10-4 Surface Area of Prisms and Cylinders
10-4 Surface Area of Prisms and Cylinders
10-4 Surface Area of Prisms and Cylinders
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />
<strong>10</strong>-4<br />
<strong>Surface</strong> <strong>Area</strong> <strong>of</strong><br />
<strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />
Warm Up<br />
Lesson Presentation<br />
Lesson Quiz<br />
Holt McDougal Geometry<br />
Geometry
<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />
Objectives<br />
Learn <strong>and</strong> apply the formula for the<br />
surface area <strong>of</strong> a prism.<br />
Holt McDougal Geometry
<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />
lateral face<br />
lateral edge<br />
right prism<br />
oblique prism<br />
altitude<br />
surface area<br />
lateral surface<br />
Vocabulary<br />
Holt McDougal Geometry
<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />
<strong>Prisms</strong> have 2 congruent parallel bases.<br />
A lateral face is not a base. The lateral faces <strong>of</strong> a<br />
right prism are all rectangles. An oblique prism has<br />
at least one nonrectangular lateral face.<br />
Holt McDougal Geometry
<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />
The height <strong>of</strong> a prism is the distance between the<br />
bases.<br />
Lateral area <strong>of</strong> a prism is the sum <strong>of</strong> the areas <strong>of</strong> the<br />
lateral faces.<br />
<strong>Surface</strong> area is the total area <strong>of</strong> all faces <strong>and</strong> curved<br />
surfaces <strong>of</strong> a three-dimensional figure.<br />
Holt McDougal Geometry
<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />
Holt McDougal Geometry
<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />
Holt McDougal Geometry
<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />
Caution!<br />
The surface area formula is only true for right<br />
prisms. To find the surface area <strong>of</strong> an oblique<br />
prism, add the areas <strong>of</strong> the faces.<br />
Holt McDougal Geometry
<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />
Example 1A: Finding Lateral <strong>Area</strong>s <strong>and</strong> <strong>Surface</strong> <strong>Area</strong>s<br />
<strong>of</strong> <strong>Prisms</strong><br />
Find the lateral area <strong>and</strong> surface area <strong>of</strong> the<br />
right rectangular prism. Round to the nearest<br />
tenth, if necessary.<br />
Holt McDougal Geometry
<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />
Check It Out! Example 1<br />
Find the lateral area <strong>and</strong> surface area <strong>of</strong> a cube<br />
with edge length 8 cm.<br />
Holt McDougal Geometry
<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />
Find the surface area <strong>of</strong> the right triangular<br />
prism.<br />
<strong>10</strong> cm<br />
6 cm<br />
Holt McDougal Geometry
<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />
Example 3: Finding <strong>Surface</strong> <strong>Area</strong>s <strong>of</strong> Composite<br />
Three-Dimensional Figures<br />
Find the surface area <strong>of</strong> the composite figure.<br />
Holt McDougal Geometry
<strong>10</strong>-4 <strong>Surface</strong> <strong>Area</strong> <strong>of</strong> <strong>Prisms</strong> <strong>and</strong> <strong>Cylinders</strong><br />
Holt McDougal Geometry