04.01.2014 Views

10-4 Surface Area of Prisms and Cylinders

10-4 Surface Area of Prisms and Cylinders

10-4 Surface Area of Prisms and Cylinders

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />

<strong>10</strong>-4<br />

<strong>Surface</strong> <strong>Area</strong> <strong>of</strong><br />

<strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />

Warm Up<br />

Lesson Presentation<br />

Lesson Quiz<br />

Holt McDougal Geometry<br />

Geometry


<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />

Objectives<br />

Learn <strong>and</strong> apply the formula for the<br />

surface area <strong>of</strong> a prism.<br />

Holt McDougal Geometry


<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />

lateral face<br />

lateral edge<br />

right prism<br />

oblique prism<br />

altitude<br />

surface area<br />

lateral surface<br />

Vocabulary<br />

Holt McDougal Geometry


<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />

<strong>Prisms</strong> have 2 congruent parallel bases.<br />

A lateral face is not a base. The lateral faces <strong>of</strong> a<br />

right prism are all rectangles. An oblique prism has<br />

at least one nonrectangular lateral face.<br />

Holt McDougal Geometry


<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />

The height <strong>of</strong> a prism is the distance between the<br />

bases.<br />

Lateral area <strong>of</strong> a prism is the sum <strong>of</strong> the areas <strong>of</strong> the<br />

lateral faces.<br />

<strong>Surface</strong> area is the total area <strong>of</strong> all faces <strong>and</strong> curved<br />

surfaces <strong>of</strong> a three-dimensional figure.<br />

Holt McDougal Geometry


<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />

Holt McDougal Geometry


<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />

Holt McDougal Geometry


<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />

Caution!<br />

The surface area formula is only true for right<br />

prisms. To find the surface area <strong>of</strong> an oblique<br />

prism, add the areas <strong>of</strong> the faces.<br />

Holt McDougal Geometry


<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />

Example 1A: Finding Lateral <strong>Area</strong>s <strong>and</strong> <strong>Surface</strong> <strong>Area</strong>s<br />

<strong>of</strong> <strong>Prisms</strong><br />

Find the lateral area <strong>and</strong> surface area <strong>of</strong> the<br />

right rectangular prism. Round to the nearest<br />

tenth, if necessary.<br />

Holt McDougal Geometry


<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />

Check It Out! Example 1<br />

Find the lateral area <strong>and</strong> surface area <strong>of</strong> a cube<br />

with edge length 8 cm.<br />

Holt McDougal Geometry


<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />

Find the surface area <strong>of</strong> the right triangular<br />

prism.<br />

<strong>10</strong> cm<br />

6 cm<br />

Holt McDougal Geometry


<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />

Example 3: Finding <strong>Surface</strong> <strong>Area</strong>s <strong>of</strong> Composite<br />

Three-Dimensional Figures<br />

Find the surface area <strong>of</strong> the composite figure.<br />

Holt McDougal Geometry


<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />

Holt McDougal Geometry

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!