03.01.2014 Views

Experimental investigations on mixed-mode-loaded cracks H. A. ...

Experimental investigations on mixed-mode-loaded cracks H. A. ...

Experimental investigations on mixed-mode-loaded cracks H. A. ...

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

<str<strong>on</strong>g>Experimental</str<strong>on</strong>g> <str<strong>on</strong>g>investigati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>mixed</strong>-<strong>mode</strong>-<strong>loaded</strong> <strong>cracks</strong><br />

H. A. Richard 1 , N.-H. Schirmeisen 2 , A. Eberlein 1<br />

1 Institute of Applied Mechanics, University of Paderborn, Pohlweg 47-49,<br />

33098 Paderborn, Germany, e-mail: richard@fam.upb.de<br />

2 Windmoeller & Hoelscher KG, Münsterstr. 50, 49525 Lengerich, Germany,<br />

e-mail: nils-henrik.schirmeisen@wuh-group.de<br />

ABSTRACT. Failure of safety-relevant parts is often caused by a superpositi<strong>on</strong> of<br />

normal stress as well as plane and anti-plane shear stress. The loading cases of <strong>cracks</strong><br />

(Mode I, Mode II and Mode III) are generally defined by the stress fields near the crack<br />

tip. In c<strong>on</strong>trast to pure Mode I-<strong>loaded</strong> <strong>cracks</strong>, whose stress near fields are symmetric,<br />

the stress fields near the crack tip of <strong>mixed</strong>-<strong>mode</strong>-crack problems are unsymmetrical.<br />

C<strong>on</strong>sequently the fracture mechanical treatment of those <strong>mixed</strong>-<strong>mode</strong>-<strong>loaded</strong> <strong>cracks</strong> is<br />

more complicated as of pure Mode I-<strong>cracks</strong>. This paper deals with experimental<br />

<str<strong>on</strong>g>investigati<strong>on</strong>s</str<strong>on</strong>g> of crack growth under spatial <strong>mixed</strong>-<strong>mode</strong>-loading. In the following<br />

detailed results of fracture and fatigue crack growth experiments and their comparis<strong>on</strong><br />

with existing criteria are presented and discussed.<br />

INTRODUCTION<br />

In fracture mechanics it is important to understand and analyse the behaviour of <strong>mixed</strong><strong>mode</strong><br />

fracture, because materials often c<strong>on</strong>tain different defects, e.g. pre-<strong>cracks</strong>, which<br />

may have been introduced unintenti<strong>on</strong>ally during the manufacturing process. So pre<strong>cracks</strong><br />

can have an arbitrary orientati<strong>on</strong> with respect to a general type of loading, which<br />

a comp<strong>on</strong>ent of a machine or structure has to carry.<br />

Cracks in structures or materials are generally divided into three fracture <strong>mode</strong>s,<br />

which are shown schematically in Figure 1a. The difference of the three fracture <strong>mode</strong>s<br />

is the orientati<strong>on</strong> of the local stress filed near the crack tip. A Mode I-loading induces a<br />

crack-opening; a Mode II-loading leads to an in-plane fracture of the material, which<br />

causes also a crack kinking and a Mode III-loading leads to an anti-plane fracture of the<br />

material, which causes a crack twisting (Figure 1b).<br />

Local <strong>mixed</strong>-<strong>mode</strong>-loading c<strong>on</strong>diti<strong>on</strong>s at <strong>cracks</strong> occur in combinati<strong>on</strong> of the three<br />

basic fracture <strong>mode</strong>s. Thereby the <strong>cracks</strong> grow in a way, that not <strong>on</strong>ly an opening, but<br />

also a planar deflecti<strong>on</strong> and/or a n<strong>on</strong>-planar twisting of the two crack surfaces can be<br />

found.<br />

219


a)<br />

b)<br />

Figure 1. a) Basic fracture <strong>mode</strong>s<br />

b) Principle orientati<strong>on</strong> of the fracture surfaces for basic fracture <strong>mode</strong>s<br />

Therefore the stress field near the crack fr<strong>on</strong>t is not <strong>on</strong>ly defined by the stress<br />

intensity factor K I<br />

, but also by K II<br />

and K III<br />

respectively the comparative stress intensity<br />

factor K V<br />

, which can be determined by [1]:<br />

K<br />

K 1<br />

2<br />

= ⋅ K<br />

III<br />

(1).<br />

2 2<br />

I<br />

2<br />

2<br />

+ ⋅ K + 5,336 ⋅ K + 4<br />

V I<br />

II<br />

According to this the fatigue crack growth is governed by the cyclic stress intensity<br />

factors ∆K I<br />

, ∆K II<br />

and ∆K III<br />

respectively the cyclic comparative stress intensity factor<br />

∆K V<br />

, which can be derived from Eq. 1:<br />

∆K<br />

I 1<br />

2<br />

2<br />

2<br />

∆ K = + ⋅ ∆K<br />

+ 5,336 ⋅ ∆K<br />

+ 4 ⋅ ∆K<br />

V I<br />

II<br />

III<br />

(2).<br />

2 2<br />

A crack under spatial-<strong>mixed</strong>-<strong>mode</strong> loading is propagable, if ∆K V<br />

exceeds the<br />

threshold value ∆K th<br />

for Mode I. Unstable crack growth occurs, if K V<br />

(see Eq. 1)<br />

reaches the fracture toughness value K IC<br />

. Stable and c<strong>on</strong>trolled crack growth lies<br />

between these two critical values. The complete curves are illustrated in a<br />

K I<br />

-K II<br />

-K III<br />

-diagram (Figure 2a).<br />

220


a) b)<br />

min<br />

R =<br />

= σ<br />

σ<br />

max<br />

K<br />

K<br />

min<br />

max<br />

Figure 2. a) K I<br />

-K II<br />

-K III<br />

-diagram with the range of fatigue crack growth<br />

b) Definiti<strong>on</strong> of the cyclic stress intensity factor ∆K and R-ratio<br />

There are numerous hypotheses and c<strong>on</strong>cepts for plane- and spatial-<strong>mixed</strong>-<strong>mode</strong><br />

problems, which will be described in the following.<br />

EXISTING 2D- AND 3D-MIXED-MODE CRITERIA<br />

For the predicti<strong>on</strong> of the growth of <strong>mixed</strong>-<strong>mode</strong>-<strong>loaded</strong> <strong>cracks</strong> the determinati<strong>on</strong> of<br />

comparative stress intensity factors is essential. The transformati<strong>on</strong> of Mode I-,<br />

Mode II- and Mode III-stress intensity factor, e. g. by using Eq. 2, into <strong>on</strong>ly <strong>on</strong>e cyclic<br />

comparative stress intensity factor ∆K V<br />

makes it possible to compare this value with the<br />

cyclic fracture toughness value ∆K IC<br />

= (1-R) K IC<br />

.<br />

C<strong>on</strong>sequently, c<strong>on</strong>clusi<strong>on</strong>s could be drawn <strong>on</strong> crack growth. Furthermore the crack<br />

growth directi<strong>on</strong> is required for a complete descripti<strong>on</strong> of crack growth behaviour. For<br />

this purpose some existing hypotheses are menti<strong>on</strong>ed below. All of these hypotheses are<br />

based <strong>on</strong> the near-field-soluti<strong>on</strong>s for the stress distributi<strong>on</strong> at the crack fr<strong>on</strong>t:<br />

K<br />

I ⎛ ϕ 3ϕ<br />

⎞ K<br />

II ⎛ ϕ 3ϕ<br />

⎞<br />

σ = ⋅ ⎜5<br />

⋅ cos − cos ⎟ − ⋅⎜5<br />

⋅ sin − 3⋅<br />

sin<br />

r<br />

⎟<br />

4 ⋅ 2π<br />

⋅ r ⎝ 2 2 ⎠ 4 ⋅ 2π<br />

⋅ r ⎝ 2 2 ⎠<br />

K<br />

I ⎛ ϕ 3ϕ<br />

⎞ K<br />

II ⎛ ϕ 3ϕ<br />

⎞<br />

σ = ⋅⎜3⋅<br />

cos + cos ⎟ − ⋅ ⎜3<br />

⋅sin<br />

+ 3⋅sin<br />

ϕ<br />

⎟<br />

4 ⋅ 2π<br />

⋅ r ⎝ 2 2 ⎠ 4 ⋅ 2π<br />

⋅ r ⎝ 2 2 ⎠<br />

K<br />

I ⎛ ϕ 3ϕ<br />

⎞ K<br />

II ⎛ ϕ 3ϕ<br />

⎞<br />

τ = ⋅⎜sin<br />

+ sin ⎟ + ⋅⎜<br />

cos + 3⋅<br />

cos<br />

rϕ<br />

⎟<br />

4 ⋅ 2π<br />

⋅ r ⎝ 2 2 ⎠ 4 ⋅ 2π<br />

⋅ r ⎝ 2 2 ⎠<br />

K<br />

III<br />

ϕ<br />

τ = ⋅sin<br />

rz<br />

2π<br />

⋅ r 2<br />

(3a),<br />

(3b),<br />

(3c),<br />

(3d),<br />

221


τ<br />

σ<br />

ϕz<br />

=<br />

K<br />

III<br />

2π<br />

⋅ r<br />

ϕ<br />

⋅ cos<br />

2<br />

2ν<br />

2π<br />

⋅ r<br />

⎛<br />

⋅ ⎜ K<br />

⎝<br />

ϕ<br />

⋅ cos − K<br />

2<br />

= ν ⋅ ( σ + σ ) =<br />

z<br />

r ϕ<br />

I<br />

II<br />

ϕ ⎞<br />

⋅ sin ⎟<br />

2 ⎠<br />

(3e),<br />

(3f).<br />

2D-Mixed-Mode criteria<br />

For plane-<strong>mixed</strong>-<strong>mode</strong> problems in the literature there are many hypotheses [2]. Here in<br />

this paper <strong>on</strong>ly a few of them are presented.<br />

Criteri<strong>on</strong> by Erdogan and Sih<br />

The crack growth predicti<strong>on</strong>s of the maximum tangential stress criteri<strong>on</strong> by Erdogan<br />

and Sih [3] are based <strong>on</strong> the tangential stress σ φ<br />

, Eq. 3b. According to this criteri<strong>on</strong>, the<br />

crack growth follows the directi<strong>on</strong> of φ = φ 0<br />

perpendicular to the maximum tangential<br />

stress σ φ,max<br />

. The crack growth starts radial from the crack tip and becomes unstable as<br />

so<strong>on</strong> as σ φ,max<br />

exceeds the material limit value σ φ,C<br />

– or – if the comparative stress<br />

intensity factor K V<br />

, resulting from σ φ,max<br />

, exceeds the fracture toughness K IC<br />

[2]. The<br />

crack deflecti<strong>on</strong> angle φ 0<br />

can be obtained by:<br />

∂σ<br />

ϕ<br />

∂ϕ<br />

ϕ=ϕ 0<br />

= 0<br />

2<br />

∂ σ<br />

ϕ<br />

and < 0<br />

2<br />

∂ϕ<br />

ϕ=ϕ 0<br />

Finally the following equati<strong>on</strong> for the crack deflecti<strong>on</strong> angle φ 0<br />

results:<br />

⎡ 2<br />

2 2 ⎤<br />

= 3K<br />

+ K K + 8K<br />

II I I II<br />

ϕ − arccos ⎢<br />

⎥<br />

0<br />

2<br />

(4).<br />

⎢ K + 9K<br />

2<br />

I II<br />

⎥<br />

⎣<br />

⎦<br />

The fracture limit surface is given by the maximum comparative stress intensity<br />

fractor:<br />

⎛ ϕ ⎞ ⎡<br />

2 ⎛ ϕ<br />

⎤<br />

0<br />

0 ⎞ 3<br />

K = σ ϕ<br />

2π<br />

⋅ r = cos⎜<br />

⎟ ⋅ ⎢K<br />

cos ⎜ ⎟ − K sin( ϕ )<br />

V, max ,max<br />

I<br />

II 0 ⎥<br />

(5).<br />

⎝ 2 ⎠ ⎣ ⎝ 2 ⎠ 2 ⎦<br />

2D-criteri<strong>on</strong> by Richard<br />

This criteri<strong>on</strong> was empirically developed by Richard [2, 4]. Here the comparative stress<br />

intensity factor K V<br />

is defined by<br />

K<br />

I 1 2<br />

2<br />

K = + K + 5, 366 ⋅ K = K<br />

V I<br />

II IC<br />

(6)<br />

2 2<br />

222


and depends <strong>on</strong> the stress intensity factors K I<br />

and K II<br />

. It is noticeable that unstable crack<br />

growth occurs, if K V<br />

exceeds the fracture toughness K IC<br />

. This criteri<strong>on</strong> has an excellent<br />

approximati<strong>on</strong> of the fracture limit surface of the maximum tangential stress criteri<strong>on</strong> by<br />

Erdogan and Sih. The crack kinking angle φ 0<br />

can be determined by<br />

2<br />

⎡ K<br />

⎛ K ⎞ ⎤<br />

II<br />

II<br />

ϕ = m⎢140° ⋅ − 70° ⋅ ⎜ ⎟ ⎥<br />

0<br />

⎢ +<br />

(7),<br />

K K<br />

⎥<br />

⎣<br />

⎝ K + K<br />

I II<br />

I II ⎠ ⎦<br />

whereby for K II<br />

> 0 the kinking angle ϕ 0<br />

< 0 and vice versa, while always K I<br />

> 0.<br />

There are some more criteria, e. g. criteri<strong>on</strong> by Nuismer [5] or criteri<strong>on</strong> by Amestoy<br />

[6], which are based <strong>on</strong> the energy release rate and describes the crack growth<br />

behaviour for 2D-<strong>mixed</strong>-<strong>mode</strong>-loading situati<strong>on</strong>s.<br />

3D-Mixed-Mode criteria<br />

Spatial-<strong>mixed</strong>-<strong>mode</strong> problems are characterised by the superpositi<strong>on</strong> of Mode I-,<br />

Mode II- and Mode III-loading. Therefore the stress intensity factors K I<br />

, K II<br />

and K III<br />

within the scope of linear-elastic fracture mechanics are of importance <strong>on</strong> the <strong>on</strong>e hand<br />

for the estimati<strong>on</strong> of the risk of fracture and <strong>on</strong> the other hand of the process of the<br />

stable crack propagati<strong>on</strong> in a structure.<br />

For n<strong>on</strong>-planar-<strong>mixed</strong>-<strong>mode</strong> problems <strong>on</strong>ly a few fracture criteria do exist. In the<br />

following secti<strong>on</strong>s the relevant <strong>on</strong>es will be described.<br />

Criteri<strong>on</strong> by Sih<br />

The probably best known criteri<strong>on</strong> for the descripti<strong>on</strong> of three-dimensi<strong>on</strong>al-<strong>mixed</strong>-<strong>mode</strong><br />

crack problems is the criteri<strong>on</strong> of strain energy density by Sih [7, 8]. It is based <strong>on</strong> the<br />

near-field-equati<strong>on</strong>s (Eq. 3a-3f) and <strong>on</strong> the elastic energy density for spatial-<strong>mixed</strong><strong>mode</strong><br />

problems. Beginning from the crack tip the crack grows radial in the directi<strong>on</strong> of<br />

the minimal energy density factor S min<br />

and becomes unstable as so<strong>on</strong> as S min<br />

exceeds a<br />

critical material value S C<br />

[7, 8].<br />

Criteri<strong>on</strong> by Pook<br />

Another criteri<strong>on</strong> for spatial crack growth was proposed by Pook [9-11]. In order to<br />

determine the crack growth directi<strong>on</strong> and a comparative stress intensity factor, first of<br />

all he calculates a plane comparative stress intensity factor K V,I,II<br />

with the following<br />

equati<strong>on</strong>:<br />

K<br />

V,I,II<br />

2 2<br />

0,83K<br />

⋅ 0,4489 K + 3K<br />

I<br />

I II<br />

= (10).<br />

1,5<br />

223


Afterwards he determines by using the K V,I,II<br />

and K III<br />

a spatial comparative stress<br />

intensity factor K V,I,II,III<br />

2<br />

2 2<br />

K ⋅ (1 + 2ν<br />

) + K ⋅ (1 − 2ν<br />

) + 4K<br />

V,I,II<br />

V,I,II<br />

III<br />

K =<br />

= K<br />

V,I,II,III<br />

1,5<br />

IC<br />

(11).<br />

In order to be able to make c<strong>on</strong>clusi<strong>on</strong>s about the occurence of unstable crack growth<br />

the K V,I,II,III<br />

can be compared with the fracture toughness K IC<br />

. The crack kinking angle<br />

ϕ 0<br />

can be obtained by:<br />

K sin ϕ = K (3cos ϕ − 1)<br />

I 0 II<br />

0<br />

(12)<br />

and the crack twisting angle ψ 0<br />

by:<br />

tan 2ψ<br />

0<br />

2K<br />

III<br />

= K (1 − 2ν<br />

)<br />

V,I,II<br />

(13).<br />

The crack deflecti<strong>on</strong> angles (see Figure 1b) results in a range of [-70.5°,+70.5°] for<br />

ϕ 0<br />

and [-45°,+45°] for ψ 0<br />

.<br />

Criteri<strong>on</strong> by Schöllmann et al.<br />

The σ ′ -criteri<strong>on</strong> by Schöllmann et al. [12, 13] is based <strong>on</strong> the assumpti<strong>on</strong> that crack<br />

1<br />

growth develops perpendicularly to the directi<strong>on</strong> of σ ′ (Figure 3). For the<br />

1<br />

determinati<strong>on</strong> of this special maximum principal stress the near-field equati<strong>on</strong>s<br />

(Eq. 3a-3f) are used.<br />

Figure 3. Cylindrical coordinate system and stress comp<strong>on</strong>ents at a 3D-crack fr<strong>on</strong>t<br />

224


σ ′ depends <strong>on</strong> the near-field-stresses σ<br />

1<br />

φ<br />

, σ z<br />

and τ φz<br />

as follows:<br />

σ + σ<br />

ϕ z 1<br />

2<br />

σ ′ = + ( σ − σ ) + 4τ<br />

(14).<br />

1 ϕ z<br />

ϕz<br />

2 2<br />

According to this criteri<strong>on</strong> the crack kinking angle ϕ 0<br />

occurs as so<strong>on</strong> as σ ′ reaches<br />

1<br />

its maximum value. Therefor Eq. 14 has to fulfil the following c<strong>on</strong>diti<strong>on</strong>s:<br />

∂σ<br />

′<br />

1<br />

∂ϕ<br />

ϕ=ϕ 0<br />

= 0<br />

and<br />

∂ σ ′<br />

2<br />

1<br />

2<br />

∂ϕ<br />

ϕ=ϕ 0<br />

< 0<br />

After substituting the near-field equati<strong>on</strong>s (Eq. 3a-3f) into Eq. 14, c<strong>on</strong>sidering σ z<br />

is<br />

zero and differentiating partially with respect to ϕ 0<br />

, the following equati<strong>on</strong> can be found<br />

for ϕ 0<br />

:<br />

− 6K<br />

I<br />

⎡<br />

⋅ ⎢−<br />

6K<br />

⎢⎣<br />

⎛ϕ0<br />

tan⎜<br />

⎝ 2<br />

I<br />

⎞<br />

⎟ −<br />

⎠<br />

⎛ϕ0<br />

tan⎜<br />

⎝ 2<br />

⎛<br />

2⎛ϕ0<br />

⎞⎞<br />

⋅<br />

⎜1+<br />

tan ⎜ ⎟<br />

2<br />

⎟<br />

⎝ ⎝ ⎠⎠<br />

2<br />

⎛<br />

2⎛ϕ0<br />

⎞⎞<br />

⎪⎧<br />

⎡<br />

⎛ϕ0<br />

⎞⎤<br />

K 6 12 tan 4 12 tan<br />

II<br />

⎜ − ⎜ ⎟<br />

I II<br />

2<br />

⎟ + ⎨⎢<br />

K − K ⎜ ⎟⎥<br />

⋅<br />

⎝ ⎝ ⎠⎠<br />

⎪⎩ ⎣<br />

⎝ 2 ⎠⎦<br />

⎛<br />

⎤<br />

2⎛ϕ<br />

⎞<br />

0 ⎞<br />

2 ⎛ ϕ0<br />

⎞<br />

K 6 12 tan − 32 tan<br />

II<br />

⎜ − ⎜ ⎟ ⎥ III<br />

⎜ ⎟ ⋅<br />

2<br />

⎟ K<br />

⎝ ⎝ ⎠⎠⎥⎦<br />

⎝ 2 ⎠<br />

⎞<br />

⎟ −<br />

⎠<br />

⎪<br />

⎫<br />

⎪⎧<br />

⎡<br />

⎬⋅<br />

⎨⎢4K<br />

⎪⎭<br />

⎪⎩ ⎣<br />

I<br />

−12K<br />

II<br />

⎛ϕ0<br />

⎞⎤<br />

tan⎜<br />

⎟⎥<br />

⎝ 2 ⎠⎦<br />

2<br />

+ 64K<br />

2<br />

III<br />

2<br />

⎛<br />

2⎛ϕ0<br />

⎞⎞<br />

⎪<br />

⎫<br />

⎜1+<br />

tan ⎜ ⎟ ⎬<br />

2<br />

⎟<br />

⎝ ⎝ ⎠⎠<br />

⎪⎭<br />

−1<br />

2<br />

=<br />

0<br />

(15).<br />

In order to understand the complete crack growth behaviour for spatial-<strong>mixed</strong>-<strong>mode</strong><br />

case a specificati<strong>on</strong> of the twisting angle ψ 0<br />

is necessary. The twisting angle is defined<br />

by the directi<strong>on</strong> of σ ′ and can be formulated as follows:<br />

1<br />

1 ⎛ 2τ<br />

( ϕ ) ⎞<br />

ϕz<br />

0<br />

ψ = arctan ⎜<br />

⎟<br />

0<br />

(16).<br />

2<br />

⎝<br />

σ ( ϕ ) − σ ( ϕ )<br />

ϕ 0 z 0 ⎠<br />

A comparative stress intensity factor K V,max<br />

can be established out of Eq. 14 by<br />

using:<br />

K = σ ′ 2π<br />

⋅ r<br />

V, max 1,max<br />

(17)<br />

with φ = φ 0<br />

the K V,max<br />

results from:<br />

225


K<br />

V,max<br />

=<br />

1<br />

2<br />

⎛ ϕ<br />

0<br />

cos⎜<br />

⎝ 2<br />

⎞<br />

⎟ ⋅<br />

⎠<br />

⎧<br />

⎪K<br />

⎪<br />

⎨<br />

⎪<br />

⎪+<br />

⎩<br />

I<br />

cos<br />

⎡<br />

⎢K<br />

⎣<br />

I<br />

⎛<br />

⎜<br />

⎝<br />

2<br />

ϕ<br />

cos<br />

0<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎝<br />

2<br />

−<br />

ϕ<br />

0<br />

2<br />

3<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

K<br />

−<br />

II<br />

sin( ϕ )<br />

3<br />

2<br />

K<br />

II<br />

0<br />

⎤<br />

sin( ϕ )<br />

0 ⎥<br />

⎦<br />

2<br />

+ 4K<br />

2<br />

III<br />

⎫<br />

⎪<br />

⎪<br />

⎬<br />

⎪<br />

⎪<br />

⎭<br />

(18).<br />

For completeness another <strong>on</strong>e criteri<strong>on</strong> has to be menti<strong>on</strong>ed here. The MTU-criteri<strong>on</strong><br />

by Dh<strong>on</strong>dt [14] is very similar to the criteri<strong>on</strong> by Schöllmann et al., because it has the<br />

same assumpti<strong>on</strong>s.<br />

3D-criteri<strong>on</strong> by RICHARD<br />

The basis for this criteri<strong>on</strong> is the following approach:<br />

⎛ K<br />

⎜<br />

⎝ K<br />

I<br />

IC<br />

⎞<br />

⎟<br />

⎠<br />

u<br />

⎛ K<br />

+ ⎜<br />

⎝ K<br />

II<br />

IIC<br />

⎞<br />

⎟<br />

⎠<br />

v<br />

⎛ K<br />

+ ⎜<br />

⎝ K<br />

III<br />

IIIC<br />

⎞<br />

⎟<br />

⎠<br />

w<br />

= 1<br />

(19).<br />

With u = 1 and v = w = 2 a cyclic comparative stress intensity factor can be defined<br />

in order to reas<strong>on</strong>ably describe fatigue crack growth:<br />

∆K<br />

I 1 2<br />

2<br />

2<br />

∆ K = + ∆K<br />

+ 5,336 ⋅ ∆K<br />

+ 4 ⋅ ∆K<br />

V I<br />

II<br />

III<br />

(20).<br />

2 2<br />

Fatigue crack growth starts, if ∆K V<br />

exceeds the threshold value of fatigue crack<br />

growth ∆K th<br />

. Crack growth becomes unstable, if the fracture toughness K IC<br />

is reached.<br />

This criteri<strong>on</strong> by Richard is a good approximati<strong>on</strong> to the criteri<strong>on</strong> by Schöllmann et al.<br />

For the determinati<strong>on</strong> of the kinking angle φ 0<br />

and the twisting angle ψ 0<br />

simple<br />

approximati<strong>on</strong> functi<strong>on</strong>s are given by [1]<br />

2<br />

⎡<br />

K<br />

⎛ K ⎞ ⎤<br />

II<br />

II<br />

ϕ = m⎢140° ⋅<br />

− 70° ⋅ ⎜<br />

⎟ ⎥<br />

0<br />

⎢ K + K + K<br />

⎥<br />

⎣<br />

⎝ K + K + K<br />

I II III<br />

I II III ⎠ ⎦<br />

(21),<br />

2<br />

⎡<br />

K<br />

⎛ K ⎞ ⎤<br />

II<br />

II<br />

ψ = m⎢78° ⋅<br />

− 33° ⋅ ⎜<br />

⎟ ⎥<br />

0<br />

⎢ K + K + K<br />

⎥<br />

⎣<br />

⎝ K + K + K<br />

I II III<br />

I II III ⎠ ⎦<br />

(22).<br />

For K I<br />

≥ 0 and K II<br />

< 0 is φ 0<br />

> 0 and for K II<br />

> 0 is φ 0<br />

< 0. Furthermore, for K I<br />

≥ 0 and<br />

K III<br />

< 0 is ψ 0<br />

> 0 and for K III<br />

> 0 is ψ 0<br />

< 0.<br />

226


EXPERIMENTAL INVESTIGATIONS ON 2D-MIXED-MODE-CRACKS<br />

In the past several specimen types for 2D-<strong>mixed</strong>-<strong>mode</strong><br />

problems have been proposed [2, 15]. Am<strong>on</strong>g others, the<br />

CTS-specimen together with its loading device [16, 17] has<br />

proven its applicability. Therefore <strong>on</strong>ly the CTS-specimen<br />

will be discussed in the following.<br />

The loading device (Figure 4) allows applying pure<br />

Mode I-, pure Mode II- as well as almost every 2D-<strong>mixed</strong><strong>mode</strong>-loading<br />

combinati<strong>on</strong> to the CTS-specimen by using<br />

just a uniaxial tensi<strong>on</strong> testing machine. For the purpose of<br />

varying the <strong>mixed</strong>-<strong>mode</strong>-loading <strong>on</strong>ly the loading angle α<br />

has to be changed.<br />

Depending <strong>on</strong> the <strong>mixed</strong>-<strong>mode</strong>-porti<strong>on</strong> the crack grows<br />

into a new directi<strong>on</strong>, i. e. the crack kinks under a specific<br />

angle φ 0<br />

(see Eq. 7). Some fractured CTS-specimens with an<br />

increasing K II<br />

/K I<br />

-porti<strong>on</strong> are shown in [18].<br />

Figure 4. Loading device and<br />

the adjustment of<br />

the loading angle α<br />

EXPERIMENTAL INVESTIGATIONS ON 3D-MIXED-MODE-CRACKS<br />

For experimental <str<strong>on</strong>g>investigati<strong>on</strong>s</str<strong>on</strong>g> of three-dimensi<strong>on</strong>al crack growth and fatigue for<br />

spatial-<strong>mixed</strong>-<strong>mode</strong> loading some types of specimens are available [2, 3, 19]. But in<br />

fact <strong>on</strong>ly view of these specimens covers the full range of all basic fracture <strong>mode</strong>s or all<br />

combinati<strong>on</strong>s thereof.<br />

Due to their importance for the researches of <strong>mixed</strong>-<strong>mode</strong>-<strong>loaded</strong> crack problems, in<br />

this paper the AFM-specimen and the CTSR-specimen with their corresp<strong>on</strong>ding loading<br />

devices (cf. Figs. 5 and 7) are described in more detail.<br />

AFM (All-Fracture-Mode)-specimen and loading device<br />

The AFM-specimen, developed by Richard, enables the<br />

investigati<strong>on</strong> of spatial-<strong>mixed</strong>-<strong>mode</strong> problems in arbitrary<br />

combinati<strong>on</strong> by using a simple uniaxial testing machine [20].<br />

Some experiments under static load [21] had proven the<br />

applicability of this loading device. Due to its high weight and<br />

high deformati<strong>on</strong> <strong>on</strong>ly low test frequency for fatigue is<br />

possible. C<strong>on</strong>sequently this fact leads to very high durati<strong>on</strong> of<br />

experiments.<br />

Referring to this c<strong>on</strong>cept by Richard a new specimen, socalled<br />

CTSR-specimen, with the corresp<strong>on</strong>ding loading device<br />

was developed, which is discussed in more detail below.<br />

Figure 5. Loading device for<br />

AFM-specimen<br />

227


CTSR (Compact-Tensi<strong>on</strong>-Shear-Rotati<strong>on</strong>)-specimen and loading device<br />

In the last few years an advanced AFM-specimen,<br />

so-called CTSR (Compact Tensi<strong>on</strong> Shear Rotati<strong>on</strong>)<br />

-specimen (Figure 6) for cycling loading was<br />

developed [22]. The appropriate loading device<br />

is shown in Figure 7. This new specimen and<br />

corresp<strong>on</strong>ding loading device enables any<br />

combinati<strong>on</strong> of <strong>mixed</strong>-<strong>mode</strong> loading including<br />

pure Mode I-, pure Mode II- and pure Mode IIIloading.<br />

Because of the holes, which are installed<br />

circularly in 15°-steps at a bolt circle around the<br />

specimen, it is possible to generate any ratio of<br />

Mode I to Mode II/Mode III (Figure 7).<br />

By rotating the so-called turret inside the<br />

Figure 6. CTSR-specimen<br />

loading device the ratio of Mode II- or Mode IIIload<br />

is set (Figure 8).<br />

Figure 7. Loading device: Adjustment of the ratio of Mode I to Mode II/Mode III<br />

Figure 8. Loading device: Adjustment of Mode II- and Mode III- ratio<br />

228


The angles α and γ can be adjusted by 15°-steps in the range from 0° to 90°.<br />

Whereby the load line of acti<strong>on</strong> always passes through the centre of the specimen.<br />

In the following secti<strong>on</strong> results of fracture and fatigue crack growth experiments and<br />

also comparis<strong>on</strong>s with existing criteria are shown and discussed.<br />

RESULTS OF 3D-MIXED-MODE EXPERIMENTS ON CTSR-SPECIMENS<br />

First of all experiments <strong>on</strong> PMMA have been performed, in order to determine the<br />

fracture limit surface. Another series of experiments were d<strong>on</strong>e, in order to determine<br />

the threshold-value surface (cf. Fig. 2a) for the aluminium alloy Al7075-T651. Some<br />

resulting fractured surfaces of fatigue experiments are presented in Figure 9.<br />

Figure 9. Mode I-, Mode II- and Mode III-fractured surface of Al7075-T651 (form left to right)<br />

The directi<strong>on</strong> of crack propagati<strong>on</strong> changes depending <strong>on</strong> the loading situati<strong>on</strong><br />

(look at Fig. 1b). At a Mode I-loading the crack grows in the directi<strong>on</strong> of the initial<br />

crack fr<strong>on</strong>t; at a Mode II-loading a clear crack kinking is noticed and Mode III-loading<br />

leads to crack twisting and creates facets.<br />

Comparis<strong>on</strong> of the results with existing criteria<br />

The points in Figure 10 are measured <strong>on</strong> CTSR-specimens (see Figure 6) the fracture<br />

toughness values for PMMA. By comparis<strong>on</strong> with the 3D-criteri<strong>on</strong> by Richard a<br />

significant variati<strong>on</strong> of the fracture toughness values determined by Mode III-loading is<br />

noticeable. The resulting facture toughness values for pure Mode III-loading K IIIC<br />

are<br />

around factor 2.7 above the hypotheses by Richard. A comparis<strong>on</strong> with other criteria<br />

menti<strong>on</strong>ed in this paper show the same results.<br />

Furthermore it is visible, that the less the Mode III-ratio the better the c<strong>on</strong>gruence<br />

with the predicti<strong>on</strong>s of the hypotheses. As so<strong>on</strong> as there is no Mode III-loading the<br />

measured values are very close by the criteri<strong>on</strong> by Richard. All in this paper<br />

investigated criteria are c<strong>on</strong>servative, so they could be used for engineering<br />

calculati<strong>on</strong>s.<br />

229


Figure 10. Comparis<strong>on</strong> of experimental results with 3D-criteri<strong>on</strong> by Richard<br />

In additi<strong>on</strong>, the comparis<strong>on</strong> of measured threshold values of Al7075-T651 with the<br />

threshold value surface of the criteri<strong>on</strong> by Richard also depicts a significant variati<strong>on</strong> of<br />

threshold values for Mode III-loading ∆K III,th<br />

(Figure 11). Here the resulting threshold<br />

values for pure Mode III-loading ∆K III,th<br />

are around factor 2.2 above the hypotheses by<br />

Richard (see Eq. 20). The threshold values for all in this paper investigated criteri<strong>on</strong>s<br />

are <strong>on</strong> the safe side, so they could be used for fracture mechanical calculati<strong>on</strong>s.<br />

Figure 11. Comparis<strong>on</strong> of threshold value results with 3D-criteri<strong>on</strong> by Richard<br />

Moreover, the crack kinking and crack twisting were investigated. Therefor the<br />

fractured surfaces of the specimens (Figure 12a) were digitalised by using an optical<br />

3D-scanner. The result of such a digitalisati<strong>on</strong> is presented in Figure 12b.<br />

230


a) b)<br />

Figure 12. a) Real fractured surface<br />

b) Digitalised fractured surface<br />

a) b)<br />

c) d)<br />

Figure 13. a) Comparis<strong>on</strong> of kinking angle with criteri<strong>on</strong> by Richard<br />

b) Comparis<strong>on</strong> of kinking angle with criteri<strong>on</strong> by Pook<br />

c) Comparis<strong>on</strong> of twisting angle with criteri<strong>on</strong> by Richard<br />

d) Comparis<strong>on</strong> of twisting angle with criteri<strong>on</strong> by Pook<br />

With a CAD-software the data from the optical 3D-scanner further were processed<br />

and an approximati<strong>on</strong> area near the initial crack fr<strong>on</strong>t was defined in order to determine<br />

231


kinking and twisting angles φ 0<br />

and ψ 0<br />

. Then the angle values were compared with the<br />

criteria to prove the reliability of their predicti<strong>on</strong>s.<br />

The comparis<strong>on</strong> between measured crack deflecti<strong>on</strong> angles and the predicti<strong>on</strong>s of<br />

criteria (look at Figure 13) exhibits that measured crack kinking angle φ 0<br />

coincides very<br />

well with the predicti<strong>on</strong>s of the criteri<strong>on</strong> by Richard (Figure 13a) as well as of criteri<strong>on</strong><br />

by Schöllmann et al. and criteri<strong>on</strong> by Dh<strong>on</strong>dt. The average deviati<strong>on</strong> for the crack<br />

kinking angle φ 0<br />

is ca. 7°. Maximum deviati<strong>on</strong> can be found at pure Mode III-loading.<br />

The criteri<strong>on</strong> by Pook disregards that fact. C<strong>on</strong>sequently the real kinking angle<br />

deviates c<strong>on</strong>siderably from its predicti<strong>on</strong>s (Figure 13b).<br />

A similar result exhibits the evaluati<strong>on</strong> of the crack twisting angle ψ 0<br />

. The results<br />

show a very well coincidence of the real crack twisting angle ψ 0<br />

with the predicti<strong>on</strong>s of<br />

the criteri<strong>on</strong> by Richard as well as of the criteri<strong>on</strong> by Schöllmann et al., as menti<strong>on</strong>ed<br />

above (Figure 13c). The greatest deviati<strong>on</strong>s from the real twisting angle <strong>on</strong>e finds at the<br />

predicti<strong>on</strong>s of the criteria by Pook (Figure 13d) and by Dh<strong>on</strong>dt.<br />

CONCLUSION<br />

In c<strong>on</strong>clusi<strong>on</strong>, it can be said that, the new developed CTSR-specimen, which was<br />

presented here, is suitable for experimental <str<strong>on</strong>g>investigati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> spatial-<strong>mixed</strong>-<strong>mode</strong><br />

loading.<br />

On c<strong>on</strong>siderati<strong>on</strong> of fatigue tests the results show obviously higher fracture<br />

toughness values and threshold values for high Mode III-loading ratios than by existing<br />

criteria theoretically expected. Predicti<strong>on</strong>s of all criteria are <strong>on</strong> the c<strong>on</strong>servative side.<br />

Here the criteria by Richard and by Schöllmann et al. indicate the most exactly<br />

predicti<strong>on</strong>s.<br />

Good predicti<strong>on</strong>s regarding both crack deflecti<strong>on</strong> angles are predicted by the criteria<br />

by Richard, by Schöllmann et al. and also by Dh<strong>on</strong>dt. Due to their good exactness of<br />

predicti<strong>on</strong>s of the fatigue crack growth behaviour, these criteria should be implemented<br />

in numerical calculati<strong>on</strong> programs.<br />

REFERENCES<br />

1. Richard, H.A., Fulland, M., Sander, M. (2005). FFEMS 28, 3-12.<br />

2. Richard, H.A. (1985) Bruchvorhersage bei überlagerter Normal- und<br />

Schubbeanspruchung v<strong>on</strong> Rissen, VDI-Verlag, Düsseldorf.<br />

3. Erdogan, F., Sih, G.C. (1963) J. Basic Engng. 85, 519-525<br />

4. Richard, H.A. (1987) In: Structural failure, product liability and technical<br />

insurance, Rossmanith (Ed.), Inderscience Enterprises Ltd., Genf.<br />

5. Nuismer, R.J. (1975) Int. J. Frac 11, 245-250.<br />

6. Amestoy, M., Bui, H.D., Dang Van K. (1980) In: Advances in Fracture research,<br />

pp. 107-113, Francois, D. et al. (Eds.), Oxford.<br />

232


7. Sih, G.C. (1974) Int. J. Frac 10, 305-321.<br />

8. Sih, G.C. (1990). Mechanics of fracture initiati<strong>on</strong> and propagati<strong>on</strong>, Kluwer<br />

Academic publishers, Dodrecht, Netherlands.<br />

9. Pook, L.P. (1980). In: Fracture and Fatigue: Elasto-Plasticity, Thin Sheet and<br />

Micromechanism Problems, pp. 143-153, Rad<strong>on</strong>, J.C. (Ed.) Pergam<strong>on</strong> Press,<br />

Oxford.<br />

10. Pook, L.P. (1985). Multiaxial Fatigues, pp. 249-263 In: Miller, K.J., Brown, M.W.<br />

(Eds.), ASTM STP853, American Society for Testing and Materials, Philadelphia.<br />

11. Pook, L.P. (2000). Linear elastic fracture Mechanics for engineers: theory and<br />

applicati<strong>on</strong>. WIT press, Southampt<strong>on</strong>.<br />

12. Schöllmann, M., Kullmer, G., Fulland, M., Richard, H.A, (2001), Proc. of 6 th Int.<br />

C<strong>on</strong>f. of Biaxial/Multiaxial Fatigue & Fracture, Vol. 2, 589-596.<br />

13. Schöllmann, M., Richard, H.A., Kullmer, G. and Fulland, M. (2002) Int. J. Frac.<br />

117, 129-141.<br />

14. Dh<strong>on</strong>dt, G. (2003) In: Key Engineering Materials 251-252, 209-214.<br />

15. Richard, H.A (1989), In: Biaxial and Multiaxial Fatigue, pp. 217-229, Brown,<br />

M.W., Miller, K.J (Eds.), Mechanical Engineering Publicati<strong>on</strong>s, L<strong>on</strong>d<strong>on</strong>.<br />

16. Richard, H.A., Benitz, K., (1983) Int. J. Frac. 22, R55/R58.<br />

17. Richard, H.A. (1984) In: Advances in Fracture Research, pp. 3337-3344, Valluri,<br />

S.R. et al. (Eds.), Pergam<strong>on</strong> Press, Oxford.<br />

18. Richard, H.A, Schöllmann, M., Fulland, M., Sander, M. (2001), Proc. of 6 th Int.<br />

C<strong>on</strong>f. of Biaxial/Multiaxial Fatigue & Fracture, Vol. 2, 623-630.<br />

19. Davenport, J.C.W. and Smith, D.J. (1993). Fat. Fract. Engng. Mater. Struct., 16, 10,<br />

1125.<br />

20. Richard, H.A. (1983) Praxisgerechte Simulati<strong>on</strong> des Werkstoff- und<br />

Bauteilverhaltens durch überlagerte Zug-, ebene Schub- und nichtebene<br />

Schubbelastung v<strong>on</strong> Proben, VDI-Verlag, Düsseldorf, 269-274.<br />

21. Richard, H.A., Kuna, M. (1990) Eng. Frac. Mech., Vol. 35, No. 6, pp. 949-960.<br />

22. Schirmeisen, N.-H., Richard, H.A. (2009) In: DVM-Bericht 241, pp. 211-220,<br />

Deutscher Verband für Materialforschung und –prüfung e.V., Berlin.<br />

233

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!