />

is given <strong>in</strong> [28]. There are many pro<strong>of</strong>s <strong>of</strong> Dvoretzky's <strong>the</strong>orem and <strong>in</strong> most <strong>of</strong> <strong>the</strong>m <strong>the</strong><br />

Dvoretzky-Rogers lemma is <strong>the</strong> first step.<br />

From Dvoretzky's <strong>the</strong>orem and <strong>the</strong> technique for construct<strong>in</strong>g basic sequences discussed<br />

<strong>in</strong> Section 3 one gets <strong>in</strong> any <strong>in</strong>f<strong>in</strong>ite dimensional <strong>Banach</strong> space a basic sequence {Xn}n~=l<br />

.2k+l<br />

so that for each k, {xj }j__Zk§ 1 is 1/k-equivalent to an orthonormal basis <strong>in</strong> a Hilbert space.


48 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

An easy consequence <strong>of</strong> this is that for every square summable sequence {C~n}n~__l, <strong>of</strong><br />

scalars, every <strong>in</strong>f<strong>in</strong>ite dimensional <strong>Banach</strong> space conta<strong>in</strong>s an unconditionally convergent<br />

series ~n Yn such that for each n, IlYn II = I~nl. One can also easily deduce this from <strong>the</strong><br />

simple Dvoretzky-Rogers lemma; <strong>in</strong> fact, historically it was this application that motivated<br />

<strong>the</strong> discovery <strong>of</strong> <strong>the</strong> Dvoretzky-Rogers lemma.<br />

A result related to Dvoretzky's <strong>the</strong>orem is Kriv<strong>in</strong>e's <strong>the</strong>orem:<br />

If {Xn }n~__l is a basic sequence <strong>in</strong> a <strong>Banach</strong> space, <strong>the</strong>n <strong>the</strong>re exists 1 0 <strong>the</strong>re is a<br />

lattice isomorphism T from g n p <strong>in</strong>to X with II T II II T-1 II < 1 + ~.<br />

From Kriv<strong>in</strong>e's <strong>the</strong>orem and <strong>the</strong> fact discussed <strong>in</strong> Section 4 that ~2 embeds isometrically<br />

<strong>in</strong>to L p (0, 1) it is easy to deduce Dvoretzky's <strong>the</strong>orem. This is not <strong>the</strong> recommended<br />

route to Dvoretzky's <strong>the</strong>orem as it is difficult to navigate through Kriv<strong>in</strong>e's <strong>the</strong>orem. More<br />

importantly, <strong>the</strong> tight quantitative estimates obta<strong>in</strong>able from direct pro<strong>of</strong>s <strong>of</strong> Dvoretzky's<br />

<strong>the</strong>orem have many applications.<br />

If we apply Kriv<strong>in</strong>e's <strong>the</strong>orem to a basic sequence which is equivalent to <strong>the</strong> unit vector<br />

basis for ~r we see immediately that <strong>the</strong> only p that is obta<strong>in</strong>able is p = r. Thus by apply<strong>in</strong>g<br />

Kriv<strong>in</strong>e's <strong>the</strong>orem to a disjo<strong>in</strong>t sequence <strong>in</strong> an <strong>in</strong>f<strong>in</strong>ite dimensional L p (#) space we <strong>in</strong>fer<br />

that any equivalent renorm<strong>in</strong>g <strong>of</strong> Lp(#) conta<strong>in</strong>s for every k and ~ > 0 a subspace whose<br />

<strong>Banach</strong>-Mazur distance to g k p is less than 1 + E This implies that an <strong>in</strong>f<strong>in</strong>ite dimensional<br />

Lp(#) space cannot be given an equivalent norm which has a better modulus <strong>of</strong> convexity<br />

or smoothness than its natural norm.<br />

Two notions that are very important for both <strong>the</strong> f<strong>in</strong>ite dimensional and <strong>in</strong>f<strong>in</strong>ite dimensional<br />

<strong>the</strong>ories are that <strong>of</strong> type and cotype. A <strong>Banach</strong> space X is said to have type p provided<br />

<strong>the</strong>re is a constant C so that for every sequence x l ..... xn <strong>in</strong> X,<br />

E • 6iXi<br />

i=1<br />


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 49<br />

a constant C so that for every sequence X l ..... Xn <strong>in</strong> X,<br />

[[xill q<br />

i=1<br />

2) 1/2<br />

The best constants <strong>in</strong> (22) and (23) are denoted by Tp (X) and Cq (X). By <strong>the</strong> parallelogram<br />

identity characterization <strong>of</strong> Hilbert space, a space X is isometric to a Hilbert space if and<br />

only if Tz(X) = 1 = C2(X). Even a one dimensional space does not have type p for any<br />

p > 2 or cotype q for any q < 2. For every space X, 7"1 (X) = 1 and Coo(X) -- 1 by<br />

convexity <strong>of</strong> <strong>the</strong> norm. As functions <strong>of</strong> p and q, Tp(X) is nondecreas<strong>in</strong>g and Cp(X) is<br />

non<strong>in</strong>creas<strong>in</strong>g. The <strong>in</strong>equalities Tp(X)


50 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

sional L~(#) spaces are universal for separable spaces, <strong>the</strong>y do not have type p for any<br />

p > 1. Similarly, an <strong>in</strong>f<strong>in</strong>ite dimensional Lq (#) space for 2 ~< q ~< oo does not have cotype<br />

smaller than q.<br />

If {Xn }n=l ~ is a sem<strong>in</strong>ormalized unconditionally basic sequence <strong>in</strong> Lq(lZ), 2 < q < oo,<br />

with # a probability measure and <strong>in</strong>f IlXn 112 > 0, <strong>the</strong>n s<strong>in</strong>ce Lq(#) has type 2 and L2(#) has<br />

cotype 2 and I1" 112 ~ I1" IIq we <strong>in</strong>fer that {Xn}n~=l is, <strong>in</strong> Lq(#), equivalent to <strong>the</strong> unit vector<br />

basis <strong>of</strong> g2. Thus such a sequence cannot have dense l<strong>in</strong>ear span <strong>in</strong> Lq(#). In particular,<br />

<strong>the</strong> trigonometric system is not unconditional <strong>in</strong> Lq (0, 1) for 2 < q ~< c~ and, by duality,<br />

also not <strong>in</strong> L p(O, 1), 1


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 51<br />

One can assume that I[x + YI[ + [Ix - YI[ - 2 with t "- ]]x+yll-llx-y[] ~ O. Then for e -- +1,<br />

2<br />

1 ~Crp 1 - Crp<br />

Ilx + opey II ~< IIx + eyl[ + 2 I[x - eyl[- 1 + eCrpt.<br />

Therefore<br />

(EII + + ,/1 + t2- (EII + lyl12)<br />

F<strong>in</strong>ally, iterate (27) to obta<strong>in</strong> (25). Formally, for k -- 1 ..... n def<strong>in</strong>e Sk "-- ~ki= 1 6iXi; we<br />

need to show that (EIIx + o'pSkllP) 1/p


52 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

arose first <strong>in</strong> <strong>the</strong> study <strong>of</strong> probability <strong>in</strong> <strong>Banach</strong> spaces and are sometimes called B-convex<br />

(see [34]).<br />

Similarly, a space does not have f<strong>in</strong>ite cotype if and only if it conta<strong>in</strong>s for every n arbi-<br />

trarily close copies <strong>of</strong> s S<strong>in</strong>ce ek 1 is a subspace <strong>of</strong> ~ (isometrically <strong>in</strong> <strong>the</strong> case <strong>of</strong> real<br />

scalars and up to constant <strong>in</strong> <strong>the</strong> complex case), we deduce that if X is B-convex <strong>the</strong>n it<br />

has cotype q for some q < cx~. S<strong>in</strong>ce a uniformly convex space cannot have subspaces <strong>of</strong><br />

arbitrary dimension which are arbitrarily close to s it follows that a uniformly convex<br />

space is B-convex; that is, has nontrivial type and cotype.<br />

The relation <strong>of</strong> B-convexity to reflexivity is not so simple but has been clarified. A B-<br />

convex space need not be reflexive-<strong>the</strong>re is even a nonreflexive space <strong>of</strong> type 2. Though<br />

nonreflexive <strong>Banach</strong> spaces need not conta<strong>in</strong> almost isometric copies <strong>of</strong> s <strong>the</strong>y do conta<strong>in</strong><br />

configurations <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g type for every n and ~ > 0: norm one vectors x i .... , Xn<br />

so that for every k < n, Ilxl +"-+ Xk - (Xk+l + '''-~- xn)ll >~ n - E. In particular, tak<strong>in</strong>g<br />

n : 2 we see that: Every nonreflexive space conta<strong>in</strong>s real subspaces arbitrarily close<br />

to real s That is, a real space whose unit ball does not have a two dimensional section<br />

arbitrarily close to a square must be reflexive. See [2, 4.111] for pro<strong>of</strong>s <strong>of</strong> <strong>the</strong>se results.<br />

We next discuss <strong>the</strong> duality <strong>the</strong>ory <strong>of</strong> type and cotype. It is simple that if X has type p<br />

<strong>the</strong>n X* has cotype p* and Cp,(X*)


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 53<br />

would be bounded, where P is <strong>the</strong> orthogonal projection onto <strong>the</strong> closed l<strong>in</strong>ear span <strong>of</strong> <strong>the</strong><br />

Rademacher sequence {en}~_l (a space X for which P is bounded is said to be K-convex).<br />

/5 is def<strong>in</strong>ed explicitly for f/ <strong>in</strong> L2(#) and xi <strong>in</strong> X by ['(~i~=l fixi) -- Y~"i=l (P~)xi" It<br />

is a deep fact (see [16, II.14], [17, 2.4], and [38]) that: X is K-convex if and only if X is<br />

B-convex. Thus <strong>the</strong> presence <strong>of</strong> copies <strong>of</strong> ~ is exactly <strong>the</strong> factor which h<strong>in</strong>ders a clean<br />

duality between type and cotype. If X is B-convex and <strong>of</strong> cotype p* <strong>the</strong>n X* is <strong>of</strong> type p.<br />

For f<strong>in</strong>ite dimensional X it is important to estimate <strong>the</strong> norm <strong>of</strong> <strong>the</strong> Rademacher projection<br />

(called <strong>the</strong> K-convexity constant <strong>of</strong> X and usually denoted by K(X)). A useful<br />

estimate (which is valid also for isomorphs <strong>of</strong> <strong>in</strong>f<strong>in</strong>ite dimensional Hilbert space) is<br />

K(X) 1, <strong>the</strong> distance estimate from John's <strong>the</strong>orem<br />

gives that K (X) ~< K l log n. These estimates are sharp up to <strong>the</strong> values <strong>of</strong> <strong>the</strong> constants K<br />

and Kj. For a discussion see [20, pp. 86-92], [17], [16, II.14], or [38].<br />

9. Local structure <strong>of</strong> <strong>in</strong>f<strong>in</strong>ite dimensional spaces<br />

In this section we describe results and techniques whose purpose is to relate <strong>the</strong> structure <strong>of</strong><br />

an <strong>in</strong>f<strong>in</strong>ite dimensional <strong>Banach</strong> space with <strong>the</strong> structure <strong>of</strong> its f<strong>in</strong>ite dimensional subspaces.<br />

We will be particularly <strong>in</strong>terested <strong>in</strong> properties <strong>of</strong> a space which depend only on its family<br />

<strong>of</strong> f<strong>in</strong>ite dimensional subspaces and not on <strong>the</strong> way <strong>the</strong>se f<strong>in</strong>ite dimensional spaces are<br />

"glued toge<strong>the</strong>r" to form <strong>the</strong> <strong>in</strong>f<strong>in</strong>ite dimensional space.<br />

A <strong>Banach</strong> space X is said to be L-representable <strong>in</strong> a <strong>Banach</strong> space Y if for every f<strong>in</strong>ite<br />

dimensional subspace E <strong>of</strong> X and every ~ > 0 <strong>the</strong>re is a f<strong>in</strong>ite dimensional subspace F <strong>of</strong><br />

Y with d(E, F)


54 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

so that if (1 + 3)-l ~< II Sy II ~ 1 + 6 for every y <strong>in</strong> a 6-net <strong>in</strong> <strong>the</strong> unit sphere <strong>of</strong> Y, and some<br />

operator S, <strong>the</strong>n (1 + ~)-l [ly II ~< IlSy II ~< (1 + ~)IlY II for all y E Y.<br />

We pass to <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> local reflexivity.<br />

Let e > 0 and let 6 = 6(e) be as above. Let E and F be f<strong>in</strong>ite dimensional subspaces<br />

<strong>of</strong> X**, respectively, X*. We pick {ijj}j__ 1, m <strong>in</strong> <strong>the</strong> unit ball <strong>of</strong> X* so that <strong>the</strong> set conta<strong>in</strong>s<br />

an algebraic basis <strong>of</strong> F and so that IIx**ll ~< (1 + 6)maxj Ix**(v~)l for every x** E E.<br />

Let {wi**}/n__l be a 6-net <strong>in</strong> <strong>the</strong> unit sphere <strong>of</strong> E so that {w**}~ 1 is a basis <strong>of</strong> E N X and<br />

{//)i**}i=1 r is a basis <strong>of</strong> E for some k ~< r < n<br />

"<br />

Write w i **<br />

=Zh=l)~ihW<br />

r h ** for r < i ~ n.<br />

For r < i ~< n put #i,h -- Xi,h if h ~ r, ~ii = -- 1, and #i,h = 0 for r < h # i. Consider <strong>the</strong><br />

operator<br />

/7<br />

n-r+k<br />

s. (2 e . . . 9 x)~ --, (x ~ i . . 9 x)~<br />

d~<br />

def<strong>in</strong>ed by<br />

( )<br />

S(xl ..... Xn)-- x1 ..... Xk, #r+l,hXh ..... #n,hXh 9<br />

h-1 h-1<br />

By <strong>the</strong> choice <strong>of</strong> #i,h for h > r it follows that S is onto. Hence <strong>the</strong> operator<br />

/7<br />

n-r+h<br />

~. (x e . . . 9 x)~ --, (x e . . . 9 :~ 9 R'm)~<br />

def<strong>in</strong>ed by S(xl ..... Xn) -- (S(xl ..... Xn), vj(xh)), 1 ~ j


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 55<br />

Recall that a family b/<strong>of</strong> subsets <strong>of</strong> a set I is called a filter if it is closed under f<strong>in</strong>ite<br />

<strong>in</strong>tersections, does not conta<strong>in</strong> <strong>the</strong> empty set, and whenever A C B with A E b/<strong>the</strong>n B<br />

b/. A maximal (with respect to <strong>in</strong>clusion) filter is called an ultrafilter. By Zorn's lemma<br />

every filter is conta<strong>in</strong>ed <strong>in</strong> an ultrafilter. An ultrafilter is called free (or nontrivial) if <strong>the</strong><br />

<strong>in</strong>tersection <strong>of</strong> all sets <strong>in</strong> b/is empty. An <strong>in</strong>dexed family {Xi}i6I <strong>in</strong> a topological space<br />

is said to converge to x with respect to a filter bt (<strong>in</strong> symbols, x -- l<strong>in</strong>~ xi ) provided for<br />

every open set G conta<strong>in</strong><strong>in</strong>g x <strong>the</strong> set {i: xi ~ G} belongs to/g. A Hausdorff space is<br />

compact if and only if every <strong>in</strong>dexed family {xi }i~I converges (to a unique po<strong>in</strong>t) for every<br />

free ultrafilter b/on I. Assume now that I is a set and b/is a free ultrafilter on I; assume<br />

also that for all i, Xi is a <strong>Banach</strong> space. We def<strong>in</strong>e a sem<strong>in</strong>orm Ill'Ill on (Y-~i Xi)ec by<br />

IIIxlll = lirr~ Ilxi II where x -- {xi }i~/with xi ~ Xi for all i. The limit exists s<strong>in</strong>ce a closed<br />

bounded <strong>in</strong>terval on <strong>the</strong> l<strong>in</strong>e is compact. The quotient <strong>of</strong> (~-~i Xi)ec with respect to <strong>the</strong><br />

closed subspace <strong>of</strong> all x with ]llx Ill --- 0 with its obvious norm is a <strong>Banach</strong> space, called <strong>the</strong><br />

ultraproduct <strong>of</strong> <strong>the</strong> Xi (with respect to b/), and is denoted by (1--Ii Xi)cr If all <strong>the</strong> Xi are<br />

<strong>the</strong> same space X we call <strong>the</strong> space thus obta<strong>in</strong>ed an ultrapower <strong>of</strong> X, denoted also by Xu.<br />

Ultraproducts <strong>of</strong> <strong>Banach</strong> spaces are treated <strong>in</strong> detail <strong>in</strong> [9, Chapter 8].<br />

Given two families {Xi}icI and {Yi}i~I <strong>of</strong> spaces and operators 7):Xi ~ Yi with<br />

sup/ ]]Ti ]] < cx:), <strong>the</strong>re is a natural operator T:(1-Ii Xi)lg -'+ (Hi Yi)bt called <strong>the</strong> ultraproduct<br />

<strong>of</strong><strong>the</strong> operators 7). It maps an element <strong>in</strong> (1-Ii xi)cr represented by x = {xi}i6I <strong>in</strong><br />

(~_~ Xi)~ <strong>in</strong>to <strong>the</strong> element <strong>in</strong> (]-Ii Yi)Cr represented by y = {~xi}is/.<br />

The ultraproduct <strong>of</strong> one dimensional spaces is one dimensional and more generally if<br />

dim Xi = n < ec for all i <strong>the</strong>n (I-Ii xi)cr is also n-dimensional. On <strong>the</strong> o<strong>the</strong>r hand if I = N<br />

and limu (dim Xi) = ec <strong>the</strong>n (I-Ii xi)u is already nonseparable.<br />

The ultraproduct <strong>of</strong> <strong>Banach</strong> lattices is aga<strong>in</strong> a <strong>Banach</strong> lattice if we take as <strong>the</strong> positive<br />

cone <strong>in</strong> (Hi xi)cr <strong>the</strong> set <strong>of</strong> all elements which have representatives x = {xi}iEl <strong>in</strong><br />

(Y]~i Xi)oc with xi ~ 0 for all i. If all <strong>the</strong> Xi are abstract Lp spaces for some fixed p,<br />

1 ~< p < ec, <strong>the</strong>n (Hi xi)u is aga<strong>in</strong> an abstract Lp space and hence is isometric to Lp(#)<br />

for some measure # by <strong>the</strong> L p version <strong>of</strong> <strong>the</strong> Kakutani representation <strong>the</strong>orem. Similarly,<br />

if all <strong>the</strong> Xi are C (Ki) spaces for some compact Hausdorff Ki <strong>the</strong>n so is (I-Ii xi)cr However,<br />

for o<strong>the</strong>r families <strong>of</strong> <strong>Banach</strong> spaces Xi (even, e.g., if all are Orlicz spaces with <strong>the</strong><br />

same Orlicz function q)) <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> nature <strong>of</strong> (1-[i Xi)u is not an easy task.<br />

As a first application <strong>of</strong> ultraproducts we shall prove now a fact mentioned already <strong>in</strong><br />

Section 4: If 1


56 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

(and <strong>in</strong> particular a reflexive space) <strong>the</strong>re is a contractive projection from Xu onto <strong>the</strong><br />

canonical image <strong>of</strong> X <strong>in</strong> it. Map {Xi}iEI to w*-l<strong>in</strong>gr xi. As for duality, <strong>the</strong> space (I-Ii x*)u<br />

can be <strong>in</strong> a natural way identified with a subspace (usually proper) <strong>of</strong> <strong>the</strong> dual <strong>of</strong> (1--Ii xi)ct.<br />

We now discuss <strong>the</strong> relation between ultraproducts and )~-representability. It follows<br />

directly from <strong>the</strong> def<strong>in</strong>itions that any ultrapower Xct <strong>of</strong> a <strong>Banach</strong> space X is f<strong>in</strong>itely representable<br />

<strong>in</strong> X. There is also a converse, <strong>in</strong> a sense, to this statement. A <strong>Banach</strong> space<br />

X is ,k-representable <strong>in</strong> Y if and only if <strong>the</strong>re is a subspace Z <strong>of</strong> some ultraproduct <strong>of</strong> Y<br />

so that d(X, Z) 0. Introduce a partial order on I by<br />

(El, 61) < (E2, 62) if E1 C E2 and 61 > 62, and let///be an ultrafilter on I conta<strong>in</strong><strong>in</strong>g for<br />

all i E I <strong>the</strong> set {j E I: i < j}. By assumption <strong>the</strong>re is for every (E, 6) 6 1 an operator<br />

TE,~ from E <strong>in</strong>to Y so that IIx II ~< II TE,~x II ~< ()~ + 6)Ilxll for all x E E. For every x 6 X<br />

let~ = {xE,~} 6 (Y~'~i Y)~ be def<strong>in</strong>ed by xE,~ = TE,~x ifx 6 E and xE,~ =0ifx ~ E. The<br />

image <strong>of</strong> all <strong>the</strong>se s <strong>in</strong> YU is easily seen to be a subspace Z which satisfies d (X, Z) ~< )~.<br />

From <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> local reflexivity it follows that for every <strong>Banach</strong> space X <strong>the</strong><br />

space X** is isometric to a norm one complemented subspace <strong>of</strong> a suitable ultraproduct<br />

<strong>of</strong> X. Without <strong>the</strong> complementation assertion this is a special case <strong>of</strong> <strong>the</strong> result above.<br />

To get <strong>the</strong> complementation assertion we have to modify <strong>the</strong> pro<strong>of</strong> above. Now let I be<br />

<strong>the</strong> set <strong>of</strong> triples (E, F, 6), where E is a f<strong>in</strong>ite-dimensional subspace <strong>of</strong> X**, F a f<strong>in</strong>itedimensional<br />

subspace <strong>of</strong> X*, and 6 > 0. Introduce a partial order on I by (El, F1,61) <<br />

(E2, F2, 62) if El C E2, F1 C F2, and 61 > 62, and let/g be an ultrafilter on I which ref<strong>in</strong>es<br />

<strong>the</strong> partial order filter. For every (E, F, 6) E I let TE,F,e :E ~ X be <strong>the</strong> operator given by<br />

<strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> local reflexivity. Us<strong>in</strong>g <strong>the</strong>se operators we def<strong>in</strong>e as above an isometry T<br />

from X** <strong>in</strong>to XU. Def<strong>in</strong>e a map S from Xu <strong>in</strong>to X** by S({xi }) = w*-limu xi. From <strong>the</strong><br />

properties <strong>of</strong> {TE,F,~} one deduces easily that ST is <strong>the</strong> identity on X**, so that T S is a<br />

projection <strong>of</strong> norm 1 from XU onto T X**.<br />

A property (P) <strong>of</strong> <strong>Banach</strong> spaces is called a super property provided that if X satisfies<br />

(P) and Y is f<strong>in</strong>itely representable <strong>in</strong> X, <strong>the</strong>n Y satisfies (P). In particular, a super property<br />

passes from a space X to all closed subspaces <strong>of</strong> its ultraproducts. So if (P) is a hereditary<br />

property (i.e., passes to closed subspaces), a <strong>Banach</strong> space X has super (P) if and only if<br />

every ultrapower <strong>of</strong> X has (P). For example, X is superreflexive if every ultrapower <strong>of</strong> X is<br />

reflexive. An explicit local property which characterizes superreflexivity is <strong>the</strong> follow<strong>in</strong>g:<br />

A <strong>Banach</strong> space X is superreflexive if and only if for every 6 > 0 <strong>the</strong>re is an <strong>in</strong>teger N(6) so<br />

that any 6-separated dyadic tree <strong>in</strong> <strong>the</strong> unit ball <strong>of</strong> X has height ~< N (6). By an 6-separated<br />

dyadic tree <strong>of</strong> height N we mean a set <strong>of</strong> po<strong>in</strong>ts {Xi,n: 1


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 57<br />

<strong>in</strong> <strong>the</strong> unit ball <strong>of</strong> X. In a similar manner we get <strong>in</strong> every nonreflexive space a 1-separated<br />

dyadic tree <strong>of</strong> an arbitrary f<strong>in</strong>ite height <strong>in</strong> <strong>the</strong> unit ball.<br />

It is not hard to show that <strong>the</strong> existence <strong>of</strong> arbitrarily tall e-separated trees <strong>in</strong> <strong>the</strong> unit ball<br />

(for some e > 0 or for e = 1) is a selfdual property and thus so is superreflexivity. Much<br />

deeper is <strong>the</strong> fact that a space is superreflexive if and only if it has an equivalent uniformly<br />

convex norm. S<strong>in</strong>ce uniform convexity is def<strong>in</strong>ed by an <strong>in</strong>equality <strong>in</strong>volv<strong>in</strong>g four vectors<br />

<strong>the</strong> if part is obvious. The hard part is <strong>the</strong> only if part; that is, <strong>the</strong> construction <strong>of</strong> a uniformly<br />

convex equivalent norm <strong>in</strong> a space which does not have e-separated dyadic trees <strong>of</strong> large<br />

height <strong>in</strong> its unit ball. The notion <strong>of</strong> dyadic trees rem<strong>in</strong>ds one <strong>of</strong> mart<strong>in</strong>gales and <strong>in</strong> fact <strong>the</strong><br />

most elegant way to prove <strong>the</strong> only if part is to use vector-valued mart<strong>in</strong>gales. The pro<strong>of</strong><br />

shows <strong>in</strong> particular that if X is uniformly convex <strong>the</strong>n <strong>the</strong>re is an equivalent norm whose<br />

modulus <strong>of</strong> convexity ~(~) satisfies ~(e) ~> C~ q for some C > 0 and q < oe. The pro<strong>of</strong> <strong>of</strong><br />

this fact and related material can be found <strong>in</strong> [2, 4.IV] and [6, IV.4] (see also [29]).<br />

We <strong>in</strong>troduce next a class <strong>of</strong> <strong>Banach</strong> spaces def<strong>in</strong>ed <strong>in</strong> terms <strong>of</strong> <strong>the</strong>ir f<strong>in</strong>ite dimensional<br />

subspaces which are closely related to Lp(#) spaces. Let 1 ~< p ~< oe and )~ ~> 1. A <strong>Banach</strong><br />

space X is called an 12p,z space if for every f<strong>in</strong>ite dimensional subspace E <strong>of</strong> X <strong>the</strong>re is<br />

/7<br />

a fur<strong>the</strong>r subspace F D E with d (F, gp) ~< )~ where n -- dim F. A space is called an s<br />

space if it is an s space for some )~ < oo.<br />

It is evident that every Lp(#) space, 1 ~< p ~< oe, is an s space for every e > 0<br />

(take as F a small perturbation <strong>of</strong> a subspace spanned by a f<strong>in</strong>ite number <strong>of</strong> suitable disjo<strong>in</strong>t<br />

<strong>in</strong>dicator functions). Similarly, every C(K) space is an E~,l+~ space for every e > 0 (use<br />

partitions <strong>of</strong> unity). By <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> local reflexivity, if X** is an s space <strong>the</strong>n X<br />

is an s space for every ~ > 0. From ultraproduct arguments used already above, it<br />

follows that: Any s space is isomorphic to a subspace <strong>of</strong> Lp(lZ) for some measure #<br />

(1 ~< p ~< ~). In particular, for 1 < p < oe every s space is reflexive and any/22 space<br />

is isomorphic to a Hilbert space.<br />

It is possible to make a stronger statement. Assume first that 1 < p < oe and that X<br />

is an s space. There is thus a set I <strong>of</strong> f<strong>in</strong>ite dimensional subspaces E <strong>of</strong> X, directed<br />

by <strong>in</strong>clusion, with X -- ~EcI E, so that for every E <strong>the</strong>re are operators TE'E --> gp(E),<br />

SE'g~ (E) ---> E so that IITEII ~< 1, IISEII ~< ~ and SETE -- Ie (n(E) --dimE). LetL/be<br />

an ultrafilter on I which ref<strong>in</strong>es <strong>the</strong> order filter and put Y -- (FI gp(E))z4- Def<strong>in</strong>e T from<br />

X to Y by mapp<strong>in</strong>g x to <strong>the</strong> class represented by {TEx}Ecl (<strong>in</strong> view <strong>of</strong> <strong>the</strong> choice <strong>of</strong>/2<br />

it does not matter that TEx is def<strong>in</strong>ed only for E which conta<strong>in</strong> x). Def<strong>in</strong>e S: Y -+ X by<br />

S{yE} = w-lim~ SEyE (recall that X is reflexive). Then ST = Ix and Y is an Lp(#) space.<br />

Consequently: Every E,p space X, 1 < p < oo, is isomorphic to a complemented subspace<br />

<strong>of</strong>an Lp(#) space. If X is separable we deduce that X is isomorphic to a complemented<br />

subspace <strong>of</strong> L p (0, 1). Similar considerations (start<strong>in</strong>g with <strong>the</strong> fact proved <strong>in</strong> Section 4 that<br />

g2 is isometric to a complemented subspace <strong>of</strong> Lp(O, 1)) yield that every Hilbert space is<br />

isometric to a complemented subspace <strong>of</strong> some L p (#) space when 1 < p < oe.<br />

In <strong>the</strong> cases p -- 1 and p -- cx~ we can reason similarly, but now def<strong>in</strong>e S'Y --+ X**<br />

by S{yE} -- w*-limu SEyE and get that ST -- Jx, <strong>the</strong> natural <strong>in</strong>clusion <strong>of</strong> X <strong>in</strong>to X**.<br />

By consider<strong>in</strong>g T**" X** ----> Y** and S**" Y** ----> X (iv) and recall<strong>in</strong>g that <strong>the</strong>re is a norm<br />

one projection from X (iv) onto X** (see Section 2), it follows that if X is an 121 space<br />

<strong>the</strong>n X** is isomorphic to a complemented subspace <strong>of</strong> an L l(#) space. S<strong>in</strong>ce L1 (#)* is


58 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

<strong>in</strong>jective and s<strong>in</strong>ce <strong>the</strong>re is a norm one projection from X*** onto X* we deduce that if X<br />

is an E1 space <strong>the</strong>n X* is an <strong>in</strong>jective <strong>Banach</strong> space. Similarly, if X is an s space <strong>the</strong>n<br />

<strong>the</strong> constructed ultraproduct Y is a C(K) space and X** is isomorphic to a complemented<br />

subspace <strong>of</strong> <strong>the</strong> <strong>in</strong>jective space Y**. That is, if X is an 12~ space <strong>the</strong>n X** is an <strong>in</strong>jective<br />

<strong>Banach</strong> space.<br />

The converse <strong>of</strong> <strong>the</strong> previous statements essentially hold. First we show: Let 1 < p < ~.<br />

A <strong>Banach</strong> space X is isomorphic to a complemented subspace <strong>of</strong> an Lp(#) space if and<br />

only if X is an s space or X is isomorphic to a Hilbert space. To see <strong>the</strong> "only if"<br />

direction, assume that <strong>the</strong>re is a projection Q from Y = Lp(#) onto a subspace X which is<br />

not isomorphic to a Hilbert space. By <strong>the</strong> dichotomy pr<strong>in</strong>ciple for L p spaces, 2 < p < cx~,<br />

discussed <strong>in</strong> Section 4 (and, by duality, also for 1 < p < 2), X has a subspace Z isomorphic<br />

to e p onto which <strong>the</strong>re is a projection, say R. Let E be a f<strong>in</strong>ite dimensional subspace <strong>of</strong> X<br />

and ~ > 0. There is a f<strong>in</strong>ite dimensional subspace F <strong>of</strong> Y (a small perturbation <strong>of</strong> <strong>the</strong> span<br />

<strong>of</strong> disjo<strong>in</strong>t <strong>in</strong>dicator functions) conta<strong>in</strong><strong>in</strong>g E so that d(F, ep)


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 59<br />

<strong>the</strong> structure <strong>of</strong> <strong>the</strong>ir f<strong>in</strong>ite dimensional subspaces and by pass<strong>in</strong>g to <strong>the</strong> duals we get direct<br />

<strong>in</strong>formation only on <strong>the</strong> f<strong>in</strong>ite dimensional quotient spaces.<br />

The s spaces give a nice local description <strong>of</strong> <strong>the</strong> complemented subspaces <strong>of</strong> Lp(O, 1)<br />

for 1 < p < cx~. From <strong>the</strong> global po<strong>in</strong>t <strong>of</strong> view <strong>the</strong>se complemented subspaces are very hard<br />

to describe. Some global structure <strong>the</strong>orems are known (e.g., every separable s space<br />

1 ~< p ~< ~ has a Schauder basis, and every separable <strong>in</strong>f<strong>in</strong>ite dimensional s space 1 <<br />

p < cx~ which does not conta<strong>in</strong> a copy <strong>of</strong> e2 is isomorphic to e p) but many natural questions<br />

on <strong>the</strong>m are still open. For example, it is unknown whe<strong>the</strong>r every separable s space,<br />

1 < p < cx~ (p :/: 2), has an unconditional basis. There are uncountably many dist<strong>in</strong>ct<br />

isomorphism types among <strong>the</strong> separable s spaces, 1 ~< p ~< ~ (p r 2). The simplest<br />

examples for 1 < p 7~ 2 < oc (besides Lp(#) spaces) are ep | e2 and (e2 (~ e2 (~'" ")p.<br />

A discussion <strong>of</strong> all <strong>of</strong> <strong>the</strong>se questions is conta<strong>in</strong>ed <strong>in</strong> [22].<br />

Among <strong>the</strong> separable/2~ spaces <strong>the</strong>re are <strong>the</strong> C(K) spaces with K countable compact<br />

metric which, as was po<strong>in</strong>ted out <strong>in</strong> Section 4, form uncountably many dist<strong>in</strong>ct isomorphism<br />

types. There are however spaces X such that X* is isometric to el but X is not<br />

isomorphic to a C(K) space. Such a space X is an s space for every e > 0. In fact,<br />

a space X is s l+~ for every E > 0 if and only if X* is isometric to LI(#) for some<br />

measure #. It is known that such an X has a subspace isometric to co. In contradist<strong>in</strong>ction<br />

to this, <strong>the</strong>re are s spaces with 2. > 1 which have <strong>the</strong> RNP (and thus <strong>in</strong> particular do<br />

not conta<strong>in</strong> a subspace isomorphic to c0). For a discussion <strong>of</strong> s spaces see [40].<br />

There are a cont<strong>in</strong>uum <strong>of</strong> isomorphism classes <strong>of</strong> separable s spaces. The simplest<br />

example (besides el and L 1(0, 1)) is <strong>the</strong> kernel <strong>of</strong> a quotient map T :el --+ L1. The isomorphism<br />

type <strong>of</strong> this kernel turns out not to depend on <strong>the</strong> choice <strong>of</strong> T. This kernel is an<br />

s space which is not isomorphic to a complemented subspace <strong>of</strong> an L l(#) space. For a<br />

discussion <strong>of</strong> s spaces, see [22].<br />

There is also a "local view" <strong>of</strong> <strong>Banach</strong> lattices. A <strong>Banach</strong> space X is said to have<br />

Gordon-Lewis local unconditional structure (GL-l.u.st.) if <strong>the</strong>re is a constant 2. so that<br />

for every f<strong>in</strong>ite dimensional subspace E <strong>of</strong> X <strong>the</strong>re is a space Y with an unconditional basis<br />

and operators: T : E --+ Y, S : Y ~ X so that ST = IE and []TI[ ]]Slluc(Y) 1. Indeed, if X is an order complete lattice, <strong>the</strong>n we saw <strong>in</strong> Section 5 that for any f<strong>in</strong>ite<br />

dimensional subspace E and every ~ > 0 <strong>the</strong>re are vectors {xl ..... Xm } <strong>in</strong> X whose span<br />

conta<strong>in</strong>s E and which is an e-perturbation <strong>of</strong> a sequence <strong>of</strong> disjo<strong>in</strong>tly supported vectors.<br />

S<strong>in</strong>ce a disjo<strong>in</strong>tly supported sequence <strong>in</strong> a lattice is 1-unconditional and <strong>the</strong> bidual <strong>of</strong> a<br />

<strong>Banach</strong> lattice is an order complete lattice, <strong>the</strong> general case follows from <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong><br />

small perturbations and <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> local reflexivity.<br />

It is clear from <strong>the</strong> def<strong>in</strong>ition that s spaces, 1 ~< p ~< ec, have 1.u.st.<br />

The close relationship between 1.u.st. and lattice structure is expressed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g<br />

result: A <strong>Banach</strong> space X has GL-l.u.st. if and only if X** is isomorphic to a complemented


60 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

subspace <strong>of</strong>a <strong>Banach</strong> lattice. Indeed, s<strong>in</strong>ce by <strong>the</strong> def<strong>in</strong>ition a complemented subspace <strong>of</strong><br />

a space with GL-l.u.st. has GL-l.u.st., it follows that if X** is a complemented subspace<br />

<strong>of</strong> a lattice it has GL-l.u.st. By <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> local reflexivity we deduce that also X has<br />

GL-l.u.st.<br />

To prove <strong>the</strong> o<strong>the</strong>r direction we use ultraproducts. Assume X has GL-l.u.st. with some<br />

constant )~. For every f<strong>in</strong>ite dimensional subspace E <strong>of</strong> X <strong>the</strong>re are a space YE with 1-<br />

unconditional basis and operators Tt; :E --+ Yt; and St; :Y t; --+ X with l[ Tt; 11 ~< 1, liSt; 11


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 61<br />

whe<strong>the</strong>r <strong>the</strong> disk algebra has <strong>the</strong> UAE As a matter <strong>of</strong> fact, <strong>the</strong> only general class <strong>of</strong> spaces<br />

o<strong>the</strong>r than L p spaces which are known to have <strong>the</strong> UAP are <strong>the</strong> reflexive Orlicz spaces9<br />

10. Some special classes <strong>of</strong> operators<br />

In this section we shall discuss some special classes <strong>of</strong> l<strong>in</strong>ear operators between <strong>Banach</strong><br />

spaces and <strong>the</strong>ir relation to <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces. We shall also discuss some<br />

o<strong>the</strong>r topics <strong>in</strong> operator <strong>the</strong>ory which are relevant to <strong>the</strong> study <strong>of</strong> <strong>the</strong> structure <strong>of</strong> <strong>Banach</strong><br />

spaces.<br />

Most <strong>of</strong> <strong>the</strong> classes <strong>of</strong> operators we consider have <strong>the</strong> ideal property, mean<strong>in</strong>g that <strong>the</strong><br />

operators from a fixed X <strong>in</strong>to a fixed Y hav<strong>in</strong>g this property form a l<strong>in</strong>ear space and that<br />

whenever T : X --+ Y belongs to this class <strong>the</strong>n for every bounded U : Z --+ X and V : Y --+<br />

W <strong>the</strong> operator V T U belongs to this class. The three most elementary operator ideals are<br />

<strong>the</strong> bounded operators, <strong>the</strong> compact operators, and <strong>the</strong> weakly compact operators. S<strong>in</strong>ce<br />

B(X, Y), K(X, Y), and WK(X, Y) are all <strong>Banach</strong> spaces under <strong>the</strong> operator norm, <strong>the</strong><br />

operator norm is <strong>the</strong> natural norm to use for operators <strong>in</strong> <strong>the</strong>se classes. A <strong>Banach</strong> space<br />

X has <strong>the</strong> Dunford-Pettis (DP) property provided that every weakly compact operator<br />

with doma<strong>in</strong> X maps weakly compact sets <strong>in</strong>to norm compact sets. It is clear that if T E<br />

WK(X, Y), S E WK(Y, Z), and Y has <strong>the</strong> DP property, <strong>the</strong>n ST is a compact operator.<br />

In particular, if X has <strong>the</strong> DP property and P is a weakly compact projection on X, <strong>the</strong>n<br />

p = p2 is compact. This means that <strong>the</strong> only complemented reflexive subspaces <strong>of</strong> X are<br />

<strong>the</strong> f<strong>in</strong>ite dimensional ones.<br />

A subset <strong>of</strong> a <strong>Banach</strong> space is relatively weakly compact if and only if it is relatively<br />

weakly sequentially compact. Therefore, a space X has <strong>the</strong> DP property if and only if every<br />

weakly compact operator with doma<strong>in</strong> X maps sequences which converge weakly to zero<br />

<strong>in</strong>to sequences which converge <strong>in</strong> norm to zero.<br />

The follow<strong>in</strong>g is an elegant characterization <strong>of</strong> spaces hav<strong>in</strong>g <strong>the</strong> DP property. X has<br />

<strong>the</strong> DPproperty if and only if whenever {Xn}n~__l <strong>in</strong> X tends weakly to 0 and {x*}n~=l <strong>in</strong> X*<br />

tends weakly to 0 <strong>the</strong> sequence <strong>of</strong> scalars {x* (Xn) }n~__l tends to O. Indeed, assume that X has<br />

~< 11)<br />

DP and x n > 0 9 The operator T" X ~ co def<strong>in</strong>ed by Tx -- (x* 1 (x), x 2 *(x) .... ) is a weakly<br />

compact operator (it is easier to check that T* is weakly compact). Hence, if Xn --+ 0<br />

weakly, Ix*(xn)[ ~< IITxnl[ ~ 0. Conversely, assume <strong>the</strong> condition on <strong>the</strong> sequences is<br />

satisfied, T:X --+ Y is weakly compact, and x~ w> 0. If II Txn IIr 0 we may assume, by<br />

pass<strong>in</strong>g to a subsequence, that II Txn II >~ 6 for some 6 > 0 and all n. Let y* E X* be such<br />

that y*(Txn) -- IlTxn[I and IlYn* l[ - 1 for all n. S<strong>in</strong>ce T* is weakly compact as well we may<br />

assume (pass<strong>in</strong>g aga<strong>in</strong> to a subsequence if needed) that T* y*<br />

0- lim(T*y* - x*)(Xn) --limy*(Txn) --lim IITxn II<br />

n /7 n<br />

to<br />

> x* for some x*. Then<br />

a contradiction.<br />

It follows from <strong>the</strong> criterion we just proved that X has <strong>the</strong> DP property if X* has this<br />

property. (The converse is false: ( Y~n=l ~)1 has <strong>the</strong> DP property but ( Y~m= er 1 e2) n oo conta<strong>in</strong>s<br />

a complemented copy <strong>of</strong> ~2 and hence fails <strong>the</strong> DP property.) It is also clear that a


62 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

complemented subspace <strong>of</strong> a space with <strong>the</strong> DP property has <strong>the</strong> same property. We shall<br />

verify shortly that C(K) spaces have <strong>the</strong> DP property. Consequently we get that: All E~<br />

and s spaces have <strong>the</strong> DP property.<br />

To show that C(K) has <strong>the</strong> DP property let {xn},~__l be a sequence <strong>in</strong> <strong>the</strong> unit ball <strong>of</strong><br />

C(K) so that x,(t) --+ 0 for every t 6 K. Let {lZn},e~=l be a sequence <strong>in</strong> <strong>the</strong> unit ball <strong>of</strong><br />

C(K)* which tends weakly to 0. All <strong>the</strong> #, can be considered as elements <strong>in</strong> L1 (#) where<br />

-- ZnCX~=l I#, 1/2 n. By <strong>the</strong> analysis done <strong>in</strong> Section 4 <strong>of</strong> sets <strong>in</strong> Ll (#) which have weakly<br />

compact closure it follows that for every E > 0 <strong>the</strong>re is a & > 0 so that whenever E is a<br />

Borel set <strong>in</strong> K with #(E) < 6 <strong>the</strong>n I#nl(E) < ~ for all n. By Egor<strong>of</strong>f's <strong>the</strong>orem <strong>the</strong>re is<br />

a set E with #(E) < & so that IXn(t)[


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 63<br />

It follows from this observation that <strong>the</strong> sum <strong>of</strong> two strictly s<strong>in</strong>gular operators is strictly<br />

s<strong>in</strong>gular and thus <strong>the</strong> class <strong>of</strong> strictly s<strong>in</strong>gular operators has <strong>the</strong> ideal property. It is also<br />

easy to check that SS(X, Y) is complete <strong>in</strong> <strong>the</strong> operator norm.<br />

Two <strong>Banach</strong> spaces X and Y are called totally <strong>in</strong>comparable if <strong>the</strong>re is no <strong>in</strong>f<strong>in</strong>ite dimensional<br />

space Z which is isomorphic to subspaces <strong>of</strong> both X and Y. If every operator<br />

from X to Y is strictly s<strong>in</strong>gular (and <strong>in</strong> particular if X and Y are totally <strong>in</strong>comparable)and<br />

Z is a complemented subspace <strong>of</strong> X • Y <strong>the</strong>n <strong>the</strong>re is an automorphism T <strong>of</strong> X 9 Y so that<br />

T Z is <strong>of</strong> <strong>the</strong> form T Z = Xo 9 Yo where Xo (respectively Yo) is a complemented subspace<br />

<strong>of</strong> X (respectively Y). This result is not as simple as <strong>the</strong> preced<strong>in</strong>g results <strong>in</strong> this section.<br />

Its pro<strong>of</strong> can be found <strong>in</strong> [ 11, 2.c. 13].<br />

Ano<strong>the</strong>r class <strong>of</strong> operators is that <strong>of</strong> Fredholm operators. An operator T:X --+ Y is<br />

called a Fredholm operator if or(T) := dimker T < c~ and TX is closed with/~(T) :=<br />

dimY/TX < cx~. The number i(T) = or(T) -/3(T) is called <strong>the</strong> <strong>in</strong>dex <strong>of</strong> T and has a<br />

significant role <strong>in</strong> many applications. As a matter <strong>of</strong> fact i (T) can be def<strong>in</strong>ed also for non-<br />

Fredholm operators provided TX is closed and at least one <strong>of</strong> <strong>the</strong> numbers or(T) or/3(T)<br />

is f<strong>in</strong>ite (<strong>in</strong> this case <strong>the</strong> <strong>in</strong>dex can be <strong>of</strong> course ei<strong>the</strong>r +cxz or -cx~). The class <strong>of</strong> Fredholm<br />

operators is not closed under addition or composition. However if T1 and T2 are Fredholm<br />

operators so is TiT2 (provided it is properly def<strong>in</strong>ed) and i(T1T2) = i(T1) + i(T2). Also<br />

i(T*) = -i (T). These facts are simple exercises <strong>in</strong> l<strong>in</strong>ear algebra. Somewhat harder to<br />

prove is that Fr(X, Y) is preserved by strictly s<strong>in</strong>gular perturbations. If T, S : X --+ Y with<br />

T Fredholm and S strictly s<strong>in</strong>gular <strong>the</strong>n T + S is also Fredholm with i(T + S) -- i(T) (see<br />

[11, 2.c.9]).<br />

An operator T'X --+ Y is called absolutely summ<strong>in</strong>g if whenever EiC~=l xi converges<br />

unconditionally <strong>in</strong> X <strong>the</strong> series Ei~l Txi converges absolutely. From <strong>the</strong> closed graph<br />

<strong>the</strong>orem one deduces easily that T is absolutely summ<strong>in</strong>g if and only if <strong>the</strong>re is a constant<br />

C so that for any choice <strong>of</strong> {xi }<strong>in</strong>=l <strong>in</strong> X<br />

EII Txi ]l ~ C sup I x*(xi)]" I[X* II ~ 1 .<br />

i---1<br />

i--1<br />

More generally, for every 0 < p < cx~ we can def<strong>in</strong>e <strong>the</strong> class <strong>of</strong> p-summ<strong>in</strong>g operators as<br />

those operators for which <strong>the</strong>re is a constant C so that for all choices <strong>of</strong> {xi n }i=1 <strong>in</strong> X<br />

IlTxill p


- sup<br />

64 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

Without fur<strong>the</strong>r mention we shall henceforth assume that p ~> 1 when discuss<strong>in</strong>g p-<br />

summ<strong>in</strong>g operators. However, <strong>the</strong>re are important applications to <strong>Banach</strong> space <strong>the</strong>ory <strong>of</strong><br />

p-summ<strong>in</strong>g operators for 0 < p < 1 (see, e.g., <strong>the</strong> article [32]), and much <strong>of</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong><br />

p-summ<strong>in</strong>g operators, 1 ~< p < oo, goes over to <strong>the</strong> range 0 < p < 1. In particular, <strong>the</strong>re<br />

is a version <strong>of</strong> <strong>the</strong> Pietsch factorization <strong>the</strong>orem (discussed below when 1 ~< p < oo) for<br />

p-summ<strong>in</strong>g operators, 0 < p < 1 (see [20, Theorem 9.1]).<br />

Notice that <strong>the</strong> supremum on <strong>the</strong> right side <strong>of</strong> (28) is <strong>the</strong> norm <strong>of</strong> <strong>the</strong> operator from s<br />

to X def<strong>in</strong>ed by ek ~ xk (notice that p ~> 1 is needed for this). Thus top(T) can also be<br />

def<strong>in</strong>ed by<br />

Zcp(T) -<br />

[[TVenl] p " V " g.p, --~ X, []VI] ~< 1 . (29)<br />

Equation (29) implies that 7rp(T) is <strong>the</strong> supremum <strong>of</strong> rcp(TV) as V varies over <strong>the</strong> norm<br />

one operators from s <strong>in</strong>to X.<br />

In contrast to <strong>the</strong> classes <strong>of</strong> weakly compact or strictly s<strong>in</strong>gular operators, <strong>the</strong> class <strong>of</strong> p-<br />

summ<strong>in</strong>g operators is determ<strong>in</strong>ed by <strong>the</strong> behavior <strong>of</strong> T on <strong>the</strong> f<strong>in</strong>ite dimensional subspaces<br />

<strong>of</strong> X. Because <strong>of</strong> <strong>the</strong> quantitative nature <strong>of</strong> its def<strong>in</strong>ition <strong>the</strong> notion <strong>of</strong> p-summ<strong>in</strong>g norm<br />

plays also an important role <strong>in</strong> <strong>the</strong> study <strong>of</strong> f<strong>in</strong>ite dimensional spaces.<br />

If K is a compact Hausdorff space and/z a regular probability measure on K <strong>the</strong>n <strong>the</strong><br />

identity operator Ip from C(K) <strong>in</strong>to Lp(#) is easily seen to be a p-summ<strong>in</strong>g operator<br />

with p-summ<strong>in</strong>g norm one. It turns out that this simple example is <strong>the</strong> prototype <strong>of</strong> general<br />

p-summ<strong>in</strong>g operators. This is <strong>the</strong> content <strong>of</strong> <strong>the</strong> Pietsch factorization <strong>the</strong>orem. Let X be a<br />

subspace <strong>of</strong> C (K). An operator T : X --+ Y is p-summ<strong>in</strong>g, 1 Xp<br />

Y


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 65<br />

(For p -- 2, <strong>the</strong> operator S can be extended to an operator from L p (#) <strong>in</strong>to Y, but for p :/: 2<br />

this is not <strong>in</strong> general <strong>the</strong> case.)<br />

To prove <strong>the</strong> Pietsch factorization <strong>the</strong>orem, assume that 7rp(T) = 1. Consider <strong>the</strong> follow<strong>in</strong>g<br />

subsets <strong>of</strong> C(K)<br />

G = {f e C(K): sup{f(t)" t 6 K} < 1},<br />

F = conv{f E C(K): f(-)- Ix(.)l z', IITxll- 1}.<br />

The sets F and G are convex with G open and, s<strong>in</strong>ce 7rp(T) = 1, F M G = 0. By <strong>the</strong><br />

separation <strong>the</strong>orem <strong>the</strong>re is a regular signed measure # on K and a positive )~ so that<br />

ffd#)~ for f EF. S<strong>in</strong>ce wheneverg~< f and fEG<br />

also g E G it follows that <strong>the</strong> measure/z has to be positive so after normalization we may<br />

assume that it is a probability measure. Also s<strong>in</strong>ce G conta<strong>in</strong>s <strong>the</strong> open unit ball <strong>of</strong> C(K)<br />

we must have )~ >~ 1. Hence for every x ~ X, IITx[I p /.... If <strong>the</strong> sequence is <strong>in</strong>f<strong>in</strong>ite, <strong>the</strong>n<br />

necessarily )~n(T) --+ O. For <strong>the</strong> <strong>Banach</strong> space ~2, <strong>the</strong> spectral <strong>the</strong>orem for compact op-


66 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

erators says that if T ~ K(H, H), <strong>the</strong>n <strong>the</strong>re is an orthonormal basis {Xn}nC~ 1 SO that <strong>the</strong><br />

self-adjo<strong>in</strong>t operator T*T is represented as<br />

T*Tx -- Z )~n(T*T)(x,xn)Xn (31)<br />

nEP<br />

with )~n(T*T) > 0 for n 6 P and T*Txn- 0 for n r P.<br />

Now if X is a <strong>Banach</strong> space with a 1-symmetric basis S- {en}n~__l , let S(62) be those<br />

compact operators on 62 for which ~ ~/)~n(T*T) en converges <strong>in</strong> X, and, for T 6 S(62), set<br />

Then (S(62), o's) is a <strong>Banach</strong> space (verify<strong>in</strong>g <strong>the</strong> triangle <strong>in</strong>equality is a bit tricky). It is<br />

less difficult to check that S(62) satisfies <strong>the</strong> unitary ideal property<br />

crs(UTV)


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 67<br />

orthonormal basis {en}n~__| and )~, ~> 0 so that Ten -- )~nen for every n and 1 -- (re(T) --<br />

~nC~=l)~n .2 Let {~n}~_|_ be a Rademacher sequence. Us<strong>in</strong>g Kh<strong>in</strong>tch<strong>in</strong>e's <strong>in</strong>equality (1) we<br />

get<br />

sup I(xi,x)[" Ilxll ~< 1 , ~> sup xi, Z-l-)~jej<br />

i--1 -+- i--1 j--1<br />

>>. ~ E ~_~)~j~j (xi, e~) >1 el ~_~ I,~j (xi, ej)l 2 -- A1 II Zxi II.<br />

i=1 j--1 i=1 j=l i=1<br />

This shows that 7rl (T) ~< A11 crz(T).<br />

To show <strong>the</strong> converse, it is enough to check that if T 6//p(~2, ~2) with 2


68 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

norm at most one when considered as an operator from s to s Let H be a Hilbert space.<br />

Then IIA @ In II ~< KG as an operator from s (H) to s (H), where<br />

(A | IH)(yl ..... Yn) "= aljyj ..... anjyj<br />

j=l<br />

for (Yl ..... Yn) <strong>in</strong> s<br />

To prove Gro<strong>the</strong>ndieck's <strong>in</strong>equality fix n and a matrix A- (aij)<strong>in</strong>, j=l with [IAll "-<br />

IIAs ---> s 1 as above, and put !A! := [IA | IH's ---> s We have to<br />

f<strong>in</strong>d an estimate on !A! <strong>in</strong>dependent <strong>of</strong> n and A. Note first that for all ui and vj <strong>in</strong> a Hilbert<br />

space<br />

j=l<br />

aij (ui, v j)<br />

i,j=l<br />

~< !A! max Ilui II max Ilvj II.<br />

i j<br />

S<strong>in</strong>ce all Hilbert spaces are created equal, we can use for H any (<strong>in</strong>f<strong>in</strong>ite dimensional or<br />

even 2n-dimensional) Hilbert space. For <strong>the</strong> purpose <strong>of</strong> prov<strong>in</strong>g Gro<strong>the</strong>ndieck's <strong>in</strong>equality,<br />

some Hilbert spaces are more equal than o<strong>the</strong>rs! We use for H <strong>the</strong> subspace <strong>of</strong> L2(0, 1)<br />

mentioned <strong>in</strong> Section 4 consist<strong>in</strong>g just <strong>of</strong> functions hav<strong>in</strong>g a Gaussian distribution with<br />

mean 0. To prove Gro<strong>the</strong>ndieck's <strong>in</strong>equality it is enough to consider norm one vectors<br />

{Xi}<strong>in</strong>=l and {YJ}j=I <strong>in</strong> H. Given 0 < 6 < 1/2 <strong>the</strong>re is an M -- M(6) so that for any norm<br />

one function f <strong>in</strong> H, Ilf - f M 112 --" • where<br />

fM (t) - ] f (t) if If(t)l ~< M,<br />

M sign f(t) if If(t)[ > M.<br />

[<br />

Note that by our assumption on <strong>the</strong> matrix A, for any choice <strong>of</strong> functions f/ and g j <strong>in</strong><br />

L2 (0, 1) which are uniformly bounded by M,<br />

Zaij(fi,gj) f01 Z aij fi(t)gj(t)<br />

9 .<br />

i,j t,j<br />

dt ~< M 2.<br />

Hence<br />

Z aij (xi, yj )<br />

i,j<br />

Zai,j(XiM, y M}<br />

i,j<br />

+ Zaij(xi, Yj -- Y M)<br />

i,j<br />

+ Z aij(xi- x M, yM)<br />

i,j<br />


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 69<br />

<strong>in</strong>equality. With <strong>the</strong> optimal choice <strong>of</strong> 6 this pro<strong>of</strong> yields that Kc < 8.69 (or KG < 8.55 if<br />

one exercises more care <strong>in</strong> <strong>the</strong> computation), but it is known that KG < 1.79. Incidentally,<br />

although <strong>the</strong> best value for Kc is unknown, it is known that for complex scalars it is smaller<br />

than for real ones.<br />

The first application <strong>of</strong> Gro<strong>the</strong>ndieck's <strong>in</strong>equality is: Every bounded l<strong>in</strong>ear operator<br />

T from s to ~2 is absolutely summ<strong>in</strong>g and rrl(T) ~ KGIITII. Indeed, let {ej}7_ 1 be <strong>the</strong><br />

unit vector basis for s and let ui -- Y'~jm= 1 aijej be n vectors <strong>in</strong> s for some m so that<br />

E<strong>in</strong>=_ , m <strong>of</strong> scalars <strong>of</strong><br />

1]x (ui)l ~< 1 for every unit vector x* <strong>in</strong> s For any choice {Sj}j= 1<br />

absolute value


70 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

.....<br />

def<strong>in</strong>e <strong>in</strong> g~c ( H) <strong>the</strong> vector 2 "- (yl ym).Thenllxlle~(.)<br />

__ ( n 1/2<br />

II Y~k=l Ixkl 2) I1~ ~< 1.<br />

Similarly,<br />

k=l<br />

ITxkl 2<br />

-II T o<br />

and this last quantity is at most KGIITII by (<strong>the</strong> conceptual form <strong>of</strong>) Gro<strong>the</strong>ndieck's<br />

<strong>in</strong>equality. This gives (33) when X- ~, Y- g~n and hence also when X = C(K),<br />

Y = L1 (#).<br />

Suppose now that X and Y are general <strong>Banach</strong> lattices and T :X --+ Y has norm one.<br />

Let x l ..... Xn be <strong>in</strong> X with II (~i=1 n Ixil 2) 1/2 II- 1 and set u -- (y~<strong>in</strong>__l Ixil2) 1/2 S<strong>in</strong>ce we<br />

are <strong>in</strong>terested only <strong>in</strong> estimat<strong>in</strong>g II(Y~i~I I Txi 12) 1/2ll, we can assume by replac<strong>in</strong>g X by<br />

<strong>the</strong> (separable) sublattice generated by x l ..... Xn that X is separable. The space T X is<br />

<strong>the</strong>n separable, so we can similarly assume that Y is separable. Given any ~ > 0, as seen <strong>in</strong><br />

Section 5 <strong>the</strong>re is a strictly positive functional y* E Y* with<br />

y* ITxil 2<br />

i=1 i:,<br />

1/2<br />

and IlY*II ~ 1 -q- ~. As mentioned <strong>in</strong> Section 5, <strong>the</strong> space Xu is lattice isometric to a C(K)<br />

space and Yy, is lattice isometric to an L l(#) space. The natural lattice homomorphisms<br />

J1 : Xu --+ X, J2 : Y --+ Yy* satisfy II J1 II = Ilu II = 1 and II J2 II = IlY* II ~< 1 + ~. We can <strong>the</strong>n<br />

apply (33) to <strong>the</strong> operator J2 T J1 to obta<strong>in</strong> that<br />

1/2<br />

i=1<br />

Irxil 2<br />

Yv*<br />


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 71<br />

<strong>in</strong>f<strong>in</strong>ite dimensional). Note that ~2 is isometric to a subspace <strong>of</strong> L1 (0, 1) (see Section 4)<br />

and thus ~ -- ~2 is also a quotient space <strong>of</strong> C(0, 1) because ~2 is reflexive and C(0, 1),<br />

considered as a subspace <strong>of</strong> L~ (0, 1) -- L 1(0, 1)*, determ<strong>in</strong>es <strong>the</strong> norm <strong>of</strong> L1 (0, 1). (If Y<br />

is a reflexive subspace <strong>of</strong> a <strong>Banach</strong> space X and Z is a norm closed subspace <strong>of</strong> X* which<br />

determ<strong>in</strong>es <strong>the</strong> norm <strong>of</strong> X, <strong>the</strong>n <strong>the</strong> restriction operator z* ~ z~y is a quotient mapp<strong>in</strong>g<br />

from Z onto Y*.)<br />

We will next give a glimpse <strong>in</strong>to <strong>the</strong> connections <strong>of</strong> p-summ<strong>in</strong>g operators to <strong>the</strong> <strong>the</strong>ory<br />

<strong>of</strong> f<strong>in</strong>ite dimensional spaces discussed <strong>in</strong> Section 8. If X is <strong>the</strong> space g~ <strong>the</strong>n 7f2 (Ix) =<br />

s<strong>in</strong>ce this is <strong>the</strong> Hilbert-Schmidt norm <strong>of</strong> <strong>the</strong> identity <strong>in</strong> g~. It is quite surpris<strong>in</strong>g that: For<br />

any X with dim X = n, re2 (Ix) = ~/-ff. To see this take any norm one operator V from ~2<br />

<strong>in</strong>to X. By project<strong>in</strong>g onto <strong>the</strong> orthogonal complement <strong>of</strong> <strong>the</strong> kernel <strong>of</strong> V, we can factor V<br />

as V1P where VI"~ n -+ X, P's --+ ~n, II P II - 1, II V1 II - II V II, and m ~< n. Then<br />

yr2(Ix g) ~ IIIxll IIV~ll~2(IeT)llPII ~ v/-n,<br />

Tak<strong>in</strong>g <strong>the</strong> supremum over all such V gives Yr2 (Ix) ~ ~/-n.<br />

To prove <strong>the</strong> o<strong>the</strong>r <strong>in</strong>equality, we get from <strong>the</strong> Pietsch factorization <strong>the</strong>orem a probability<br />

measure # on Bx. and T :L2(#) --+ X so that TI21x = Ix and IITII = 7rz(Ix), where as<br />

usual I2:C(Bx.) --+ L2(#) is <strong>the</strong> formal identity and X is canonically embedded <strong>in</strong>to<br />

C(Bx.). The space X2 := I2X is an n-dimensional Hilbert space and IzT is <strong>the</strong> identity<br />

on X2. Hence<br />

--- 7F2(Ix2) ~ 7r2(I2)llTII = 7r2(Ix).<br />

As a consequence <strong>of</strong> <strong>the</strong> preced<strong>in</strong>g we deduce: The projection constant <strong>of</strong>an n-dimensional<br />

space X is at most v/if; that is, whenever Y conta<strong>in</strong>s X <strong>the</strong>re is a projection P from Y onto<br />

X with I[ P [[ ~< v/-~. Indeed, s<strong>in</strong>ce fez(Ix) = V/if, <strong>the</strong> Pietsch factorization <strong>the</strong>orem yields<br />

that <strong>the</strong> identity operator on X can be represented as X J > Loo(/z) 12> L2(#) v > X,<br />

with J an isometry, 12 <strong>the</strong> formal identity, and II vii- v/if, S<strong>in</strong>ce L~(#) is 1-<strong>in</strong>jective<br />

<strong>the</strong> operator J can be extended to a norm one operator T from Y <strong>in</strong>to L~(#). The operator<br />

P :-- V12 T is a projection from Y onto X with norm at most v/ft. Notice also that<br />

<strong>the</strong> factorization used above gives ano<strong>the</strong>r pro<strong>of</strong> <strong>of</strong> <strong>the</strong> result proved <strong>in</strong> Section 8 that<br />

d(X, ~) ~ x/~.<br />

The estimate <strong>of</strong> x/~ for <strong>the</strong> projection constant <strong>of</strong> an n-dimensional space is essentially<br />

sharp. This is discussed <strong>in</strong> [33].<br />

The p-<strong>in</strong>tegral operators form a class <strong>of</strong> operators which are closely related to <strong>the</strong> p-<br />

summ<strong>in</strong>g operators. An operator T :X --~ Y is said to be p-<strong>in</strong>tegral, 1 ~ p ~ cx) (<strong>in</strong> symbols<br />

T E Zr(X, Y)), provided that <strong>the</strong> composition Jr T <strong>of</strong> T with <strong>the</strong> canonical embedd<strong>in</strong>g<br />

Jy :Y --~ Y** factors through <strong>the</strong> formal identity I~,p : L~(#) ~ Ln(#) for some<br />

probability measure #:<br />

L~(#)<br />

I~, p<br />

> Lp(#)<br />

AI T JY ~B<br />

X > Y > Y**<br />

(34)


72 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

The p-<strong>in</strong>tegral norm ip(T) is <strong>the</strong>n def<strong>in</strong>ed to be <strong>the</strong> <strong>in</strong>fimum over all such factorizations<br />

<strong>of</strong> [[ A [[ [[ B [[. By tak<strong>in</strong>g ultraproducts one sees that this <strong>in</strong>fimum is really a m<strong>in</strong>imum. The<br />

space (Zp(X, Y), ip) is easily seen to be a <strong>Banach</strong> space and ip satisfies <strong>the</strong> ideal property<br />

ip(STU) ~ []S[[ip(T)[[U[[.<br />

If T is <strong>in</strong> Zp(X, Y) and X is a subspace <strong>of</strong> C(K), with K a compact Hausdorff space,<br />

<strong>the</strong>n <strong>the</strong>re is a probability measure v on K and an operator S:Lp(v) ---+ Y** with [[S[[ ----<br />

ip(T) which makes <strong>the</strong> follow<strong>in</strong>g diagram commute:<br />

C(K)<br />

Ip<br />

> Lp(v)<br />

X<br />

T<br />

> Y<br />

Jr<br />

> Y**<br />

(35)<br />

Indeed, if (34) holds, A can be extended to an operator A" C(K) --+ L~(#) because<br />

L~(#) is 1-<strong>in</strong>jective. By <strong>the</strong> Pietsch factorization <strong>the</strong>orem <strong>the</strong>re is a probability measure<br />

v on K so that for each x E C (K),<br />

[[BI~,pAx[] ~ 7rp(Bl~,pA)<br />

[x[ p dv<br />

and <strong>the</strong> desired conclusion follows from<br />

7rp(BIc~,pA) ~ IIBllTrp(l~,p)llS, II =<br />

IIBlllIAII.<br />

It is evident that zrp(T) ~ ip(T) and from <strong>the</strong> Pietsch factorization <strong>the</strong>orem it follows<br />

that Zcp(T) = ip(T) if <strong>the</strong> doma<strong>in</strong> <strong>of</strong> T is a C(K) space. As was mentioned implicitly <strong>in</strong><br />

<strong>the</strong> discussion <strong>of</strong> 2-summ<strong>in</strong>g operators, 7r2(T) -- i2(T) for any operator. One reason for<br />

def<strong>in</strong><strong>in</strong>g p-<strong>in</strong>tegral via a factorization <strong>of</strong> Jy T ra<strong>the</strong>r than T is that this forces i p(T) --<br />

ip(T**) (use <strong>the</strong> fact that a dual space is norm one complemented <strong>in</strong> its bidual).<br />

The 1-<strong>in</strong>jectivity <strong>of</strong> C(K)** gives that a p-summ<strong>in</strong>g operator T <strong>in</strong>to a C(K) space is<br />

p-<strong>in</strong>tegral with ip(T) = 7rp(T). The equality il (T*) = il (T) follows from <strong>the</strong> observation<br />

that <strong>the</strong> adjo<strong>in</strong>t I~ <strong>of</strong> 11 "C(K) --+ Ll(v) is l~,l'L~(v) --+ Ll(v) followed by <strong>the</strong> identification<br />

<strong>of</strong> L1 (v) with <strong>the</strong> norm one complemented subspace <strong>of</strong> C(K)* consist<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

f<strong>in</strong>ite signed measures which are absolutely cont<strong>in</strong>uous with respect to v.<br />

For o<strong>the</strong>r values <strong>of</strong> p, <strong>the</strong> adjo<strong>in</strong>t <strong>of</strong> a p-<strong>in</strong>tegral operator need not be strictly s<strong>in</strong>gular<br />

(see [9, 5.12]) and hence need not be q-summ<strong>in</strong>g for any q < c~.<br />

For each 1 ~< p ~< cx~, p -r 2, <strong>the</strong>re exist p-summ<strong>in</strong>g operators which are not p-<strong>in</strong>tegral<br />

(see [9, 5.13]). The case p -- 1 is particularly easy to deduce from <strong>the</strong> <strong>the</strong>ory we have presented.<br />

We saw that every operator T :~1 --+ ~2 is 1-summ<strong>in</strong>g. If T :~1 --+/~2 is 1-<strong>in</strong>tegral,<br />

A I~, 1 B<br />

<strong>the</strong>n T has a factorization ~1 > L~ (#) > L1 (/z) > ~2. But <strong>the</strong>n B and also I~, 1 are<br />

1-summ<strong>in</strong>g, hence B I~, l, whence also B I~, 1A = T, are compact (use <strong>the</strong> fact that L 1 (/z)<br />

has <strong>the</strong> DP property).<br />

For p = c~ and Y reflexive <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity <strong>in</strong>tegral operators from X to Y are exactly those<br />

which factor through some L~(#) space (with <strong>the</strong> <strong>in</strong>tegral norm equal to <strong>the</strong> best factorization).<br />

In particular for X reflexive <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity <strong>in</strong>tegral norm <strong>of</strong> <strong>the</strong> identity <strong>of</strong> X is


- 1/x<br />

<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 73<br />

f<strong>in</strong>ite if and only if X is f<strong>in</strong>ite dimensional (and is equal to <strong>the</strong> projection constant <strong>of</strong> X <strong>in</strong><br />

that case). Thus also for p -- cx~ it is evident that summ<strong>in</strong>g and <strong>in</strong>tegral norms can be very<br />

different.<br />

The ma<strong>in</strong> reason for <strong>in</strong>troduc<strong>in</strong>g p-<strong>in</strong>tegral operators is that <strong>the</strong>y are needed for <strong>the</strong><br />

duality <strong>the</strong>ory <strong>of</strong> lip(X, Y). For simplicity, we restrict to <strong>the</strong> case where X and Y are<br />

f<strong>in</strong>ite dimensional. Follow<strong>in</strong>g <strong>the</strong> notation used <strong>in</strong> Section 8, for f<strong>in</strong>ite dimensional X,<br />

Y and ot a norm on B(X, Y) we represent <strong>the</strong> dual <strong>of</strong> (B(X, Y), or) as (B(Y, X),ot*),<br />

where <strong>the</strong> pair<strong>in</strong>g is given by (S, T) = trace TS (= traceST). Then for all 1 ~< p ~< cx~,<br />

Hp(X, Y)* = Zp,(Y, X) when X and Y are f<strong>in</strong>ite dimensional. This just means that for<br />

each S E B(Y,X), ip,(S) = sup{traceTS: T E B(X,Y),rcp(T) L1 (#)<br />

A'I S ~B,<br />

Y >X<br />

(37)<br />

one has for E > 0 an operator A~ :Y --~ L~(#) with [[A1 - Aell < ~ so that A~Y is conta<strong>in</strong>ed<br />

<strong>in</strong> <strong>the</strong> simple functions. This gives a factorization <strong>of</strong> B11~,l A~ <strong>of</strong> <strong>the</strong> form (36)<br />

with IIBIIIIAIIIIAII ~< IIB~ II III~,~ IIIIA~ II. Sett<strong>in</strong>g N := dim Y, we get A[(S - BII~,IAE)


74 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

and<br />

The operator S** B Ip satisfies<br />

ir(S**BIp) -- 7cr(S**BIp)


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 75<br />

space Z can be replaced with <strong>the</strong> algebraic sum Z(X) "-- Xo + X1 C Z topologized with<br />

<strong>the</strong> (complete) norm<br />

Ilxll - <strong>in</strong>f[ Ilxollto] -+- Ilxl Ill1]" x - xo -4- Xl, xo E Xo, xl ~ xl },<br />

where I1" I1[i1 is <strong>the</strong> norm <strong>of</strong> Xi. We always take for Z <strong>the</strong> space Z(X). The space A(X) "--<br />

Xo N X1 also plays a role <strong>in</strong> <strong>the</strong> <strong>the</strong>ory; it is naturally normed by <strong>the</strong> (complete) norm<br />

IIx II - IIx Ilto] v IIx lit 1].<br />

Thus we have for i -- 0, 1 <strong>in</strong>clusions<br />

Z(X)<br />

with Ilni II ~ 1, IIJi II ~ 1. Any <strong>Banach</strong> space X satisfy<strong>in</strong>g A(X) C X C Z(X) with both<br />

<strong>in</strong>clusions cont<strong>in</strong>uous is called an <strong>in</strong>termediate space between Xo and X1 (or an <strong>in</strong>termediate<br />

space with respect to X). The spaces Xo, X1, A(X), and Z(X) are all <strong>in</strong>termediate<br />

spaces with respect to X.<br />

Given <strong>Banach</strong> couples X -- (Xo, X1), Y -- (Yo, Y1 ), and a l<strong>in</strong>ear mapp<strong>in</strong>g T" Z (X) ----><br />

Z(Y), we write T E B(X, Y) provided Tix i E B(Xi, Yi) for i --0, 1.<br />

If X and Y are <strong>in</strong>termediate spaces with respect to X and Y, respectively, we say that<br />

X and Y are an <strong>in</strong>terpolation pair for X and Y provided that if T E B(X, Y), <strong>the</strong>n TIx<br />

B(X, Y). If always<br />

II T II x, Y ~ II T II go, Yo v II T II x,, Y,<br />

X and Y are said to be an exact <strong>in</strong>terpolation pair for X and Y, where IlSlJx, Y :--<br />

][Slxl]B(X,y ) (if SX r Y <strong>the</strong>n I]Sllx, Y "- oc). F<strong>in</strong>ally, if 0 ~< 0 ~< 1 is such that <strong>the</strong> <strong>in</strong>equality<br />

1-0 0<br />

II T IIx, Y ~ cII TIIxo,Yo. II T IIx,,y,<br />

always holds, <strong>the</strong>n <strong>the</strong> <strong>in</strong>terpolation pair X and Y are said to be <strong>of</strong> exponent 0 (and exact<br />

<strong>of</strong> exponent 0 if C -- 1). When X -- Y and X -- Y, we abbreviate by say<strong>in</strong>g, e.g., that X is<br />

an <strong>in</strong>terpolation space with respect to X provided X and X are an <strong>in</strong>terpolation pair with<br />

respect to X and X.<br />

The most classical realization <strong>of</strong> this abstract set-up occurs <strong>in</strong> <strong>the</strong> scale <strong>of</strong> Lp(#) spaces.<br />

For 1 ~< p0, pl ~< oc, <strong>the</strong> pair (Lpo(#), Lpl (#)) is a <strong>Banach</strong> couple, and for p0/x pl ~<<br />

p ~< P0 v pl <strong>the</strong> space Lp(l z) is an <strong>in</strong>termediate space between Lpo (/z) and Lpj (#). In <strong>the</strong><br />

language <strong>of</strong> <strong>in</strong>terpolation <strong>the</strong>ory <strong>the</strong> Riesz-Thor<strong>in</strong> <strong>in</strong>terpolation <strong>the</strong>orem can be stated as<br />

follows. Let 1


I<br />

76 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

Then for all measures tx and v, (complex) Lp(Ix) and Lq(v) are an exact <strong>in</strong>terpolation<br />

pair <strong>of</strong> exponent 0 with respect to (Lpo(ix), Lpl (Ix)) and (Lqo(V), Lq, (v)). It is formal to<br />

derive from <strong>the</strong> Riesz-Thor<strong>in</strong> <strong>the</strong>orem that its statement rema<strong>in</strong>s true <strong>in</strong> <strong>the</strong> sett<strong>in</strong>g <strong>of</strong> real<br />

scalars as long as P0 ~< pl and q0 ~< ql (or, what is <strong>the</strong> same, if pl ~ p0 and ql


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 77<br />

m<br />

0 with respect to X and Y. To see this, let T 9 B(X, Y), x 9 X[ol, e > 0, and choose<br />

f 9 7-/(X) so that f(O) -- x with IlfllT-t(~) ~< Ilxll[0] + e. Def<strong>in</strong>e g'S --+ S,(Y) by<br />

g(z)-- IlZll%oly ollrll-=<br />

X1, Y1 Tf(z)<br />

-- 0-1 -0<br />

Then g is <strong>in</strong> 7-/(Y), IlgllTt(F) ~< II f llT-t(N), and g(O) -IlTllxo,vollTll x,, Y, Tx so that<br />

1-0<br />

IITxll[ol ~ IITIIxo,YollTIl~<br />

Ilgll~(y)<br />

1-0<br />


78 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

(Lpo (/Z), Lpl (/z))[0] --- Lp(/Z). The argument does use <strong>the</strong> follow<strong>in</strong>g general fact about <strong>the</strong><br />

complex method. For any <strong>Banach</strong> couple X and 0 < 0 < 1, A(X) is dense <strong>in</strong> X[o] (see [4,<br />

4.2.2]).<br />

The identification Lp - (Lpo, Lpl)[O] , ~ 1 = -~-~-- 1-0 _ z- ~-~-, 0 has a generalization to <strong>Banach</strong><br />

lattices. Assume that X0 and X1 are complex <strong>Banach</strong> lattices <strong>of</strong>/z-measurable functions<br />

which are ideals <strong>in</strong> <strong>the</strong> space <strong>of</strong> all/z-measurable functions, 0 < 0 < 1, and set<br />

1 -<br />

S 0 {(sign xoxl)lxoll-~<br />

. .<br />

~ xo ~ S0, Xl E Xl}<br />

0 XOl ._<br />

If Xo is order cont<strong>in</strong>uous <strong>the</strong>n (Xo, Xl)[O] =<br />

X~ -0 XO1 and<br />

Ilxll[0] -<strong>in</strong>f{llx011[0] 1-0 Ilxl II~l] 9 Ixl-Ix011-~ Ix1 I ~ }. (38)<br />

For a pro<strong>of</strong> see Section iv.l.11 <strong>in</strong> [13]. The <strong>in</strong>equality


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 79<br />

Earlier we saw how <strong>the</strong> complex method can be used to construct <strong>the</strong> p-convexification<br />

<strong>of</strong> a <strong>Banach</strong> lattice. The /C-method can also be used to construct <strong>Banach</strong> spaces with<br />

<strong>in</strong>terest<strong>in</strong>g properties. Suppose, for example, that both X0 and X t have a normalized<br />

1-unconditional basis, each <strong>of</strong> which we identify with <strong>the</strong> unit vectors {en}n~=l so that<br />

X0 and X1 are both conta<strong>in</strong>ed <strong>in</strong> co and thus X - (X0, X1) is a <strong>Banach</strong> couple. Let E<br />

be ano<strong>the</strong>r space with a normalized 1-unconditional basis, also denoted by {en}n~ S<strong>in</strong>ce<br />

/C(X, E, a, b) is an exact <strong>in</strong>terpolation space with respect to X, it follows that {en}n~__l is a<br />

1-unconditional basis for/C(X, E, a, b) which moreover is even 1-symmetric if {en}~__l is<br />

1-symmetric <strong>in</strong> both X0 and <strong>in</strong> X1 (one need only check that <strong>the</strong> span <strong>of</strong> {en }n~ is dense <strong>in</strong><br />

/C(X, E, a, b)). Assume now that {en}ncC__l is 1-symmetric <strong>in</strong> both X0 and X1, X0 C X1, and<br />

Y~k-1 ek [l[0] II Ek-1 ekll[l] --+ 0 as n --+ oc. It turns out (see [14, 3.b.4]) that if an<br />

and <strong>the</strong> weight sequence b satisfies bn 1' ec sufficiently quickly, <strong>the</strong>n <strong>the</strong>re are disjo<strong>in</strong>t<br />

f<strong>in</strong>ite subsets Cn <strong>of</strong> N so that <strong>the</strong> mapp<strong>in</strong>g en ~ II lc~ IlK;(N,a,b)lcn extends to an isomor-<br />

phism from E onto a complemented subspace <strong>of</strong>/C(X, E, a, b). This is how one proves<br />

<strong>the</strong> result mentioned <strong>in</strong> Section 3 that a space with an unconditional basis is isomorphic to<br />

a complemented subspace <strong>of</strong> a space which has a symmetric basis.<br />

"Good" properties (such as reflexivity and superreflexivity) possessed by <strong>the</strong> <strong>Banach</strong><br />

spaces X0 and X1 (<strong>of</strong>ten possessed by just one <strong>of</strong> <strong>the</strong> spaces) generally pass to <strong>in</strong>terpolation<br />

spaces between X0 and X l which are obta<strong>in</strong>ed by <strong>the</strong> complex method or by <strong>the</strong> E-method<br />

(at least when <strong>the</strong> weight sequences a, b satisfy some growth conditions and <strong>the</strong> space E<br />

is "nice"). Sometimes <strong>in</strong>terpolation spaces even have a good property which nei<strong>the</strong>r X0<br />

nor X1 possesses. For example, suppose that X0 C X1 (this can be relaxed but is good<br />

enough for applications). If E is reflexive, <strong>the</strong> <strong>in</strong>clusion J" Xo ~ X1 is weakly compact,<br />

O0<br />

}~,n=l an < oc, and bn "~ oc, <strong>the</strong>n/C(X, E, a, b) is reflexive. For a pro<strong>of</strong> when E- ~2,<br />

which is easily modified to cover <strong>the</strong> general case, see [ 15, 2.g. 11 ]. A consequence <strong>of</strong> this<br />

result is <strong>the</strong> follow<strong>in</strong>g factorization <strong>the</strong>orem for weakly compact operators. If T" X ~ X1,<br />

is weakly compact <strong>the</strong>n T factors through a reflexive space; that is, <strong>the</strong>re exists a reflexive<br />

<strong>Banach</strong> space Y and operators A ~ B(X, Y), B ~ B(Y, X1) so that T -- BA. To derive<br />

this factorization <strong>the</strong>orem from <strong>the</strong> <strong>in</strong>terpolation result mentioned above, it suffices to take<br />

Y-/C(X0 X1 ~2 { 2-n }n= ec 1 { 2n } oc 1) where X0 is <strong>the</strong> span <strong>in</strong> X <strong>of</strong> T Bx with T Bx as<br />

<strong>the</strong> unit ball <strong>of</strong> X0. Let A be T, considered as an operator <strong>in</strong>to Y, and let B be <strong>the</strong> formal<br />

<strong>in</strong>clusion from Y <strong>in</strong>to X l. Then A and B are operators and T -- BA.<br />

We turn now to <strong>the</strong> realization <strong>of</strong> <strong>the</strong> /C-method which is used most <strong>of</strong>ten <strong>in</strong> analysis<br />

and is discussed extensively <strong>in</strong> <strong>the</strong> books on <strong>in</strong>terpolation <strong>the</strong>ory we have mentioned.<br />

Given a <strong>Banach</strong> couple X- (Xo, X1), 0 < 0 < 1, and 1 ~< p < ec, Xo,p denotes <strong>the</strong> space<br />

/C(X, ~p, a, b) where a2n "- e On, bzn "- e -(1-0)n, azn+l "- e -On, b2n+l "- e (1-0)n. In-<br />

stead <strong>of</strong> us<strong>in</strong>g [I 9 II/c(N,a,b~ on Xo,p, it is customary to use<br />

Ilxll0,p --<strong>in</strong>f [le~ v II e- -~<br />

where <strong>the</strong> <strong>in</strong>fimum is over all x0(t), Xl (t) for which e ~ xo(t) E Lp(R, X0), e-(1-~ (t) c<br />

Lp(R, X1), and x - xo(t) + xl (t) for every t <strong>in</strong> R. The expression II 9 I]0,p is a norm on<br />

Xo,p which is equivalent to II 9 II~c~,a,b> but is better behaved. For example, (Xo,p, I1" II0,p)


80 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

is uniformly convex (ra<strong>the</strong>r than just superreflexive) if ei<strong>the</strong>r X0 or X 1 is uniformly convex<br />

and 1 < p < cx~ [15, 2.g.21]. Moreover, I]" IIO,p is very good for <strong>in</strong>terpolation purposes,<br />

for if Y is ano<strong>the</strong>r <strong>Banach</strong> couple <strong>the</strong>n (Xo,p, ]]. ]]0,p) and (Yo,p, ][" ]]0,p) are an exact<br />

<strong>in</strong>terpolation pair <strong>of</strong> exponent 0 with respect to X and Y.<br />

It is <strong>of</strong> course important to identify Xo,p when X is a concrete <strong>Banach</strong> couple. The<br />

spaces that arise <strong>in</strong> this connection when X is a couple <strong>of</strong> L p(#) spaces are <strong>the</strong> L p,q<br />

spaces. Given 0 < p < ~, 0 < q < cx~, a measure #, and a <strong>Banach</strong> space X, Lp,q (#, X)<br />

is <strong>the</strong> space <strong>of</strong> X valued strongly measurable functions x for which<br />

I]Xllpq "-- q/p [tl/px.(t)]q dt 1/q < o~, (42)<br />

( f0 t )<br />

where x*(t) is <strong>the</strong> decreas<strong>in</strong>g rearrangement <strong>of</strong> IIx(t)llx. For 0 < p ~< cx~, Lp,~(#, X) is<br />

<strong>the</strong> space <strong>of</strong> X valued strongly measurable functions for which<br />

IlXllp,~ "-suptl/Px*(t) < ~. (43)<br />

t>0<br />

When X is <strong>the</strong> scalar field we write Lp,q(#). Evidently Lp,p(#, X) = Lp(#, X). Note<br />

that for p > q ~> 1, <strong>the</strong> space Lp,q(#) is <strong>the</strong> Lorentz function space Lw, q(#) def<strong>in</strong>ed<br />

<strong>in</strong> Section 5 with W(t) --qt q/p-I and hence is a <strong>Banach</strong> space. When q > p ~> 1 <strong>the</strong><br />

expression II 9 I] p,q does not satisfy <strong>the</strong> triangle <strong>in</strong>equality, although II 9 Ilp,q is equivalent to<br />

a norm when p > 1. In any case Lp,q (#, X) is a metrizable topological vector space.<br />

The ma<strong>in</strong> result about spaces obta<strong>in</strong>ed from L p and L p,q spaces via <strong>the</strong>/C-method is<br />

<strong>the</strong> follow<strong>in</strong>g (see [4, 5.3.1]): Let 0 < Po, Pl, qo, ql 0, C-1]] 9 ]]p,q ~ ]] 9 ][O,q<br />

C II 9 II p,q. When <strong>the</strong> expressions II 9 II Pi ,qi' i -- 0, 1, are equivalent to norms one can deduce<br />

from (44) and earlier comments an <strong>in</strong>terpolation <strong>the</strong>orem for operators. In fact, <strong>the</strong>re are<br />

cases where <strong>in</strong>terpolation is valid even when <strong>the</strong> spaces are not all <strong>Banach</strong> spaces. In particular,<br />

assume that T" Lpi,r i (l~, X) -+ Lqi,s i (19, X) is cont<strong>in</strong>uous for i -- 0, 1, with P0 ~: Pl,<br />

q0 ~ ql, 0 < 0 < 1, and def<strong>in</strong>e p, q by 1/p - (1 -O)/po + O/pl, 1/q - (1 -O)/qo --<br />

O/ql. If p ~< q, <strong>the</strong>n T'Lp(lZ, X) ~ Lq(19, Y) is cont<strong>in</strong>uous and for 0


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces 81<br />

that X is obta<strong>in</strong>able from X via <strong>the</strong>/C-method. This <strong>the</strong>orem says <strong>the</strong> follow<strong>in</strong>g. If X is ~Cmonotone<br />

for X, <strong>the</strong>n <strong>the</strong>re are E, a, and b so that X =/C(X, E, a, b), up to an equivalent<br />

renorm<strong>in</strong>g.<br />

The pair (Lp(O, 1), Lq(O, 1)), 1 ~< p < q ~< ~, is a Calder6n couple, and many o<strong>the</strong>r<br />

examples are known (see [31]). One <strong>in</strong>terest<strong>in</strong>g problem which is not completely solved<br />

is to determ<strong>in</strong>e a necessary and sufficient condition for a <strong>Banach</strong> couple <strong>of</strong> symmetric lattice<br />

ideals on [0, 1] (see Section 5) to be a Calder6n couple. Much is known about <strong>the</strong><br />

<strong>in</strong>terpolation spaces for such a couple. For example, an exact <strong>in</strong>terpolation space with<br />

respect to such a couple must itself be a symmetric lattice ideal (<strong>the</strong> first step is to observe<br />

that if r'[0, 1] --+ [0, 1] is a measure preserv<strong>in</strong>g automorphism, <strong>the</strong>n x w-> x(r)<br />

def<strong>in</strong>es an isometric automorphism <strong>of</strong> any symmetric lattice on [0, 1]). When <strong>the</strong> couple<br />

is (L1 (0, 1), L~(0, 1)), it is reasonable to guess that <strong>the</strong> converse is true. It is not,<br />

but: If L~(O, 1) is dense <strong>in</strong> <strong>the</strong> symmetric lattice ideal X, <strong>the</strong>n X is an exact <strong>in</strong>terpolation<br />

space with respect to (Ll (0, 1), L~(0, 1)) [13, Theorem 4.10]. Most natural symmetric<br />

lattice ideals on [0, 1], <strong>in</strong>clud<strong>in</strong>g all <strong>the</strong> separable ones, satisfy <strong>the</strong> hypo<strong>the</strong>sis <strong>of</strong> this<br />

<strong>the</strong>orem.<br />

12. List <strong>of</strong> symbols<br />

Here is a list <strong>of</strong> symbols used <strong>in</strong> this <strong>in</strong>troductory article and, where appropriate, a reference<br />

to where <strong>the</strong>y are def<strong>in</strong>ed.<br />

N<br />

R<br />

C<br />

T<br />

IP<br />

E<br />

Ap, Bp<br />

KG<br />

C(K;X)<br />

C(K)<br />

L p (l,t, X)<br />

Lp(#)<br />

L~(#,X)<br />

Lp(O, 1)<br />

Cp(~r)<br />

ep(r)<br />

The natural numbers.<br />

The real numbers.<br />

The complex numbers.<br />

The complement <strong>of</strong> <strong>the</strong> set S.<br />

The unit circle <strong>in</strong> <strong>the</strong> complex plane.<br />

A probability measure (Section 2).<br />

f. dip (Section 2).<br />

The constants <strong>in</strong> Kh<strong>in</strong>tch<strong>in</strong>e's <strong>in</strong>equality (1); also <strong>the</strong> constants <strong>in</strong> <strong>the</strong><br />

Kahane-Kh<strong>in</strong>tch<strong>in</strong>e <strong>in</strong>equality (24).<br />

The constant <strong>in</strong> Gro<strong>the</strong>ndieck's <strong>in</strong>equality (Section 10).<br />

Cont<strong>in</strong>uous functions f on <strong>the</strong> (usually) compact Hausdorff space K<br />

tak<strong>in</strong>g values <strong>in</strong> <strong>the</strong> (usually) normed space X, normed by ]lfll =<br />

suPtcK II f(t) II.<br />

C (K; X) when X is <strong>the</strong> scalar field.<br />

The #-measurable X-valued functions f for which<br />

Ilfllp := (f IIf[I F d#) 1/p < ~ (Section 7). Here 0 < p < ec.<br />

L p (#, X) when X = R.<br />

The #-measurable essentially bounded X-valued functions, with norm<br />

11 f II ~ := <strong>in</strong>f~A=O sup I fl A I"<br />

L p (#) when # is Lebesgue measure on <strong>the</strong> unit <strong>in</strong>terval.<br />

Lp(#) when # is normalized Lebesgue measure on <strong>the</strong> unit circle.<br />

Lp(#) when g is count<strong>in</strong>g measure on <strong>the</strong> set F.


82 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

~.p<br />

17 ~p<br />

C<br />

co(F)<br />

CO<br />

L p,q (/z, X)<br />

L p, oc (/z , X)<br />

L p,q (/z )<br />

Bx<br />

Bx(x,r)<br />

s-L<br />

S_L<br />

d(X, Y)<br />

X ,~ Y<br />

~x(.)<br />

px(.)<br />

Xu<br />

Xu,<br />

Ix<br />

Jx<br />

Ip<br />

Ip,q<br />

B(X,Y)<br />

K(X, Y)<br />

WK(X, Y)<br />

SS(X, Y)<br />

Fr(X, Y)<br />

.N'(X, Y)<br />

A/'(T)<br />

M(P)(T)<br />

M(p)(T)<br />

Tp(X)<br />

Cp(X)<br />

g~p(F) when F = N.<br />

g~p(F) when F -- { 1, 2 ..... n}.<br />

The subspace <strong>of</strong> s <strong>of</strong> scalar sequences which have a limit.<br />

The closure <strong>in</strong> s (F) <strong>of</strong> <strong>the</strong> scalar sequences which have f<strong>in</strong>ite support.<br />

co (F) when F -- N.<br />

The /z-measurable X-valued functions f for which ][f][p,q "=<br />

(q fo ][tl/pf *(t)][q ~)l/q < co(Section 11). Here 0 < p,q < co and<br />

f* is <strong>the</strong> decreas<strong>in</strong>g rearrangement <strong>of</strong> []fllx.<br />

The /z-measurable X-valued functions f for which [1 f ]]p,oc "=<br />

supt>otl/Pl[f*(t)l[x < co (Section 11). Here 0 < p ~< co and f* is<br />

<strong>the</strong> decreas<strong>in</strong>g rearrangement <strong>of</strong> 11 f ]Ix.<br />

Lp,q (/z, X) when X -- ]R.<br />

The closed unit ball <strong>of</strong> <strong>the</strong> <strong>Banach</strong> space X.<br />

The closed ball <strong>of</strong> radius r with center x <strong>in</strong> <strong>the</strong> <strong>Banach</strong> space X; denoted<br />

also B(x, r) when X is understood.<br />

All l<strong>in</strong>ear functionals which vanish on S (when S is a subset <strong>of</strong> a <strong>Banach</strong><br />

space).<br />

The <strong>in</strong>tersection <strong>of</strong> <strong>the</strong> kernels <strong>of</strong> all l<strong>in</strong>ear functionals <strong>in</strong> S (when S is<br />

a subset <strong>of</strong> <strong>the</strong> dual <strong>of</strong> a <strong>Banach</strong> space).<br />

The <strong>Banach</strong>-Mazur distance from X to Y (Section 2).<br />

The space X is isomorphic to <strong>the</strong> space Y.<br />

The modulus <strong>of</strong> convexity <strong>of</strong> <strong>the</strong> space X (Section 6).<br />

The modulus <strong>of</strong> smoothness <strong>of</strong> <strong>the</strong> space X (Section 6).<br />

When X is a lattice and u ~> 0, <strong>the</strong> abstract M-space which has <strong>the</strong> order<br />

<strong>in</strong>terval [-u, u] as <strong>the</strong> unit ball (Section 5).<br />

When X is a lattice and u* ~> 0 <strong>in</strong> X*, <strong>the</strong> abstract L 1-space which is<br />

<strong>the</strong> completion <strong>of</strong> X under <strong>the</strong> sem<strong>in</strong>orm [[x ]]u. -- u* ([x[) (Section 5).<br />

A Rademacher sequence (Section 4).<br />

The identity operator on <strong>the</strong> space X.<br />

The canonical embedd<strong>in</strong>g <strong>of</strong> X <strong>in</strong>to X**.<br />

The formal identity operator from C(K) to Lp(/z) (when/z is a f<strong>in</strong>ite<br />

measure on <strong>the</strong> compact Hausdorff space K).<br />

The formal identity mapp<strong>in</strong>g from Lp(/z) to Lq(/z).<br />

The bounded operators from X to Y.<br />

The compact operators from X to Y.<br />

The weakly compact operators from X to Y.<br />

The strictly s<strong>in</strong>gular operators from X to Y (Section 10).<br />

The Fredholm operators from X to Y (Section 10).<br />

The nuclear operators from X to Y (Section 8).<br />

The nuclear norm <strong>of</strong> <strong>the</strong> operator T (Section 8).<br />

The p-convexity constant <strong>of</strong> <strong>the</strong> operator T (Section 5).<br />

The p-concavity constant <strong>of</strong> <strong>the</strong> operator T (Section 5).<br />

The type p constant <strong>of</strong> <strong>the</strong> <strong>Banach</strong> space X (Section 8).<br />

The cotype p constant <strong>of</strong> <strong>the</strong> <strong>Banach</strong> space X (Section 8).


<strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces<br />

83<br />

ITp(X, Y)<br />

7rp(T)<br />

In(X, Y)<br />

ip(T)<br />

The p-summ<strong>in</strong>g operators from X to Y (Section 10).<br />

The p-summ<strong>in</strong>g norm <strong>of</strong> <strong>the</strong> operator T (Section 10).<br />

The p-<strong>in</strong>tegral operators from X to Y (Section 10).<br />

The p-<strong>in</strong>tegral norm <strong>of</strong> <strong>the</strong> operator T (Section 10).<br />

References<br />

[1] C.D. Aliprantis and O. Burk<strong>in</strong>shaw, Positive Operators, Academic Press, New York, 1985.<br />

[2] B. Beauzamy, Introduction to <strong>Banach</strong> <strong>Spaces</strong> and Their <strong>Geometry</strong>, Ma<strong>the</strong>matics Studies 68, North-Holland,<br />

Amsterdam (1985).<br />

[3] Y. Benyam<strong>in</strong>i and J. L<strong>in</strong>denstrauss, Geometric Nonl<strong>in</strong>ear Functional Analysis, Coll. Pub. 48, Amer. Math.<br />

Soc., Providence, RI (2000).<br />

[4] J. Bergh and J. Lrfstrrm, Interpolation <strong>Spaces</strong>: An Introduction, Grundlehren der Ma<strong>the</strong>matischen Wissenschaften<br />

223, Spr<strong>in</strong>ger-Verlag, New York (1976).<br />

[5] Yu.A. Brudnyi and N.Ya. Kruglyak, Interpolation Functors and Interpolation <strong>Spaces</strong> I, North-Holland,<br />

Amsterdam (1991).<br />

[6] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renorm<strong>in</strong>gs <strong>in</strong> <strong>Banach</strong> <strong>Spaces</strong>, Longman Scientific<br />

& Technical, Essex (1993).<br />

[7] J. Diestel, Sequences and Series <strong>in</strong> <strong>Banach</strong> <strong>Spaces</strong>, Spr<strong>in</strong>ger-Verlag, New York (1984).<br />

[8] J. Diestel and J.J. Uhl, Vector Measures, Ma<strong>the</strong>matical Surveys 15, Amer. Math. Soc., Providence, RI<br />

(1977).<br />

[9] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summ<strong>in</strong>g Operators, Cambridge Studies <strong>in</strong> Advanced<br />

Math. 43, Cambridge University Press, Cambridge (1995).<br />

[10] R. Durrett, Probability: Theory and Examples, Duxbury Press (1996).<br />

[ 11 ] P. Habala, P. H~ijek and V. Zizler, Introduction to <strong>Banach</strong> <strong>Spaces</strong> I, Matfyzpress, Univerzity Karlovy (1996).<br />

[ 12] P. Habala, P. Hfijek and V. Zizler, Introduction to <strong>Banach</strong> <strong>Spaces</strong> II, Matfyzpress, Univerzity Karlovy (1996).<br />

[13] S.G. Kre<strong>in</strong>, Yu.I. Petun<strong>in</strong> and E.M. Semenov, Interpolation <strong>of</strong> L<strong>in</strong>ear Operators, Transl. Math. Monogr. 54,<br />

Amer. Math. Soc., Providence, RI (1982).<br />

[14] J. L<strong>in</strong>denstrauss and L. Tzafriri, Classical <strong>Banach</strong> <strong>Spaces</strong> I: Sequence <strong>Spaces</strong>, Ergebnisse der Ma<strong>the</strong>matik<br />

und ihrer Grenzgebiete 92, Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong> (1977).<br />

[15] J. L<strong>in</strong>denstrauss and L. Tzafriri, Classical <strong>Banach</strong> <strong>Spaces</strong> II: Function <strong>Spaces</strong>, Ergebnisse der Ma<strong>the</strong>matik<br />

und ihrer Grenzgebiete 97, Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong> (1979).<br />

[16] V.D. Milman and G. Schechtman, Asymptotic Theory <strong>of</strong> F<strong>in</strong>ite Dimensional Normed <strong>Spaces</strong>, Lecture Notes<br />

<strong>in</strong> Math. 1200, Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong> (1986).<br />

[17] G. Pisier, The Volume <strong>of</strong> Convex Bodies and <strong>Banach</strong> Space <strong>Geometry</strong>, Cambridge Tracts <strong>in</strong> Math. 94,<br />

Cambridge University Press, Cambridge (1989).<br />

[18] H.L. Royden, Real Analysis, 3rd edn., Macmillan, New York (1988).<br />

[19] W. Rud<strong>in</strong>, Functional Analysis, 2nd edn., McGraw-Hill, New York (1991).<br />

[20] N. Tomczak-Jaegermann, <strong>Banach</strong>-Mazur Distances and F<strong>in</strong>ite-Dimensional Operator Ideals, Longman<br />

Scientific & Technical, Essex (1989).<br />

[21 ] P. Wojtaszczyk, <strong>Banach</strong> <strong>Spaces</strong> for Analysts, Cambridge Studies <strong>in</strong> Advanced Ma<strong>the</strong>matics 25, Cambridge<br />

University Press, Cambridge (1991).<br />

Handbook articles which are referenced <strong>in</strong> this <strong>in</strong>troductory article<br />

[22] D. Alspach and E. Odell, L p spaces, This Handbook.<br />

[23] D.L. Burkholder, Mart<strong>in</strong>gales and s<strong>in</strong>gular <strong>in</strong>tegrals <strong>in</strong> <strong>Banach</strong> spaces, This Handbook.<br />

[24] EG. Casazza, Approximation properties, This Handbook.<br />

[25] R. Deville and N. Ghoussoub, Perturbed m<strong>in</strong>imization pr<strong>in</strong>ciples and applications, This Handbook.<br />

[26] V. Fonf, J. L<strong>in</strong>denstrauss and R.R. Phelps, Inf<strong>in</strong>ite dimensional convexity, This Handbook.


84 W.B. Johnson and J. L<strong>in</strong>denstrauss<br />

[27]<br />

[281<br />

[29]<br />

[30]<br />

[31]<br />

[32]<br />

[33]<br />

[34]<br />

[35]<br />

[36]<br />

[37]<br />

[381<br />

[39]<br />

[401<br />

[41]<br />

[421<br />

[43]<br />

[441<br />

T. Gamel<strong>in</strong> and S.V. Kislyakov, Uniform algebras as <strong>Banach</strong> spaces, This Handbook.<br />

A.A. Giannopoulos and V. Milman, Euclidean structure <strong>in</strong> f<strong>in</strong>ite dimensional normed spaces, This Handbook.<br />

G. Godefroy, Renorm<strong>in</strong>gs <strong>of</strong> <strong>Banach</strong> spaces, This Handbook.<br />

W.T. Gowers, Ramsey <strong>the</strong>ory methods <strong>in</strong> <strong>Banach</strong> spaces, This Handbook.<br />

N.J. Kalton and S.J. Montgomery-Smith, Interpolation andfactorization <strong>the</strong>orems, This Handbook.<br />

S.V. Kislyakov, <strong>Banach</strong> spaces and classical harmonic analysis, This Handbook.<br />

A. Koldobsky and H. K6nig, Aspects <strong>of</strong> <strong>the</strong> isometric <strong>the</strong>ory <strong>of</strong> <strong>Banach</strong> spaces, This Handbook.<br />

M. Ledoux and J. Z<strong>in</strong>n, Probabilistic limit <strong>the</strong>orems <strong>in</strong> <strong>the</strong> sett<strong>in</strong>g <strong>of</strong> <strong>Banach</strong> spaces, This Handbook.<br />

J. L<strong>in</strong>denstrauss, Characterizations <strong>of</strong> Hilbert space, This Handbook.<br />

E Mankiewicz and N. Tomczak-Jaegermann, Quotients <strong>of</strong>f<strong>in</strong>ite-dimensional <strong>Banach</strong> spaces; Random phenomena,<br />

This Handbook.<br />

B. Maurey, <strong>Banach</strong> spaces with few operators, This Handbook.<br />

B. Maurey, Type, cotype and K-convexity, This Handbook.<br />

D. Preiss, Geometric measure <strong>the</strong>ory <strong>in</strong> <strong>Banach</strong> spaces, This Handbook.<br />

H.E Rosenthal, The <strong>Banach</strong> spaces C (K), This Handbook.<br />

L. Tzafriri, Uniqueness <strong>of</strong> structure <strong>in</strong> <strong>Banach</strong> spaces, This Handbook.<br />

P. Wojtaszczyk, <strong>Spaces</strong> <strong>of</strong> analytic functions with <strong>in</strong>tegral norm, This Handbook.<br />

M. Zipp<strong>in</strong>, Extension <strong>of</strong> bounded l<strong>in</strong>ear operators, This Handbook.<br />

V. Zizler, Nonseparable <strong>Banach</strong> spaces, This Handbook.


CHAPTER 2<br />

Positive Operators<br />

Y.A. Abramovich<br />

Department <strong>of</strong> Ma<strong>the</strong>matical Sciences, Indiana University-Purdue University, Indianapolis, IN, USA<br />

E-mail: yabramovich @ math. iupui, edu<br />

C.D. Aliprantis<br />

Department <strong>of</strong> Economics and Department <strong>of</strong> Ma<strong>the</strong>matics, Purdue University, West Lafayette, IN, USA<br />

E-mail: aliprantis @ mgmt.purdue, edu<br />

Contents<br />

1. Ordered vector spaces and <strong>Banach</strong> lattices .................................. 87<br />

2. Operators between <strong>Banach</strong> lattices ...................................... 90<br />

3. When is every cont<strong>in</strong>uous operator regular? ................................. 91<br />

4. Dom<strong>in</strong>ation, compactness, and factorization ................................. 93<br />

5. Invariant subspaces <strong>of</strong> positive operators ................................... 98<br />

6. Compact-friendly operators and <strong>in</strong>variant subspaces ............................. 102<br />

7. Integral operators and <strong>in</strong>variant subspaces .................................. 105<br />

8. Applications ................................................... 111<br />

Acknowledgment .................................................. 117<br />

Added <strong>in</strong> Pro<strong>of</strong> ................................................... 117<br />

References ..................................................... 117<br />

HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL. 1<br />

Edited by William B. Johnson and Joram L<strong>in</strong>denstrauss<br />

9 2001 Elsevier Science B.V. All fights reserved<br />

85


Positive operators 87<br />

The <strong>the</strong>ory <strong>of</strong> positive operators is a dist<strong>in</strong>guished and significant part <strong>of</strong> <strong>the</strong> field <strong>of</strong><br />

general operator <strong>the</strong>ory. The extra feature <strong>of</strong> this part <strong>of</strong> operator <strong>the</strong>ory is <strong>the</strong> existence<br />

<strong>of</strong> an order on <strong>the</strong> spaces <strong>in</strong>volved. This <strong>in</strong>gredient is <strong>of</strong> tremendous importance and lies<br />

<strong>in</strong> <strong>the</strong> core <strong>of</strong> many specific results valid for positive operators. The two ma<strong>in</strong> objectives<br />

<strong>of</strong> <strong>the</strong> present work are to discuss <strong>the</strong> relationships between general operators and positive<br />

operators and to demonstrate <strong>the</strong> effects <strong>the</strong> order structure has on general operators act<strong>in</strong>g<br />

between <strong>Banach</strong> lattices.<br />

We list here several books devoted primarily to positive operators between ordered<br />

spaces: [15,22,29,41,75,78-80,86,87,96,100,123,126,135,144,145]. The size constra<strong>in</strong>ts<br />

<strong>of</strong> this article as well as <strong>the</strong> areas <strong>of</strong> <strong>in</strong>terest <strong>of</strong> <strong>the</strong> authors have <strong>in</strong>evitably <strong>in</strong>fluenced<br />

<strong>the</strong> selection <strong>of</strong> <strong>the</strong> material for this survey and have precluded us from mention<strong>in</strong>g many<br />

exist<strong>in</strong>g directions with<strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> positive operators. We especially regret hav<strong>in</strong>g to<br />

omit <strong>the</strong> ergodic and <strong>in</strong>terpolation properties <strong>of</strong> positive operators. For <strong>the</strong>se topics <strong>the</strong><br />

reader is referred to [83] and [84] respectively. S<strong>in</strong>ce our survey is devoted to operators,<br />

we have reduced to a bare m<strong>in</strong>imum <strong>the</strong> general <strong>the</strong>ory <strong>of</strong> <strong>Banach</strong> lattices presented here.<br />

Most <strong>of</strong> <strong>the</strong> books cited above, <strong>the</strong> series <strong>of</strong> notes by Luxemburg and Zaanen [93,92] and<br />

<strong>the</strong> two surveys [39,40] are excellent sources for such a <strong>the</strong>ory as well. Throughout this<br />

work <strong>the</strong> word "operator" is synonymous with "l<strong>in</strong>ear operator".<br />

1. Ordered vector spaces and <strong>Banach</strong> lattices<br />

Though we will be deal<strong>in</strong>g mostly with operators on <strong>Banach</strong> lattices, it is fruitful to start<br />

with <strong>the</strong> general framework <strong>of</strong> (partially) ordered vector spaces. We will <strong>in</strong>troduce some<br />

necessary term<strong>in</strong>ology and prove a few basic results; for a systematic presentation we refer<br />

<strong>the</strong> reader to [70,94,101,107,134,143].<br />

Recall that a real vector space X equipped with a partial order ~> is said to be a (partially)<br />

ordered vector space whenever x ~ y imply otx ~> oty for all ol ~> 0 and x + z ~> y + z for<br />

all z E X. The set X+ = {x E X: x ~> 0} is called <strong>the</strong> positive cone <strong>of</strong> X and its elements<br />

are referred to as positive vectors. The cone X+ is said to be generat<strong>in</strong>g whenever X --<br />

X+ - X+, i.e., whenever every vector can be written as a difference <strong>of</strong> two positive vectors.<br />

An ordered vector space X is said to be Archimedean whenever nx 0 or x ~< 0. E]<br />

THEOREM 2 (M. Kre<strong>in</strong>-Smulian). Let X be a <strong>Banach</strong> space ordered by a closed generat<strong>in</strong>g<br />

cone. Then <strong>the</strong>re is a constant M > 0 such that for each x ~ X <strong>the</strong>re are x l, x2 E X+<br />

satisfy<strong>in</strong>g x -- xl - x2 and Ilxi II ~< Mllxll for each i.


88 Y.A. Abramovich and C.D. Aliprantis<br />

PROOF. We present a sketch <strong>of</strong> <strong>the</strong> pro<strong>of</strong>. For each n def<strong>in</strong>e <strong>the</strong> set<br />

En = {x ~ X" =tXl, X2 G_ X- t- with x - Xl - x2 and [Ixi II ~ n (i = 1, 2) }.<br />

Clearly, each En is convex, symmetric, and 0 6 En. In addition, note that En cc_ Em whenever<br />

n ~< m.<br />

S<strong>in</strong>ce X+ is generat<strong>in</strong>g, we see that X - Un~=l En. So, by <strong>the</strong> Baire Category Theorem,<br />

some Ek conta<strong>in</strong>s a closed ball B(xo, r) = {x 6 X: Ilx0-xll ~< r}. The properties <strong>of</strong><strong>the</strong> sets<br />

En imply that B(0, r) c_ E~. Now by imitat<strong>in</strong>g <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> open mapp<strong>in</strong>g <strong>the</strong>orem, we<br />

can show that B(O, r) c_ Ezk holds and <strong>the</strong> pro<strong>of</strong> is done. The details can be found <strong>in</strong> [135];<br />

see also [4].<br />

D<br />

COROLLARY 3. Let X be an ordered <strong>Banach</strong> space whose positive cone is closed and<br />

generat<strong>in</strong>g. If xn --+ x holds <strong>in</strong> X, <strong>the</strong>n <strong>the</strong>re exist Yn, Zn, Y, z ~ X+ such that Xn -- Yn -- Zn,<br />

x = y -- Z, Yn --+ Y and Zn --+ z.<br />

COROLLARY 4. Let X be a <strong>Banach</strong> space partially ordered by a closed generat<strong>in</strong>g cone,<br />

and let Y be a topological vector space. Then an operator T : X --+ Y is cont<strong>in</strong>uous if and<br />

only if <strong>the</strong> restriction <strong>of</strong> T to X+ is cont<strong>in</strong>uous.<br />

And now we <strong>in</strong>troduce <strong>the</strong> central concept <strong>of</strong> this work.<br />

DEFINITION 5. An operator T:X ~ Y between two ordered vector spaces is said to be<br />

positive if T (X+) _ Y+, i.e., if x ~> 0 implies Tx >~ O.<br />

It is a remarkable fact that quite <strong>of</strong>ten positive operators are automatically cont<strong>in</strong>uous.<br />

This was first proven by M. Kre<strong>in</strong> for positive l<strong>in</strong>ear functionals [81 ] and later was generalized<br />

<strong>in</strong> several contexts by various authors; see, for <strong>in</strong>stance, [32,99,101,121]. The next<br />

result, due to Lozanovsky, is <strong>the</strong> strongest <strong>in</strong> this direction and appeared <strong>in</strong> [136].<br />

COROLLARY 6 (Lozanovsky). Let X and Y be two ordered <strong>Banach</strong> spaces whose cones<br />

are closed. If additionally, <strong>the</strong> cone <strong>of</strong> X is generat<strong>in</strong>g, <strong>the</strong>n every positive operator<br />

T : X --+ Y is cont<strong>in</strong>uous.<br />

PROOF. It suffices to show that a positive operator T has a closed graph. So, assume<br />

Xn --+ 0 <strong>in</strong> X and Txn --+ y <strong>in</strong> Y. By pass<strong>in</strong>g to a subsequence, we can also assume<br />

oo<br />

Y~n=l n ]lXn I] < cx~. By Theorem 2 <strong>the</strong>re exist some M > 0 and two sequences {Yn } and<br />

{Zn} <strong>of</strong> X+ satisfy<strong>in</strong>g Xn = Yn - Zn, Ilynl] ~< m[Ixnll, and I[Zn [] ~< mllxnl[ for each n. S<strong>in</strong>ce<br />

X+ is closed, <strong>the</strong> vector z = ~-~n~=l n(yn + Zn) <strong>of</strong> X belongs to X+ and -z


Positive operators 89<br />

A norm I1" II on a vector lattice is said to be a lattice norm if Ixl ~ lyl implies Ilxll ~ Ilyll.<br />

A normed vector lattice is a vector lattice equipped with a lattice norm. A norm complete<br />

normed vector lattice is called a <strong>Banach</strong> lattice. Here is a list <strong>of</strong> <strong>the</strong> most important proper-<br />

ties between <strong>the</strong> topological and order structures <strong>of</strong> a <strong>Banach</strong> lattice that will be employed<br />

<strong>in</strong> this work. The first one, <strong>the</strong> order cont<strong>in</strong>uity, is discussed at length <strong>in</strong> [72].<br />

DEFINITION 7. A lattice norm on a vector lattice X is said to be:<br />

(1) order cont<strong>in</strong>uous, if xc~ $ 0 implies ]]x~ 11 $ 0;<br />

(2) a Levi norm, if 0 ~< x~ 1" and ]lx~ 11 ~< 1 imply that sup~ x~ exists <strong>in</strong> X;<br />

(3) a Fatou norm, if 0 ~< xc~ 1" x implies Ilx~ II 1" Ilxll;<br />

(4) a weak Fatou norm, if <strong>the</strong>re exists some constant K ~> 1 such that<br />

0 ~ xo~ 1" x ------->, IIx II ~ K lim Ilxo~ II.<br />

Of<br />

A <strong>Banach</strong> lattice with an order cont<strong>in</strong>uous Levi norm is usually referred to as a<br />

Kantorovich-<strong>Banach</strong> space, or as a KB-space <strong>in</strong> short. The mean<strong>in</strong>gs <strong>of</strong> <strong>the</strong> expressions<br />

"X is a Levi <strong>Banach</strong> lattice", or "X has <strong>the</strong> Levi property", or "X has <strong>the</strong> weak Fatou<br />

property", etc. should be clear and <strong>the</strong>y will be used throughout this work.<br />

If X has a Levi norm, <strong>the</strong>n obviously X is Dedek<strong>in</strong>d complete. Note that two equivalent<br />

(lattice) norms are ei<strong>the</strong>r both Levi or both fail to be Levi. The same is true for <strong>the</strong> weak<br />

Fatou property. It is well known [30] that if a norm is Levi, <strong>the</strong>n necessarily it is also weak<br />

Fatou. Property (3) is clearly an isometric property.<br />

If, <strong>in</strong> <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> an order cont<strong>in</strong>uous, or a Levi, or a (weak) Fatou norm one replaces<br />

arbitrary nets by sequences, <strong>the</strong>n one arrives at <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> a sequentially order<br />

cont<strong>in</strong>uous norm, or a sequentially Levi norm, or respectively, <strong>of</strong> a sequentially (weak)<br />

Fatou norm. 1 Thus, for example, a norm on a <strong>Banach</strong> lattice X is sequentially Fatou (or<br />

simply ~-Fatou) if for each sequence 0 ~< xn t x we have ]Ix ]1 = lim ]]xn 11.<br />

There is a very rich structural <strong>the</strong>ory <strong>of</strong> <strong>Banach</strong> lattices (reflect<strong>in</strong>g partly <strong>the</strong> correspond-<br />

<strong>in</strong>g <strong>the</strong>ory <strong>of</strong> <strong>Banach</strong> spaces) <strong>in</strong> which various properties <strong>of</strong> <strong>Banach</strong> lattices are character-<br />

ized by <strong>the</strong> absence or presence <strong>of</strong> subspaces or vector sublattices which are isomorphic to<br />

some classical spaces ~p (1 ~< p ~< ec) or co. We refer to [29,39,40,96] for <strong>the</strong>se results.<br />

As an illustration, we mention only <strong>the</strong> famous <strong>the</strong>orem stat<strong>in</strong>g that a <strong>Banach</strong> lattice X is<br />

a KB-space if and only if X does not conta<strong>in</strong> a vector sublattice order isomorphic to co.<br />

1 These properties appear <strong>in</strong> <strong>the</strong> literature under many different names. Freml<strong>in</strong> [58] was <strong>the</strong> first to associate <strong>the</strong><br />

Levi and Fatou names with <strong>the</strong>se properties. Nakano [100, pp. 129-130] used <strong>the</strong> term monotone complete norm<br />

for a sequentially Levi norm and universally monotone complete norm for a Levi norm. Zaanen [144] considers<br />

sequentially Levi norms <strong>in</strong> two places under different names. First on p. 305 he refers to <strong>the</strong>m, like Nakano, as<br />

monotone complete norms, and <strong>the</strong>n on p. 421 as norms with <strong>the</strong> weak Fatou property for monotone sequences.<br />

The term weak Fatou property for directed sets (p. 390) is used by Zaanen for what we refer to as a Levi norm.<br />

Meyer-Nieberg [96, p. 96], uses <strong>the</strong> term "monotonically complete norm" for a Levi norm. The Soviet school on<br />

<strong>Banach</strong> lattices used <strong>the</strong> symbols (A) and (A f) to denote <strong>the</strong> sequential order cont<strong>in</strong>uous and order cont<strong>in</strong>uous<br />

norms, respectively; <strong>the</strong>y also used <strong>the</strong> symbols (B) and (B r) to denote <strong>the</strong> sequential Levi and <strong>the</strong> Levi properties<br />

respectively, and f<strong>in</strong>ally <strong>the</strong>y used <strong>the</strong> symbols (C) and (C f) to denote <strong>the</strong> sequential Fatou and <strong>the</strong> Fatou properties<br />

respectively.


90 YA. Abramovich and C.D. Aliprantis<br />

A vector subspace J <strong>of</strong> a vector lattice X is said to be an (order) ideal if Ixl ~ lyl and<br />

y 6 J imply that x 6 J. For each 0 0 such that Ix[ ~< )~u}.<br />

A positive element u 6 X is called a (strong) unit if Xu = X. Each unit generates <strong>the</strong> so<br />

called unit-norm II" Ilu via IIxllu = <strong>in</strong>f{)~ >~ 0: Ix[ ~< ~.u}. Clearly this norm is always Fatou;<br />

if X is a-Dedek<strong>in</strong>d complete, <strong>the</strong>n I]" Ilu is complete.<br />

2. Operators between <strong>Banach</strong> lattices<br />

If X and Y are <strong>Banach</strong> spaces, <strong>the</strong>n <strong>the</strong> symbol s Y) denotes <strong>the</strong> <strong>Banach</strong> space <strong>of</strong> all<br />

cont<strong>in</strong>uous operators from X to Y; we let s = E(X, X). 2 If X and Y are <strong>in</strong> addition<br />

<strong>Banach</strong> lattices, <strong>the</strong>n <strong>the</strong>re are several very important classes <strong>of</strong> operators associated with<br />

<strong>the</strong> order structure on <strong>the</strong>se spaces. We denote by 12+ (X, Y) <strong>the</strong> collection <strong>of</strong> all positive<br />

operators. This collection is a cone and it <strong>in</strong>duces a natural (partial) order on <strong>the</strong> <strong>Banach</strong><br />

space C(X, Y).<br />

The subspace s Y) - E+(X, Y) <strong>of</strong>/2(X, Y) generated by <strong>the</strong> cone/2+(X, Y) is<br />

denoted by/2 r (X, Y), or simply/2 r, and is referred to as <strong>the</strong> space <strong>of</strong> regular operators.<br />

In o<strong>the</strong>r words, an operator is said to be regular if it can be written as a difference <strong>of</strong> two<br />

positive operators.<br />

An operator T" X --+ Y is order bounded if T maps order bounded sets <strong>in</strong> X to order<br />

bounded sets <strong>in</strong> Y. The symbol/2 b (X, Y) denotes <strong>the</strong> space <strong>of</strong> all order bounded operators.<br />

Clearly each regular operator is order bounded, that is, s c_ E b. The converse is not true <strong>in</strong><br />

general (see [29] for several counterexamples, <strong>the</strong> first <strong>of</strong> which was found by S. Kaplan).<br />

Here we can ask <strong>the</strong> question: when does <strong>the</strong> equality s = F b hold? The next famous<br />

<strong>the</strong>orem <strong>of</strong> E Riesz and L. Kantorovich describes a ra<strong>the</strong>r general situation when this<br />

happens.<br />

THEOREM 8 (Riesz-Kantorovich). Let X, Y be vector lattices with Y Dedek<strong>in</strong>d complete.<br />

Then E r (X, Y) = 12 b (X, Y), i.e., each order bounded operator T : X --+ Y is regular. Moreover,<br />

<strong>in</strong> this case, Er (X, Y) is itself a Dedek<strong>in</strong>d complete vector lattice whose lattice operations<br />

satisfy <strong>the</strong> Riesz-Kantorovich formulas, accord<strong>in</strong>g to which for each T ~ E r (X, Y)<br />

and each x ~ X+ we have<br />

T+(x) -- sup{Tu" 0


Positive operators 91<br />

(2) Is <strong>the</strong>re a non-Dedek<strong>in</strong>d complete vector lattice Y such that s (X, Y) is a vector<br />

lattice for each (some) vector lattice X? The answer is yes, and we refer to [18] for<br />

such examples and related discussions.<br />

(3) Assume that E r (X, Y) is a vector lattice, and so for each T E E r (X, Y) its modulus<br />

I TI exists. Is it true that this operator is necessarily given by <strong>the</strong> Riesz-Kantorovich<br />

formula? This is a long stand<strong>in</strong>g open problem.<br />

(4) Assume that for a fixed vector lattice Y <strong>the</strong> vector space s (X, Y) is a vector lattice<br />

for all vector lattices X <strong>in</strong> some special class <strong>of</strong> vector lattices. What impact does<br />

this have on <strong>the</strong> order structure <strong>of</strong> Y?<br />

In connection with (3) note that even when s (X, Y) is not assumed to be a vector<br />

lattice, <strong>the</strong>re is no s<strong>in</strong>gle example <strong>in</strong> <strong>the</strong> literature <strong>of</strong> a regular operator T:X --+ Y for<br />

which its modulus I TI exists and cannot be obta<strong>in</strong>ed by <strong>the</strong> Riesz-Kantorovich formula.<br />

Abramovich and Wickstead have studied this question ra<strong>the</strong>r systematically and described<br />

many cases covered by <strong>the</strong> Riesz-Kantorovich formula [ 18,19,140]. For <strong>the</strong> special doma<strong>in</strong><br />

<strong>of</strong> C(K)-vector lattices, this problem was also studied by van Rooij [118,119].<br />

Now let X and Y be <strong>Banach</strong> lattices. On <strong>the</strong> space E(X, Y) we will consider <strong>the</strong> usual<br />

operator norm. Under this norm <strong>the</strong> subspace s (X, Y) is rarely closed. However, <strong>the</strong>re<br />

is a natural norm on s (X, Y), <strong>the</strong> so-called regular norm, which is closely related to <strong>the</strong><br />

structure <strong>of</strong> <strong>the</strong> regular operators. The regular norm on s (X, Y) is def<strong>in</strong>ed by<br />

IlTllr - <strong>in</strong>f{ IISII" s E s<br />

Y) and S ~> iT}.<br />

Clearly II T II ~ IIT IIr and for positive operators both norms co<strong>in</strong>cide. It is well known that<br />

(Z; r (X, Y), II" IIr) is a <strong>Banach</strong> lattice. If Y is Dedek<strong>in</strong>d complete, <strong>the</strong>n <strong>the</strong> modulus Irl<br />

exists by Theorem 8, and <strong>in</strong> this case II r lit = IlITI II.<br />

3. When is every cont<strong>in</strong>uous operator regular?<br />

As <strong>the</strong> title <strong>of</strong> this section <strong>in</strong>dicates, we shall discuss here <strong>the</strong> pairs <strong>of</strong> <strong>Banach</strong> lattices X<br />

and Y for which <strong>the</strong> space <strong>of</strong> all cont<strong>in</strong>uous operators E(X, Y) co<strong>in</strong>cides with <strong>the</strong> space <strong>of</strong><br />

all regular operators s (X, Y). We should dist<strong>in</strong>guish here between two closely related but<br />

different questions. The first one requires simply <strong>the</strong> set-<strong>the</strong>oretic equality<br />

IZ(X, Y) = ~,r (x, Y), (*)<br />

while <strong>the</strong> second requires (,) and, additionally, <strong>the</strong> norm equality<br />

IIT II = II T Ilr for each T E L;(X, Y). (**)<br />

We will refer to <strong>the</strong>se problems as <strong>the</strong> isomorphic and isometric problems, respectively.<br />

The follow<strong>in</strong>g two <strong>the</strong>orems, which are essentially due to Kantorovich and Vulikh [76],<br />

describe <strong>the</strong> two most important classes <strong>of</strong> <strong>Banach</strong> lattices for which each cont<strong>in</strong>uous operator<br />

is regular. These are <strong>the</strong> familiar AM- and AL-spaces, also known under <strong>the</strong> names<br />

abstract M spaces and abstract L l spaces, respectively, and def<strong>in</strong>ed <strong>in</strong> [72, Section 5].


92 Y.A. Abramovich and C.D. Aliprantis<br />

THEOREM 9. Let Y be a Dedek<strong>in</strong>d complete <strong>Banach</strong> lattice with a strong unit. Then for<br />

each <strong>Banach</strong> lattice X equality (,) holds, that is, s Y) = s (X, Y). If <strong>the</strong> norm on Y<br />

is Fatou (<strong>in</strong> particular, if Y is equipped with a unit norm and, thus, is an AM-space), <strong>the</strong>n<br />

(**) also holds.<br />

THEOREM 10. If X is an AL-space and Y is an arbitrary <strong>Banach</strong> lattice with a Levi norm,<br />

<strong>the</strong>n equality (,) holds. If <strong>the</strong> norm on Y is Fatou, <strong>the</strong>n we also have (**).<br />

To be precise, it was assumed <strong>in</strong> [76] that Y <strong>in</strong> Theorem 10 was a KB-space, and it was<br />

noticed <strong>in</strong> [ 129] that <strong>the</strong> orig<strong>in</strong>al pro<strong>of</strong> could be easily carried over to an arbitrary <strong>Banach</strong><br />

lattice with a Levi norm. For a KB-space Y <strong>the</strong> pro<strong>of</strong>s can be found <strong>in</strong> [29, Theorem 15.3],<br />

and [ 134, Theorem 8.7.2]. Under <strong>the</strong> assumption that Y is positively complemented <strong>in</strong> Y**<br />

(which is somewhat stronger than <strong>the</strong> Levi property) a pro<strong>of</strong> <strong>of</strong> Theorem 10 is presented<br />

<strong>in</strong> [96, Theorem 1.5.11]. Two pr<strong>in</strong>cipal questions can be asked <strong>in</strong> connection with <strong>the</strong><br />

previous <strong>the</strong>orems.<br />

(1) Do Theorems 9 and 10 characterize <strong>the</strong> AL- and AM-spaces?<br />

(2) To what extend is <strong>the</strong> Levi condition essential for <strong>the</strong> validity <strong>of</strong> (,)?<br />

The first question is quite old and has various <strong>in</strong>terpretations depend<strong>in</strong>g on whe<strong>the</strong>r we<br />

deal with <strong>the</strong> isometric or <strong>the</strong> isomorphic version. We refer to [3] for a brief survey <strong>of</strong><br />

major results <strong>in</strong> this direction. Here we mention a few <strong>of</strong> <strong>the</strong>m, start<strong>in</strong>g with <strong>the</strong> isometric<br />

version <strong>of</strong> this question.<br />

THEOREM 1 1. Suppose that <strong>the</strong> <strong>Banach</strong> lattices X and Y satisfy both (,) and (**). Then<br />

ei<strong>the</strong>r X is an AL-space or Y is an AM-space.<br />

The isomorphic version is much deeper and has, <strong>in</strong> general, a negative solution [2].<br />

THEOREM 12. There exist two Dedek<strong>in</strong>d complete <strong>Banach</strong> lattices X and Y satisfy<strong>in</strong>g (,)<br />

such that X is not order isomorphic to any AL-space and Y is not order isomorphic to any<br />

AM-space. Moreover, for any given e > 0 <strong>the</strong> Dedek<strong>in</strong>d complete <strong>Banach</strong> lattices X and Y<br />

can be constructed <strong>in</strong> such a way that IIT IIr ~< (1 + e)II T ]l for each T ~ 12(X, Y).<br />

The strongest affirmative isomorphic result is also due to Cartwright and Lotz [44] and is<br />

stated next. A simple pro<strong>of</strong> <strong>of</strong> this result is given <strong>in</strong> [ 17], where <strong>the</strong> technique <strong>in</strong>troduced by<br />

Tzafriri <strong>in</strong> [133] <strong>of</strong> abstract Rademacher functions is utilized. The works <strong>of</strong> Freml<strong>in</strong> [59],<br />

~rno [ 105] and Schaefer [ 122] conta<strong>in</strong>ed some versions <strong>of</strong> <strong>the</strong> next result.<br />

THEOREM 13. Let two <strong>Banach</strong> lattices X and Y satisfy (,), and assume that ei<strong>the</strong>r X*<br />

or Y conta<strong>in</strong>s vector sublattices uniformly <strong>in</strong> n isomorphic to g n p for some p E [1 cx~). In<br />

<strong>the</strong> former case Y is order isomorphic to an AM-space and <strong>in</strong> <strong>the</strong> latter case X is order<br />

isomorphic to an AL-space.<br />

The case when X = Y is exceptionally nice and was studied <strong>in</strong> [2].<br />

THEOREM 14. If a <strong>Banach</strong> lattice X satisfies s<br />

ei<strong>the</strong>r to an AL- or AM-space.<br />

= s (X), <strong>the</strong>n X is order isomorphic


Positive operators 93<br />

PROOF. To sketch a pro<strong>of</strong>, note that <strong>the</strong> follow<strong>in</strong>g alternative is true: X ei<strong>the</strong>r conta<strong>in</strong>s<br />

uniformly <strong>in</strong> n <strong>the</strong> vector sublattices order isomorphic to g~ or it does not. In <strong>the</strong> former<br />

case, X* conta<strong>in</strong>s uniformly <strong>in</strong> n <strong>the</strong> vector sublattices g~ and so, by Theorem 13, X is<br />

isomorphic to an AM-space. In <strong>the</strong> latter case, X is isomorphic to an AL-space by Drno's<br />

<strong>the</strong>orem. []<br />

Questions (1) and (2) formulated above, though quite natural, have been addressed by<br />

Abramovich and Wickstead only recently <strong>in</strong> [21 ].<br />

THEOREM 15. A Dedek<strong>in</strong>d complete <strong>Banach</strong> lattice Y has a Levi norm if and only if for<br />

every AL-space X we have s Y) = s (X, Y).<br />

This converse to Theorem 10 is somewhat partial s<strong>in</strong>ce we assume Y to be Dedek<strong>in</strong>d<br />

complete. On <strong>the</strong> o<strong>the</strong>r hand, as <strong>the</strong> next two <strong>the</strong>orems <strong>in</strong> [21 ] show, it is <strong>the</strong> best one can<br />

get. Note also that <strong>the</strong>re are non-Dedek<strong>in</strong>d complete <strong>Banach</strong> lattices (hence, without a Levi<br />

norm) which, never<strong>the</strong>less, satisfy (,).<br />

THEOREM 16. For a <strong>Banach</strong> lattice Y <strong>the</strong> follow<strong>in</strong>g statements are equivalent:<br />

(a) Y is Dedek<strong>in</strong>d complete.<br />

(b) For all <strong>Banach</strong> lattices X, <strong>the</strong> space f_r (X, Y) is a Dedek<strong>in</strong>d complete vector lattice.<br />

(c) For all AL-spaces X, <strong>the</strong> space s (X, Y) is a vector lattice.<br />

THEOREM 17. For a <strong>Banach</strong> lattice Y <strong>the</strong> follow<strong>in</strong>g statements are equivalent:<br />

(1) Y is ~-Dedek<strong>in</strong>d complete.<br />

(2) s (X, Y) is ~-Dedek<strong>in</strong>d complete for each separable <strong>Banach</strong> lattice X.<br />

(3) s (c, Y) is a vector lattice, where c is <strong>the</strong> space <strong>of</strong> all convergent sequences.<br />

(4) /:r (LI [0, 27r], Y) is a vector lattice.<br />

We close this section by mention<strong>in</strong>g one more direction <strong>of</strong> research devoted to <strong>the</strong> connections<br />

between <strong>the</strong> order and topological properties <strong>of</strong> compact operators. Namely, what<br />

can be said about <strong>the</strong> modulus <strong>of</strong> a compact operator T :X --+ Y between <strong>Banach</strong> lattices?<br />

Does this modulus exist? When is it compact or weakly compact? A well known example<br />

by Krengel [29, Example 16.6] shows that even on ~2 <strong>the</strong> modulus <strong>of</strong> a compact operator<br />

may fail to exist. We refer to [20] for some history, fur<strong>the</strong>r references and concrete results<br />

concern<strong>in</strong>g <strong>the</strong> properties <strong>of</strong> <strong>the</strong> modulus <strong>of</strong> a compact operator.<br />

4. Dom<strong>in</strong>ation, compactness, and factorization<br />

DEFINITION 18. Let T, B : X --+ Y be two operators between vector lattices with B positive.<br />

We say that <strong>the</strong> operator T is dom<strong>in</strong>ated by <strong>the</strong> operator B (or that B dom<strong>in</strong>ates T)<br />

provided ]T(x)l ~< B(Ixl) for each x 6 X.<br />

It should be clear that every operator between <strong>Banach</strong> lattices dom<strong>in</strong>ated by a positive<br />

operator is automatically cont<strong>in</strong>uous, and that a positive operator T is dom<strong>in</strong>ated by ano<strong>the</strong>r<br />

positive operator B if and only if 0 ~< T ~< B. When Y is Dedek<strong>in</strong>d complete, an


94 Y.A. Abramovich and C.D. Aliprantis<br />

operator T is dom<strong>in</strong>ated by a positive operator B if and only if T is regular and I TI ~< B<br />

holds (use Theorem 8 to check this).<br />

We are now ready to discuss a new and <strong>in</strong>terest<strong>in</strong>g direction deal<strong>in</strong>g with dom<strong>in</strong>ated<br />

operators on <strong>Banach</strong> lattices. This direction can be described collectively as <strong>the</strong> dom<strong>in</strong>ation<br />

problem.<br />

THE DOMINATION PROBLEM. Assume that B : X --+ Y is a positive operator between <strong>Banach</strong><br />

lattices and assume that B satisfies some property ( P ). What effect does this property<br />

have on an operator T dom<strong>in</strong>ated by B ?<br />

Of course, <strong>the</strong> best one can expect is that T also satisfies (P). Here are a few examples<br />

<strong>of</strong> <strong>the</strong> properties that have been studied <strong>in</strong> connection with <strong>the</strong> dom<strong>in</strong>ation problem:<br />

compactness, weak compactness, Dunford-Pettis, and Radon-Nikodym.<br />

A first general dom<strong>in</strong>ation result was established <strong>in</strong> 1972 by Abramovich [ 1 ] for weakly<br />

compact operators. He proved that if a l<strong>in</strong>ear operator S : X --+ Y from a <strong>Banach</strong> lattice to<br />

a KB-space is dom<strong>in</strong>ated by a weakly compact operator, <strong>the</strong>n S is also weakly compact.<br />

Several years later Pitt [ 109] proved a dom<strong>in</strong>ation result for compact operators, namely he<br />

showedthatif B isacompactpositive operatoron Lp(#) with 1 < p < oo andO


Positive operators 95<br />

The exponents three and two <strong>in</strong> <strong>the</strong> previous two <strong>the</strong>orems are <strong>the</strong> best possible. Some<br />

historical comments regard<strong>in</strong>g this <strong>the</strong>orem and its predecessors can be found <strong>in</strong> [29,<br />

p. 279]. Are <strong>the</strong>re any o<strong>the</strong>r cases (not covered by <strong>the</strong> Dodds-Freml<strong>in</strong> Theorem) where<br />

one can deduce <strong>the</strong> compactness <strong>of</strong> <strong>the</strong> dom<strong>in</strong>ated operator itself? It turns out that <strong>the</strong>re<br />

are. This was shown by Wickstead <strong>in</strong> [142]. Before stat<strong>in</strong>g this result, let us rem<strong>in</strong>d <strong>the</strong><br />

reader that by a well known <strong>the</strong>orem <strong>of</strong> Walsh [ 137] <strong>the</strong> atomic <strong>Banach</strong> lattices with order<br />

cont<strong>in</strong>uous norm are precisely those <strong>Banach</strong> lattices <strong>in</strong> which every order <strong>in</strong>terval is norm<br />

compact, and that <strong>in</strong> such spaces <strong>the</strong> solid hull <strong>of</strong> any norm compact set is aga<strong>in</strong> norm<br />

compact [138, Theorem 5].<br />

THEOREM 22. For a pair <strong>of</strong> <strong>Banach</strong> lattices X and Y <strong>the</strong> follow<strong>in</strong>g two statements are<br />

equivalent:<br />

(1) Every operator from X to Y which is dom<strong>in</strong>ated by a compact operator is itself<br />

compact.<br />

(2) One <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g three (non-exclusive) alternatives holds:<br />

(a) Both X* and Y have order cont<strong>in</strong>uous norm.<br />

(b) Y is an atomic <strong>Banach</strong> lattice with order cont<strong>in</strong>uous norm.<br />

(c) X* is an atomic <strong>Banach</strong> lattice with order cont<strong>in</strong>uous norm.<br />

A complete solution <strong>of</strong> <strong>the</strong> dom<strong>in</strong>ation problem for weakly compact operators preceded<br />

<strong>the</strong> solution <strong>of</strong> <strong>the</strong> compact case and was found also by Wickstead [ 139].<br />

THEOREM 23. For a pair <strong>of</strong> <strong>Banach</strong> lattices X and Y <strong>the</strong> follow<strong>in</strong>g two statements are<br />

equivalent:<br />

(1) Each operator from X to Y which is dom<strong>in</strong>ated by a weakly compact operator is<br />

weakly compact.<br />

(2) Ei<strong>the</strong>r X* or Y has order cont<strong>in</strong>uous norm.<br />

The follow<strong>in</strong>g analogue <strong>of</strong> Theorem 21 for weakly compact operators (that is, when no<br />

conditions on <strong>Banach</strong> lattices is imposed) was established <strong>in</strong> [26].<br />

THEOREM 24. Suppose that <strong>in</strong> <strong>the</strong> scheme X M~ y M2 Z <strong>of</strong> cont<strong>in</strong>uous operators between<br />

(real or complex) <strong>Banach</strong> lattices each operator Mi is dom<strong>in</strong>ated by a weakly compact<br />

positive operator, <strong>the</strong>n M2 Ml is a weakly compact operator. In particular, if an operator<br />

T : X --+ X on a <strong>Banach</strong> lattice is dom<strong>in</strong>ated by a weakly compact operator, <strong>the</strong>n T 2<br />

is weakly compact.<br />

Recall that a cont<strong>in</strong>uous operator T:X --+ Y between <strong>Banach</strong> spaces is said to be a<br />

Dunford-Pettis operator if T carries weakly precompact subsets <strong>of</strong> X onto norm precompact<br />

subsets <strong>of</strong> Y. The dom<strong>in</strong>ation problem for Dunford-Pettis operators was orig<strong>in</strong>ally<br />

considered by Aliprantis and Burk<strong>in</strong>shaw [27]. Improv<strong>in</strong>g <strong>the</strong> ma<strong>in</strong> result <strong>in</strong> [27], Kalton<br />

and Saab [73] proved <strong>the</strong> follow<strong>in</strong>g <strong>the</strong>orem.<br />

THEOREM 25. Let B : X --+ Y be a Dunford-Pettis operator between <strong>Banach</strong> lattices and<br />

assume that Y has order cont<strong>in</strong>uous norm. Then any operator T dom<strong>in</strong>ated by B is also<br />

Dunford-Pettis.


96 Y.A. Abramovich and C.D. Aliprantis<br />

Wickstead [ 142] showed that <strong>the</strong> only o<strong>the</strong>r case when <strong>the</strong> Dunford-Pettis property is<br />

<strong>in</strong>herited by a dom<strong>in</strong>ated operator is when X has weakly sequentially cont<strong>in</strong>uous lattice<br />

operations. The atomic <strong>Banach</strong> lattices with order cont<strong>in</strong>uous norm and <strong>the</strong> AM-spaces<br />

have this property. For such X <strong>the</strong> <strong>Banach</strong> lattice Y may be arbitrary. Some <strong>in</strong>terest<strong>in</strong>g<br />

results on <strong>the</strong> dom<strong>in</strong>ation problem for nonl<strong>in</strong>ear operators can be found <strong>in</strong> [38].<br />

Now we turn our attention to <strong>the</strong> factorization problem. Recall that a cont<strong>in</strong>uous operator<br />

T : X --+ Y between <strong>Banach</strong> spaces factors through a <strong>Banach</strong> space Z if <strong>the</strong>re exist<br />

cont<strong>in</strong>uous operators U:X --+ Z and V:Z --+ Y such that T -- V U. Depend<strong>in</strong>g on <strong>the</strong><br />

properties <strong>of</strong> <strong>the</strong> space Z and <strong>of</strong> <strong>the</strong> operators U and V, a lot can be learned about <strong>the</strong><br />

properties <strong>of</strong> <strong>the</strong> operator T. If <strong>the</strong> spaces under consideration are <strong>Banach</strong> lattices, <strong>the</strong>n we<br />

can immediately look at positive or regular operators between <strong>the</strong>m and demand more <strong>of</strong><br />

<strong>the</strong> factorization space Z and <strong>of</strong> <strong>the</strong> factor operators U and V.<br />

A classical example to illustrate this topic is <strong>the</strong> follow<strong>in</strong>g. If a cont<strong>in</strong>uous operator<br />

T:X --+ Y between <strong>Banach</strong> spaces factors through a reflexive <strong>Banach</strong> space, <strong>the</strong>n T is<br />

weakly compact. Remarkably, as shown by Davis, Figiel, Johnson, and Petczyfiski [50],<br />

this is a characterization <strong>of</strong> weakly compact operators.<br />

THEOREM 26. An operator between two <strong>Banach</strong> spaces is weakly compact if and only if<br />

factors through a reflexive <strong>Banach</strong> space.<br />

As a matter <strong>of</strong> fact, Theorem 26 can be considered as <strong>the</strong> start<strong>in</strong>g po<strong>in</strong>t for <strong>the</strong> subject<br />

<strong>of</strong> factorization. Without try<strong>in</strong>g to be complete on this topic, we will present here only a<br />

few results on factorization <strong>of</strong> operators between <strong>Banach</strong> lattices. Additional material on<br />

factorization <strong>of</strong> positive operators may be found <strong>in</strong> [28] and [96].<br />

Figiel [57] and Johnson [71 ] found which extra conditions on <strong>the</strong> factors and <strong>the</strong> transient<br />

space can be deduced for compact operators.<br />

THEOREM 27. Every compact operator between <strong>Banach</strong> spaces factors with compact factors<br />

through a separable reflexive <strong>Banach</strong> space.<br />

Inspired by <strong>the</strong>se results, Aliprantis and Burk<strong>in</strong>shaw [28] studied <strong>the</strong> factorization problem<br />

under <strong>the</strong> presence <strong>of</strong> order structures. The follow<strong>in</strong>g question is central for this topic.<br />

THE FACTORIZATION PROBLEM. Does every positive compact operator act<strong>in</strong>g between<br />

<strong>Banach</strong> lattices factor (with positive compact factors if possible) through a reflexive <strong>Banach</strong><br />

lattice?<br />

This problem (reiterated <strong>in</strong> [68] as Problem 9) is still open. We will mention some recent<br />

affirmative results below. But first, we should po<strong>in</strong>t out that a slightly weaker problem,<br />

when <strong>the</strong> given operator is assumed to be only weakly compact, is very difficult, too. It has<br />

been solved <strong>in</strong> <strong>the</strong> negative not a long time ago by Talagrand [130].<br />

EXAMPLE 28. There exists a positive weakly compact operator T:s<br />

cannot be factored through a reflexive <strong>Banach</strong> lattice.<br />

--~ C[0, 1] which


Positive operators 97<br />

The role <strong>of</strong> <strong>the</strong> space C[0, 1], or more generally, <strong>of</strong> <strong>the</strong> spaces C(K), for <strong>the</strong> factorization<br />

problem was studied <strong>in</strong> great detail by Ghoussoub [61 ] and Ghoussoub and Johnson <strong>in</strong> [62,<br />

63]. On a positive note regard<strong>in</strong>g <strong>the</strong> factorization problem, we will mention <strong>the</strong> follow<strong>in</strong>g<br />

<strong>the</strong>orem obta<strong>in</strong>ed <strong>in</strong> [28].<br />

THEOREM 29. The square <strong>of</strong> a positive compact (respectively weakly compact) operator<br />

on a <strong>Banach</strong> lattice factors through a reflexive <strong>Banach</strong> lattice with positive compact<br />

(respectively weakly compact) factors.<br />

From this <strong>the</strong>orem and Example 28 it follows that not each weakly compact operator<br />

is <strong>the</strong> square <strong>of</strong> a weakly compact operator. This, <strong>of</strong> course, follows from o<strong>the</strong>r known<br />

results as well. (For <strong>in</strong>stance, <strong>the</strong>re are cases when <strong>the</strong> square <strong>of</strong> a weakly compact operator<br />

is necessarily compact.) The next result by Aliprantis and Burk<strong>in</strong>shaw is a special<br />

case <strong>of</strong> Theorem 17.13 <strong>in</strong> [29]; it demonstrates a nice relation between factorization and<br />

dom<strong>in</strong>ation.<br />

THEOREM 30. Assume that T : X --+ X is a positive compact operator on a <strong>Banach</strong> lattice<br />

whose dual X* has order cont<strong>in</strong>uous norm. Then <strong>the</strong>re exist a reflexive <strong>Banach</strong> lattice Z<br />

and positive operators U : X --+ Z, V : Z --+ X such that T = V U. Moreover, any operator<br />

S : X --+ X which is dom<strong>in</strong>ated by <strong>the</strong> operator T also factors through Z and S -- V1U for<br />

some O


98 YA. Abramovich and C.D. Aliprantis<br />

An example <strong>in</strong> [110] shows that one cannot improve (3) by gett<strong>in</strong>g, for a positive regularly<br />

approximable T, both factors positive. A detailed study <strong>of</strong> when, <strong>in</strong> that example,<br />

both factors can be chosen positive is presented <strong>in</strong> [ 111 ].<br />

5. Invariant subspaces <strong>of</strong> positive operators<br />

In this section we will discuss <strong>the</strong> Invariant Subspace Problem for operators that are ei<strong>the</strong>r<br />

positive or closely associated with positive operators. The general <strong>the</strong>ory concern<strong>in</strong>g <strong>the</strong><br />

<strong>in</strong>variant subspace problem will be presented <strong>in</strong> a separate article prepared for this volume<br />

by Enflo and Lomonosov.<br />

THE INVARIANT SUBSPACE PROBLEM. Does a cont<strong>in</strong>uous l<strong>in</strong>ear operator T : X --+ X on<br />

a <strong>Banach</strong> space have a non-trivial closed <strong>in</strong>variant subspace?<br />

A vector subspace is "non-trivial" if it is different from {0} and X. A subspace V <strong>of</strong> X is<br />

T-<strong>in</strong>variant if T (V) _c V. If V is <strong>in</strong>variant under every cont<strong>in</strong>uous operator that commutes<br />

with T, <strong>the</strong>n V is called T-hyper<strong>in</strong>variant.<br />

If X is a f<strong>in</strong>ite dimensional complex <strong>Banach</strong> space <strong>of</strong> dimension greater than one,<br />

<strong>the</strong>n each non-zero operator T has a non-trivial closed <strong>in</strong>variant subspace. On <strong>the</strong> o<strong>the</strong>r<br />

hand, if X is non-separable, <strong>the</strong>n <strong>the</strong> closed vector subspace generated by <strong>the</strong> orbit<br />

{x, Tx, TZx .... } <strong>of</strong> any non-zero vector x is a non-trivial closed T-<strong>in</strong>variant subspace.<br />

Thus, <strong>the</strong> "<strong>in</strong>variant subspace problem" is <strong>of</strong> substance only when X is an <strong>in</strong>f<strong>in</strong>ite dimensional<br />

separable <strong>Banach</strong> space. Accord<strong>in</strong>gly, without any fur<strong>the</strong>r mention<strong>in</strong>g, all <strong>Banach</strong><br />

spaces under consideration <strong>in</strong> this section will be assumed to be <strong>in</strong>f<strong>in</strong>ite dimensional separable<br />

real or complex <strong>Banach</strong> spaces. The only exception will be made while discuss<strong>in</strong>g<br />

<strong>the</strong> Perron-Frobenius Theorem.<br />

In 1976, Enflo [56] was <strong>the</strong> first to construct an example <strong>of</strong> a cont<strong>in</strong>uous operator on<br />

a separable <strong>Banach</strong> space without a non-trivial closed <strong>in</strong>variant subspace, and thus he<br />

demonstrated that <strong>in</strong> this general form <strong>the</strong> <strong>in</strong>variant subspace problem has a negative answer.<br />

Subsequently, Read [ 115-117] has constructed a class <strong>of</strong> bounded operators on el<br />

without <strong>in</strong>variant subspaces. For operators on a Hilbert space, <strong>the</strong> existence <strong>of</strong> an <strong>in</strong>variant<br />

subspace is still unknown and is one <strong>of</strong> <strong>the</strong> famous unsolved problems <strong>of</strong> modern ma<strong>the</strong>matics.<br />

Due to <strong>the</strong> above counterexamples, <strong>the</strong> present study <strong>of</strong> <strong>the</strong> <strong>in</strong>variant subspace<br />

problem for operators on <strong>Banach</strong> spaces has been focused on various classes <strong>of</strong> operators<br />

for which one can expect <strong>the</strong> existence <strong>of</strong> an <strong>in</strong>variant subspace.<br />

We start our <strong>in</strong>variant subspace results with a version <strong>of</strong> <strong>the</strong> classical Perron-Frobenius<br />

<strong>the</strong>orem for positive matrices. As usual, we denote by r(T) <strong>the</strong> spectral radius <strong>of</strong> an operator<br />

T.<br />

THEOREM 3 2 (Perron-Frobenius). If A is a non-negative n x n matrix such that for some<br />

k >~ 1 <strong>the</strong> matrix A k has strictly positive entries, <strong>the</strong>n <strong>the</strong> spectral radius <strong>of</strong> A is a strictly<br />

positive eigenvalue <strong>of</strong> multiplicity one hav<strong>in</strong>g a strictly positive eigenvector.<br />

The pro<strong>of</strong> <strong>of</strong> this <strong>the</strong>orem, discovered by Frobenius [60] and Perron [108], is available<br />

<strong>in</strong> practically every book treat<strong>in</strong>g non-negative matrices, for <strong>in</strong>stance <strong>in</strong> [33,35,98]. One


Positive operators 99<br />

more pro<strong>of</strong> <strong>of</strong> <strong>the</strong> Perron-Frobenius <strong>the</strong>orem as well as many <strong>in</strong>terest<strong>in</strong>g generalizations<br />

1<br />

can be found <strong>in</strong> [ 112]. If all entries <strong>of</strong> A are strictly positive, <strong>the</strong>n <strong>the</strong> sequence { [r(a)] k Aku}<br />

converges to a unique strictly positive eigenvector correspond<strong>in</strong>g to <strong>the</strong> eigenvalue r (A), no<br />

matter which <strong>in</strong>itial vector u > 0 is chosen. This fact has numerous applications. A major<br />

step <strong>in</strong> extend<strong>in</strong>g <strong>the</strong> Perron-Frobenius Theorem to <strong>in</strong>f<strong>in</strong>ite dimensional sett<strong>in</strong>gs was done<br />

by Kre<strong>in</strong> and Rutman [82] who proved <strong>the</strong> follow<strong>in</strong>g <strong>the</strong>orem.<br />

THEOREM 3 3 (Kre<strong>in</strong>-Rutman). For any positive operator T" X --~ X on a <strong>Banach</strong> lattice<br />

r(T) E or(T), i.e., <strong>the</strong> spectral radius <strong>of</strong> T belongs to <strong>the</strong> spectrum <strong>of</strong> T. Fur<strong>the</strong>rmore, if<br />

T is also compact and r(T) > O, <strong>the</strong>n <strong>the</strong>re exists some x > 0 such that Tx -- r(T)x.<br />

PROOF. We will sketch a pro<strong>of</strong>. The <strong>in</strong>clusion r(T) E cr(T) is caused merely by <strong>the</strong> positivity<br />

<strong>of</strong> T. Indeed, if we denote by R()~) <strong>the</strong> resolvent operator <strong>of</strong> T, <strong>the</strong>n clearly R0~) > 0<br />

for each )~ > r(T), Also for each )~ with 1)~1 > r(T) <strong>the</strong> <strong>in</strong>equality ]]R(])~[)]] ~> ]]R()~)]]<br />

1<br />

holds. Therefore, for )~, -- r(T) + -d we have []R()~n)l[ ~ oc, whence r(T) ~ or(T).<br />

Assume fur<strong>the</strong>r that T is compact and r(T) > 0. There exist unit vectors Yn E X+<br />

such that ]lRO~,)yn I[--~ oc. Us<strong>in</strong>g <strong>the</strong> vectors y,, we <strong>in</strong>troduce <strong>the</strong> unit vectors xn =<br />

R()~n)yn/llR()~n)Yn][ ~ X+. S<strong>in</strong>ce T is compact we can assume that Txn --+ x ~ X+. F<strong>in</strong>ally,<br />

us<strong>in</strong>g <strong>the</strong> identities<br />

r(T)xn - Txn -<br />

[r(T)- Xn]xn + ()~n - T)xn<br />

= [r(T) - ~,]x, + y~/IIRO~)y~II<br />

and that r(T) > 0 we <strong>in</strong>fer that x 5~ 0 and that Tx -- r(T)x.<br />

The conclusion <strong>of</strong> <strong>the</strong> previous <strong>the</strong>orem rema<strong>in</strong>s valid if we replace <strong>the</strong> compactness<br />

<strong>of</strong> T by <strong>the</strong> compactness <strong>of</strong> some power <strong>of</strong> T. Indeed, assume that T k is compact for<br />

some k. S<strong>in</strong>ce r(T k) = [r(T)] k > 0 <strong>the</strong> previous <strong>the</strong>orem implies that <strong>the</strong>re is a vector<br />

x > 0 such that Tkx = [r(T)]kx. It rema<strong>in</strong>s to verify that <strong>the</strong> non-zero positive vector<br />

Y -- Y~i=0 k-I r iTk-l-i x is an eigenvector <strong>of</strong> T correspond<strong>in</strong>g to <strong>the</strong> eigenvalue r(T).<br />

The reader is referred to [121,123,144] for complete pro<strong>of</strong>s and many pert<strong>in</strong>ent results<br />

concern<strong>in</strong>g <strong>the</strong> Kre<strong>in</strong>-Rutman <strong>the</strong>orem. Some relevant results can be found <strong>in</strong> [4]. Note<br />

that <strong>the</strong> Kre<strong>in</strong>-Rutman <strong>the</strong>orem holds not only for <strong>Banach</strong> lattices but for ordered <strong>Banach</strong><br />

spaces as well. There is an <strong>in</strong>terest<strong>in</strong>g approach allow<strong>in</strong>g to relax <strong>the</strong> compactness assumption.<br />

Namely, as shown by Zabrel3cO and Smickih [146] and <strong>in</strong>dependently by Nussbaum<br />

[ 102], <strong>in</strong>stead <strong>of</strong> <strong>the</strong> compactness <strong>of</strong> T it is enough to assume only that <strong>the</strong> essential<br />

spectral radius re(T) is strictly less than <strong>the</strong> spectral radius r(T). A different type <strong>of</strong> relaxation<br />

is considered <strong>in</strong> [121], where <strong>the</strong> restriction <strong>of</strong> T to X+ is assumed to be compact,<br />

that is, T maps <strong>the</strong> positive part <strong>of</strong> <strong>the</strong> unit ball <strong>in</strong>to a precompact set. A version <strong>of</strong> this<br />

result, given <strong>in</strong> terms <strong>of</strong> re(T), can be found <strong>in</strong> [ 102].<br />

Ano<strong>the</strong>r classical result by M. Kre<strong>in</strong> [82, Theorem 6.3] is <strong>the</strong> follow<strong>in</strong>g.<br />

THEOREM 34 (Kre<strong>in</strong>). Let T" C(I-2) --+ C(I-2) be a positive operator, where S72 is a compact<br />

Hausdorff space. Then T*, <strong>the</strong> adjo<strong>in</strong>t <strong>of</strong> T, has a positive eigenvector correspond<strong>in</strong>g<br />

to a non-negative eigenvalue.


100 Y.A. Abramovich and C.D. Aliprantis<br />

PROOF. Consider <strong>the</strong> set G -- {f E C(t'2)+ f(1) = 1}, where 1 denotes <strong>the</strong> constant<br />

function one on t'2. Clearly, G is a nonempty, convex, and w*-compact subset <strong>of</strong> C(~)*.<br />

Next, def<strong>in</strong>e <strong>the</strong> mapp<strong>in</strong>g F'G --+ G by<br />

f+T*f f+T*f<br />

F(f) -- =<br />

[f + T'f](1) 1 + f(rl)<br />

A straightforward verification shows that F <strong>in</strong>deed maps <strong>the</strong> set G <strong>in</strong>to itself and that<br />

F: (G, w*) --+ (G, w*) is a cont<strong>in</strong>uous function. So, by Tychon<strong>of</strong>f's fixed po<strong>in</strong>t <strong>the</strong>orem<br />

(see, for <strong>in</strong>stance [22, Corollary 16.52]) <strong>the</strong>re exists some q~ E G such that F(4~) = 4~. That<br />

is, q~ + T*4~ -- [1 + 4~(T1)]4), or T*4) -- 4)(T1)4~, establish<strong>in</strong>g that 0 < 4~ E C(12)~_ is an<br />

eigenvector for T* hav<strong>in</strong>g <strong>the</strong> non-negative eigenvalue 4~(T1).<br />

M<br />

A pro<strong>of</strong> <strong>of</strong> Theorem 34 that does not use fixed po<strong>in</strong>t <strong>the</strong>orems can be found <strong>in</strong> [77].<br />

COROLLARY 3 5. Every positive operator on a C (Y2)-space (where Y2 is Hausdorff, compact<br />

and not a s<strong>in</strong>gleton) which is not a multiple <strong>of</strong> <strong>the</strong> identity has a non-trivial hyper<strong>in</strong>variant<br />

closed subspace.<br />

PROOF. Let T'C(S2) --+ C(Y2) be a positive operator which is not a multiple <strong>of</strong> <strong>the</strong> identity.<br />

By Theorem 34 <strong>the</strong> adjo<strong>in</strong>t operator T* has a positive eigenvector. If )~ denotes <strong>the</strong><br />

correspond<strong>in</strong>g eigenvalue, <strong>the</strong>n <strong>the</strong> subspace (T - )~I)(X) has <strong>the</strong> desired properties. V]<br />

Recall that a cont<strong>in</strong>uous operator T : X ~ X on a <strong>Banach</strong> space is said to be quas<strong>in</strong>ilpotent<br />

if its spectral radius is zero. It is well known that T is quas<strong>in</strong>ilpotent if and only if<br />

limn~ ]lTnxl] 1/n = 0 for eachx c X. It can happen thata cont<strong>in</strong>uous operator T: X ~ X<br />

is not quas<strong>in</strong>ilpotent but, never<strong>the</strong>less, limn~ IlTnx ]ll/n = 0 for some x ~ 0. In this case<br />

we say that T is locally quas<strong>in</strong>ilpotent at x. This property was <strong>in</strong>troduced <strong>in</strong> [6], where it<br />

was found to be useful <strong>in</strong> <strong>the</strong> study <strong>of</strong> <strong>the</strong> <strong>in</strong>variant subspace problem. The set <strong>of</strong> po<strong>in</strong>ts at<br />

which T is quas<strong>in</strong>ilpotent is denoted by QT, i.e., QT = {x 6 X: limn~ IlTnxll 1/n =0}.<br />

It is easy to prove that <strong>the</strong> set QT is a T-hyper<strong>in</strong>variant vector subspace. We formulate<br />

below a few simple properties <strong>of</strong> <strong>the</strong> vector space QT.<br />

9 The operator T is quas<strong>in</strong>ilpotent if and only if QT = X.<br />

9 QT = {0} is possible every isometry T satisfies QT = {0}. Notice also that even<br />

a compact positive operator can fail to be locally quas<strong>in</strong>ilpotent at every non-zero<br />

vector9 For <strong>in</strong>stance, consider <strong>the</strong> compact positive operator T:g2 -+ ~2 def<strong>in</strong>ed by<br />

T(xl, X2, 9 9 .) -- (X l, x2 2 ' x3 3 .... ). For each non-zero x E ~2 pick some k for which Xk r 0<br />

and note that IlTnxl] 1/n ~ ~]xk[ 1/n for each n, from which it follows that T is not<br />

quas<strong>in</strong>ilpotent at x.<br />

9 QT can be dense without be<strong>in</strong>g equal to X. For <strong>in</strong>stance, <strong>the</strong> left shift S: g2 -+ g2, def<strong>in</strong>ed<br />

by S(xl, x2, x3 .... ) = (x2, x3 .... ), has this property.<br />

9 If QT ~: {0} and QT ~ X, <strong>the</strong>n QT is a non-trivial closed T-hyper<strong>in</strong>variant subspace<br />

<strong>of</strong> X.<br />

The above properties show that as far as <strong>the</strong> <strong>in</strong>variant subspace problem is concerned,<br />

we need only consider <strong>the</strong> two extreme cases: QT = {0} and QT = X.


Positive operators 101<br />

We are now ready to state <strong>the</strong> ma<strong>in</strong> result about <strong>the</strong> existence <strong>of</strong> <strong>in</strong>variant subspaces<br />

<strong>of</strong> positive operators on gp-spaces. It implies, <strong>in</strong> particular, that if a positive operator is<br />

quas<strong>in</strong>ilpotent at a non-zero positive vector, <strong>the</strong>n <strong>the</strong> operator has an <strong>in</strong>variant subspace.<br />

This is an improvement <strong>of</strong> <strong>the</strong> ma<strong>in</strong> result <strong>in</strong> [6].<br />

THEOREM 36. Let T : g~p --+ g~p (1


102 YA. Abramovich and C.D. Aliprantis<br />

A very <strong>in</strong>terest<strong>in</strong>g open problem related to Corollary 39 is whe<strong>the</strong>r or not each positive<br />

operator on el has a nontrivial closed <strong>in</strong>variant subspace. S<strong>in</strong>ce each cont<strong>in</strong>uous operator<br />

on el has a modulus (see Theorem 10), a natural candidate to test this problem is <strong>the</strong><br />

modulus <strong>of</strong> any operator on g l without a nontrivial closed <strong>in</strong>variant subspace. In particular,<br />

each operator on g 1 without <strong>in</strong>variant subspace constructed by Read [ 115,117] is such a<br />

candidate. Troitsky [ 131 ] has recently managed to handle <strong>the</strong> case <strong>of</strong> <strong>the</strong> quas<strong>in</strong>ilpotent operator<br />

T constructed by Read <strong>in</strong> [ 117]. Not only does I TI have a nontrivial closed <strong>in</strong>variant<br />

subspace, but I TI also has a positive eigenvector.<br />

In our previous discussion, we were consider<strong>in</strong>g only operators on gp-spaces. However,<br />

we only used <strong>the</strong> discreteness <strong>of</strong> g p-spaces, <strong>the</strong> above results rema<strong>in</strong> true for operators<br />

on arbitrary discrete <strong>Banach</strong> lattices, 3 <strong>in</strong> particular, for operators on Lorentz and Orlicz<br />

sequence spaces. For <strong>in</strong>stance, <strong>the</strong> follow<strong>in</strong>g analogue <strong>of</strong> Theorem 36 is true.<br />

THEOREM 40. Let T : X --+ X be a cont<strong>in</strong>uous operator with modulus, where X is a discrete<br />

<strong>Banach</strong> lattice. If <strong>the</strong>re exists a non-zero positive operator S : X -+ X which is locally<br />

quas<strong>in</strong>ilpotent at a non-zero positive vector and SITI


Positive operators 103<br />

<strong>the</strong> next two results. The pro<strong>of</strong> <strong>of</strong> <strong>the</strong> first one was <strong>in</strong>spired by Hilden's pro<strong>of</strong> (<strong>in</strong>cluded<br />

<strong>in</strong> [97]) <strong>of</strong> a simplified version <strong>of</strong> Lomonosov's <strong>in</strong>variant subspace <strong>the</strong>orem mentioned<br />

above.<br />

THEOREM 42. Let B : X --+ X be a positive operator on a <strong>Banach</strong> lattice. Assume that<br />

<strong>the</strong>re exists a positive operator S : X --+ X such that S B


104 Y.A. Abramovich and C.D. Aliprantis<br />

where K0 is compact. Then <strong>the</strong> required "triplet" (R, C, K) is <strong>the</strong> follow<strong>in</strong>g: R = B, C =<br />

B and K = K0.<br />

The pro<strong>of</strong> that each positive <strong>in</strong>tegral operator is compact-friendly will be given <strong>in</strong> Theorem<br />

52, and <strong>the</strong> pro<strong>of</strong> for composition operators can be found <strong>in</strong> [ 11 ].<br />

We will also need <strong>the</strong> follow<strong>in</strong>g ref<strong>in</strong>ement <strong>of</strong> <strong>the</strong> concept <strong>of</strong> <strong>the</strong> strong unit <strong>in</strong>troduced<br />

at <strong>the</strong> end <strong>of</strong> Section 1. A positive element u <strong>in</strong> a <strong>Banach</strong> lattice X is called a quasi-<strong>in</strong>terior<br />

po<strong>in</strong>t whenever Xu is norm dense <strong>in</strong> X, i.e., Xu -- X.<br />

LEMMA 45. If u is quasi-<strong>in</strong>terior po<strong>in</strong>t <strong>in</strong> a <strong>Banach</strong> lattice X, <strong>the</strong>n<br />

(1) For every non-zero element y ~ Xu <strong>the</strong>re exists an operator V : X ~ X dom<strong>in</strong>ated<br />

by <strong>the</strong> identity operator and such that Vy > O.<br />

(2) For every element v satisfy<strong>in</strong>g 0 0. Put<br />

M1 -- VI C, and note that M1 is dom<strong>in</strong>ated both by <strong>the</strong> compact positive operator K and<br />

by <strong>the</strong> operator R.<br />

From Jx2 = X and C ~-0, we see that <strong>the</strong>re exists some 0 < y


Positive operators 105<br />

ICyl 0 and which is dom<strong>in</strong>ated by both<br />

<strong>the</strong> positive compact operator K A and by RA.<br />

From M3 M2 M1 x 1 : M3x3 > 0, we see that M3 M2 M1 is a non-zero operator which (by<br />

Theorem 20) is also compact. Moreover, an easy argument shows that for each x 6 X<br />

IM3M2M1 (x)[ ~ RARAR(Ixl) ~ [RARAR + T](Ixl).<br />

Now consider <strong>the</strong> non-zero positive operator S -- RARAR + T. Then B and S commute,<br />

S dom<strong>in</strong>ates <strong>the</strong> non-zero compact operator M3MzM1, and B is quas<strong>in</strong>ilpotent at<br />

x0. By Theorem 43, S and B have a common non-trivial closed <strong>in</strong>variant ideal. This ideal<br />

is <strong>in</strong>variant under both B and T. [2<br />

We will illustrate this <strong>the</strong>orem while study<strong>in</strong>g <strong>in</strong>tegral operators <strong>in</strong> <strong>the</strong> next section. Theorem<br />

46 may suggest that <strong>the</strong> compact-friendly operators characterize <strong>the</strong> positive operators<br />

with an <strong>in</strong>variant subspace. However, this is not true. An example <strong>of</strong> a positive operator<br />

that is not compact-friendly but has a non-trivial <strong>in</strong>variant subspace is given <strong>in</strong> [ 11 ]. The<br />

operator itself is very simple, just a multiplication operator M~; but <strong>the</strong> fact that for some<br />

multipliers <strong>the</strong> operator is not compact-friendly is far from be<strong>in</strong>g trivial. As shown <strong>in</strong> [ 13],<br />

a multiplication operator M~o on an Lp(#) is compact-friendly if and only if <strong>the</strong> multiplier<br />

q) is constant on a set <strong>of</strong> positive measure. Never<strong>the</strong>less, <strong>in</strong> <strong>the</strong> last section <strong>of</strong> [ 11],<br />

a program is outl<strong>in</strong>ed for how <strong>the</strong> compact-friendly operators may be used to <strong>in</strong>clude <strong>the</strong><br />

exceptional cases as well.<br />

We conclude this section by mention<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>terest<strong>in</strong>g conjecture <strong>of</strong> Lomonosov<br />

[89]: The adjo<strong>in</strong>t <strong>of</strong> an arbitrary operator on a <strong>Banach</strong> space has a non-trivial<br />

closed <strong>in</strong>variant subspace. For operators on <strong>Banach</strong> lattices this conjecture is also open.<br />

We refer to <strong>the</strong> papers by de Branges [36], Abramovich, Aliprantis and Burk<strong>in</strong>shaw [10]<br />

and Simoni6 [127,128] that deal with this and related problems.<br />

7. Integral operators and <strong>in</strong>variant subspaces<br />

After a brief <strong>in</strong>troduction to <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>in</strong>tegral operators, we will prove <strong>in</strong> Theorem 52<br />

that each positive <strong>in</strong>tegral operator is compact-friendly. After that, apply<strong>in</strong>g <strong>the</strong> <strong>the</strong>ory<br />

<strong>of</strong> compact-friendly operators, we will establish <strong>in</strong> Theorem 54 <strong>the</strong> existence <strong>of</strong> a nontrivial<br />

<strong>in</strong>variant subspace for each locally quas<strong>in</strong>ilpotent positive <strong>in</strong>tegral operator. The<br />

rest <strong>of</strong> <strong>the</strong> section will be devoted to a discussion <strong>of</strong> <strong>the</strong> And6-Krieger <strong>the</strong>orem and its<br />

generalizations.<br />

We beg<strong>in</strong> by def<strong>in</strong><strong>in</strong>g <strong>the</strong> classes <strong>of</strong> <strong>in</strong>tegral (= kernel) and almost <strong>in</strong>tegral operators. 5<br />

Throughout this section X and Y will denote two Dedek<strong>in</strong>d complete <strong>Banach</strong> lattices which<br />

5 To avoid a possible ambiguity let us po<strong>in</strong>t out that <strong>the</strong> <strong>in</strong>tegral operators considered <strong>in</strong> this section should not<br />

be confused with <strong>the</strong> <strong>in</strong>tegral operators <strong>in</strong> <strong>the</strong> sense <strong>of</strong> Gro<strong>the</strong>ndieck discussed <strong>in</strong> [72].


106 Y.A. Abramovich and C.D. Aliprantis<br />

are order dense ideals <strong>in</strong> <strong>the</strong> spaces (<strong>of</strong> equivalence classes) <strong>of</strong> all measurable functions<br />

L0(I2j, El, #1) and L0(f22,272, #2) respectively, where (I21,271, #1) and (Y22, I72, #2)<br />

are two arbitrary "non-pathological" measure spaces, for <strong>in</strong>stance, a-f<strong>in</strong>ite measure spaces.<br />

DEFINITION 47. An operator T" X --+ Y is said to be an <strong>in</strong>tegral operator if <strong>the</strong>re exists<br />

a #1 x #z-measurable function T (., .) on s x ~(22 such that for each x e X we have<br />

Tx(t) -- f~ T(s,t)x(s)dlzl(s)<br />

for #2-almost all t e S22.<br />

1<br />

The function T(., .) is usually referred to as <strong>the</strong> kernel <strong>of</strong> <strong>the</strong> operator T. It is easy<br />

to prove that an <strong>in</strong>tegral operator is positive if and only if its kernel is nonnegative almost<br />

everywhere on S21 x I22. Fur<strong>the</strong>rmore, it is well known that an <strong>in</strong>tegral operator T<br />

with kernel T (., .) is a regular operator from X to Y if and only if for each x e X <strong>the</strong><br />

function f IT(s, .)llx(s)l d#l (s) belongs to Y. Moreover, under this condition <strong>the</strong> modulus<br />

[TI:X --+ Y is also an <strong>in</strong>tegral operator, and its kernel is given by <strong>the</strong> absolute value<br />

IT (s, t)[ <strong>of</strong> <strong>the</strong> <strong>in</strong>itial kernel. It should be po<strong>in</strong>ted out that many authors <strong>in</strong>clude <strong>the</strong> last<br />

condition <strong>in</strong> <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> <strong>in</strong>tegral operator, thus guarantee<strong>in</strong>g that <strong>the</strong> modulus I TI<br />

<strong>of</strong> <strong>the</strong> operator T also acts from X to Y. To stress this property, such operators are sometimes<br />

referred to as absolute <strong>in</strong>tegral operators.<br />

We refer to [41], [74, Chapter 11] and [144, Chapter 13] for a systematic study <strong>of</strong> <strong>in</strong>tegral<br />

operators with emphasis on <strong>the</strong> order structure <strong>of</strong> <strong>the</strong> spaces <strong>in</strong>volved. Apart from <strong>the</strong>se<br />

three books <strong>the</strong>re are, <strong>of</strong> course, many o<strong>the</strong>r books devoted to <strong>in</strong>tegral operators; see for<br />

<strong>in</strong>stance [51,54,67,75,78]. Whenever convenient we will identify an <strong>in</strong>tegral operator with<br />

its kernel.<br />

The <strong>in</strong>tegral operators are closely related to f<strong>in</strong>ite-rank operators. A rank-one operator<br />

from a <strong>Banach</strong> lattice E to a <strong>Banach</strong> lattice F is any operator <strong>of</strong> <strong>the</strong> form 4~ @ Y, where 4~ e<br />

E*, y e F and ~b | y (x) -- 4~ (x)y for each x e E. Any operator <strong>of</strong> <strong>the</strong> form Y~i=ln ~bi | Yi<br />

is called a f<strong>in</strong>ite-rank operator. We denote by E* | F <strong>the</strong> vector space <strong>of</strong> all f<strong>in</strong>ite rank<br />

operators from E to F. The f<strong>in</strong>ite-rank operators are precisely <strong>the</strong> cont<strong>in</strong>uous operators<br />

whose ranges are f<strong>in</strong>ite dimensional.<br />

Recall that <strong>the</strong> subspace <strong>of</strong> all order cont<strong>in</strong>uous l<strong>in</strong>ear functionals on E is denoted by E*.<br />

DEFINITION 48. A bounded operator T'E ~ F between <strong>Banach</strong> lattices, with F<br />

Dedek<strong>in</strong>d complete, is said to be an almost <strong>in</strong>tegral operator if T belongs to <strong>the</strong> band<br />

generated <strong>in</strong> Z2 r (E, F) by <strong>the</strong> collection E* | F <strong>of</strong> all f<strong>in</strong>ite-rank operators.<br />

The term "almost <strong>in</strong>tegral operator" has its orig<strong>in</strong> <strong>in</strong> Theorem 50 below that is due to<br />

Lozanovsky [90], who <strong>in</strong>troduced both this class <strong>of</strong> operators and <strong>the</strong> term itself. Accord<strong>in</strong>g<br />

to this <strong>the</strong>orem <strong>the</strong> classes <strong>of</strong> almost <strong>in</strong>tegral and <strong>in</strong>tegral operators are essentially <strong>the</strong> same.<br />

Let us mention also <strong>the</strong> paper by Synnatzschke [129], where a ref<strong>in</strong>ed version <strong>of</strong> almost<br />

<strong>in</strong>tegral operators is studied. Namely, one can fix arbitrary subsets N _ E* and M c_ F,<br />

and <strong>the</strong>n def<strong>in</strong>e <strong>the</strong> band <strong>of</strong> almost <strong>in</strong>tegral operators (which depends on N and M) as <strong>the</strong>


Positive operators 107<br />

band generated <strong>in</strong>/~r (E, F) by {q) | y" q9 E N, y E M}. The case <strong>of</strong> N = E* and M -- F<br />

considered <strong>in</strong> Def<strong>in</strong>ition 48 is <strong>the</strong> most important.<br />

A key element to Lozanovsky's characterization <strong>of</strong> almost <strong>in</strong>tegral operators is <strong>the</strong> famous<br />

Dunford <strong>the</strong>orem (see Theorem 49) regard<strong>in</strong>g <strong>the</strong> <strong>in</strong>tegral representation <strong>of</strong> operators<br />

from L1 <strong>in</strong>to Lp [55]. There are many pro<strong>of</strong>s <strong>of</strong> this important <strong>the</strong>orem. A simple pro<strong>of</strong>,<br />

utiliz<strong>in</strong>g <strong>the</strong> work <strong>of</strong> Benedek and Panzone [34] on spaces with mixed norm, was also<br />

found by Lozanovsky [91 ]. To outl<strong>in</strong>e <strong>the</strong> pro<strong>of</strong> we need some term<strong>in</strong>ology and notation.<br />

For p E (1, ec), let q denote its conjugate exponent, that is, p-1 + q-1 _ 1. We denote<br />

by L(p, oc) and L(q, 1) <strong>the</strong> usual <strong>Banach</strong> spaces with mixed norm [34], which consist <strong>of</strong><br />

all real-valued #l x #2-measurable functions f(s, t) on I21 x I22 satisfy<strong>in</strong>g respectively<br />

<strong>the</strong> follow<strong>in</strong>g conditions:<br />

and<br />

Ilfllp,oc "-Illlfllpll~- esssup<br />

s ES22 1<br />

If(s,t)lPd#2(t)<br />

]'J'<br />


108 Y.A. Abramovich and C.D. Aliprantis<br />

THEOREM 50 (Lozanovsky). An operator T : X--+ Y between two <strong>Banach</strong> function<br />

spaces is an almost <strong>in</strong>tegral operator if and only if T is a regular <strong>in</strong>tegral operator Fur<strong>the</strong>rmore,<br />

for this operator <strong>the</strong>re are measurable functions wi ~ Lo(#i) (i = 1, 2) and a<br />

unique (up to an equivalence) <strong>in</strong>tegrable function T(s, t) on 121 x ~C22 such that for each<br />

x ~ X and for lzz-almost all t ~ ~-22 <strong>the</strong> follow<strong>in</strong>g representation holds:<br />

Tx(t) = w2(t) fs2 T(s, t)x(s)wl (s) d/zl (s).<br />

1<br />

The idea <strong>of</strong> <strong>the</strong> pro<strong>of</strong> lies <strong>in</strong> consecutive approximations obta<strong>in</strong>ed by "squeez<strong>in</strong>g" X and<br />

Y between weighted L~ and L1 spaces (this procedure is described <strong>in</strong> [72, Section 5]) and<br />

<strong>the</strong>n apply<strong>in</strong>g <strong>the</strong> Dunford <strong>the</strong>orem.<br />

The previous <strong>the</strong>orem is a global order-<strong>the</strong>oretic characterization <strong>of</strong> <strong>the</strong> space <strong>of</strong> <strong>in</strong>tegral<br />

operators. An important <strong>in</strong>ternal characterization <strong>of</strong> an <strong>in</strong>dividual <strong>in</strong>tegral operator is due<br />

to A. Bukhvalov [37,41], see also [125], and it is given next. Many applications <strong>of</strong> this<br />

criterion can be found <strong>in</strong> [41 ].<br />

THEOREM 51. An operator T : X --+ Y between two <strong>Banach</strong> function spaces is an <strong>in</strong>tegral<br />

operator if and only if for every order bounded sequence {Xn } C X which converges to zero<br />

<strong>in</strong> measure, Txn ~ 0 holds #2-almost everywhere.<br />

THEOREM 5 2. Every positive <strong>in</strong>tegral operator T is compact-friendly.<br />

PROOF. As we already know T is an almost <strong>in</strong>tegral operator. Now note that for each<br />

almost <strong>in</strong>tegral operator <strong>the</strong>re exists a net { T~ } <strong>of</strong> positive operators such that 0 ~< T~ x t Tx<br />

holds for each x ) 0, and each Tc~ is dom<strong>in</strong>ated by a positive f<strong>in</strong>ite-rank operator. This<br />

implies that T is compact-friendly.<br />

D<br />

LEMMA 5 3. If S : X --+ X is a strictly positive <strong>in</strong>tegral operator on an order complete<br />

<strong>Banach</strong> lattice, <strong>the</strong>n for each element xo > 0 <strong>the</strong>re exists a compact positive operator<br />

K: X --+ X satisfy<strong>in</strong>g 0 ~ K ~ S 3 and K xo > O.<br />

PROOF. Let S:X ---> X be a strictly positive <strong>in</strong>tegral operator and fix x0 > 0. So, <strong>the</strong>re<br />

exists a net { S~ } <strong>of</strong> positive operators such that 0 0, we see that <strong>the</strong>re exists some <strong>in</strong>dex ~l such that S~x0 > 0<br />

for each c~/> ~l. Similarly, from S~(S~,xo) ~ S(S~,xo) and S(S~,xo) > 0, we see that<br />

S~(S~xo) > 0 for all ~ t> Ot2 ) Otl. F<strong>in</strong>ally, from <strong>the</strong> facts that S(S~2S~lXO) > 0 and<br />

S~(S~2S~lXO) t~ S(S~2S~,xo), it follows that S~(S~2S~,xo) > 0 for all possible <strong>in</strong>dices<br />

O~ /) O~ 3 /) Ot2 )/Otl. It rema<strong>in</strong>s to note that if we let K -- $33 , <strong>the</strong>n K" X ~ X is a positive<br />

compact operator satisfy<strong>in</strong>g 0 ~< K ~< S 3 and K xo > O.<br />

And now we are ready to present one <strong>of</strong> <strong>the</strong> ma<strong>in</strong> <strong>in</strong>variant subspace <strong>the</strong>orems for <strong>in</strong>tegral<br />

operators obta<strong>in</strong>ed <strong>in</strong> [7]. The pro<strong>of</strong> illustrates <strong>the</strong> role <strong>of</strong> compact-friendly operators.<br />

D


Positive operators 109<br />

THEOREM 54. Let S : X --+ X be a non-zero positive <strong>in</strong>tegral operator on a Dedek<strong>in</strong>d<br />

complete <strong>Banach</strong> lattice and let B : X --+ X be ano<strong>the</strong>r non-zero positive operator commut<strong>in</strong>g<br />

with S. If ei<strong>the</strong>r S or B is locally quas<strong>in</strong>ilpotent at a non-zero positive vector, <strong>the</strong>n<br />

<strong>the</strong> operators S and B have a common non-trivial closed <strong>in</strong>variant ideal.<br />

PROOF. If <strong>the</strong> operator S is itself locally quas<strong>in</strong>ilpotent at a non-zero positive vector, <strong>the</strong>n<br />

S is a compact-friendly operator that is locally quas<strong>in</strong>ilpotent. So Theorem 46 is applicable<br />

and guarantees <strong>the</strong> existence <strong>of</strong> <strong>the</strong> desired <strong>in</strong>variant subspace.<br />

Assume now that B is locally quas<strong>in</strong>ilpotent at a non-zero positive vector. Without loss<br />

<strong>of</strong> generality we can assume that S is strictly positive (s<strong>in</strong>ce o<strong>the</strong>rwise <strong>the</strong> null ideal Ns<br />

provides at once a common <strong>in</strong>variant subspace). Therefore, by Lemma 53, <strong>the</strong> operator S 3<br />

dom<strong>in</strong>ates a non-zero compact positive operator K. Consider now <strong>the</strong> operator B 4- S 4- S 3 .<br />

Clearly, it dom<strong>in</strong>ates K and commutes with both S and B. It follows that B is compactfriendly<br />

and by hypo<strong>the</strong>sis B is locally quas<strong>in</strong>ilpotent at a non-zero positive vector. Hence,<br />

Theorem 46, applied to B and B 4- S 4- S 3, guarantees <strong>the</strong> existence <strong>of</strong> a common nontrivial<br />

closed <strong>in</strong>variant ideal for <strong>the</strong>se two operators. S<strong>in</strong>ce both S and B are dom<strong>in</strong>ated by<br />

B 4- S + S 3, it follows that this ideal rema<strong>in</strong>s <strong>in</strong>variant under both S and B.<br />

D<br />

COROLLARY 55. Every positive <strong>in</strong>tegral operator that is locally quas<strong>in</strong>ilpotent at a nonzero<br />

positive vector has a non-trivial closed <strong>in</strong>variant ideal.<br />

For <strong>the</strong> classical Lp-spaces (and, as a matter <strong>of</strong> fact, for any <strong>Banach</strong> function space), <strong>the</strong><br />

preced<strong>in</strong>g corollary yields <strong>the</strong> follow<strong>in</strong>g.<br />

COROLLARY 56. Let B : Lp(#) --+ Lp(~) (where # is a-f<strong>in</strong>ite and 1


110 Y.A. Abramovich and C.D. Aliprantis<br />

We conclude this section by discuss<strong>in</strong>g <strong>the</strong> well known And6-Krieger <strong>the</strong>orem and its<br />

generalizations.<br />

DEFINITION 58. A positive operator T :X --+ X on a <strong>Banach</strong> lattice is ideal irreducible,<br />

if T does not have a non-trivial <strong>in</strong>variant closed ideal, i.e., if T (J) ___ J and J is a closed<br />

ideal, <strong>the</strong>n ei<strong>the</strong>r J = 0 or J = E. Similarly, T is band irreducible, if Tdoes not have a<br />

non-trivial <strong>in</strong>variant band.<br />

In 1957, And6 [31 ] proved that every band irreducible compact positive <strong>in</strong>tegral operator<br />

has a strictly positive spectral radius. Twelve years later, <strong>in</strong> 1969, Krieger [85] removed<br />

<strong>the</strong> compactness condition from And6's <strong>the</strong>orem, and <strong>the</strong> remarkable result assert<strong>in</strong>g that<br />

a band irreducible positive <strong>in</strong>tegral operator has a strictly positive spectral radius, is today<br />

known as <strong>the</strong> And6-Krieger <strong>the</strong>orem. It is obvious that this result is an <strong>in</strong>variant subspace<br />

result as soon as it is reformulated as follows: each quas<strong>in</strong>ilpotent positive <strong>in</strong>tegral operator<br />

has a non-trivial <strong>in</strong>variant band.<br />

The pro<strong>of</strong>s presented by And6 and Krieger were not at all transparent and several attempts<br />

were made to clarify <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic properties beh<strong>in</strong>d <strong>the</strong> structure <strong>of</strong> kernel operators.<br />

In addition to <strong>the</strong>se efforts, many <strong>in</strong>vestigators looked at <strong>the</strong> possibility <strong>of</strong> generaliz<strong>in</strong>g <strong>the</strong><br />

And6-Krieger <strong>the</strong>orem. In spite <strong>of</strong> all <strong>the</strong>se research activities, it was not until somewhat<br />

recently that <strong>the</strong> And6-Krieger <strong>the</strong>orem was understood relatively well and generalized <strong>in</strong><br />

various directions. Several people have contributed to <strong>the</strong> understand<strong>in</strong>g <strong>of</strong> this subject;<br />

among <strong>the</strong>m Caselles [45,46], Grobler [65,66], de Pagter [106], Schaefer [124,120], and<br />

Zaanen [ 144, Section 136].<br />

The early attempts to generalize <strong>the</strong> And6-Krieger <strong>the</strong>orem to operators more general<br />

than <strong>in</strong>tegral were fraught with many obstacles from <strong>the</strong> outset. Schaefer [ 120] constructed<br />

an example <strong>of</strong> an ideal irreducible operator on Lp(#) (1 < p < e~) which was quas<strong>in</strong>ilpotent.<br />

This showed that even for <strong>the</strong> class <strong>of</strong> ideal irreducible operators (which is larger<br />

than that <strong>of</strong> band irreducible operators) some extra condition is necessary. For a long time it<br />

was not clear whe<strong>the</strong>r <strong>the</strong> compactness would be such a condition. This problem was solved<br />

by de Pagter [ 106] who proved that every ideal irreducible compact positive operator on<br />

a <strong>Banach</strong> lattice has a strictly positive spectral radius. This remarkable <strong>the</strong>orem was <strong>the</strong><br />

start<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> [5], where, <strong>in</strong>stead <strong>of</strong> impos<strong>in</strong>g all conditions on one operator, some <strong>of</strong><br />

<strong>the</strong> properties were shifted to <strong>the</strong> commutant <strong>of</strong> <strong>the</strong> operator. The next two results not only<br />

demonstrate <strong>the</strong> difference between <strong>the</strong> ideal and band irreducible operators but also are<br />

<strong>the</strong> strongest generalizations <strong>of</strong> <strong>the</strong> And6-Krieger <strong>the</strong>orem for ideal and band irreducible<br />

operators obta<strong>in</strong>ed so far. We refer to [5] for <strong>the</strong>se and many relevant results.<br />

THEOREM 59. If an ideal irreducible positive operator U : X ~ X commutes with a compact<br />

positive operator V : X --+ X, <strong>the</strong>n r(UV) > O, and <strong>in</strong> particular r(U) > 0 and<br />

r(V) > O.<br />

PROOF. We will outl<strong>in</strong>e <strong>the</strong> ma<strong>in</strong> po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> pro<strong>of</strong>. First <strong>of</strong> all, let us show that every<br />

non-zero compact quas<strong>in</strong>ilpotent positive operator T has a non-trivial closed positively<br />

hyper<strong>in</strong>variant ideal J, that is, J is <strong>in</strong>variant under each positive operator <strong>in</strong> <strong>the</strong> commutant<br />

{T}' <strong>of</strong> T.


Positive operators 111<br />

Let F be <strong>the</strong> closed ideal generated by <strong>the</strong> range <strong>of</strong> T. We claim that F is <strong>the</strong> closure<br />

<strong>of</strong> a pr<strong>in</strong>cipal ideal. The compactness <strong>of</strong> T implies that <strong>the</strong> range <strong>of</strong> T is separable. So,<br />

<strong>the</strong>re exists a countable subset {yl, y2 .... } <strong>of</strong> T (X) consist<strong>in</strong>g <strong>of</strong> non-zero vectors that is<br />

norm dense <strong>in</strong> T(X). Consider u -- y~'n~__l 2,I~1'~I, ii which is <strong>in</strong> F. For <strong>the</strong> pr<strong>in</strong>cipal ideal<br />

A, generated by u we clearly have A, _ F. Conversely, <strong>the</strong> <strong>in</strong>clusion {yl, y2 .... } _ A,<br />

implies that T (X) ___ A,. Hence, F c_ Au and so A, = F.<br />

Clearly, F 5~ {0} and it is easy to verify that F is <strong>in</strong>deed a positively hyper<strong>in</strong>variant<br />

ideal for T. We are done if F is proper. So assume that F -- A, = X, which implies <strong>in</strong><br />

particular that X has quasi-<strong>in</strong>terior po<strong>in</strong>ts. In this case, <strong>the</strong> existence pro<strong>of</strong> <strong>of</strong> a non-trivial<br />

closed positively hyper<strong>in</strong>variant ideal is just <strong>the</strong> second part <strong>of</strong> <strong>the</strong> pro<strong>of</strong> <strong>of</strong> de Pagter's<br />

result mentioned above [106, Proposition 2]. The basic steps <strong>of</strong> this pro<strong>of</strong> follow.<br />

Let J+ = {0~< S E s 3 R E {T}'with0~< S ~< R}. Also, consider <strong>the</strong> vector<br />

subspace ,7 = {S1 - $2: Sl, $2 E ,.7 + } <strong>of</strong> s In addition, for each x >~ 0, let<br />

J[x] = {Sx: S E J}. It is shown <strong>in</strong> [106] that:<br />

(1) For each x > 0 <strong>the</strong> closure J[x] is a non-zero T-<strong>in</strong>variant closed ideal; and<br />

(2) For some x > 0 <strong>the</strong> closed ideal J[x] is non-trivial.<br />

Next, let C be a positive operator that commutes with T. If S E J, <strong>the</strong>n <strong>the</strong>re exist<br />

S1,82 E ,J+ and RI, R2 E {T}' satisfy<strong>in</strong>g S = Sl - 82 and 0 ~< Si ~ Ri (i -- 1,2). Then,<br />

0


112 Y.A. Abramovich and C.D. Aliprantis<br />

and details. Each <strong>of</strong> <strong>the</strong>se applications requires <strong>the</strong> development <strong>of</strong> fairly sophisticated<br />

mach<strong>in</strong>ery that cannot be presented here because <strong>of</strong> space limitations. More areas <strong>of</strong> applications<br />

can be found <strong>in</strong> <strong>the</strong> <strong>in</strong>terest<strong>in</strong>g surveys by Dancer [49] (devoted to some recent<br />

work on maps, both l<strong>in</strong>ear and nonl<strong>in</strong>ear, between cones <strong>in</strong> <strong>Banach</strong> spaces) and by Nussbaum<br />

[103,104] (devoted to <strong>the</strong> fixed po<strong>in</strong>t <strong>in</strong>dex and some <strong>of</strong> its applications).<br />

Biology. We beg<strong>in</strong> with some <strong>in</strong>terest<strong>in</strong>g and surpris<strong>in</strong>g applications <strong>of</strong> <strong>the</strong> abstract resuits<br />

on dom<strong>in</strong>ation described <strong>in</strong> Section 4. The first example <strong>of</strong> such an application was<br />

discovered by Btirger [42] <strong>in</strong> biology. In [42] a very general discrete-time model that describes<br />

<strong>the</strong> evolution <strong>of</strong> type densities under <strong>the</strong> action <strong>of</strong> mutation and selection <strong>in</strong> an<br />

asexually reproduc<strong>in</strong>g population is developed and analyzed. As a result <strong>of</strong> this analysis,<br />

<strong>the</strong> author proves <strong>the</strong> existence and uniqueness <strong>of</strong> a strictly positive equilibrium.<br />

The analysis unfolds <strong>in</strong> some L1 (#)-space, that is, <strong>in</strong> a special <strong>Banach</strong> lattice with order<br />

cont<strong>in</strong>uous norm and so <strong>the</strong> Aliprantis-Burk<strong>in</strong>shaw Theorem 21 is applicable. This<br />

allows <strong>the</strong> author to conclude that for some positive compactly dom<strong>in</strong>ated <strong>in</strong>tegral operator<br />

U its second power U 2 is compact and <strong>the</strong>n to apply to U <strong>the</strong> improvement <strong>of</strong><br />

<strong>the</strong> Kre<strong>in</strong>-Rutman <strong>the</strong>orem mentioned after Theorem 33, accord<strong>in</strong>g to which r(U) > 0 is<br />

an eigenvalue, and U has a unique strictly positive normalized eigenvector correspond<strong>in</strong>g<br />

to r(U). This model and its analysis have been recently generalized by BUrger and<br />

Bomze [43].<br />

A similar application, but for a completely different model, has been obta<strong>in</strong>ed by<br />

Rhandi [ 113]. He has also applied Theorem 21 <strong>in</strong> his <strong>in</strong>vestigation <strong>of</strong> a population equation<br />

to obta<strong>in</strong> compactness <strong>of</strong> <strong>the</strong> rema<strong>in</strong>der <strong>of</strong> order 3 <strong>of</strong> <strong>the</strong> Dyson-Philips expansion. In his<br />

recent work with Schnaubelt [114], <strong>the</strong>y deal with a more complicated model describ<strong>in</strong>g<br />

a non-autonomous population equation with diffusion <strong>in</strong> L1, and aga<strong>in</strong> apply Theorem 21<br />

to deduce <strong>the</strong> compactness <strong>of</strong> some operators. This allows <strong>the</strong>m to obta<strong>in</strong> existence and<br />

uniqueness <strong>of</strong> positive solutions to this equation.<br />

A beautiful application <strong>of</strong> <strong>the</strong> Perron-Frobenius Theorem 32 to simple growth processes<br />

is given next. Suppose that <strong>the</strong>re are N different types <strong>of</strong> biological objects. Assume also<br />

that at <strong>the</strong> times t = 0, 1, 2 .... each <strong>in</strong>dividual object produces a certa<strong>in</strong> number <strong>of</strong> <strong>of</strong>fspr<strong>in</strong>g<br />

among which every type is present. To put it ma<strong>the</strong>matically, we denote by aij <strong>the</strong><br />

number <strong>of</strong> <strong>of</strong>fspr<strong>in</strong>g <strong>of</strong> type i produced by a s<strong>in</strong>gle object <strong>of</strong> type j.<br />

If we denote by xi(n) <strong>the</strong> number <strong>of</strong> <strong>the</strong> ith type present at time t = n, <strong>the</strong>n <strong>the</strong> size<br />

<strong>of</strong> <strong>the</strong> system at this time is determ<strong>in</strong>ed by N numbers xl (n) ..... xN(n). Hence, <strong>the</strong> size<br />

<strong>of</strong> <strong>the</strong> i th type at time t - n + 1 will be given by Y~Y-1 aijxj (n). In vector form we have<br />

x (n + 1) = Ax (n), where A = [aij ] and <strong>the</strong> vector x (n) = (x 1 (n) ..... XN (n)). We are<br />

<strong>in</strong>terested <strong>in</strong> <strong>the</strong> asymptotics <strong>of</strong> x (n) as time n tends to <strong>in</strong>f<strong>in</strong>ity, that is, we are <strong>in</strong>terested <strong>in</strong><br />

<strong>the</strong> behavior <strong>of</strong> <strong>the</strong> sequence A n (x (0)), where x(0) is <strong>the</strong> <strong>in</strong>itial distribution <strong>of</strong> <strong>the</strong> system.<br />

The Perron-Frobenius Theorem allows us to solve this problem.<br />

Indeed, as we mentioned after Theorem 32, <strong>the</strong> sequence {[r(a)]~<br />

1 A nu}, where u is an<br />

arbitrary positive vector, converges to a unique (up to a multiplier) vector that is coll<strong>in</strong>ear<br />

with <strong>the</strong> unit eigenvector v correspond<strong>in</strong>g to <strong>the</strong> eigenvalue r(A) > 0. This multiplier depends<br />

on our choice <strong>of</strong> <strong>the</strong> vector u. In o<strong>the</strong>r words, <strong>the</strong> sequence {x(n)} asymptotically<br />

behaves as [r (A)]n v.


Positive operators 113<br />

Economics: Leontief's model. A very similar application <strong>of</strong> <strong>the</strong> Perron-Frobenius Theorem<br />

32 to economics is produced by <strong>the</strong> Leontief model. Assume that we have N factories<br />

each <strong>of</strong> which produces a s<strong>in</strong>gle commodity (or good). To produce each commodity o<strong>the</strong>r<br />

commodities must be employed. We denote by aij <strong>the</strong> amount <strong>of</strong> <strong>the</strong> j th good that is<br />

needed to produce one unit <strong>of</strong> <strong>the</strong> i th good. These numbers are called <strong>the</strong> <strong>in</strong>put coefficients<br />

and <strong>the</strong>y are usually assumed to be constant and nonnegative.<br />

Let us denote by di <strong>the</strong> demand for <strong>the</strong> i th good and by xi <strong>the</strong> total output <strong>of</strong> <strong>the</strong> i th good<br />

over a fixed period. Then <strong>the</strong> standard equilibrium equation "Supply -- Demand" yields <strong>the</strong><br />

follow<strong>in</strong>g system <strong>of</strong> equations:<br />

N<br />

Xi -- Z<br />

j-1<br />

aijxj -- di,<br />

i--1 ..... N,<br />

or (I - A)x -- d. It is clear from <strong>the</strong> setup that A >~ 0 and also that <strong>the</strong> <strong>of</strong>f-diagonal entries<br />

<strong>of</strong> I - A are nonpositive numbers. The economic situation is "feasible" if and only if I - A<br />

is nons<strong>in</strong>gular and r(A) ~< 1. Under <strong>the</strong>se conditions <strong>the</strong> system can be uniquely solved for<br />

each output vector d ~> 0 and x - (I - A)-ld ~> 0. For details and various generalizations<br />

see [33,35].<br />

Economics: general equilibrium. Here we shall describe <strong>the</strong> basic framework <strong>of</strong> general<br />

equilibrium <strong>the</strong>ory <strong>in</strong> economics" for details see [23]. The pr<strong>in</strong>cipal ma<strong>the</strong>matical tools<br />

needed <strong>in</strong> this area are functional analysis and positive functionals ra<strong>the</strong>r than operators.<br />

Never<strong>the</strong>less, it seems very appropriate to mention this area <strong>in</strong> order to demonstrate <strong>the</strong><br />

extent to which ma<strong>the</strong>matical sophistication has penetrated work <strong>in</strong> economics and f<strong>in</strong>ance.<br />

The economic <strong>in</strong>tuition <strong>of</strong> commodities and prices is understood by means <strong>of</strong> a dual<br />

system (X, X'). The vector space X is <strong>the</strong> commodity space and X I is <strong>the</strong> price space. The<br />

evaluation (x, x I) is <strong>in</strong>terpreted as <strong>the</strong> value <strong>of</strong> <strong>the</strong> "bundle" x at prices x ~. For simplicity,<br />

we shall assume here that X is a (f<strong>in</strong>ite- or <strong>in</strong>f<strong>in</strong>ite-dimensional) <strong>Banach</strong> lattice and that X ~<br />

is its norm dual.<br />

An exchange economy consists <strong>of</strong> a f<strong>in</strong>ite number <strong>of</strong> consumers, say m, <strong>in</strong>dexed by i<br />

(i -- 1 ..... m) whose commodity-price duality is described by (X, X'). Every consumer i<br />

has a preference relation >-i, i.e., a b<strong>in</strong>ary relation on X+, which allows <strong>the</strong> consumer to<br />

dist<strong>in</strong>guish out <strong>of</strong> any two bundles x and y <strong>the</strong> one which is better for him. The relation<br />

x ___i Y is read "<strong>the</strong> bundle x is preferred to y "The preference ___.i is assumed to be complete<br />

(i.e., any two vectors <strong>in</strong> X+ are comparable), transitive, convex (i.e., <strong>the</strong> better-than-x set<br />

{y E X+" y ___i X } is a convex set for each x E X+), cont<strong>in</strong>uous (i.e., for each x E X+ <strong>the</strong><br />

sets {y E X+" y ~i X} and {y E X+" x ___i Y} are both closed), and monotone (i.e., "more<br />

is better" <strong>in</strong> <strong>the</strong> sense that y > x ~> 0 implies y ___i X). Each consumer i has also an <strong>in</strong>itial<br />

endowment COi > 0. The total or <strong>the</strong> social endowment (or <strong>the</strong> resources) <strong>of</strong> <strong>the</strong> economy<br />

is <strong>the</strong> vector co- Ziml coi.<br />

An allocation (redistribution) is any m-tuple (xl, x2 ..... Xm) such that xi >~ 0 for each i<br />

and Ziml xi - co. The objective <strong>of</strong> <strong>the</strong> economic activity <strong>in</strong> <strong>the</strong> economy is to redistribute<br />

<strong>the</strong> resources among <strong>the</strong> consumers <strong>in</strong> such a way that each consumer becomes better <strong>of</strong>f.<br />

The efficient ways <strong>of</strong> redistribut<strong>in</strong>g <strong>the</strong> goods among <strong>the</strong> consumers are achieved by means


114 Y.A. Abramovich and C.D. Aliprantis<br />

<strong>of</strong> Pareto optimal allocations. An allocation (x l, X2 ..... Xm) is said to be Pareto optimal<br />

if <strong>the</strong>re is no o<strong>the</strong>r allocation (yl, y2 ..... Ym) such that Yi ~-i Xi for each consumer i and<br />

Yi ~i xi for some/(where yi ~i Xi means yi ~i Xi and xi ~i Yi). In o<strong>the</strong>r words, a distribution<br />

<strong>of</strong> <strong>the</strong> resources is Pareto optimal if it is impossible to make some consumer better<br />

<strong>of</strong>f without mak<strong>in</strong>g some o<strong>the</strong>r one worse <strong>of</strong>f. Ano<strong>the</strong>r important property <strong>of</strong> allocations<br />

is that <strong>of</strong> <strong>in</strong>dividual rationality: an allocation (x l, x2 ..... Xm) is <strong>in</strong>dividually rational if<br />

Xi ~i (-t)i holds for each consumer i; that is, <strong>the</strong> redistribution does not give any consumer<br />

a bundle which is worse than his <strong>in</strong>itial endowment. If <strong>the</strong> order <strong>in</strong>terval [0, co] is weakly<br />

compact (<strong>in</strong> particular, if X has order cont<strong>in</strong>uous norm), <strong>the</strong>n an easy application <strong>of</strong> Zorn's<br />

lemma guarantees that Pareto optimal <strong>in</strong>dividually rational allocations exist.<br />

The above efficiency notion requires that <strong>the</strong> acceptable redistributions <strong>of</strong> <strong>the</strong> goods are<br />

Pareto optimal and <strong>in</strong>dividually rational. This br<strong>in</strong>gs us to <strong>the</strong> important decentralization<br />

problem <strong>in</strong> economics, which <strong>in</strong> ma<strong>the</strong>matical term<strong>in</strong>ology can be stated as follows: Is<br />

<strong>the</strong>re a price system (i.e., some l<strong>in</strong>ear functional x ~ E X ~) that can be used to enforce a<br />

given Pareto efficient allocation? Put ano<strong>the</strong>r way: Can we use a system <strong>of</strong> prices - like <strong>the</strong><br />

one we see <strong>in</strong> every day life - to redistribute <strong>the</strong> resources <strong>of</strong> <strong>the</strong> economy?<br />

This problem is related to <strong>the</strong> ma<strong>the</strong>matical notion <strong>of</strong> supportability <strong>of</strong> convex sets by<br />

cont<strong>in</strong>uous l<strong>in</strong>ear functionals. Recall that a subset A <strong>of</strong> a vector space is said to be supported<br />

by a non-zero l<strong>in</strong>ear functional f at some po<strong>in</strong>t a E A if f (a) ~< f (x) holds for all<br />

x 6 A. An allocation (x l, x2 ..... Xm) is said to be supported by a non-zero price x ~ E X ~<br />

if x' supports <strong>the</strong> better-than-x/set <strong>of</strong> each consumer i (i.e., <strong>the</strong> set {x E X+: x ~i Xi }) at<br />

<strong>the</strong> po<strong>in</strong>t xi. That is, x ~ E X~supports <strong>the</strong> allocation (Xl, x2 ..... Xm) if and only if<br />

x • xi---> (x, x') >>, (xi, x').<br />

Now <strong>the</strong> economic concept <strong>of</strong> <strong>the</strong> decentralization <strong>of</strong> <strong>the</strong> allocations f<strong>in</strong>ds its best <strong>in</strong>terpretation<br />

<strong>in</strong> <strong>the</strong> two famous <strong>the</strong>orems <strong>of</strong> welfare economics. These <strong>the</strong>orems were first proved<br />

for f<strong>in</strong>ite dimensional commodity spaces by K. Arrow and G. Debreu and are stated next.<br />

1 ST WELFARE THEOREM. Every allocation supported by prices is Pareto optimal.<br />

2ND WELFARE THEOREM. Every Pareto optimal allocation can be supported by prices.<br />

In particular, <strong>the</strong> second welfare <strong>the</strong>orem is <strong>of</strong> fundamental importance and its validity is<br />

a "must" for any economic system. To establish <strong>the</strong> validity <strong>of</strong> this <strong>the</strong>orem is, <strong>in</strong> general,<br />

a difficult problem, especially when one deals with an <strong>in</strong>f<strong>in</strong>ite dimensional commodity<br />

space. Support<strong>in</strong>g a convex set at a given (boundary) po<strong>in</strong>t by a non-zero cont<strong>in</strong>uous l<strong>in</strong>ear<br />

functional is not always feasible and support<strong>in</strong>g m convex sets each at a specified po<strong>in</strong>t by<br />

<strong>the</strong> same non-zero cont<strong>in</strong>uous l<strong>in</strong>ear functional is, if not impossible, a very serious matter.<br />

To achieve this goal, we must impose some extra conditions.<br />

The existence <strong>of</strong> a support<strong>in</strong>g price for a given Pareto optimal allocation (x 1, x2 ..... Xm)<br />

is proved by utiliz<strong>in</strong>g <strong>the</strong> lattice structure <strong>of</strong> <strong>the</strong> price space X ~. It usually consists <strong>of</strong> two<br />

that supports <strong>the</strong><br />

steps. In <strong>the</strong> first step one proves <strong>the</strong> existence <strong>of</strong> a non-zero price x i


Positive operators 115<br />

better-than-x/ set at Xi. Once this is done, <strong>the</strong>n <strong>the</strong> second step requires a sophisticated<br />

argument to establish that <strong>the</strong> supremum l<strong>in</strong>ear functional<br />

x' -- x' l v x~ v... vx~<br />

is non-zero and supports <strong>the</strong> allocation (x l, x2 . . . . . Xm). The lattice structure <strong>of</strong> X' is <strong>of</strong><br />

fundamental importance. As a matter <strong>of</strong> fact, if X' is not a vector lattice, <strong>the</strong>re are examples<br />

<strong>of</strong> Pareto optimal allocations that cannot be supported by prices.<br />

F<strong>in</strong>ance: choos<strong>in</strong>g <strong>the</strong> optimal portfolio. We shall discuss here how positive operators<br />

appear <strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> f<strong>in</strong>ance <strong>in</strong> <strong>the</strong> context <strong>of</strong> choos<strong>in</strong>g an optimal portfolio under uncerta<strong>in</strong>ty.<br />

For a systematic presentation <strong>the</strong> reader can consult <strong>the</strong> excellent book [95].<br />

All <strong>in</strong>vestment decisions are made under uncerta<strong>in</strong>ty regard<strong>in</strong>g future f<strong>in</strong>ancial conditions.<br />

To analyze <strong>the</strong> decision process under uncerta<strong>in</strong>ty <strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> f<strong>in</strong>ance, one usually<br />

<strong>in</strong>troduces a two-period model (<strong>the</strong> simplest possible model), where at period 0 (today)<br />

everyth<strong>in</strong>g is known and at period 1 (tomorrow) everyth<strong>in</strong>g is unknown and uncerta<strong>in</strong>. To<br />

capture <strong>the</strong> notion <strong>of</strong> uncerta<strong>in</strong>ty tomorrow one usually <strong>in</strong>troduces <strong>the</strong> set S <strong>of</strong> all possible<br />

states <strong>of</strong> <strong>the</strong> world tomorrow. The usual assumptions about S is that it is ei<strong>the</strong>r a f<strong>in</strong>ite set<br />

S -- { 1, 2 ..... S }, or a more general compact Hausdorff topological space, or a probability<br />

space (S, P).<br />

By <strong>the</strong> term security one should understand any object or property that can be traded<br />

<strong>in</strong> <strong>the</strong> markets and that has a value today. While any such object (security) has a specific<br />

value today, its value tomorrow is uncerta<strong>in</strong> and depends, <strong>in</strong> general, upon <strong>the</strong> prevail<strong>in</strong>g<br />

state <strong>of</strong> <strong>the</strong> world tomorrow. Thus, a security is characterized by a value (or a pay<strong>of</strong>f)<br />

at each possible state <strong>of</strong> <strong>the</strong> world tomorrow. Ma<strong>the</strong>matically, this naturally leads to <strong>the</strong><br />

<strong>in</strong>terpretation <strong>of</strong> a security simply as a function x : S --+ R, where x(s) is <strong>in</strong>terpreted as <strong>the</strong><br />

value <strong>of</strong> <strong>the</strong> security x tomorrow when <strong>the</strong> state <strong>of</strong> <strong>the</strong> world s has been realized. Obvious<br />

economic considerations require that <strong>the</strong> collection <strong>of</strong> all securities X is a vector space<br />

under <strong>the</strong> usual po<strong>in</strong>twise operations. This space is called <strong>the</strong> space <strong>of</strong> securities. The most<br />

common spaces <strong>of</strong> securities used <strong>in</strong> f<strong>in</strong>ance are C (S) and L2 (S, P); <strong>the</strong> spaces L p (S, P)<br />

also are used quite <strong>of</strong>ten. In sum: <strong>the</strong> vector space <strong>of</strong> securities represents every object or<br />

property available that can be possibly traded <strong>in</strong> <strong>the</strong> market today.<br />

However, <strong>in</strong> today's market not every security is available for trade. For <strong>in</strong>stance, every<br />

house is a security, but not everyone's house is <strong>in</strong> <strong>the</strong> market for sale today. The collection<br />

M <strong>of</strong> all securities that are available for trad<strong>in</strong>g today is assumed to be a vector subspace<br />

<strong>of</strong> X, and this space M is called <strong>the</strong> marketed space. If M -- X, <strong>the</strong>n <strong>the</strong> markets are called<br />

complete and if M -r X <strong>the</strong> markets are <strong>in</strong>complete. From <strong>the</strong> practical po<strong>in</strong>t <strong>of</strong> view <strong>the</strong><br />

markets are always <strong>in</strong>complete. Clearly, <strong>the</strong> structure <strong>of</strong> M should play an important role<br />

<strong>in</strong> mak<strong>in</strong>g decisions today given <strong>the</strong> uncerta<strong>in</strong>ty <strong>of</strong> tomorrow. Now let us discuss <strong>the</strong> hedg<strong>in</strong>g<br />

problem. In order to protect <strong>the</strong>ir securities, given <strong>the</strong> uncerta<strong>in</strong>ty <strong>of</strong> tomorrow, people<br />

are forced to buy <strong>in</strong>surance. An <strong>in</strong>surance is simply a non-negative marketed security. If<br />

a person owns a security x and wishes <strong>the</strong> value <strong>of</strong> this security tomorrow never to fall<br />

below a certa<strong>in</strong> level k (called <strong>the</strong> strik<strong>in</strong>g price or <strong>the</strong> floor), <strong>the</strong>n he must purchase some<br />

<strong>in</strong>surance a c M+ = M A X+ so that x + a ~> k, or x(s) + a(s) >7 k for each state s <strong>of</strong> <strong>the</strong><br />

world tomorrow. This implies a ~ k - x, and hence a ~> (k - x) +, where (k - x)+(s) =


116 YA. Abramovich and C.D. Aliprantis<br />

max{k - x(s), 0}. Therefore, <strong>the</strong> "smallest" desired <strong>in</strong>surance seems to be (k - x) + and it<br />

is called <strong>the</strong> put option <strong>of</strong> <strong>the</strong> security x with strik<strong>in</strong>g price k. S<strong>in</strong>ce M need not be a vector<br />

sublattice <strong>of</strong> X, <strong>the</strong> put option (k - x) + need not be available <strong>in</strong> <strong>the</strong> market today, i.e.,<br />

(k - x) + need not belong to M. This is why <strong>the</strong> <strong>the</strong>ory <strong>of</strong> lattice-subspaces plays an important<br />

role here along with <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>Banach</strong> and vector lattices (see for <strong>in</strong>stance [ 14,24]).<br />

And now we can state <strong>the</strong> hedg<strong>in</strong>g problem <strong>of</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> f<strong>in</strong>ance.<br />

THE HEDGING PROBLEM. Given a marketed security x, what is <strong>the</strong> "cheapest <strong>in</strong>surance"<br />

that one can purchase <strong>in</strong> order to guarantee at least <strong>the</strong> value k for <strong>the</strong> security<br />

tomorrow no matter what <strong>the</strong> prevail<strong>in</strong>g state will be?<br />

Of course, if M is a vector sublattice <strong>of</strong> X and x, k 6 M, <strong>the</strong>n a = (k - x) + should be <strong>the</strong><br />

desired answer. The general solution <strong>of</strong> <strong>the</strong> Hedg<strong>in</strong>g Problem is non-trivial and is related<br />

to <strong>the</strong> mean<strong>in</strong>g <strong>of</strong> <strong>the</strong> "cheapest <strong>in</strong>surance"9 This is <strong>the</strong> place where positive operators and<br />

<strong>the</strong>ir properties make <strong>the</strong>ir appearance.<br />

To simplify matters fur<strong>the</strong>r, let us assume that <strong>the</strong>re is ei<strong>the</strong>r a f<strong>in</strong>ite or a countable<br />

number <strong>of</strong> l<strong>in</strong>early <strong>in</strong>dependent securities whose l<strong>in</strong>ear span is M. Consider<strong>in</strong>g <strong>the</strong> simplest<br />

case <strong>of</strong> <strong>the</strong> two, we will suppose that <strong>the</strong>re are N securities x l, x2 ..... XN <strong>in</strong> M+ that span<br />

M and that S = { 1, 2 ..... S}. In this case we have N O}.


Positive operators 117<br />

Then a price p 6 M* is arbitrage free if and only if (p, RO) = (R* p, 0) > 0 for each 0 6 K,<br />

where R* :M* --+ ~I~ u is <strong>the</strong> adjo<strong>in</strong>t operator <strong>of</strong> R. This duality property is very useful <strong>in</strong><br />

determ<strong>in</strong><strong>in</strong>g <strong>the</strong> arbitrage free prices. From economic considerations only arbitrage free<br />

prices are acceptable prices and <strong>the</strong> Hedg<strong>in</strong>g Problem can be stated now as follows: Given<br />

an arbitrage free price p 6 M*, a security x and a strik<strong>in</strong>g price k, f<strong>in</strong>d <strong>the</strong> portfolio 0 E R x<br />

that m<strong>in</strong>imizes <strong>the</strong> expression (R* p, O) = (p, RO) subject to RO ~ x x/ k.<br />

The Hedg<strong>in</strong>g Problem is also related to <strong>the</strong> notion <strong>of</strong> a derivative <strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> f<strong>in</strong>ance<br />

and has been studied <strong>in</strong> many contexts. A derivative is a security <strong>of</strong> <strong>the</strong> form<br />

x(s) = f(yl(s), y2(s) ..... yk(s)), where (<strong>in</strong> <strong>the</strong> case X = C(S)) f :R k --+ R is a cont<strong>in</strong>uous<br />

function and yl, y2 ..... yk are k given securities; that is a derivative is a security<br />

whose pay<strong>of</strong>f depends on <strong>the</strong> pay<strong>of</strong>fs <strong>of</strong> a f<strong>in</strong>ite number <strong>of</strong> o<strong>the</strong>r securities.<br />

Acknowledgment<br />

The authors would like to express <strong>the</strong>ir thanks to A. Kitover and V. Troitsky for many<br />

useful suggestions.<br />

Added <strong>in</strong> Pro<strong>of</strong><br />

Detailed pro<strong>of</strong>s <strong>of</strong> <strong>the</strong> results discussed <strong>in</strong> this survey as well as an extensive treatment <strong>of</strong><br />

many related topics can be found <strong>in</strong> <strong>the</strong> forthcom<strong>in</strong>g book "An <strong>in</strong>vitation to Operator Theory"<br />

by <strong>the</strong> authors that will be published shortly by <strong>the</strong> American Ma<strong>the</strong>matical Society.<br />

References<br />

[1] Y.A. Abramovich, Weakly compact sets <strong>in</strong> topological Dedek<strong>in</strong>d complete vector lattices, Teor. Funkcii<br />

Funkcional. Anal. i Prilo~en. 15 (1972), 27-35.<br />

[2] Y.A. Abramovich, On spaces <strong>of</strong> operators act<strong>in</strong>g between <strong>Banach</strong> lattices, Zap. Nauchn. Sem. Len<strong>in</strong>grad.<br />

Otdel. Mat. Inst. Steklov. (LOMI), Investigations on L<strong>in</strong>ear Operators and Theory <strong>of</strong> Functions VIII 73<br />

(1977), 182-193.<br />

[3] Y.A. Abramovich, When each cont<strong>in</strong>uous operator is regular, Funct. Analysis, Optimization and Math.<br />

Economics, Oxford Univ. Press (1990), 133-140.<br />

[4] Y.A. Abramovich, C.D. Aliprantis and O. Burk<strong>in</strong>shaw, Positive operators on Kre<strong>in</strong> spaces, Acta Appl.<br />

Math. 27 (1992), 1-22.<br />

[5] Y.A. Abramovich, C.D. Aliprantis and O. Burk<strong>in</strong>shaw, On <strong>the</strong> spectral radius <strong>of</strong> positive operators, Math.<br />

Z. 211 (1992), 593-607. Corrigendum: Math. Z. 215 (1994), 167-168.<br />

[6] Y.A. Abramovich, C.D. Aliprantis and O. Burk<strong>in</strong>shaw, Invariant subspaces <strong>of</strong> operators on e p-spaces,<br />

J. Funct. Anal. 115 (1993), 418-424.<br />

[7] Y.A. Abramovich, C.D. Aliprantis and O. Burk<strong>in</strong>shaw, Invariant subspaces <strong>of</strong>positive operators, J. Funct.<br />

Anal. 124 (1994), 95-111.<br />

[8] Y.A. Abramovich, C.D. Aliprantis and O. Burk<strong>in</strong>shaw, Invariant subspaces for positive operators act<strong>in</strong>g<br />

on a <strong>Banach</strong> space with basis, Proc. Amer. Math. Soc. 123 (1995), 1773-1777.<br />

[9] Y.A. Abramovich, C.D. Aliprantis and O. Burk<strong>in</strong>shaw, Local quas<strong>in</strong>ilpotence, cycles and <strong>in</strong>variant subspaces,<br />

Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Conference Interaction Between Functional Analysis, Harmonic Analysis, and<br />

Probability, Lecture Notes Pure Appl. Math. 175, N. Kalton, E. Saab and S. Montgomery-Smith, eds,<br />

Marcel Dekker, New York (1995), 1-12.


118 YA. Abramovich and C.D. Aliprantis<br />

[10] Y.A. Abramovich, C.D. Aliprantis and O. Burk<strong>in</strong>shaw, Ano<strong>the</strong>r characterization <strong>of</strong> <strong>the</strong> <strong>in</strong>variant subspace<br />

problem, Operator Theory <strong>in</strong> Function <strong>Spaces</strong> and <strong>Banach</strong> Lattices, Operator Theory Advances and Applications<br />

75, C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg and B. de Pagter, eds, Birkh~iuser, Boston<br />

(1995), 15-31.<br />

[11] Y.A. Abramovich, C.D. Aliprantis and O. Burk<strong>in</strong>shaw, Multiplication and compact-friendly operators,<br />

Positivity 1 (1997), 171-180.<br />

[12] Y.A. Abramovich, C.D. Aliprantis and O. Burk<strong>in</strong>shaw, The <strong>in</strong>variant subspace problem: some recent advances,<br />

Rend. Inst. Mat. Univ. Trieste 29 (1998), 1-76.<br />

[13] Y.A. Abramovich, C.D. Aliprantis, O. Burk<strong>in</strong>shaw and A.W. Wickstead, A characterization <strong>of</strong> compactfriendly<br />

multiplication operators, Indag. Math. 8 (1998), 1-11.<br />

[14] Y.A. Abramovich, C.D. Aliprantis and I.A. Polyrakis, Lattice-subspaces and positive projections, Proc.<br />

Royal Irish Acad. 94A (1994), 237-253.<br />

[15] Y.A. Abramovich, E.L. Arenson and A.K. Kitover, <strong>Banach</strong> C(K)-modules and Operators Preserv<strong>in</strong>g<br />

Disjo<strong>in</strong>mess, Pitman Research Notes <strong>in</strong> Ma<strong>the</strong>matical Series 277, Longman Scientific & Technical (1992).<br />

[ 16] Y.A. Abramovich and V.A. Geyler, On a question <strong>of</strong> Freml<strong>in</strong> concern<strong>in</strong>g order bounded and regular operators,<br />

Colloq. Math. 46 (1982), 15-17.<br />

[17] Y.A. Abramovich and L.E Janovsky, Applications <strong>of</strong> <strong>the</strong> Rademacher systems to operator characterizations<br />

<strong>of</strong> <strong>Banach</strong> lattices, Coll. Math. 46 (1982), 75-78.<br />

[ 18] Y.A. Abramovich and A.W. Wickstead, Regular operators from and <strong>in</strong>to a small Riesz space, Indag. Math.<br />

2 (1991), 257-274.<br />

[19] Y.A. Abramovich and A.W. Wickstead, The regularity <strong>of</strong> order bounded operators, <strong>in</strong>to C(K), II, Quart.<br />

J. Math. Oxford 44 (1993), 257-270.<br />

[20] Y.A. Abramovich and A.W. Wickstead, Recent results on <strong>the</strong> order structure <strong>of</strong> compact operators, Bull.<br />

Irish Math. Soc. 32 (1994), 32-45.<br />

[21] Y.A. Abramovich and A.W. Wickstead, When each cont<strong>in</strong>uous operator is regular, II, Indag. Math. 8<br />

(1997), 281-294.<br />

[22] C.D. Aliprantis and K.C. Border, Inf<strong>in</strong>ite Dimensional Analysis, 2nd edn, Spr<strong>in</strong>ger, Berl<strong>in</strong> (1998).<br />

[23] C.D. Aliprantis, D.J. Brown and O. Burk<strong>in</strong>shaw, Existence and Optimality <strong>of</strong> Competitive Equilibria,<br />

Spr<strong>in</strong>ger, New York (1990).<br />

[24] C.D. Aliprantis, D.J. Brown and J. Wemer, M<strong>in</strong>imum-cost portfolio <strong>in</strong>surance, J. Econom. Dynamics<br />

Control 24 (2000), 1703-1719.<br />

[25] C.D. Aliprantis and O. Burk<strong>in</strong>shaw, Positive compact operators on <strong>Banach</strong> lattices, Math. Z. 174 (1980),<br />

289-298.<br />

[26] C.D. Aliprantis and O. Burk<strong>in</strong>shaw, On weakly compact operators on <strong>Banach</strong> lattices, Proc. Amer. Math.<br />

Soc. 83 (1981), 573-578.<br />

[27] C.D. Aliprantis and O. Burk<strong>in</strong>shaw, Dundord-Pettis operators on <strong>Banach</strong> lattices, Trans. Amer. Math.<br />

Soc. 274 (1982), 227-238.<br />

[28] C.D. Aliprantis and O. Burk<strong>in</strong>shaw, Factor<strong>in</strong>g compact and weakly compact operators through reflexive<br />

<strong>Banach</strong> lattices, Trans. Amer. Math. Soc. 183 (1984), 369-381.<br />

[29] C.D. Aliprantis and O. Burk<strong>in</strong>shaw, Positive Operators, Academic Press, New York (1985).<br />

[30] I. Amemiya, A generalization <strong>of</strong> Riesz-Fischer's <strong>the</strong>orem, J. Math. Soc. Japan 5 (1953), 353-354.<br />

[31] T. And& Positive operators <strong>in</strong> semi-ordered l<strong>in</strong>ear spaces, J. Fac. Sci. Hokkaido Univ., Ser. 1 13 (1957),<br />

214-228.<br />

[32] I.A. Bakht<strong>in</strong>, M.A. Krasnoselsky and V.Ya. Stezenko, Cont<strong>in</strong>uity <strong>of</strong> l<strong>in</strong>ear positive operators, Sibirsk.<br />

Math. Z. 3 (1962), 156-160.<br />

[33] R.B. Bapat and T.E.S. Raghavan, Nonnegative Matrices and Applications, Cambridge Univ. Press, Cambridge<br />

(1997).<br />

[34] A. Benedek and R. Panzone, The spaces with mixed norm, Duke Math. J. 28 (1961), 301-324.<br />

[35] A. Berman and R.J. Plemmons, Nonnegative Matrices <strong>in</strong> <strong>the</strong> Ma<strong>the</strong>matical Sciences, Academic Press,<br />

New York (1979).<br />

[36] L. de Branges, A construction <strong>of</strong><strong>in</strong>variant subspaces, Math. Nachr. 163 (1993), 163-175.<br />

[37] A.V. Bukhvalov, On <strong>in</strong>tegral representation <strong>of</strong> l<strong>in</strong>ear operators, Zap. Nauchn. Sem. Len<strong>in</strong>grad Otdel. Mat.<br />

Inst. Steklov. (LOMI) 47 (1974), 5-14.<br />

[38] A.V. Bukhvalov, Nonl<strong>in</strong>ear majorization <strong>of</strong> l<strong>in</strong>ear operators, Soviet Math. Dokl. 37 (1988), 4-7.


Positive operators 119<br />

[39] A.V. Bukhvalov, A.I. Veksler and G.Ya. Lozanovsky, <strong>Banach</strong> lattices - some <strong>Banach</strong> aspects <strong>of</strong> <strong>the</strong> <strong>the</strong>ory,<br />

Russian Math. Surveys 34 (1979), 159-212.<br />

[40] A.V. Bukhvalov, A.I. Veksler and V.A. Geyler, Normed lattices, Ma<strong>the</strong>matical Analysis 18, Akad. Nauk<br />

SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow (1980), 125-184.<br />

[41] A.V. Bukhvalov, A.E. Gutman, V.B. Korotkov, A.G. Kusraev, S.S. Kutateladze and B.M. Makarov, Vector<br />

Lattices and Integral Operators, Ma<strong>the</strong>matics and its Applications 358, Kluwer, Dordrecht (1996).<br />

(Translated from <strong>the</strong> 1992 Russian orig<strong>in</strong>al.)<br />

[42] R. Btirger, Mutation-selection balance and cont<strong>in</strong>uum-<strong>of</strong>-alleles models, Math. Biosci. 91 (1988), 67-83.<br />

[43] R. Btirger and I.M. Bomze, Stationary distributions under mutation-selection balance: structure and properties,<br />

Adv. Appl. Probab. 28 (1996), 227-251.<br />

[44] D.I. Cartwright and H.E Lotz, Some characterizations <strong>of</strong> AM- and AL-spaces, Math. Z. 142 (1975), 97-<br />

103.<br />

[45] V. Caselles, On irreducible operators on <strong>Banach</strong> lattices, Indag. Math. 48 (1986), 11-16.<br />

[46] V. Caselles, On band irreducible operators on <strong>Banach</strong> lattices, Quaestiones Math. 10 (1987), 339-350.<br />

[47] Z.L. Chen, The factorization <strong>of</strong> a class <strong>of</strong> compact operators, Dongbei Shuxue 6 (1990), 303-309.<br />

[48] M.D. Choi, E.A. Nordgren, H. Radjavi, H.P. Rosenthal and Y. Zhong, Triangulariz<strong>in</strong>g semigroups <strong>of</strong><br />

quas<strong>in</strong>ilpotent operators with non-negative entries, Indiana Univ. Math. J. 42 (1993), 15-25.<br />

[49] E.N. Dancer, Positivity <strong>of</strong> maps and applications. Topological nonl<strong>in</strong>ear analysis, Progr. Nonl<strong>in</strong>ear Differential<br />

Equations Appl. 15, Birkh~iuser, Boston (1995), 303-340.<br />

[50] W.J. Davis, T. Figiel, W.B. Johnson and A. Petczyfiski, Factor<strong>in</strong>g weakly compact operators, J. Funct.<br />

Anal. 17 (1974), 311-327.<br />

[51] J. Diestel and J.J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI (1977).<br />

[52] P.G. Dodds and D.H. Freml<strong>in</strong>, Compact operators <strong>in</strong> <strong>Banach</strong> lattices, Israel J. Math. 34 (1979), 287-320.<br />

[53] R. Drnov~ek, Triangulariz<strong>in</strong>g semigroups <strong>of</strong> positive operators on an atomic normed Riesz space, Proc.<br />

Ed<strong>in</strong>burgh. Math. Soc. 43 (2000), 43-55.<br />

[54] N. Dunford and J.T. Schwartz, L<strong>in</strong>ear Operators, I, Wiley (Interscience), New York (1958).<br />

[55] N. Dunford, Integration and l<strong>in</strong>ear operations, Trans. Amer. Math. Soc. 40 (1936), 474-494.<br />

[56] E Enflo, On <strong>the</strong> <strong>in</strong>variant subspace problem for <strong>Banach</strong> spaces, Sem<strong>in</strong>aire Maurey-Schwarz (1975-1976);<br />

Acta Math. 158 (1987), 213-313.<br />

[57] T. Figiel, Factorization <strong>of</strong> compact operators and applications to <strong>the</strong> approximation property, Studia Math.<br />

45 (1973), 191-210.<br />

[58] D.H. Freml<strong>in</strong>, Topological Riesz <strong>Spaces</strong> and Measure Theory, Cambridge Univ. Press, London (1974).<br />

[59] D.H. Freml<strong>in</strong>, A characterization <strong>of</strong> L-spaces, Indag. Math. 36 (1974), 270-275.<br />

[60] G. Frobenius, Uber Matrizen aus nicht-negativen Elementen, Sitzungsber. Kgl. Preul3. Akad. Wiss. Berl<strong>in</strong><br />

(1912) 456-477.<br />

[61] N. Ghoussoub, Positive embedd<strong>in</strong>gs <strong>of</strong> C(A), L!, g-1 (1-') and (~-~n @g'~)~l Math. Ann. 262 (1983), 461-<br />

472.<br />

[62] N. Ghoussoub and W.B. Johnson, Counterexamples to several problems on <strong>the</strong> factorization <strong>of</strong> bounded<br />

l<strong>in</strong>ear operators, Proc. Amer. Math. Soc. 92 (1983), 461-472.<br />

[63] N. Ghoussoub and W.B. Johnson, Factor<strong>in</strong>g operators through <strong>Banach</strong> lattices not conta<strong>in</strong><strong>in</strong>g C(O, 1),<br />

Math. Z. 194 (1987), 194-171.<br />

[64] G. Godefroy, Sur les op~rateurs compacts r~guliers, Bull. Soc. Belg. A 30 (1978), 35-37.<br />

[65] J.J. Grobler, A short pro<strong>of</strong><strong>of</strong><strong>the</strong> Andf-Krieger <strong>the</strong>orem, Math. Z. 174 (1980), 61-62.<br />

[66] J.J. Grobler, Band irreducible operators, Indag. Math. 48 (1986), 405-409.<br />

[67] P.R. Halmos and V.S. Sunder, Bounded Integral Operators on L 2 <strong>Spaces</strong>, Spr<strong>in</strong>ger, Berl<strong>in</strong> (1978).<br />

[68] C.B. Huijsmans and W.A.J. Luxemburg, eds, Positive Operators and Semigroups on <strong>Banach</strong> Lattices,<br />

Kluwer, Dordrecht (1992).<br />

[69] M.T. Jahandideh, On <strong>the</strong> ideal-triangularizability <strong>of</strong> positive operators on <strong>Banach</strong> lattices, Proc. Amer.<br />

Math. Soc. 125 (1997), 2661-2670.<br />

[70] G. Jameson, Ordered L<strong>in</strong>ear <strong>Spaces</strong>, Lecture Notes <strong>in</strong> Math. 141, Spr<strong>in</strong>ger, Heidelberg (1970).<br />

[71] W.B. Johnson, Factor<strong>in</strong>g compact operators, Israel J. Math. 9 (1971), 337-345.<br />

[72] W.B. Johnson and J. L<strong>in</strong>denstrauss, <strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces, Handbook <strong>of</strong> <strong>the</strong><br />

<strong>Geometry</strong> <strong>of</strong> <strong>Banach</strong> <strong>Spaces</strong>, Vol. 1, W.B. Johnson and J. L<strong>in</strong>denstrauss, eds, Elsevier, Amsterdam (2001),<br />

1-84.


120 Y.A. Abramovich and C.D. Aliprantis<br />

[73] N.J. Kalton and E Saab, Ideal properties <strong>of</strong> regular operators between <strong>Banach</strong> lattices, Ill<strong>in</strong>ois J. Math.<br />

29 (1985), 382-400.<br />

[74] L.V. Kantorovich and G.P. Akilov, Functional Analysis, Pergamon, New York (1982).<br />

[75] L.V. Kantorovich, B.Z. Vulikh and A.G. P<strong>in</strong>sker, Functional Analysis <strong>in</strong> Partially Ordered <strong>Spaces</strong>,<br />

Gostekhizdat, Moscow (1950).<br />

[76] L.V. Kantorovich and B.Z. Vulikh, Sur la representation des op&ations l<strong>in</strong>~ares, Compositio Math. 5<br />

(1937), 119-165.<br />

[77] A.K. Kitover, The spectral properties <strong>of</strong> weighted homomorphisms <strong>in</strong> algebras <strong>of</strong> cont<strong>in</strong>uous functions and<br />

<strong>the</strong>ir applications, Zap. Naurn. Sem. Len<strong>in</strong>grad. Otdel. Mat. Inst. Steklov. (LOMI) 107 (1982), 89-103.<br />

[78] V.B. Korotkov, Integral Operators, Nauka, Novosibirsk (1983).<br />

[79] M.A. Krasnoselsky, P.P. Zabre~o, E.I. Pustylnik and P.E. Sobolevsky, Integral Operators <strong>in</strong> <strong>Spaces</strong> <strong>of</strong><br />

Summable Functions, Noordh<strong>of</strong>f International Publish<strong>in</strong>g, Leiden (1976).<br />

[80] M.A. Krasnoselsky, E.A. Lifshits and A.V. Sobolev, Positive L<strong>in</strong>ear Systems. The Method <strong>of</strong> Positive<br />

Operators, Sigma Series <strong>in</strong> Applied Ma<strong>the</strong>matics 5, Heldermann, Berl<strong>in</strong> (1989).<br />

[81] M.G. Kre<strong>in</strong>, Fundamental properties <strong>of</strong> normal conical sets <strong>in</strong> a <strong>Banach</strong> space, Dokl. Akad. Nauk USSR<br />

28 (1940), 13-17.<br />

[82] M.G. Kre<strong>in</strong> and M.A. Rutman, L<strong>in</strong>ear operators leav<strong>in</strong>g <strong>in</strong>variant a cone <strong>in</strong> a <strong>Banach</strong> space, Uspekhi<br />

Mat. Nauk 3 (1948), 3-95. (Russian). Also, Amer. Math. Soc. Transl., Vol. 26 (1950).<br />

[83] S.G. Kre<strong>in</strong>, Yu.I. Petun<strong>in</strong> and E.M. Semenov, Interpolation <strong>of</strong> L<strong>in</strong>ear Operators, Trans. Math. Monogr.<br />

54, Amer. Math. Soc., Providence, RI (1982).<br />

[84] U. Krengel, Ergodic Theorems, de Gruyter Studies <strong>in</strong> Math. 6, Walter de Gruyter, Berl<strong>in</strong> (1985).<br />

[85] H.J. Krieger, Beitrfige zur Theorie positiver Operatoren, Schrifienreihe der Institute fiir Math. Reihe ,4,<br />

Heft 6, Akademie-Verlag, Berl<strong>in</strong> (1969).<br />

[86] J. L<strong>in</strong>denstrauss and L. Tzafriri, Classical <strong>Banach</strong> <strong>Spaces</strong> I, Spr<strong>in</strong>ger, Berl<strong>in</strong> (1977).<br />

[87] J. L<strong>in</strong>denstrauss and L. Tzafriri, Classical <strong>Banach</strong> <strong>Spaces</strong> H, Spr<strong>in</strong>ger, Berl<strong>in</strong> (1979).<br />

[88] V.I. Lomonosov, Invariant subspaces <strong>of</strong> <strong>the</strong> family <strong>of</strong> operators that commute with a completely cont<strong>in</strong>uous<br />

operator, Funktsional. Anal. i Prilozhen 7 (3) (1973), 55-56.<br />

[89] V.I. Lomonosov, An extension <strong>of</strong> Burnside's <strong>the</strong>orem to <strong>in</strong>f<strong>in</strong>ite-dimensional spaces, Israel J. Math. 75<br />

(1991), 329-339.<br />

[90] G.Ya. Lozanovsky, On almost <strong>in</strong>tegral operators on KB-spaces, Vestnik Len<strong>in</strong>gr. Univ. Mat. Meh. Astronom.<br />

7 (1966), 35-44.<br />

[91] G.Ya. Lozanovsky, On a <strong>the</strong>orem <strong>of</strong>N. Dunford, Izvestiya VUZ'ov, Ma<strong>the</strong>matika 8 (1974), 58-59.<br />

[92] W.A.J. Luxemburg, Notes on <strong>Banach</strong> function spaces, Indag. Math. 27 (1965), Note XIV, 229-248; Note<br />

XV, 415-446; Note XVI, 646-667.<br />

[93] W.A.J. Luxemburg and A.C. Zaanen, Notes on <strong>Banach</strong> function spaces, Indag. Math. 25 (1963), Note<br />

I, 135-147; Note II, 148-153; Note III, 239-250; Note IV, 251-263; Note V, 496-504; Note VI, 655-<br />

668; Note VII, 669-681; also Indag. Math. 26 (1964), Note VIII, 104-119; Note IX, 360-376; Note X,<br />

493-506; Note XI, 507-518; Note XII, 519-529; Note XIII, 530-543.<br />

[94] W.A.J. Luxemburg and A.C. Zaanen, Riesz <strong>Spaces</strong> I, North Holland, Amsterdam (1971).<br />

[95] M. Magill and M. Qu<strong>in</strong>zii, Theory <strong>of</strong>lncomplete Markets, MIT Press, Cambridge, MA (1996).<br />

[96] P. Meyer-Nieberg, <strong>Banach</strong> Lattices, Spr<strong>in</strong>ger, Berl<strong>in</strong> (1991).<br />

[97] A.J. Michaels, Hilden's simple pro<strong>of</strong> <strong>of</strong> Lomonosov's <strong>in</strong>variant subspace <strong>the</strong>orem, Adv. <strong>in</strong> Math. 25 (1977),<br />

56-58.<br />

[98] H. M<strong>in</strong>c, Nonnegative Matrices, Wiley, New York (1988).<br />

[99] L. Nachb<strong>in</strong>, On <strong>the</strong> cont<strong>in</strong>uity <strong>of</strong> positive l<strong>in</strong>ear transformations, Proc. Internat. Congress <strong>of</strong> Math. 1<br />

(1950), 464--465.<br />

[100] H. Nakano, Modulared Semi-Ordered L<strong>in</strong>ear <strong>Spaces</strong>, Maruzen, Tokyo (1950).<br />

[ 101 ] I. Namioka, Partially ordered l<strong>in</strong>ear topological spaces, Mem. Amer. Math. Soc. 24 (1957).<br />

[ 102] R.D. Nussbaum, Eigenvectors <strong>of</strong>nonl<strong>in</strong>ear positive operators and <strong>the</strong> l<strong>in</strong>ear Kre<strong>in</strong>-Rutman <strong>the</strong>orem, Fixed<br />

Po<strong>in</strong>t Theory, Lecture Notes <strong>in</strong> Math. 886, E. Fadell and G. Fourier, eds, Spr<strong>in</strong>ger, Berl<strong>in</strong> (1981), 309-330.<br />

[ 103] R.D. Nussbaum, The Fixed Po<strong>in</strong>t Index and Some Applications, Srm<strong>in</strong>aire de Mathrmatiques Suprrieures<br />

(Sem<strong>in</strong>ar on Higher Ma<strong>the</strong>matics) 94, Presses de l'Universit6 de Montrral, Montreal, Quebec (1985).


Positive operators 121<br />

[104] R.D. Nussbaum, The fixed po<strong>in</strong>t <strong>in</strong>dex and fixed po<strong>in</strong>t <strong>the</strong>orems, Topological Methods for Ord<strong>in</strong>ary Differential<br />

Equations (Montecat<strong>in</strong>i Terme, 1991), Lecture Notes <strong>in</strong> Math. 1537, Spr<strong>in</strong>ger, Berl<strong>in</strong> (1993),<br />

143-205.<br />

[105] P. Orno, On <strong>Banach</strong> lattices <strong>of</strong> operators, Israel J. Math. 19 (1974), 164-165.<br />

[106] B. de Pagter, Irreducible compact operators, Math. Z. 192 (1986), 149-153.<br />

[107] A.L. Peress<strong>in</strong>i, Ordered Topological Vector <strong>Spaces</strong>, Harper & Row, New York (1967).<br />

[108] O. Perron, Zur Theorie der Matrizen, Math. Ann. 64 (1907), 248-263.<br />

[109] L.D. Pitt, A compacmess condition for l<strong>in</strong>ear operators on function spaces, J. Oper. Theory 1 (1979),<br />

49-54.<br />

[110] I.M. Popovici and D.T. Vuza, Factor<strong>in</strong>g compact operators and approximable operators, Zeit. Anal.<br />

Anwendungen 9 (1990), 221-233.<br />

[111] I.M. Popovici and D.T. Vuza, Factorization <strong>of</strong> convolution operators, Analele Univ. Craiova 16 (1988),<br />

1-8.<br />

[ 112] H. Radjavi, The Perron-Frobenius <strong>the</strong>orem revisited, Positivity 3 (1999), 317-331.<br />

[113] A. Rhandi, Positivity and stability for a population equation with diffusion on L 1, Positivity 2 (1998),<br />

101-113.<br />

[114] A. Rhandi and R. Schnaubelt, Asymptotic behavior <strong>of</strong> a non-autonomous population equation with diffusion<br />

<strong>in</strong> L 1, Prepr<strong>in</strong>t (1998).<br />

[115] C.J. Read, A solution to <strong>the</strong> <strong>in</strong>variant subspace problem on <strong>the</strong> space e ! , Bull. London Math. Soc. 17<br />

(1985), 305-317.<br />

[116] C.J. Read, A short pro<strong>of</strong> concern<strong>in</strong>g <strong>the</strong> <strong>in</strong>variant subspace problem, J. London Math. Soc. 34 (1986),<br />

335-348.<br />

[ 117] C.J. Read, Quas<strong>in</strong>ilpotent operators and <strong>the</strong> <strong>in</strong>variant subspace problem, J. London Math. Soc. 56 (1997),<br />

595-606.<br />

[118] A.C.M. van Rooij, On <strong>the</strong> space <strong>of</strong> all regular operators between two Riesz spaces, Indag. Math. 47 (1985),<br />

95-98.<br />

[119] A.C.M. van Rooij, When do <strong>the</strong> regular operators between two Riesz spaces form a Riesz space?, Report<br />

No. 8410, Dept. <strong>of</strong> Math., Catholic University Nijmegen (1984).<br />

[120] H.H. Schaefer, Topologische Nilpotenz irreduzibler Operatoren, Math. Z. 117 (1970), 135-140.<br />

[ 121 ] H.H. Schaefer, Topological Vector <strong>Spaces</strong>, Spr<strong>in</strong>ger, Berl<strong>in</strong> (1971).<br />

[122] H.H. Schaefer, Normed tensor products <strong>of</strong> <strong>Banach</strong> lattices, Israel J. Math. 13 (1972), 400-415.<br />

[123] H.H. Schaefer, <strong>Banach</strong> Lattices and Positive Operators, Spr<strong>in</strong>ger, Berl<strong>in</strong> (1974).<br />

[124] H.H. Schaefer, On <strong>the</strong>orems <strong>of</strong>de Pagter andAndO-Krieger, Math. Z. 192 (1986), 155-157.<br />

[125] A.R. Schep, Kernel operators, Indag. Math. 41 (1979), 39-53.<br />

[126] H.U. Schwarz, <strong>Banach</strong> Lattices and Operators, Teubner Texte 71, Leipzig (1984).<br />

[127] A. Simoni~, A construction <strong>of</strong> Lomonosov functions and applications to <strong>the</strong> <strong>in</strong>variant subspace problem,<br />

Pacific J. Math. 175 (1996), 257-270.<br />

[128] A. Simoni6, An extension <strong>of</strong> Lomonosov's techniques to non-compact operators, Trans. Amer. Math. Soc.<br />

348 (1995), 975-995.<br />

[ 129] J. Synnatzschke, On <strong>the</strong> conjugate <strong>of</strong> a regular operator and some applications to <strong>the</strong> questions <strong>of</strong> complete<br />

cont<strong>in</strong>uity and weak complete cont<strong>in</strong>uity <strong>of</strong> regular operators, Vestnik Len<strong>in</strong>gr. Univ. Mat. Meh. Astronom.<br />

1 (1972), 60-69.<br />

[130] M. Talagrand, Some weakly compact operators between <strong>Banach</strong> lattices do not factor through reflexive<br />

<strong>Banach</strong> lattices, Proc. Amer. Math. Soc. 96 (1986), 95-102.<br />

[131] V.G. Troitsky, On <strong>the</strong> modulus <strong>of</strong> C.J. Read's operator, Positivity 2 (1998), 257-264.<br />

[132] V.G. Troitsky, Lomonosov's <strong>the</strong>orem cannot be extended to cha<strong>in</strong>s <strong>of</strong> four operators, Proc. Amer. Math.<br />

Soc. 128 (2000), 527-540.<br />

[133] L. Tzafriri, On <strong>Banach</strong> spaces with unconditional bases, Israel J. Math. 17 (1974), 84-93.<br />

[134] B.Z. Vulikh, Introduction to <strong>the</strong> Theory <strong>of</strong> Partially Ordered <strong>Spaces</strong>, Wolters-Noordh<strong>of</strong>f, Gron<strong>in</strong>gen<br />

(1967).<br />

[ 135] B.Z. Vulikh, Introduction to <strong>the</strong> Theory <strong>of</strong> Cones <strong>in</strong> Normed <strong>Spaces</strong>, Kal<strong>in</strong><strong>in</strong> State University (1977).<br />

[136] B.Z. Vulikh, Special Topics on <strong>Geometry</strong> <strong>of</strong> Cones <strong>in</strong> Normed <strong>Spaces</strong>, Kal<strong>in</strong><strong>in</strong> State University (1978).<br />

[137] B. Walsh, On characteriz<strong>in</strong>g K6<strong>the</strong> sequence spaces as vector lattices, Math. Ann. 175 (1968), 253-256.<br />

[138] A.W. Wickstead, Compact subsets <strong>of</strong> partially ordered <strong>Banach</strong> spaces, Math. Ann. 212 (1975), 271-284.


122 Y.A. Abramovich and C.D. Aliprantis<br />

[139] A.W. Wickstead, Extremal structure <strong>of</strong> cones <strong>of</strong> operators, Quart. J. Math. Oxford Ser. (2) 32 (1981),<br />

239-253.<br />

[140] A.W. Wickstead, The regularity <strong>of</strong>order bounded operators <strong>in</strong>to C(K), Quart. J. Math. Oxford 44 (1993),<br />

257-270.<br />

[ 141 ] A.W. Wickstead, Dedek<strong>in</strong>d completeness <strong>of</strong> some lattices <strong>of</strong> compact operators, Bull. Polon. Acad. Sci.<br />

43 (1995), 297-304.<br />

[142] A.W. Wickstead, Converses for <strong>the</strong> Dodds-Freml<strong>in</strong> and Kalton-Saab <strong>the</strong>orems, Math. Proc. Camb. Phil.<br />

Soc. 120 (1996), 175-179.<br />

[143] Y.C. Wong and K.E Ng, Partially Ordered Topological Vector <strong>Spaces</strong>, Clarendon Press, Oxford (1973).<br />

[144] A.C. Zaanen, Riesz <strong>Spaces</strong> H, North-Holland, Amsterdam (1983).<br />

[145] A.C. Zaanen, Introduction to Operator Theory <strong>in</strong> Riesz <strong>Spaces</strong>, Spr<strong>in</strong>ger, Berl<strong>in</strong> (1997).<br />

[ 146] P.E Zabre~o and S.V. Smickih, A <strong>the</strong>orem <strong>of</strong>M. G. Kre~n and M.A. Rutman, Funktsional. Anal. i Prilozhen.<br />

13 (3) (1979), 81-82.


CHAPTER 3<br />

Lp <strong>Spaces</strong><br />

Dale Alspach<br />

Department <strong>of</strong> Ma<strong>the</strong>matics, Oklahoma State University, Stillwater, OK, USA<br />

E-mail: alspach @ math. okstate, edu<br />

Edward Odell*<br />

Department <strong>of</strong> Ma<strong>the</strong>matics, The University <strong>of</strong> Texas, Aust<strong>in</strong>, TX, USA<br />

E-mail: odell@ math. utexas, edu<br />

Contents<br />

1. Prelim<strong>in</strong>aries .................................................. 126<br />

2. Global structure ................................................. 129<br />

3. Sequences <strong>in</strong> ~ p and L p ............................................ 134<br />

4. Subspaces <strong>of</strong> L p ................................................ 140<br />

5. /2p-spaces, 1 < p < cx~, p-f: 2 ......................................... 146<br />

References ..................................................... 156<br />

*Research supported by NSE<br />

HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL. 1<br />

Edited by William B. Johnson and Joram L<strong>in</strong>denstrauss<br />

9 2001 Elsevier Science B.V. All rights reserved<br />

123


L p spaces 125<br />

In this chapter we will discuss <strong>the</strong> structure <strong>of</strong> <strong>the</strong> L p-spaces and <strong>the</strong>ir subspaces.<br />

We are concerned ma<strong>in</strong>ly with <strong>the</strong> reflexive case (1 < p < ~). The space L~ and <strong>the</strong><br />

/21-spaces are considered elsewhere [90]. A <strong>the</strong>ory requires and feeds on its examples. The<br />

L p-spaces have provided much fodder for <strong>the</strong> general <strong>the</strong>ory <strong>of</strong> <strong>Banach</strong> spaces because<br />

<strong>the</strong>y appeared early <strong>in</strong> <strong>the</strong> <strong>the</strong>ory and <strong>the</strong> study <strong>of</strong> <strong>the</strong>se spaces has motivated <strong>the</strong> def<strong>in</strong>itions<br />

<strong>of</strong> many properties <strong>of</strong> more general <strong>Banach</strong> spaces. For example, with its usual norm L p<br />

is a <strong>Banach</strong> lattice under <strong>the</strong> po<strong>in</strong>twise almost everywhere order<strong>in</strong>g. In <strong>the</strong> reflexive case it<br />

also has an unconditional basis and thus has ano<strong>the</strong>r lattice structure as a sequence space<br />

(and is a <strong>Banach</strong> lattice under a different norm except <strong>in</strong> <strong>the</strong> case p - 2). These spaces<br />

naturally occur as <strong>in</strong>terpolation spaces and are <strong>the</strong> simplest <strong>of</strong> <strong>the</strong> rearrangement <strong>in</strong>variant<br />

spaces. The Hardy spaces, Hp(D), <strong>of</strong> analytic functions on <strong>the</strong> unit disk with Lp boundary<br />

values are isomorphic to Lp, 1 < p < cxz, and <strong>the</strong> Bergman spaces Ap(D) <strong>of</strong> analytic<br />

functions on <strong>the</strong> unit disk which are <strong>in</strong> Lp(D) are isomorphic to ~p, 1 ~< p < e~, [67]. The<br />

study <strong>of</strong> <strong>the</strong> structure <strong>of</strong> <strong>the</strong> f<strong>in</strong>ite dimensional subspaces <strong>of</strong> L p paved <strong>the</strong> way for much<br />

<strong>of</strong> <strong>the</strong> extraord<strong>in</strong>ary development <strong>of</strong> <strong>the</strong> local <strong>the</strong>ory <strong>of</strong> <strong>Banach</strong> spaces <strong>in</strong> <strong>the</strong> 1980's [77].<br />

In <strong>in</strong>vestigations <strong>of</strong> o<strong>the</strong>r <strong>Banach</strong> spaces and operators <strong>the</strong> existence and classification <strong>of</strong><br />

operators from, <strong>in</strong>to or factor<strong>in</strong>g through L p-spaces provide fundamental <strong>in</strong>formation on<br />

<strong>the</strong> structure.<br />

We will concern ourselves primarily with <strong>the</strong> <strong>in</strong>f<strong>in</strong>ite dimensional isomorphic structure<br />

<strong>of</strong> <strong>the</strong> Lp-spaces. In particular we shall concentrate on separable Lp-spaces and, as noted<br />

<strong>in</strong> <strong>the</strong> basic concepts chapter, [49, Section 4], this reduces essentially to study<strong>in</strong>g g p and<br />

L p(O, 1) (which we shall denote by L p). Functions are assumed to be real-valued as <strong>in</strong><br />

general <strong>the</strong>re are only m<strong>in</strong>or adjustments needed for <strong>the</strong> complex case.<br />

As <strong>the</strong> <strong>the</strong>ory <strong>of</strong> Lp-spaces was developed some natural questions arose. What are <strong>the</strong><br />

complemented subspaces <strong>of</strong> Lp (or ~p).9 When does a given <strong>Banach</strong> space X embed <strong>in</strong>to<br />

Lp (or gp)? If X c_ Lp, what subspaces must live <strong>in</strong>side <strong>of</strong> X? Does every <strong>Banach</strong> space<br />

conta<strong>in</strong> some g p or co? What can be said about <strong>the</strong> structure <strong>of</strong> an unconditional basic<br />

sequence <strong>in</strong> L p ? We address <strong>the</strong>se problems and o<strong>the</strong>rs below. With apologies to <strong>the</strong> experts<br />

we choose to <strong>in</strong>clude some <strong>of</strong> <strong>the</strong> well known (to <strong>the</strong>m) structural results that were<br />

mentioned <strong>in</strong> <strong>the</strong> basic concepts chapter or appear <strong>in</strong> books such as [70].<br />

In Section 1 we review certa<strong>in</strong> <strong>in</strong>equalities for sequences <strong>in</strong> L p. For example we show<br />

that by <strong>in</strong>tegrat<strong>in</strong>g aga<strong>in</strong>st <strong>the</strong> Rademacher functions one can deduce that a normalized<br />

unconditional basic sequence <strong>in</strong> Lp (2 < p < CX~) admits upper ~2 and lower gp estimates<br />

(respectively, for 1 < p < 2, upper gp and lower ~2 estimates). In Section 2 we study <strong>the</strong><br />

global structure <strong>of</strong> L p and <strong>in</strong> particular <strong>the</strong> Haar basis. Among <strong>the</strong> results given we exam<strong>in</strong>e<br />

<strong>the</strong> span <strong>of</strong> subsequences <strong>of</strong> <strong>the</strong> Haar basis and Schechtman's result that every complemented<br />

subspace <strong>of</strong> L p with an unconditional basis is isomorphic to a complemented<br />

subspace spanned by a block basis <strong>of</strong> <strong>the</strong> Haar basis.<br />

Section 3 beg<strong>in</strong>s with some properties and characterizations <strong>of</strong> <strong>the</strong> unit vector basis <strong>of</strong><br />

p. The details <strong>of</strong> <strong>the</strong> argument us<strong>in</strong>g <strong>the</strong> Pelczyfiski decomposition method that a complemented<br />

subspace <strong>of</strong> g p is isomorphic to g p are presented to help give context and mean<strong>in</strong>g<br />

to <strong>the</strong> notion <strong>of</strong> (p, 2) bounded operators discussed later <strong>in</strong> Section 5. We also discuss<br />

spread<strong>in</strong>g models and types and <strong>the</strong> Kriv<strong>in</strong>e-Maurey <strong>the</strong>orem. This latter result gives a<br />

sufficient condition, <strong>in</strong> terms <strong>of</strong> types, for a <strong>Banach</strong> space X to conta<strong>in</strong> almost isometric<br />

copies <strong>of</strong> g p for some p. Section 4 deals with subspaces X <strong>of</strong> L p. For example if


126 D. Alspach and E. Odell<br />

X C Lp (2 < p < cx~) <strong>the</strong>n X must conta<strong>in</strong> an isomorph <strong>of</strong> s or s and if X does not<br />

conta<strong>in</strong> s it must embed <strong>in</strong>to s We also consider a necessary and sufficient condition for<br />

a reflexive space X to embed <strong>in</strong>to <strong>the</strong> s sum (1 < p < cx~) <strong>of</strong> f<strong>in</strong>ite dimensional spaces.<br />

The last section concerns/2p-spaces- those complemented subspaces <strong>of</strong> L p which are not<br />

Hilbert spaces. Here <strong>the</strong> known examples and <strong>the</strong>ir isomorphic classification are discussed.<br />

In particular Rosenthal's space X p and its generalizations are presented <strong>in</strong> detail. The role<br />

<strong>of</strong> (p, 2)-bounded operators is also expla<strong>in</strong>ed. F<strong>in</strong>ally we discuss some <strong>of</strong> <strong>the</strong> results for<br />

s<br />

with )~ near one and <strong>the</strong>ir relation to <strong>the</strong> isometric <strong>the</strong>ory <strong>of</strong> Lp-spaces.<br />

1. Prelim<strong>in</strong>aries<br />

We first recall a few key properties <strong>of</strong> L p and s<br />

concepts chapter.<br />

The unit vector basis for s<br />

which are discussed throughout <strong>the</strong> basic<br />

is a 1-symmetric basis [49, Section 3]. The Haar basis<br />

(hi)~ is an unconditional basis <strong>of</strong> Lp for 1 < p < c~ [49, Section 3], [24]. It is also a<br />

monotone basis for Lp for 1 ~< p < c~. The Rademacher functions (rn)n~=l , [49, Section<br />

4], are equivalent to <strong>the</strong> unit vector basis <strong>of</strong> s for p < ~, (and <strong>the</strong> unit vector basis <strong>of</strong> el<br />

for p=~).<br />

Thus for 0 < p < oc <strong>the</strong>re exist constants A p, B p with<br />

Ap(~lanl2)l/2 (fo I )l/p 2)1/2<br />


L p spaces 127<br />

if 1 ~< p ~< 2, and<br />

(i011<br />

Ilxillp ~< ~ri(t)xi<br />

1<br />

dt


128 D. Alspach and E. Odell<br />

(1.2) and (1.3) can be viewed as generalizations <strong>of</strong> Clarkson's <strong>in</strong>equalities [29]. S<strong>in</strong>ce<br />

II 9 IILp ~< I1" IlL2 for p ~< 2 we also have us<strong>in</strong>g (1.2) for p = 2 that<br />

(So ~ri(t)xi<br />

1<br />

dt ~< IIx/ll 2<br />

p<br />

1/2<br />

for 1 ~ p < 2, (1.5)<br />

and similarly<br />

(So<br />

~-~ ri (t)xi<br />

1<br />

at 1> ilxill 2<br />

p<br />

1/2<br />

for 2 < p. (1.6)<br />

The technique <strong>of</strong> <strong>in</strong>tegrat<strong>in</strong>g aga<strong>in</strong>st <strong>the</strong> Rademacher yields some useful <strong>in</strong>equalities for<br />

unconditional basic sequences <strong>in</strong> L p. If (Xn) is a A-unconditional basic sequence <strong>in</strong> L p<br />

<strong>the</strong>n<br />

[f01 2)p/2 ]l/p<br />

A-I (Elanl2iXn(S)l as I[Ea, x, II"<br />


<strong>in</strong>dependent mean zero random variables <strong>in</strong> L p <strong>the</strong>n<br />

L p spaces 129<br />

max Ilxi IlPp , Ilxi II 2<br />

i:1 i--1<br />

~Xi<br />

t<br />

~ Kpmax Ilxi lip<br />

i:1 p i=1<br />

, IIx/ll 9 (1.11)<br />

It is shown <strong>in</strong> [55] that Kp ~ p~ In p.<br />

A <strong>Banach</strong> space X is a L;p,Z-space if for all f<strong>in</strong>ite dimensional spaces F ___ X <strong>the</strong>re exists<br />

a f<strong>in</strong>ite dimensional E with F c E c X so that d(E fdimE) ~ )~ It ultimately turns out<br />

m ~ vp ,<br />

(see Section 5) that a separable X is s for some )~ and 1 < p < ec iff X is isomorphic<br />

to a complemented subspace <strong>of</strong> L p which is not isomorphic to Hilbert space [66,68].<br />

The situation for L 1 is more complicated. It is conjectured that every <strong>in</strong>f<strong>in</strong>ite dimensional<br />

complemented subspace X <strong>of</strong> L1 is isomorphic to L1 or el. It is known that if X conta<strong>in</strong>s<br />

an isomorph <strong>of</strong> L1 <strong>the</strong>n X is isomorphic to L1 [36] and if X embeds <strong>in</strong>to el <strong>the</strong>n X is<br />

isomorphic to el [65]. Various characterizations <strong>of</strong>/21- (and L;oc-) spaces are given <strong>in</strong> [68].<br />

Much work was done to study and attempt to classify <strong>the</strong> L;p-spaces up to isomorphism<br />

and this is discussed <strong>in</strong> Section 5 below.<br />

We beg<strong>in</strong> with some results on <strong>the</strong> global structure <strong>of</strong> L p and <strong>in</strong> particular those <strong>in</strong>volv<strong>in</strong>g<br />

<strong>the</strong> Haar basis. All <strong>Banach</strong> spaces are presumed to be separable unless o<strong>the</strong>rwise<br />

stated.<br />

2. Global structure<br />

In Hilbert space strong geometric properties follow from <strong>the</strong> properties <strong>of</strong> <strong>the</strong> <strong>in</strong>ner product.<br />

Early <strong>in</strong> <strong>the</strong> development <strong>of</strong> operator <strong>the</strong>ory on more general spaces Murray [81 ] recognized<br />

<strong>the</strong> critical role that <strong>the</strong> orthogonal projection played for operators on L2 and<br />

attempted to f<strong>in</strong>d generalizations for <strong>the</strong> L p-spaces. While we know now (and as Murray<br />

himself discovered <strong>in</strong> part) that <strong>the</strong>re are far fewer bounded projections on <strong>the</strong> typical <strong>Banach</strong><br />

spaces than on Hilbert space, never<strong>the</strong>less, spaces such as L p possess a rich family<br />

<strong>of</strong> projections and <strong>of</strong> correspond<strong>in</strong>g complemented subspaces.<br />

Given <strong>the</strong> unconditionality <strong>of</strong> <strong>the</strong> Haar basis <strong>the</strong> simplest way to get a complemented<br />

subspace <strong>of</strong> Lp (1 < p < oc) is to take [(hji)]~__l where (hji) is a subsequence <strong>of</strong> (hj).<br />

There are however only two isomorphism types <strong>of</strong> such subspaces.<br />

THEOREM 1 ([39]). Let 1 < p < oc and let X -- [(h j;)] for some subsequence (hji) <strong>of</strong><br />

(h j). Then X is isomorphic to e p or L p.<br />

PROOF. By <strong>the</strong> decomposition method [49, Section 4], (or see <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Theorem 15<br />

c c c<br />

below) it suffices to prove that ei<strong>the</strong>r X ~ e p or L p ~ X. (X ~ Y means that X is<br />

isomorphic to a complemented subspace <strong>of</strong> Y.) Let<br />

A = { t c [0, 1 ]" t c supp hji for <strong>in</strong>f<strong>in</strong>itely many i's}.


- {t<br />

- U(An<br />

130 D. Alspach and E. Odell<br />

C<br />

We shall show that X ~ s if m (A) -- 0 and o<strong>the</strong>rwise L p ~ X.<br />

So assume m(A) = 0. We shall produce a sequence (Sn) <strong>of</strong> disjo<strong>in</strong>t measurable subsets<br />

<strong>of</strong> [0, 1] with m ([0, 1] \ Un Sn) = 0 and such that every element <strong>of</strong> X is constant on each<br />

Sn. It <strong>the</strong>n follows that<br />

C<br />

X ~-+ [(l&)]~ g.p.<br />

To do this it suffices to show that if n E N and<br />

An -<br />

~ [0, 1]" t ~ supphji for exactly n i's},<br />

<strong>the</strong>n An may be split <strong>in</strong>to such a sequence <strong>of</strong> sets. Let (Xi) be <strong>the</strong> subsequence <strong>of</strong> those<br />

h ji's <strong>in</strong>volved <strong>in</strong> <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> An and let (yi) be <strong>the</strong> (possibly f<strong>in</strong>ite) subsequence <strong>of</strong><br />

(xi) determ<strong>in</strong>ed by Ui supp yi ~ An and if Xn :/= Yi <strong>the</strong>n suppxn g supp Yi. The yi's are<br />

disjo<strong>in</strong>tly supported and<br />

An -<br />

n supp y+) U U(An n supp y?).<br />

i<br />

i<br />

This gives <strong>the</strong> desired splitt<strong>in</strong>g <strong>of</strong> An.<br />

If m(A) > 0 we partition (hji) <strong>in</strong>to a countable number <strong>of</strong> subsequences (hji)iEN k so<br />

that supp hji A supp h je = 0 if i -J= e 6 Ark and so that if k >~ 2, i ~ Nk <strong>the</strong>n <strong>the</strong>re exists<br />

~ Nk-1 with supphji c_ supphje. Set Bk = UicNk supphji" Clearly<br />

B1 ___ B2 ___ "" and (-]Bk -- A.<br />

One now chooses a subsequence (kn) <strong>of</strong> N with m (Bk, \ A) < en, en .[. 0 rapidly. Def<strong>in</strong>e<br />

do- L<br />

and <strong>in</strong>ductively for m odd<br />

d,- L hji<br />

icNk o i~Nk 1<br />

d2"+m -- Z<br />

hji summed over {i 6 Ark," supphji ___ suppd2n_l+~(m+l)/2]]<br />

+ },<br />

and for m even<br />

d2n+m-Zhji summed over {i ~ Nk," supphji c_ d~_,+~(m+,)/2~}.<br />

A perturbation argument yields that (dn) is equivalent to <strong>the</strong> Haar basis and it is not hard<br />

to see that [(dn)] is complemented <strong>in</strong> X, [10].<br />

D<br />

A vector-valued version <strong>of</strong> this <strong>the</strong>orem exists [78]. There also exists a f<strong>in</strong>ite dimensional<br />

version <strong>of</strong> this <strong>the</strong>orem.


L p spaces 131<br />

THEOREM 2 ([80]). Let 1 < p < cx~. There exists Kp < ~X) so that if (hji)<strong>in</strong>___l is anyf<strong>in</strong>ite<br />

subsequence <strong>of</strong> (hj) and E -- ((hji)~) <strong>the</strong>n d(E, ~np) 1.)<br />

(b) ([79]) Let 1 < p :/= 2 < cx~. There exists Kp >/ 1 and for all n a rearrangement<br />

(hn~2 n 2 n n 2 n<br />

~'i 'i=0 ~ (hi)i=o so that if M E N and (zi) M is a normalized block basis <strong>of</strong> (b i )i=0 <strong>the</strong>n<br />

<strong>the</strong>re exists A c {1 ..... M} with [A[ ~> M/2 so that (Zi)iEA is Kp equivalent to <strong>the</strong> unit<br />

Ial<br />

vector basis <strong>of</strong> g~ p .<br />

The rearrangement is def<strong>in</strong>ed <strong>in</strong> terms <strong>of</strong> <strong>the</strong> supports <strong>of</strong> <strong>the</strong> Haar functions. For i < j<br />

ei<strong>the</strong>r supp b n and supp b n j are disjo<strong>in</strong>twithsuppbi n ly<strong>in</strong>g to <strong>the</strong> left <strong>of</strong> supp bj n orsuppbi n _<br />

suppbj.<br />

Every s has a basis ([54], see Section 5 below) but it is still open as to whe<strong>the</strong>r<br />

or not it must have an unconditional basis. However those that do can be realized isomorphically<br />

as be<strong>in</strong>g spanned by block bases <strong>of</strong> (hn).<br />

THEOREM 4 ([95]). Let 1 < p < cx~ and let X be a complemented subspace <strong>of</strong> Lp with an<br />

unconditional basis (Xn). Then <strong>the</strong>re exists a block basis (Yn) <strong>of</strong> <strong>the</strong> Haar basis with [(Yn)]<br />

complemented <strong>in</strong> L p and such that (Xn) is equivalent to (Yn).<br />

The first part <strong>of</strong> this <strong>the</strong>orem follows from <strong>the</strong> follow<strong>in</strong>g proposition.<br />

PROPOSITION 5 ([95]). Let (Xn) be an unconditional basic sequence <strong>in</strong> Lp (1 < p < ~).<br />

Then <strong>the</strong>re exists an equivalent block basis (Yn) <strong>of</strong> (hn).<br />

PROOF. From (1.7) and (1.8) it follows that if (yi) is ano<strong>the</strong>r unconditional basic sequence<br />

<strong>in</strong> Lp with [yi[ -- Ixi[ <strong>the</strong>n (yi) is equivalent to (xi). By a perturbation argument we may<br />

assume that <strong>the</strong>re exist <strong>in</strong>tegers m n ~ ~ and scalars (ai) so that<br />

2 mn - l<br />

Xn-- Z azmn+klh2mn+k["<br />

k=0<br />

(2.1)<br />

One def<strong>in</strong>es <strong>the</strong> yn'S via this formula by remov<strong>in</strong>g <strong>the</strong> absolute values. [3


fi2<br />

132 D. Alspach and E. Odell<br />

Before complet<strong>in</strong>g <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Theorem 4 we recall a useful isomorphic representation<br />

<strong>of</strong> Lp as Lp(~2) for 1 < p < cxz. The latter is <strong>the</strong> <strong>Banach</strong> space <strong>of</strong> all sequences (fi) <strong>of</strong><br />

measurable functions on [0, 1] with<br />

II(fi)llL,r -<br />

(t) dt 2 it can be shown that (fij) is unconditional and s<strong>in</strong>ce (fi) is<br />

a subsequence <strong>of</strong> (fij) we obta<strong>in</strong> a projection <strong>of</strong> Lp(s onto [(fi)]. (fi) is equivalent<br />

to (xi) and is a block basis <strong>of</strong> (h 2mn+e) ~'2mn--1 1,k=0 Fur<strong>the</strong>rmore (h 2mn+k) is equivalent to<br />

n~<br />

(h2mn+k) and this completes <strong>the</strong> pro<strong>of</strong>for p > 2. For p < 2 a duality argument is necessary<br />

[951. D<br />

Some <strong>Banach</strong> spaces have <strong>the</strong> property that whenever <strong>the</strong>y are isomorphic to a subspace<br />

<strong>of</strong> ano<strong>the</strong>r nice enough <strong>Banach</strong> space that <strong>the</strong>re is ano<strong>the</strong>r isomorphic embedd<strong>in</strong>g with better<br />

properties. One property <strong>of</strong> this type is reproducibility. A basis (xi) for a <strong>Banach</strong> space<br />

X is reproducible if whenever X ___ Y and Y has a basis (yi) <strong>the</strong>n some block basis <strong>of</strong> (yi)<br />

is equivalent to (xi). It is easy to see that because <strong>the</strong>y are weakly null and subsymmetric<br />

that <strong>the</strong> unit vector bases <strong>of</strong> s (1 < p < cxz) or co are reproducible. It is also not hard to<br />

show that <strong>the</strong> unit vector basis <strong>of</strong> s is reproducible.<br />

THEOREM 6 ([67]). The Haar basis for Lp (1 ~< p < cx~) is a reproducible basis. Moreover<br />

<strong>the</strong> same is true for any unconditional basis <strong>of</strong> Lp (1 < p < cx~).<br />

PROOF. By virtue <strong>of</strong> Proposition 5 it suffices to prove that (hi) is a reproducible basis for<br />

L p for 1 ~< p < oc. Let L p c X where X has a basis (Xn) with biorthogonal functionals<br />

(Xn*). By Liapoun<strong>of</strong>f's convexity <strong>the</strong>orem for each f<strong>in</strong>ite set F ___ X* and A ___ [0, 1] with


Lp spaces 133<br />

m(A) > 0 <strong>the</strong>re exists a measurable set B c_ A with m(B) -- m(A \ B) and x*(1B) --<br />

x*(1A\B) for x* E F.<br />

Let en ,~ 0. We can use <strong>the</strong> above to produce a dyadic tree <strong>of</strong> sets (An,j a~'2n +n=0, j= 1 as <strong>in</strong> <strong>the</strong><br />

supports <strong>of</strong> <strong>the</strong> Haar basis and a sequence (fn) as follows. Set f0 -- 1 a0,1 = 1,<br />

fl -- 1Al,l -- 1Al,2, f2 -- 1A2,1 -- 1A2,2<br />

and so on. Then (f,) is 1-equivalent to (hn) and for some subsequence (Pk) <strong>of</strong> N<br />

O


134 D. Alspach and E. Odell<br />

<strong>of</strong> (Xn) for some subsequence (X<strong>in</strong>) and Ixi* n (Txi~)l ~ e for all n and some fixed e > O.<br />

Then (Txi~) is equivalent to (xi~) and [(Tx<strong>in</strong>)] is complemented <strong>in</strong> X.<br />

By <strong>the</strong> lemma (Px(h <strong>in</strong>,jn)) is equivalent to (h <strong>in</strong>'jn) and [Px(h <strong>in</strong>,j~ )] is complemented <strong>in</strong><br />

Lp(~2). Also (h i"'j~) is equivalent to (hi~) and this completes <strong>the</strong> pro<strong>of</strong>.<br />

D<br />

The nonseparable Lp-spaces are built on <strong>the</strong> spaces gp(F) and Lp{O, 1} ~. If one is<br />

consider<strong>in</strong>g only separable subspaces X <strong>of</strong> such spaces <strong>the</strong>n X ~ L p. But <strong>the</strong> global<br />

structure <strong>of</strong> nonseparable L p-spaces can be somewhat different. These spaces need not<br />

have an unconditional (uncountable) basis. Recall dim X = <strong>in</strong>f{ot: <strong>the</strong>re exists S C X with<br />

S dense <strong>in</strong> X and card S = o~}.<br />

THEOREM 9 ([37]). Let 1 < p # 2 < oo and let # be a f<strong>in</strong>ite measure with dimLp(#) ~><br />

l'~co. Then L p (#) does not embed <strong>in</strong>to a space with an unconditional basis.<br />

1<br />

3. Sequences <strong>in</strong> gp and Lp<br />

In this section we look at some special subspaces <strong>of</strong> ~p and L p which are isomorphic to<br />

gr, for some r. Of course for ~p, <strong>the</strong> only possible value <strong>of</strong> r is p itself, but for Lp <strong>the</strong>re<br />

is always r = 2 and for p < 2 an entire <strong>in</strong>terval <strong>of</strong> possibilities. General sequences and<br />

even unconditional basic sequences <strong>in</strong> L p are probably too varied to ever be described (see<br />

Section 10, [50], for a particularly peculiar subspace with unconditional basis), however,<br />

near <strong>the</strong> end <strong>of</strong> this section we note some results for Orlicz sequences and o<strong>the</strong>r spaces<br />

with a symmetric basis. In <strong>the</strong> previous section we looked at <strong>the</strong> span <strong>of</strong> subsequences <strong>of</strong><br />

<strong>the</strong> Haar system. For <strong>the</strong> unit vector basis <strong>of</strong> gp, subsequences are not mysterious, and <strong>in</strong><br />

this simpler situation we can successfully describe <strong>the</strong> span <strong>of</strong> block bases.<br />

Let (ei) be <strong>the</strong> unit vector basis <strong>of</strong> ~p. We beg<strong>in</strong> by recall<strong>in</strong>g <strong>the</strong> a simple fact about<br />

block bases <strong>of</strong> (ei) which was mentioned <strong>in</strong> [49, Section 64], [71, Proposition 2.a. 1 ], [44,<br />

Proposition 1.5.3].<br />

PROPOSITION 10. Suppose that (Xn) is a block basis <strong>of</strong> <strong>the</strong> unit vector basis <strong>of</strong> g.p.<br />

[Xn: n E IN] is isometric to g.p with <strong>the</strong> isometry which is <strong>in</strong>duced by <strong>the</strong> basis map<br />

Xn ----> ]]Xn lien, n = 1, 2 .....<br />

A normalized basic sequence is said to be perfectly homogeneous if it is equivalent to all<br />

<strong>of</strong> its normalized block bases. We have thus shown that <strong>the</strong> unit vector basis <strong>of</strong> g p has this<br />

property. It is easy to see that <strong>the</strong> unit vector basis for co is also perfectly homogeneous. It<br />

turns out that this is a very special property.<br />

THEOREM 11 ([101]). Suppose that X is a <strong>Banach</strong> space with a normalized perfectly<br />

homogeneous basis (Xn), <strong>the</strong>n (Xn) is equivalent to <strong>the</strong> unit vector basis <strong>of</strong> g p or co.<br />

We refer <strong>the</strong> reader to Zipp<strong>in</strong>'s paper or <strong>the</strong> book [71, p. 60], for <strong>the</strong> pro<strong>of</strong>. There have<br />

been some generalizations <strong>of</strong> this result <strong>in</strong> <strong>the</strong> context <strong>of</strong> symmetric spaces [9].


Lp spaces 135<br />

Ano<strong>the</strong>r <strong>in</strong>terest<strong>in</strong>g property <strong>of</strong> block bases <strong>in</strong> ~ p mentioned <strong>in</strong> [49, Section 4] is <strong>the</strong> fact<br />

that <strong>the</strong> closed span is always complemented. Indeed, let Xn = ~iEFn aiei be a normalized<br />

block basis <strong>of</strong> (ei) (here <strong>the</strong> Fn are f<strong>in</strong>ite subsets <strong>of</strong> I~t and F1 < F2 < ... <strong>in</strong> <strong>the</strong> sense<br />

that maxFn < m<strong>in</strong> Fn+l)and def<strong>in</strong>e x n = IlXnll -p Y]icFn lai]P-2aie* for each n, where, as<br />

usual, e* denotes <strong>the</strong> biorthogonal functional to ei. Then (x*) is biorthogonal to (Xn). The<br />

formula<br />

OO<br />

Px -- E x* (x)xn forxeep<br />

n=l<br />

<strong>the</strong>n def<strong>in</strong>es a norm one projection from g p onto <strong>the</strong> closed span <strong>of</strong> (Xn), [71, Proposition<br />

2.a. 1 ], [44, Proposition 1.5.3]. This gives<br />

THEOREM 12. If (xn) is a block basis <strong>of</strong> g.p, <strong>the</strong>n <strong>the</strong>re is a norm one projection from g.p<br />

onto [Xn : n ~ H].<br />

As noted <strong>in</strong> Section 2, a very similar argument yields that if (Xi) ~ Lp is a nonzero<br />

disjo<strong>in</strong>tly supported normalized sequence <strong>the</strong>n (xi) is 1-equivalent to <strong>the</strong> unit vector basis<br />

<strong>of</strong> ep and [(xi)] is 1-complemented <strong>in</strong> Lp.<br />

The analog <strong>of</strong> Theorem 12 holds for co and, as it turns out, is peculiar to <strong>the</strong>se unconditional<br />

bases.<br />

THEOREM 13 ([69]). Suppose that X is a <strong>Banach</strong> space with an unconditional bases such<br />

that for every permutation rc <strong>of</strong> H and every block basis (yj) <strong>of</strong> (Xjr(n)), [yj: j ~ H] is<br />

complemented, <strong>the</strong>n (Xn) is equivalent to <strong>the</strong> unit vector basis <strong>of</strong> g.p or co.<br />

As was noted <strong>in</strong> [49, Section 4], it is an immediate consequence <strong>of</strong> Theorem 12 and<br />

standard perturbation arguments that<br />

COROLLARY 14. If Y is an <strong>in</strong>f<strong>in</strong>ite dimensional subspace <strong>of</strong> g.p, <strong>the</strong>n for every e > O, Y<br />

has a (1 + E)-complemented subspace (1 + e)-isomorphic to g.p.<br />

We turn to some results <strong>of</strong> Petczyfiski [86] which were important <strong>in</strong> stimulat<strong>in</strong>g <strong>in</strong>terest<br />

<strong>in</strong> classification problems for complemented subspaces.<br />

THEOREM 15. If X is an <strong>in</strong>f<strong>in</strong>ite dimensional complemented subspace <strong>of</strong> g.p, <strong>the</strong>n X is<br />

isomorphic to ( p.<br />

A pro<strong>of</strong> us<strong>in</strong>g Pe{czyfiski's decomposition method, [86] is given <strong>in</strong> [49, Section 4].<br />

A more effective but more complex pro<strong>of</strong> is given <strong>in</strong> [7]. That pro<strong>of</strong> proceeds by directly<br />

show<strong>in</strong>g that a complemented subspace <strong>of</strong> g p actually decomposes <strong>in</strong>to a sum <strong>of</strong> f<strong>in</strong>ite<br />

n<br />

dimensional subspaces each isomorphic to g p for an appropriate n and <strong>the</strong>n deduc<strong>in</strong>g that<br />

<strong>the</strong> space is isomorphic to g p from <strong>the</strong> decomposition.<br />

The pro<strong>of</strong> us<strong>in</strong>g <strong>the</strong> decomposition method depends ra<strong>the</strong>r heavily on <strong>the</strong> ability to estimate<br />

<strong>the</strong> norm <strong>of</strong> an operator on a g p sum by norms <strong>of</strong> <strong>the</strong> restrictions to <strong>the</strong> summands. In


136 D. Alspach and E. Odell<br />

Section 5 we will see that <strong>the</strong> fact that this does not work for o<strong>the</strong>r types <strong>of</strong> unconditional<br />

sums leads to a ra<strong>the</strong>r delicate approach to understand<strong>in</strong>g <strong>the</strong> complemented subspaces <strong>of</strong><br />

C<br />

Lp. It is not true <strong>in</strong> general that if X ~ Y and Y ~ X <strong>the</strong>n X is isomorphic to Y [42].<br />

One problem that was open until <strong>the</strong> 1970's was whe<strong>the</strong>r every <strong>Banach</strong> space conta<strong>in</strong>ed<br />

g p for some p or co. If we are satisfied with f<strong>in</strong>ite dimensional subspaces Dvoretzky's <strong>the</strong>orem<br />

[33] tells us that for every <strong>Banach</strong> space X, ~2 is f<strong>in</strong>itely represented <strong>in</strong> X. Kriv<strong>in</strong>e's<br />

<strong>the</strong>orem [61 ] extends this to basic sequences: Every basic sequence admits a p so that g p<br />

is block f<strong>in</strong>itely represented <strong>the</strong>re<strong>in</strong>. Go<strong>in</strong>g <strong>the</strong> o<strong>the</strong>r way if X is such that for some ~. < cx~,<br />

1 ~< p < ~, every f<strong>in</strong>ite dimensional subspace <strong>of</strong> X X-embeds <strong>in</strong>to ~p m for some m <strong>the</strong>n X<br />

embeds <strong>in</strong>to L p. This is easy via an ultraproduct argument. In any event if we are seek<strong>in</strong>g<br />

some collection <strong>of</strong> <strong>in</strong>f<strong>in</strong>ite dimensional "atoms" which must live <strong>in</strong>side <strong>of</strong> every X, <strong>the</strong>se<br />

must <strong>in</strong>clude more than just co and g p, 1 ~< p < cxz, as witnessed by Tsirelson's example<br />

[99,28]. However we do get a positive result for subspaces X <strong>of</strong> Lp (1 ~< p < c~). In fact<br />

with<strong>in</strong> a certa<strong>in</strong> class <strong>of</strong> "stable" spaces <strong>the</strong> conjecture is true <strong>in</strong> a strong sense. Before we<br />

discuss <strong>the</strong>se results let us def<strong>in</strong>e a notion that is a little stronger than f<strong>in</strong>ite representability.<br />

DEFINITION 16. Suppose that (Xn) is a sequence <strong>in</strong> a <strong>Banach</strong> space X and that Y is a<br />

<strong>Banach</strong> space with a basis (Yn). We say (Xn) generates <strong>the</strong> spread<strong>in</strong>g model (Y, (Yn)) if for<br />

every s > 0 and k E N, <strong>the</strong>re is an N such that<br />

(1 +/3) -1 ~aiYi<br />

k=l<br />

i--1<br />

aiXni ~ (1 + s) ai Yi<br />

k--1<br />

for all N < ni < n2 < ... < nk and f<strong>in</strong>ite sequences <strong>of</strong> scalars (ai). (Y, (Yn)) is said to be<br />

a spread<strong>in</strong>g model over X if <strong>the</strong>re is a sequence (xn) <strong>in</strong> X generat<strong>in</strong>g <strong>the</strong> spread<strong>in</strong>g model<br />

(Y, (y~)) and such that limnl


L p spaces 137<br />

DEFINITION 17. Suppose X is a separable <strong>Banach</strong> space. We say that X is stable if for<br />

any two bounded sequences (xn) and (yn) <strong>in</strong> X and free ultrafilters b/and 12 on N,<br />

lim lim Ilxn -+- Ym II - lim lim Ilxn -+- Ym II.<br />

(n)E/~ (m)EV<br />

(m) E'I2 (n) E/~<br />

It is easy to see that all f<strong>in</strong>ite dimensional spaces are stable. In <strong>the</strong> case <strong>of</strong> Hilbert space<br />

a simple computation with <strong>the</strong> <strong>in</strong>ner product establishes stability. Indeed, without loss <strong>of</strong><br />

generality let (xn) and (Yn) be weakly convergent sequences <strong>in</strong> a Hilbert space X with limits<br />

x and y, respectively. (We denote <strong>the</strong> <strong>in</strong>ner product by (., .).) Not<strong>in</strong>g that lim(n)cU Ilxn II<br />

and lim(m)~V [lYm I[ exist and<br />

lim lim IIx~ -+- Ym II 2 -- IIx~ II 2 - Ilym II 2 - 2 lim lim (xn, Ym)<br />

(n)c/g (m)E]2<br />

(n)ELr (m)EV<br />

= 2(x, y)- lim lim Ilxn + Ym II 2 -[IXnll 2 --IlYm 112,<br />

(m)EV (n)EU<br />

(3.1)<br />

we see that X is stable.<br />

Clearly any subspace <strong>of</strong> a stable space is stable. Maurey and Kriv<strong>in</strong>e proved that if X<br />

is a stable <strong>Banach</strong> space and 1


138 D. Alspach and E. Odell<br />

The convolution <strong>of</strong> two types r and or, realized by (Xn), bl and (Yn), 12 respectively, is<br />

def<strong>in</strong>ed by<br />

r * cr (x) = lim lim IIx + Xn + Ym II,<br />

(n) e/.d (m)cV<br />

where r and o- are realized by (Xn) and L/and (Ym) and V, respectively. If <strong>the</strong> space X<br />

is stable <strong>the</strong> convolution is commutative. Fur<strong>the</strong>rmore <strong>the</strong> def<strong>in</strong>ition <strong>the</strong>n does not depend<br />

on <strong>the</strong> particular realizations <strong>of</strong> r and o- and r 9 cr can be easily shown to itself be a type<br />

on X.<br />

A type r is said to be symmetric if r = -r, i.e., r (x) -- r(-x) for all x. Observe that<br />

if (Xn) is <strong>the</strong> fundamental sequence <strong>of</strong> a spread<strong>in</strong>g model which is isometric to g p over X<br />

<strong>the</strong>n <strong>the</strong> type realized by (Xn) and any ultrafilter/,4 is symmetric.<br />

DEFINITION 19. A symmetric type r is said to be an s if for any non-negative<br />

scalars a, b, ar * br = (a p + bp)I/Pr.<br />

Notice that if (Xn) is a weakly null sequence <strong>in</strong> s and limn---,~ Ilxn II = P, 1 < p < cxz,<br />

<strong>the</strong>n r(x) = limn~oc Ilxn + xll = (PP + IlxllP) 1/p, for all x e ep, is a symmetric type. Also<br />

(ar,br)(x) = lim lim Ilx + Xn +Xmll<br />

n--+ oc m--+ oo<br />

= (llxll p +aPp p -+-bPpP) 1/p- (a p nt-bp)l/Pr(x). (3.2)<br />

Thus r is an gp-type.<br />

Now suppose that (Xn) is a normalized sequence and L/is an ultrafilter that realize an<br />

p-type r on X. Then for any x e X,<br />

ql II<br />

lim lim ... lim x n t- aixni -- a l'r. a2"c -k . . . . akr(x)<br />

(nl)Eb/(n2) cb/ (nk)cld i--1<br />

- a r(x)- lim x+ a Xn 9<br />

(n)cld<br />

i=1<br />

(3.3)<br />

(3.4)<br />

Thus (Xn) is <strong>the</strong> generat<strong>in</strong>g sequence <strong>of</strong> a spread<strong>in</strong>g model over X which is isometric to<br />

(~p, (e,,)) over X.<br />

As noted above Kriv<strong>in</strong>e, [61], had earlier shown that <strong>in</strong> any basic sequence <strong>the</strong> space<br />

p, for some p, or co is block f<strong>in</strong>itely representable. Usually f<strong>in</strong>ite representability tells us<br />

little about <strong>the</strong> <strong>in</strong>f<strong>in</strong>ite dimensional structure <strong>of</strong> <strong>the</strong> space. Maurey and Kriv<strong>in</strong>e show that<br />

<strong>in</strong> a stable <strong>Banach</strong> space Kriv<strong>in</strong>e's <strong>the</strong>orem can be used to obta<strong>in</strong> much more.<br />

THEOREM 20. Suppose that X is a separable stable <strong>Banach</strong> space. Then for some 1


L p spaces 139<br />

THEOREM 21. Suppose that (Xn) is a sequence <strong>in</strong> a separable stable <strong>Banach</strong> space X<br />

which generates a spread<strong>in</strong>g model which is isometric to (s p, (en)) over X. Then for every<br />

e > 0 <strong>the</strong>re is a subsequence <strong>of</strong> (Xn) which is (1 + e)-equivalent to <strong>the</strong> basis <strong>of</strong> s<br />

The pro<strong>of</strong> <strong>of</strong> Theorem 21 is quite easy. Given e > 0 we choose suitable ek $ 0 and us<strong>in</strong>g<br />

a compactness argument <strong>in</strong>ductively choose a subsequence (x/7 i) <strong>of</strong> (x/7) satisfy<strong>in</strong>g" for all<br />

k and (/~i)'l __V_ [-1, 1],<br />

k-2<br />

~~j2~ + (l~k_l I p -+-I~klP)l/Pxn~_,<br />

j--I<br />

k-2<br />

-- ~ fljXnj + ([flk-I I p + ]flkl p) l/pel<br />

j=l<br />

< 6k<br />

and<br />

k<br />

Z<br />

j=l<br />

fljXnj<br />

k-2<br />

ZfljXnj + flk-lel + flke2<br />

j--I<br />

< 6k.<br />

Us<strong>in</strong>g <strong>the</strong>se two <strong>in</strong>equalities one can iteratively keep comb<strong>in</strong><strong>in</strong>g <strong>the</strong> last two terms <strong>in</strong><br />

y~] ~jxj to obta<strong>in</strong> <strong>the</strong> result.<br />

The pro<strong>of</strong> <strong>of</strong> Theorem 20 is more difficult. One first shows that a symmetric type cr on a<br />

stable space X is an s type for some 1 ~< p < oe iff for all u > 0 <strong>the</strong>re exists 15 ~> 0 with<br />

~r, (otcr) --/3cr. To get <strong>the</strong> existence <strong>of</strong> such acr is fairly <strong>in</strong>volved and employs <strong>the</strong> notion<br />

<strong>of</strong> conic classes <strong>of</strong> types.<br />

See <strong>the</strong> orig<strong>in</strong>al paper <strong>of</strong> Maurey and Kriv<strong>in</strong>e, [62,44,40] or [23] for pro<strong>of</strong>s. The last<br />

reference proves <strong>the</strong> existence <strong>of</strong> s by us<strong>in</strong>g an ord<strong>in</strong>al <strong>in</strong>dex approach which is<br />

quite different from any <strong>of</strong> <strong>the</strong> o<strong>the</strong>rs and is somewhat simpler. One uses Kriv<strong>in</strong>e's <strong>the</strong>orem<br />

<strong>in</strong> a certa<strong>in</strong> manner to obta<strong>in</strong> a p. Then given e > 0 one considers<br />

He,p(X) -- { (xi)~ ~ X: (xi)~ is (1 + e)-equivalent to <strong>the</strong> unit vector basis<br />

/7<br />

Of~p}.<br />

This is naturally a closed tree and can be given an ord<strong>in</strong>al <strong>in</strong>dex [ 16]. One shows that <strong>the</strong><br />

<strong>in</strong>dex is W l and so <strong>the</strong> tree has an <strong>in</strong>f<strong>in</strong>ite branch.<br />

In general, even for very well-behaved sequences <strong>in</strong> L p for 1 ~< p < 2, one cannot f<strong>in</strong>d<br />

a nice s basis by pass<strong>in</strong>g to subsequences. (See [43].) These results have been extended<br />

to weakly stable <strong>Banach</strong> spaces (def<strong>in</strong>ed as <strong>in</strong> Def<strong>in</strong>ition 17 except one also requires (Xn)<br />

and (Yn) to be weakly null) which allows for <strong>the</strong> case <strong>of</strong> co [12].<br />

Thus every subspace <strong>of</strong> a stable <strong>Banach</strong> space conta<strong>in</strong>s a subspace (1 + e)-isomorphic<br />

to s One way to look at <strong>the</strong>se results is to say that every subspace <strong>of</strong> L p, 1


140 D. Alspach and E. Odell<br />

<strong>in</strong>quire if <strong>the</strong>re are stronger results than Theorem 20. One such possibility is to replace X<br />

is stable by a condition implied by stability: <strong>the</strong> set <strong>of</strong> types on X, r (X), is separable <strong>in</strong> <strong>the</strong><br />

strong topology (that generated by <strong>the</strong> pseudometrics dM(a, r) = sup{la(x) -- r(x)l : ~ X,<br />

Ilxll ~< M}). Unfortunately <strong>the</strong> dual <strong>of</strong> Tsirelson's space [99] satisfies this condition so<br />

<strong>the</strong> attempt fails. However Haydon and Maurey [45] have shown that if r(X) is strongly<br />

separable <strong>the</strong>n X conta<strong>in</strong>s ei<strong>the</strong>r a reflexive subspace or an isomorph <strong>of</strong> ~1.<br />

One might also ask whe<strong>the</strong>r <strong>the</strong>re are o<strong>the</strong>r nice sequence spaces which embed isomorphically<br />

<strong>in</strong>to L p. The approach <strong>of</strong> types us<strong>in</strong>g convolution cannot be used <strong>in</strong> <strong>the</strong>se cases<br />

because <strong>the</strong>y depend on formulas which must give rise to an ~p basis, [15,72]. The situation<br />

for p > 2 is constra<strong>in</strong>ed by <strong>the</strong> gp - ~2 dichotomy (see Section 4 or [49, Section 4]),<br />

but for 1 ~< p < 2 <strong>the</strong>re is some room to maneuver. Dacunha-Castelle [30], showed that <strong>in</strong><br />

order for a symmetric sequence space to embed <strong>in</strong> L1, <strong>the</strong> space must be isomorphic to<br />

an average <strong>of</strong> Orlicz sequence spaces. Additional work was done by Kwapi6n and Schtitt<br />

[64,63], and Raynaud and Schtitt [88]. The pro<strong>of</strong>s <strong>of</strong> <strong>the</strong>se results are too technical for us<br />

to delve <strong>in</strong>to here, so we will content ourselves with stat<strong>in</strong>g a few <strong>of</strong> <strong>the</strong>m.<br />

THEOREM 22. There is a universal constant K such that if Y is a subspace <strong>of</strong> L1 with<br />

C-symmetric basis, <strong>the</strong>n <strong>the</strong>re is a probability space (I2, P) and a family <strong>of</strong> 2-concave<br />

normalized Orlicz functions F~o, o9 ~ I2 such that<br />

(KC)-If~ IlfllF~o dP ~< ]lfll ~< KCfs2 [ifl[Fo~dP<br />

for all f e Y.<br />

Bretagnolle and Dacunha-Castelle [22] showed that each Orlicz space with a 2-concave<br />

Orlicz function embeds <strong>in</strong>to L1. Thus <strong>the</strong>se two results give a pretty clear picture <strong>of</strong> <strong>the</strong><br />

symmetric sequence spaces which can embed <strong>in</strong> L1 and hence <strong>in</strong> Lp, for 1 < p < 2, [93].<br />

(See [53] for some additional material on symmetric and unconditional sequences <strong>in</strong> L1.)<br />

An example <strong>of</strong> a more general result from [88] is<br />

THEOREM 23. Lr<br />

is isomorphic to a subspace <strong>of</strong> L1 if and only if <strong>the</strong>re is a p such<br />

that Lr is order isomorphic to a sublattice <strong>of</strong> L1 (Lp) and X is isomorphic to a subspace<br />

<strong>of</strong> Lp.<br />

4. Subspaces <strong>of</strong> L p<br />

As noted <strong>in</strong> Section 3, if X c s <strong>the</strong>n for all e > 0, X conta<strong>in</strong>s Y with d (Y, s < 1 + e and<br />

Y is (1 + e)-complemented <strong>in</strong> s Not much more can be said about an arbitrary X c s<br />

X need not even have <strong>the</strong> approximation property, let alone a basis if p ~: 2, [26]. But we<br />

can say someth<strong>in</strong>g if X has an FDD.<br />

THEOREM 24 ([57]). Let (En) be an FDD for X c_ g~p. Then (En) can be blocked <strong>in</strong>to an<br />

g~ p decomposition (Fn). Thus X ~ (Y~ Fn ) p.


L p spaces 141<br />

We shall sketch <strong>the</strong> pro<strong>of</strong> which illustrates <strong>the</strong> block<strong>in</strong>g techniques developed by Johnson<br />

and Zipp<strong>in</strong> <strong>in</strong> several papers [57,56] and later fur<strong>the</strong>r developed [52]. This technique<br />

will have application for subspaces <strong>of</strong> L p. An extension <strong>of</strong> this <strong>the</strong>orem is given <strong>in</strong> Propo-<br />

sition 31. If A, B and C are positive numbers we write A c B if A ~< CB and B n 1 so that<br />

2-1-1<br />

I1(I - P~2)xll < 62<br />

if X E B(Ei)I2.<br />

Cont<strong>in</strong>ue <strong>in</strong> this manner to obta<strong>in</strong> subsequences (m i) and (n i) <strong>of</strong> 1~ satisfy<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g<br />

mn<br />

for Gn -- (Ei)i=mn_l+l<br />

(a) IIP~.xll < 6k if x E B[ci]i>~+:, k >~ 1, and<br />

(b) I1(I - P~)xll < ek ifx E B(Gz)~: ' , k~>l .<br />

A (possibly f<strong>in</strong>ite) sequence (x~) is a skipped block sequence with respect to (Gi) if<br />

<strong>the</strong>re exist <strong>in</strong>tegers r l


142 D. Alspach and E. Odell<br />

THEOREM 26. Let 1


Lp spaces 143<br />

The mapp<strong>in</strong>g T'[(Xn)] --+ (Y~ Lp(En))p given by Tx -- (x[En) is norm 1. The diagonal<br />

map D(y~ a~x~) -- (a~xn IEn) is bounded with ]]D[] ~< )~ [71, p. 20]. This yields <strong>the</strong> result.<br />

E3<br />

To obta<strong>in</strong> <strong>the</strong> "1 § e" conclusion <strong>of</strong> (c) we need to pass to a normalized block basis (yi)<br />

<strong>of</strong> (xi) which is a perturbation <strong>of</strong> a disjo<strong>in</strong>tly supported sequence. For example if p = 1 we<br />

may assume that xi = ui § di where (di) is disjo<strong>in</strong>tly supported and bounded away from 0<br />

<strong>in</strong> norm (hence equivalent to <strong>the</strong> unit vector basis <strong>of</strong> g l) and (u i) is uniformly <strong>in</strong>tegrable.<br />

This follows from <strong>the</strong> subsequence splitt<strong>in</strong>g lemma.<br />

THEOREM 29. If (fi) CC_ BLi <strong>the</strong>n <strong>the</strong>re exists a subsequence f/ -- ui § di where ]Ui] /~<br />

]di] -- 0 for all i, (u i) is uniformly <strong>in</strong>tegrable and (di) is a disjo<strong>in</strong>tly supported sequence.<br />

S<strong>in</strong>ce a uniformly <strong>in</strong>tegrable subset <strong>of</strong> L l is relatively weakly compact [49, Section 4],<br />

we may assume that (u i) is weakly convergent and hence cannot be equivalent to <strong>the</strong> unit<br />

vector basis <strong>of</strong> el. Thus some normalized block basis (yi) <strong>of</strong> (Xi) is a perturbation <strong>of</strong> a<br />

block basis <strong>of</strong> (di) which yields (c).<br />

D<br />

REMARK. While Hilbert subspaces <strong>of</strong> Lp (2 < p < cx~) are automatically complemented,<br />

for 1 < p < 2 every Hilbert subspace <strong>of</strong> L p conta<strong>in</strong>s a subspace which is complemented<br />

<strong>in</strong> Lp. Indeed let (xi) be a basis for X equivalent to <strong>the</strong> unit vector basis <strong>of</strong> ~2 with biorthog-<br />

1 1<br />

onal functionals (x*). Let Q'Lq --+ X* be <strong>the</strong> natural quotient map (p + q - 1). Let<br />

Qyi - x* with ([[yi [[) bounded. By Theorem 27(a) it follows that some subsequence <strong>of</strong><br />

(y~) must be equivalent to <strong>the</strong> unit vector basis <strong>of</strong> ~2 and [(y~)] is complemented <strong>in</strong> Lq by<br />

<strong>the</strong> orthogonal projection. It follows that [(x~)] is complemented <strong>in</strong> L p.<br />

A subspace <strong>of</strong> L p which is "small" embeds <strong>in</strong>to g p.<br />

THEOREM 30 ([51,46]). Let X c_ L p, 1 < p :fi 2 < cx~.<br />

(a) If2 < p < cxz and ~2 5/-+ X <strong>the</strong>n X ~ gp.<br />

(b) If 1 < p < 2 and <strong>the</strong>re exists K < ~ so that every normalized weakly null sequence<br />

<strong>in</strong> X has a subsequence K-equivalent to <strong>the</strong> unit vector basis <strong>of</strong> g.p <strong>the</strong>n X ~ g.p.<br />

Part (a) has been streng<strong>the</strong>ned [60] to yield that for all ~ > 0, X l_+~ s We shall sketch<br />

a unified approach to prov<strong>in</strong>g both parts. Let T~o -- {(nl ..... nk)" k E N and ni E • for<br />

1 ~< i ~< k} be <strong>the</strong> countably branch<strong>in</strong>g tree orderedby (nl ..... nk)


144 D. Alspach and E. Odell<br />

PROOF. By <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Theorem 24 (us<strong>in</strong>g Lemma 25) it suffices to show that (En) can<br />

be blocked <strong>in</strong>to a skipped gp decomposition, i.e., <strong>the</strong>re exists a block<strong>in</strong>g (Fn) <strong>of</strong> (En) and<br />

C < ec so that if (xn) is any normalized skipped block sequence <strong>of</strong> (Fn), <strong>the</strong>n (Xn) is C-<br />

equivalent to <strong>the</strong> unit vector basis <strong>of</strong> g p. C may be taken to be K + 1. By a compactness<br />

argument it suffices to prove <strong>the</strong> follow<strong>in</strong>g.<br />

(A) 3nl 'v'xl E S(Ei)~ 3n2 Vx2 G_ S(Ei)~ 3n3 Vx3 E S(Ei)~ ... so that (xi)~ is K-<br />

equivalent to <strong>the</strong> unit vector basis <strong>of</strong> gp.<br />

The formal negation <strong>of</strong> (A) is<br />

(B) Vnl 3Xl E S(Ei),, 1 Vn2 3x2 E S(Ei),~2 Vn3 3x3 E S(Ei),,~... so that (xi) is not K-<br />

equivalent to <strong>the</strong> unit vector basis <strong>of</strong> gp.<br />

S<strong>in</strong>ce <strong>the</strong>se are <strong>in</strong>f<strong>in</strong>ite sentences we cannot automatically assume that ei<strong>the</strong>r (A) or (B)<br />

must be true. However by Mart<strong>in</strong>'s <strong>the</strong>orem that Borel games are determ<strong>in</strong>ed [73] it does<br />

follow that (A) or (B) is true.<br />

Indeed consider a two player game where player (I) chooses n l E N and player (II)<br />

chooses X l E S(Ei)~. Then (I) chooses n2 > max(suppxl), <strong>the</strong> support be<strong>in</strong>g with respect<br />

to <strong>the</strong> Ei's. (II) chooses x2 E S/E i )n~ and so on. An outcome <strong>of</strong> this game is a sequence <strong>in</strong><br />

~-- {(nl,xl,n2, x2 .... )" Xj E S(Ei)nj and nj+l > max(suppxj) for j EN}.<br />

Player (I) w<strong>in</strong>s if <strong>the</strong> outcome belongs to<br />

r -- { (n 1, x l, n2, X2 .... ) E ~" (Xi)C~ is K-equivalent to <strong>the</strong> unit vector<br />

basis <strong>of</strong> g p }.<br />

The precise mean<strong>in</strong>g <strong>of</strong> (A) is that player (I) has a w<strong>in</strong>n<strong>in</strong>g strategy while (B) means that<br />

(II) has a w<strong>in</strong>n<strong>in</strong>g strategy. If ~ is given <strong>the</strong> relative product topology <strong>the</strong>n r is a closed<br />

subset <strong>of</strong> ~. Mart<strong>in</strong>'s <strong>the</strong>orem yields <strong>the</strong>n that this game is determ<strong>in</strong>ed, i.e., ei<strong>the</strong>r (I) or (II)<br />

has a w<strong>in</strong>n<strong>in</strong>g strategy.<br />

But if (B) holds one easily constructs a block tree T E To(X) with respect to (En) so<br />

that no branch is K-equivalent to <strong>the</strong> unit vector basis <strong>of</strong> ~ p.<br />

D<br />

By employ<strong>in</strong>g some fur<strong>the</strong>r block<strong>in</strong>g and perturbation arguments one can extend this<br />

result to<br />

PROPOSITION 32 ([84]). Let 1 < p < oc and let X be a reflexive space. Assume <strong>the</strong>re<br />

exists K < oo so that whenever T E T~o(X) is a weakly null tree <strong>the</strong>n some branch <strong>of</strong><br />

T is K-equivalent to <strong>the</strong> unit vector basis <strong>of</strong> g.p. Then <strong>the</strong>re exists a sequence <strong>of</strong> f<strong>in</strong>ite<br />

dimensional spaces (Fn) so that X ~ (~. Fn)ep.<br />

PROOF OF THEOREM 30. One first shows that <strong>the</strong> hypo<strong>the</strong>ses <strong>of</strong> both (a) and (b) imply<br />

<strong>the</strong> hypo<strong>the</strong>sis <strong>of</strong> Proposition 32. This depends upon <strong>the</strong> fact that X c L p and arguments<br />

like those used to prove Theorem 27.<br />

For example (b) yields that <strong>the</strong>re exists 3 -- 3(K) > 0 so that if (xi) is a normalized<br />

f<br />

weakly null sequence <strong>in</strong> X <strong>the</strong>n some subsequence can be written as x i -- Yi -Jr- di where


L p spaces 145<br />

Yi /X di -- 0, <strong>the</strong> di's are disjo<strong>in</strong>tly supported and Ildi I1 ~> 6 for all i while (a) yields <strong>in</strong><br />

addition that one can take []di ]1 --+ 1. Us<strong>in</strong>g this given T ~ T~o(X) one can select a branch<br />

<strong>of</strong> <strong>the</strong> tree exhibit<strong>in</strong>g similar behavior and hence is C (K)-equivalent to <strong>the</strong> unit vector basis<br />

Of~p.<br />

The pro<strong>of</strong> <strong>of</strong> Proposition 32 yields that if X c Y, where Y is reflexive with an FDD (En)<br />

<strong>the</strong>n one can block (En) <strong>in</strong>to (Fn) so that X ~ (~ Fn)ep. Thus one can block <strong>the</strong> Haar<br />

basis <strong>in</strong>to an FDD (Fn) so that X embeds <strong>in</strong>to (~ Fn)ep. S<strong>in</strong>ce each Fn ~ gp" for some<br />

m n ~ N, <strong>the</strong> latter space is a subspace <strong>of</strong> ~p.<br />

ff]<br />

From Theorems 30 and 27 it follows that a subspace X <strong>of</strong> L p for 2 < p < oc which<br />

is not isomorphic to ~2 nor to a subspace <strong>of</strong> s must conta<strong>in</strong> ~2 | g p. What additional<br />

conditions on X ensure that X ~ g p ff~ g2 ? The follow<strong>in</strong>g gives one such result.<br />

THEOREM 33 ([52]). Let 2 < p < oc. Let X be a subspace <strong>of</strong> Lp which is isomorphic to<br />

a quotient <strong>of</strong>a subspace <strong>of</strong>g~p • ~2. Then X embeds <strong>in</strong>to g~p 9 g~2.<br />

The method <strong>of</strong> pro<strong>of</strong> is a more complicated block<strong>in</strong>g argument which ultimately produces<br />

a block<strong>in</strong>g (Hn) <strong>of</strong> <strong>the</strong> Haar basis so that <strong>the</strong> natural mapp<strong>in</strong>g<br />

P<br />

is an <strong>in</strong>to isomorphism.<br />

The follow<strong>in</strong>g is open. It concerns <strong>the</strong> next layer <strong>of</strong> small subspaces <strong>of</strong> Lp.<br />

PROBLEM 34. Let X be a subspace <strong>of</strong> Lp, 2 < p < oc and assume that (~s ~ X.<br />

Does X ~ s 9 s<br />

The situation for subspaces <strong>of</strong> L p with 1 < p < 2 is <strong>of</strong> course more complicated (cf.<br />

Theorem 24). But we can say <strong>the</strong> follow<strong>in</strong>g.<br />

THEOREM 35 ([93]). Let 1


146 D. Alspach and E. Odell<br />

where d v = ~b dm. Thus s<strong>in</strong>ce x --+ x is an isometry <strong>of</strong> L1 with L l(v), <strong>the</strong> <strong>the</strong>orem will<br />

follow provided we have<br />

Step 2: Iq (X) < cx~ for some 1 < q ~< 2.<br />

If not one shows that s is f<strong>in</strong>itely representable <strong>in</strong> X. This yields that Bx is not uniformly<br />

<strong>in</strong>tegrable and hence X is not reflexive.<br />

D<br />

5. s 1 < p < cx~, p 7~ 2<br />

Recall that X is a s if and only if <strong>the</strong>re is a constant )~ < ~ such that for each<br />

f<strong>in</strong>ite dimensional subspace Z <strong>of</strong> X <strong>the</strong>re is a f<strong>in</strong>ite dimensional subspace Y <strong>of</strong> X such<br />

/7<br />

that d(Y, s p)


L p spaces 147<br />

realize this space as (y-~n~ 1 Lp (2-n, 2 -n+l) p. Thus by <strong>the</strong> decomposition method any<br />

complemented subspace <strong>of</strong> L p which conta<strong>in</strong>s L p complemented is isomorphic to Lp. In<br />

particular L p G g.p(F), where F is a f<strong>in</strong>ite or countably <strong>in</strong>f<strong>in</strong>ite set, is isomorphic to L p.<br />

It follows that <strong>the</strong>se two spaces are all <strong>of</strong> <strong>the</strong> isomorphic types that we get as <strong>the</strong> range <strong>of</strong> a<br />

conditional expectation onto a (non-f<strong>in</strong>ite) sub-cr-algebra <strong>of</strong> <strong>the</strong> Lebesgue sets. A slightly<br />

more general class <strong>of</strong> projections are those <strong>of</strong> <strong>the</strong> form Pf -- gE(fg -1 lsuppg I~) where<br />

g E L p and/3 is a sub-a-algebra. This is <strong>the</strong> general form <strong>of</strong> a contractive projection, [10,<br />

100]. These do not give us any new spaces s<strong>in</strong>ce <strong>the</strong> range <strong>of</strong> such a projection is isometric<br />

to L p (#) for some measure #. We have already seen that <strong>the</strong> sequence <strong>of</strong> Rademachers or<br />

Gaussians span complemented subspaces isomorphic to g2. It is easy to see <strong>the</strong>n that <strong>the</strong>re<br />

are complemented subspaces <strong>of</strong> Lp which are isomorphic to ~p @ ~2 and (y~ ~2)p.<br />

A natural question is whe<strong>the</strong>r L p can be split <strong>in</strong>to two spaces which are not isomorphic<br />

to L p, i.e., are <strong>the</strong>re complemented subspaces X and Y <strong>of</strong> L p such that L p -- X 9 Y<br />

but nei<strong>the</strong>r X nor Y is isomorphic to L p? As we have seen <strong>in</strong> <strong>the</strong> case <strong>of</strong> L p (and s<br />

(Theorem 7 and Theorem 15) <strong>the</strong> answer is no. The fact that L p is primary tell us "half"<br />

<strong>of</strong> <strong>the</strong> s but little about <strong>the</strong> far more <strong>in</strong>terest<strong>in</strong>g o<strong>the</strong>r "half". Let us now consider<br />

<strong>the</strong> one complemented subspace <strong>of</strong> L p which is not a s<br />

Suppose that X is a subspace <strong>of</strong> Lp which is isomorphic to ~2. By [58] if p > 2, <strong>the</strong> Lp<br />

and L2 norms are equivalent and <strong>the</strong> orthogonal projection is bounded. If p < 2 it is no<br />

longer <strong>the</strong> case that a subspace isomorphic to ~2 is complemented. This was first proved<br />

for certa<strong>in</strong> values <strong>of</strong> p by us<strong>in</strong>g some results from harmonic analysis, [13, p. 52], [94,20].<br />

Later a completely different approach yielded <strong>the</strong> existence <strong>of</strong> uncomplemented subspaces<br />

<strong>of</strong> Lp, for each p, 1 < p < 2, which are isomorphic to g2, [13]. This immediately implies<br />

<strong>the</strong> existence <strong>of</strong> subspaces <strong>of</strong> L p which are isomorphic to e p and not complemented, s<strong>in</strong>ce<br />

g p is isomorphic to (~ g~)p. For 2 < p < oc, Rosenthal showed that <strong>the</strong>re are uncomplemented<br />

subspaces <strong>of</strong> g p which are isomorphic to g p, [91, Theorem 6]. Curiously, such a<br />

subspace cannot be <strong>the</strong> span <strong>of</strong> a sequence <strong>of</strong> <strong>in</strong>dependent random variables, [31,17]. For<br />

some time it was thought that <strong>the</strong> situation might be different for p - 1, but <strong>in</strong> [ 17] Bourga<strong>in</strong><br />

shows that <strong>the</strong>re are subspaces <strong>of</strong> L1 isomorphic to el which are uncomplemented.<br />

If we look at projections <strong>the</strong>re is one very special property <strong>of</strong> g2 subspaces <strong>of</strong> L p,<br />

1 < p < 2. While it may not be true that <strong>the</strong> subspace itself is complemented, as we have<br />

seen, for any subspace X <strong>of</strong> L p which is isomorphic to g z, <strong>the</strong>re is an <strong>in</strong>f<strong>in</strong>ite dimensional<br />

subspace Y <strong>of</strong> X which is complemented. If X is a subspace <strong>of</strong> L p which is isomorphic to<br />

p, <strong>the</strong>n as was shown <strong>in</strong> Section 3 it must conta<strong>in</strong> a subspace which is complemented (and<br />

necessarily isomorphic to gp). It follows that for a subspace <strong>of</strong> Lp which is isomorphic to<br />

~p (~ ~2 <strong>the</strong>re is a subspace isomorphic to ~p • ~2 which is complemented <strong>in</strong> Lp. This<br />

sort <strong>of</strong> hereditary complementation property does not hold for general complemented subspaces<br />

<strong>of</strong> L p. Consequently, a special class <strong>of</strong> operators has been <strong>in</strong>troduced which have<br />

somewhat better properties with respect to g2 subspaces. This concept occurred implicitly<br />

<strong>in</strong> [91] and <strong>the</strong>n was developed fur<strong>the</strong>r <strong>in</strong> several papers, [7,5,6,38,52]. In [58] it was<br />

shown that subspaces <strong>of</strong> L p, 2 < p < oc, which are isomorphic to/~2 are complemented<br />

by show<strong>in</strong>g that <strong>the</strong> orthogonal projection acts as a bounded operator on L p. This is an<br />

example <strong>of</strong> an operator which is simultaneously bounded <strong>in</strong> both norms on L p. This, as it<br />

turns out, is not really an unusual situation.


148 D. Alspach and E. Odell<br />

THEOREM 37 ([47,53]). Suppose that 1


L p spaces 149<br />

In order to deal with spaces with a norm def<strong>in</strong>ed <strong>in</strong> terms <strong>of</strong> an L2 norm and an Lp<br />

norm and with similar subspaces <strong>of</strong> Lp, we will use <strong>the</strong> terms (p, 2)-bounded, (p, 2)-<br />

isomorphism, etc., to <strong>in</strong>dicate that <strong>the</strong> map is bounded, is an isomorphism, etc., <strong>in</strong> both<br />

norms. For example, if T is a map from (~ Xn)(p,2,(w,,)) <strong>in</strong>to Lp, we would say that<br />

T is (p, 2)-bounded with IlTllp,2 ~< K, if <strong>the</strong>re exists a constant K such that IlT(xn)ll2 ~<<br />

2 1/2<br />

K(y~ Ilxnll~w~)<br />

and IIT(x~)llp


150 D. Alspach and E. Odell<br />

The complemented subspaces <strong>of</strong> (Y]~ ~2)p have also been classified, [83]. It turns out that<br />

only <strong>the</strong> obvious spaces occur, g2, gp, gp (9 ~2 and (}-~' g2)p. The pro<strong>of</strong> is ra<strong>the</strong>r technical<br />

and ma<strong>in</strong>ly consists <strong>of</strong> carefully dist<strong>in</strong>guish<strong>in</strong>g between complemented subspaces which<br />

are isomorphic to complemented subspaces <strong>of</strong> gp | ~2 and those that conta<strong>in</strong> (y]~ g2)n-<br />

In 1972 Rosenthal proved his <strong>in</strong>equality and used it to show that <strong>the</strong>re were several o<strong>the</strong>r<br />

s<br />

In particular he def<strong>in</strong>ed <strong>the</strong> space X p which had some surpris<strong>in</strong>g properties<br />

and led to <strong>the</strong> construction [21] <strong>of</strong> uncountably many isomorphically dist<strong>in</strong>ct s<br />

Because X p has proved to be a fundamental space we will present some <strong>of</strong> Rosenthal's<br />

results <strong>in</strong> detail.<br />

To construct <strong>the</strong> space X p for p > 2, we let Xn be <strong>the</strong> one-dimensional space spanned<br />

by 1[0,1] for all n ~ N, and let (wn) be a sequence <strong>of</strong> numbers <strong>in</strong> (0, 1] such that for<br />

every e > 0, ~n:wn 0<br />

<strong>the</strong>n (~ Ixn [ 2 Wn) 2 1/2 >~ (<strong>in</strong>fwn)(y]~[xnlP) lip so that <strong>the</strong> norm is equivalent to <strong>the</strong> g2 norm.<br />

There is also a comb<strong>in</strong>ed case where <strong>the</strong> sequence breaks <strong>in</strong>to two pieces and thus yields<br />

~p (~ ~2.<br />

We have two issues to resolve with X p at this po<strong>in</strong>t. How do we see that it is a s<br />

space and how do we see that we really have only one isomorphism class? The solution to<br />

both <strong>in</strong>volves <strong>the</strong> construction <strong>of</strong> (p, 2)-bounded projections. (Also note that we can <strong>the</strong>n<br />

def<strong>in</strong>e Xq for q < 2 to be <strong>the</strong> dual <strong>of</strong> X p where p and q are conjugate <strong>in</strong>dices.) We will<br />

, ( OO<br />

use <strong>the</strong> representation above for (y]' Xn)(p,2 (w,,)) <strong>in</strong> Lp 1-1,,=1 [0, 1]), where <strong>the</strong> X,, are<br />

one-dimensional spaces spanned by a function Xn whose modulus is an <strong>in</strong>dicator function.<br />

For each n E N let x n = ]lxn 1122Xn and notice that Px - y]~n~ (f x n X)Xn is <strong>the</strong> orthogonal<br />

projection onto <strong>the</strong> closed span <strong>of</strong> (Xn) <strong>in</strong> L2. Thus P is bounded <strong>in</strong> <strong>the</strong> Lz-norm. Moreover<br />

by Rosenthal's <strong>in</strong>equality (1.11)<br />

n=l<br />

~< C max {<br />

n=l<br />

1"<br />

, Ix~,xl IIx. II p 9<br />

n=l<br />

Because P is bounded <strong>in</strong> <strong>the</strong> L2-norm and p > 2, <strong>the</strong> first expression <strong>in</strong> <strong>the</strong> max is bounded<br />

by Ilx l] p. To see that <strong>the</strong> second is also notice that<br />

n=l<br />

x*~x IIx. llp


L p spaces 151<br />

Because Ixn I is an <strong>in</strong>dicator function, Ilxn II 2 - IIx~ II p and thus (Xn Ilxn 1122 Ilxn II p) is a norm<br />

one sequence <strong>of</strong> mean zero symmetric <strong>in</strong>dependent random variables <strong>in</strong> Lq, where q --<br />

p/(p- 1). Consequently, <strong>the</strong> sequence is unconditional and has an upper s estimate.<br />

Therefore<br />

n--I<br />

f x, x IIx, 112 2 IIx, II p<br />

oo<br />

- fx~b~x~llx~l12211x~llp<br />

n-- 1<br />

~< IIx IlpC Ib, I q<br />

n--I<br />

for some constant C. This proves that <strong>the</strong> second expression is also bounded.<br />

The argument just given has been generalized to replace <strong>the</strong> one-dimensional spaces by<br />

<strong>the</strong> range <strong>of</strong> an orthogonal projection which is bounded on Lp. See [38, Theorem 4.8].<br />

THEOREM 39. Let 2 < p < cx~ and let (wn) be a sequence <strong>of</strong> scalars <strong>in</strong> (0, 1]. For each<br />

n let Xn be a subspace <strong>of</strong> mean zero functions <strong>in</strong> L p such that <strong>the</strong> orthogonal projection<br />

from Lp onto X,, Pn, is boundedand supllPnll < cx~. Then (~-~ Xn)(p,2,(w,,)) is isomorphic<br />

to a complemented subspace <strong>of</strong> L p.<br />

The pro<strong>of</strong> <strong>of</strong> this generalization is very similar to <strong>the</strong> pro<strong>of</strong> given above. The ma<strong>in</strong> po<strong>in</strong>t<br />

is to realize that <strong>the</strong> pairs (x,, x*) can be replaced by orthogonal projections and <strong>the</strong>ir<br />

adjo<strong>in</strong>ts.<br />

Next we will use a version <strong>of</strong> <strong>the</strong> decomposition method to show that <strong>the</strong>re is really<br />

only one isomorphism class for <strong>the</strong> spaces X(p,Z,(w,,) ) with (w,) thick near 0. To use <strong>the</strong><br />

decomposition method we need a suitable <strong>in</strong>f<strong>in</strong>ite sum <strong>of</strong> spaces. Rosenthal, [91 ], called<br />

this a symmetric sum; <strong>in</strong> our term<strong>in</strong>ology this is a (p, 2, (1)) sum, i.e., <strong>the</strong> sequence (wn)<br />

is just <strong>the</strong> constantly 1 sequence. As we noted earlier a key feature <strong>of</strong> <strong>the</strong> s that<br />

is used <strong>in</strong> <strong>the</strong> decomposition method is that one can comb<strong>in</strong>e a sequence <strong>of</strong> uniformly<br />

bounded operators on <strong>the</strong> <strong>in</strong>dividual summands to create an operator on <strong>the</strong> sum. For <strong>the</strong><br />

(p, 2, (1))-sum we have a similar property.<br />

LEMMA 40 ([6, Lemma 2.51). If {Xn} and {Yn} are two sequences <strong>of</strong> subspaces <strong>of</strong><br />

Lp(S2, #) for some probability measure #, and <strong>the</strong>re is a constant K and (p, 2)-<br />

cont<strong>in</strong>uous operators {Tn} such that I]Tnllp,2


- y*(Eanen)y<br />

152 D. Alspach and E. Odell<br />

affected by redundancy. Thus we can take a thick sequence (Wn) and def<strong>in</strong>e Wm,n = Wn<br />

for all n, m <strong>in</strong> N, to get a space X = X(p,Z,(wm,n)) which is obviously (p, 2)-isomorphic<br />

to <strong>the</strong> (p, 2, (1)) sum <strong>of</strong> <strong>in</strong>f<strong>in</strong>itely many copies <strong>of</strong> itself. Now we show how to construct<br />

projections which are (p, 2)-bounded.<br />

As Rosenthal discovered one can take a particular comb<strong>in</strong>ation <strong>of</strong> any f<strong>in</strong>ite set <strong>of</strong><br />

weights (Wn)ncF and get a block <strong>of</strong> <strong>the</strong> natural basis (en) <strong>of</strong> X(p,2,(Wn)) and a correspond-<br />

<strong>in</strong>g functional which is (p, 2)-cont<strong>in</strong>uous. If Zn6F It~2p/(p-2) ~ 1, let<br />

( )-'<br />

Y -- E'wn2/(p-2)D~n and y* - E w2P/(P-2) Ell) n2(p-1)/(p-2)e,n.<br />

Now notice that <strong>the</strong> map<br />

ncF n~F nEF<br />

Pn(Eanen) -<br />

E w2(p-1)/(P-2)an) y<br />

n~F<br />

is (p, 2)-cont<strong>in</strong>uous. Indeed,<br />

(~<br />

w2P/(P -2))'(z ll02(p-1)/(P-Z)an ) y<br />

n6F<br />

( z ) '1~ 2~ "~ 2'a~ (Z - 2~-2'<br />

_ ll)2p/(P -2) Wn 113n<br />

ncF n~F n6F<br />

,j2<br />


L p spaces 153<br />

for all k is (p, 2)-equivalent to <strong>the</strong> natural basis <strong>of</strong> X(p,2,(vn)) where<br />

v.-( ~,an,2<br />

w.<br />

2)'/2/(<br />

~_~ la.I p<br />

),/p<br />

n~Fk<br />

n6Fk<br />

2/(p-2)<br />

Notice that for <strong>the</strong> special case an -- ton<br />

)(p-2)/(2p)<br />

Z to2p/(p-2)<br />

n~Fk<br />

<strong>the</strong> weight vk is<br />

Also if K1 and K2 are positive constants and (Wn) and (W~n) are two sequences <strong>in</strong> (0, 1]<br />

such that KlWn


154 D. Alspach and E. Odell<br />

and is uniformly p-<strong>in</strong>tegrable. Us<strong>in</strong>g this Schechtman showed that @kn= 1 X p conta<strong>in</strong>s <strong>the</strong><br />

k-fold iterated sum<br />

(Z(Z (Z'r')r2<br />

where 2 ~> rl > r2 > ... > rk ~> p, but not a (k + 1)-fold iterated sum. Thus <strong>the</strong> spaces<br />

1 Xp, k - , 1 2,.. ., are different.<br />

The tensor product has one serious drawback <strong>in</strong> that <strong>the</strong> norm <strong>of</strong> <strong>the</strong> tensor product <strong>of</strong><br />

<strong>the</strong> projections grows rapidly. (See [6, Chapter 1] for some details.) Thus <strong>the</strong>re was no<br />

obvious way to use this to produce uncountably many different separable/2p-spaces. In<br />

[21,19] a completely different approach us<strong>in</strong>g <strong>in</strong>dependent sums was used to produce COl<br />

dist<strong>in</strong>ct/2p-spaces.<br />

In order to construct/2p-spaces based on <strong>in</strong>dependent sums without hav<strong>in</strong>g difficulties<br />

with constants, Bourga<strong>in</strong>, Rosenthal and Schechtman <strong>in</strong>troduce an isomorph <strong>of</strong> L p which<br />

is convenient for <strong>the</strong> construction. Let T denote <strong>the</strong> usual dyadic tree and for each node N<br />

<strong>of</strong> 7- we consider a copy <strong>of</strong> {0, 1 }, X2N, with <strong>the</strong> measure <strong>of</strong> each po<strong>in</strong>t one half. Now we<br />

def<strong>in</strong>e a certa<strong>in</strong> subspace L <strong>of</strong> L p on <strong>the</strong> natural product algebra and probability measure<br />

on I-IN~'T ~(2N, which is generated by those functions which are measurable with respect<br />

to any branch sub-a-algebra. That is, if B is a sequence <strong>of</strong> pairwise comparable nodes<br />

<strong>in</strong> <strong>the</strong> tree, <strong>the</strong>n we consider <strong>the</strong> sub-o'-algebra generated by sets which depend only on<br />

<strong>the</strong> coord<strong>in</strong>ates <strong>in</strong> B and L conta<strong>in</strong>s <strong>the</strong> functions which are measurable with respect to<br />

each such sub-o'-algebras. It is obvious that this space conta<strong>in</strong>s complemented subspaces<br />

isomorphic to L p <strong>of</strong> <strong>the</strong> Cantor set (with <strong>the</strong> usual product measure) because <strong>the</strong> o'-algebra<br />

generated by one branch is isomorphic to <strong>the</strong> Cantor a-algebra. Less obvious is <strong>the</strong> fact<br />

that this subspace L is complemented and thus isomorphic to L p.<br />

By consider<strong>in</strong>g subspaces <strong>of</strong> L, Rp, which are generated by functions which depend on<br />

certa<strong>in</strong> subtrees <strong>of</strong> 7- <strong>of</strong> order c~, Bourga<strong>in</strong>, Rosenthal and Schechtman show that <strong>the</strong>re are<br />

uncountably many s<br />

Their argument is actually to some extent an existence argument.<br />

The pro<strong>of</strong> depends on an ord<strong>in</strong>al Lp-<strong>in</strong>dex which <strong>the</strong>y cannot compute precisely<br />

but are able to show grows with <strong>the</strong> ord<strong>in</strong>al <strong>in</strong>dex <strong>of</strong> <strong>the</strong> subtree. In [6] <strong>the</strong> precise isomorphic<br />

classification <strong>of</strong> <strong>the</strong>se spaces is given. It is also shown <strong>the</strong>re that <strong>the</strong>se spaces are not<br />

isomorphic to any <strong>of</strong> those constructed by Schechtman. More details about <strong>the</strong> ord<strong>in</strong>al L p<br />

<strong>in</strong>dex can be found <strong>in</strong> [11 ].<br />

For <strong>the</strong> case p = 1, Bourga<strong>in</strong> [ 18,19] adapted some <strong>of</strong> <strong>the</strong> ideas from [21 ] to produce an<br />

uncountable family <strong>of</strong> s with <strong>the</strong> Radon-Nikodym property. The difficulty was<br />

that <strong>the</strong> analogous spaces for p = 1 are not complemented so Bourga<strong>in</strong> showed that <strong>the</strong>re<br />

are envelop<strong>in</strong>g/21-spaces which are complemented. Earlier Johnson and L<strong>in</strong>denstrauss,<br />

[48], showed by a completely different approach that <strong>the</strong>re are uncountably (actually 2 s~<br />

many separable non-isomorphic s which have <strong>the</strong> Radon-Nikodym and Schur<br />

properties but do not embed <strong>in</strong> separable dual spaces.<br />

At this po<strong>in</strong>t a complete isomorphic classification <strong>of</strong> <strong>the</strong> separable s seems out<br />

<strong>of</strong> reach. Most <strong>of</strong> <strong>the</strong> known relations among <strong>the</strong> smaller spaces can be found <strong>in</strong> [38]. The<br />

space X p itself has resisted study, [5]. It is not known whe<strong>the</strong>r <strong>the</strong>re are any complemented<br />

subspaces <strong>of</strong> Xp o<strong>the</strong>r than gp, ~2, ~p 9 ~2, and Xp or any o<strong>the</strong>r s<br />

except<br />

under additional assumptions such as hav<strong>in</strong>g an unconditional basis, [52].


L p spaces 155<br />

As we have noted above <strong>the</strong> general s<br />

are mysterious but <strong>the</strong> contractively<br />

complemented ones are just Lp(l z) spaces. This raises <strong>the</strong> question as to what is <strong>the</strong> size <strong>of</strong><br />

<strong>the</strong> largest constant 9/such that if P is a projection <strong>of</strong> norm less than y, <strong>the</strong>n <strong>the</strong> range <strong>of</strong><br />

P is isomorphic to L p (#) for some #. Because <strong>the</strong> norms <strong>of</strong> projections are l<strong>in</strong>ked to <strong>the</strong><br />

parameter )~ <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> s<br />

<strong>the</strong>re is a companion question as<br />

to <strong>the</strong> largest constant )~ so that if X is a s<br />

<strong>the</strong>n X is isomorphic to Lp(#). One<br />

can also consider <strong>the</strong> question <strong>of</strong> <strong>the</strong> largest constant )~ such that if X is a s<br />

<strong>of</strong> L p <strong>the</strong>n X is complemented <strong>in</strong> Lp.<br />

In [32] it was shown that <strong>the</strong>re is a constant )~p such that if X is a f<strong>in</strong>ite dimensional<br />

/7<br />

subspace <strong>of</strong> L p and T is an isomorphism from s with standard basis (e j) onto X with<br />

][TI[II T-1 l[- )~ < )~p <strong>the</strong>n <strong>the</strong>re are disjo<strong>in</strong>t sets and e > 0 such that IlTejla j II > e for<br />

each j. Moreover e converges to 1 as )~ converges to 1. For <strong>the</strong> case p = 1 this was sufficient<br />

to imply that X is complemented. The ma<strong>in</strong> lemma <strong>in</strong> Dor's pro<strong>of</strong> is <strong>the</strong> follow<strong>in</strong>g.<br />

LEMMA 43. Let gl,g2 .... be a sequence <strong>of</strong> non-negative functions <strong>in</strong> L1 and let<br />

O


156 D. Alspach and E. Odell<br />

In <strong>the</strong> case p = 1 it is sufficient to have a uniform bound on <strong>the</strong> <strong>in</strong>dividual errors<br />

[Ifnl[O, 1]\ai II <strong>in</strong> order to show that <strong>the</strong> obvious candidate for a projection is bounded. For<br />

p > 1 Schechtman [97] was able to obta<strong>in</strong> an error estimate <strong>of</strong> <strong>the</strong> form<br />

II~ajTejlAj II a()~, e)(~ lajlP) '/p<br />

with a0~, e) --+ 0 as )~ ~ 1 and ~ --+ 1 which gave <strong>the</strong> complementation result <strong>in</strong> this<br />

case also. Thus if X is a/2p,Z subspace <strong>of</strong> L p, 1 < p < c~, with )~ sufficiently close to<br />

1, by pass<strong>in</strong>g to a limit <strong>of</strong> projections on an <strong>in</strong>creas<strong>in</strong>g family <strong>of</strong> subspaces Xn we get<br />

that X is complemented. (See, for example, [67].) For <strong>the</strong> case p = 1 pass<strong>in</strong>g to a limit is<br />

more problematical because <strong>the</strong> spaces are not reflexive. None<strong>the</strong>less it was shown <strong>in</strong> [8]<br />

that a/~l,l+e subspace <strong>of</strong> L1 is complemented if ~ is sufficiently small. Recently [41] a<br />

somewhat different approach to <strong>the</strong>se problems for p = 1 has been given which makes use<br />

<strong>of</strong> a representation <strong>the</strong>orem <strong>of</strong> Kalton for operators on Lp, 0 < p


Lp spaces 157<br />

[11]<br />

[121<br />

[]3]<br />

[141<br />

[151<br />

[161<br />

[171<br />

[18]<br />

[19]<br />

[20]<br />

[211<br />

[22]<br />

[231<br />

[241<br />

[251<br />

[26]<br />

[27]<br />

[281<br />

[291<br />

[301<br />

[3]]<br />

[32]<br />

[33]<br />

[341<br />

[351<br />

[36]<br />

[371<br />

[38]<br />

[391<br />

[40]<br />

[41]<br />

[42]<br />

S. Argyros, G. Godefroy and H.R Rosenthal, Descriptive set <strong>the</strong>ory and <strong>Banach</strong> spaces, Handbook <strong>of</strong> <strong>the</strong><br />

<strong>Geometry</strong> <strong>of</strong> <strong>Banach</strong> <strong>Spaces</strong>, Vol. 2, W.B. Johnson and J. L<strong>in</strong>denstrauss, eds, Elsevier, Amsterdam (2001),<br />

to appear.<br />

S. Argyros, S. Negrepontis and Th. Zachariades, Weakly stable <strong>Banach</strong> spaces, Israel J. Math. 57 (1)<br />

(1987), 68-88.<br />

G. Bennett, L.E. Dot, V. Goodman, W.B. Johnson and C.M. Newman, On uncomplemented subspaces <strong>of</strong><br />

Lp, 1 < p < 2, Israel J. Math. 26 (2) (1977), 178-187.<br />

R.P. Boas, Isomorphism between HP and LP, Amer. J. Math. 77 (1957), 655-656.<br />

F. Bohnenblust, An axiomatic characterization <strong>of</strong> L p-spaces, Duke Math. J. 6 (1940), 627-640.<br />

J. Bourga<strong>in</strong>, On convergent sequences <strong>of</strong> cont<strong>in</strong>uous functions, Bull. Soc. Math. Bel. 32 (1980), 235-249.<br />

J. Bourga<strong>in</strong>, A counterexample to a complementation problem, Compositio Math. 43 (1) (1981), 133-144.<br />

J. Bourga<strong>in</strong>, A new class <strong>of</strong> El-spaces, Israel J. Math. 39 (1-2) (1981), 113-126.<br />

J. Bourga<strong>in</strong>, New Classes <strong>of</strong> 12 P -<strong>Spaces</strong>, Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong> (1981).<br />

J. Bourga<strong>in</strong>, Bounded orthogonal systems and <strong>the</strong> s problem, Acta Math. 162 (3-4) (1989), 227-<br />

245.<br />

J. Bourga<strong>in</strong>, H.P. Rosenthal and G. Schechtman, An ord<strong>in</strong>al L P-<strong>in</strong>dex for <strong>Banach</strong> spaces, with application<br />

to complemented subspaces <strong>of</strong> L p, Ann. <strong>of</strong> Math. (2) 114 (2) (1981), 193-228.<br />

J. Bretagnolle and D. Dacunha-Castelle, Application de l'dtude de certa<strong>in</strong>es formes l<strong>in</strong>daires al~atoires au<br />

plongement d'espaces de <strong>Banach</strong> dans des espaces L P, Ann. Sci. l~cole Norm. Sup. (4) 2 (1969), 437-480.<br />

S.Q. Bu, Deux remarques sur les espaces de <strong>Banach</strong> stables, Compositio Math. 69 (3) (1989), 341-355.<br />

D.L. Burkholder, Mart<strong>in</strong>gales and s<strong>in</strong>gular <strong>in</strong>tegrals <strong>in</strong> <strong>Banach</strong> spaces, Handbook <strong>of</strong> <strong>the</strong> <strong>Geometry</strong> <strong>of</strong><br />

<strong>Banach</strong> <strong>Spaces</strong>, Vol. 1, W.B. Johnson and J. L<strong>in</strong>denstrauss, eds, Elsevier, Amsterdam (2001), 233-269.<br />

D.L. Burkholder and R.E Gundy, Extrapolation and <strong>in</strong>terpolation <strong>of</strong> quasi-l<strong>in</strong>ear operators on mart<strong>in</strong>gales,<br />

Acta Math. 124 (1970), 249-304.<br />

EG. Casazza, Approximation properties, Handbook <strong>of</strong> <strong>the</strong> <strong>Geometry</strong> <strong>of</strong> <strong>Banach</strong> <strong>Spaces</strong>, Vol. 1, W.B. Johnson<br />

and J. L<strong>in</strong>denstrauss, eds, Elsevier, Amsterdam (2001), 271-316.<br />

P.G. Casazza and B.L. L<strong>in</strong>, Projections on <strong>Banach</strong> spaces with symmetric bases, Studia Math. 52 (1974),<br />

189-193.<br />

P.G. Casazza and T.J. Shura, Tsirelson's Space, Lecture Notes <strong>in</strong> Math. 1363, Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong><br />

(1989). With an appendix by J. Baker, O. Slotterbeck and R. Aron.<br />

J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.<br />

D. Dacunha-Castelle, Variables al~atoires dchangeables et espaces d'Orlicz, S6m<strong>in</strong>aire Maurey-Schwartz<br />

1974-1975: Espaces L p, Applications Radonifiantes et G6om6trie des Espaces de <strong>Banach</strong>, Exp. Nos. X<br />

et XI, Centre Math., t~cole Polytech., Paris (1975), 21.<br />

L.E. Dor and T. Starbird, Projections <strong>of</strong> L p onto subspaces spanned by <strong>in</strong>dependent random variables,<br />

Compositio Math. 39 (2) (1979), 141-175.<br />

L.E. Dor, On projections <strong>in</strong> L ! , Ann. <strong>of</strong> Math. (2) 102 (3)(1975), 463-474.<br />

A. Dvoretzky, Some results on convex bodies and <strong>Banach</strong> spaces, Proc. Sympos. L<strong>in</strong>ear <strong>Spaces</strong>, Jerusalem<br />

(1961), 123-160.<br />

I.S. l~delgte<strong>in</strong> and R Wojtaszczyk, On projections and unconditional bases <strong>in</strong> direct sums <strong>of</strong> <strong>Banach</strong> spaces,<br />

Studia Math. 56 (3) (1976), 263-276.<br />

M.A. EI-Gebeily, Isometries and e-near isometries <strong>of</strong> analytic function spaces, Phd.D. <strong>the</strong>sis, Oklahoma<br />

State University (1984).<br />

R Enflo and T. Starbird, Subspaces <strong>of</strong> L 1 conta<strong>in</strong><strong>in</strong>g L 1, Studia Math. LXV (1979), 203-225.<br />

R Enflo and H.R Rosenthal, Some results concern<strong>in</strong>g L P (#)-spaces, J. Funct. Anal. 14 (1973), 325-348.<br />

G. Force, Constructions <strong>of</strong> 12p-spaces, 1 < p -J= 2 < oo, Ed.D. <strong>the</strong>sis, Oklahoma State University (1995).<br />

(Onl<strong>in</strong>e) Available: http://arXiv.org/math.FA/9512208 (June 19 2000).<br />

J.L.B. Gamlen and R.J. Gaudet, On subsequences <strong>of</strong><strong>the</strong> Haar system <strong>in</strong> Lp [1, 1] (1 ~< p


158 D. Alspach and E. Odell<br />

[43] S. Guerre-Delabribre and Y. Raynaud, On sequences with no almost symmetric subsequence, Texas Functional<br />

Analysis Sem<strong>in</strong>ar 1985-1986 (Aust<strong>in</strong>, TX, 1985-1986), Longhorn Notes, Univ. Texas, Aust<strong>in</strong>, TX<br />

(1986), 83-93.<br />

[44] S. Guerre-Delabri~re, Classical Sequences <strong>in</strong> <strong>Banach</strong> <strong>Spaces</strong>, Monographs and Textbooks <strong>in</strong> Pure and<br />

Applied Ma<strong>the</strong>matics 166, Marcel Dekker, New York (1992). With a foreword by Haskell P. Rosenthal.<br />

[45] R. Haydon and B. Maurey, On <strong>Banach</strong> spaces with strongly separable types, J. London Math. Soc. 2<br />

(1986), 484-498.<br />

[46] W.B. Johnson, On quotients <strong>of</strong> Lp which are quotients <strong>of</strong>lp, Compositio Math. 34 (1) (1977), 69-89.<br />

[47] W.B. Johnson and L. Jones, Every Lp operator is an L 2 operator, Proc. Amer. Math. Soc. 72 (2) (1978),<br />

309-312.<br />

[48] W.B. Johnson and J. L<strong>in</strong>denstrauss, Examples <strong>of</strong> 121 spaces, Ark. Mat. 18 (1) (1980), 101-106.<br />

[49] W.B. Johnson and J. L<strong>in</strong>denstrauss, <strong>Basic</strong> concepts <strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>Banach</strong> spaces, Handbook <strong>of</strong> <strong>the</strong><br />

<strong>Geometry</strong> <strong>of</strong> <strong>Banach</strong> <strong>Spaces</strong>, Vol. 1, W.B. Johnson and J. L<strong>in</strong>denstrauss, eds, Elsevier, Amsterdam (2001),<br />

1-84.<br />

[50] W.B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures <strong>in</strong> <strong>Banach</strong> spaces, Mem.<br />

Amer. Math. Soc. 19 (217) (1979), v+298.<br />

[51] W.B. Johnson and E. Odell, Subspaces <strong>of</strong> Lp which embed <strong>in</strong>to lp, Compositio Math. 28 (1974), 37-49.<br />

[52] W.B. Johnson and E. Odell, Subspaces and quotients <strong>of</strong> lp @ 12 and Xp, Acta Math. 147 (1-2) (1981),<br />

117-147.<br />

[53] W.B. Johnson and G. Schechtman, F<strong>in</strong>ite dimensional subspaces <strong>of</strong> Lp, Handbook <strong>of</strong> <strong>the</strong> <strong>Geometry</strong> <strong>of</strong><br />

<strong>Banach</strong> <strong>Spaces</strong>, Vol. 1, W.B. Johnson and J. L<strong>in</strong>denstrauss, eds, Elsevier, Amsterdam (2001), 837-870.<br />

[54] W.B. Johnson, H.E Rosenthal and M. Zipp<strong>in</strong>, On bases, f<strong>in</strong>ite dimensional decompositions and weaker<br />

structures <strong>in</strong> <strong>Banach</strong> spaces, Israel J. Math. 9 (1971), 488-506.<br />

[55] W.B. Johnson, G. Schechtman and J. Z<strong>in</strong>n, Best constants <strong>in</strong> moment <strong>in</strong>equalities for l<strong>in</strong>ear comb<strong>in</strong>ations<br />

<strong>of</strong> <strong>in</strong>dependent and exchangeable random variables, Ann. Probab. 13 (1) (1985), 234-253.<br />

[56] W.B. Johnson and M. Zipp<strong>in</strong>, On subspaces <strong>of</strong> quotients <strong>of</strong> (y~ Gn)Ip and (y~ Gn)c 0 , Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong><br />

International Symposium on Partial Differential Equations and <strong>the</strong> <strong>Geometry</strong> <strong>of</strong> Normed L<strong>in</strong>ear <strong>Spaces</strong><br />

(Jerusalem, 1972), Israel J. Math. 13 (1972), 311-316.<br />

[57] W.B. Johnson and M. Zipp<strong>in</strong>, Subspaces and quotient spaces <strong>of</strong> (y~ Gn)lp and (~ Gn)co, Israel J. Math.<br />

17 (1974), 50--55.<br />

[58] M.I. Kadets and A. Pe~czyfiski, Bases, lacunary sequences and complemented subspaces <strong>in</strong> <strong>the</strong> spaces<br />

Lp, Studia Math. 21 (1961/1962), 161-176.<br />

[59] N.J. Kalton, The endomorphisms <strong>of</strong> Lp (0


L p spaces 159<br />

[71] J. L<strong>in</strong>denstrauss and L. Tzafriri, Classical <strong>Banach</strong> <strong>Spaces</strong>. I, Sequence <strong>Spaces</strong>, Ergebnisse der Ma<strong>the</strong>matik<br />

und ihrer Grenzgebiete 92, Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong> (1977).<br />

[72] J. L<strong>in</strong>denstrauss and L. Tzafriri, Classical <strong>Banach</strong> <strong>Spaces</strong>. II, Ergebnisse der Ma<strong>the</strong>matik und ihrer Grenzgebiete<br />

97, Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong> (1979).<br />

[73] D.A. Mart<strong>in</strong>, Borel determ<strong>in</strong>ancy, Ann. <strong>of</strong> Math. 102 (1975), 363-371.<br />

[74] B. Maurey, Sous-espaces compl~ment~s de L p, d'aprks P. Enflo, S6m<strong>in</strong>aire Maurey-Schwartz 1974-<br />

1975: Espaces LP, Applications Radonifiantes et G6om6trie des Espaces de <strong>Banach</strong>, Exp. No. III, Centre<br />

Math., l~cole Polytech., Paris (1975), 15 (erratum, p. 1).<br />

[75] B. Maurey, Tout sous-espace de L 1 contient un lp (d'aprOs D. Aldous), Sem<strong>in</strong>ar on Functional Analysis,<br />

1979-1980 (French), Exp. 1-2, t~cole Polytech., Palaiseau (1980), 13.<br />

[76] B. Maurey, Th~orkmes de factorisation pour les op~rateurs l<strong>in</strong>~aires gt valeurs dans les espaces L p, Soci6t6<br />

Math6matique de France, Paris (1974). With an English summary, Ast6risque 11.<br />

[77] B. Maurey, Local <strong>the</strong>ory: history and impact, Handbook <strong>of</strong> <strong>the</strong> <strong>Geometry</strong> <strong>of</strong> <strong>Banach</strong> <strong>Spaces</strong>, Vol. 2,<br />

W.B. Johnson and J. L<strong>in</strong>denstrauss, eds, Elsevier, Amsterdam (2001), to appear.<br />

[78] P. Mtiller and G. Schechtman, Several results concern<strong>in</strong>g unconditionality <strong>in</strong> vector valued LP and<br />

H 1 (Un) spaces, Ill<strong>in</strong>ois J. Math. 35 (1991), 220-233.<br />

[79] P. Miiller and G. Schechtman, A remarkable rearrangement <strong>of</strong> <strong>the</strong> Haar system <strong>in</strong> Lp, Proc. Amer. Math.<br />

Soc. 25 (1997), 2363-2371.<br />

[80] P.F.X. Miiller, A local version <strong>of</strong> a result <strong>of</strong> Gamlen and Gaudet, Israel J. Math. 63 (2) (1988), 212-222.<br />

[81] EJ. Murray, On complementary manifolds and projections <strong>in</strong> spaces Lp and g.p, Trans. Amer. Math. Soc.<br />

41 (1937), 138-152.<br />

[82] N.J. Nielsen and E Wojtaszczyk, A remark on bases <strong>in</strong> s with an application to complementably<br />

universal 12~-spaces, Bull. Acad. Polon. Sci. S6r. Sci. Math. Astronom. Phys. 21 (1973), 249-254.<br />

[83] E. Odell, On complemented subspaces <strong>of</strong> (~-~ 12)lp, Israel J. Math. 23 (3-4) (1976), 353-367.<br />

[84] E. Odell and Th. Schlumprecht, Trees and branches <strong>in</strong> <strong>Banach</strong> spaces, Prepr<strong>in</strong>t.<br />

[85] E. Odell and Th. Schlumprecht, Distortion and asymptotic structure, Handbook <strong>of</strong> <strong>the</strong> <strong>Geometry</strong> <strong>of</strong> <strong>Banach</strong><br />

<strong>Spaces</strong>, Vol. 2, W.B. Johnson and J. L<strong>in</strong>denstrauss, eds, Elsevier, Amsterdam (2001), to appear.<br />

[86] A. Petczyfiski, Projections <strong>in</strong> certa<strong>in</strong> <strong>Banach</strong> spaces, Studia Math. 19 (1960), 209-228.<br />

[87] Y. Raynaud, Stabilit~ des espaces d'op~rateurs CE, Sem<strong>in</strong>ar on <strong>the</strong> <strong>Geometry</strong> <strong>of</strong> <strong>Banach</strong> <strong>Spaces</strong>, Vol. I,<br />

II (Paris, 1983), Publ. Math. Univ. Paris VII, 18, Univ. Paris VII, Paris (1984), 1-12.<br />

[88] Y. Raynaud and C. Schtitt, Some results on symmetric subspaces <strong>of</strong> L 1, Studia Math. 89 (1) (1988), 27-35.<br />

[89] Y. Raynaud, Sur les sous-espaces de L P (Lq), S6m<strong>in</strong>aire d'Analyse Fonctionelle 1984/1985, Publ. Math.<br />

Univ. Paris VII, 26, Univ. Paris VII, Paris (1986), 49-71.<br />

[90] H.P. Rosenthal, The <strong>Banach</strong> spaces C(K), Handbook <strong>of</strong> <strong>the</strong> <strong>Geometry</strong> <strong>of</strong> <strong>Banach</strong> <strong>Spaces</strong>, Vol. 2,<br />

W.B. Johnson and J. L<strong>in</strong>denstrauss, eds, Elsevier, Amsterdam (2001), to appear.<br />

[91 ] H.P. Rosenthal, On <strong>the</strong> subspaces <strong>of</strong> L P (p > 2) spanned by sequences <strong>of</strong> <strong>in</strong>dependent random variables,<br />

Israel J. Math. 8 (1970), 273-303.<br />

[92] H.P. Rosenthal, On <strong>the</strong> span <strong>in</strong> L P <strong>of</strong> sequences <strong>of</strong> <strong>in</strong>dependent random variables. II, Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong><br />

Sixth Berkeley Symposium on Ma<strong>the</strong>matical Statistics and Probability (Univ. California, Berkeley, CA,<br />

1970/1971), Vol. II: Probability Theory, Univ. California Press, Berkeley, CA (1972), 149-167.<br />

[93] H.P. Rosenthal, On subspaces <strong>of</strong> LP, Ann. <strong>of</strong> Math. (2) 97 (1973), 344-373.<br />

[94] W. Rud<strong>in</strong>, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.<br />

[95] G. Schechtman, A remark on unconditional basic sequences <strong>in</strong> Lp (1 < p < ~), Israel J. Math. 19 (1974),<br />

220-224.<br />

[96] G. Schechtman, Examples <strong>of</strong>s spaces (1 < p ~ 2 < cx~), Israel J. Math. 22 (1975), 138-147.<br />

[97] G. Schechtman, Almost isometric Lp subspaces <strong>of</strong> Lp(O, 1), J. London Math. Soc. (2) 20 (3) (1979),<br />

516-528.<br />

[98] S.J. Szarek, A <strong>Banach</strong> space without a basis which has <strong>the</strong> bounded approximation property, Acta Math.<br />

159 (1-2) (1987), 81-98.<br />

[99] B.S. Tsirelson, It is impossible to imbed l p or c O <strong>in</strong>to an arbitrary <strong>Banach</strong> space, Funkcional. Anal. i<br />

Prilo2en. 8 (2) (1974), 57-60. (In Russian.)<br />

[100] L. Tzafriri, Remarks on contractive projections <strong>in</strong> Lp-spaces, Israel J. Math. 7 (1969), 9-15.<br />

[ 101 ] M. Zipp<strong>in</strong>, On perfectly homogeneous bases <strong>in</strong> <strong>Banach</strong> spaces, Israel J. Math. 4 (1966), 265-272.


CHAPTER 4<br />

Convex <strong>Geometry</strong> and Functional Analysis<br />

Keith Ball<br />

Department <strong>of</strong> Ma<strong>the</strong>matics, University College London, London, England<br />

E-mail: kmb @ math. ucl. ac. uk<br />

Contents<br />

Introduction ..................................................... 163<br />

1. Convolution <strong>in</strong>equalities <strong>in</strong> convex geometry ................................. 163<br />

1.1. The Brascamp-Lieb <strong>in</strong>equality ...................................... 164<br />

1.2. The reverse isoperimetric <strong>in</strong>equality ................................... 169<br />

1.3. The reverse Brascamp-Lieb <strong>in</strong>equality ................................. 171<br />

1.4. Higher dimensional projections ..................................... 173<br />

2. Volumes <strong>of</strong> sections <strong>of</strong> convex bodies ..................................... 174<br />

2.1. Vaaler's Theorem and its relatives .................................... 177<br />

2.2. Upper bounds for <strong>the</strong> volumes <strong>of</strong> sections <strong>of</strong> cubes ........................... 181<br />

3. Plank problems ................................................. 182<br />

3.1. Bang's lemma ............................................... 185<br />

3.2. The aff<strong>in</strong>e plank <strong>the</strong>orem ......................................... 185<br />

3.3. Nazarov's solution to <strong>the</strong> coefficient problem .............................. 189<br />

3.4. Related results and open problems .................................... 192<br />

References ..................................................... 193<br />

HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL. 1<br />

Edited by William B. Johnson and Joram L<strong>in</strong>denstrauss<br />

9 2001 Elsevier Science B.V. All rights reserved<br />

161


Convex geometry and functional analysis 163<br />

Introduction<br />

This article describes three topics that lie at <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> functional analysis, harmonic<br /&