Shear Forces and Bending Moments
Shear Forces and Bending Moments
Shear Forces and Bending Moments
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
4<br />
<strong>Shear</strong> <strong>Forces</strong> <strong>and</strong><br />
<strong>Bending</strong> <strong>Moments</strong><br />
<strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />
800 lb<br />
1600 lb<br />
Problem 4.3-1 Calculate the shear force V <strong>and</strong> bending moment M<br />
at a cross section just to the left of the 1600-lb load acting on the simple<br />
beam AB shown in the figure.<br />
A<br />
30 in. 60 in. 30 in.<br />
120 in.<br />
B<br />
B<br />
R B<br />
Solution 4.3-1 Simple beam<br />
Free-body diagram of segment DB<br />
800 lb<br />
1600 lb<br />
1600 lb<br />
A<br />
D<br />
V<br />
B<br />
M<br />
D<br />
R A ©F VERT 0:V 1600 lb 1400 lb<br />
30 in.<br />
30 in. 60 in. 30 in.<br />
R B<br />
200 lb<br />
M A<br />
0: R B<br />
1400 lb<br />
©M D 0:M (1400 lb)(30 in.)<br />
M B<br />
0: R A<br />
1000 lb<br />
42,000 lb-in.<br />
Problem 4.3-2 Determine the shear force V <strong>and</strong> bending moment M<br />
at the midpoint C of the simple beam AB shown in the figure.<br />
A<br />
6.0 kN<br />
C<br />
2.0 kN/m<br />
B<br />
1.0 m 1.0 m<br />
4.0 m<br />
2.0 m<br />
Solution 4.3-2<br />
Simple beam<br />
A<br />
6.0 kN<br />
C<br />
2.0 kN/m<br />
1.0 m 1.0 m 2.0 m<br />
R A<br />
B<br />
R B<br />
Free-body diagram of segment AC<br />
6.0 kN<br />
A<br />
C<br />
V M<br />
1.0 m 1.0 m<br />
R A<br />
M A<br />
0:<br />
M B<br />
0:<br />
R B<br />
4.5 kN<br />
R A<br />
5.5 kN<br />
©F VERT 0:V 0.5 kN<br />
©M C 0:M 5.0 kN m<br />
259
260 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />
Problem 4.3-3 Determine the shear force V <strong>and</strong> bending moment M at<br />
the midpoint of the beam with overhangs (see figure). Note that one load<br />
acts downward <strong>and</strong> the other upward.<br />
P<br />
P<br />
b<br />
L<br />
b<br />
Solution 4.3-3<br />
Beam with overhangs<br />
P<br />
©M B 0<br />
b<br />
A<br />
R A 1 [P(L b b)]<br />
L<br />
P<br />
L<br />
b<br />
R A RB<br />
P ¢1 2b L ≤(upward)<br />
B<br />
P<br />
©M A 0:R B P ¢1 2b L ≤(downward)<br />
Free-body diagram (C is the midpoint)<br />
©F VERT 0:<br />
V R A P P ¢1 2b L ≤ P<br />
©M C 0:<br />
M<br />
A<br />
C<br />
b L/2<br />
R A V<br />
M P ¢1 2b L ≤ ¢L 2 ≤ P ¢b L 2 ≤<br />
M PL<br />
PL<br />
Pb Pb <br />
2 2 0<br />
2bP<br />
L<br />
Problem 4.3-4 Calculate the shear force V <strong>and</strong> bending moment M at a<br />
cross section located 0.5 m from the fixed support of the cantilever beam<br />
AB shown in the figure.<br />
A<br />
4.0 kN<br />
1.5 kN/m<br />
B<br />
1.0 m 1.0 m 2.0 m<br />
Solution 4.3-4<br />
A<br />
Cantilever beam<br />
4.0 kN<br />
1.5 kN/m<br />
1.0 m 1.0 m 2.0 m<br />
Free-body diagram of segment DB<br />
Point D is 0.5 m from support A.<br />
B<br />
©F VERT 0:<br />
V 4.0 kN (1.5 kNm)(2.0 m)<br />
4.0 kN 3.0 kN 7.0 kN<br />
©M D 0:M (4.0 kN)(0.5 m)<br />
(1.5 kNm)(2.0 m)(2.5 m)<br />
2.0 kN m 7.5 kN m<br />
9.5 kN m<br />
M<br />
V<br />
D<br />
4.0 kN<br />
1.5 kN/m<br />
B<br />
0.5 m<br />
1.0 m<br />
2.0 m
SECTION 4.3 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong> 261<br />
Problem 4.3-5 Determine the shear force V <strong>and</strong> bending moment M<br />
at a cross section located 16 ft from the left-h<strong>and</strong> end A of the beam<br />
with an overhang shown in the figure.<br />
A<br />
400 lb/ft 200 lb/ft<br />
B<br />
C<br />
10 ft 10 ft<br />
6 ft<br />
6 ft<br />
Solution 4.3-5<br />
A<br />
Beam with an overhang<br />
400 lb/ft 200 lb/ft<br />
B<br />
C<br />
A<br />
10 ft 10 ft 6 ft 6 ft<br />
R A R B<br />
Free-body diagram of segment AD<br />
400 lb/ft<br />
R A<br />
10 ft<br />
6 ft<br />
D<br />
V<br />
M<br />
M B<br />
0:<br />
M A<br />
0:<br />
R A<br />
2460 lb<br />
R B<br />
2740 lb<br />
Point D is 16 ft from support A.<br />
©F VERT 0:<br />
V 2460 lb (400 lbft)(10 ft)<br />
1540 lb<br />
©M D 0:M (2460 lb)(16 ft)<br />
(400 lbft)(10 ft)(11 ft)<br />
4640 lb-ft<br />
Problem 4.3-6 The beam ABC shown in the figure is simply<br />
supported at A <strong>and</strong> B <strong>and</strong> has an overhang from B to C. The<br />
loads consist of a horizontal force P 1<br />
4.0 kN acting at the<br />
end of a vertical arm <strong>and</strong> a vertical force P 2<br />
8.0 kN acting at<br />
the end of the overhang.<br />
Determine the shear force V <strong>and</strong> bending moment M at<br />
a cross section located 3.0 m from the left-h<strong>and</strong> support.<br />
(Note: Disregard the widths of the beam <strong>and</strong> vertical arm <strong>and</strong><br />
use centerline dimensions when making calculations.)<br />
P 1 = 4.0 kN<br />
1.0 m<br />
A<br />
P 2 = 8.0 kN<br />
B<br />
C<br />
4.0 m 1.0 m<br />
Solution 4.3-6 Beam with vertical arm<br />
P 1 = 4.0 kN<br />
P 2 = 8.0 kN<br />
1.0 m<br />
A<br />
B<br />
4.0 m 1.0 m<br />
R A<br />
R B<br />
M B<br />
0: R A<br />
1.0 kN (downward)<br />
M A<br />
0: R B<br />
9.0 kN (upward)<br />
Free-body diagram of segment AD<br />
Point D is 3.0 m from support A.<br />
A<br />
D<br />
M<br />
4.0 kN • m<br />
3.0 m<br />
R A<br />
V<br />
©F VERT 0:V R A 1.0 kN<br />
©M D 0:M R A (3.0 m) 4.0 kN m<br />
7.0 kN m
262 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />
Problem 4.3-7 The beam ABCD shown in the figure has overhangs<br />
at each end <strong>and</strong> carries a uniform load of intensity q.<br />
For what ratio b/L will the bending moment at the midpoint of the<br />
beam be zero?<br />
A<br />
B<br />
q<br />
C<br />
D<br />
b<br />
L<br />
b<br />
Solution 4.3-7 Beam with overhangs<br />
q<br />
Free-body diagram of left-h<strong>and</strong> half of beam:<br />
Point E is at the midpoint of the beam.<br />
A<br />
D<br />
B C<br />
q<br />
b<br />
L<br />
b<br />
R B R A<br />
M = 0 (Given)<br />
C E<br />
b L/2 V<br />
From symmetry <strong>and</strong> equilibrium of vertical forces:<br />
R B<br />
R B R C q ¢b L 2 ≤<br />
©M E 0 <br />
R B ¢ L 2 ≤ q ¢1 2 ≤ ¢b L 2 ≤ 2<br />
0<br />
q ¢b L 2 ≤ ¢L 2 ≤ q ¢1 2 ≤ ¢b L 2 ≤ 2<br />
0<br />
Solve for b/L :<br />
b<br />
L 1 2<br />
Problem 4.3-8 At full draw, an archer applies a pull of 130 N to the<br />
bowstring of the bow shown in the figure. Determine the bending moment<br />
at the midpoint of the bow.<br />
70°<br />
1400 mm<br />
350 mm
SECTION 4.3 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong> 263<br />
Solution 4.3-8<br />
Archer’s bow<br />
B<br />
Free-body diagram of segment BC<br />
B<br />
<br />
P<br />
A<br />
<br />
C<br />
H<br />
T<br />
H<br />
2<br />
b<br />
C<br />
M<br />
©M C 0 <br />
b<br />
P 130 N<br />
70°<br />
H 1400 mm<br />
1.4 m<br />
b 350 mm<br />
0.35 m<br />
Free-body diagram of point A<br />
T(cos H b)¢ ≤ T(sin b)(b) M 0<br />
2<br />
M T H ¢ cosb b sin b≤<br />
2<br />
P 2 ¢H b tan b≤<br />
2<br />
Substitute numerical values:<br />
M 130 N B 1.4 m (0.35 m)(tan 70)R<br />
2 2<br />
M 108 N m<br />
T<br />
<br />
P<br />
A<br />
T<br />
T tensile force in the bowstring<br />
F HORIZ<br />
0: 2T cos P 0<br />
T <br />
P<br />
2 cos b
264 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />
Problem 4.3-9 A curved bar ABC is subjected to loads in the form<br />
of two equal <strong>and</strong> opposite forces P, as shown in the figure. The axis of<br />
the bar forms a semicircle of radius r.<br />
Determine the axial force N, shear force V, <strong>and</strong> bending moment M<br />
acting at a cross section defined by the angle .<br />
P<br />
A<br />
B<br />
<br />
O<br />
r<br />
C<br />
P<br />
P<br />
A<br />
M<br />
<br />
V<br />
N<br />
Solution 4.3-9<br />
Curved bar<br />
P<br />
A<br />
B<br />
<br />
O<br />
r<br />
C<br />
P<br />
P<br />
P cos <br />
P sin <br />
A<br />
B<br />
M<br />
<br />
V<br />
N<br />
O<br />
©F N 0 Q b N P sin u 0<br />
N P sin u<br />
F V 0<br />
<br />
R a V P cos u 0<br />
V P cos u<br />
©M O 0 M Nr 0<br />
M Nr Pr sin u<br />
Problem 4.3-10 Under cruising conditions the distributed load<br />
acting on the wing of a small airplane has the idealized variation<br />
shown in the figure.<br />
Calculate the shear force V <strong>and</strong> bending moment M at the<br />
inboard end of the wing.<br />
1600 N/m<br />
900 N/m<br />
2.6 m<br />
2.6 m<br />
1.0 m<br />
Solution 4.3-10 Airplane wing<br />
1600 N/m<br />
900 N/m<br />
M<br />
V<br />
A<br />
2.6 m<br />
2.6 m<br />
1.0 m<br />
B<br />
Loading (in three parts)<br />
700 N/m 1<br />
900 N/m<br />
2<br />
A<br />
3<br />
B<br />
<strong>Shear</strong> Force<br />
F VERT<br />
0 c T <br />
<strong>Bending</strong><br />
V 1 (700 Nm)(2.6 m) (900 Nm)(5.2 m)<br />
2<br />
1 (900 Nm)(1.0 m) 0<br />
2<br />
V 6040 N 6.04 kN<br />
(Minus means the shear force acts opposite to the<br />
direction shown in the figure.)<br />
Moment<br />
©M A 0 <br />
M 1 2<br />
(900 Nm)(5.2 m)(2.6 m)<br />
1 2<br />
m<br />
(700 Nm)(2.6 m)¢2.6 ≤<br />
3<br />
1.0 m<br />
(900 Nm)(1.0 m)¢5.2 m ≤ 0<br />
3<br />
M 788.67 N • m 12,168 N • m 2490 N • m<br />
15,450 N • m<br />
15.45 kN m
SECTION 4.3 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong> 265<br />
Problem 4.3-11 A beam ABCD with a vertical arm CE is supported as<br />
a simple beam at A <strong>and</strong> D (see figure). A cable passes over a small pulley<br />
that is attached to the arm at E. One end of the cable is attached to the<br />
beam at point B.<br />
What is the force P in the cable if the bending moment in the<br />
beam just to the left of point C is equal numerically to 640 lb-ft?<br />
(Note: Disregard the widths of the beam <strong>and</strong> vertical arm <strong>and</strong> use<br />
centerline dimensions when making calculations.)<br />
A<br />
B<br />
Cable<br />
C<br />
E<br />
D<br />
8 ft<br />
P<br />
6 ft 6 ft 6 ft<br />
Solution 4.3-11<br />
Beam with a cable<br />
E<br />
P<br />
Free-body diagram of section AC<br />
P<br />
P<br />
__ 4P<br />
9<br />
A<br />
B<br />
Cable<br />
C<br />
6 ft 6 ft 6 ft<br />
8 ft<br />
D<br />
__ 4P<br />
9<br />
P<br />
__ 4P<br />
9<br />
A<br />
©M C 0 <br />
4P __<br />
5<br />
__ 3P<br />
5<br />
6 ft B 6 ft<br />
C<br />
V<br />
M<br />
N<br />
UNITS:<br />
P in lb<br />
M in lb-ft<br />
M 4P 5 (6 ft) 4P 9<br />
(12 ft) 0<br />
M 8P<br />
15 lb-ft<br />
Numerical value of M equals 640 lb-ft.<br />
∴ 640 lb-ft 8P<br />
15 lb-ft<br />
<strong>and</strong> P 1200 lb<br />
Problem 4.3-12 A simply supported beam AB supports a trapezoidally<br />
distributed load (see figure). The intensity of the load varies linearly<br />
from 50 kN/m at support A to 30 kN/m at support B.<br />
Calculate the shear force V <strong>and</strong> bending moment M at the midpoint<br />
of the beam.<br />
50 kN/m<br />
A<br />
30 kN/m<br />
B<br />
3 m
266 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />
Solution 4.3-12 Beam with trapezoidal load<br />
50 kN/m<br />
Free-body diagram of section CB<br />
30 kN/m<br />
Point C is at the midpoint of the beam.<br />
40 kN/m<br />
A<br />
B<br />
30 kN/m<br />
V<br />
3 m<br />
M<br />
C<br />
B<br />
R A RB<br />
1.5 m<br />
55 kN<br />
Reactions<br />
©M B 0 R A (3 m) (30 kNm)(3 m)(1.5 m)<br />
(20 kNm)(3 m)( 1 2 )(2 m) 0<br />
R A<br />
65 kN<br />
©F VERT 0 c<br />
R A R B 1 2 (50 kNm 30 kNm)(3 m) 0<br />
R B<br />
55 kN<br />
F VERT<br />
0 c <br />
T <br />
V (30 kNm)(1.5 m) 1 2(10 kNm)(1.5 m)<br />
55 kN 0<br />
V 2.5 kN<br />
©M C 0 <br />
M (30 kN/m)(1.5 m)(0.75 m)<br />
1 2 (10 kNm)(1.5 m)(0.5 m)<br />
(55 kN)(1.5 m) 0<br />
M 45.0 kN m<br />
Problem 4.3-13 Beam ABCD represents a reinforced-concrete<br />
foundation beam that supports a uniform load of intensity q 1<br />
3500 lb/ft<br />
(see figure). Assume that the soil pressure on the underside of the beam is<br />
uniformly distributed with intensity q 2<br />
.<br />
(a) Find the shear force V B<br />
<strong>and</strong> bending moment M B<br />
at point B.<br />
(b) Find the shear force V m<br />
<strong>and</strong> bending moment M m<br />
at the midpoint<br />
of the beam.<br />
A<br />
q 1 = 3500 lb/ft<br />
B<br />
C<br />
q 2<br />
3.0 ft 8.0 ft 3.0 ft<br />
D<br />
Solution 4.3-13 Foundation beam<br />
q 1 = 3500 lb/ft<br />
(b) V <strong>and</strong> M at midpoint E<br />
A B C D<br />
3500 lb/ft<br />
A<br />
B<br />
M B M E<br />
0:<br />
F VERT<br />
0:<br />
M m<br />
(2000 lb/ft)(7 ft)(3.5 ft)<br />
2000 lb/ft V B<br />
3 ft<br />
V B 6000 lb<br />
(3500 lb/ft)(4 ft)(2 ft)<br />
A B E M m<br />
q 2<br />
3.0 ft 8.0 ft 3.0 ft<br />
2000 lb/ft<br />
V m<br />
F VERT<br />
0: q 2<br />
(14 ft) q 1<br />
(8 ft)<br />
3 ft<br />
4 ft<br />
∴ q 2 8 14 q 1 2000 lbft<br />
F VERT<br />
0: V m<br />
(2000 lb/ft)(7 ft) (3500 lb/ft)(4 ft)<br />
(a) V <strong>and</strong> M at point B<br />
V m 0<br />
©M B 0:M B 9000 lb-ft<br />
M m 21,000 lb-ft
SECTION 4.3 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong> 267<br />
Problem 4.3-14 The simply-supported beam ABCD is loaded by<br />
a weight W 27 kN through the arrangement shown in the figure.<br />
The cable passes over a small frictionless pulley at B <strong>and</strong> is attached<br />
at E to the end of the vertical arm.<br />
Calculate the axial force N, shear force V, <strong>and</strong> bending moment<br />
M at section C, which is just to the left of the vertical arm.<br />
(Note: Disregard the widths of the beam <strong>and</strong> vertical arm <strong>and</strong> use<br />
centerline dimensions when making calculations.)<br />
A<br />
E<br />
Cable<br />
1.5 m<br />
B C<br />
2.0 m 2.0 m 2.0 m<br />
D<br />
W = 27 kN<br />
Solution 4.3-14<br />
Beam with cable <strong>and</strong> weight<br />
E<br />
Free-body diagram of pulley at B<br />
Cable<br />
1.5 m<br />
27 kN<br />
A<br />
B C<br />
D<br />
21.6 kN<br />
2.0 m 2.0 m 2.0 m<br />
10.8 kN<br />
27 kN<br />
27 kN<br />
R A R D<br />
R A<br />
18 kN<br />
R D<br />
9kN<br />
Free-body diagram of segment ABC of beam<br />
10.8 kN<br />
21.6 kN<br />
A<br />
B<br />
C<br />
2.0 m 2.0 m<br />
V<br />
18 kN<br />
©F HORIZ 0:N 21.6 kN (compression)<br />
©F VERT 0:V 7.2 kN<br />
©M C 0:M 50.4 kN m<br />
M<br />
N
268 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />
Problem 4.3-15 The centrifuge shown in the figure rotates in a horizontal<br />
plane (the xy plane) on a smooth surface about the z axis (which is vertical)<br />
with an angular acceleration . Each of the two arms has weight w per unit<br />
length <strong>and</strong> supports a weight W 2.0 wL at its end.<br />
Derive formulas for the maximum shear force <strong>and</strong> maximum bending<br />
moment in the arms, assuming b L/9 <strong>and</strong> c L/10.<br />
y<br />
b L c<br />
W<br />
x<br />
W<br />
<br />
Solution 4.3-15<br />
Rotating centrifuge<br />
L<br />
b c<br />
W<br />
g<br />
__ (L + b + c)<br />
x<br />
wx __<br />
g<br />
Tangential acceleration r<br />
Substitute numerical data:<br />
W<br />
Inertial force Mr <br />
g r<br />
Maximum V <strong>and</strong> M occur at x b.<br />
V max W g (L b c) Lb w<br />
g x dx<br />
W<br />
g<br />
(L b c)<br />
wL (L 2b)<br />
2g<br />
M max W (L b c)(L c)<br />
g<br />
Lb<br />
w<br />
x(x b)dx<br />
g<br />
b<br />
W (L b c)(L c)<br />
g<br />
w L2 <br />
(2L 3b)<br />
6g<br />
b<br />
W 2.0 wLb L 9<br />
91wL 2 <br />
V max <br />
30g<br />
M max <br />
229wL 3 <br />
75g<br />
c L 10
SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 269<br />
<strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams<br />
When solving the problems for Section 4.5, draw the shear-force <strong>and</strong><br />
bending-moment diagrams approximately to scale <strong>and</strong> label all critical<br />
ordinates, including the maximum <strong>and</strong> minimum values.<br />
Probs. 4.5-1 through 4.5-10 are symbolic problems <strong>and</strong> Probs. 4.5-11<br />
through 4.5-24 are numerical problems. The remaining problems (4.5-25<br />
through 4.5-30) involve specialized topics, such as optimization, beams<br />
with hinges, <strong>and</strong> moving loads.<br />
Problem 4.5-1 Draw the shear-force <strong>and</strong> bending-moment diagrams for<br />
a simple beam AB supporting two equal concentrated loads P (see figure).<br />
A<br />
a<br />
P<br />
P<br />
a<br />
B<br />
L<br />
Solution 4.5-1<br />
Simple beam<br />
a<br />
P<br />
P<br />
a<br />
A<br />
B<br />
R A = P<br />
L<br />
R B = P<br />
V<br />
0<br />
P<br />
P<br />
Pa<br />
M<br />
0
270 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />
Problem 4.5-2 A simple beam AB is subjected to a counterclockwise<br />
couple of moment M 0<br />
acting at distance a from the left-h<strong>and</strong> support<br />
(see figure).<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />
A<br />
a<br />
L<br />
M 0<br />
B<br />
Solution 4.5-2<br />
Simple beam<br />
A<br />
B<br />
R A = M 0<br />
L<br />
a<br />
L<br />
R B = M 0<br />
L<br />
V<br />
0<br />
M 0<br />
M 0<br />
L<br />
M<br />
0<br />
M 0 (1 a L )<br />
M 0 a<br />
L<br />
Problem 4.5-3 Draw the shear-force <strong>and</strong> bending-moment diagrams<br />
for a cantilever beam AB carrying a uniform load of intensity q over<br />
one-half of its length (see figure).<br />
A<br />
q<br />
L<br />
— 2<br />
L —2<br />
B<br />
Solution 4.5-3<br />
Cantilever beam<br />
M A = 3qL2<br />
8<br />
A<br />
q<br />
B<br />
R A = qL<br />
2<br />
L<br />
— 2<br />
L —2<br />
qL —2<br />
V<br />
0<br />
M<br />
0<br />
<br />
3qL 2<br />
8<br />
qL<br />
<br />
2<br />
8
SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 271<br />
Problem 4.5-4 The cantilever beam AB shown in the figure<br />
is subjected to a concentrated load P at the midpoint <strong>and</strong> a<br />
counterclockwise couple of moment M 1<br />
PL/4 at the free end.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for<br />
this beam.<br />
A<br />
P<br />
M 1 = —–<br />
PL<br />
4<br />
B<br />
—<br />
L<br />
—2<br />
L<br />
2<br />
Solution 4.5-4<br />
Cantilever beam<br />
P<br />
M A<br />
A<br />
B<br />
M 1 PL 4<br />
R A P<br />
R A<br />
L/2 L/2<br />
M A PL<br />
4<br />
V<br />
M<br />
0<br />
0<br />
P<br />
PL<br />
4<br />
PL 4<br />
Problem 4.5-5 The simple beam AB shown in the figure is subjected to<br />
a concentrated load P <strong>and</strong> a clockwise couple M 1<br />
PL/4 acting at the<br />
third points.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />
A<br />
P<br />
M 1 = PL —–<br />
4<br />
L<br />
— 3<br />
L —3<br />
L —3<br />
B<br />
Solution 4.5-5<br />
Simple beam<br />
A<br />
P<br />
M 1 = PL —–<br />
4<br />
B<br />
R A = 5P —–<br />
12<br />
L<br />
— 3<br />
L —3<br />
L —3<br />
R B = 7P —–<br />
12<br />
V<br />
0<br />
5P/12<br />
7P/12<br />
5PL/36<br />
7PL/36<br />
M<br />
0<br />
PL/18
272 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />
Problem 4.5-6 A simple beam AB subjected to clockwise couples M 1<br />
<strong>and</strong> 2M 1<br />
acting at the third points is shown in the figure.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />
A<br />
M 1 2M 1<br />
B<br />
L<br />
— 3<br />
L —3<br />
L —3<br />
Solution 4.5-6<br />
Simple beam<br />
M 1 2M 1<br />
A<br />
B<br />
R A = 3M —– 1<br />
L<br />
—<br />
L —3<br />
L —3<br />
L<br />
R 3 B = 3M —– 1<br />
L<br />
0<br />
V 3M —– 1<br />
L<br />
M 0 M 1<br />
M 1 M 1<br />
Problem 4.5-7 A simply supported beam ABC is loaded by a vertical<br />
load P acting at the end of a bracket BDE (see figure).<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for beam ABC.<br />
A<br />
B<br />
D<br />
E<br />
C<br />
P<br />
—<br />
L —4<br />
L —2<br />
L<br />
4<br />
L<br />
Solution 4.5-7<br />
Beam with bracket<br />
A<br />
P<br />
B<br />
PL<br />
—–<br />
4<br />
C<br />
R A = P —–<br />
2<br />
—<br />
L<br />
3L<br />
— 4 4<br />
R C = P —–<br />
2<br />
V<br />
0<br />
P<br />
—–<br />
2<br />
—–<br />
P<br />
<br />
2<br />
M<br />
0<br />
PL<br />
—–<br />
8<br />
3PL<br />
—–<br />
8
SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 273<br />
Problem 4.5-8 A beam ABC is simply supported at A <strong>and</strong> B <strong>and</strong><br />
has an overhang BC (see figure). The beam is loaded by two forces<br />
P <strong>and</strong> a clockwise couple of moment Pa that act through the<br />
arrangement shown.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for<br />
beam ABC.<br />
A<br />
P P Pa<br />
C<br />
B<br />
a a a a<br />
Solution 4.5-8<br />
Beam with overhang<br />
upper<br />
beam:<br />
P<br />
P<br />
C<br />
a a a<br />
Pa<br />
P<br />
P<br />
lower<br />
beam:<br />
P<br />
B<br />
a a a<br />
P<br />
C<br />
2P<br />
V 0<br />
P<br />
P<br />
M 0<br />
Pa<br />
Problem 4.5-9 Beam ABCD is simply supported at B <strong>and</strong> C <strong>and</strong> has<br />
overhangs at each end (see figure). The span length is L <strong>and</strong> each<br />
overhang has length L/3. A uniform load of intensity q acts along the<br />
entire length of the beam.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />
A<br />
L<br />
3<br />
B<br />
q<br />
L<br />
C<br />
L<br />
3<br />
D<br />
Solution 4.5-9<br />
Beam with overhangs<br />
q<br />
A<br />
L/3<br />
B<br />
L<br />
C<br />
L/3<br />
__ 5qL<br />
R B = __ 5qL<br />
R 6<br />
C = 6<br />
__ qL<br />
qL/3<br />
V 0<br />
2<br />
__ qL<br />
– __ qL<br />
– 3 __ 5qL 2 2<br />
72<br />
M<br />
0<br />
–qL 2 /18 X 1 –qL 2 /18<br />
D<br />
x 1 L 5<br />
6<br />
0.3727L
274 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />
Problem 4.5-10 Draw the shear-force <strong>and</strong> bending-moment diagrams<br />
for a cantilever beam AB supporting a linearly varying load of maximum<br />
intensity q 0<br />
(see figure).<br />
A<br />
L<br />
B<br />
q 0<br />
Solution 4.5-10<br />
Cantilever beam<br />
__ x<br />
q=q 0<br />
L<br />
q 0<br />
q__<br />
0 L<br />
M 2<br />
B = 6<br />
A<br />
x<br />
L<br />
B<br />
__ q 0 L<br />
R B = 2<br />
V<br />
0<br />
q__<br />
0 x<br />
V = – 2<br />
2L<br />
__ q 0 L<br />
– 2<br />
M<br />
0<br />
q__<br />
0 x<br />
M = – 3<br />
6L<br />
__ q 0 L<br />
– 2<br />
6<br />
Problem 4.5-11 The simple beam AB supports a uniform load of<br />
intensity q 10 lb/in. acting over one-half of the span <strong>and</strong> a concentrated<br />
load P 80 lb acting at midspan (see figure).<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />
A<br />
P = 80 lb<br />
q = 10 lb/in.<br />
B<br />
—<br />
L<br />
= 40 in. —<br />
L<br />
= 40 in.<br />
2 2<br />
Solution 4.5-11<br />
Simple beam<br />
P = 80 lb<br />
10 lb/in.<br />
A<br />
B<br />
R A =140 lb<br />
40 in.<br />
40 in.<br />
R B = 340 lb<br />
140<br />
V<br />
(lb)<br />
0<br />
60<br />
6 in.<br />
–340<br />
M<br />
(lb/in.)<br />
0<br />
5600<br />
M max = 5780<br />
46 in.
SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 275<br />
Problem 4.5-12 The beam AB shown in the figure supports a uniform<br />
load of intensity 3000 N/m acting over half the length of the beam. The<br />
beam rests on a foundation that produces a uniformly distributed load<br />
over the entire length.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />
A<br />
3000 N/m<br />
B<br />
0.8 m<br />
1.6 m<br />
0.8 m<br />
Solution 4.5-12<br />
Beam with distributed loads<br />
3000 N/m<br />
A<br />
B<br />
1500 N/m<br />
0.8 m<br />
1200<br />
1.6 m<br />
0.8 m<br />
V<br />
(N)<br />
0<br />
960<br />
–1200<br />
M<br />
(N . m) 0<br />
480<br />
480<br />
Problem 4.5-13 A cantilever beam AB supports a couple <strong>and</strong> a<br />
concentrated load, as shown in the figure.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />
A<br />
400 lb-ft<br />
200 lb<br />
B<br />
5 ft 5 ft<br />
Solution 4.5-13<br />
Cantilever beam<br />
M A = 1600 lb-ft<br />
A<br />
400 lb-ft<br />
200 lb<br />
B<br />
R A = 200 lb<br />
5 ft 5 ft<br />
+200<br />
V<br />
(lb)<br />
0<br />
0<br />
M<br />
(lb-ft)<br />
–1600<br />
–600<br />
–1000
276 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />
Problem 4.5-14 The cantilever beam AB shown in the figure is<br />
subjected to a uniform load acting throughout one-half of its length <strong>and</strong> a<br />
concentrated load acting at the free end.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />
A<br />
2.0 kN/m<br />
2 m 2 m<br />
2.5 kN<br />
B<br />
Solution 4.5-14<br />
Cantilever beam<br />
2.0 kN/m<br />
2.5 kN<br />
M A = 14 kN . m<br />
R A = 6.5 kN<br />
V<br />
(kN)<br />
0<br />
0<br />
M<br />
(kN . m)<br />
A<br />
2 m 2 m<br />
6.5<br />
2.5<br />
–5.0<br />
–14.0<br />
B<br />
Problem 4.5-15 The uniformly loaded beam ABC has simple supports at<br />
A <strong>and</strong> B <strong>and</strong> an overhang BC (see figure).<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />
A<br />
25 lb/in.<br />
B<br />
C<br />
72 in.<br />
48 in.<br />
Solution 4.5-15<br />
Beam with an overhang<br />
25 lb/in.<br />
A<br />
B<br />
C<br />
72 in.<br />
R A = 500 lb<br />
500<br />
V<br />
0<br />
(lb) 20 in.<br />
5000<br />
M 0<br />
(lb-in.)<br />
20 in.<br />
40 in.<br />
1200<br />
48 in.<br />
R B = 2500 lb<br />
–1300<br />
–28,800
SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 277<br />
Problem 4.5-16 A beam ABC with an overhang at one end supports a<br />
uniform load of intensity 12 kN/m <strong>and</strong> a concentrated load of magnitude<br />
2.4 kN (see figure).<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />
A<br />
12 kN/m<br />
B<br />
2.4 kN<br />
C<br />
1.6 m 1.6 m 1.6 m<br />
Solution 4.5-16<br />
Beam with an overhang<br />
12 kN/m<br />
2.4 kN<br />
A<br />
B<br />
C<br />
V<br />
(kN)<br />
M<br />
(kN . m)<br />
0<br />
0<br />
1.6 m 1.6 m 1.6 m<br />
R A = 13.2 kN<br />
R B = 8.4 kN<br />
13.2<br />
2.4<br />
1.1m<br />
M max<br />
–6.0<br />
5.76<br />
0.64 m<br />
M max = 7.26<br />
1.1m<br />
–3.84<br />
Problem 4.5-17 The beam ABC shown in the figure is simply<br />
supported at A <strong>and</strong> B <strong>and</strong> has an overhang from B to C. The<br />
loads consist of a horizontal force P 1<br />
400 lb acting at the end<br />
of the vertical arm <strong>and</strong> a vertical force P 2<br />
900 lb acting at the<br />
end of the overhang.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this<br />
beam. (Note: Disregard the widths of the beam <strong>and</strong> vertical arm<br />
<strong>and</strong> use centerline dimensions when making calculations.)<br />
P 1 = 400 lb<br />
1.0 ft<br />
A<br />
P 2 = 900 lb<br />
B<br />
C<br />
4.0 ft 1.0 ft<br />
Solution 4.5-17<br />
Beam with vertical arm<br />
1.0 ft<br />
A<br />
P 1 = 400 lb<br />
A<br />
R A = 125 lb<br />
400 lb-ft<br />
125 lb<br />
P 2 = 900 lb<br />
B<br />
C<br />
4.0 ft 1.0 ft<br />
R B = 1025 lb<br />
900 lb<br />
B<br />
C<br />
1025 lb<br />
V<br />
(lb)<br />
M<br />
(lb)<br />
0<br />
0<br />
400<br />
125<br />
900<br />
900
278 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />
Problem 4.5-18 A simple beam AB is loaded by two segments of<br />
uniform load <strong>and</strong> two horizontal forces acting at the ends of a vertical<br />
arm (see figure).<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />
A<br />
4 kN/m<br />
1 m<br />
8 kN<br />
1 m<br />
4 kN/m<br />
B<br />
8 kN<br />
2 m 2 m<br />
2 m<br />
2 m<br />
Solution 4.5-18 Simple beam<br />
4 kN/m<br />
16 kN . m<br />
A<br />
2 m 2 m 2 m<br />
R A = 6 kN<br />
4 kN/m<br />
2 m<br />
B<br />
R B = 10 kN<br />
V<br />
(kN)<br />
M<br />
(kN . m)<br />
0<br />
0<br />
6.0<br />
1.5 m<br />
1.5 m<br />
2.0<br />
4.5 4.0<br />
16.0<br />
12.0<br />
10.0<br />
Problem 4.5-19 A beam ABCD with a vertical arm CE is supported as a<br />
simple beam at A <strong>and</strong> D (see figure). A cable passes over a small pulley<br />
that is attached to the arm at E. One end of the cable is attached to the<br />
beam at point B. The tensile force in the cable is 1800 lb.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for beam ABCD.<br />
(Note: Disregard the widths of the beam <strong>and</strong> vertical arm <strong>and</strong> use centerline<br />
dimensions when making calculations.)<br />
A<br />
B<br />
Cable<br />
C<br />
E<br />
D<br />
1800 lb<br />
8 ft<br />
6 ft 6 ft 6 ft<br />
Solution 4.5-19<br />
Beam with a cable<br />
E<br />
1800 lb<br />
Free-body diagram of beam ABCD<br />
1800 lb<br />
A<br />
Cable<br />
B<br />
C<br />
D<br />
8 ft<br />
1800<br />
1440<br />
1800<br />
1440<br />
5760 lb-ft<br />
A C D<br />
B<br />
800<br />
1080 720<br />
800<br />
6 ft 6 ft 6 ft<br />
R D = 800 lb<br />
R D = 800 lb<br />
640<br />
Note: All forces have units of pounds.<br />
4800<br />
V<br />
(lb)<br />
0<br />
M<br />
(lb-ft)<br />
0<br />
960<br />
800<br />
800<br />
4800
SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 279<br />
Problem 4.5-20 The beam ABCD shown in the figure has<br />
overhangs that extend in both directions for a distance of 4.2 m<br />
from the supports at B <strong>and</strong> C, which are 1.2 m apart.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this<br />
overhanging beam.<br />
5.1 kN/m<br />
A<br />
B<br />
10.6 kN/m<br />
C<br />
5.1 kN/m<br />
D<br />
4.2 m 4.2 m<br />
1.2 m<br />
Solution 4.5-20<br />
Beam with overhangs<br />
32.97<br />
5.1 kN/m<br />
10.6 kN/m<br />
5.1 kN/m<br />
V<br />
(kN)<br />
0<br />
6.36<br />
6.36<br />
A<br />
B<br />
C<br />
D<br />
32.97<br />
4.2 m 4.2 m<br />
R<br />
1.2 m<br />
B = 39.33 kN R C = 39.33 kN<br />
M 0<br />
(kN . m)<br />
61.15 61.15<br />
59.24<br />
Problem 4.5-21 The simple beam AB shown in the figure supports a<br />
concentrated load <strong>and</strong> a segment of uniform load.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />
A<br />
4.0 k<br />
C<br />
2.0 k/ft<br />
B<br />
5 ft<br />
20 ft<br />
10 ft<br />
Solution 4.5-21<br />
Simple beam<br />
A<br />
4.0 k<br />
C<br />
2.0 k/ft<br />
B<br />
R A = 8 k<br />
5 ft 5 ft<br />
10 ft<br />
R B = 16 k<br />
V<br />
(k)<br />
0<br />
8<br />
4<br />
12 ft<br />
40<br />
C<br />
60 64<br />
8 ft<br />
16<br />
M max = 64 k-ft<br />
M<br />
(k-ft)<br />
0<br />
12 ft<br />
C<br />
8 ft
280 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />
Problem 4.5-22 The cantilever beam shown in the figure supports<br />
a concentrated load <strong>and</strong> a segment of uniform load.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this<br />
cantilever beam.<br />
A<br />
3 kN<br />
0.8 m 0.8 m<br />
1.0 kN/m<br />
1.6 m<br />
B<br />
Solution 4.5-22<br />
Cantilever beam<br />
4.6<br />
M A =<br />
6.24 kN . m<br />
A<br />
3 kN<br />
1.0 kN/m<br />
B<br />
V<br />
(kN)<br />
0<br />
1.6<br />
0.8 m 0.8 m<br />
R A = 4.6 kN<br />
1.6 m<br />
M<br />
(kN . m)<br />
0<br />
2.56<br />
1.28<br />
6.24<br />
Problem 4.5-23 The simple beam ACB shown in the figure is subjected<br />
to a triangular load of maximum intensity 180 lb/ft.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />
180 lb/ft<br />
A<br />
C<br />
B<br />
6.0 ft<br />
7.0 ft<br />
Solution 4.5-23<br />
Simple beam<br />
A<br />
180 lb/ft<br />
C<br />
B<br />
V<br />
(lb)<br />
0<br />
240<br />
x 1 = 4.0 ft<br />
300<br />
390<br />
M max = 640<br />
R A = 240 lb<br />
6.0 ft<br />
1.0 ft<br />
R B = 390 lb<br />
M<br />
(lb-ft)<br />
0<br />
360<br />
Problem 4.5-24 A beam with simple supports is subjected to a<br />
trapezoidally distributed load (see figure). The intensity of the load varies<br />
from 1.0 kN/m at support A to 3.0 kN/m at support B.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this beam.<br />
A<br />
1.0 kN/m<br />
3.0 kN/m<br />
B<br />
2.4 m
SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 281<br />
Solution 4.5-24<br />
A<br />
1.0 kN/m<br />
Simple beam<br />
3.0 kN/m<br />
B<br />
V<br />
(kN)<br />
0<br />
2.0<br />
x 1 = 1.2980 m<br />
x<br />
R A = 2.0 kN<br />
2.4 m<br />
R B = 2.8 kN<br />
Set V 0:<br />
V 2.0 x x2<br />
2.4 (x meters; V kN) M<br />
2.8<br />
M max = 1.450<br />
x 1<br />
1.2980 m<br />
(kN . m)<br />
0<br />
Problem 4.5-25 A beam of length L is being designed to support a uniform load<br />
of intensity q (see figure). If the supports of the beam are placed at the ends,<br />
creating a simple beam, the maximum bending moment in the beam is qL 2 /8.<br />
However, if the supports of the beam are moved symmetrically toward the middle<br />
of the beam (as pictured), the maximum bending moment is reduced.<br />
Determine the distance a between the supports so that the maximum bending<br />
moment in the beam has the smallest possible numerical value.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this<br />
condition.<br />
A<br />
q<br />
a<br />
L<br />
B<br />
Solution 4.5-25<br />
Beam with overhangs<br />
q<br />
Solve for a: a (2 2)L 0.5858L<br />
M<br />
0<br />
A<br />
(L a)/2 (L a)/2<br />
a<br />
R A = qL/2<br />
R B = qL/2<br />
M 2<br />
M 1 M 1<br />
The maximum bending moment is smallest when<br />
M 1<br />
M 2<br />
(numerically).<br />
q(L a)2<br />
M 1 <br />
8<br />
M 2 R a A ¢<br />
2 ≤ qL2<br />
8 qL (2a L)<br />
8<br />
M 1 M 2 (L a) 2 L(2a L)<br />
B<br />
M 1 M 2 q (L a)2<br />
8<br />
qL2<br />
8<br />
V 0<br />
M 0<br />
(3 22) 0.02145qL2<br />
0.2071L<br />
0.2929 qL<br />
0.2929L<br />
0.2071 qL<br />
0.02145 qL 2<br />
x 1 x 1<br />
0.2071 qL<br />
0.2929 qL<br />
0.02145 qL 2 0.02145 qL 2<br />
x 1 = 0.3536 a<br />
= 0.2071 L
282 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />
Problem 4.5-26 The compound beam ABCDE shown in the figure<br />
consists of two beams (AD <strong>and</strong> DE) joined by a hinged connection at D.<br />
The hinge can transmit a shear force but not a bending moment. The<br />
loads on the beam consist of a 4-kN force at the end of a bracket attached<br />
at point B <strong>and</strong> a 2-kN force at the midpoint of beam DE.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this<br />
compound beam.<br />
4 kN<br />
A<br />
1 m<br />
2 kN 1 m<br />
B C D<br />
E<br />
2 m<br />
2 m<br />
2 m<br />
2 m<br />
Solution 4.5-26<br />
Compound beam<br />
4 kN<br />
4 kN . m Hinge<br />
2 kN<br />
A<br />
B C D<br />
E<br />
2 m<br />
2 m<br />
2 m<br />
1 m 1 m<br />
R A = 2.5 kN<br />
R C = 2.5 kN<br />
R E = 1 kN<br />
V<br />
(kN) 0<br />
2.5<br />
1.5<br />
1.0<br />
D<br />
1.0<br />
5.0<br />
M<br />
(kN . m)<br />
0<br />
2.67 m<br />
1.0<br />
2.0<br />
D<br />
1.0<br />
Problem 4.5-27 The compound beam ABCDE shown in the figure<br />
consists of two beams (AD <strong>and</strong> DE) joined by a hinged connection at D.<br />
The hinge can transmit a shear force but not a bending moment. A force P<br />
acts upward at A <strong>and</strong> a uniform load of intensity q acts downward on<br />
beam DE.<br />
Draw the shear-force <strong>and</strong> bending-moment diagrams for this<br />
compound beam.<br />
A<br />
P<br />
B C<br />
L L L<br />
D<br />
q<br />
2L<br />
E<br />
Solution 4.5-27<br />
Compound beam<br />
A<br />
P<br />
B<br />
C<br />
D<br />
q<br />
E<br />
Hinge<br />
L L L<br />
R B = 2P + qL R C = P + 2qL<br />
V<br />
P<br />
qL<br />
0<br />
D<br />
2L<br />
R E = qL<br />
–qL<br />
M<br />
0<br />
PL<br />
−P−qL<br />
D<br />
−qL 2<br />
L<br />
L<br />
qL<br />
2
SECTION 4.5 <strong>Shear</strong>-Force <strong>and</strong> <strong>Bending</strong>-Moment Diagrams 283<br />
Problem 4.5-28 The shear-force diagram for a simple beam<br />
is shown in the figure.<br />
Determine the loading on the beam <strong>and</strong> draw the bendingmoment<br />
diagram, assuming that no couples act as loads on<br />
the beam.<br />
V<br />
0<br />
12 kN<br />
–12 kN<br />
2.0 m<br />
1.0 m<br />
1.0 m<br />
Solution 4.5-28<br />
Simple beam (V is given)<br />
6.0 kN/m 12 kN<br />
A<br />
B<br />
R A = 12kN<br />
2 m 1 m 1 m<br />
R B = 12kN<br />
V<br />
(kN)<br />
0<br />
12<br />
12<br />
−12<br />
M<br />
(kN . m)<br />
0<br />
Problem 4.5-29 The shear-force diagram for a beam is shown<br />
in the figure. Assuming that no couples act as loads on the beam,<br />
determine the forces acting on the beam <strong>and</strong> draw the bendingmoment<br />
diagram.<br />
V<br />
652 lb<br />
0<br />
572 lb<br />
580 lb<br />
500 lb<br />
–128 lb<br />
–448 lb<br />
4 ft 16 ft<br />
4 ft<br />
Solution 4.5-29<br />
Force diagram<br />
<strong>Forces</strong> on a beam (V is given)<br />
20 lb/ft<br />
V<br />
(lb)<br />
652<br />
0<br />
572<br />
580<br />
500<br />
–128<br />
4 ft 16 ft<br />
4 ft<br />
652 lb 700 lb 1028 lb 500 lb<br />
M<br />
(lb-ft)<br />
2448<br />
–448<br />
0<br />
14.50 ft<br />
–2160
284 CHAPTER 4 <strong>Shear</strong> <strong>Forces</strong> <strong>and</strong> <strong>Bending</strong> <strong>Moments</strong><br />
Problem 4.5-30 A simple beam AB supports two connected wheel loads P<br />
<strong>and</strong> 2P that are distance d apart (see figure). The wheels may be placed at<br />
any distance x from the left-h<strong>and</strong> support of the beam.<br />
(a) Determine the distance x that will produce the maximum shear force<br />
in the beam, <strong>and</strong> also determine the maximum shear force V max<br />
.<br />
(b) Determine the distance x that will produce the maximum bending<br />
moment in the beam, <strong>and</strong> also draw the corresponding bendingmoment<br />
diagram. (Assume P 10 kN, d 2.4 m, <strong>and</strong> L 12 m.)<br />
A<br />
x<br />
P<br />
d<br />
L<br />
2P<br />
B<br />
Solution 4.5-30<br />
A<br />
x<br />
Moving loads on a beam<br />
P<br />
d<br />
L<br />
2P<br />
P 10 kN<br />
d 2.4 m<br />
L 12 m<br />
B<br />
Reaction at support B:<br />
R B P L x 2P L (x d) P (2d 3x)<br />
L<br />
<strong>Bending</strong> moment at D:<br />
M D R B (L x d)<br />
P<br />
(2d 3x)(L x d)<br />
L<br />
(a) Maximum shear force<br />
By inspection, the maximum shear force occurs at<br />
support B when the larger load is placed close to, but<br />
not directly over, that support.<br />
dM D<br />
dx<br />
P L [3x2 (3L 5d)x 2d(L d)]<br />
<br />
P<br />
(6x 3L 5d) 0<br />
L<br />
Eq.(1)<br />
A<br />
R A = L<br />
Pd<br />
x L d 9.6 m<br />
x = L − d<br />
V max R B P ¢3 d ≤ 28 kN<br />
L<br />
P<br />
d<br />
R B = P(3 −<br />
d<br />
L)<br />
2P<br />
B<br />
Solve for x: x L 6 ¢3 5d L ≤ 4.0 m<br />
Substitute x into Eq (1):<br />
M max <br />
(b) Maximum bending moment<br />
64<br />
M max = 78.4<br />
By inspection, the maximum bending moment occurs<br />
M<br />
at point D, under the larger load 2P.<br />
(kN . m)<br />
P 2P<br />
0<br />
4.0 m 2.4 m 5.6 m<br />
x d<br />
A<br />
D<br />
B<br />
P<br />
Note:R A <br />
2 ¢3 d<br />
≤ 16 kN<br />
L<br />
L<br />
R<br />
P<br />
R B <br />
2 ¢3 d<br />
B ≤ 14 kN<br />
L<br />
<br />
P<br />
L B 3¢L 6 ≤ 2<br />
¢3 5d L ≤ 2<br />
(3L 5d)<br />
L ¢<br />
6 ≤ ¢3 5d ≤ 2d(L d)R<br />
L<br />
PL<br />
12 ¢3 d L ≤ 2<br />
78.4 kN m