28.12.2013 Views

Mixing in the Barents Sea Polar Front near Hopen in spring

Mixing in the Barents Sea Polar Front near Hopen in spring

Mixing in the Barents Sea Polar Front near Hopen in spring

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

<strong>Mix<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong> <strong>Polar</strong> <strong>Front</strong> <strong>near</strong> <strong>Hopen</strong> <strong>in</strong> spr<strong>in</strong>g<br />

2<br />

Ilker Fer 1, 2 and Ken Dr<strong>in</strong>kwater 3, 2<br />

3<br />

4<br />

5<br />

1 Geophysical Institute, University of Bergen, Bergen, Norway<br />

2 Bjerknes Centre for Climate Research, Bergen, Norway<br />

3 Institute of Mar<strong>in</strong>e Research, Bergen, Norway<br />

Manuscript for:<br />

Correspond<strong>in</strong>g author:<br />

Journal of Mar<strong>in</strong>e Systems<br />

Dr. Ilker Fer<br />

Geophysical Institute<br />

University of Bergen<br />

Allegaten 70<br />

N-5007, Bergen<br />

Norway<br />

E-mail: Ilker.Fer@gfi.uib.no<br />

Tel: +47 55 58 25 80<br />

Fax: +47 55 58 98 83<br />

1


6<br />

Abstract<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

Observations were made of hydrography, nutrients and shear microstructure <strong>in</strong> <strong>the</strong> water<br />

column across <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong> <strong>Polar</strong> <strong>Front</strong> <strong>near</strong> <strong>Hopen</strong>. Profiles were collected <strong>in</strong> early May<br />

2008 along a 125-km section extend<strong>in</strong>g from <strong>the</strong> <strong>Hopen</strong> Trench, across <strong>the</strong> front between <strong>the</strong><br />

Arctic and Atlantic orig<strong>in</strong> waters, and on toward <strong>the</strong> Spitsbergen Bank. Additionally a 10-h<br />

time series station was undertaken <strong>near</strong> <strong>the</strong> front. The <strong>Polar</strong> <strong>Front</strong> was identified <strong>near</strong> <strong>the</strong> 150<br />

m isobath, co<strong>in</strong>cid<strong>in</strong>g with <strong>the</strong> 1C iso<strong>the</strong>rm, with strong horizontal gradients <strong>in</strong> <strong>the</strong><br />

temperature and sal<strong>in</strong>ity fields, which compensated <strong>in</strong> density. A second tidally-generated<br />

front with a strong horizontal density gradient was detected on <strong>the</strong> bank, dom<strong>in</strong>ated by<br />

sal<strong>in</strong>ity gradients due to ice melt. Biologic activity was elevated between <strong>the</strong> two fronts.<br />

Nutrients were depleted <strong>in</strong> <strong>the</strong> euphotic zone where <strong>the</strong> chlorophyll concentrations were<br />

significantly enhanced relative to <strong>the</strong> stations on <strong>the</strong> cold and warm side of <strong>the</strong> front. Below a<br />

turbulent surface layer, <strong>the</strong> water column on <strong>the</strong> warm side of <strong>the</strong> front was quiescent. Far<strong>the</strong>r<br />

on <strong>the</strong> bank <strong>the</strong> turbulent boundary layers <strong>near</strong> <strong>the</strong> surface and seabed merged and <strong>the</strong> entire<br />

water column was turbulent. Energy arguments show that tidal stra<strong>in</strong><strong>in</strong>g toge<strong>the</strong>r with stirr<strong>in</strong>g<br />

due to w<strong>in</strong>d and tides can overcome <strong>the</strong> stratification <strong>in</strong>duced by melt<strong>in</strong>g and heat<strong>in</strong>g,<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> tidal front. A mechanism is proposed whereby high nitrate concentrations on<br />

<strong>the</strong> warm side of <strong>the</strong> front are transported along <strong>the</strong> isopycnals on to <strong>the</strong> bank where tidal<br />

mix<strong>in</strong>g <strong>the</strong>n effectively mixes <strong>the</strong> nutrient-rich deep water upward, susta<strong>in</strong><strong>in</strong>g <strong>the</strong><br />

phytoplankton bloom.<br />

26<br />

27<br />

2


28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

1. Introduction<br />

The confluence of cold, low sal<strong>in</strong>e <strong>Polar</strong> waters of Arctic orig<strong>in</strong> and warm, high sal<strong>in</strong>e waters<br />

of Atlantic orig<strong>in</strong> <strong>in</strong> <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong> forms <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong> <strong>Polar</strong> <strong>Front</strong> (BSPF). The physical<br />

oceanographic conditions of <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong>, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> ma<strong>in</strong> water masses and <strong>the</strong><br />

circulation patterns contribut<strong>in</strong>g to <strong>the</strong> formation of BSPF, have been described <strong>in</strong> Loeng<br />

(1991) and Pfirman et al. (1994). The position of this <strong>the</strong>rmohal<strong>in</strong>e front is largely controlled<br />

by <strong>the</strong> topography (Gawarkiewicz and Plueddemann, 1995). The summertime conditions<br />

associated with <strong>the</strong> BSPF <strong>near</strong> Bear Island were described <strong>in</strong> Parsons et al. (1996). The<br />

surface expression of <strong>the</strong> front <strong>in</strong> summer tends to be dom<strong>in</strong>ated by a surface sal<strong>in</strong>ity gradient<br />

as a result of summer ice melt (Harris et al., 1998) and moves laterally on <strong>the</strong> order of 10 km<br />

associated with tidal oscillations. Beneath this shallow density front and <strong>the</strong> mixed layer, is a<br />

<strong>near</strong>ly barotropic, density compensat<strong>in</strong>g front with a moderate temperature gradient colocated<br />

with <strong>the</strong> 2C iso<strong>the</strong>rm.<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

<strong>Front</strong>al systems, ow<strong>in</strong>g to <strong>the</strong> different water masses, are home to transitions <strong>in</strong> physical and<br />

biogeochemical parameters as well as <strong>in</strong> <strong>the</strong> composition and productivity of species. <strong>Front</strong>s<br />

are often associated with enhanced primary production (Le Fèvre, 1987) and can be hot-spots<br />

of mar<strong>in</strong>e life (Belk<strong>in</strong> et al., 2009). Key ecosystem components and basic food web structure<br />

of <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong> have been reviewed by Wassmann et al. (2006) and Loeng and Dr<strong>in</strong>kwater<br />

(2007). The BSPF plays an important role as a faunal boundary separat<strong>in</strong>g boreal and arctic<br />

flora and fauna (Fossheim et al., 2006). In addition, certa<strong>in</strong> fish species such as capel<strong>in</strong><br />

(Gjøsæter, 1998), as well as mar<strong>in</strong>e mammals, have been associated with <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong><br />

<strong>Polar</strong> <strong>Front</strong>.<br />

50<br />

51<br />

Cross-frontal transport and vertical mix<strong>in</strong>g are essential to supply nutrients from <strong>the</strong> deeper<br />

parts of <strong>the</strong> water column to <strong>the</strong> euphotic zone, and given sufficient illum<strong>in</strong>ation, <strong>the</strong>se<br />

3


52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

64<br />

processes might control <strong>the</strong> primary productivity. Cross-frontal exchange depends critically<br />

on frontal <strong>in</strong>stability and relaxation of geostrophic constra<strong>in</strong>ts through friction (Huthnance,<br />

1995). The very presence of a front suggests a local reduction <strong>in</strong> turbulent diffusivity as <strong>the</strong><br />

density gradient suppresses mix<strong>in</strong>g. Locally enhanced mix<strong>in</strong>g rates, however, have been<br />

observed <strong>in</strong> frontal regions and <strong>in</strong> <strong>the</strong> marg<strong>in</strong>al ice zone of <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong> (Fer and<br />

Sundfjord, 2007; Sundfjord et al., 2007). Detailed knowledge of <strong>the</strong> mix<strong>in</strong>g processes and<br />

reliable measurements of turbulent fluxes are necessary to quantify <strong>the</strong> rate at which nutrients<br />

become available for primary production. The International <strong>Polar</strong> Year (IPY) project entitled<br />

Norwegian Ecosystem Studies of Subarctic and Arctic Regions (NESSAR) focused on <strong>the</strong><br />

physical and biological processes at <strong>the</strong> fronts separat<strong>in</strong>g <strong>the</strong> warmer Atlantic orig<strong>in</strong> waters<br />

and <strong>the</strong> colder waters of Arctic orig<strong>in</strong> <strong>in</strong> both <strong>the</strong> Norwegian and <strong>Barents</strong> <strong>Sea</strong>. In this study<br />

<strong>in</strong>vestigations of <strong>the</strong> dynamical frontal processes <strong>in</strong> <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong> <strong>Polar</strong> <strong>Front</strong> <strong>near</strong> <strong>Hopen</strong><br />

are reported with focus on mix<strong>in</strong>g and utiliz<strong>in</strong>g microstructure measurements.<br />

65<br />

66<br />

67<br />

68<br />

69<br />

70<br />

71<br />

72<br />

73<br />

74<br />

75<br />

2. Measurements and Data<br />

Observations were made from <strong>the</strong> research vessel Jan Mayen between 24 April and 18 May<br />

2008. The dataset reported here is a subset of <strong>the</strong> cruise data and <strong>in</strong>cludes vertical profiles of<br />

hydrography from a conductivity-temperature-depth (CTD, <strong>Sea</strong>-Bird Electronics SBE911+)<br />

package and of turbulence from 180 casts of a vertical microstructure profiler (MSS, ISW<br />

Wassermesstechnik, Germany). The CTD was equipped with a fluorometer (Aqua-III) and a<br />

SBE32 rosette with 12, 5-liter Nisk<strong>in</strong> bottles. Nutrient samples were collected dur<strong>in</strong>g <strong>the</strong><br />

upcast at discrete depths from <strong>the</strong> water bottles on <strong>the</strong> rosette. Chloroform was added to <strong>the</strong><br />

nutrient samples and <strong>the</strong> samples placed <strong>in</strong> a refrigerator on board <strong>the</strong> ship. Upon return to<br />

port, <strong>the</strong>y were transported to <strong>the</strong> Institute of Mar<strong>in</strong>e Research <strong>in</strong> Bergen to undergo analyses<br />

for dissolved <strong>in</strong>organic nutrients (nitrite, nitrate, orthophosphate and silicate) accord<strong>in</strong>g to<br />

4


76<br />

standard methods (Parsons et al., 1992) adapted to an auto-analyser (Rey et al., 2000).<br />

77<br />

78<br />

79<br />

80<br />

81<br />

82<br />

83<br />

84<br />

85<br />

86<br />

87<br />

88<br />

A station location map is shown <strong>in</strong> Figure 1. The sampl<strong>in</strong>g was made along a l<strong>in</strong>e extend<strong>in</strong>g<br />

from <strong>the</strong> <strong>Hopen</strong> Trench <strong>in</strong> about 250 m depth, across <strong>the</strong> BSPF, and on toward <strong>the</strong> shallow<br />

Spitsbergenbanken (Spitsbergen Bank) southwest of <strong>Hopen</strong>. The l<strong>in</strong>e was approximately 125<br />

km long oriented along 145 from due East (i.e. -55T), approximately perpendicular to <strong>the</strong><br />

orientation of <strong>the</strong> 100 m isobath. Although we did not undertake a spatial survey of <strong>the</strong><br />

hydrography <strong>in</strong> <strong>the</strong> region, we assume that <strong>the</strong> position of BSPF is guided by <strong>the</strong> topography<br />

(Gawarkiewicz and Plueddemann, 1995) and <strong>in</strong>terpret <strong>the</strong> orientation of <strong>the</strong> transect as <strong>the</strong><br />

cross-front direction. The occupation time of stations with respect to <strong>the</strong> tides and <strong>the</strong> spr<strong>in</strong>gneap<br />

cycle is shown Figure 2. The sampl<strong>in</strong>g was undertaken dur<strong>in</strong>g spr<strong>in</strong>g tides and <strong>in</strong><br />

transition to neaps. <strong>Sea</strong> ice was present on top of Spitsbergenbanken dur<strong>in</strong>g <strong>the</strong> cruise;<br />

however, <strong>the</strong> tendency was for a gradual reduction <strong>in</strong> <strong>the</strong> amount of ice over <strong>the</strong> duration of<br />

<strong>the</strong> study.<br />

89<br />

90<br />

91<br />

92<br />

93<br />

94<br />

Section A (<strong>the</strong> ma<strong>in</strong> sampl<strong>in</strong>g l<strong>in</strong>e) was occupied twice; <strong>in</strong> <strong>the</strong> first run, <strong>in</strong>dicated by A0 <strong>in</strong><br />

Figure 2, <strong>the</strong> shipboard CTD was deployed at selected stations where nutrients were also<br />

sampled. In <strong>the</strong> second run, <strong>in</strong>dicated by A, station spac<strong>in</strong>g was denser and <strong>the</strong> microstructure<br />

profiler was deployed follow<strong>in</strong>g <strong>the</strong> shipboard CTD at each station. Upon complet<strong>in</strong>g <strong>the</strong> A<br />

section, a time series station (TS) was occupied for about 10 h at a site <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong><br />

BSPF with a depth of approximately 150 m.<br />

95<br />

96<br />

97<br />

98<br />

The MSS was equipped with accurate CTD sensors, a fast response <strong>the</strong>rmistor (FP07) and a<br />

pair of microstructure airfoil shear probes used <strong>in</strong> measur<strong>in</strong>g <strong>the</strong> viscous dissipation rate of<br />

turbulent k<strong>in</strong>etic energy per unit mass (, dissipation rate hereafter). High resolution<br />

temperature gradients were also sampled from <strong>the</strong> FP07 through a pre-emphasized channel.<br />

5


99<br />

100<br />

101<br />

102<br />

103<br />

104<br />

105<br />

106<br />

Data from all channels were sampled dur<strong>in</strong>g <strong>the</strong> downcast at 1024 Hz at a typical profil<strong>in</strong>g<br />

speed of 0.6-0.7 m s -1 . The MSS was deployed along Section A and as a time series close to<br />

<strong>the</strong> front (station TS) (Figure 1). Profiles of temperature and sal<strong>in</strong>ity measured by MSS were<br />

averaged <strong>in</strong> 10-cm vertical b<strong>in</strong>s; turbulent variables were obta<strong>in</strong>ed at 1-m vertical b<strong>in</strong>s.<br />

Turbulence is <strong>in</strong>herently <strong>in</strong>termittent and averag<strong>in</strong>g <strong>in</strong>creases <strong>the</strong> statistical reliability of <strong>the</strong><br />

results. We <strong>the</strong>refore chose a sampl<strong>in</strong>g strategy where we collected 3 (Section A) to 5 (station<br />

TS) cont<strong>in</strong>uous repeat casts at each station. All profiles presented <strong>in</strong> this study are ensemble<br />

averages (isobaric) of <strong>the</strong> repeat casts.<br />

107<br />

108<br />

109<br />

110<br />

111<br />

112<br />

113<br />

114<br />

Sal<strong>in</strong>ity data from <strong>the</strong> shipboard CTD were calibrated us<strong>in</strong>g water samples collected at <strong>the</strong><br />

bottom of <strong>the</strong> CTD cast from Nisk<strong>in</strong> bottles attached to <strong>the</strong> rosette. The corrected CTD<br />

profiles were <strong>the</strong>n compared to <strong>the</strong> MSS-derived sal<strong>in</strong>ity. Us<strong>in</strong>g all MSS-SBE CTD profile<br />

pairs close <strong>in</strong> time and space, 121 portions of data of at least a 5-m vertical stretch were<br />

selected where <strong>the</strong> vertical sal<strong>in</strong>ity gradient was less than 110 -3 psu m -1 . The comparison of<br />

average temperature and sal<strong>in</strong>ity values from <strong>the</strong>se segments were <strong>in</strong> excellent agreement<br />

with<strong>in</strong> <strong>the</strong> measurement uncerta<strong>in</strong>ty (not shown) and no correction was deemed necessary for<br />

<strong>the</strong> MSS-CTD profiles.<br />

115<br />

3. Calculation of dissipation rate and eddy diffusivity<br />

116<br />

The dissipation rate is calculated us<strong>in</strong>g <strong>the</strong> isotropic relation 7.5 uz<br />

2<br />

, where is <strong>the</strong><br />

117<br />

viscosity of seawater. Small scale shear variance<br />

2<br />

u<br />

z<br />

is obta<strong>in</strong>ed by iteratively <strong>in</strong>tegrat<strong>in</strong>g<br />

118<br />

119<br />

120<br />

121<br />

<strong>the</strong> low wavenumber portion of <strong>the</strong> shear spectrum of half-overlapp<strong>in</strong>g 1-second segments<br />

(Fer, 2006). Unresolved shear variance <strong>in</strong> <strong>the</strong> high wavenumber portions, affected by noise,<br />

are corrected for us<strong>in</strong>g <strong>the</strong> empirical <strong>the</strong>oretical shape (Oakey, 1982). The profiles of ε are<br />

produced as 1 m vertical averages to a noise level of 10 -10 W kg -1 . The diapycnal eddy<br />

6


122<br />

diffusivity is <strong>the</strong>n calculated us<strong>in</strong>g<br />

K<br />

2<br />

<br />

0.2<br />

N (Osborn, 1980) assum<strong>in</strong>g 17% mix<strong>in</strong>g<br />

123<br />

124<br />

125<br />

126<br />

127<br />

efficiency, and us<strong>in</strong>g <strong>the</strong> buoyancy frequency, 1/2<br />

N g/ <br />

/ z<br />

, from sorted<br />

potential density anomaly, , profiles. The sort<strong>in</strong>g of <strong>the</strong> density profile ensures a stable,<br />

background stratification aga<strong>in</strong>st which <strong>the</strong> turbulence works. The vertical gradient is<br />

approximated by central first differenc<strong>in</strong>g and fur<strong>the</strong>r smooth<strong>in</strong>g <strong>the</strong> profile by a 10-m phasepreserv<strong>in</strong>g<br />

mov<strong>in</strong>g average filter.<br />

128<br />

129<br />

130<br />

131<br />

132<br />

133<br />

134<br />

135<br />

136<br />

137<br />

Diapycnal diffusion is assumed to be representative of that <strong>in</strong> <strong>the</strong> vertical direction, and for<br />

sufficiently turbulent stratified flow, all passive scalars <strong>in</strong>clud<strong>in</strong>g temperature, sal<strong>in</strong>ity and<br />

nutrients are assumed to be diffused vertically by <strong>the</strong> mix<strong>in</strong>g coefficient K . The vertical flux,<br />

positive upward, of a scalar concentration c is <strong>the</strong>n F K c/<br />

z. The eddy diffusivity<br />

<strong>in</strong>ferred from atta<strong>in</strong>s unrealistically large values for weak stratification as N approaches<br />

zero. Due to <strong>the</strong> measurement error <strong>in</strong> density, N is not resolved to better than about 0.001 s -1<br />

equivalent to 0.6 cycle per hour (cph). We <strong>the</strong>refore exclude <strong>the</strong> values of K from <strong>the</strong><br />

analysis for segments with N < 0.6 cph. In a stratified environment, turbulent stirr<strong>in</strong>g must be<br />

strong enough to overcome <strong>the</strong> stratification to be able to produce a significant net buoyancy<br />

flux result<strong>in</strong>g <strong>in</strong> turbulent mix<strong>in</strong>g. Turbulence produces negligible vertical mix<strong>in</strong>g when <strong>the</strong><br />

c<br />

<br />

138<br />

activity <strong>in</strong>dex<br />

AI<br />

1 2<br />

N<br />

is less than about 20 (Rohr et al., 1988). For <strong>the</strong> context of <strong>the</strong><br />

139<br />

140<br />

present study this implies that vertical nutrient fluxes can only occur for sufficiently large<br />

values of A I .<br />

141<br />

4. Tides<br />

142<br />

143<br />

Tidal velocity components were predicted from <strong>the</strong> 5-km resolution Arctic Ocean Tidal<br />

Inverse Model (AOTIM-5, Padman and Erofeeva, 2004) at 25 stations along section A,<br />

7


144<br />

145<br />

146<br />

147<br />

148<br />

149<br />

150<br />

151<br />

152<br />

153<br />

154<br />

155<br />

156<br />

157<br />

158<br />

159<br />

160<br />

161<br />

162<br />

separated approximately by 5 km, consistent with <strong>the</strong> model’s horizontal resolution. All 8<br />

constituents available <strong>in</strong> <strong>the</strong> model were used (K 1 , O 1 , P 1 , Q 1 , M 2 , S 2 , N 2 , K 2 ). The water<br />

depth <strong>in</strong> <strong>the</strong> model, at <strong>the</strong> extracted stations, was typically with<strong>in</strong> 10% of <strong>the</strong> actual water<br />

depth with an average of 7% error. Tidal currents were re-scaled us<strong>in</strong>g <strong>the</strong> actual water depth.<br />

The time series of <strong>the</strong> tidal velocity components <strong>in</strong>ferred at station TS, close to <strong>the</strong> front, is<br />

shown <strong>in</strong> Figure 2. The M 2 constituent dom<strong>in</strong>ated, and among <strong>the</strong> diurnal constituents, K 1<br />

was strongest. When averaged with<strong>in</strong> ±5 km of <strong>the</strong> front (3 stations) <strong>the</strong> horizontal velocity<br />

components <strong>in</strong> units of 10 -2 m s -1 ± one standard deviation are (u, v)= (14.4 ± 0.6, 6.6 ± 0.5)<br />

for M 2 and (1.9 ± 0.07, 1.1 ± 0.05) for K 1 ; on <strong>the</strong> <strong>Polar</strong> Water (PW) side of <strong>the</strong> front,<br />

averaged with<strong>in</strong> 60 x 80 km (5 stations), (28.2 ± 2.5 , 17.9 ± 2.8) for M 2 and (2.7 ± 0.1,<br />

3.8 ± 0.9) for K 1 . The maximum tidal excursion across <strong>the</strong> front, <strong>in</strong>ferred from <strong>the</strong><br />

progressive vector diagram over one spr<strong>in</strong>g-neap cycle at <strong>the</strong> front position, is about ± 1.5<br />

km. Repeat<strong>in</strong>g <strong>the</strong> same analysis for <strong>the</strong> moor<strong>in</strong>g locations of <strong>the</strong> BSPF-experiment reported<br />

<strong>in</strong> Parsons et al. (1996), we obta<strong>in</strong> similar results. This is less than ± 5 km lateral variability<br />

of <strong>the</strong> surface expression of <strong>the</strong> BSPF observed <strong>near</strong> Bear Island <strong>in</strong> summer (Parsons et al.,<br />

1996), suggest<strong>in</strong>g that tidally <strong>in</strong>duced lateral variability can be larger than <strong>the</strong> tidal excursion.<br />

This advection will result <strong>in</strong> deformation of <strong>the</strong> frontal structure and variations <strong>in</strong> scalar<br />

properties measured <strong>in</strong> <strong>the</strong> Eulerian frame. The data presented <strong>in</strong> this work are not corrected<br />

for <strong>the</strong> tidal excursion.<br />

163<br />

5. Results and Discussion<br />

164<br />

165<br />

166<br />

167<br />

5.1. <strong>Front</strong>al structure<br />

Horizontal distance versus depth distributions of <strong>the</strong> hydrographic properties and <strong>the</strong><br />

fluorescence sampled by <strong>the</strong> shipboard CTD at Section A show <strong>the</strong> presence of warm and<br />

sal<strong>in</strong>e Atlantic Water (AW) and <strong>the</strong> cold and relatively fresh <strong>Polar</strong> Water (PW) separated by<br />

8


168<br />

169<br />

170<br />

171<br />

172<br />

173<br />

174<br />

175<br />

176<br />

177<br />

178<br />

179<br />

180<br />

181<br />

182<br />

183<br />

184<br />

a <strong>the</strong>rmohal<strong>in</strong>e front (Figure 3). We referenced <strong>the</strong> horizontal distance, x, to <strong>the</strong> position of<br />

<strong>the</strong> front, located at station 277, which was <strong>in</strong>ferred from <strong>the</strong> horizontal temperature and<br />

sal<strong>in</strong>ity gradient extrema (Figure 4). The front (x = 0) was <strong>near</strong> <strong>the</strong> 150 m isobath, extended<br />

through <strong>the</strong> water column co<strong>in</strong>cid<strong>in</strong>g approximately with <strong>the</strong> 1C iso<strong>the</strong>rm, and was density<br />

compensated (Figure 3); i.e. <strong>the</strong> contributions of temperature and sal<strong>in</strong>ity anomalies to<br />

density compensate such that <strong>the</strong>re is not a significant horizontal density gradient across <strong>the</strong><br />

front. The CTD section showed <strong>the</strong> presence of a relatively dense layer <strong>near</strong> <strong>the</strong> bottom at <strong>the</strong><br />

location of <strong>the</strong> front. This layer was associated with positive temperature and sal<strong>in</strong>ity<br />

anomalies relative to its surround<strong>in</strong>gs. Such anomalously sal<strong>in</strong>e water can be a result of<br />

br<strong>in</strong>es rejected dur<strong>in</strong>g ice formation on Spitsbergenbanken (Lien and Ådlansvik, 2011).<br />

Similar to <strong>the</strong> dense water orig<strong>in</strong>ated <strong>in</strong> <strong>the</strong> Storfjorden polynya (Fer et al., 2003; Fer and<br />

Ådlandsvik, 2008), high sal<strong>in</strong>ity water formed on <strong>the</strong> bank is orig<strong>in</strong>ally at freez<strong>in</strong>g<br />

temperature, but will entra<strong>in</strong> warm surround<strong>in</strong>g waters en-route from <strong>the</strong> formation region to<br />

deeper water, expla<strong>in</strong><strong>in</strong>g <strong>the</strong> anomalous temperature – sal<strong>in</strong>ity properties <strong>near</strong> <strong>the</strong> seabed,<br />

<strong>near</strong> <strong>the</strong> front. Dense water formation on <strong>the</strong> bank can have consequences for <strong>the</strong> primary<br />

production <strong>in</strong> <strong>the</strong> region, trigger<strong>in</strong>g an earlier start of <strong>the</strong> spr<strong>in</strong>g bloom (Lien and Ådlansvik,<br />

2011).<br />

185<br />

186<br />

187<br />

188<br />

189<br />

190<br />

The density, potential temperature, , sal<strong>in</strong>ity, S, and <strong>the</strong>ir horizontal gradients at 5 m and 50<br />

m depth are shown <strong>in</strong> Figure 4. For a truly density compensat<strong>in</strong>g front, <strong>the</strong> horizontal density<br />

ratio R T / S is unity. Here <strong>the</strong> temperature, T, and sal<strong>in</strong>ity, S, differences are taken<br />

<strong>in</strong> <strong>the</strong> horizontal direction, is <strong>the</strong> coefficient of <strong>the</strong>rmal expansion, and is <strong>the</strong> coefficient<br />

of hal<strong>in</strong>e contraction. When averaged with<strong>in</strong> 5 km of <strong>the</strong> front, R = 0.65 0.15 at 5 m and<br />

0.74 0.09 at 50 m, i.e. sal<strong>in</strong>ity anomalies slightly dom<strong>in</strong>ate <strong>the</strong> density gradient. The density<br />

9


191<br />

192<br />

ratio <strong>near</strong> <strong>the</strong> surface is approximately equal to that measured <strong>in</strong> <strong>the</strong> surface front at<br />

Storbanken (Great Bank) <strong>in</strong> August 2007 (Våge et al., 2011).<br />

193<br />

194<br />

195<br />

196<br />

197<br />

198<br />

199<br />

200<br />

On <strong>the</strong> PW side of <strong>the</strong> front on Spitsbergenbanken a second surface front existed at x ~ 72 km<br />

which had a strong signature <strong>in</strong> density, particularly <strong>in</strong> <strong>the</strong> upper water column (Figure 3).<br />

The variability <strong>in</strong> density was dom<strong>in</strong>ated by negative sal<strong>in</strong>ity anomalies as a result of ice<br />

melt: averaged between x = 70 and 80 km R = -0.25 0.01 at 5 m and -0.11 0.01 at 50 m.<br />

Fluorescence, a proxy for <strong>the</strong> biological activity, was <strong>near</strong> zero <strong>in</strong> <strong>the</strong> AW side, <strong>in</strong> <strong>the</strong> lower<br />

part of <strong>the</strong> water column over <strong>the</strong> shelf, and also, ra<strong>the</strong>r surpris<strong>in</strong>gly, at <strong>the</strong> front. The<br />

elevated values of fluorescence were observed <strong>in</strong> <strong>the</strong> upper 40 m between x = 8 km and 60<br />

km, i.e. between <strong>the</strong> two fronts.<br />

201<br />

202<br />

203<br />

204<br />

205<br />

206<br />

207<br />

208<br />

209<br />

210<br />

211<br />

212<br />

213<br />

5.2. Nutrients<br />

Section A was thoroughly sampled for nutrients <strong>in</strong> its first occupation (A0). Distribution of<br />

nitrate and chlorophyll-a are shown <strong>in</strong> Figure 5. For consistency, <strong>the</strong> front position is still that<br />

identified for Section A (station 277) and may not be correct <strong>in</strong> this realization of <strong>the</strong> section<br />

due to <strong>the</strong> tidal excursion and o<strong>the</strong>r temporal variability. Nitrate (NO 3 ), on average,<br />

accounted for 95 (10)% of <strong>the</strong> total oxidized nitrogen (nitrate + nitrite). Chlorophyll<br />

concentration is an approximate <strong>in</strong>dicator of phytoplankton biomass. At about x = 15 km, on<br />

<strong>the</strong> cold side of <strong>the</strong> front, chlorophyll concentration was significantly enhanced relative to <strong>the</strong><br />

two end stations on <strong>the</strong> warm and cold sides of <strong>the</strong> front with <strong>near</strong> zero concentrations.<br />

Chlorophyll was severely undersampled by only three stations <strong>in</strong> this section, however, <strong>the</strong><br />

data suggest that nutrients were depleted <strong>in</strong> <strong>the</strong> upper layer through phytoplankton<br />

production. A fraction of <strong>the</strong> high chlorophyll-a concentration between <strong>the</strong> two fronts can be<br />

due to <strong>the</strong> w<strong>in</strong>ter time nutrient concentrations <strong>in</strong> <strong>the</strong> upper water column; <strong>the</strong> entire<br />

10


214<br />

enhancement can not be attributed to solely <strong>the</strong> vertical transport of nutrients.<br />

215<br />

216<br />

217<br />

218<br />

219<br />

220<br />

221<br />

222<br />

223<br />

224<br />

225<br />

226<br />

227<br />

228<br />

229<br />

230<br />

The reservoir of nitrate was <strong>the</strong> warm AW, and <strong>the</strong> concentrations were large throughout <strong>the</strong><br />

entire water column away from <strong>the</strong> front. This was <strong>the</strong> case <strong>in</strong> all occupations of <strong>the</strong> stations<br />

at x < -5 km, and was <strong>in</strong>dependent of <strong>the</strong> tides (see <strong>the</strong> profiles for stations 213 and 239 <strong>in</strong><br />

Figure 13a, <strong>in</strong>troduced later). AW was characterized by nitrate concentrations above 10 mol<br />

L -1 . Vertical distribution of <strong>the</strong> high nutrient concentration was typically homogenous <strong>in</strong> <strong>the</strong><br />

water column follow<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter convection <strong>in</strong> <strong>the</strong> central <strong>Barents</strong> <strong>Sea</strong>. The weak<br />

stratification on <strong>the</strong> AW side and on <strong>the</strong> PW side on <strong>the</strong> bank makes it difficult to achieve<br />

high phytoplankton biomass <strong>in</strong> <strong>the</strong> euphotic zone, because even when production is <strong>in</strong>itiated<br />

it is distributed throughout <strong>the</strong> entire water column. The melt<strong>in</strong>g ice, on <strong>the</strong> o<strong>the</strong>r hand,<br />

creates strong vertical stratification as observed between <strong>the</strong> two fronts that allows a build-up<br />

of high phytoplankton biomass <strong>near</strong> surface. Cross-frontal transfer accumulated nutrients <strong>in</strong><br />

<strong>the</strong> deeper half of <strong>the</strong> water column on <strong>the</strong> cold side, and physical processes driv<strong>in</strong>g vertical<br />

mix<strong>in</strong>g supplied <strong>the</strong> nutrients to <strong>the</strong> upper part of <strong>the</strong> water column. Given sufficient<br />

illum<strong>in</strong>ation <strong>in</strong> <strong>the</strong> euphotic zone, <strong>the</strong> phytoplankton blooms are controlled by <strong>the</strong> rate of<br />

stirr<strong>in</strong>g. Microstructure measurements reveal <strong>the</strong> turbulent structure on <strong>the</strong> shelf and are<br />

discussed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g section.<br />

231<br />

5.3. Turbulence and mix<strong>in</strong>g levels<br />

232<br />

233<br />

234<br />

235<br />

236<br />

5.3.1 Section A<br />

Below a turbulent surface layer, <strong>the</strong> water column <strong>in</strong> <strong>the</strong> <strong>Polar</strong> <strong>Front</strong> and on <strong>the</strong> warm side of<br />

<strong>the</strong> <strong>Front</strong> was found to be quiescent (Figure 6). Dissipation rates were close to <strong>the</strong> noise level.<br />

From station 271 to about x = 23 km, <strong>the</strong> mixed layer depth, D mixed , was deeper than <strong>the</strong><br />

mix<strong>in</strong>g depth, D mix<strong>in</strong>g , by 22 m on <strong>the</strong> average over <strong>the</strong> 11 stations. On <strong>the</strong> shelf, <strong>the</strong><br />

11


237<br />

238<br />

239<br />

240<br />

241<br />

242<br />

243<br />

244<br />

difference D= D mixed - D mix<strong>in</strong>g was variable, between -12 m to +8 m, but D


260<br />

261<br />

262<br />

263<br />

264<br />

265<br />

266<br />

267<br />

268<br />

269<br />

270<br />

271<br />

272<br />

273<br />

274<br />

275<br />

stratified with <strong>the</strong> cold and low sal<strong>in</strong>ity upper layer separated from <strong>the</strong> warmer and saltier<br />

water below <strong>in</strong> <strong>the</strong> bottom 50 m. The vertical separation of <strong>the</strong> isopycnals and <strong>the</strong> thickness<br />

of AW- and PW-orig<strong>in</strong> layers varied with <strong>the</strong> tides. The evolution of <strong>the</strong> warm layer <strong>in</strong> <strong>the</strong><br />

upper 20 m and <strong>the</strong> <strong>in</strong>trusions of cold water <strong>in</strong> <strong>the</strong> middle and warm water at <strong>the</strong> bottom were<br />

likely a result of <strong>the</strong> tidal excursion. At about 3-4 h <strong>in</strong>to <strong>the</strong> record, was enhanced <strong>near</strong> <strong>the</strong><br />

seabed above <strong>the</strong> background levels of O(10 -9 ) W kg -1 (Figure 7c). Fluctuat<strong>in</strong>g tidal currents<br />

at semi-diurnal periodicity will modulate <strong>the</strong> bottom stress lead<strong>in</strong>g to one-quarter diurnal<br />

variation <strong>in</strong> shear-production and dissipation rate with maxima at maximum flood and ebb<br />

and m<strong>in</strong>ima around slack water (Simpson et al., 1996). Us<strong>in</strong>g <strong>the</strong> AOTIM-5 derived tidal<br />

currents, a rough estimate of <strong>the</strong> dissipation rate had a maximum at about t = 3 h, a m<strong>in</strong>imum<br />

at about 6 h, followed by ano<strong>the</strong>r maximum at 9 h. Assum<strong>in</strong>g a drag coefficient of 3.510 -3 ,<br />

and that <strong>the</strong> dissipation occurred <strong>in</strong> a 20-m thick bottom boundary layer, <strong>the</strong> correspond<strong>in</strong>g<br />

dissipation rate should have varied between 10 -6 and 310 -8 W kg -1 , consistent with <strong>the</strong><br />

observations. In order to avoid land<strong>in</strong>g <strong>the</strong> microstructure profiler on <strong>the</strong> bottom, <strong>the</strong> profiles<br />

were term<strong>in</strong>ated above <strong>the</strong> bottom boundary layer, and <strong>the</strong> second dissipation maximum <strong>near</strong><br />

<strong>the</strong> bottom at t = 8-9 h could not be confirmed with <strong>the</strong> observations.<br />

276<br />

277<br />

278<br />

279<br />

280<br />

281<br />

282<br />

283<br />

5.3.3 Average Profiles<br />

Average profiles were calculated with respect to <strong>the</strong> horizontal distance x from <strong>the</strong> front.<br />

Profiles collected at x < -10 km, -10 < x < 10 km, and 20 < x


284<br />

285<br />

time-averaged conditions at each location, but ra<strong>the</strong>r a s<strong>in</strong>gle realization of <strong>the</strong> temporal and<br />

spatial variability.<br />

286<br />

287<br />

288<br />

289<br />

290<br />

291<br />

292<br />

It is not trivial to obta<strong>in</strong> representative average profiles from a site with strong topographic<br />

variability and lateral gradients <strong>in</strong> hydrography. We <strong>the</strong>refore present two alternatives:<br />

isopycnal averages and averages <strong>in</strong> depth coord<strong>in</strong>ate, z, normalized with <strong>the</strong> total water<br />

depth, H. Isopycnally-averaged variables were obta<strong>in</strong>ed <strong>in</strong> 50 equally spaced b<strong>in</strong>s of <strong>the</strong><br />

average profile and are assigned <strong>the</strong> average isopycnal depth. Each profile was sorted<br />

before calculations. The normalized depth coord<strong>in</strong>ate averag<strong>in</strong>g was done over vertical b<strong>in</strong>s<br />

of z/H = 0.05 thickness.<br />

293<br />

294<br />

295<br />

296<br />

297<br />

298<br />

299<br />

Average dissipation rates were lowest at mid-depth on <strong>the</strong> AW side, <strong>in</strong>dependent of <strong>the</strong><br />

averag<strong>in</strong>g method. Isopycnally-averaged profiles showed more than one order of magnitude<br />

<strong>in</strong>crease <strong>in</strong> dissipation below <strong>the</strong> upper layer from <strong>the</strong> AW to PW side of <strong>the</strong> front. Vertical<br />

gradients of temperature and sal<strong>in</strong>ity that appeared <strong>in</strong> <strong>the</strong> isopycnally-averaged profiles at <strong>the</strong><br />

front were smeared out <strong>in</strong> z/H coord<strong>in</strong>ates. A clear pattern emerged <strong>in</strong> z/H-averaged profiles<br />

of : relative to mid-depth <strong>the</strong> dissipation rate was enhanced by up to two orders of<br />

magnitudes <strong>in</strong> about z/H = 0.2 unit thick layers <strong>in</strong> <strong>the</strong> upper and bottom layers.<br />

300<br />

301<br />

302<br />

303<br />

304<br />

305<br />

306<br />

5.4. Isopycnal mix<strong>in</strong>g<br />

There was significant variability <strong>in</strong> temperature and sal<strong>in</strong>ity properties along isopycnal<br />

surfaces sampled at <strong>the</strong> station TS. Fluctuations of T and S along <strong>the</strong> isopycnals relative to <strong>the</strong><br />

10-h mean are displayed <strong>in</strong> Figure 9. Due to <strong>the</strong> density compensat<strong>in</strong>g nature of <strong>the</strong><br />

<strong>the</strong>rmohal<strong>in</strong>e BSPF T S, i.e. <strong>the</strong>ir contributions to density are similar. The anomalies<br />

appeared to be modulated at a time scale consistent with <strong>the</strong> tidal frequency suggest<strong>in</strong>g that<br />

<strong>the</strong> tides were driv<strong>in</strong>g along-isopycnal <strong>in</strong>trusions, whereby allow<strong>in</strong>g <strong>the</strong> water on ei<strong>the</strong>r side<br />

14


307<br />

308<br />

309<br />

310<br />

311<br />

of <strong>the</strong> front to be exchanged. Isopycnal frontal mix<strong>in</strong>g was suggested to contribute to <strong>Polar</strong><br />

<strong>Front</strong> Water formation <strong>near</strong> Storbanken <strong>in</strong> August 2007 (Våge et al., 2011), manifested as<br />

mix<strong>in</strong>g l<strong>in</strong>es along isopycnals accompanied with temperature-sal<strong>in</strong>ity <strong>in</strong>versions. Isopycnal<br />

mix<strong>in</strong>g was also observed <strong>in</strong> <strong>the</strong> BSPF at <strong>the</strong> sou<strong>the</strong>rn flank of Spitsbergenbanken <strong>near</strong> Bear<br />

Island <strong>in</strong> summer 1992 (Parsons et al., 1996).<br />

312<br />

313<br />

314<br />

5.5. Tidal stirr<strong>in</strong>g and stra<strong>in</strong><strong>in</strong>g<br />

The amount of work per unit volume required to br<strong>in</strong>g <strong>the</strong> water column of depth h to<br />

complete mix<strong>in</strong>g is<br />

315<br />

0<br />

1<br />

<br />

z<br />

gzdz<br />

h<br />

<br />

h<br />

316<br />

where (z) is <strong>the</strong> density profile and<br />

denotes averag<strong>in</strong>g with respect to depth, z. The<br />

z<br />

317<br />

318<br />

319<br />

320<br />

321<br />

potential energy anomaly, , <strong>in</strong> units of J m -3 has positive contribution from processes<br />

<strong>in</strong>creas<strong>in</strong>g <strong>the</strong> stratification (e.g. heat<strong>in</strong>g and melt<strong>in</strong>g) and negative contributions from<br />

vertical mix<strong>in</strong>g (e.g. w<strong>in</strong>d and tidal stirr<strong>in</strong>g) (Simpson and Bowers, 1981). The mean rate of<br />

change of can be split <strong>in</strong>to <strong>the</strong> follow<strong>in</strong>g components, neglect<strong>in</strong>g ice freez<strong>in</strong>g, freshwater<br />

runoff and horizontal advection<br />

322<br />

d <br />

<br />

<br />

dt t t t t t<br />

<br />

heat melt stir w<strong>in</strong>d stra<strong>in</strong><br />

(1)<br />

323<br />

324<br />

325<br />

Here, <strong>the</strong> terms are <strong>in</strong> units of W m -3 ( kg m -1 s -3 ) and are due to surface heat flux, ice<br />

melt<strong>in</strong>g, tidal stirr<strong>in</strong>g, w<strong>in</strong>d stress and tidal stra<strong>in</strong><strong>in</strong>g. A fraction, e t , of <strong>the</strong> depth <strong>in</strong>tegrated<br />

dissipation of energy from tidal currents, D T , is available for work aga<strong>in</strong>st gravity:<br />

15


326<br />

<br />

<br />

<br />

t<br />

<br />

stir<br />

eD<br />

t<br />

<br />

h<br />

T<br />

. (2)<br />

327<br />

Us<strong>in</strong>g a drag coefficient at bottom, C D , <strong>the</strong> tidal dissipation is<br />

328<br />

2 2<br />

3/2<br />

D C u v ,<br />

T D z z<br />

t<br />

329<br />

and<br />

denotes averag<strong>in</strong>g with respect to time, here over one spr<strong>in</strong>g-neap cycle. Studies of<br />

t<br />

330<br />

331<br />

tidal mix<strong>in</strong>g <strong>in</strong> shelf seas suggest e t ~ 410 -3 (Simpson and Bowers, 1981). W<strong>in</strong>d of speed W<br />

will lead to<br />

332<br />

<br />

<br />

<br />

t<br />

<br />

w<strong>in</strong>d<br />

aewCDW<br />

W<br />

<br />

h<br />

3<br />

t<br />

,<br />

333<br />

334<br />

335<br />

336<br />

337<br />

338<br />

where C DW is <strong>the</strong> drag coefficient at <strong>the</strong> sea surface, e w is <strong>the</strong> efficiency of w<strong>in</strong>d stirr<strong>in</strong>g, is<br />

<strong>the</strong> ratio of w<strong>in</strong>d-<strong>in</strong>duced surface current to <strong>the</strong> w<strong>in</strong>d speed, and a is <strong>the</strong> air density. The<br />

study by Simpson and Bowers (1981) suggests e w =0.910 -3 . While typically <strong>the</strong> tidal stirr<strong>in</strong>g<br />

dom<strong>in</strong>ates over <strong>the</strong> w<strong>in</strong>d term over <strong>the</strong> European shelves, <strong>the</strong> role of w<strong>in</strong>d mix<strong>in</strong>g was found<br />

to be important <strong>in</strong> predict<strong>in</strong>g <strong>the</strong> position of tidal fronts <strong>in</strong> <strong>the</strong> Gulf of Ma<strong>in</strong>e region (Loder<br />

and Greenberg, 1986).<br />

339<br />

The stabiliz<strong>in</strong>g components <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> potential energy anomaly are<br />

340<br />

gQ<br />

gdm<br />

S S<br />

; <br />

t 2C t<br />

<br />

2<br />

heat<br />

P<br />

melt<br />

<br />

i<br />

<br />

,<br />

341<br />

342<br />

where C P is <strong>the</strong> specific heat, Q is surface heat flux, d m is <strong>the</strong> melt rate, and S and S i are <strong>the</strong><br />

sal<strong>in</strong>ity of <strong>the</strong> water and ice, respectively.<br />

16


343<br />

344<br />

345<br />

346<br />

347<br />

In <strong>the</strong> presence of significant horizontal (longitud<strong>in</strong>al) density gradients and shear <strong>in</strong> <strong>the</strong> tidal<br />

current, tidal stra<strong>in</strong><strong>in</strong>g (Simpson et al., 1990) will <strong>in</strong>duce periodic modulation of<br />

stratification, which is <strong>in</strong>creased <strong>in</strong> ebbs and reduced <strong>in</strong> floods. The stra<strong>in</strong> term contribution<br />

to Eq.(1) has thus variable sign. For rectil<strong>in</strong>ear tidal streams <strong>in</strong> <strong>the</strong> x direction, potential<br />

energy is released (by convective mix<strong>in</strong>g) or ga<strong>in</strong>ed by tidal stra<strong>in</strong><strong>in</strong>g accord<strong>in</strong>g to<br />

348<br />

0<br />

g <br />

u u zdz 0.03gh u<br />

<br />

z<br />

z<br />

t h x . (3)<br />

x<br />

stra<strong>in</strong><br />

h<br />

349<br />

The latter term is obta<strong>in</strong>ed for a typical quadratic tidal velocity profile (Simpson et al., 1990).<br />

350<br />

351<br />

352<br />

353<br />

354<br />

355<br />

356<br />

357<br />

358<br />

359<br />

360<br />

361<br />

362<br />

363<br />

364<br />

In calculat<strong>in</strong>g <strong>the</strong> different contributions to Eq.(1) <strong>the</strong> follow<strong>in</strong>g parameters, all <strong>in</strong> SI units,<br />

are chosen: = 510 -5 , = 7.810 -4 (for water at atmospheric pressure with S = 35 and =<br />

0C), S i = 5, e t = 410 -3 , C D = 310 -3 , C DW = 1.510 -3 ; a = 1.2; = 1025, C P = 3990,<br />

e w =0.910 -3 . We fur<strong>the</strong>r assume a typical melt rate of 410 -7 m s -1 (i.e. approximately 1 m<br />

thick ice melt <strong>in</strong> one month), and use monthly mean values of w<strong>in</strong>d speed and solar radiation,<br />

for May, of 6 m s -1 and 180 W m -2 , respectively (see Table 1 of Smedsrud et al. (2010)). The<br />

assumed melt rate is typical for June, but is an overestimate for May conditions. The melt<strong>in</strong>g<br />

contribution term is l<strong>in</strong>ear <strong>in</strong> melt rate, and we also report results for 0.5 m per month melt<br />

rate. For tidal stra<strong>in</strong><strong>in</strong>g, <strong>in</strong> Eq.(3) <strong>the</strong> horizontal density gradient /x = 10 -5 kg m -4 (i.e.,<br />

0.01 kg m -3 per 1 km, see Figure 4b) at x = 72 km is used. On <strong>the</strong> bank for x > 70 km, <strong>the</strong><br />

horizontal density gradient is relatively homogeneous <strong>in</strong> <strong>the</strong> vertical (Figure 10c). AOTIM-5<br />

derived tidal velocity along section A, averaged over one spr<strong>in</strong>g-neap cycle, is used <strong>in</strong> Eqs.<br />

(2) and (3). Averaged over 6 data po<strong>in</strong>ts on <strong>the</strong> bank between 70-95 km, tidal stra<strong>in</strong> and<br />

stirr<strong>in</strong>g terms are found to be 5.4 (±0.06)10 -5 and 4.8 (±1.7)10 -6 W m -3 , respectively. The<br />

ratio of <strong>the</strong> stra<strong>in</strong><strong>in</strong>g and stirr<strong>in</strong>g terms is R stra<strong>in</strong>-stir = 11.3 us<strong>in</strong>g <strong>the</strong> average values or R stra<strong>in</strong>-stir<br />

17


365<br />

= 12.6 ± 4.5 as <strong>the</strong> mean and standard deviation over <strong>the</strong> 6 data po<strong>in</strong>ts.<br />

366<br />

367<br />

368<br />

369<br />

370<br />

371<br />

372<br />

373<br />

374<br />

375<br />

376<br />

377<br />

378<br />

379<br />

380<br />

381<br />

Of <strong>the</strong> stirr<strong>in</strong>g terms, w<strong>in</strong>d dom<strong>in</strong>ates for x< 45 km where <strong>the</strong> ratio of <strong>the</strong> mean tide and w<strong>in</strong>d<br />

stirr<strong>in</strong>g terms is R w<strong>in</strong>d-stir = 0.1. Toward <strong>the</strong> bank <strong>the</strong> contribution due to tidal stirr<strong>in</strong>g<br />

<strong>in</strong>creases, and on <strong>the</strong> bank for x>70 km <strong>the</strong>y are of comparable magnitude with R w<strong>in</strong>d-stir = 0.9.<br />

Melt<strong>in</strong>g <strong>in</strong>creases <strong>the</strong> potential energy anomaly by 4.710 -5 W m -3 , approximately 4 times<br />

that due to heat<strong>in</strong>g. For a reduced melt rate of 0.5 m per month, <strong>the</strong> melt<strong>in</strong>g term still<br />

dom<strong>in</strong>ates with a contribution twice as much as <strong>the</strong> heat<strong>in</strong>g term. The stabiliz<strong>in</strong>g components<br />

due to heat and melt<strong>in</strong>g are about 5 times <strong>the</strong> mix<strong>in</strong>g contributions from w<strong>in</strong>d and tidal<br />

stirr<strong>in</strong>g (3.2 times for a reduced melt rate of 0.5 m per month). When tidal stra<strong>in</strong><strong>in</strong>g is<br />

<strong>in</strong>cluded, assum<strong>in</strong>g that it destabilizes <strong>the</strong> water column <strong>in</strong> <strong>the</strong> ebb half cycle, <strong>the</strong> positive and<br />

negative contributions <strong>near</strong>ly balance: <strong>the</strong> ratio of stabiliz<strong>in</strong>g and destabiliz<strong>in</strong>g terms are 1.5<br />

and 0.9, respectively, for melt rates of 1 and 0.5 m per month. We conclude that <strong>the</strong> ice<br />

melt<strong>in</strong>g dom<strong>in</strong>ates over heat<strong>in</strong>g <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> potential density anomaly. Stirr<strong>in</strong>g by w<strong>in</strong>ds<br />

and tides, on <strong>the</strong> bank, is of comparable magnitude but not sufficient to completely mix <strong>the</strong><br />

water column. Tidal stra<strong>in</strong><strong>in</strong>g, periodically act<strong>in</strong>g to reduce <strong>the</strong> stratification, dom<strong>in</strong>ates over<br />

<strong>the</strong> w<strong>in</strong>d and tide stirr<strong>in</strong>g, complements <strong>the</strong> stirr<strong>in</strong>g to overcome <strong>the</strong> positive <strong>in</strong>duced by<br />

melt<strong>in</strong>g and heat<strong>in</strong>g. A tidal front is thus ma<strong>in</strong>ta<strong>in</strong>ed.<br />

382<br />

383<br />

384<br />

385<br />

386<br />

387<br />

6. Implications for nutrient fluxes<br />

Nitrate profiles collected at different times but at <strong>the</strong> same location show significant<br />

variability that can be expla<strong>in</strong>ed by tidal stirr<strong>in</strong>g and stra<strong>in</strong><strong>in</strong>g. Figure 10 shows <strong>the</strong><br />

occupation time, relative to <strong>the</strong> tide, of selected stations <strong>near</strong> <strong>the</strong> bank that were visited three<br />

times, twice for nutrient sampl<strong>in</strong>g and <strong>the</strong> third time for microstructure profil<strong>in</strong>g. The tidal<br />

velocity was <strong>in</strong>ferred at about x = 70 km, close to <strong>the</strong> station 222/249/259, and had a peak-to-<br />

18


388<br />

389<br />

390<br />

391<br />

392<br />

393<br />

peak amplitude reach<strong>in</strong>g 1 m s -1 dur<strong>in</strong>g spr<strong>in</strong>g tides. The station locations on <strong>the</strong> section are<br />

shown <strong>in</strong> Figure 10c toge<strong>the</strong>r with <strong>the</strong> isopycnals. The water column on <strong>the</strong> bank, for x>80 m<br />

was characterized by a strong horizontal density gradient, ra<strong>the</strong>r homogeneous throughout <strong>the</strong><br />

water column. Stations 218 to 222 were collected on floods dur<strong>in</strong>g spr<strong>in</strong>g tides. While most<br />

of <strong>the</strong> rema<strong>in</strong><strong>in</strong>g profiles were collected also dur<strong>in</strong>g flood periods later <strong>in</strong> transition to neap<br />

tides, stations 249 and 259 were taken dur<strong>in</strong>g ebb periods.<br />

394<br />

395<br />

396<br />

397<br />

398<br />

399<br />

400<br />

401<br />

402<br />

403<br />

404<br />

Pairs of nutrient profiles for each repeat station are shown <strong>in</strong> Figure 11. There was no<br />

significant difference <strong>in</strong> <strong>the</strong> vertical structure of profiles at 220 and 247, occupied dur<strong>in</strong>g<br />

floods. At 247, occupied about 4 days layer, <strong>the</strong> nitrate concentration was higher below <strong>the</strong><br />

depleted zone, suggest<strong>in</strong>g vertical transport of nutrients consistent with D mix<strong>in</strong>g > D mixed<br />

episodes observed at this site. This, however, could have been a result of temporal variability,<br />

advection or <strong>in</strong>ternal wave heav<strong>in</strong>g of density surfaces. The difference between <strong>the</strong> profiles<br />

of 218 and 245 was more significant. The location of this station is closer to <strong>the</strong> region where<br />

<strong>the</strong> mix<strong>in</strong>g depth did not penetrate below <strong>the</strong> mixed layer depth (x < 23 km). We propose a<br />

mechanism whereby high nitrate concentrations at <strong>the</strong> base of <strong>the</strong> pycnocl<strong>in</strong>e are transported<br />

with <strong>the</strong> T and S anomalies along <strong>the</strong> isopycnals which deepen toward <strong>the</strong> PW side of <strong>the</strong><br />

front, which are <strong>the</strong>n effectively mixed upward and <strong>the</strong>n depleted by <strong>the</strong> phytoplankton.<br />

405<br />

406<br />

407<br />

408<br />

409<br />

410<br />

The most strik<strong>in</strong>g difference was <strong>the</strong> well-mixed profile at 222 <strong>in</strong> contrast to significantly<br />

stratified vertical structure of 249. S<strong>in</strong>ce station 249 was occupied dur<strong>in</strong>g an ebb, tidal<br />

stra<strong>in</strong><strong>in</strong>g will act to enhance stratification and suppress vertical mix<strong>in</strong>g. Recall that profile<br />

222 was taken at spr<strong>in</strong>g tides dur<strong>in</strong>g flood. Tidal stirr<strong>in</strong>g toge<strong>the</strong>r with <strong>the</strong> vertical mix<strong>in</strong>g<br />

favourable tidal stra<strong>in</strong><strong>in</strong>g will act to mix <strong>the</strong> nitrate profile. Nutrients brought on to <strong>the</strong> shelf<br />

at deeper layers of <strong>the</strong> water column will thus be differentially mixed at different phases of<br />

19


411<br />

<strong>the</strong> tide, cont<strong>in</strong>ually supply<strong>in</strong>g <strong>the</strong> nutrients needed for phytoplankton growth.<br />

412<br />

413<br />

414<br />

415<br />

416<br />

417<br />

418<br />

419<br />

420<br />

421<br />

422<br />

423<br />

424<br />

425<br />

The eddy diffusivity profiles collected at co-located stations confirm <strong>the</strong>se <strong>in</strong>ferences. Note,<br />

however, that <strong>the</strong> profiles of nitrate concentration and K were not taken simultaneously (see<br />

Figure 10a). The diffusivity at 253, collected dur<strong>in</strong>g flood, was <strong>the</strong> largest with <strong>the</strong> turbulent<br />

activity <strong>in</strong>dex 4 orders of magnitude larger than that required to achieve mix<strong>in</strong>g <strong>in</strong> <strong>the</strong> entire<br />

water column (Figure 12b). This station is also where we expect <strong>the</strong> <strong>in</strong>fluence of destabiliz<strong>in</strong>g<br />

tidal stra<strong>in</strong><strong>in</strong>g and convective mix<strong>in</strong>g dur<strong>in</strong>g floods. The o<strong>the</strong>r profiles show attenuation <strong>in</strong><br />

diffusivity <strong>in</strong> <strong>the</strong> pycnocl<strong>in</strong>e where A I was not significantly above <strong>the</strong> threshold required for<br />

vertical mix<strong>in</strong>g. Although profiles 263 and 267 were collected close to flood <strong>the</strong> vertical<br />

structure of density was not homogenous and tidal stra<strong>in</strong><strong>in</strong>g was not at play. Tidal stirr<strong>in</strong>g<br />

effectively mixed <strong>the</strong> deeper layer, but mix<strong>in</strong>g across <strong>the</strong> stratification was not achieved.<br />

Profile 259 was taken dur<strong>in</strong>g ebb when tidal stra<strong>in</strong><strong>in</strong>g enhanced <strong>the</strong> stratification. The phase<br />

of <strong>the</strong> tide was comparable when <strong>the</strong> nitrate profile was taken at station 249; <strong>the</strong> dist<strong>in</strong>ct<br />

vertical structure <strong>in</strong> <strong>the</strong> nitrate profiles between 222 and 249 can thus be related to tidal<br />

stra<strong>in</strong><strong>in</strong>g.<br />

426<br />

427<br />

428<br />

429<br />

430<br />

431<br />

432<br />

433<br />

434<br />

Us<strong>in</strong>g selected co-located nutrient and eddy diffusivity profiles vertical flux of nitrate is<br />

calculated along section A. Stations are chosen on <strong>the</strong> AW side, <strong>near</strong> <strong>the</strong> front and on <strong>the</strong> PW<br />

side. Profiles of nitrate and <strong>the</strong> vertical flux of nitrate <strong>in</strong> units of mg m -2 s -1 are shown <strong>in</strong><br />

Figure 13. The stations span x = -27 to x = 52 km, before <strong>the</strong> tidal front. The vertical<br />

concentration gradient on <strong>the</strong> AW side was not significant, and toge<strong>the</strong>r with <strong>the</strong> weak eddy<br />

diffusivity, resulted <strong>in</strong> negligible nutrient fluxes. Close to <strong>the</strong> front and on <strong>the</strong> PW side of <strong>the</strong><br />

front vertical fluxes were significantly enhanced. At x = - 9 km vertical fluxes reached<br />

3.310 -3 mg m -2 s -1 , or about 290 mg m -2 per day, at 35 m. Typical range on <strong>the</strong> PW side of<br />

<strong>the</strong> front was between 50 – 1200 mg m -2 per day <strong>in</strong> <strong>the</strong> upper 50 m. Maximum values were<br />

20


435<br />

436<br />

437<br />

438<br />

439<br />

440<br />

441<br />

442<br />

443<br />

250 mg m -2 per day at x = 36 km, and <strong>in</strong> excess of 1200 mg m -2 per day at x = 52 km, both<br />

close to <strong>the</strong> surface at 13 m. These nutrient fluxes can be compared to those <strong>in</strong>ferred from <strong>the</strong><br />

microstructure measurements undertaken <strong>in</strong> late July <strong>in</strong> <strong>the</strong> marg<strong>in</strong>al ice zone <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn<br />

<strong>Barents</strong> <strong>Sea</strong> (Sundfjord et al., 2007). The largest vertical flux of about 150 mg m -2 per day<br />

reported by Sundfjord et al. (2007) is <strong>near</strong>ly one order of magnitude less than <strong>the</strong> maximum<br />

measured <strong>in</strong> our study. This, however, is a s<strong>in</strong>gle data po<strong>in</strong>t whereas Sundfjord et al.’s result<br />

is representative of <strong>the</strong> average flux over <strong>the</strong> pycnocl<strong>in</strong>e at a station with elevated levels of<br />

vertical mix<strong>in</strong>g. When averaged <strong>in</strong> <strong>the</strong> upper 50 m, <strong>the</strong> vertical nutrient flux at x = 52 km was<br />

290 mg m -2 per day.<br />

444<br />

445<br />

446<br />

447<br />

448<br />

449<br />

At station 245 (x = 36 km) <strong>the</strong> nitrate flux was elevated below <strong>the</strong> pycnocl<strong>in</strong>e characterized<br />

by weak vertical fluxes between 20-30 m depth. Distributions of fluorescence (Figure 3d) and<br />

chlorophyll-a concentration (Figure 5b) suggest negligible phytoplankton biomass below <strong>the</strong><br />

pycnocl<strong>in</strong>e. Because it is not expected that <strong>the</strong> nutrients are depleted below <strong>the</strong> pycnocl<strong>in</strong>e,<br />

<strong>the</strong> divergence <strong>in</strong> <strong>the</strong> vertical flux suggests lateral export of nutrients. We hypo<strong>the</strong>size that<br />

this export can be established along <strong>the</strong> isopycnals.<br />

450<br />

451<br />

452<br />

453<br />

454<br />

455<br />

456<br />

457<br />

Figure 13c shows <strong>the</strong> - S diagram for <strong>the</strong> water samples taken for nutrient analysis. The<br />

data po<strong>in</strong>ts are color coded for <strong>the</strong> nitrate concentration. At stations on <strong>the</strong> AW side of <strong>the</strong><br />

front (231, 239 and 243), <strong>the</strong> nitrate concentration is large and <strong>the</strong> data po<strong>in</strong>ts trace a curve<br />

close to <strong>the</strong> = 28 isopycnal. On <strong>the</strong> PW side of <strong>the</strong> front, high nitrate concentration <strong>in</strong> <strong>the</strong><br />

deeper part of <strong>the</strong> water column is <strong>the</strong>n vertically transported upward by turbulent mix<strong>in</strong>g.<br />

The vertical mix<strong>in</strong>g is most pronounced well <strong>in</strong>to <strong>the</strong> cold side of <strong>the</strong> front, on <strong>the</strong> bank,<br />

where <strong>the</strong> turbulent activity <strong>in</strong>dex is large and tidal stirr<strong>in</strong>g contributes to complete mix<strong>in</strong>g of<br />

<strong>the</strong> entire water column.<br />

21


458<br />

459<br />

460<br />

461<br />

462<br />

463<br />

464<br />

465<br />

466<br />

467<br />

468<br />

7. Summary<br />

Measurements of hydrography, nutrients and turbulence were undertaken <strong>in</strong> early May 2008<br />

along a section across <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong> <strong>Polar</strong> <strong>Front</strong> (BSPF) southwest of <strong>Hopen</strong>. The BSPF<br />

was characterized by a density-compensated <strong>the</strong>rmohal<strong>in</strong>e front <strong>near</strong> <strong>the</strong> 150 m isobath<br />

co<strong>in</strong>cid<strong>in</strong>g approximately with <strong>the</strong> 1C iso<strong>the</strong>rm. Approximately 70 km <strong>in</strong>to <strong>the</strong> cold side of<br />

<strong>the</strong> BSPF a well-def<strong>in</strong>ed tidal front was detected where <strong>the</strong> horizontal density gradient,<br />

homogeneous <strong>in</strong> <strong>the</strong> water column, exceeded 0.01 kg m -3 per km, dom<strong>in</strong>ated by negative<br />

sal<strong>in</strong>ity anomalies as a result of ice melt. Biological activity was observed to be elevated<br />

between <strong>the</strong> two fronts. Nutrients were depleted <strong>in</strong> <strong>the</strong> euphotic zone where <strong>the</strong> chlorophyll<br />

concentrations were significantly enhanced relative to <strong>the</strong> stations at <strong>the</strong> cold and warm side<br />

of <strong>the</strong> BSPF.<br />

469<br />

470<br />

471<br />

472<br />

473<br />

474<br />

475<br />

476<br />

Below <strong>the</strong> turbulent surface layer, <strong>the</strong> water column <strong>in</strong> <strong>the</strong> BSPF and on <strong>the</strong> warm Atlantic<br />

side was quiescent. Far<strong>the</strong>r onto <strong>the</strong> Spitsbergenbanken, <strong>in</strong> half of <strong>the</strong> stations <strong>the</strong> mix<strong>in</strong>g<br />

layer at <strong>the</strong> surface was typically deeper than <strong>the</strong> mixed layer depth by about 9 m, suggest<strong>in</strong>g<br />

and <strong>the</strong> euphotic zone <strong>in</strong>termittently entra<strong>in</strong>ed nutrients from <strong>the</strong> deeper layer. On <strong>the</strong> bank<br />

<strong>the</strong> turbulent boundary layers <strong>near</strong> <strong>the</strong> surface, caused by w<strong>in</strong>d mix<strong>in</strong>g, and <strong>near</strong> <strong>the</strong> seabed,<br />

caused by tidal mix<strong>in</strong>g, merged and <strong>the</strong> entire water column was turbulent. Near <strong>the</strong> BSPF,<br />

temperature and sal<strong>in</strong>ity anomalies along <strong>the</strong> isopycnals, relative to 10-h average, revealed<br />

along isopycnal <strong>in</strong>trusions with variability at a time scale consistent with <strong>the</strong> tidal period.<br />

477<br />

478<br />

479<br />

480<br />

481<br />

Ice melt<strong>in</strong>g was found to dom<strong>in</strong>ate over heat<strong>in</strong>g <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> potential density anomaly<br />

on <strong>the</strong> shelf. Stirr<strong>in</strong>g by w<strong>in</strong>ds and tides on <strong>the</strong> bank were of comparable magnitude but not<br />

sufficient to completely mix <strong>the</strong> water column. Tidal stra<strong>in</strong><strong>in</strong>g dom<strong>in</strong>ated over <strong>the</strong> w<strong>in</strong>d and<br />

tide stirr<strong>in</strong>g, and contributed to overcome <strong>the</strong> stratification <strong>in</strong>duced by melt<strong>in</strong>g and heat<strong>in</strong>g.<br />

Nutrient profiles sampled at different phases of <strong>the</strong> tide at <strong>the</strong> same location show<br />

22


482<br />

483<br />

484<br />

485<br />

486<br />

487<br />

488<br />

489<br />

490<br />

491<br />

492<br />

493<br />

494<br />

495<br />

496<br />

significant variability that can be expla<strong>in</strong>ed by tidal stirr<strong>in</strong>g and stra<strong>in</strong><strong>in</strong>g. Stations occupied<br />

dur<strong>in</strong>g ebb tide reveal weak diffusivity levels; tidal stra<strong>in</strong><strong>in</strong>g enhances <strong>the</strong> stratification and<br />

suppresses vertical mix<strong>in</strong>g. Dur<strong>in</strong>g flood tide, on <strong>the</strong> o<strong>the</strong>r hand, tidal stirr<strong>in</strong>g toge<strong>the</strong>r with<br />

vertical mix<strong>in</strong>g favourable tidal stra<strong>in</strong><strong>in</strong>g mix <strong>the</strong> nutrient concentrations <strong>in</strong> <strong>the</strong> water column.<br />

While vertical fluxes of nitrate were <strong>in</strong>significant on <strong>the</strong> warm side of <strong>the</strong> front, on <strong>the</strong> bank,<br />

<strong>the</strong>y were calculated to be <strong>in</strong> <strong>the</strong> range of 50 – 1200 mg m -2 per day. Near <strong>the</strong> bank, vertical<br />

profiles of nitrate flux showed mid-depth m<strong>in</strong>imum <strong>in</strong>creas<strong>in</strong>g toward <strong>the</strong> bottom and<br />

surface, <strong>the</strong> divergence of <strong>the</strong> flux thus suggest lateral export of nutrients. A mechanism is<br />

proposed whereby high nitrate concentrations on <strong>the</strong> warm side of <strong>the</strong> BSPF are transported<br />

with <strong>the</strong> T and S anomalies along <strong>the</strong> isopycnals which deepen toward <strong>the</strong> tidal front. Tidal<br />

mix<strong>in</strong>g <strong>the</strong>n effectively mixes <strong>the</strong> nutrient rich deep water upward, susta<strong>in</strong><strong>in</strong>g <strong>the</strong><br />

phytoplankton bloom. The low turbulence levels <strong>in</strong> <strong>the</strong> <strong>Polar</strong> <strong>Front</strong> coupled with <strong>the</strong> low<br />

chlorophyll-a concentrations suggest that <strong>the</strong> <strong>Front</strong> was not a region of high primary<br />

production. This is consistent with <strong>the</strong> results found for <strong>the</strong> density compensat<strong>in</strong>g Arctic<br />

<strong>Front</strong> <strong>in</strong> <strong>the</strong> Norwegian <strong>Sea</strong> (Erga et al., 2011).<br />

23


497<br />

498<br />

Acknowledgments<br />

499<br />

500<br />

501<br />

The field work and KD received fund<strong>in</strong>g from <strong>the</strong> Research Council of Norway through <strong>the</strong><br />

NESSAR project (# 176057). This is publication number XXX from <strong>the</strong> Bjerknes Centre for<br />

Climate Research.<br />

24


502<br />

REFERENCES<br />

503<br />

504<br />

505<br />

506<br />

507<br />

508<br />

509<br />

510<br />

511<br />

512<br />

513<br />

514<br />

515<br />

516<br />

517<br />

518<br />

519<br />

520<br />

521<br />

522<br />

523<br />

524<br />

Belk<strong>in</strong>, I.M., Cornillon, P.C. and Sherman, K., 2009. <strong>Front</strong>s <strong>in</strong> Large Mar<strong>in</strong>e Ecosystems.<br />

Progress In Oceanography, 81(1-4): 223-236, doi: 10.1016/j.pocean.2009.04.015.<br />

Erga, S.R., Ssebiyonga, N., Hamre, B., Frette, Ø., Hovland, E., Dr<strong>in</strong>kwater, K. and Rey, F.,<br />

2011. Environmental control of phytoplankton distribution and photosyn<strong>the</strong>tic<br />

capacity at <strong>the</strong> Jan Mayen <strong>Front</strong> <strong>in</strong> <strong>the</strong> Norwegian <strong>Sea</strong>. Journal of Mar<strong>in</strong>e Systems,<br />

submitted (this issue).<br />

Fer, I., 2006. Scal<strong>in</strong>g turbulent dissipation <strong>in</strong> an Arctic fjord. Deep-<strong>Sea</strong> Research Part II-<br />

Topical Studies <strong>in</strong> Oceanography, 53(1-2): 77-95.<br />

Fer, I., Skogseth, R., Haugan, P.M. and Jaccard, P., 2003. Observations of <strong>the</strong> Storfjorden<br />

overflow. Deep-<strong>Sea</strong> Research Part I-Oceanographic Research Papers, 50(10-11):<br />

1283-1303, doi: 10.1016/s0967-0637(03)00124-9.<br />

Fer, I. and Sundfjord, A., 2007. Observations of upper ocean boundary layer dynamics <strong>in</strong> <strong>the</strong><br />

marg<strong>in</strong>al ice zone. Journal of Geophysical Research, 112(C4): C04012, doi:<br />

10.1029/2005jc003428.<br />

Fer, I. and Ådlandsvik, B., 2008. Descent and mix<strong>in</strong>g of <strong>the</strong> overflow plume from Storfjord<br />

<strong>in</strong> Svalbard: An idealized numerical model study Ocean Science, 4: 115-132.<br />

Fossheim, M., Nilssen, E.M. and Aschan, M., 2006. Fish assemblages <strong>in</strong> <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong>.<br />

Mar<strong>in</strong>e Biology Research, 2: 260-269.<br />

Gawarkiewicz, G. and Plueddemann, A.J., 1995. Topographic control of <strong>the</strong>rmohal<strong>in</strong>e frontal<br />

structure <strong>in</strong> <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong> <strong>Polar</strong> <strong>Front</strong> on <strong>the</strong> south flank of Spitsbergen Bank.<br />

Journal of Geophysical Research-Oceans, 100(C3): 4509-4524, doi:<br />

10.1029/94jc02427.<br />

25


525<br />

526<br />

527<br />

528<br />

529<br />

530<br />

531<br />

532<br />

533<br />

534<br />

535<br />

536<br />

537<br />

538<br />

539<br />

540<br />

541<br />

542<br />

543<br />

544<br />

545<br />

546<br />

Gjøsæter, H., 1998. The population biology and exploitation of capel<strong>in</strong> (Mallotus villosus) <strong>in</strong><br />

<strong>the</strong> <strong>Barents</strong> <strong>Sea</strong>. Sarsia, 83: 453-496.<br />

Harris, C.L., Plueddemann, A.J. and Gawarkiewicz, G.G., 1998. Water mass distribution and<br />

polar front structure <strong>in</strong> <strong>the</strong> western <strong>Barents</strong> <strong>Sea</strong>. Journal of Geophysical Research-<br />

Oceans, 103(C2): 2905-2917, doi: 10.1029/97jc02790.<br />

Huthnance, J.M., 1995. Circulation, exchange and water masses at <strong>the</strong> ocean marg<strong>in</strong>: <strong>the</strong> role<br />

of physical processes at <strong>the</strong> shelf edge. Progress In Oceanography, 35(4): 353-431.<br />

Le Fèvre, J., 1987. Aspects of <strong>the</strong> biology of frontal systems, Advances <strong>in</strong> Mar<strong>in</strong>e Biology.<br />

Academic Press, pp. 163-299.<br />

Lien, V.S. and Ådlansvik, B., 2011. Bottom water formation as a primer for spr<strong>in</strong>g-blooms<br />

on Spitsbergenbanken? Journal of Mar<strong>in</strong>e Systems, submitted (this issue).<br />

Loder, J.W. and Greenberg, D.A., 1986. Predicted positions of tidal fronts <strong>in</strong> <strong>the</strong> Gulf of<br />

Ma<strong>in</strong>e region. Cont<strong>in</strong>ental Shelf Research, 6(3): 397-414.<br />

Loeng, H., 1991. Features of <strong>the</strong> physical oceanographic conditions of <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong>. <strong>Polar</strong><br />

Research, 10: 5-18.<br />

Loeng, H. and Dr<strong>in</strong>kwater, K., 2007. An overview of <strong>the</strong> ecosystems of <strong>the</strong> <strong>Barents</strong> and<br />

Norwegian <strong>Sea</strong>s and <strong>the</strong>ir response to climate variability. Deep <strong>Sea</strong> Research Part II:<br />

Topical Studies <strong>in</strong> Oceanography, 54(23-26): 2478-2500, doi:<br />

10.1016/j.dsr2.2007.08.013.<br />

Oakey, N.S., 1982. Determ<strong>in</strong>ation of <strong>the</strong> rate of dissipation of turbulent energy from<br />

simultaneous temperature and velocity shear microstructure measurements. Journal of<br />

Physical Oceanography, 12(3): 256-271.<br />

26


547<br />

548<br />

549<br />

550<br />

551<br />

552<br />

553<br />

554<br />

555<br />

556<br />

557<br />

558<br />

559<br />

560<br />

561<br />

562<br />

563<br />

564<br />

565<br />

566<br />

567<br />

568<br />

569<br />

Osborn, T.R., 1980. Estimates of <strong>the</strong> local rate of vertical diffusion from dissipation<br />

measurements. Journal of Physical Oceanography, 10(1): 83-89.<br />

Padman, L. and Erofeeva, S., 2004. A barotropic <strong>in</strong>verse tidal model for <strong>the</strong> Arctic Ocean.<br />

Geophysical Research Letters, 31(2): L02303, doi: 10.1029/2003gl019003.<br />

Parsons, A.R., Bourke, R.H., Muench, R.D., Chiu, C.S., Lynch, J.F., Miller, J.H.,<br />

Plueddemann, A.J. and Pawlowicz, R., 1996. The <strong>Barents</strong> <strong>Sea</strong> <strong>Polar</strong> <strong>Front</strong> <strong>in</strong> summer.<br />

Journal of Geophysical Research, 101(C6): 14201-14221.<br />

Parsons, T.R., Maita, Y. and Lalli, C.M., 1992. A manual of chemical and biological methods<br />

for sea water analysis. Pergamon Press, New York, 173 pp.<br />

Pfirman, S.L., Bauch, D. and Gammelsrød, T., 1994. The Nor<strong>the</strong>rn <strong>Barents</strong> <strong>Sea</strong>: Water mass<br />

distribution and modification. In: O.M. Johannessen, R.D. Muench and J.E. Overland<br />

(Editors), The polar oceans and <strong>the</strong>ir role <strong>in</strong> shap<strong>in</strong>g <strong>the</strong> global environment: <strong>the</strong><br />

Nansen centennial volume. Geophysical Monograph 85, American Geophysical<br />

Union, pp. 77-94.<br />

Rey, F., Noji, T.T. and Miller, L.A., 2000. <strong>Sea</strong>sonal phytoplankton development and new<br />

production <strong>in</strong> <strong>the</strong> central Greenland <strong>Sea</strong>. Sarsia, 85: 329-344.<br />

Rohr, J.J., Itsweire, E.C., Helland, K.N. and Van Atta, C.W., 1988. Growth and decay of<br />

turbulence <strong>in</strong> a stably stratified shear flow. Journal of Fluid Mechanics, 195: 77-111.<br />

Simpson, J., Brown, J., Mat<strong>the</strong>ws, J. and Allen, G., 1990. Tidal stra<strong>in</strong><strong>in</strong>g, density currents,<br />

and stirr<strong>in</strong>g <strong>in</strong> <strong>the</strong> control of estuar<strong>in</strong>e stratification. Estuaries and Coasts, 13(2): 125-<br />

132, doi: 10.2307/1351581.<br />

Simpson, J.H. and Bowers, D., 1981. Models of stratification and frontal movement <strong>in</strong> shelf<br />

seas. Deep <strong>Sea</strong> Research Part A. Oceanographic Research Papers, 28(7): 727-738.<br />

27


570<br />

571<br />

572<br />

573<br />

574<br />

575<br />

576<br />

577<br />

578<br />

579<br />

580<br />

581<br />

582<br />

583<br />

Simpson, J.H., Crawford, W.R., Rippeth, T.P., Campbell, A.R. and Cheok, J.V.S., 1996. The<br />

vertical structure of turbulent dissipation <strong>in</strong> shelf seas. Journal of Physical<br />

Oceanography, 26(8): 1579-1590.<br />

Smedsrud, L.H., Ingvaldsen, R., Nilsen, J.E.Ø. and Skagseth, Ø., 2010. Heat <strong>in</strong> <strong>the</strong> <strong>Barents</strong><br />

<strong>Sea</strong>: transport, storage, and surface fluxes. Ocean Science, 6(1): 219-234, doi:<br />

10.5194/os-6-219-2010.<br />

Sundfjord, A., Fer, I., Kasajima, Y. and Svendsen, H., 2007. Observations of turbulent<br />

mix<strong>in</strong>g and hydrography <strong>in</strong> <strong>the</strong> marg<strong>in</strong>al ice zone of <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong>. Journal of<br />

Geophysical Research, 112(C5): C05008, doi: 10.1029/2006jc003524.<br />

Våge, S., Basedow, S.L., Tande, K.S. and Zhou, M., 2011. Physical structure of <strong>the</strong> <strong>Barents</strong><br />

<strong>Sea</strong> <strong>Polar</strong> <strong>Front</strong> <strong>near</strong> Storbanken <strong>in</strong> August 2007. Journal of Mar<strong>in</strong>e Systems,<br />

submitted (this issue).<br />

Wassmann, P. et al., 2006. Food webs and carbon flux <strong>in</strong> <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong>. Progress In<br />

Oceanography, 71(2-4): 232-287, doi: 10.1016/j.pocean.2006.10.003.<br />

584<br />

28


585<br />

Figure captions<br />

586<br />

587<br />

588<br />

589<br />

590<br />

591<br />

592<br />

593<br />

Figure 1. Location map of <strong>the</strong> study region toge<strong>the</strong>r with <strong>the</strong> place names and <strong>the</strong> positions of<br />

<strong>the</strong> stations. Bathymetric contours are drawn at 25 m <strong>in</strong>tervals. The <strong>in</strong>set identifies <strong>the</strong> region<br />

(box) <strong>in</strong> <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong> shown <strong>in</strong> detail and <strong>the</strong> 1000-m isobath (gray). Microstructure<br />

profiles were collected along section A (dots), at <strong>the</strong> time series station TS (square) and at<br />

stations 231 and 239, marked by diamonds, occupied prior to section A. Shipboard CTD<br />

measurements were made at each station of section A, and also dur<strong>in</strong>g an earlier occupation<br />

of <strong>the</strong> section (A0) with coarser station spac<strong>in</strong>g (open circles). Nutrient sampl<strong>in</strong>g was<br />

conducted at all stations <strong>in</strong>dicated by circles. 33<br />

594<br />

595<br />

596<br />

597<br />

598<br />

599<br />

Figure 2. Occupation of stations relative to <strong>the</strong> spr<strong>in</strong>g-neap cycle. The east, u, and north, v,<br />

components of <strong>the</strong> tidal velocity are <strong>in</strong>ferred from AOTIM-5 (Padman and Erofeeva, 2004) at<br />

<strong>the</strong> position of station TS. Gray shad<strong>in</strong>g marks <strong>the</strong> duration of <strong>the</strong> first occupation of section<br />

A (A0, stations 213 to 225) when only CTD was deployed, and Section A and station TS<br />

when <strong>the</strong> microstructure profiler was deployed. Occupation of <strong>in</strong>dividual stations is <strong>in</strong>dicated<br />

by arrows and station numbers. 34<br />

600<br />

601<br />

602<br />

603<br />

604<br />

605<br />

Figure 3. Contours of a) potential temperature, , b) potential density anomaly , c) sal<strong>in</strong>ity,<br />

S, and d) fluorescence along Section A measured by <strong>the</strong> SBE911+ CTD unit. The section is<br />

extended to <strong>in</strong>clude station 231. The horizontal distance is referenced to station 277 which is<br />

identified as <strong>the</strong> front position (vertical dashed l<strong>in</strong>e). Arrow heads mark <strong>the</strong> stations with <strong>the</strong><br />

station number from <strong>the</strong> cruise log. Bottom depth is <strong>in</strong>ferred from <strong>the</strong> ship’s echo sounder.<br />

Data are not available <strong>in</strong> <strong>the</strong> gray portions <strong>near</strong> <strong>the</strong> bottom. 35<br />

606<br />

607<br />

Figure 4. Properties along section A evaluated at 5 m (black) and 50 m (red) depth, averaged<br />

with<strong>in</strong> 1-m vertical extend of <strong>the</strong> target depth. Horizontal distance is referenced to <strong>the</strong> front at<br />

29


608<br />

609<br />

610<br />

station 277 identified as <strong>the</strong> extrema <strong>in</strong> <strong>the</strong> horizontal sal<strong>in</strong>ity and temperature gradients.<br />

Panels show a) <strong>the</strong> potential density anomaly , c) potential temperature, , e) sal<strong>in</strong>ity, and<br />

<strong>the</strong>ir horizontal gradients <strong>in</strong> property unit per km <strong>in</strong> panels b, d and f. 36<br />

611<br />

612<br />

613<br />

614<br />

615<br />

616<br />

617<br />

Figure 5. Contours of a) nitrate (color) and potential temperature, (black) and b)<br />

chlorophyll-a (color) and potential density anomaly, (black) for <strong>the</strong> first occupation of<br />

Section A (A0). Note that <strong>the</strong> nitrate is sampled at all stations identified by arrowheads but<br />

chlorophyll is sampled <strong>in</strong> only 3 stations (213, 216 and 225) and <strong>in</strong>terpolated l<strong>in</strong>early<br />

between <strong>the</strong> stations. Nitrate is given <strong>in</strong> units of mol/L, equivalent to 10 -3 mol m -3 or 62 mg<br />

m -3 . Gray dots mark <strong>the</strong> sampl<strong>in</strong>g depths for <strong>the</strong> correspond<strong>in</strong>g parameter. Temperature and<br />

density values are available at all sampl<strong>in</strong>g depths. 37<br />

618<br />

619<br />

620<br />

621<br />

622<br />

623<br />

624<br />

Figure 6. Properties along Section A measured by MSS: contours of a) potential temperature<br />

(black), , and log 10 of dissipation rate (color), b) potential density anomaly (black) and<br />

log 10 of eddy diffusivity, K (color). The section is extended to <strong>in</strong>clude station 231. The white<br />

contours <strong>in</strong> b) are N = 0.6 cph and show where <strong>the</strong> stratification is weak. The horizontal<br />

distance is referenced to <strong>the</strong> front position (vertical dashed l<strong>in</strong>e). Arrow heads mark <strong>the</strong><br />

stations with <strong>the</strong> station number from <strong>the</strong> cruise log. Bottom depth is <strong>in</strong>ferred from <strong>the</strong> ship’s<br />

echo sounder. Data are not available <strong>in</strong> <strong>the</strong> gray portions <strong>near</strong> <strong>the</strong> bottom. 38<br />

625<br />

626<br />

627<br />

628<br />

629<br />

Figure 7. Properties at station TS measured by MSS: contours of a) potential temperature, ,<br />

b) sal<strong>in</strong>ity, and c) log 10 of dissipation rate . In all panels contours of <strong>the</strong> potential density<br />

anomaly are also shown <strong>in</strong> black. The time is referenced to <strong>the</strong> start of <strong>the</strong> first cast on 15<br />

May 2008 20:50 UTC. Arrow heads mark <strong>in</strong>dividual casts. Each batch of 5 cast is averaged<br />

(vertical dashed l<strong>in</strong>es) and used <strong>in</strong> produc<strong>in</strong>g <strong>the</strong> figures. In c) vertical profiles of<br />

30


630<br />

631<br />

fluorescence (red) are shown <strong>in</strong> units of g/l with scale at <strong>the</strong> bottom. The deep parts of <strong>the</strong><br />

fluorescence profiles have values <strong>near</strong> zero and mark <strong>the</strong> time when <strong>the</strong> profile is taken. 39<br />

632<br />

633<br />

634<br />

635<br />

636<br />

Figure 8. Profiles of potential temperature, , sal<strong>in</strong>ity, S, potential density anomaly ,<br />

dissipation rate , and eddy diffusivity, K averaged over stations <strong>in</strong> <strong>the</strong> AW side (red), PW<br />

side (blue) of <strong>the</strong> front and at <strong>the</strong> front (FR, black). Upper row shows profiles averaged<br />

isopycnally. Lower row shows profiles averaged with respect to depth, z, normalized by <strong>the</strong><br />

total water depth, H. 40<br />

637<br />

638<br />

639<br />

640<br />

Figure 9. Anomalies of (color) a) temperature and b) sal<strong>in</strong>ity along isopycnals at station TS.<br />

The anomalies are multiplied by <strong>the</strong> coefficient of <strong>the</strong>rmal expansion and hal<strong>in</strong>e contraction,<br />

respectively, to <strong>in</strong>dicate <strong>the</strong>ir contribution to density. Contours of temperature and sal<strong>in</strong>ity<br />

along isopycnals are shown <strong>in</strong> black. 41<br />

641<br />

642<br />

643<br />

644<br />

645<br />

646<br />

Figure 10. Summary of <strong>the</strong> time and location of revisited stations. a-b) Time series of <strong>the</strong> east<br />

component of <strong>the</strong> tidal velocity toge<strong>the</strong>r with <strong>the</strong> time of occupation of <strong>the</strong> stations marked<br />

with dashed l<strong>in</strong>es and station numbers c) Contours of (thick: 0.1 unit <strong>in</strong>tervals, gray, th<strong>in</strong>:<br />

0.02 unit <strong>in</strong>tervals) along <strong>the</strong> PW side of <strong>the</strong> front. The co-located stations are <strong>in</strong>dicated with<br />

station numbers. Nitrate profiles from 218/245, 220/247 and 222/249 are shown <strong>in</strong> Figure 11.<br />

Turbulent parameters for stations 253, 259, 263 and 267 are shown <strong>in</strong> Figure 12. 42<br />

647<br />

648<br />

649<br />

650<br />

651<br />

Figure 11. Profiles of nitrate at three stations on <strong>the</strong> PW side of <strong>the</strong> front at approximately a)<br />

x = 37 km, b) x = 53 km, and c) x = 67 km. See Figure 10 for location on Section A and time<br />

relative to tides. Each location is sampled twice, dur<strong>in</strong>g spr<strong>in</strong>gs (218, 220 and 222) and about<br />

3.7 day later <strong>in</strong> transition to neaps. All profiles are collected dur<strong>in</strong>g flood, except station 249<br />

dur<strong>in</strong>g <strong>the</strong> ebb tide. 43<br />

31


652<br />

653<br />

654<br />

655<br />

656<br />

657<br />

Figure 12. Profiles of a) eddy diffusivity, K , and b) turbulent activity <strong>in</strong>dex, A I for <strong>the</strong><br />

selected stations on <strong>the</strong> cold side of <strong>the</strong> front. See Figure 10 for location on Section A and<br />

time relative to tides. Stations 267, 263 and 259 are co-located with 245/218, 247/220 and<br />

249/222, respectively, where nutrients are sampled. No nutrient sampl<strong>in</strong>g was made when <strong>the</strong><br />

microstructure was deployed. Vertical dashed l<strong>in</strong>e <strong>in</strong> b) shows <strong>the</strong> approximate threshold<br />

below which no vertical mix<strong>in</strong>g is expected. 44<br />

658<br />

659<br />

660<br />

661<br />

662<br />

663<br />

Figure 13. Profiles of a) nitrate and b) vertical flux of nitrate at stations <strong>in</strong>dicated by station<br />

numbers and distance from <strong>the</strong> front. Nitrate concentration is converted to mg m -3 before<br />

calculat<strong>in</strong>g <strong>the</strong> vertical flux. Temperature-sal<strong>in</strong>ity diagram for <strong>the</strong> same water samples colorcoded<br />

for nitrate concentration. Contours of are drawn at 0.1 unit <strong>in</strong>tervals. Arrows<br />

<strong>in</strong>dicated suggested pathways of mix<strong>in</strong>g, along isopycnals until well <strong>in</strong>to <strong>the</strong> cold side of <strong>the</strong><br />

front, across <strong>the</strong> isopycnals where tidal stirr<strong>in</strong>g and stra<strong>in</strong><strong>in</strong>g becomes important. 45<br />

664<br />

665<br />

32


Greenland<br />

77 o N<br />

Svalbard<br />

<strong>Barents</strong><br />

<strong>Sea</strong><br />

<strong>Hopen</strong><br />

<strong>Hopen</strong>−<br />

banken<br />

200<br />

Norway<br />

100<br />

76 o N<br />

100<br />

225<br />

Spitsbergenbanken<br />

100<br />

223<br />

75 o N<br />

20 o E 25 o E 30 o E<br />

A<br />

249<br />

247<br />

245<br />

219<br />

200<br />

TS<br />

216<br />

243<br />

239<br />

213<br />

231<br />

300<br />

<strong>Hopen</strong> Trench<br />

666<br />

667<br />

668<br />

669<br />

670<br />

671<br />

672<br />

673<br />

674<br />

Figure 1. Location map of <strong>the</strong> study region toge<strong>the</strong>r with <strong>the</strong> place names and <strong>the</strong> positions of<br />

<strong>the</strong> stations. Bathymetric contours are drawn at 25 m <strong>in</strong>tervals. The <strong>in</strong>set identifies <strong>the</strong> region<br />

(box) <strong>in</strong> <strong>the</strong> <strong>Barents</strong> <strong>Sea</strong> shown <strong>in</strong> detail and <strong>the</strong> 1000-m isobath (gray). Microstructure<br />

profiles were collected along section A (dots), at <strong>the</strong> time series station TS (square) and at<br />

stations 231 and 239, marked by diamonds, occupied prior to section A. Shipboard CTD<br />

measurements were made at each station of section A, and also dur<strong>in</strong>g an earlier occupation<br />

of <strong>the</strong> section (A0) with coarser station spac<strong>in</strong>g (open circles). Nutrient sampl<strong>in</strong>g was<br />

conducted at all stations <strong>in</strong>dicated by circles.<br />

675<br />

33


A0 ↓ ↓↓↓<br />

A<br />

TS<br />

Tidal Velocity [cm s −1 ]<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

−15<br />

−20<br />

−25<br />

u<br />

v<br />

231<br />

239<br />

243<br />

245<br />

247<br />

676<br />

01 03 05 07 09 11 13 15 17 19<br />

Day of May 2008<br />

677<br />

678<br />

679<br />

680<br />

681<br />

682<br />

Figure 2. Occupation of stations relative to <strong>the</strong> spr<strong>in</strong>g-neap cycle. The east, u, and north, v,<br />

components of <strong>the</strong> tidal velocity are <strong>in</strong>ferred from AOTIM-5 (Padman and Erofeeva, 2004) at<br />

<strong>the</strong> position of station TS. Gray shad<strong>in</strong>g marks <strong>the</strong> duration of <strong>the</strong> first occupation of section<br />

A (A0, stations 213 to 225) when only CTD was deployed, and Section A and station TS<br />

when <strong>the</strong> microstructure profiler was deployed. Occupation of <strong>in</strong>dividual stations is <strong>in</strong>dicated<br />

by arrows and station numbers.<br />

34


683<br />

0<br />

231<br />

280<br />

278<br />

276<br />

274<br />

272<br />

270<br />

268<br />

266<br />

264<br />

262<br />

260<br />

258<br />

251<br />

253<br />

255<br />

3<br />

231<br />

280<br />

278<br />

276<br />

274<br />

272<br />

270<br />

268<br />

266<br />

264<br />

262<br />

260<br />

258<br />

251<br />

253<br />

255<br />

28.05<br />

Depth [m]<br />

50<br />

100<br />

150<br />

200<br />

250<br />

0<br />

2.5<br />

1.5<br />

0<br />

−1.5<br />

a) θ [°C]<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

35.1<br />

28<br />

27.95<br />

b) σ θ<br />

28<br />

27.95<br />

27.9<br />

27.85<br />

27.8<br />

27.75<br />

27.7<br />

12<br />

684<br />

Depth [m]<br />

50<br />

100<br />

34.8<br />

34.9<br />

35<br />

150<br />

200<br />

250<br />

c) S<br />

−20 0 20 40 60 80<br />

Distance [km]<br />

35<br />

34.9<br />

34.8<br />

34.7<br />

34.6<br />

34.5<br />

34.4<br />

d) Fluor [μg/l]<br />

−20 0 20 40 60 80<br />

Distance [km]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

685<br />

686<br />

687<br />

688<br />

689<br />

690<br />

Figure 3. Contours of a) potential temperature, , b) potential density anomaly , c) sal<strong>in</strong>ity,<br />

S, and d) fluorescence along Section A measured by <strong>the</strong> SBE911+ CTD unit. The section is<br />

extended to <strong>in</strong>clude station 231. The horizontal distance is referenced to station 277 which is<br />

identified as <strong>the</strong> front position (vertical dashed l<strong>in</strong>e). Arrow heads mark <strong>the</strong> stations with <strong>the</strong><br />

station number from <strong>the</strong> cruise log. Bottom depth is <strong>in</strong>ferred from <strong>the</strong> ship’s echo sounder.<br />

Data are not available <strong>in</strong> <strong>the</strong> gray portions <strong>near</strong> <strong>the</strong> bottom.<br />

35


σ θ<br />

28<br />

27.9<br />

27.8<br />

a<br />

50 m<br />

5 m<br />

b<br />

0.01<br />

0<br />

−0.01<br />

∂σ θ<br />

/∂x<br />

θ<br />

2<br />

1<br />

0<br />

−1<br />

c<br />

d<br />

0.1<br />

0<br />

−0.1<br />

∂θ/∂x<br />

35<br />

e<br />

f<br />

0.01<br />

S<br />

34.8<br />

34.6<br />

0<br />

−0.01<br />

∂S/∂x<br />

691<br />

−25 0 50 100<br />

Distance (km)<br />

−25 0 50 100<br />

Distance (km)<br />

692<br />

693<br />

694<br />

695<br />

696<br />

Figure 4. Properties along section A evaluated at 5 m (black) and 50 m (red) depth, averaged<br />

with<strong>in</strong> 1-m vertical extend of <strong>the</strong> target depth. Horizontal distance is referenced to <strong>the</strong> front at<br />

station 277 identified as <strong>the</strong> extrema <strong>in</strong> <strong>the</strong> horizontal sal<strong>in</strong>ity and temperature gradients.<br />

Panels show a) <strong>the</strong> potential density anomaly , c) potential temperature, , e) sal<strong>in</strong>ity, and<br />

<strong>the</strong>ir horizontal gradients <strong>in</strong> property unit per km <strong>in</strong> panels b, d and f.<br />

36


697<br />

0<br />

213<br />

215<br />

217<br />

219<br />

221<br />

223<br />

225<br />

Nitrate<br />

10<br />

Depth [m]<br />

50<br />

100<br />

2<br />

1<br />

0<br />

0<br />

0<br />

−0.5<br />

−1.5<br />

8<br />

6<br />

4<br />

Depth [m]<br />

150<br />

200<br />

0<br />

50<br />

100<br />

150<br />

a) Nitrate [μmol/L], θ [°C]<br />

27.75<br />

27.95 27.85 27.7<br />

27.95<br />

2<br />

0<br />

Chl−A<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

698<br />

200<br />

b) Chlorophyll [mg/m 3 ], σ θ<br />

0 20 40 60 80 100<br />

Distance [km]<br />

1<br />

0<br />

699<br />

700<br />

701<br />

702<br />

703<br />

704<br />

705<br />

Figure 5. Contours of a) nitrate (color) and potential temperature, (black) and b)<br />

chlorophyll-a (color) and potential density anomaly, (black) for <strong>the</strong> first occupation of<br />

Section A (A0). Note that <strong>the</strong> nitrate is sampled at all stations identified by arrowheads but<br />

chlorophyll is sampled <strong>in</strong> only 3 stations (213, 216 and 225) and <strong>in</strong>terpolated l<strong>in</strong>early<br />

between <strong>the</strong> stations. Nitrate is given <strong>in</strong> units of mol/L, equivalent to 10 -3 mol m -3 or 62 mg<br />

m -3 . Gray dots mark <strong>the</strong> sampl<strong>in</strong>g depths for <strong>the</strong> correspond<strong>in</strong>g parameter. Temperature and<br />

density values are available at all sampl<strong>in</strong>g depths.<br />

37


706<br />

Depth [m]<br />

0<br />

50<br />

100<br />

150<br />

231<br />

2.5<br />

2<br />

280<br />

278<br />

276<br />

274<br />

272<br />

270<br />

268<br />

266<br />

264<br />

262<br />

260<br />

258<br />

0.5 0 −1.5<br />

251<br />

253<br />

255<br />

log 10<br />

(ε)<br />

−6<br />

−6.5<br />

−7<br />

−7.5<br />

−8<br />

−8.5<br />

200<br />

−9<br />

250<br />

0<br />

a) θ [°C], ε [W kg −1 ]<br />

−9.5<br />

−10<br />

log 10<br />

(K ρ<br />

)<br />

0<br />

707<br />

Depth [m]<br />

50<br />

100<br />

150<br />

200<br />

250<br />

27.95<br />

27.8<br />

28<br />

b) σ , K [m 2 s −1 ]<br />

θ ρ<br />

−20 0 20 40 60 80<br />

Distance [km]<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

708<br />

709<br />

710<br />

711<br />

712<br />

713<br />

714<br />

Figure 6. Properties along Section A measured by MSS: contours of a) potential temperature<br />

(black), , and log 10 of dissipation rate (color), b) potential density anomaly (black) and<br />

log 10 of eddy diffusivity, K (color). The section is extended to <strong>in</strong>clude station 231. The white<br />

contours <strong>in</strong> b) are N = 0.6 cph and show where <strong>the</strong> stratification is weak. The horizontal<br />

distance is referenced to <strong>the</strong> front position (vertical dashed l<strong>in</strong>e). Arrow heads mark <strong>the</strong><br />

stations with <strong>the</strong> station number from <strong>the</strong> cruise log. Bottom depth is <strong>in</strong>ferred from <strong>the</strong> ship’s<br />

echo sounder. Data are not available <strong>in</strong> <strong>the</strong> gray portions <strong>near</strong> <strong>the</strong> bottom.<br />

38


0<br />

27.94<br />

θ<br />

0.4<br />

Depth [m]<br />

50<br />

100<br />

27.99<br />

27.98<br />

0.2<br />

0<br />

−0.2<br />

715<br />

Depth [m]<br />

Depth [m]<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

a)<br />

b)<br />

c)<br />

27.99<br />

27.99<br />

27.98<br />

Fluor.<br />

0 10<br />

27.94<br />

0 1 2 3 4 5 6 7 8 9<br />

Time [h]<br />

−0.4<br />

−0.6<br />

S<br />

34.9<br />

34.88<br />

34.86<br />

34.84<br />

34.82<br />

34.8<br />

34.78<br />

34.76<br />

log 10<br />

(ε)<br />

−6<br />

−6.5<br />

−7<br />

−7.5<br />

−8<br />

−8.5<br />

−9<br />

−9.5<br />

−10<br />

716<br />

717<br />

718<br />

719<br />

720<br />

721<br />

722<br />

Figure 7. Properties at station TS measured by MSS: contours of a) potential temperature, ,<br />

b) sal<strong>in</strong>ity, and c) log 10 of dissipation rate . In all panels contours of <strong>the</strong> potential density<br />

anomaly are also shown <strong>in</strong> black. The time is referenced to <strong>the</strong> start of <strong>the</strong> first cast on 15<br />

May 2008 20:50 UTC. Arrow heads mark <strong>in</strong>dividual casts. Each batch of 5 cast is averaged<br />

(vertical dashed l<strong>in</strong>es) and used <strong>in</strong> produc<strong>in</strong>g <strong>the</strong> figures. In c) vertical profiles of<br />

fluorescence (red) are shown <strong>in</strong> units of g/l with scale at <strong>the</strong> bottom. The deep parts of <strong>the</strong><br />

fluorescence profiles have values <strong>near</strong> zero and mark <strong>the</strong> time when <strong>the</strong> profile is taken.<br />

39


723<br />

Depth [m]<br />

0<br />

50<br />

100<br />

150<br />

0<br />

0.2<br />

AW<br />

FR<br />

PW<br />

a b c d e<br />

i<br />

j<br />

PW<br />

724<br />

−z/H<br />

0.4<br />

0.6<br />

0.8<br />

1<br />

−1 0 1 2<br />

θ [°C]<br />

FR<br />

AW<br />

f g h<br />

34.6 34.8 35 27.9 28 10 −9 10 −8 10 −7 10 −6<br />

10 −5 10 −3 10 −1<br />

S<br />

σ θ ε [W kg −1 ] K ρ<br />

[m 2 s −1 ]<br />

725<br />

726<br />

727<br />

728<br />

729<br />

730<br />

Figure 8. Profiles of potential temperature, , sal<strong>in</strong>ity, S, potential density anomaly ,<br />

dissipation rate , and eddy diffusivity, K averaged over stations <strong>in</strong> <strong>the</strong> AW side (red), PW<br />

side (blue) of <strong>the</strong> front and at <strong>the</strong> front (FR, black). Upper row shows profiles averaged<br />

isopycnally. Lower row shows profiles averaged with respect to depth, z, normalized by <strong>the</strong><br />

total water depth, H.<br />

731<br />

40


732<br />

Mean Isopycnal Depth [m] Mean Isopycnal Depth [m]<br />

0<br />

20<br />

0.2<br />

0.1<br />

40<br />

60<br />

80<br />

−0.4<br />

−0.1<br />

0.1<br />

0.2<br />

100<br />

a)<br />

0<br />

20<br />

34.8<br />

34.78<br />

34.79<br />

40<br />

34.81<br />

60<br />

34.83<br />

34.82<br />

34.86<br />

34.86<br />

80<br />

100<br />

b)<br />

0 1 2 3 4 5 6 7 8 9<br />

Time [h]<br />

10 5 αΔT<br />

2<br />

1.2<br />

0.4<br />

−0.4<br />

−1.2<br />

−2<br />

10 5 βΔS<br />

2<br />

1.2<br />

0.4<br />

−0.4<br />

−1.2<br />

−2<br />

733<br />

734<br />

735<br />

736<br />

Figure 9. Anomalies of (color) a) temperature and b) sal<strong>in</strong>ity along isopycnals at station TS.<br />

The anomalies are multiplied by <strong>the</strong> coefficient of <strong>the</strong>rmal expansion and hal<strong>in</strong>e contraction,<br />

respectively, to <strong>in</strong>dicate <strong>the</strong>ir contribution to density. Contours of temperature and sal<strong>in</strong>ity<br />

along isopycnals are shown <strong>in</strong> black.<br />

737<br />

41


u [cm s −1 ]<br />

50<br />

0<br />

−50<br />

0<br />

218<br />

220<br />

222<br />

a)<br />

09 Day of May 2008 10<br />

245<br />

247<br />

249<br />

253<br />

259<br />

263<br />

267<br />

b)<br />

13 14<br />

Day of May 2008<br />

27.9<br />

27.8<br />

738<br />

Depth [m]<br />

50<br />

100<br />

218−245−267<br />

220−247−263<br />

222−249−259<br />

253<br />

30 40 50 60 70 80 90<br />

Distance [km]<br />

c)<br />

739<br />

740<br />

741<br />

742<br />

743<br />

744<br />

745<br />

Figure 10. Summary of <strong>the</strong> time and location of revisited stations. a-b) Time series of <strong>the</strong> east<br />

component of <strong>the</strong> tidal velocity toge<strong>the</strong>r with <strong>the</strong> time of occupation of <strong>the</strong> stations marked<br />

with dashed l<strong>in</strong>es and station numbers c) Contours of (thick: 0.1 unit <strong>in</strong>tervals, gray, th<strong>in</strong>:<br />

0.02 unit <strong>in</strong>tervals) along <strong>the</strong> PW side of <strong>the</strong> front. The co-located stations are <strong>in</strong>dicated with<br />

station numbers. Nitrate profiles from 218/245, 220/247 and 222/249 are shown <strong>in</strong> Figure 11.<br />

Turbulent parameters for stations 253, 259, 263 and 267 are shown <strong>in</strong> Figure 12.<br />

746<br />

42


0<br />

a b c<br />

25<br />

Depth [m]<br />

50<br />

75<br />

100<br />

218<br />

245<br />

220<br />

247<br />

222<br />

249<br />

747<br />

0 2 4 6 8 10<br />

Nitrate [μmol/L]<br />

0 2 4 6 8 10<br />

Nitrate [μmol/L]<br />

0 2 4 6 8 10<br />

Nitrate [μmol/L]<br />

748<br />

749<br />

750<br />

751<br />

752<br />

753<br />

Figure 11. Profiles of nitrate at three stations on <strong>the</strong> PW side of <strong>the</strong> front at approximately a)<br />

x = 37 km, b) x = 53 km, and c) x = 67 km. See Figure 10 for location on Section A and time<br />

relative to tides. Each location is sampled twice, dur<strong>in</strong>g spr<strong>in</strong>gs (218, 220 and 222) and about<br />

3.7 day later <strong>in</strong> transition to neaps. All profiles are collected dur<strong>in</strong>g flood, except station 249<br />

dur<strong>in</strong>g <strong>the</strong> ebb tide.<br />

43


754<br />

0<br />

a<br />

b<br />

25<br />

Depth [m]<br />

50<br />

75<br />

100<br />

267<br />

263<br />

259<br />

253<br />

755<br />

10 −6 10 −4 10 −2<br />

K ρ<br />

[m 2 s −1 ]<br />

10 0 10 2 10 4 10 6<br />

Activity Index, A I<br />

756<br />

757<br />

758<br />

759<br />

760<br />

761<br />

762<br />

Figure 12. Profiles of a) eddy diffusivity, K , and b) turbulent activity <strong>in</strong>dex, A I for <strong>the</strong><br />

selected stations on <strong>the</strong> cold side of <strong>the</strong> front. See Figure 10 for location on Section A and<br />

time relative to tides. Stations 267, 263 and 259 are co-located with 245/218, 247/220 and<br />

249/222, respectively, where nutrients are sampled. No nutrient sampl<strong>in</strong>g was made when <strong>the</strong><br />

microstructure was deployed. Vertical dashed l<strong>in</strong>e <strong>in</strong> b) shows <strong>the</strong> approximate threshold<br />

below which no vertical mix<strong>in</strong>g is expected.<br />

44


763<br />

Depth [m]<br />

0<br />

20<br />

40<br />

θ [°C]<br />

2<br />

1<br />

0<br />

c<br />

27.7 27.9<br />

28.1<br />

NO 3<br />

10<br />

8<br />

6<br />

4<br />

2<br />

100<br />

120<br />

-1<br />

34.6 34.8 35<br />

S<br />

0<br />

764<br />

140<br />

a<br />

160<br />

0 5 10<br />

Nitrate [µmol/L]<br />

b<br />

10 −4 10 −3 10 −2<br />

Nitrate Flux [mg m -2 s -1 ]<br />

231, x = -27 km<br />

239, x = -10 km<br />

243, x = -9 km<br />

245, x = 36 km<br />

247, x = 52 km<br />

765<br />

766<br />

767<br />

768<br />

769<br />

770<br />

771<br />

Figure 13. Profiles of a) nitrate and b) vertical flux of nitrate at stations <strong>in</strong>dicated by station<br />

numbers and distance from <strong>the</strong> front. Nitrate concentration is converted to mg m -3 before<br />

calculat<strong>in</strong>g <strong>the</strong> vertical flux. Temperature-sal<strong>in</strong>ity diagram for <strong>the</strong> same water samples colorcoded<br />

for nitrate concentration. Contours of are drawn at 0.1 unit <strong>in</strong>tervals. Arrows<br />

<strong>in</strong>dicated suggested pathways of mix<strong>in</strong>g, along isopycnals until well <strong>in</strong>to <strong>the</strong> cold side of <strong>the</strong><br />

front, across <strong>the</strong> isopycnals where tidal stirr<strong>in</strong>g and stra<strong>in</strong><strong>in</strong>g becomes important.<br />

45

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!